

Completion Report

Former Oshkosh Manufactured Gas Plant Oshkosh, Wisconsin

WIN000509947

NRT Project No: 1312

COMPLETION REPORT FORMER OSHKOSH MANUFACTURED GAS PLANT OSHKOSH, WISCONSIN USEPA ID: WIN000509947

- Project No: 1312

Prepared For:

Wisconsin Public Service Corporation 700 N. Adams Street Green Bay, WI 54307

Prepared By:

Natural Resource Technology, Inc. 23713 W. Paul Road, Suite D Pewaukee, WI 53072

February 4, 2008

Brian G. Hennings, PG

Hydrogeologist

Heather M. Simon, PE

Project Manager

Jennifer M. Kahler, PE

Senior Engineer

TABLE OF CONTENTS

ΤA	BLE	OF CO	NTENTS	i			
1	INTR	ODUCT	FION	3			
	1.1	Gener	al Site Information	4			
	1.2	History	y of Site Use	4			
	1.3	Currer	nt Site Use	6			
	1.4	Overvi	iew of Site Conditions	6			
		1.4.1	Site Status Summary	7			
2	PRE-REMEDIAL UPLAND INVESTIGATIONS						
	2.1	2.1 Overview					
	2.2	Investigation Chronology					
	2.3	•					
	2.4	· · · · · · · · · · · · · · · · · · ·					
	2.5	Soil Investigation Results		13			
		2.5.1	For	13			
		2.5.2	Adjacent Properties	14			
	2.6	Groun	dwater Flow	14			
		2.6.1	Shallow Groundwater Flow	14			
		2.6.2	Bedrock Groundwater Flow	15			
		2.6.3	Vertical Hydraulic Gradients	15			
	2.7	Groundwater Quality		15			
		2.7.1	Shallow	16			
		2.7.2	Intermediate	16			
	2.8	Summ	ary of Findings	16			
3	SEDIMENT INVESTIGATION AND RESULTS						
	3.1	Investi	igation Chronology	18			
		3.1.1	Simon Hydro-Search, Inc. (HSI), August 1994	19			
		3.1.2	Natural Resource Technology, October 1996	19			
		3.1.3	Natural Resource Technology, (2001 Sampling Activities)	20			
	3.2	2 Summary of Sediment Investigations		28			
4	REM	EMEDIAL ACTIONS PERFORMED					
	4.1	Overview					
	4.2	Remedial Action Objectives					
	4.3	Pre-Re	30				
		4.3.1	Feasibility Study	30			
		4.3.2	Design Activities	31			
		4.3.3	Supplemental Design Activities	31			

		4.3.4	Remedial Design	32			
		4.3.5	Permitting and Approvals	33			
	4.4	Soil Remediation					
		4.4.1	Excavation and Grading	34			
		4.4.2	Thermal Treatment	38			
		4.4.3	Air Monitoring	39			
		4.4.4	Material Management Summary and Conclusions	39			
	4.5	Contail	nment System	39			
		4.5.1	Vertical Barrier Wall	39			
		4.5.2	Groundwater Extraction and Treatment System	42			
	4.6	Earthe	n Cap	43			
	4.7	Soil Qu	uality Remaining	43			
	4.8	Modific	cations to the Monitoring Well Network	44			
	4.9	Park C	onstruction	44			
	4.10	Access	s Agreements	46			
5	POST	Γ-REME	DIAL UPLAND INVESTIGATIONS	47			
	5.1	Overvi	ew	47			
	5.2	Investigation Chronology					
	5.3	Potable Wells					
	5.4	Region	nal Cone of Depression	49			
	5.5	Investi	gation Results	50			
		5.5.1	Refinements to Site Geological Interpretations	50			
		5.5.2	Groundwater Flow	51			
		5.5.3	Groundwater Quality	51			
		5.5.4	Bedrock/Sediment Interface Assessment	53			
	5.6	Summa	ary of Findings	54			
6	POST-REMEDIAL PERFORMANCE MONITORING RESULTS						
	6.1	Overview					
	6.2	Containment Performance					
6.3 G		Gradie	Gradient Control System Performance				
		6.3.1	Operation and Maintenance	57			
		6.3.2	Shallow Groundwater Quality	58			
	6.4	4 Other Remedy Components Performance					
	6.5	5 Proposed Piezometer Abandonment					
	6.6	Future	Groundwater Monitoring	60			
7	IDEN	62					
	7.1	Exposure Pathway Analysis					
		7.1.1	Surface Soil	62			
		7.1.2	Subsurface Soil	63			
		7.1.3	Groundwater	63			
		7.1.4	Sediments	63			

	7.2	Summary of Additional Data Needs	34
8	REFE	ERENCES (RECORD FILE)	3 5

FIGURES

Figure 1: Site Location Map (1312-A01)
Figure 2: Existing Site Layout (1312-9-B04)

Figure 3: Shallow Groundwater Elevation and Isoconcentration Contours,

November 2007 (1312-9-B02)

Figure 4: Bedrock and Sand/Gravel Piezometric Surface Elevation and

Isoconcentration Contour, November 2007 (1312-9-B03)

TABLES

Table 1: Groundwater Elevation Summary

Table 2: Groundwater Analytical Results - BTEX, Trimethylbenzenes, and Cyanides Table 3: Groundwater Analytical Results - Polynuclear Aromatic Hydrocarbons

Table 4: Dewatering Sump Groundwater Elevation Summary and System Operational

Data

Table 5: Gradient Control System Analytical Results

Table 6: Groundwater and System Monitoring Schedule (Revised December 2007)

APPENDICES

APPENDIX A: SITE INVESTIGATION SOIL DOCUMENTATION

Appendix A1: Site Figures

Sheet C020 - Historical Site Plan (1312-63-D101)

Plate 1 – Soil Analytical Summary (1985 – 2002 Data) (1312-71-E01C.dwg)

Appendix A2: Site Investigation Soil Analytical Tables

Tables 4-3 – Summary of Soil Sample Analytical Results - Organics

Table 4-4 - Summary of Soil Sample Analytical Results - Cyanide Compounds

Table 4-5 – Summary of Soil Sample Analytical Results – Metals

Table 1 – Soil Analytical Results – Total Organic Carbon

Table 6 – Summary of Soil Treatability Laboratory Analyses

Appendix A3: Remedial Action Option Report Figures

Figure 2 – Distribution of BTEX and PAH Impacts in Unsaturated Soil (1177-B02.dwg)

Figure 3 – Distribution of Cyanide Impacts in Soil (1177-B05.dwg)

APPENDIX B: SITE INVESTIGATION GROUNDWATER DOCUMENTATION

Appendix B1: Remedial Work Plan Figures

Figure 7 – Water Table Elevation Contours September 2001 (1312-5.2-D42)

Figure 8 – Piezometric Surface Elevation Contours September 2001 (1312-5.2-D44)

Figure 9 – Distribution of BTEX and PAHs in Water Table Wells (1312-5.2-D46)

Figure 10 – Distribution of BTEX and PAHs in Piezometers (1312-5.2-D45)

APPENDIX C: SITE INVESTIGATION SEDIMENT DOCUMENTATION

Appendix C1: Site Investigation Documentation Prior to 2001

Figure 2 - Previous Sediment Sampling Locations (1644-4-B01)

Table 1 - Summary of Sediment Sampling Results (Appendix A-1)

Table 4-2 – BETX and PAH Sediment Sample Results

Table 4-3 – Cyanide, TOC, Oil and Grease, and Grain Size Results

Appendix C2: 2005 Figures and Sheets

Figure 3 – Sediment Sampling Locations 2001 (1644-1-B02)

Figure 4 – Occurrence of MGP Residuals in Soft and Surficial Sediment (1644-1-B03)

Figure 5 – Occurrence of MGP Residuals in Glacial Till Material (1644-1-B05)

Figure 6 – Total BTEX and Total PAH Distribution in Soft Sediment (1644-1-B04)

Sheet 1 – Distribution of Total BTEX and Total PAHs (1644-1-D01)

Sheet 2 – Geologic Cross Sections (1644-1-D02)

Appendix C3: 2005 Tables

Table 1 – Sediment Poling and Ponar Grab Sampling Locations and Field Observations

Table 2 – Sediment Borehole Sampling Locations and Field Observations

Table 3 – Fox River Flow Summary Statistics – Water Years 1992 through 2000

Table 4 – Sediment Analytical Results – BTEX

Table 5 – Sediment Analytical Results – Poly nuclear Aromatic Hydrocarbons (PAHs)

Table 6 – Sediment analytical Results – Metals, Cyanide, PCBs, Ammonia, and TOC

Table 7 – Surface Water Analytical Results – BTEX, Cyanide, Ammonia, TOC, and TSS

Table 8 – Surface Water Analytical Results – Polynuclear Aromatic Hydrocarbons (PAHs)

Appendix C4: River Profiling

Soft Sediment and Debris Thickness (1644-1-APPC1)

River Bottom Elevation (1644-1-APPC2C)

Color Filled Elevation Contour Map

Color Filled Sediment Thickness (ISOPACH) Contour Map

Isopach Contours (1644-1-APPC3C)

Appendix C5: Preliminary Benthic Community Survey

Preliminary Survey of Benthic Community (1644-1-APPB1)

APPENDIX D: REMEDIAL ACTION DOCUMENTATION

Appendix D1: Remedial Action Documentation Figures

Sheet C010 – Site Plan, Pre-Existing Conditions (1312-63-D100)

Sheet C040 – Excavation Plan (1312-63-D103)

Sheet C060 – Groundwater Extraction System Plan (1312-63-D105)

Sheet C081 – Vertical Barrier Plan (1312-63-D110)

Sheet C083 – Vertical Barrier Profiles (1312-63-D112)

Sheet C084 – Vertical Barrier Sections and Details (1312-63-D113)

Sheet S010 – Vertical Barrier Anchor Plan (1312-63-D117)

Sheet S011 – Vertical Barrier Anchor Details (1312-63-D118)

Sheet M010 – Groundwater Treatment System Piping and Instrumentation Diagram (1312-63-D121-R3)

Appendix D2: Remedial Action Documentation Tables

Table 1 - Summary of Waste Characterization for Treatment and Disposal

Table 3 - Post-treatment Soil Analytical Results

Table 4 - Soil Contaminant Mass Removal Summary

Table 6 - Summary of Earthen Cap Extent - Shallow Soil Quality Results

Appendix D3: WDNR Special Waste Approval

Appendix D4: Riverside Park Construction Documentation Report

Appendix D5: Sediment Easement

APPENDIX E: BEDROCK GROUNDWATER DOCUMENTATION

Appendix E1: Bedrock Groundwater Figures

Figure 5 - Isopach Contours of Coarse-Grain Material above Bedrock (1312-68-B05)

Figure 7 - Bedrock Surface Elevations (1312-68-B04) (August 2005, NRT)

Figure 8 - Private, Community, and Industrial Well Information (1312-68-B08)

Figure 9 - Potential Migration Pathways of Coal Tar and Dissolved Phase MGP Residuals (1312-68-B07)

Appendix E2: Geological Cross Sections

Plate 1 - Geologic Cross Sections A-A' and B-B' (1312-68-D01)

Plate 2 - Geologic Cross Sections C-C' and D-D' (1312-68-D02)

APPENDIX F: PERFORMANCE MONITORING DOCUMENTATION

Appendix F1: Field Note Summaries and Operation Logs

Appendix F2: Laboratory Analytical Results

Appendix F3: Earthen Cap Maintenance Inspection Log Appendix F4: Intermediate Silt/Clay Piezometric Figure

ACROYNMS

AOC Administrative Order on Consent

Bgs below ground surface

BTEX benzene, toluene, ethylbenzene, xylenes

BaP benzo(a)pyrene
BbF benzo(b)fluoranthene

C3 C3 Environmental Limited

City City of Oshkosh

CERCLA Comprehensive Environmental Response Compensation, and Liability Act

Cm/sec centimeters per second COCs constituents of concern

CQA construction quality assurance

CSM conceptual site model DO dissolved oxygen

EDI Engineering & Science, Inc.

ES Enforcement Standard

ft/ft feet per foot ft3 cubic feet ft/min feet per minute GCL geocomposite liner

GIS geographic information system

gpm gallons per minute

Hp horsepower

HSI Simon Hydro-Search

LL liquid limit

mg/kg micrograms per liter
mg/kg milligrams per kilogram
MGP manufactured gas plant
MCL Maximum contaminant level
NCP National Contingency Plan

ND non-detectable

NGVD national geodetic vertical datum NRT Natural Resource Technology, Inc.

OM&M operation, maintenance and groundwater monitoring

ORP oxidation/reduction potential

PAH polynuclear aromatic hydrocarbons

PAL Preventive Action Limit

Park Riverside Park

ACRONYMS (CONT'D)

PID photoionization detector

PLC Programmable Logic Controller

ppm parts per million

psi pounds per square inch

PVOC petroleum volatile organic compounds

RAOs Remedial Action Objectives
RCLs Residual Contaminant Levels

RCRA Resource Conservation and Recovery Act RI/FS Remedial Investigation / Feasibility Study

ROD record of decision

ROW right-of-way

SARA Superfund Amendments and Reauthorization Act

SOW Statement of Work

SPT standard penetration test SSL Soil Screening Levels

TCLP toxicity characteristic leachate procedure

TCT Twin City Testing Corporation

TOC Total Organic Carbon

USEPA United States Environmental Protection Agency

USGS United States Geological Survey
USCS Unified Soil Classification System

UU undrained unconsolidated VOC volatile organic compound

WDNR Wisconsin Department of Natural Resources
WGNHS Wisconsin Geological and Natural History Survey

WKG2 Wagner Komurka Geotechnical Group, Inc.

WPDES Wisconsin Pollutant Discharge Elimination System

WPSC Wisconsin Public Service Corporation

WWTP Wastewater Treatment Plant

1 INTRODUCTION

Pursuant to the Administrative Order on Consent (AOC) and associated Statement of Work (SOW) executed between the U.S. Environmental Protection Agency (USEPA) and WPSC on May 5, 2006, a completion report is to be prepared for the former Manufactured Gas Plant (MGP) Site (Site), located in Oshkosh, Wisconsin (Figure 1) to summarize environmental investigation and remediation activities undertaken at the Site. Natural Resource Technology, Inc. (NRT), on behalf of Wisconsin Public Service Corporation (WPSC), prepared this Completion Report.

The purpose of this Completion Report is to:

- Summarize the previous work performed at the Site prior to the effective date of the AOC;
- Assess the environmental effectiveness of the remedial actions undertaken to date;
- Document whether the areas where further remedial measures and/or other response actions are necessary;
- Summarize the on-going monitoring results, and
- Determine, based on current site information, areas that pose a potential risk to human health and/or the environment, and may warrant additional investigation.

The report is divided into the following sections:

- Section 2: Pre-Remedial Upland Investigations;
- Section 3: Sediment Investigation and Results;
- Section 4: Remedial Actions Performed;
- Section 5: Post-Remedial Upland Investigations;
- Section 6: Post-Remedial Performance Monitoring Results;

- Section 7: Identified Pathways and Conclusions; and
- Section 8: References (Record File).

1.1 General Site Information

Owner: City of Oshkosh

Contact: Mr. Jackson Kinney

215 Church Avenue P.O. Box 1130 Oshkosh, WI 53903

Former MGP Operator: Wisconsin Public Service Corporation

Contact: Mr. Brian Bartoszek (920-433-2643) 700 North Adams Street, P.O. Box 19002

Green Bay, WI 54307-9002

Facility Location: T18N, R16E, Section 24

305 Ceape Avenue Oshkosh, Wisconsin Winnebago County

USEPA ID: WIN000509947

WDNR BRRTS #: 02 71 000256

The former MGP property encompasses approximately 7.6 acres and is bounded on the north by Ceape Avenue, on the east by Broad Street, on the west by Court Street and on the South by the Fox River (Figure 2).

1.2 History of Site Use

The Oshkosh Gas Works owned and operated the Oshkosh MGP from 1869 until 1922. In 1922, a number of existing utility companies merged to form WPSC and the MGP became a WPSC facility. Numerous companies owned portions of the former MGP property. Sanborn maps show Banderob & Chase Furniture Factory owned the eastern portion of the property between the 1890 and 1950s for furniture making and lumber storage. Based on the Sanborn maps, WPSC purchased the eastern portion of the property from Banderob & Chase between 1949 and 1957.

The former MGP facility was constructed in 1869 and initially utilized the retort coal gas production method, which involved heating the coal in an airtight chamber (retort) which produced coke and gases containing a variety of volatilized organic constituents. The process also produced tar, which was sold for roofing, wood treatment, and paving roads. The gas was passed through purifiers to remove impurities such as sulfur, carbon dioxide, cyanide, and ammonia. Dry purifiers contained lime or hydrated iron oxide mixed with wood chips. The gas was then stored in large holders on the property prior to distribution for lighting and heating.

In 1914, the production method was converted to a carbureted water gas process, which involved passing air and steam over the incandescent coal in a brick-filled vessel to form a combustible gas, which was then enriched by injecting a fine mist of oil over the bricks. The gas was then purified and stored in holders prior to distribution. The Oshkosh MGP ceased operations in 1946 when propane was introduced as a fuel. Based on MGP property site plan drawings provided by WPSC, which cover the years 1915 to 1966, former MGP-related structures (Appendix A1, Sheet C020) included the following:

- Boiler, retort, condenser, scrubber, vaporizer and purifier houses;
- Two gas holders with capacities of 200,000 cubic feet and 500,000 cubic feet;
- One aboveground oil storage tank approximately 24 feet in diameter;
- Four tar wells:
- Three tar separator tanks and one tar still;
- Two water supply wells;
- Steam plant; and
- Coal and coke storage.

Based on review of Sanborn maps, the shoreline of the Fox River has shifted considerably from 1890 to 1911 to its present day position (Appendix A1, Sheet C020). The source of the fill material is not known.

In 1985, the City of Oshkosh constructed a pump station on property purchased from WPSC on the eastern edge of the property near the WPSC electrical substation. Also installed at that time were two

force mains each 36 and 16 inches in diameter, respectively, that traverse across and beneath the Fox River to the City's treatment facility located south of the former MGP. WPSC retained ownership of the central and western portions of the property and operated a natural gas regulating station located along Court Street. Gas regulation operations were housed in an aboveground building that was formerly part of the MGP operations and ceased in 2002 as part of the upland remedial action.

In December 2003, following WPSC upland remedial construction activities, the City of Oshkosh purchased the WPSC property to expand its existing park located west of Court Street along the Fox River (Figure 2). WPSC retains ownership of the electrical substation adjacent to the pump station on the eastern portion of the former property and the groundwater treatment building which houses the gradient control system equipment and control panel.

1.3 Current Site Use

The former MGP facility now known as Riverside Park has an amphitheatre, parking lot, concession buildings, restroom facilities, landscaped lawn, and paved walkways (Figure 2). The Park currently extends from the Fox River on the south to State Street on the west, to Ceape Avenue on the north, and to Broad Street right-of-way on the east. The Park footprint includes the former MGP property and about 200 feet of the southern portion of former Court Street right-of-way.

An asphalt parking lot is located on the north side of the Park, with access from Court Street and Ceape Avenue. WPSC's groundwater treatment building is located adjacent to Broad Street right-of-way and the City of Oshkosh pump station (Figure 2). At the southwest corner of Court Street and Ceape Avenue is a building owned by a law firm. East of the Park are residential homes and commercial buildings.

1.4 Overview of Site Conditions

WPSC provided a summary of Site conditions to the USEPA in October 2005. The summary included information pertaining to: (1) the upland remediation work; and, (2) on-going monitoring. In addition a list of documents pertaining to the Site was included. An overview of Site conditions is presented below.

1.4.1 Site Status Summary

1.4.1.1 Overview of Work Performed

- WPSC performed upland remediation work in 2002, including source area excavation and thermal treatment (23,500 tons), installation of a containment barrier wall and gradient control system, and construction of a surface cap.
- Operation, maintenance, and groundwater monitoring (OM&M) is in progress. WPSC submitted 2006 Annual Operation, Maintenance, and Monitoring Report on February 7, 2007 to document OM&M activities. This Completion Report includes the 2007 OM&M activities (Section 6).
- The City purchased the property for park redevelopment in December 2003. Park construction began in 2004 and was substantially completed in June 2005.
- Assessment of groundwater quality in the bedrock aquifer was performed in 2005.
- River sediment quality assessments were performed in 1996 and 2001.

1.4.1.2 Status of Site Conditions & Monitoring

- The depth to groundwater ranges from approximately 4 to 10 feet below existing ground surface. Shallow groundwater outside of the containment zone flows south toward the Fox River. Shallow bedrock flow is to the north, away from the river.
- Post-remediation residual concentrations of BTEX, trimethylbenzenes, PAH, and cyanide are present in soil and/or groundwater, as described in the project reports of record.
- Monitoring data indicates the existing gradient control system adequately captures the shallow/water table zone. The system discharges to City WWTP at average flow rates of 5 to 10 gpm with an "up" time of more than 90 percent since start-up. The discharge complies with the WWTP limits.
- Shallow groundwater quality is close to or below the maximum contaminant level (MCL) or NR140 ES at perimeter wells (outside of the containment system). Bedrock water quality exceeds the MCL or NR140 ES adjacent to the Fox River (upgradient), and is at or below MCL or NR140 ES off-site to the east (side gradient). Bedrock water quality is at or below MCL or NR140 PAL to the north (down gradient).
- Water depths in the Fox River vary from about 6 to 7 feet adjacent to the former MGP at the sheet pile wall, increasing to as much as 30 feet near the center of the river channel. Soft sediment thickness based on poling, core samples, and borings varies from <1 foot to about 6 feet.

- Residual tar, sheens and PAH are present in sediments. Soft sediments containing MGP residuals occur near shore in thin, discrete deposits within the river channel. Underlying the soft sediment is consolidated sediments. Tar was observed within the consolidated sediments generally confined to the sand seams within the clay, and the gravel deposits.
- Total PAH concentrations in sediment samples are highest in sample T107-C (0 to 2 feet composite) at 30,710 mg/kg, located near mid-channel. Other sediment samples adjacent to the former MGP vary from ND to 12,710 mg/kg total PAHs. Samples slightly upstream of the former MGP ranged from ND to 7.6 mg/kg. Samples from near the railroad bridge and downstream ranged from ND to 17 mg/kg.

2 PRE-REMEDIAL UPLAND INVESTIGATIONS

2.1 Overview

This section summarizes pre-remedial soil and groundwater investigations performed in the upland portions of the Site. Most soil samples collected and analyzed were obtained during pre-remedial investigations. The soil quality issues were largely addressed through soil excavation and treatment, containment of MGP residuals by construction of the vertical barrier wall and earthen cap, and operation of the hydraulic gradient control system. Post-remedial soil sampling was limited to excavation side wall samples and post-treatment samples collected from the thermally-treated material prior to use as backfill.

Pre-remedial groundwater investigations focused on determining the magnitude and extent of groundwater contamination at the former MGP property. Groundwater analytical results collected during these pre-remedial investigations were compared to WDNR NR140 regulatory standards. These data, while of historical interest, are not reflective of current conditions due to the remedial work performed to-date. Potential exposure pathways that may continue to pose a risk to human health and/or the environment are discussed in Section 7.

2.2 Investigation Chronology

As outlined below, site investigation efforts began in 1985 at the former MGP by WPSC. Concentrations of BTEX, PAHs, and total cyanide in groundwater samples collected from monitoring wells OW-1, OW-2 and OW-3 suggested that these constituents were present at elevated levels in groundwater beneath the former MGP property. In November 1991, HGM Architecture, Inc. retained Twin City Testing Corporation (TCT), on behalf of the City of Oshkosh, to perform geotechnical borings on the property to the west of Court Street as part of the City of Oshkosh senior center construction. TCT encountered black oily material and odorous wood chips suggesting the presence of subsurface contamination.

WDNR requested that both the City of Oshkosh and WPSC conduct investigations of their respective properties. WPSC coordinated and conducted further investigations on both properties under a Consent Order entered into with WDNR on October 22, 1993.

WPSC performed additional soil investigations between 1985 and 1996 to evaluate the magnitude and extent of MGP contamination. In 1998, pre-design data was collected to prepare the upland remedial action alternative described in Section 4.

Detailed information regarding the soil investigation activities and results (including soil boring logs and monitoring well construction forms) is contained in the following documents:

- EDI Engineering & Science, Inc., January 1986. Site Investigation, Former Coal Gas Manufacturing Plant, Ceape Avenue, Oshkosh, Wisconsin;
- Simon Hydro-Search (HSI), June 23, 1994. Phase II Investigation Report Environmental Investigation of Former Manufactured Gas Plant Facility, Oshkosh, Wisconsin;
- Natural Resource Technology, Inc. (NRT), October 2, 1996, Letter to James Reyburn, Wisconsin Department of Natural Resources, *Phase II Addendum Investigation Results, Former Oshkosh Manufactured Gas Plant (MGP) Site, Oshkosh, Wisconsin*; and
- Natural Resource Technology, Inc., April 27, 2000, Remedial Design Report, Former Manufactured Gas Plant Site, Oshkosh, Wisconsin.

The investigations consisted of the following:

- EDI 1985 Site Investigation included an analysis of ten surface soil samples (two at five locations, SS-1 through SS-5), sampling of two soil borings (SB-1 and SB-2), installing and sampling of four monitoring wells (OW-1 through OW-4), and six ambient air samples (AS-1 through AS-6; four on-and two off the MGP property) (refer to EDI, 1986); A potable well search was performed for the area within a ¼-mile radius of the property, including an assessment of the municipal water source; however a more recent potable well search was completed in 2005 (August 31, 2005, NRT), as discussed in Section 5;
- In 1991 and 1992, the City of Oshkosh investigations included sampling of twenty soil borings (B-1, B-2, BX-1 through BX-6, and BZ-1 through BZ-12), installing and sampling of five monitoring wells (GW-1 through GW-5) and three piezometers (P-2 through P-4) (refer to HSI, 1994) to define the extent and magnitude of affected groundwater west of the former WPSC property;

- A 1993 Phase II Investigation by HSI included sampling 19 test pits (TP-101 through TP-118, and TP-105A), four surface soil samples (SS-101 through SS-104), seven soil borings (B-101 through B-107), five HydroPunchTM soil and groundwater samples (HP-101 through HP-105), four monitoring wells (MW-101 through MW-104), and three piezometers (P-101 through P-103) (refer to HSI, 1994) to define the extent and magnitude of groundwater and soil contamination at the former MGP property;
- A 1996 Phase II Addendum Investigation by NRT included drilling of seven soil borings (SB-101 through SB-107) and sampling three piezometers (P-104 through P-106) (refer to NRT, 1996);
- A 1998 Pre-Remedial Design Investigation by NRT included installing and sampling four monitoring wells (MW-105 through MW-108) and a groundwater recovery well which was used to perform a pump test, installation of 13 geotechnical borings (SB-109 through SB-111, SB-113 through SB-119, SB-121, SB-123 and SB-124), and analysis of nine composite soil samples (refer to NRT, 2000); and
- In February 2001, as requested by WDNR (December 2000, WDNR), monitoring well MW-109 and piezometer P-107 were installed to define the affects on groundwater to the east. Based on the results of February 2001 groundwater investigation, monitoring well MW-110 and piezometer P-108 were installed in the Broad Street right-of-way to evaluate the extent of the plume east of MW-109/P-107 well nest in October 2001 (refer to NRT, November 2001).

All soil sample locations from the various investigations are shown in Appendix A1 on Plate 1. Soil analytical results are provided in Appendix A2. Monitoring well and piezometer locations from the pre-remedial investigations are shown on Figures 7 and 8 in Appendix B1. Groundwater analytical results are summarized in Table 2 and 3.

2.3 Regional Geology

Olcott (1968)¹ mapped the Oshkosh area within the Eastern Lake Plain and Moraine geographic province. Unlithified materials largely consist of silt and clay, deposited as glacial ground moraine and lake-plain sediments. The thickness of the unlithified deposits is less than 100 feet, except in a bedrock valley that is roughly parallel to, and north of, the Fox River, where thickness can reach 200 feet (Olcott 1968; Appendix E1, Figure 1). This valley slopes to the west towards a major preglacial river valley that likely

-

¹ Olcott, Perry G., 1968, Water Resources of Wisconsin Fox-Wolf River Basin, Hydrologic Investigations Atlas HA-321, University of Wisconsin Geological and Natural History Survey in Cooperation with the United States Department of the Interior Geological Survey.

flowed to the southwest and discharged to the Wisconsin River. The unlithified deposits are underlain by dolomite bedrock of the Ordovician Age Sinnipee Group, also known as the Galena Platteville Formation. Dolomite thickness on the former MGP property is 42 feet. St. Peter Sandstone underlies the dolomite, and is the area's primary aquifer for high capacity potable wells (Olcott 1966).²

2.4 Site Geology and Hydrogeology

Surficial soil at the former MGP property consisted of 2 to 12 feet of an inconsistent mixture of fine sands, silts, and clay mixed with ash/cinder, glass, bricks, concrete, and wood. In general, the fill was between 2 and 5 feet thick near Ceape Avenue and thickened to 6 to 12 feet bgs near the river. On the south portion of the former MGP property, the fill is underlain by an organic soil layer ranging in thickness from 1 to 11 feet that decreases in thickness to the north, away from the river and is absent in the vicinity of P-109 on the north portion of the former MGP property. The fill and organic rich deposits are underlain by a lean clay, that ranges in thickness from 10 to 30 feet where present and externals to depths of 20 to 30 feet bgs and is absent on the northwest portion of the former MGP property in the vicinity of P-104 and P-109. The origin of this lean clay is likely alluvial (prior to development of the former MGP property) and clay fill material (during and subsequent to development of the former MGP property). A gravelly lean clay, interpreted as a clay-rich till, is present beneath the lean clay on the majority of the former MGP property and is thickest, 25 to 45 feet at P-104, P-109, and P-111 on the north portion of the former MGP property and north of the property, thins to the south (PW-A and SB-123), and is absent near and adjacent to the river (P-105 and T108-D). The till, where present, directly overlies the dolomite bedrock, with sporadic thin sand or gravel lenses at the bedrock interface (e.g., P-104). The dolomite bedrock interface occurs at elevations ranging 706 feet (P-107) on the southeast portion of the property to greater than 720 feet adjacent to the river on the southwest portion of the site and at 674 feet on the north portion of the former MGP property (P-109), within the bedrock valley.

NATURAL RESOURCE TECHNOLOGY

² Olcott, Perry G., 1966, Geology and Water Resources of Winnebago County, Wisconsin, United States Department of the Interior Geological Survey in Cooperation with The University of Wisconsin Geological and Natural History Survey.

Cross sections (Appendix E2, Plate 1 and 2) based on pre-remedial, sediment, and post-remedial geologic borings illustrate three hydrostratigraphic units:

- Shallow: Unit consists of fill and alluvium from depths of zero to 16 feet bgs.
- Intermediate: Unit consists of confining lean clay and till (gravelly lean clay) between depths of 20 and 35 feet bgs, with the exception of the north portion of the property where units extends at least 80 feet below ground surface, within the bedrock valley.
- Bedrock: Unit consists of fractured dolomite bedrock and sandy units directly overlying and in contact with the bedrock.

2.5 Soil Investigation Results

Soil samples were analyzed for MGP constituents of concern (COCs), including volatile organic compounds (VOCs); benzene, toluene, ethylbenzene and xylenes (BTEX); polynuclear aromatic hydrocarbons (PAHs); total phenols; total, amenable and weak acid dissociable cyanide; and RCRA metals. Soil analytical data are provided in Appendix A2.

2.5.1 Former MGP Property

The area with elevated PAHs generally coincided with a portion of the area where elevated benzene concentrations were present (see Figure 2 in Appendix A3).

In the central portion of the former MGP property, the contaminated area was associated with the former 500,000 ft³ gas holder. Based on soil borings and test pits performed in this area, affected soil extended to 6 feet bgs in the vicinity of the former gas holder and was relatively localized. Field observations indicated that a sheen and strong odor (and possibly tar) was present between 4 to 6 feet bgs from the south edge of the holder to approximately 25 feet south of the former gas holder.

Soil contamination on the northwestern side of the former MGP property was located in the vicinity of the former tar wells and 200,000-ft³ gas holder. Laboratory analytical results showed the presence of BTEX and PAHs throughout this area. Field observations indicated that tar was present in the vicinity of two of the tar wells and the gas holders. Coal tar was also observed in the fractures of the clay with sand at MW-104 (depth 10.9 to 11.4 feet).

Elevated levels of cyanide were detected during the pre-remedial investigations. Field observations indicated stained wood chips located primarily in the vicinity of the tar wells, tar separator and scattered on the north-central part of the property (Figure 3, Appendix A3). The highest concentration of total cyanide (1,727 mg/kg) was encountered in the former 25,000 gallon tar well at 1.5 feet bgs. The total cyanide concentration at TP-107, below the former tar separator, was 496 mg/kg at a depth of 4.5 feet bgs. Total cyanide concentrations from all other samples collected were less than 100 mg/kg.

2.5.2 Adjacent Properties

Soil samples collected by the City's consultant, Twin City Testing Corp. (TCT), and NRT indicated the presence of MGP residuals. These MGP residuals are mostly located along the southern end of Court Street and adjacent to the Fox River (Figure 2, Appendix A3). Laboratory analytical results indicate that BTEX and PAHs are present in soils throughout this area (southern end of Court Street and adjacent to the Fox River at GW-4, BZ-8 and BZ-1); generally below the water table, which may be related to groundwater migration and do not necessarily indicate presence of potential source areas. Coal tar was observed in the fractures of the native clay with sand at boring B-105 in Court Street from 6 to 10 feet bgs. Geotechnical soil borings installed in Court Street by NRT in 1998 indicated that fill material and hydrocarbon staining was present in soils to a depth of approximately 4 to 6 feet bgs.

2.6 Groundwater Flow

Depth to groundwater measurements were collected during pre-remedial investigation activities from the monitoring wells and piezometers and are summarized in Table 1.

2.6.1 Shallow Groundwater Flow

Pre-remedial shallow groundwater elevations ranged from 746 to 748 feet³ (4 to 8 feet bgs). Shallow groundwater flows were south-southwest towards the Fox River (Appendix B1 Figure 7). River elevations were similar to or slightly lower than groundwater elevations. Horizontal gradients, based on

_

³ NAVD88 - Elevations in this report will be noted as feet only and are referenced to the new North American Vertical Datum of 1988 (NAVD88)

September 2001 data (Appendix B1, Figure 7), were approximately 0.007 to the south (toward the Fox River).

Hydraulic conductivity values calculated from 1993 baildown/recovery test methods ranged from 1.5×10^{-2} to 1.3×10^{-7} cm/sec. The highest hydraulic conductivity values occurred in well-graded gravel layers and in the coarse-grained fill material. Low hydraulic conductivity values occurred in the wells screened in lean clay with sand and within the fine-grained fill (HSI, 1994).

The higher velocities were influenced by higher hydraulic conductivities calculated for monitoring wells screened in fill, and the lower velocities represent wells screening the shallow lean clay. The mean flow velocity in the fill, using a geometric mean hydraulic conductivity value of 2.0 x 10^{-3} cm/s ranged from 20 to 50 ft/yr.

2.6.2 Bedrock Groundwater Flow

Pre- and post-remedial bedrock groundwater elevations ranged between 742 to 748 feet NAVD based on piezometers P-104 through P-108 and indicated groundwater flow is north with a slight westerly component. Horizontal hydraulic gradients have ranged from were 0.001 to 0.005 to the northwest/west (away from the Fox River).

2.6.3 Vertical Hydraulic Gradients

The shallow and bedrock groundwater flow systems are independent of each other (See Section 5). As such, vertical hydraulic gradient data presented in the pre-remedial site investigation reports are not helpful in interpreting vertical groundwater flow.

2.7 Groundwater Quality

Groundwater samples collected from the monitoring wells and piezometers from 1985 through March 2002 were analyzed for BTEX; trimethylbenzenes; total, weak acid dissociable and amenable cyanides; and PAHs. Groundwater quality data are summarized in Tables 2 and 3, and presented on Figure 9 in Appendix B1.

Section 2 – Pre-Remedial Upland Investigations

2.7.1 Shallow

The highest concentrations of BTEX (520 to 9,700 micrograms per liter (µg/L) benzene) and PAH (510 to

41,000 µg/L naphthalene) compounds were detected in the south central portion of the former MGP

property at GW-2, MW-102 and MW-101. Concentrations decreased to the east and west (<0.13 to

2.2 µg/L benzene and <0.056 to 280 µg/L naphthalene), toward the park and the Broad Street right-of-

way.

The upgradient extent of MGP-related constituents in groundwater was delineated by OW-1, where

BTEX and PAHs concentrations were slightly above or at NR 140 Preventive Action Limits (PAL).

2.7.2 Intermediate

MGP-related constituents present in groundwater samples collected from piezometers screened within the

intermediate silt/clay zone (P-2, P-4, P-101 and P-102) were attributed to historical activities and the

alignment of historic shorelines at the former MGP property before these areas were backfilled to current

surface grade (Appendix A1, Sheet C020).

2.7.3 Bedrock

MGP-related constituents in bedrock piezometers were mostly below NR140 ES with the exception of

P-103, P-107, and P-108, located adjacent to the Fox River. P-103 and P-107 are screened in gravel

above bedrock. P-108 is screened in silt above bedrock with a sand pack that is hydraulically connected

to bedrock. All three piezometers (P-103, P-107, and P-108) are hydraulically upgradient of the former

MGP operations area and other piezometers (Appendix B1, Figure 10).

2.8 Summary of Findings

The pre-remedial upland investigations identified and delineated soil and groundwater contamination

associated with operation of the former manufactured gas plant. Most contamination occurred within the

shallow alluvium and fill unit. Section 4 describes the remedial actions designed to treat and contain the

contamination.

Results of pre-remedial investigations include the following:

1312 Completion Rpt FINAL.doc

NATURAL RESOURCE

TECHNOLOGY

- Shallow groundwater flows south-southwest toward the Fox River and bedrock groundwater flows north-northwest:
- Shallow groundwater was affected by MGP residuals on the former MGP property. The groundwater data at MW-103 and MW-108 did not indicate significant MGP residual concentrations migrating to the east;
- Historical activities and the alignment of historic shorelines influenced the intermediate groundwater quality;
- Bedrock monitoring wells near the river (P-103, P-107, and P-108) had higher concentrations of BTEX and PAH compounds than the downgradient bedrock wells north of the river (P-104 and P-106);
- Oxide box wastes consisting primarily of blue stained wood chips were visually identified near the former MGP tar separator located northwest of the former 500,000 gas holder and in surficial soils (less than one foot bgs) in various portions of the former MGP property; and
- The fill materials are primarily an inconsistent mixture of fine sands, silts and clay mixed with ash/cinder. These fill materials contain MGP residual constituents consisting primarily of BETX and PAHs. MGP residuals are also present in the fill materials within and in the vicinity of the former gas holders and tar wells.

3 SEDIMENT INVESTIGATION AND RESULTS

3.1 Investigation Chronology

Sediment investigations were performed in the Upper Fox River, adjacent to the former MGP. Detailed information of the surface water investigation activities and results are discussed in the following letter reports, listed in chronological order:

- WPSC Oshkosh Former Manufactured Gas Plant Site Fox River Sediment Sampling Results, (August 1994, Simon Hydro-Search, Inc.);
- Sediment Sampling Work Plan, Former Manufactured Gas Plant Site Oshkosh, Wisconsin (April 1995, NRT);
- Sediment Investigation Report, Former Manufactured Gas Plant Site Oshkosh, Wisconsin (October 1996, NRT);
- Sediment Sampling and Analysis Plan (SAP) for the former Oshkosh Manufactured Gas Plant (MGP) Site, Oshkosh, Wisconsin (June 2001, NRT); and
- (Revised) Sediment Investigation Report Former Oshkosh Manufactured Gas Plant Site Oshkosh, Wisconsin (August 22, 2005, NRT).

Two types of material are observed at the bottom of the Fox River: unconsolidated soft sediments and consolidated sediments. The soft sediments are composed of organic silt/clay to organic sand with debris and fine-grained material (lean clay and silt) with varying amounts of coarse-grained material (sand and gravel). Underlying the soft sediment are consolidated deposits comprised of clay and silt with thin, localized sand and fine gravel layers. These consolidated deposits were previously identified, during 1994 through 2002 sediment investigation, as gravelly lean clay till deposits. Evaluation of data during upland geology as part of the former MGP bedrock assessment activities in 2005 (Section 5), indicate these consolidated materials do not correlate to gravelly lean clay, which are interpreted as till deposits, identified north and south of the Fox River (Appendix E: Plates 1 and 2). Additionally, the sediment and bedrock assessment activities indicate some of the consolidated deposits encountered are weathered

Page 19 of 69

bedrock. For purposes of this completion report, the upper debris layer will be referred to as "soft sediment" and the lower consolidated material with be referred to as "consolidated sediment", which includes the lean clay, silt, localized sand and gravel layers, and the potential weathered bedrock.

3.1.1 Simon Hydro-Search, Inc. (HSI), August 1994

An initial sediment investigation was performed by HSI to evaluate the presence or absence of compounds in sediments that might be associated with the former MGP property. This investigation consisted of collecting ten sediment cores from approximately 6 to 60 feet from shore and ranging in length from 1 to 2.2 feet (Appendix C1, Figure 2). Following unsuccessful attempts to obtain sediment samples from conventional coring devices (likely due to gravel and shell or other debris), a diver collected samples using a hand-held coring device.

HSI indicated that surficial sediments consisted of dark gray to black silty sand and gravel ranging in thickness from 0.1 to 1.2 feet. Sediments beneath this layer to the bottom of the cores consisted of dark grayish brown to dark gray silt and silty clay, with varying amounts of organic material. Bivalve shells and snail shells were observed in the silty sand. Shells were also noted in the deeper organic silt sediments.

The HSI analytical data summary is provided in Appendix C1, Table 1. Appendix C2, Sheet 1 provides the sampling locations with the distribution of BTEX and total PAHs. Phenol was not detected at any sampling location.

3.1.2 Natural Resource Technology, October 1996

NRT performed a subsequent sediment investigation using a HSA drill rig and a barge in December 1995. Six transects (T101 through T106; Appendix C1, Figure 2) were extended out from shore approximately 150 feet and divided into approximately 50-foot long sections. One sediment borehole was completed per 50-foot section. Each borehole was completed to refusal.

A 2-foot split spoon sampler was used to collect continuous samples, which were containerized for field screening and laboratory analysis. Sediment samples were visually inspected for physical characteristics, including color, odor, texture, structure and presence of oily sheens or visible tar/oils. The sediments were then screened for the presence of volatile organic compounds (VOCs) using the headspace method

and a PID. Select sediment core subsamples were submitted for laboratory analysis of BTEX, PAHs, total cyanide, total phenol, grain size, TOC, and oil and grease.

Sediment boring logs indicated the presence of a soft sediment layer typically one to two feet thick, consisting of broken bivalve shells, gray clay marl, wood, and organic detritus. Underlying the soft sediment was a dense clay unit (consolidated sediment). This unit extended from approximately 1to 2 feet beneath the sediment surface to the terminus of most boreholes. Borings advanced closer to the shore generally contained thicker units of clay. The clay was firm to stiff with varying plasticity and fissures and blow counts range between 40 to 80 blows or more per 12-inches of sample collection. The clay was relatively continuous and consistent across the site. Intervals of localized silt, fine sand, and fine gravel layers were present. A sandy gravel layer was observed above weathered bedrock, which may be five to ten feet in thickness (Olcott 1966) in boreholes that approached the center of the channel.

Intervals in near-shore boreholes from transects T101, T102, T104, and T105 exhibited tar, sheen, or tarlike odors. The analytical data summary is provided in Appendix C1, Tables 4-2 and 4-3. Sheet 1 (Appendix C2) provides the sampling locations along with the distribution of BTEX and total PAHs.

3.1.3 Natural Resource Technology, (2001 Sampling Activities)

The sampling activities completed in 2001 followed the procedures outlined in Sediment Sampling and Analysis Plan for the former Oshkosh MGP Site (June 2001, NRT). The 2001 sediment sampling locations are plotted in Appendix C2, Figure 3.

3.1.3.1 River Bathymetry

The hydrographic surveys indicate that the river water depth ranges from approximately 7 feet to over 37 feet within the study area. The water is deepest in an apparent scour area to the east, immediately downstream of the railroad bridge pier and shallower along the shoreline. Based on the United States Geological Survey (USGS) topographic quadrangle water elevation at the mouth of the Fox River, the water elevation, during sediment investigations, was assumed to be 746.9 feet⁴. The river bottom

⁴ NAVD - Elevations in this report will be noted as feet only and are referenced to the new North American Vertical Datum of 1988 (NAVD).

elevation ranges from approximately 710 to 740 feet (Appendix C4). Field poling measurements indicate that the river water depth ranges from approximately 6.5 to 32 feet within the study area. The deepest and shallowest portions of the water correspond to the areas identified in the hydrographic surveys (Appendix C3, Tables 1 and 2). The top of sediment elevations obtained from the hydrographic surveys are generally comparable to the elevations from the field poling measurements.

The multi-beam sonar survey of the river bottom indicates varying channel configurations likely due to changes in general flow patterns resulting from the bridge piers immediately downstream of the former MGP (Appendix C4). West (upstream) of the former MGP, there is an approximately 250-foot wide channel located in the central portion of the river. The elevation of this channel ranges from about 716 to 720 feet (Appendix C4). Along the east side of the site (just upstream of the railroad bridge), the river is shallower, up to elevation 736 feet, suggesting this is an area of sediment accumulation.

Downstream of the railroad bridge there appear to be two separate channels, which are likely related to the influence of the bridge piers on water flow. The base of the channel, located on the southern side of the river, indicates an area of sediment scouring with elevation ranges between 710 and 714 feet, while the base of the channel on the north side ranges from 720 to 724 feet (Appendix C4). Separating these two channels is a mound in the center of the river with a base elevation above 728 feet. The channels become shallower and converge into a single channel at the point where the river enters Lake Winnebago.

3.1.3.2 Sediment Thickness

Sediment thickness maps of the river bottom immediately adjacent to the former MGP were developed from the hydrographic survey results and the sediment poling results (Appendix C3, Table 1 and Appendix C4). In areas where the soft sediment is underlain by consolidated sediments composed of soft, saturated clay soils, determining sediment thickness can be somewhat arbitrary using either method. Visual observations at some of these locations confirmed that soft clays underlay the sediment as this material was smeared onto the pole (Appendix C3, Table 1).

The soft sediment layer present immediately adjacent to the former MGP is generally thin and uneven ranging from 0 to 4 feet of sediments along the eastern end of the site (Appendix C4). Boring logs indicate sediment up to 7-feet within 40 feet from the shoreline on the western end of the study area (Appendix C4, Soft Sediment and Debris Thickness map, location T101-D). Sediments are generally thin

and discontinuous in the channel areas ranging from 0 to 0.5 feet (Appendix C4). In general, the near-shore sediments are less than two feet thick over much of this area although some areas had no measurable sediments. Sediment thickness increases downgradient of the railroad bridge.

3.1.3.3 Side Scan Sonar

The side scan sonar images as documented in the *Revised Sediment Investigation Report* (August 22, 2005, NRT) show the continuous presence of debris along the dock wall and adjacent steeper slope of the north side of the channel. The dock wall is well defined in the side scan sonar images with the exception of where Court Street appears to intersect the river. Historically, this was the location of a former slip extending into Court Street that was subsequently filled in (Appendix A1, Sheet C020). Since the time of the side scan sonar survey was conducted, a vertical barrier wall has been installed along the shoreline as part of the upland remedial action, as discussed in Section 4, (Appendix C2, Sheet 2).

The side scan sonar detected two probable pipeline trenches extending across the river channel from the former MGP property. In addition, a pipe or cable is particularly well defined immediately upstream of the railroad bridge. No other recognizable large scale objects were discernable within the river channel, however, other obstacles (e.g., submarine electric lines) may limit future sampling activities.

3.1.3.4 Fox River Hydraulic Characteristics

The Upper Fox River at Oshkosh is approximately 3.2 miles long as it flows out of Lake Butte des Morts into Lake Winnebago. The upstream area drained by the river at this location is approximately 5,310 square miles. The USGS has an Acoustical Velocity Meter (AVM) stream gauge system (Hydrologic Unit 04030201) located approximately 1,500 feet upstream from the former Oshkosh MGP. The AVM gauge is located on the right bank of the river, about 400 feet downstream from US Highway 45 and State Highway 26 bridge, in the SW ¼, SW ¼, Sec.24, T18N, R16E, Winnebago County, the same section in which the site is located. According to previous conversations with Mr. Peter Hughes (USGS, 1996⁵), the AVM gauge was installed at the beginning of water year 1992 (October 1991 to September 1992). The USGS information for the period of record from 1992 to 2000 is summarized on

⁵ Hughes, Peter. (U.S. Geological Survey, Madison, WI). Personal communication, April 16, 1996.

Appendix C3, Table 7. Updated USGS information will be evaluated as part of the remedial investigations/feasibility study (RI/FS). Annual discharge from the river during this time period ranges between 104 billion cubic feet (cf) to 228 billion cf, with an average discharge of 139 billion cf.

The average daily flow rate for the period of record is approximately 4,420 cubic feet per second (cfs), while the daily mean flow rates range from -6,270 cfs (November 1, 1992) to 18,600 (June 25, 1993). Negative daily flow rate values indicate that the water flow is sometimes reversed and water flows from Lake Winnebago into Lake Butte des Morts. During the period of record, reversed stream flow occurred on 89 of 3,288 days (2.7% of total days). Over 65% of these reversed flow events occurred between the months of September and November, with October having the highest reversed flow days of any month.

The U.S. Army Corps of Engineers (USACE) controls the water level in Lake Winnebago. During the navigation season (from mid-May to through mid-October; USACE 2002⁶), target water levels in Lake Winnebago are strictly controlled (a seasonal range of less than 3.5 feet) to maintain navigation in the Lower Fox River, downstream of the lake. Therefore, during relatively dry years, less water is released through the dams at Neenah-Menasha, and there is a higher chance for storm events to add sufficient water to the lake over a relatively short period of time to cause a flow reversal near the former MGP property. According to stream flow records, 59 days with negative flow (over 66%) were observed during the four water years (1995, 1998, 1999, and 2000) where the average daily discharge was less than 4,000 cfs. This suggests that decreased discharge and low water levels in Lake Winnebago result in conditions favorable for reversed stream flow near the former MGP.

Based on the bathymetry plot generated as part of the hydrographic survey (Appendix C4), the cross sectional area of the river at the downstream end of the site (i.e., just upstream of the railroad bridge) is approximately 10,800 ft². Using this area and the discharge data, the average daily discharge of 4,420 cfs translates to an average water velocity of 0.41 ft/sec (0.12 meters per second [m/s]). Actual water velocities will be higher than the average near the center of the river channel and lower near the shoreline.

-

⁶ USACE. The Lake Winnebago Facts Book Home Page. Retrieved May 16, 2002. http://huron.lre.usace.army.mil/COASTAL/lwfacts.html

Page 24 of 69

Previous modeling efforts completed within the Lower Fox River (EWI Engineering Associates 1991⁷) report critical flow velocities just downstream of Lake Winnebago were generally around 0.3 ft/s (0.09 m/s). Sediment was deposited and accumulated in areas where the flow velocity was less than 0.3 ft/s (0.09 m/s), while significant sediment deposits were not present in areas where the velocity exceeded 0.3 ft/s (0.09 m/s).

3.1.3.5 River Bottom Geology

Geologic cross sections are presented on Appendix C2, Sheet 2 (cross sections A-A' through E-E'). Cross sections A-A', B-B', and D-D' run perpendicular from the shoreline into the river. Cross sections C-C' and E-E' run parallel to shore.

As shown on all of the cross sections, the surficial layer of the Fox River bottom generally consists of two types of material—soft sediments with debris and gravelly material. A soft sediment, typically found in locations approaching the center of the channel (cross section E-E'), consists of, organic silt/clay units to organic sands that overlie diamictons. These soft sediments are primarily black to dark brown silt and clay intermixed with fine sands, which exhibit no consistent layering. Also present within these soft sediments is gyttja, which consists of organic materials such as decayed vegetation, broken bivalve shells and other fine materials. Soft sediments are generally thin and discontinuous in the channel areas. In some areas, soft sediments are absent or too thin to effectively measure.

As sample locations approach the shoreline, as in cross section C-C' the surficial layer is dominated by "debris" which includes wood, brick, glass, and other fill material. In several locations, the surficial sediments exhibited odors, sheen, and trace tar to viscous coal tar, as described in Section 3.1.3.6 and summarized on Tables 1 and 2 in Appendix C3.

Underlying the soft sediments are consolidated sediments, generally comprised of clay and silt soils with thin, localized and intermixed silt, fine sand, and fine gravel layers. The clay soils range from very firm to hard or very soft. The consolidated sediment is relatively continuous and consistent across the study area near the shore as shown on cross section C-C', ranging in thickness from 12 feet (T106-B) to 29 feet

⁷ EWI, 1991. Deposit A – Technical Memo: Task 3: Sediment Transport LLBdM. Project No. 15605.00.

(T106-D). This consolidated sediment is likely to be resistant to erosion during average river flow. As shown in cross section A-A', B-B', and E-E' the consolidated sediment layer decreases in thickness approaching the center of the channel and is not observed in all locations (cross section B-B', T107-B and T107-C). In these locations, a thin layer of soft sediment may be present over gravel, grading to weathered dolomite bedrock and competent dolomite bedrock. Based on the completed cores, the top of bedrock ranges from approximately 707 feet to 718 feet (Appendix E1, Figure 7). However, these elevations are based on auger refusal using HSA drilling methods and may represent the top of weathered bedrock. The actual top of competent bedrock may be five to ten feet deeper (Olcott, 1966). The gravels encountered in the subsurface may represent a mixture of consolidated sediment and weathered bedrock and are likely hydraulically connected to the bedrock, as discussed in Section 5.

3.1.3.6 Occurrence of MGP Residuals

Sampling and poling locations were evaluated for the presence of MGP residuals based on the presence of sheen or coal tar as summarized in Appendix C3, Tables 1 and 2. Olfactory observations are also included on Tables 1 and 2 in Appendix C3. The estimated extent of MGP residuals in the soft sediments is shown in Appendix C2, Figure 4. Estimated extent of MGP residuals in consolidated sediments is shown in Appendix C2, Figure 5. The occurrence of MGP residuals is also noted in the cross sections on Sheet 2 in Appendix C2.

The extent of MGP residuals in soft sediment is sporadic over the study area. The vast majority of the MGP residuals are within 0 to 1-foot from the top of sediment. Trace tar (not readily visible with coal tar-like odor) was observed in one boring (T101-D, NRT 2005) up to 7-feet below the top of sediment.

The extent of MGP residuals in consolidated sediment is disconnected and in some locations, common to the location of soft sediment MGP residuals. However, the presence of MGP residuals within the consolidated sediment is more extensive and is often observed in locations without soft sediment MGP residuals. This is evident when comparing the occurrence of MGP residuals in soft sediments (Appendix C2, Figure 4) and consolidated sediments (Appendix C2, Figure 5). The approximate volume of MGP residuals in sediment was estimated in the revised sediment report (August 22, 2005, NRT) and will be further evaluated during future RI/FS activities.

The cross sections (Appendix C2, Sheet 2) further demonstrate that the MGP residuals found in the consolidated sediments are generally not related to affected soft sediment. Rather, the data indicate that migration occurred within consolidated sediment. In T104-E, T104-F, T104-G, T107-A, and T107-D MGP residuals were observed in a gravel and sand unit at a depth of five to ten feet below the top of the riverbed. The occurrence of tar at these locations is likely due to migration through the gravel and sand unit as opposed to deposition directly in the river channel. Potential migration pathways are further discussed in Section 5.

Estimated surface areas for the consolidated sediment with the occurrence of MGP residuals were also estimated in the revised sediment report (August 22, 2005, NRT) and will be further evaluated during future RI/FS activities.

3.1.3.7 Sediment Analytical Results

Distribution of BTEX and total PAHs in sediments is provided on Appendix C2, Sheet 1 and select sample results are provided on the cross sections (Appendix C2, Sheet 2). For screening purposes, PAH data were compared to MacDonald et al. 2000⁸ Consensus Based Sediment Quality Guidelines (CBSQGs). Due to the lack of a CBSQG benchmark for ethylbenzene, the total BTEX data were compared to the EPA Ecotox Thresholds⁹ for screening purposes.

Soft Sediment (BTEX and PAH)

Soft sediment analytical results are summarized on Table 4 (BTEX) and Table 5 (PAHs) in Appendix C3. The distribution of BTEX and Total PAHs in soft sediment is provided on Figure 6 in Appendix C2. BTEX concentration ranged from 0.196 to 315 mg/kg and PAH concentration ranged from 0.065 to 30,710 mg/kg in soft sediment.

Consolidated Sediment (BTEX and PAH)

NATURAL RESOURCE TECHNOLOGY

⁸ MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. *Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems*. Arch. Environ. Contam. Toxicol. 39:20-31

⁹ USEPA. 1996. ECO Update: Ecotox Thresholds. EPA 540/F-95/038. January, 1996.

Analytical results are summarized on Table 4 (BTEX) and Table 5 (PAHs) in Appendix C3. Only one

sample (T108A (10.7-12.7)) in the underlying consolidated sediments in which BTEX concentration was

detected at 1.7 mg/kg. PAH concentrations ranged from 0.35 to 30.3 mg/kg in the consolidated

sediments.

Sample T104-F(33.5) was collected immediately below a gravel layer that exhibited evidence of coal tar

to evaluate the vertical extent of MGP residuals. The total BTEX and PAH concentrations were relatively

low, reported at 5.9 mg/kg and 7.9 mg/kg, respectively.

Samples T108-B(20.3-22.3), T108-D(28.9-29.9), and T108-E(10.5-12.5) were also collected to evaluate

the vertical distribution of MGP residuals. Total BTEX concentrations ranged from non-detect (T108-E)

to 1.2 mg/kg (T108-B). Total PAH concentrations ranged from 0.77 mg/kg (T108-D) to 11.8 mg/kg

(T108-E).

Cyanide

Cyanide results in sediments are provided on Table 6 in Appendix C3.

Metals, PCBs, Ammonia and TOC

Sediment subsamples collected from transects T104, T107, T108, T109, and PonarTM grab Points 53, 54

and 80 were analyzed for metals, PCBs, ammonia, and TOC. The results are presented on Table 6 in

Appendix C3.

3.1.3.8 River Water Analytical Results

Analytical results for the two river water samples are summarized on Table 7 (BTEX, cyanide, ammonia,

TOC, and TSS) and Table 8 (PAHs) in Appendix C3. Distribution of BTEX and total PAHs in the river

water samples are provided on Sheet 1 in Appendix C2.

BTEX, total, dissociable, and amenable cyanides, and total PAHs were not detected in either river water

sample. Ammonia was detected in the upstream sample between the limit of detection and the limit of

quantitation. TOC and TSS were comparable in the upstream and downstream sample locations.

1312 Completion Rpt FINAL.doc

NATURAL RESOURCE TECHNOLOGY

3.1.3.9 Preliminary Benthic Community Survey

The approach, field activities conducted, and results of the preliminary benthic community survey are provided in Appendix C5. This study was conducted to provide a baseline determination of benthic organisms adjacent to the site, as well as upstream and downstream. It was not intended to provide a species-level identification of organisms collected.

3.2 Summary of Sediment Investigations

- Previous sediment studies showed near-shore MGP residuals to be confined within 60 feet of the north shore in the upper sediment layer. The 2001 survey revealed sporadic distribution of MGP residuals that included the near-shore areas identified by (October 15, 1996, NRT) and areas in the channel extending to within 100 feet of the south bank of the Upper Fox River.
- The river depth adjacent to the former MGP property ranges from between approximately 7 to over 37 feet. The river bed exhibits relatively continuous debris along the dock wall. Other obstructions to further investigation and potential remediation include storm sewers (3), gas main (1, abandoned), electric submarine cables (at least 4), and sanitary sewer force mains (2).
- The average daily flow rate for the period of record is approximately 4,420 cfs, while the daily flow rates range from -6,270 cfs (November 1, 1992) to 18,600 (June 25, 1993). Negative daily flow rate values reflect infrequent water flow upstream out of Lake Winnebago during about 3% of the period of record. Reverse flow conditions may account for an upstream component of MGP residual distribution.
- Two types of material are observed at the bottom of the Fox River: unconsolidated soft sediments and consolidated sediments. The soft sediments are composed of organic silt/clay to organic sand with debris and fine-grained material (lean clay and silt) with varying amounts of coarse-grained material (sand and gravel). The soft sediment layer immediately adjacent to the former MGP property is thin and uneven, generally less than two feet thick over much of this area. The areas where affected soft sediments were noted, rather than underlying soils, generally have less than two feet of sediment. In some areas, soft sediments are absent or too thin to effectively measure or sample.
- Underlying the soft sediment are consolidated sediments comprised of clay and silt with thin, localized silt, fine sand, and fine gravel layers. The predominantly clay consolidated sediment range from very firm or very soft in texture and is relatively continuous and consistent across the upland areas of the former MGP property. The consolidated sediment is absent in mid channel areas.

- Where consolidated sediment is absent in the mid-channel areas the river bed consists of a gravel layer that grades to the weathered dolomite bedrock surface (based on upland geologic information). The gravels appear to be mixed with weathered bedrock and are likely hydraulically connected to the bedrock.
- Observable indications of organic constituents present in the soft sediments consisted of sheen and/or the presence of tar. These areas also correspond to elevated levels of BTEX and PAHs.
- The highest concentrations of BTEX and total PAHs are present in soft sediments at locations that exhibited tar. Total PAH concentrations ranged from below detection limit to 30,710 mg/kg (ppm). These locations were found in the middle of the channel.
- In consolidated sediment samples, total PAH concentrations ranged from non-detect to 30.3 mg/kg and BTEX concentrations ranged from non-detect to 5.9 mg/kg.
- BTEX, PAH, and cyanide results for the two river water samples were below detection limits.
- MGP residuals in the channel have likely migrated via preferential pathways from the upland portion of the site as discussed in Section 5.5.4. Primary migration pathways involving direct inputs to river sediments were addressed by upland remedial actions. Evaluation of the occurrence of MGP residuals within gravel/bedrock and potential for dissolved phase migration both north and south of the river is discussed in Section 5.6.

4 REMEDIAL ACTIONS PERFORMED

4.1 Overview

Remedial actions were performed between March and October 2002. The City of Oshkosh purchased the property from WPSC in December 2003 and built the park between 2004 and June 2005.

4.2 Remedial Action Objectives

Remedial action objectives (RAOs) for the site, as presented in the Remedial Work Plan (November 2001, NRT) are summarized as follows:

- Reduce the potential for direct contact exposure to MGP residuals;
- Prevent surficial run-off of MGP residuals from the former MGP property into the river;
- Reduce leaching of MGP residuals to groundwater; and
- Reduce migration of MGP residuals to the river.

4.3 Pre-Remedial Action Activities

4.3.1 Feasibility Study

NRT performed an FS to evaluate remediation alternatives for the property and select a response action as detailed in the *Remedial Action Options Report* (May 1998, NRT). The FS recommended limited excavation and thermal desorption coupled with capping and hydraulic containment. Hydraulic containment would be a combination of groundwater recovery with aboveground treatment and the installation of a vertical hydraulic barrier wall.

A pre-remedial design investigation and supplemental design investigation were conducted in November/December 1998 and fall 2001, respectively.

4.3.2 Design Activities

Pre-design investigative activities included the following:

- Pump Test and Groundwater Treatability: A 48 hour pump test was performed at RW-101. Pump test data is summarized in the *Remedial Design Report* (April 2000, NRT). Based on the pump test results extraction trenches were selected over a well system to achieve the desired gradient control. During the pump testing, influent and effluent groundwater samples were collected and analyzed for treatability evaluation and confirmation that the extracted groundwater met the City of Oshkosh discharge limits to the sanitary sewer system;
- Soil Treatability: Representative composite soil samples were collected from the upper unsaturated zone (approximately zero to four feet bgs) and the lower saturated zone (approximately 4 to 14 feet bgs) for soil treatability evaluations. Soil treatability data are presented on Table 6 in Appendix A2; and
- Geotechnical Laboratory Testing: Undisturbed and disturbed soil samples obtained during the geotechnical drilling program were submitted for geotechnical testing to identify preliminary engineering parameters for a containment wall and/or extraction trench, general excavation and slope stabilization. Laboratory testing included falling head triaxial back pressure permeability, index properties consisting of moisture/density, specific gravity, grain size analysis and Atterberg Limits, and unconsolidated undrained (UU) triaxial testing on selected samples of fill material and glacial till. Geotechnical laboratory test results and data is provided in the *Remedial Design Report* (April 2000, NRT). The test results indicated that the clay till is a suitable key-in-layer with hydraulic conductivity ranging from 1.6x10⁻⁸ to 5.9x10⁻⁹ cm/sec.

4.3.3 Supplemental Design Activities

In addition to the installation of the monitoring wells and piezometers installed in February/October 2001, as mentioned above in Section 2, supplemental design activities included assessment of the existing dock wall (Sheet C010, Appendix D1) and performing additional geotechnical borings (Sheet C020, Appendix A1).

4.3.3.1 Dock Wall Assessment

Test pits TP-201 through TP-205 were excavated to evaluate the subsurface conditions along the preexisting dock wall, adjacent to the former MGP. Test pit locations are shown on Sheet C020 in Appendix A1. Conclusions of the test pit program and dock wall assessment were as follows:

- The pre-existing dock wall was unstable and beyond repair.
- Due to debris and foundations sheet piles could not be readily advanced through the fill to the desired key depth in a cost effective manner.
- A containment wall/dock wall combination was considered to be the most efficient method of both renovating the existing dock wall and providing an alignment for the containment wall that would minimize the amount of debris.
- The containment wall would need to be installed on the river side of the pre-existing dock wall.

4.3.3.2 Additional Geotechnical Borings

In September/October 2001, five geotechnical borings were advanced in the Fox River and one additional geotechnical soil boring SB-125 was advanced near the northeastern extent of the proposed vertical barrier alignment. The geotechnical borings confirmed the proposed key depth of approximately 732 feet NGVD. An additional flexible wall hydraulic conductivity test at boring T-108B (5.7x10⁻⁷ cm/sec) indicates similar geotechnical properties from previous investigations of the key-in-layer (clay till).

4.3.4 Remedial Design

The remedial design focused on:

- Decommissioning former MGP structures;
- Eliminating potential migration pathways;
- Excavating MGP affected soils;
- Installing a vertical barrier wall (Waterloo® sheet pile system);

- Installing hydraulic gradient control and groundwater extraction and treatment system;
- Backfilling with thermally treated soil; and
- Constructing an earthen cap.

4.3.5 Permitting and Approvals

Wisconsin Department of Natural Resources (WDNR) approved the *Remedial Work Plan* and directed WPSC to proceed with excavation and thermal treatment of contaminated soil on-site (March 2002, WDNR). WPSC obtained approval from the City of Oshkosh to temporarily use a portion of the park and parking lot west of Court Street for storing equipment and job trailers. In addition, the following permits and approvals were obtained in order to begin operations at the site:

- City of Oshkosh building permit and other municipal permits;
- Approval for temporary dewatering discharge to City of Oshkosh wastewater treatment plant;
- WDNR Chapter 30 permit;
- Army Corps of Engineers general permit;
- Storm Water discharge permit;
- Notification of demolition;
- Plan of Operation for Thermal Treatment approval letter; and
- Notification to Treat or Dispose of Petroleum Contaminated Soil (Form 4500-168).

The thermal treatment contractor was responsible for meeting air emission standards including emission rates for particulates, volatile organic compounds, and visible emissions as set forth in the facility operating permit.

4.4 Soil Remediation

Waste characterization of each former MGP structure was conducted prior to hauling contaminated debris to Valley Trial landfill in Berlin, Wisconsin. Test pits were advanced and representative samples were collected within the structures to characterize the debris and soil for off-site disposal, as shown on Sheet C040 in Appendix D1. A summary of the analytical results are on Table 1 in Appendix D2.

4.4.1 Excavation and Grading

The following structures and areas were excavated, in accordance with the *Remedial Work Plan* (November 2001, NRT) as shown on Sheet C040 in Appendix D1:

Structure Excavated	Material Description			
500,000 cubic foot gas holder	Fill, black with rubble/concrete, odor			
200,000 cubic foot gas holder	Fill, rubble, solidified coal tar			
9,000 gallon tar well area*	Clay, fill, odor			
25,0000 gallon tar well	Fill, coal tar			
18,000 gallon tar well	Fill, coal tar			
200,000 gallon tar well	Fill, coal tar			
Two small unknown structures	Fill, coal tar			
One tar separator	Water, coal tar, sludge			
Two USTs	Sandy fill, petroleum odor			

^{* 9,000} gallon tar well from historic plans was not encountered during exploratory excavation of the area. Surrounding soil excavated to 3 to 4 feet.

Excavation began at the 500,000 cubic foot gas holder in order to use the base as a staging area for post-treatment material. The concrete base of the large gas holder was found to be approximately five feet below existing ground surface (bgs), with no side walls intact. After soils above the gas holder base were removed and stockpiled for thermal desorption, the concrete base was used for stockpiling post-treated material.

Following the large gas holder excavation, the tar separator located west of the thermal desorption unit (TDU) concrete pad was excavated due to its proximity to the TDU, as shown on Sheet C040. The tar separator consisted of four chambers constructed of steel, concrete and wood. There was approximately five feet of tar and tar sludge at the bottom of the four chambers with approximately 1.5 feet of perched water. All material was removed from the tar well to its base at approximately 8 feet bgs and was consolidated with excavated material from other areas for thermal treatment (See Appendix D3). The separator was backfilled with imported clay. The tar separator adjacent to the 200,000 cubic foot gas holder was not encountered during exploratory excavation.

The 18,000 gallon and 25,000 gallon tar wells were excavated to the bottom of each tar well. The base was left in-place, but the sidewalls were removed to at or below elevation 747 feet. Two additional subsurface structures were encountered while excavating surrounding soils east of the tar wells, as shown on Sheet C040 in Appendix D1. One structure approximately 10 feet in diameter was identified and excavated to its base at approximately 7 feet bgs. The other structure was approximately 6 feet in diameter and was excavated to its base at approximately 6 feet bgs.

As stated in the *Remedial Work Plan* (November 2001, NRT), the MGP facility included a 200,000 gallon tar well that consisted of two chambers separated by a one-foot thick concrete wall. This tar well was visually inspected for free phase coal tar and coal tar was found. The contaminated material was excavated to the base of the tar well at approximately 20 feet bgs. Additional shallow soil from the northern and western portions of the site was excavated and aggregated with the tar well material to homogenize moisture and BTU value prior to thermal treatment. The area and approximate depth of the additional shallow soil excavation is shown on Sheet C040 in Appendix D1.

A majority of former MGP conveyance piping and storm sewers were excavated according to plan, as shown on Sheet C040 in Appendix D1. Pipe runs not encountered during the work are also indicated on Sheet C040 in Appendix D1. Where inaccessible, pipes were grouted to prevent preferential migration of groundwater. Conveyance piping, manholes and significantly contaminated surrounding soil were removed and segregated for treatment or disposal. MGP affected soil was thermally treated. Pipes were decontaminated prior to disposal at Valley Trail landfill.

Additional excavation along the north side of the TDU pad was conducted due to the presence of bluestained soil, as shown on Sheet C040 in Appendix D1. A large concrete footing measuring approximately

Page 36 of 69

10 feet by 15 feet was encountered. Soil adjacent to the foundation was removed and treated, and the foundation was left in place.

Two previously unidentified underground storage tanks (USTs) were encountered southwest of the former 500,000 ft3 gas holder, as shown on Sheet C040 in Appendix D1. The USTs appeared to be abandoned in place with sand. The USTs were removed, crushed, and hauled to Valley Trail landfill for disposal. Soil surrounding the USTs contaminated with what appeared to be gasoline residuals was excavated and treated with MGP contaminated soil.

4.4.1.1 Utility Corridor Investigation (Off-Property)

Utilities, both active and inactive, within the Court Street right-of-way were evaluated as preferential migration pathways using video inspection and test pits. An inactive storm sewer was abandoned.

Video Inspection

A video inspection of the active 8-inch sanitary sewer within Court Street right-of-way was conducted by Northern Pipe Equipment Inc. The sanitary sewer inspection began at the manhole located at the end of Court Street (manhole #1) and proceeded to manhole #3. Approximately 550 feet of sewer was inspected for cracks, leaks, and presence of coal tar. Several leaks and cracks were noted between manholes #1 and #2. A crack was also noted 127 feet north of manhole #2. No coal tar was noted during the investigations. Locations of manholes, video inspection report and video on compact disk are presented in the *Remedial Action Documentation Report* (February 2003, NRT).

WPSC notified the City of the sanitary sewer condition and requested approval to abandon the sanitary lateral 44 feet south of manhole #3. As shown on Sheet C040 in Appendix D1, a new manhole was installed 44 feet from manhole #3 and the lateral south of the new manhole was plugged with grout. Manhole #2 and #1 were abandoned and backfilled with clay and plugged with concrete.

The active 22 x 36-inch storm sewer within Court Street right-of-way was also video-inspected by Northern Pipe Equipment Inc. Video inspection began at the manhole located at Ceape Avenue and Court Street intersection (manhole #1) and preceded south towards the river outfall. Approximately 590 feet of the storm sewer was inspected for cracks, leaks, and presence of coal tar. No cracks, leaks or coal tar was noted during inspection.

Test Pits

Three test pits were excavated along Court Street to assess the presence of coal tar residuals around existing underground utilities. Locations of test pits are shown on Sheet C040 in Appendix D1. These utilities included the following:

- Inactive 12-inch storm sewer;
- Active 22 x 36-inch storm sewer;
- Previously abandoned 12-inch gas main; and
- Active 8-inch sanitary sewer.

Test Pit #1 located within Court Street approximately 70 feet south of Ceape Avenue was excavated across the utilities. The excavation was 6 feet by 35 feet and approximately 5 feet deep. Fill material (clay) around the abandoned 12-inch gas mains exhibited a slight odor, but no coal tar was present. No coal tar was present within pipe bedding around the active 8-inch sanitary sewer or active 22 x 36-inch storm sewer. The 6-inch water main located west of the 22 x 36-inch storm sewer and below the sidewalk was not encountered in Test Pit #1. As no MGP-related contaminants were found, the test pit was not extended to the water main.

Test Pit #2 located within Court Street approximately 75 feet from shoreline. The excavation was 6 feet by 35 feet and approximately 5 feet deep. Pipe bedding around active 22 x 36-inch storm sewer, 8-inch sanitary sewer and 12-inch gas main did not contain coal tar. Bedding material surrounding the 12-inch gas main exhibited a slight odor. In order to prevent the migration of contaminated groundwater or potential vapors north of the site, Test Pits #1 and #2 were backfilled with imported clay.

The third test pit was advanced in the alignment of groundwater intercept trench DS-1 (within the containment system). Within Court Street, the excavation was 6 feet wide by 40 feet long and approximately 11 feet deep. Pipe bedding around the active 22 x 36-inch storm sewer, 8-inch sanitary sewer and 12-inch gas main did not appear to contain coal tar residuals. A wooden box was encountered between the 8 and 12-inch gas mains at approximately 6 feet deep. The wooden box contained coal tar residuals and was removed.

Abandoned Storm Sewer

The inactive 12-inch storm sewer along the east side of Court Street was removed (within the containment system), as shown on Sheet C040 in Appendix D1. Removal was undertaken due to the presence of coal tar observed inside two of the three manholes. The storm sewer and surrounding soils were excavated between the two northern manholes. The excavation was approximately 150 feet long by 10 feet wide. Surrounding soils north of the southern manhole extending south to the river were observed to contain MGP contaminated material. As a result, an additional area of approximately 180 feet by 14 feet of MGP contaminated soil around the inactive storm sewer was removed for thermal treatment. Excavation depth was approximately 3.5 to 4 feet.

4.4.2 Thermal Treatment

A total of approximately 23,500 tons of soil was treated during remedial activities. Treatment verification samples were collected. Treated soil was stockpiled in 500-ton intervals pending laboratory analytical results at a frequency of one composite sample per stockpile. Post-treatment soil analytical results, along with the treatment soil standards, are listed on Table 3 in Appendix D2. Eight post-treated stockpiles exceeded one or more of the WDNR approved treatment performance standards. These stockpiles were transported to the pre-treatment or to the excavation area for consolidation with excavated material. The materials were then retreated and sampled. All treated material met the treatment soil standards prior to reuse as backfill on-site.

Post-treatment cyanide concentrations were below USEPA SSL of 40 mg/kg for migration to groundwater. Lead concentrations ranged from 400 to 1,000 mg/kg, as shown on Table 3 in Appendix D2.

Based on the arithmetic mean of all pre-treatment and post-treatment results, thermal treatment achieved 99.90 percent removal of BTEX and 99.99 percent removal of PAH in soil. This is based on results shown on Table 4 in Appendix D2, in which the approximate arithmetic mean of pre-treatment soil concentrations of total BTEX and PAHs were 114 mg/kg and 1,460 mg/kg, respectively, and the average post-treatment soil concentrations were 0.116 mg/kg and 0.173 mg/kg, respectively. Averaged over the total tonnage treated of approximately 23,500 tons, the mass of BTEX and PAHs removed by thermal

treatment was approximately 5,300 pounds and 68,800 pounds, respectively. In addition, approximately 2,400 pounds of total cyanide was removed.

4.4.3 Air Monitoring

Air monitoring was performed as described in the documentation report (February 2003, NRT) through the duration of the excavation, grading and thermal treatment.

4.4.4 Material Management Summary and Conclusions

In summary, the final approximate quantities of material encountered and/or used at the site and final disposition are listed below.

Material	Disposition	Approx. Tons	
Excavated Soil Thermally-treated	Used as subsurface backfill	23,500	
Contaminated Debris	Sent to landfill	2,700	
Other Material (demolition debris)	Sent to landfill	1,300	

4.5 Containment System

The containment system installed consisted of the following components:

- Vertical barrier wall; and
- Groundwater extraction and treatment system.

4.5.1 Vertical Barrier Wall

As stated in the Remedial Work Plan (November 2001, NRT), a combination of the Waterloo® Sheet Pile System and a cement-bentonite slurry wall was recommended for the vertical barrier wall. Both systems were keyed into the clay till at the site.

4.5.1.1 Waterloo System

The Waterloo® system consists of steel sheet pile with an oversized, rolled interlock cavity to be cleaned and sealed using a cement-based grout. C3 Environmental Limited (C3) was contracted to provide

construction quality assurance (CQA) during installation of the vertical barrier sheet piles, grouting within sheet pile interlocks, and slurry wall installation of sheet pile and installation of the slurry wall. A CQA report of the vertical barrier wall installation is provided in the documentation report (February 2003, NRT).

As noted in the report, the Waterloo® sheet pile wall was installed in accordance with the drawings and specifications with only minor variations relating to pile depths, gas main alignment deviation, and utility corridor alignment. As shown on Sheet C083 in Appendix D1, Section B near the location of boring T1081B, the key depth was field-adjusted to four feet below original design depth. Based on conditions noted during sheet pile driving, the lean clay was apparently deeper near T108B. During the installation, sheet piles that could not be advanced to the design key depth with the vibratory pile driver were driven with a larger vibratory pile driver. The gas main alignment deviation and utility corridor sheet pile alignments were field adjusted due to the actual location of the utilities.

4.5.1.2 Slurry Wall

A cement bentonite slurry wall was installed around the utilities within the utility corridor, as shown on Sheet C081 in Appendix D1. The slurry wall was designed to:

- Have a maximum permeability of 1x10-7 cm/sec;
- Key into lean clay with 1x10-7 cm/sec permeability at the approximate elevation of 730 feet NAVD; and
- Serve as a barrier for groundwater discharge to the river in locations adjacent to utilities.

The sheet pile wall was keyed into each end of the slurry wall, a minimum of one foot.

Prior to construction, a bench-scale test was conducted. The bench-scale test results are presented in the documentation report (February 2003, NRT). A slurry mixture of bentonite, portland cement, blast furnace slag, and potable water was selected. Field samples collected show a permeability result less than 1×10^{-8} cm/sec.

Huntington Chase Geoservice provided CQA during installation of the slurry wall. The slurry wall CQA documentation is presented in the documentation report (February 2003, NRT). Constructed slurry wall location and dimensions are shown on Sheets C081 and C084 in Appendix D1, respectively.

4.5.1.3 Utility Penetrations

Two storm sewer outfalls were extended through the new sheet pile dock wall. A 22 x 36-inch outfall was located south of Court Street and a 12-inch outfall was located within the utility corridor in the eastern portion of the former MGP property. The 22 x 36-inch storm sewer was extended and sealed through the vertical barrier dock wall with a 42-inch steel pipe welded to the sheet pile wall. The connection between the former outfall and extension pipe was made using a steel band around a rubber gasket encased in concrete. The 42-inch pipe was welded to three sheet piles to ensure that the pipe was completely sealed within the sheet pile. Affected sheet pile interlocks were welded continuously using a 1-inch flatbar across each joint instead of sealing with grout.

The 12-inch PVC storm sewer was extended through the portion of the dock wall within the utility corridor. The storm sewer extends through the slurry wall, which provides the primary vertical barrier for the utility corridor. For secondary containment at the vertical barrier dock wall, a 12-inch steel pipe extension was welded to the dock wall and connected to the 12-inch PVC sewer with a rubber fitting and hose clamps. The dock wall interlocks within the utility corridor were grouted and concrete was poured at the base between the old and new dockwalls as an additional barrier.

4.5.1.4 Anchor System

In addition to the sheet piles, Lunda Construction installed a continuous shallow concrete anchor system for structural support of the dock wall. The anchor system, as shown on Sheet S010 and S011 in Appendix D1, consisted of 32 concrete anchor panels and tie rods placed every 16 feet along the length of the dock wall. The concrete panels were pre-cast off-site, delivered to the site and installed according to plan. Additional bracing and penetration sealing was added as shown on the plans.

Each anchor panel was placed approximately 16 feet inland from the sheet pile dock wall. The rods penetrated the sheet pile dock wall below the 100 year flood elevation and above the typical river elevation. To prevent river water from infiltrating the tie rod penetrations, a steel sleeve was welded to the sheet pile and epoxy resin and clamped rubber sleeve were used to seal the cavity.

Field-directed structural support included an angle brace placed approximately 10 feet from the southwest corner of the dock wall, as shown on Sheet S010 in Appendix D1. The brace consisted of 1-inch diameter tie rod, two anchor plates, and a PVC pipe to sheath the rod from weathering. The PVC cavity was sealed

with grout. The sheet pile penetration cavities were sealed with Resi-Weld Gel Paste. An additional angle brace was directed to be placed near in the east wing wall and encased concrete to provide additional support.

4.5.2 Groundwater Extraction and Treatment System

Key components and operational aspects of the groundwater extraction and treatment system are summarized below:

- Four interceptor trenches (DS-1 through DS-4) installed at the locations indicated on Sheet C060 in Appendix D1. Each trench has an 11.5 foot sump that is placed at least a foot into the lower clay layer at approximately 736 to 739 feet NGVD. Each trench has a 6-inch diameter clean out at the opposite end of the trench from the sump. Alignment of trench DS-4 was adjusted based on the field-determined location of the former steam plant foundation.
- Each sump contains a pneumatic pump designed to operate at approximately 7 gallons per minute (gpm). A 4-inch conduit from each sump to MH-1 contain hoses for operation of the pump including an air supply hose, water discharge hose and air bubbler hose. A gate valve was placed in the conduit near the sump for the possibility of gravity feed discharge to the sanitary sewer if acceptable in the future.
- All four 4-inch conduits were connected to manhole MH-1. A 10-inch conduit was connected from the junction box to the treatment building to contain hoses from each of the sumps.
- Aboveground treatment equipment, piping and controls were placed inside a treatment building located north of the City pump station. The building has two separate rooms including an equipment room and control room. The explosion proof equipment room includes four dewatering sump monitoring stations, multi-phase separator settling/transfer tank, two bag filter units and a compressor. The control room contains a control panel, power center and an air desiccator. A process and instrumentation diagram for the treatment system is on Sheet M010 in Appendix D1.
- An air stripper was installed in September 2003 to reduce the organic contaminant concentrations in the effluent to meet the City of Oshkosh discharge limit. The air stripper was installed after the bag filters, as shown on Sheet M010 in Appendix A1. A summary of treatment system results following installation of the air stripper, and record drawings of the air stripper was included in the Air Stripper Operation Report (January 2004, NRT).

4.6 Earthen Cap

During excavation activities, the earthen cap subgrade was continuously under construction. After thermally treated soil was confirmed, through laboratory analysis, to meet the treatment performance standards, treated soil was placed and compacted in areas of excavation. The majority of the treated soil was placed along the north, west and south side of the TDU pad. Thermally treated material was not placed within 100 feet of the river or on City property, including the Court Street right-of-way.

After post-treated soil was placed and the TDU pad was removed, approximately 600 cubic yards of additional soil was required to construct a minimum 2.5 percent slope for positive surface water drainage. Imported clay was used to complete the subgrade construction to required grades.

The property and portion of Court Street right-of-way were capped, as shown on Plate 1 in Appendix A1. The earthen cap consisted of three different layers providing an earthen cap of at least 1.5 feet in thickness. Fine-grained fill material at least 6-inches thick, consisting predominantly of clay, was placed and compacted above the subgrade. Drainage tile including 4-inch corrugated HDPE pipe and cleanouts was placed along the dock wall and east wing wall above the fine-grained fill layer to provide positive subsurface drainage above the fine-grained fill layer. Granular fill approximately 6-inches thick was placed atop of the fine-grained fill material to allow lateral drainage of infiltrated water except the access drive around the pump station and substation consisted of gravel (1-foot thick). Lastly, a 6-inch layer of topsoil was placed above the granular fill to complete the earthen cap construction.

4.7 Soil Quality Remaining

Prior to placement of the earthen cap, discrete shallow soil samples were collected at the earthen cap extent at approximately 100 linear foot intervals, as shown on Plate 1 in Appendix A1. Table 6 in Appendix D2 is a summary of the soil quality at the earthen cap extent including BTEX, PAHs, total lead and total cyanide. Remaining soil quality at the earthen cap extent, areas unexcavated including off-property for total benzene, BTEX, naphthalene and PAHs are presented on Plate 1 in Appendix A1.

4.8 Modifications to the Monitoring Well Network

During remedial construction activities, monitoring wells RW-1 (former pump test well), GW-5, OW-3, MW-101, MW-105, MW-106, MW-107, MW-108, MW-109, P-102, and P-107 were abandoned because they were either damaged during construction or were scheduled for abandonment.

Former industrial wells PW-A and PW-C were inspected for free-phase coal tar prior to abandonment. Coal tar was not found in either of the wells. Previous work had been done to remove the former pump and hydraulic oil from PW-A, as reported to the WDNR in the *Remedial Design Report* (April 2000, NRT). Both wells were abandoned in accordance with NR 812.26 and the steel casings were cut below the earthen cap subgrade.

During site restoration activities, monitoring wells OW-3R, MW-101R, MW-108R, P-102R, and P-107R were installed to replace the respective monitoring wells that were damaged from construction activities. All monitoring well abandonment forms and construction forms were included in the documentation report (February 2003, NRT).

4.9 Park Construction

In December 2003, the City of Oshkosh purchased the property from WPSC. The City's consultant STS Consultants, Ltd. submitted a park development plan (July 2004, STS) to WDNR to summarize the proposed site modifications associated with redevelopment of the property as an expansion of Riverside Park and request for approval. The following design features were proposed in the park development plan:

- Remove the existing earthen cap and temporarily stockpile the material for reuse on the property. The former MGP property was to be regarded and the earthen cap to be replaced; however, the new environmental cap would consist of concrete or asphalt pavement, and greenspace areas would be constructed using the stockpiled earthen cap materials to create a cap consistent with existing conditions;
- Construction of an asphalt parking lot and several walkways;
- Construction of several buildings including a performance pavilion (amphitheatre), concession, and restrooms. The performance pavilion to be supported on a pile foundation;

- Riverfront improvements including pedestrian walkway, decorative fencing, and an overlook pavilion;
- Modifications to the dewatering sumps and monitoring wells to match final grades;
- Construction of low permeability trench plugs within utility trenches at the locations where trenches enter and exit the property boundaries to limit the potential for contaminants to migrate within the trench backfill beyond the areas containing contaminated soils. A plug to be installed at the new storm sewer penetration through the west wing of the vertical sheet pile barrier wall; and
- Landscaping with plantings of shade trees, flowering trees and shrubs. A geocomposite liner (GCL) to be utilized as a hydraulic barrier over the property fill material beneath landscaped areas.

Construction of Riverside Park expansion was initiated during the fall of 2004 and was substantially completed in June 2005. In June 2006, STS Consultants, Ltd, the City of Oshkosh consultant, submitted the *Riverside Park Construction Documentation Report* (June 2006, STS). A copy of the June 2006 documentation report is presented as Appendix D4. Based on the June 2006 documentation report and NRT's knowledge, the following items differed from the development plan (July 2004, STS):

- Monitoring well and GW-2 and P-2 were damaged during utility construction in 2005. These wells were subsequently replaced (GW-2R and P-2R). Copies of the boring log, well construction report and abandonment forms are provide in the June 2006 documentation report (June 2006, STS), Appendix D4;
- Trench plugs installed within utility trenches exiting the site were constructed of lean concrete on top of bentonite instead of silty clay proposed in the July 2004 development plan. Based on field notes from the City's contractor, a 72" wide by 50" deep notch was made in the vertical barrier west-wing wall and a bentonite trench plug was constructed at the storm sewer penetration;
- Approximately 5,600 tons of contaminated soil was generated during the park construction activities. Based on the landfill disposal tickets in the June 2006 documentation report (June 2006, STS), about 5,300 tons of contaminated soil was transported and disposed at a licensed landfill and remaining 300 tons of soil was reused on-site as fill below the reconstructed cap;
- GCL was utilized instead of 6-inches of compacted clay where soil cap thickness (1.5 feet) could not be obtained due to site consideration. Areas where GCL was placed are shown on the park documentation drawings in Appendix D4; and

Non woven geotextile was installed in the tree planting areas as a warning layer above the GCL on the east and south side slopes of the pavilion seating area.

Based on the purchase agreement between the City of Oshkosh and WPSC, it is the City's responsibility to maintain the cap and dock wall at the site consistent with the remedial design approved by the WDNR and documented in the *Remedial Action Documentation Report* (February 2003, NRT). An operation and cap maintenance plan was included in the June 2006 documentation report (June 2006, STS). The cap and the dock wall are inspected by the City of Oshkosh on an annual basis during the months of May through August to assess the integrity and effectiveness. In addition to the City's inspections, WPSC continues to conduct annual inspections of the cap (asphalt, concrete and greenspace), vertical barrier wall and components, and the gradient control system components including surface covers for the monitoring wells, dewatering sumps and cleanouts, the treatment system building, and piping and equipment.

4.10 Access Agreements

As part of the sale of the property in December 2003, WPSC and the City of Oshkosh entered into a mutually acceptable access agreement that provides continual site access for WPSC personnel and authorized agents to continue remedy monitoring required by State and Federal agencies, and maintenance of the remedy components. In addition, declaration of a sediment easement was included in the sale of the property to use during future sediment RI/FS activities. However, the declaration was amended in 2006 to revise the original sediment area along the river and to add an area west of Court Street for potential sediment staging area (Appendix D5).

5 POST-REMEDIAL UPLAND INVESTIGATIONS

5.1 Overview

The post-remediation upland investigations focused on:

- Evaluation of groundwater flow and quality within shallow bedrock in the northern portion of the site;
- Assessment of bedrock groundwater quality at depth;
- Assessment of regional influences on shallow bedrock flow, including surface water elevation patterns for Lake Winnebago due its close proximity and influence on local hydrogeology, private and public water well usage and influence on groundwater flow, and site-specific geology, groundwater flow and quality, and related surface water/sediment interactions; and
- Evaluation of groundwater flow and quality within shallow bedrock south of the river.

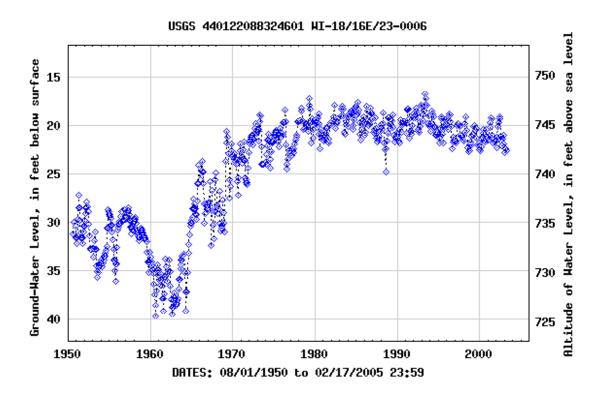
5.2 Investigation Chronology

Bedrock groundwater investigations completed through 2007 are separated into those performed pre- and post-remediation. Pre-remedial investigations (completed through 2001) focused on determining the magnitude and extent of groundwater contamination beneath the site, as summarized in Section 2. Post-remediation investigations focused on:

- Evaluation of groundwater flow and quality within shallow bedrock in the northern portion of the site;
- Assessment of bedrock groundwater quality at depth;
- Assessment of regional influences on shallow site bedrock flow, including surface water elevation patterns for Lake Winnebago due its close proximity and influence on local hydrogeology, private and public water well usage and influence on groundwater flow, and site-specific geology, groundwater flow and quality, and related surface water/sediment interactions; and

- Evaluation of off-site groundwater flow and quality within shallow bedrock south of the river.
- In February 2001, as requested by WDNR (December 2000, WDNR), monitoring well MW-109 and piezometer P-107 were installed to define the extent of the affected groundwater to the east.
- In October 2001, utilizing February 2001 groundwater data, monitoring well MW-110 and piezometer P-108 were installed in the Broad Street right-of-way to evaluate the extent of the plume east of the MW-109/P-107 well nest.
- In 2004, three bedrock piezometers (P-109, P-110 and P-111) were installed to assess bedrock groundwater flow and quality to the north and south of the former MGP property. Soil samples were not collected from the boreholes. Groundwater samples were collected quarterly for VOC, PAH and weak acid dissociable cyanide (WAD) for the first two sampling rounds, and BTEX, trimethylbenzenes, and PAH thereafter.

Piezometer locations are shown on Figures 3 and analytical data are provided in Tables 2 and 3. Site investigation activities occurred as summarized below.


5.3 Potable Wells

To evaluate historic and current groundwater use in the area, well construction, and location information for commercial, private, and public wells located within one mile of the former MGP facility were obtained from the City of Oshkosh Public Health Department, Ms. Kathy Sylvester (WDNR), and from the WDNR Water Well Data Files. Well data are summarized on Figure 8 (Appendix E1) and specific well records are included as Appendix H in the NRT August 31, 2005 report *Operation, Maintenance and Monitoring Semi-Annual Report and Supplemental Bedrock Assessment.* Between 1954 and 1960, three high capacity wells, permitted by the City of Oshkosh, were constructed; one well located 7,500 feet northwest of the former MGP property was permitted to pump 288,000 gallons per day (gpd) and two located 4,000 feet south of the former MGP property were permitted to pump 77,000 gpd. City of Oshkosh records do not provide data on whether these wells are active. A permitted well is located approximately 34 of a mile northwest of the former MGP property. This well (identified as BH518 by the WDNR) is permitted as a high capacity well (greater than 70 gpm) on WDNR's website; however, it has an approved capacity of only 50 gpm and typically pumps 1,000 gpd from the dolomite bedrock, based on WDNR website data.

5.4 Regional Cone of Depression

A cone of depression within the bedrock aquifer is depicted by Olcott (1966 and 1968). The cone of depression envelopes the entire City of Oshkosh with the outer edge of the cone at an elevation of approximately 740 feet. Regional piezometric surface elevations without influence from pumping indicate an equilibrated system in the Oshkosh area would likely be at an elevation of 760 to 780 feet (Olcott, 1968). Long-term monitoring by USGS indicates that groundwater elevations in the bedrock, illustrated below, have at least partially rebounded since the period of peak pumpage (1950s through early 1960s). The current levels are at least 15 to 35 feet below expected regional piezometric elevations under natural conditions (without influence from pumping).

The hydrograph below shows historic groundwater elevations for a USGS observation well in the sandstone aquifer (elevations after 2003 were not available).

Graph showing historic groundwater elevation in a USGS observation well located 4,600 feet northwest of the Oshkosh MGP and screened in the sandstone aquifer at a depth of 200 feet (See Appendix G for reference datum)

5.5 Investigation Results

5.5.1 Refinements to Site Geological Interpretations

Several refinements to the interpretation of site geology resulted from findings of the sediment and post-remedial upland investigations. Specifically:

- At least 10 feet of lean clay separate shallow fill and the bedrock unit beneath the southwest portion of the former MGP property (Appendix E2, Plate 1 Geologic Cross Section B-B'). BTEX and PAH concentrations in groundwater samples collected from bedrock piezometers P-103 and P-105 (Tables 3 and 4) are relatively low in this area (discussed below). These conditions suggest little or no vertical migration to bedrock through the lean clay confining layer in the southwest portion of the former MGP property.
- A high point in the dolomite bedrock surface, greater than 720 feet in elevation, occurs beneath the southwest corner of the former MGP property (Appendix E1, Figure 7 and Appendix E2, Plates 1 and 2). Bedrock elevation decreases to the north, east, and south. The lowest bedrock surface elevation encountered prior to 2004 was approximately 702 feet in elevation.
- Bedrock elevations beneath the Fox River range from less than 702 to 723 feet, with the highest elevations adjacent to the aforementioned bedrock high (SB-113), and the lowest (707 feet) with field observed presence of tar in the vicinity of P-107. Of note, bedrock elevations beneath the Fox River are interpreted from refusal of hollow-stem augers (HSA) and not on collection of core samples. These elevations may represent a weathered bedrock surface with competent bedrock present 5 to 10 feet deeper, as interpreted by regional geology references (Olcott 1966 and 1968).
- The north bank of the Fox River extended 20 to 300 feet farther north than the current shoreline from 1890 to at least 1911, during MGP operations (Appendix A1, Sheet C020). Depths of these excavated and filled channels are unknown. Based on soil borings advanced as part of the sediment investigation, hard to very hard clay is present at elevations of 715 to 735 feet indicating the historic depth of the channel ranged from approximately 25 to 35 feet bgs, except in the area of the bedrock high.
- Discontinuous coarse-grained material immediately overlying bedrock (Appendix E1, Figure 5), is hydraulically connected with bedrock, and considered part of the bedrock unit for the site. The majority of the coarse-grained material is present beneath the current riverbed and in areas that were within the river in the late 1800s and early 1900s.
- Piezometer P-111 was positioned to evaluate the base or north wall of the bedrock valley, confirmed to be present beneath the north portion of the former MGP property during the sampling of PZ-109; bedrock is present at an elevation of 684 feet at P-111, defining the north slope of the bedrock valley (Appendix E2; Plate 1). Based on regional bedrock maps, the

bedrock tributary valley slopes toward the west. In addition, 19 feet of gravel is present above the bedrock interface at P-111 (Appendix E2, Plate 1).

5.5.2 Groundwater Flow

5.5.2.1 Shallow

Post-remedial shallow groundwater flow is related to performance of the groundwater remediation system, it is described in Section 6.

5.5.2.2 Bedrock

Potentiometric surface elevations from 2003 through 2007 indicate that the river is a line source for groundwater recharge to the dolomite beneath the Site. Potentiometric surface data south of the river were not available to NRT, other than in regional groundwater flow maps (Olcott 1966 and 1968). These maps depict a cone of depression north of the river, with a small portion of the cone extending south of the river. Historic groundwater elevation data indicate a cone of depression was present within the shallow bedrock of the Oshkosh area resulting from industrial pumpage of the Galena-Platteville dolomite and the underlying sandstone aquifer. As noted earlier, water levels in the Oshkosh area have begun to recover since the referenced regional map was produced in the mid 1960s.

Potentiometric surface elevation changes observed in the bedrock piezometers are attributed to changes in regional groundwater withdrawals and river elevation, rather than effects of groundwater extraction in the shallow unit. This observation is based on the continuity of the lean clay and gravelly lean clay confining units, which separates the shallow fill from the shallow bedrock unit and the similar correlation of bedrock groundwater elevations to surface water elevations (for piezometers along the river both close to and distant from the groundwater extraction zone).

5.5.3 Groundwater Quality

5.5.3.1 Shallow

Post-remedial shallow groundwater quality is described in Section 6.

5.5.3.2 Bedrock

Concentrations of MGP-related constituents are predominately decreasing (see table below) in all piezometers where exceedances historically occurred (Figure 4 and Tables 2 and 3). The extent of groundwater concentrations exceeding groundwater quality standards has been defined with the exception of the southeast portion of the former MGP property and adjacent to the 1903 Fox River shoreline (P-107R), where concentrations of Bap, BbF, chrysene, naphthalene, and benzene continue to fluctuate above NR140 ESs; although total PAH and BTEX concentrations have declined.

Well	Trend	Sample Year(s)	BaP, BbF, Chrysene	Naph- thalene	PAH, Total	Benzene	Ethyl- benzene	BTEX, Total			
	Shallow Bedrock Unit Piezometer (Bottom of Screen at 720 feet)										
P-103	Declining Highest in 01-04	93 – 05	PAL / ES	nd //PAL	0.9 - 44	PAL/ES		4.5 – 158			
		06 - 07	nd	/ PAL	38 – 53	ES		15 - 27			
	Bedrock Unit Piezometers (Screen Elevations 696 - 711 feet)										
	Fluctuating Highest in 07	96 – 06	PAL/ES		nd - 16	/PAL		nd – 24			
		07	ES		16	PAL		3			
P-104	Declining - Highest in 01 / 02	96 – 03	/PAL/ES	nd/	nd - 5.4	/ES		nd – 190			
1-104		04 - 07	nd/PAL	nd/	0.1 - 1.0			nd - 0.5			
P-105	Declining	96 – 03	ES		1.1 - 19.2	ES		nd – 32			
F-105		04 – 07	PAL / ES		0.4 - 5.4			nd - 0.4			
D 105 /	Fluctuating / Declining Highest in 03	92 – 04	/ ES	/ ES	290 - 4,880	ES	PAL/ES	213-4,561			
P-107 / P-107R		05 – 06			137 - 499	ES	PAL	161-401			
1-10/K		07	ES	ES	1,375	ES	PAL	478			
P-108	Declining	98 - 02		PAL	9.9 - 152	ES		8 - 166			
		03 - 07			4 - 33	/PAL / ES		1.1 - 24			
	Deeper Bedrock Unit Piezometers (Top of Screen Below 685 feet)										
P-109	Declining, low concentrations	04 – 07	nd / PAL (05)		0.1 - 1.1	nd / PAL (04)		nd - 2.8			
P-110	Declining, low concentrations	04 – 07	PAL		0.03 - 1.1	nd / PAL (04)		nd 3.5 (04)			
P-111	No PAL / ES Exceedances	04 – 07			0.1 - 3.9			nd 0.7 (04)			

Note: All concentrations in $\mu g/L$

nd: not detected above minimum detection limit

^{--:} Constituent concentrations below NR 140 PAL and ES

5.5.4 Bedrock/Sediment Interface Assessment

One or more potential migration pathways may have contributed to the presence of coal tar at the bedrock interface (Appendix E1, Figure 9). A complete discussion of sediment conditions is provided in the *Revised Sediment Investigation Report*, dated August 22, 2005. An overview and assessment of the potential pathways is provided below:

- Migration of historic surface/shallow subsurface discharges from the former MGP property to the shallow and exposed bedrock areas near the river: Residual MGP tar and groundwater are now contained in the shallow unit within the existing containment system.
- Residual migration along the gravel/weathered bedrock interface: The ongoing groundwater monitoring program indicates that the highest concentrations of BTEX and PAH are at the bedrock interface near the river. As depicted on Figure 9 in Appendix E1, movement of trace tar and dissolved phase constituents by either gravity or hydraulic flow through the weathered bedrock is possible where the confining clay is thin or absent. This last pathway is discussed further below, as it relates to the bedrock/sediment interface.

The highest concentrations of BTEX and PAH compounds in bedrock have been observed beneath the southeast portion of the Site at piezometer P-107/P-107R where the lean clay is thickest along the north river bank (approximately 32 feet) and the bedrock surface is lowest (Appendix E2, Plate 2-Geologic Cross Section D-D'). Trace tar was observed in the deep sand and gravel immediately overlying bedrock at P-107. It is unlikely that tar migrated downward through the 32 feet of lean clay separating the shallow and bedrock units in this area. However, the confining layer is thin or absent beneath the river (Appendix E2, Plate 1). These observations, particularly the absence of a significant confining layer in the river channel, lead to the conclusion that the river channel is a likely historic migration pathway to bedrock, both for tar and for BTEX and PAH compounds. Furthermore, low concentrations of BTEX and PAH compounds in the inland monitoring wells (P-106 and P-104) suggest that migration in the dolomite is very slow, either because the compounds are degrading and/or because the formation has low hydraulic conductivity.

Since tar and groundwater in the shallow unit are now contained, there is little potential for the addition of new source material to the bedrock. This suggests that concentrations will not increase above current levels, and may begin to decrease. However, the rate of decrease may be slow due to the characteristically low hydraulic conductivity of the dolomite bedrock (Olcott, 1966).

5.6 Summary of Findings

A discussion of post-remedial groundwater flow and quality in the shallow zone is presented in Section 6. The following findings focus on bedrock conditions, based on geologic and groundwater quality data collected through 2007:

- Groundwater flow in the bedrock north of the river is away from the river toward a cone of depression;
- Groundwater flow in the shallow unlithified unit is separated from flow in the dolomite by a continuous layer of lean clay and gravelly lean clay, and there continues to be no evidence of significant hydraulic connection between these units in the upland portion of the site;
- MGP residual related constituent concentrations that exceeded Wisconsin groundwater standards have generally decreased in the bedrock piezometers with the exceptions of P-107R. Concentrations in this piezometer continue to fluctuate, with the highest concentrations recorded to-date observed from 2003;
- The extent of MGP residual related constituent concentrations in shallow bedrock has been defined downgradient (north) of P-103; and
- The extent of MGP residual related constituent concentrations in bedrock has not been defined downgradient of P-107R.

Primary potential migration pathways for movement of tar or dissolved phase MGP residuals to the river have been addressed. A secondary pathway via the connection between bedrock and the river bed tar may exist where the lean clay confining layer is thin or absent. Because inputs to river sediments have been addressed, concentrations of dissolved BTEX and PAH compounds in the bedrock are not expected to increase, and may decrease over time, although that decrease may occur over a long period since migration rates in the bedrock appear to be slow.

.

6 POST-REMEDIAL PERFORMANCE MONITORING RESULTS

6.1 Overview

Startup of the gradient control system was conducted on October 24, 2002. NRT has documented the system's performance from October 24, 2002 to December 31, 2006 in the "Operation, Maintenance, and Monitoring Reports", dated September 19, 2003, February 9, 2004, August 30, 2004, August 31, 2005, June 8, 2006, and February 7, 2007. The following performance monitoring activities are conducted at the site:

- Groundwater monitoring is conducted annually via bailer sampling method. The groundwater-monitoring network currently consists of a total of 27 wells, as indicated on Table 6. Groundwater samples are analyzed from 10 monitoring wells and 9 piezometers for BTEX, TMB, and PAH. Four of the piezometers (P-2R, P-4, P-102R and P-101) are pending agency approval for abandonment, as discussed below, and water levels only are collected from four monitoring wells (MW-108R, GW-2R, MW-101R and OW-4);
- Quarterly water levels are collected from all monitoring wells, piezometers, dewatering sumps, and the river staff gauge;
- Field measured parameters (temperature, field conductivity, pH, dissolved oxygen (DO), and oxidation/reduction potential (ORP)) are collected annually from the 10 monitoring wells and 9 piezometers;
- Operation and maintenance of the biosparge system is conducted at least monthly by WPSC field employee and quarterly by NRT/WPSC personnel. Effluent sample is collected quarterly and a composite influent sample from all dewatering sumps is collected semi-annually from the treatment system; and
- An annual site inspection is completed to assess the condition of the remedy components.

The system's performance from January 1 to December 31, 2007 is detailed below.

6.2 Containment Performance

The objective of the containment system is to prevent outward migration of MGP affected groundwater. This is achieved by pumping groundwater within the barrier and maintaining an inward hydraulic gradient. To demonstrate gradient control, two performance measures have been identified:

- Primary Measure: Evaluation of groundwater elevation data; and
- Secondary Measure: Evaluation of contaminant (primarily benzene and naphthalene) concentration trends in the shallow groundwater monitoring wells exterior to the containment barrier.

Depth to groundwater was measured in each well prior to collection of groundwater analytical samples during the September 2007 monitoring event. Field notes from the monitoring event, as well as March, June, September and December system maintenance visits are included as Appendix F1. Shallow groundwater elevation data are summarized in Table 1 and water table elevation contours based on November 2007 data are presented on Figure 3. The groundwater flow map indicates a cone of depression centered around the dewatering sumps located in the center of the site, indicative of inward hydraulic gradients and plume containment within the vertical barrier wall.

Additionally, concentrations of benzene and naphthalene are decreasing or stable in shallow monitoring wells exterior to the containment zone (GW-4, GW-1, and MW-110; Figure 3 and Tables 2 and 3). Laboratory analytical reports are included as Appendix F2.

Benzene, toluene, ethylbenzene and xylene (BTEX) concentrations continue to be below their respective NR140 Preventive Action Limits (PALs) at all exterior monitoring wells except for benzene at GW-1, which remain below NR140 Enforcement Standard (ES). PAH concentrations in the exterior monitoring wells are below NR 140 ESs except for benzo(a)pyrene [BaP], benzo(b)fluoranthene [BbF] and chrysene at MW-110, and chrysene at GW-1. At GW-4, BaP, BbF, and chrysene were detected at concentrations above their respective PALs. Future monitoring of GW-4 will continue for evaluation of contaminant concentrations downgradient of GW-1.

6.3 Gradient Control System Performance

6.3.1 Operation and Maintenance

NRT and WPSC receive a weekly fax from the treatment system notifying that the system is working and indicating whether an alarm is activated. Should an alarm arise, an additional fax is sent to NRT and WPSC notifying which alarm is activated. Alarm conditions may include, but are not limited to, differential pressure between bag filters greater than 10 psi, high pressure of the compressor, low pressure of the compressor, high compressor temperature above the factory pre-set limit, and high building sump water level. During this reporting period, the alarms were for bag filter replacement and equipment room low temperature. The thermostat in the equipment room was not operating properly and subsequently has been replaced.

Operation and maintenance of the treatment system is completed at least monthly by a WPSC dedicated field employee and quarterly by NRT/WPSC personnel (quarterly field notes included in Appendix F1). Operation and maintenance includes:

- Monitoring influent and effluent contaminant concentrations;
- Monitoring for any dense non-aqueous phase liquid (DNAPL) and light non-aqueous phase liquid (LNAPL) in respective accumulation tanks;
- Monitoring for any sediment accumulation in the transfer tank and the multi-phase separator;
- Monitoring compressor, bag filter and air stripper pressure readings;
- Inspection and cleaning of air stripper diffusers;
- Bag filter changes;
- Compressor oil and air filter changes; and
- Monitoring all dewatering pump pressure readings and flow rates.

The groundwater extraction and treatment system operated 90 percent of the time between January 1 and December 31, 2007. Dewatering sump groundwater elevations and system operational data is

summarized in Table 4. To maintain the gradient control at a reduced discharge rate, DS-2 was not operated during this reporting period and has been inactive since April 28, 2005. DS-1, DS-3 and DS-4 did not operate between sometime after September 11 and October 4, 2007, due to leaks in the air and water lines, and location of the pumps which were too close to the bottom of the sump as noted during a monthly site visit. The lines were subsequently repaired as noted in Table 4. During a site visit on October 12, 2007, DS-1 and DS-4 were not operating properly, due to leaks in the air lines. The lines and pump locations were subsequently restored and were returned to operation on October 12th. Meanwhile, pump DS-3 continued to operate and maintain gradient control during this time period (October 4 through October 12, 2007).

On November 20th during a monthly site visit, DS-1 pump was not operating. The pump was removed from the sump and DS-2 pump was placed in the DS-1 sump temporarily until the DS-1 pump could be inspected and repaired. WPSC personnel inspected DS-1 pump in December 2007. The pump appeared to be in working condition; it is assumed that the issue may have been the result of a faulty hose connection.

No free product accumulated in the DNAPL or LNAPL collection tanks during the reporting period. Based on the effluent flow meter, about 1,970,000 gallons of contaminated groundwater were extracted and treated prior to sanitary sewer discharge. As discussed in the 2005 annual report (June 2006, NRT), contaminant mass removal was not calculated during this period since the primary objective of the system is gradient control.

In June and September 2007, a composite sample was collected from each dewatering sump except DS-2 since the pump has been turned off since April 28, 2005. Effluent samples were collected once per quarter (March, June, September, and December 2007). All effluent sample results for this reporting period are below the City of Oshkosh discharge limits (Table 5). Influent and effluent samples will continue to be collected in 2008. Treatment system analytical laboratory reports are provided in Appendix F2.

6.3.2 Shallow Groundwater Quality

Monitoring wells within the containment zone sampled during the annual September 2007 event include MW-102, MW-104, GW-3, OW-3R, GW-2R, MW-103, OW-1, and MW-109R.

Of note during the September 2007 event:

- BTEX and PAH concentrations at well MW-102 are decreasing.
- Naphthalene and benzene concentrations generally were within the order of magnitude previously reported at each well within the groundwater containment zone, with the exception of MW-109R in which naphthalene and benzene concentrations were an order of magnitude lower, and the lowest concentrations since 2001.
- Contaminant concentrations detected in wells near the edge of the containment zone (MW-103 and MW-104) and upgradient (OW-1) are below NR140 ESs for all PAH and BTEX compounds except at MW-104. Concentrations of BaP, BbF, and chrysene exceeded their respective ESs at MW-104; but remain within the range of those previously reported.

6.4 Other Remedy Components Performance

WPSC is responsible for long term performance monitoring of additional remedy components including surface covers for the monitoring wells, dewatering sumps and cleanouts, the treatment system building, and piping and equipment. These features were most recently inspected in June 2007. Based on the purchase agreement between the City of Oshkosh and WPSC, it is the City's responsibility to maintain the cap and dock wall at the site consistent with the remedial design approved by the WDNR and documented in the *Remedial Action Documentation Report* (February 2003, NRT).

On June 20, 2007, NRT inspected the cap (asphalt and earthen) and dock wall in addition to the inspection of the other remedy components (i.e. monitoring wells, and dewatering sumps and cleanouts) concurrent with an operation and maintenance visit. The cap and dock wall appear to be in good condition except for soil that is exposed around piezometers P-103 and P-105. A copy of the Earthen Cap Maintenance Inspection Log is included in Appendix F3.

Also during the 2006 inspection activities, the protective covers on monitoring wells MW-104R, MW-102 and P-104 could not be properly closed; therefore, during the June 2007 site visit, new flushmounts and surface seals at these monitoring well were installed. In addition, flushmount cover bolts and well caps were replaced on several monitoring wells.

6.5 Proposed Piezometer Abandonment

As stated in the bedrock report (August 31, 2005, NRT), abandonment of P-4 and P-101 is recommended. In addition, NRT recommend abandoning P-2R and P-102R in the 2005 OM&M report (June 2006, NRT). All four piezometers (Figure 3, Appendix F4) are screened within the intermediate silt/clay zone. Collection of groundwater samples and elevation data within this intermediate silt/clay is not necessary for the following reasons:

- There were no PAL exceedences in P-101 and P-4 since March 2002 and March 2003, respectively and groundwater is adequately characterized in these areas by other wells;
- P-102R does not appear to monitor vertical migration of the contaminants of concern, because the BTEX and naphthalene concentrations in shallow well OW-3R, which is nested with this well is lower. Rather, concentrations in P-102R likely reflect historical activities and the alignment of historic shorelines at the Site, as shown on Figure 2;
- Hydraulic conductivity of the clay is significantly lower than the overlying and underlying units. There is no appreciable vertical flow through this unit and it does not provide a hydraulic connection between the overlying and underlying units; and
- Vertical extent of the affected groundwater is defined using wells screened in the bedrock beneath the intermediate zone.

6.6 Future Groundwater Monitoring

Groundwater monitoring will continue on an annual basis to evaluate water quality at the Site and to monitor performance of the remedial actions performed. In 2008, groundwater samples will be collected from all wells that do not contain free product and analyzed for BTEX, TMB and PAH with the exception of MW-108R, GW-2R, MW-101R, and OW-4 (Table 6). MW-108R, GW-2R, MW-101R, and OW-4 are within the containment system and/or in close proximity to other monitoring wells, and therefore do not provide significantly unique data. Water levels will be measured at each well prior to sampling. Water levels will continue to be collected quarterly in the shallow wells within and exterior to the containment system including MW 101R, GW-2R, MW-108R, and OW-4 (Table 6). Piezometric surface elevations will be measured in all the piezometers on an annual basis (Table 6).

Page 61 of 69

WPSC/NRT will continue to inspect the cover and vertical barrier system annually and subsequently provide observations of deficiencies in the cover and barrier system to the City of Oshkosh since they are responsible for maintenance of these systems.

The treatment system will continue to be monitored and maintained monthly by a WPSC representative. Groundwater effluent samples will be collected, in conformance with the discharge permit, on a quarterly basis and analyzed for BTEX, PAHs, and total cyanide. Total suspended solids will be analyzed on a semi-annual basis (Table 6). A composite influent sample from all operating extraction trenches will be collected on a semi-annual basis and analyzed for BTEX, PAHs and total cyanide (Table 6). A record of laboratory data will be maintained by WPSC and the effluent data will be made available to the City of Oshkosh as requested, per the discharge permit.

On-going annual reporting of the treatment system operations and groundwater quality will continue in accordance with the draft Master Schedule Submitted to the USEPA on May 19, 2006 or as revised in the Site-Specific Work Plan to be submitted.

7 IDENTIFIED PATHWAYS AND CONCLUSIONS

7.1 Exposure Pathway Analysis

As discussed previously in this Completion Report, remedial actions have been performed on the former MGP facility.

Exposure pathways addressed by the remediation work performed to date include:

- Soil direct contact and migration to groundwater pathways: Protection of human health from direct contact with contaminated soil and from soil contaminant migration to groundwater have been addressed as a result of contaminated soil excavation, thermal treatment, backfilling, placement of an earthen cap, and additional direct contact barriers installed to date (i.e., pavement, buildings); and
- Groundwater to surface water pathways: Protection of human health from ingestion of groundwater to surface water/seeps has been addressed as a result of installing the sheet pile barrier wall.

These and other media/pathways identified by the multi-site CSM are discussed below with respect to remaining soil and groundwater quality at the site.

7.1.1 Surface Soil

Surface soil conditions on-property and Court Street right-of-way are protective of direct contact given the extent of contaminated soils have been thermally-treated and placed at least one-foot below ground surface. Remaining contaminated soils are either below the earthen cap or pavement, as discussed in Section 5. These actions combined with long-term performance monitoring of the remedy components are protective of human health for direct contact concerns, but rely on risk management tools for long-term protection. Institutional controls to maintain the cap were contemplated as part of remedial actions, but have not been formalized. Potential ecological receptors will be evaluated as part of the Site-Specific Work Plan.

7.1.2 Subsurface Soil

Potential human health concerns with subsurface soil conditions include construction worker exposure. As noted above and detailed in Section 5, the former Oshkosh MGP property has undergone extensive subsurface soil remediation and installation of a vertical barrier wall to contain the MGP-affected soil. Risk management tools are also required to maintain the cap and provide notification for construction workers that may be in direct contact with subsurface soils or have potential inhalation exposures.

Potential ecological receptors will be evaluated as part of the Site-Specific Work Plan.

7.1.3 Groundwater

Soil excavation/treatment followed by installation of the sheet pile barrier wall (primary remedy), and installation of the gradient control system, address protection of groundwater quality. A network of water table monitoring wells is in place both inside and outside the containment system. Bedrock groundwater quality is generally characterized, except at P-107R. As described in Section 5.3, potable wells are permitted within approximately ¾ mile from the former MGP. On-going groundwater monitoring and system operation, maintenance and monitoring minimize the potential risks due to shallow groundwater under the present groundwater use conditions, along with the results of on-going groundwater monitoring, there does not appear to be a significant exposure pathway due to groundwater. However, risk management tools may be warranted for future use scenarios.

7.1.4 Sediments

MGP residuals in the channel have likely migrated via preferential pathways from the upland portion of the site. Primary migration pathways involving direct inputs to river sediments were addressed by upland remedial actions. Further evaluation of the occurrence of MGP residuals within gravel/bedrock and potential for dissolved phase migration both north and south of the river is in progress. Potential human health exposures would be limited to recreational use. Potential ecological exposures evaluated as part of the Site-Specific Work Plan.

7.2 Summary of Additional Data Needs

Areas and media that need further assessment and/or were not fully addressed by previous work with respect to public health, welfare or the environment are summarized as follows:

1. Soil Quality (Subsurface)

a. <u>Risk Management Tools</u>. Risk management tools are required for the Site to protect potential damage to the remedy components and minimize potential exposure to human health receptors. Risk management tools may be considered along Court Street and within the former MGP property.

2. <u>Groundwater Quality</u>

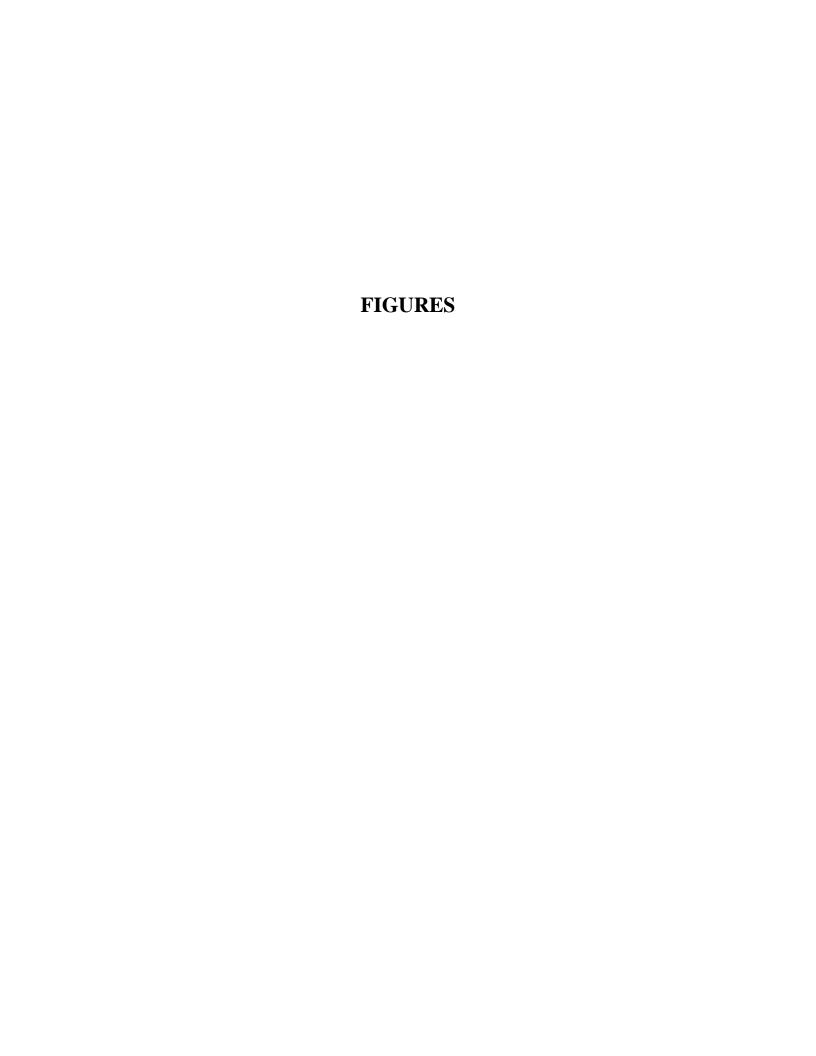
- a. <u>Continued Monitoring</u>. Continued monitoring of the existing monitoring well network, barrier wall, and gradient control system is warranted in the near-term to confirm containment of MGP residuals and to evaluate whether continuing pre-treatment of the groundwater is necessary prior to sanitary sewer discharge.
- b. <u>P-107R.</u> Continued evaluation of groundwater quality in the vicinity of P-107R to confirm bedrock flow direction.
- 3. <u>Sediment RI/FS</u>. Evaluate further assessment needs, including risk assessment if deemed appropriate, using the multi-site RI/FS Planning Documents.

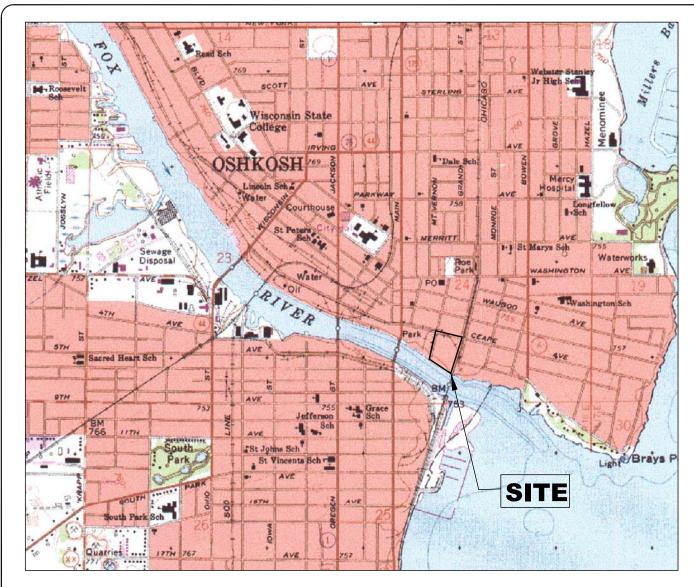
The above work elements will be incorporated into a Site-Specific Work Plan, to be submitted to USEPA in accordance with the established schedule.

8 REFERENCES (RECORD FILE)

- 1986, January, EDI Engineering & Science, Inc., Site Investigation, Former Coal Gas Manufacturing Plant, Ceape Avenue, Oshkosh, Wisconsin, Report No. 20402.
- 1993 May 26, Simon Hydro-Search, Inc., *Phase II Work Plan Environmental Investigation of Manufactured Gas Plant Site, Oshkosh, Wisconsin*, Project No. 304533000.
- 1993 October 22, Wisconsin Department of Natural Resources, Comment letter to Wisconsin Public Service Corporation, *Phase II Work Plan Environmental Investigation of Manufactured Gas Plant Site, Oshkosh, Wisconsin.*
- 1993 October 25, Wisconsin Department of Natural Resources, Letter to Foley and Lardner *WPS Consent Order* for WPS's property on Ceape Avenue, Oshkosh.
- 1993 November 24, Simon Hydro-Search, Inc., Summary of Field Investigation Results during Test Pit Program at Former Manufactured Gas Plant Site, Oshkosh, Wisconsin.
- 1994 June 23, Simon Hydro-Search, Inc., *Phase II Investigation Report Environmental Investigation of Former Manufactured Gas Plant Facility, Oshkosh, Wisconsin*, Project No. 304533000.
- 1994 August 9, Simon Hydro-Search, Inc., WPSC Oshkosh Former Manufactured Gas Plant Site Fox River Sediment Sampling Results, Project No. 304533000.
- 1994 October 24, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation Comments on *Phase II Investigation Report and Fox River Sediment Sampling Results*.
- 1995 September 1, Natural Resource Technology, Inc., *Sediment Sampling Work Plan-Former Manufactured Gas Plant Site Oshkosh, Wisconsin*, and transmittal letter to James Reyburn (Wisconsin Department of Natural Resources), Project No. 1073.
- 1996 March 5, Natural Resource Technology, Inc., Work Plan, Phase II Addendum Environmental Investigations of Manufactured Gas Plant Sites, Green Bay, Marinette, Oshkosh, Two Rivers Wisconsin, Project No. 1150.
- 1996 May 31, Natural Resource Technology, Inc., Letter to James Reyburn, Wisconsin Department of Natural Resources, *Phase II Addendum Investigation Work Plan Comments, Former Manufactured Gas Plant Sites, Green Bay, Marinette, Oshkosh, Two Rivers, Wisconsin*, Project No. 1150.

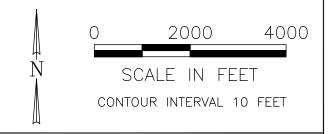
- 1996 October 2, Natural Resource Technology, Inc., Letter to James Reyburn, Wisconsin Department of Natural Resources, *Phase II Addendum Investigation Results, Former Oshkosh Manufactured Gas Plant (MGP) Site, Oshkosh, Wisconsin*, Project No. 1150.
- 1996 October 15, Natural Resource Technology, Inc., Sediment Investigation Report Former Manufactured Gas Plant Site Oshkosh, Wisconsin, Project No. 1073.
- 1997 October 22, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation, *Former Manufactured Gas Plant Oshkosh*, WI regarding review of sediment investigation report.
- 1998 May 21, Natural Resource Technology, Inc., Remedial Action Options Report, Former Manufactured Gas Plant Site Oshkosh, WI, Project No. 1312 and 1177.
- 1998 November 25, Natural Resource Technology, Inc., *Pre-Remedial Design Work Plan, Former Manufactured Gas Plant Site*, *Wisconsin Public Service Corporation, Oshkosh, Wisconsin*, Project No. 1312.
- 2000 April 27, Natural Resource Technology, Inc. Remedial Design Report, Former Manufactured Gas Plant Site, Oshkosh, Wisconsin, Project No. 1312.
- 2000 December 15, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation, *Review of Remedial Design Report for Wisconsin Public Service Corp, Court St. & Ceape Avenue, Oshkosh*, WDNR BRRTS Unique ID #02-71-000256
- 2001 May 29, Natural Resource Technology, Inc., Letter to Kathleen Sylvester (Wisconsin Department of Natural Resources), *Groundwater Monitoring Information and Sampling Plan Revisions, Former Manufactured Gas Plant Site, Court St.*, & Ceape Ave., Oshkosh, Wisconsin, Project No. 1312.
- 2001 June 8, Wisconsin Department of Natural Resources, General agreement letter to Wisconsin Public Service Corporation, *Monitoring and Sampling Plan Revisions, Wisconsin Public Service Corp., Court St. & Ceape Ave., Oshkosh*, WDNR BRRTS Unique ID # 02-71-000256.
- 2001 June 15, Natural Resource Technology, Inc., Sediment Sampling and Analysis Plan (SAP) for the Former Oshkosh Manufactured Gas Plant (MGP) Site, Oshkosh, Wisconsin, Project No. 1312.
- 2001 October 11, Natural Resource Technology, Inc., Request for Grading Permit and Dock Wall Replacement, Wisconsin Public Service Corporation, Former Coal Gas Facility, Oshkosh, Wisconsin, BRRTS ID # 02-71-000256.
- 2001 November 28, Natural Resource Technology, Inc., Remedial Work Plan, Former Wisconsin Public Service Corporation Manufactured Gas Plant Site, Court St., & Ceape Ave., Oshkosh, Wisconsin, Project No. 1312.
- 2002 January 4, Natural Resource Technology, Inc., Letter to Kathleen Sylvester, Wisconsin Department of Natural Resources, *Boring Logs and Additional Historical Drawings of MGP Structures*,

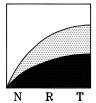

- Former Wisconsin Public Service Corporation (WPSC) Manufactured Gas Plant (MGP) Site, Court St., & Ceape Ave., Oshkosh, Wisconsin, Project No. 1312.
- 2002 March 1, Natural Resource Technology, Inc., Transmittal, to Kathleen Sylvester, Wisconsin Department of Natural Resources, *Oshkosh MGP Site Groundwater Monitoring Data*, Project No. 1312.
- 2002 March 4, Natural Resource Technology, Inc., Letter to Kathleen Sylvester, Wisconsin Department of Natural Resources, *Response to Remedial Work Plan Review Comments dated February 22, 2002 Former Wisconsin Public Service Corporation (WPSC) Manufactured Gas Plant (MGP) Site, Court St. & Ceape Ave., Oshkosh, Wisconsin, Project No. 1312.*
- 2002 March 7, Wisconsin Department of Natural Resources, Remedial Action Work Plan general approval letter to Wisconsin Public Service Corporation, Remedial Action Workplan for WPS-Manufactured Gas Plant site, Ceape & Court Streets, Oshkosh, WDNR BRRTS ID #02-71-000256...
- 2002 December 3, Natural Resource Technology, Inc., Sediment Investigation Report, Oshkosh Former MGP Site Remediation, Oshkosh, Wisconsin, Project No. 1312.
- 2003 January 24, Wisconsin Department of Natural Resources, Sediment Investigation Report Acknowledgement of Received to Wisconsin Public Service Corporation, Sediment Investigation Report dated December 3, 2002 WPS- Manufactured Gas Plant Site, Ceape & Court Streets, Oshkosh, WDNR BRRTS ID #02-71-000256.
- 2003 February 26, Natural Resource Technology, Inc., Remedial Action Documentation Report, Former Manufactured Gas Plant Site, Oshkosh, Wisconsin, Project No. 1312.
- 2003 February 28, Wisconsin Department of Natural Resources, Comment letter to Wisconsin Public Service Corporation, Sediment Investigation Report dated December 3, 2002 for WPS Manufactured Gas Plant Site, Court St. and Ceape Ave., Oshkosh Wisconsin, BRRTS 02-71-000256.
- 2003 March 3, Wisconsin Department of Natural Resources, Acknowledgement of Receipt, *Remedial Action Documentation Report, WPS- Manufactured Gas Plant site, Ceape & Court Streets, Oshkosh*, WDNR BRRTS ID #02-71-000256.
- 2003 March 31, Natural Resource Technology, Inc., Supplemental Groundwater Monitoring and Bedrock Assessment Report and Response to February 28, 2003 Correspondence, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, BRRTS 02-71-000256.
- 2003 June 3, Natural Resource Technology, Inc., Remedial Action Documentation Report Addendum, Former Wisconsin Public Service Corporation Manufactured Gas Plant Site, Court Street and Ceape Avenue, Oshkosh, Wisconsin, BRRTS ID #02-71-000256.
- 2003 June 25, Natural Resource Technology, Inc., Letter to Kathy Sylvester, Wisconsin Department of Natural Resources, *Quarterly Treatment System Update, Former Wisconsin Public Service*


- Corporation Manufactured Gas Plant Site, Court St. and Ceape Ave., Oshkosh, Wisconsin, BRRTS #02-71-000256.
- 2003 September 19, Natural Resource Technology, Inc., Semi-Annual Operations, Maintenance and Maintenance and Optimization Report, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Project No. 1312.
- 2003 October 29, Wisconsin Department of Natural Resources, General Agreement Letter to Wisconsin Public Service Corporation, "Review of Supplemental Groundwater Monitoring and Bedrock Assessment Report," WPS Manufactured Gas Plant Site, Ceape & Court Streets, Oshkosh, WDNR BRRTS ID #02-71-000256.
- 2004 January 20, Natural Resource Technology, Inc., Air Stripper Operation Report, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Project No. 1312.
- 2004 February 9, Natural Resource Technology, Inc., 2003 Annual Monitoring and Semi-Annual Operations, Maintenance and Maintenance, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Project No. 1312.
- 2004 February 16, Natural Resource Technology, Inc., Work Plan for 2004 Bedrock Assessment, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Project No. 1312.
- 2004 March 16, Wisconsin Department of Natural Resources, Letter to Wisconsin Public Service Corporation, Review of Bedrock Assessment Work Plan dated February 16, 2004 Wisconsin Public Service Corporation, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Wisconsin BRRTS 02-71-000256.
- 2004 July 9, STS Consultants, LTD. On behalf of City of Oshkosh, Submittal to Department of Natural Resources, *Park Development Plan, Riverside Park, Oshkosh, Wisconsin*, STS Project No. 26358A.
- 2004 August 12, Wisconsin Department of Natural Resources, Greenspace Grant GRN-017, *Riverside Park Development Plan, Former WPS Property, Ceape Avenue & Court Street, Oshkosh*, WDNR BRRTS ID #02-71-000256.
- 2004 August 30, Natural Resource Technology, Inc., Semi-Annual Operations, Maintenance and Maintenance, Former Manufactured Gas Plant, Court Street and Ceape Avenue, Oshkosh, Wisconsin, Project No. 1312.
- 2005 August 22, Natural Resource Technology, Inc., Sediment Investigation Report (Revised), Former Wisconsin Public Service Corporation (WPSC) Manufactured Gas Plant (MGP) Site, Court St. & Ceape Ave., Oshkosh, Wisconsin, BRRTS ID # 02-71-000256, Project No. 1644.
- 2005 August 31, Natural Resource Technology, Inc., Operation, Maintenance and Monitoring Semi-Annual Report and Supplemental Bedrock Assessment, Former Oshkosh Manufactured Gas Plant, Project No. 1312.

Completion Report – Oshkosh Former MGP Revision 0 02/04/08 Section 8 – References Page 69 of 69

2006 June 8, Natural Resource Technology, Inc., 2005 Annual Operation, Maintenance, and Monitoring Report, Former Wisconsin Public Service Corporation Manufactured Gas Plant Site, Court St. & Ceape Ave., Oshkosh, Wisconsin, BRRTS ID # 02-71-000256, USEPA ID # WIN000509947.


2007 February 7, Natural Resource Technology, Inc., 2006 Annual Operation, Maintenance, and Monitoring Report, Former Wisconsin Public Service Corporation Manufactured Gas Plant Site, Court St. & Ceape Ave., Oshkosh, Wisconsin, BRRTS ID # 02-71-000256, USEPA ID # WIN000509947.

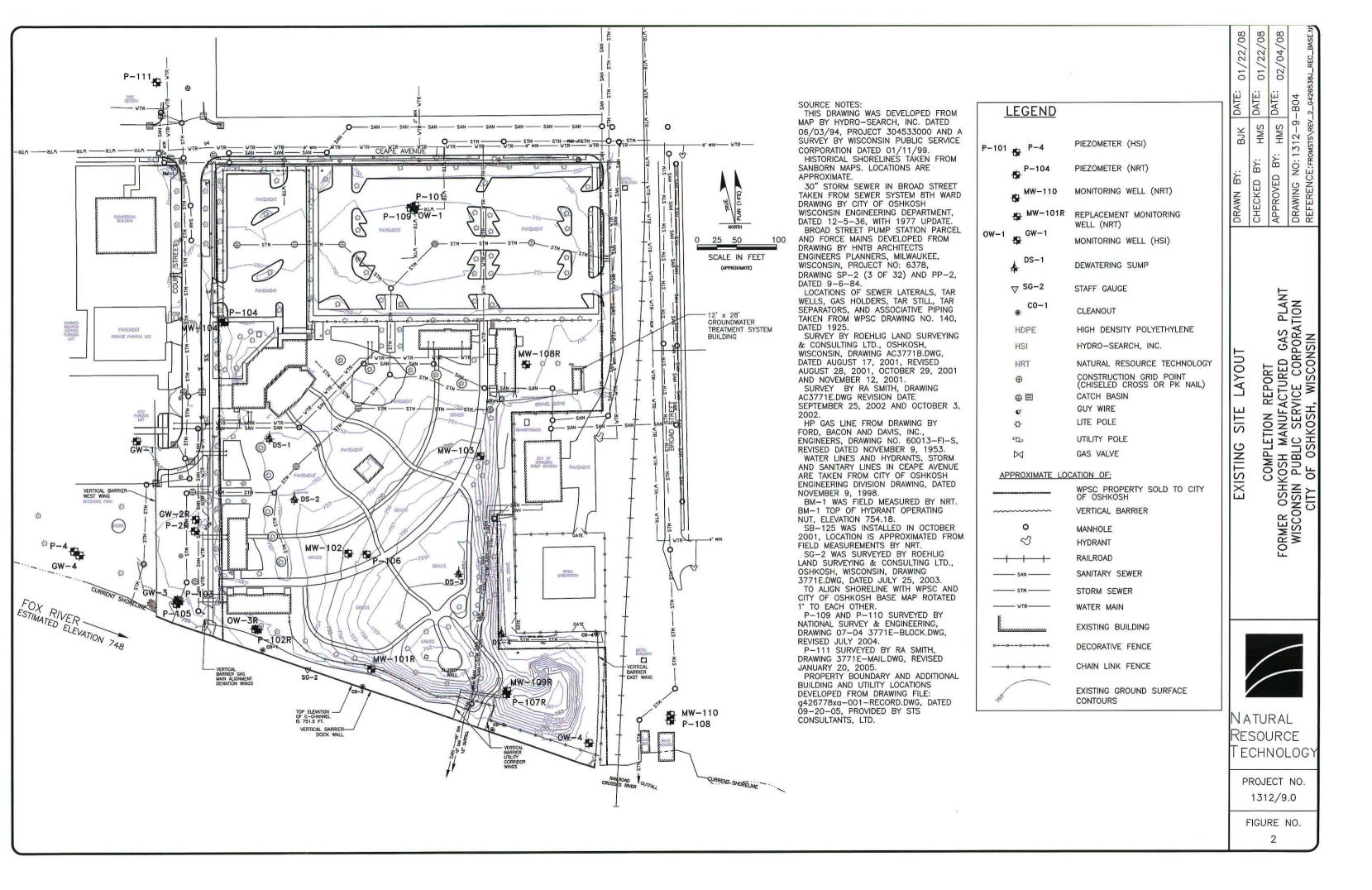


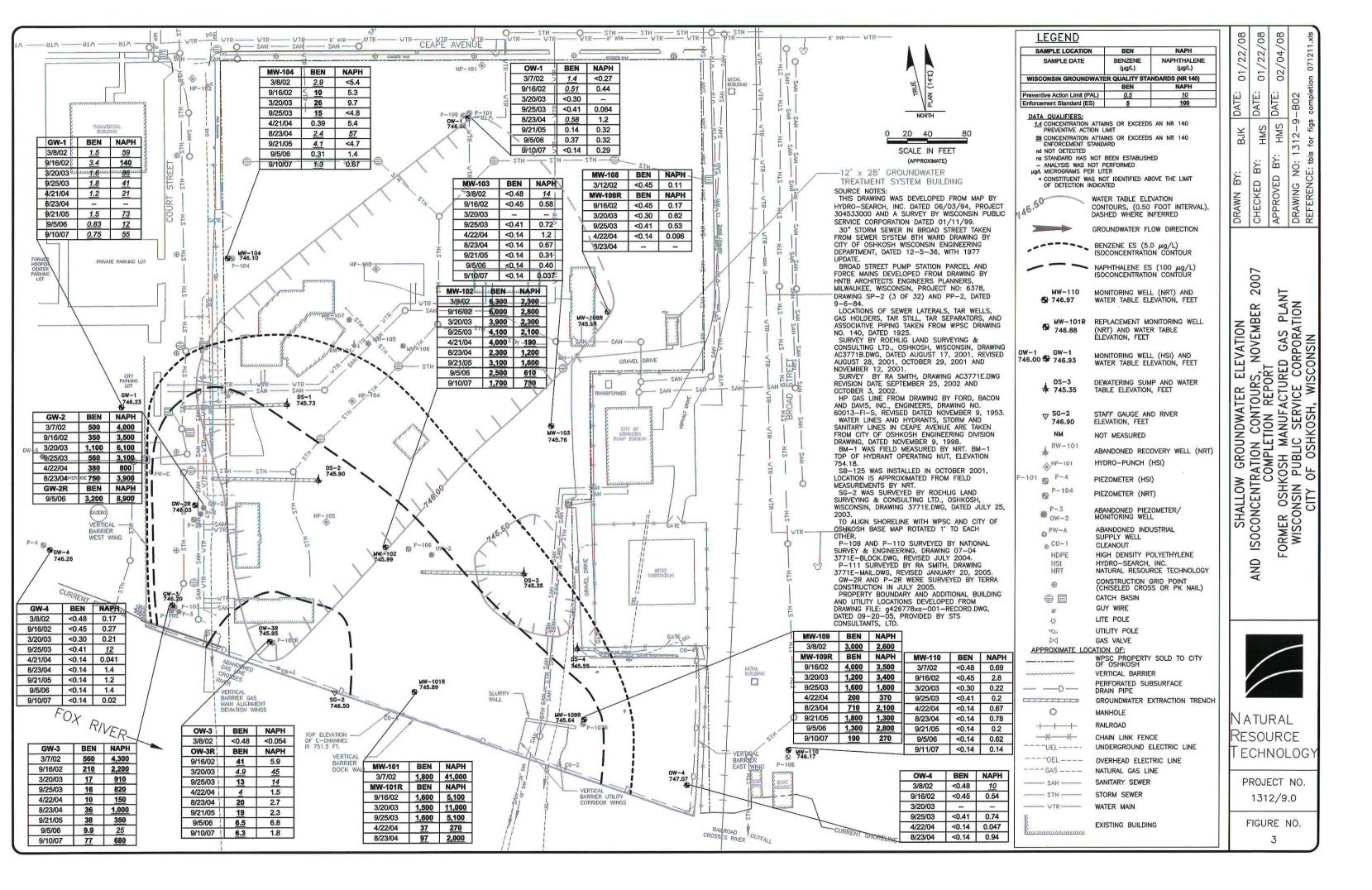
SOURCE: EARTHVISIONS U.S. TERRAIN SERIES, © EARTHVISIONS, INC. 603-433-8500. USGS 7.5 MINUTE QUADRANGLE, OSHKOSH. DATED 1961. PHOTOREVISED 1975.

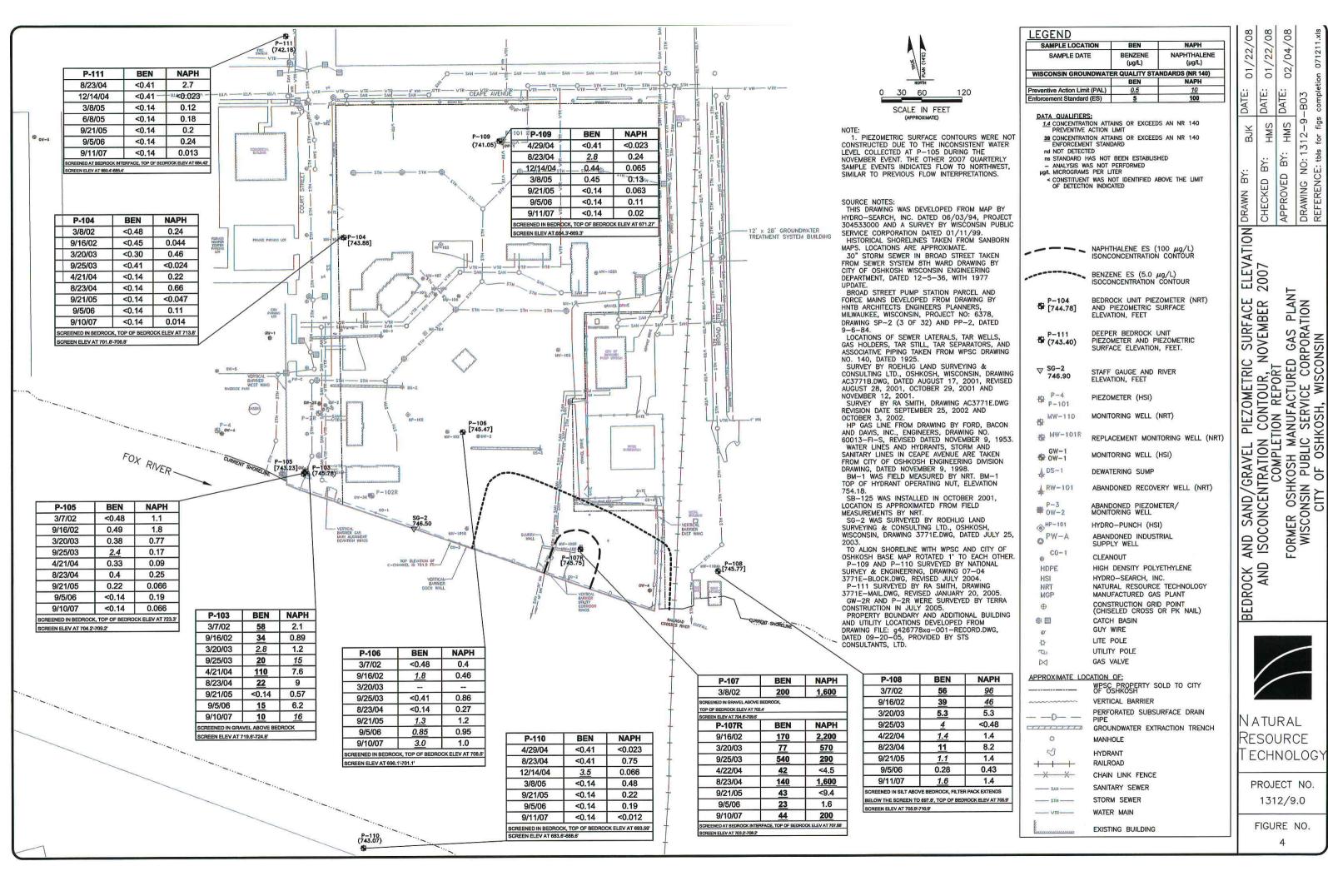
Natural Resource Technology

SITE LOCATION MAP

FORMER OSHKOSH MANUFACTURED GAS PLANT WISCONSIN PUBLIC SERVICE CORPORATION CITY OF OSHKOSH, WISCONSIN


DRAWN BY: TAS


APPROVED BY: SLF DATE: 10/12/01


PROJECT NO. 1312

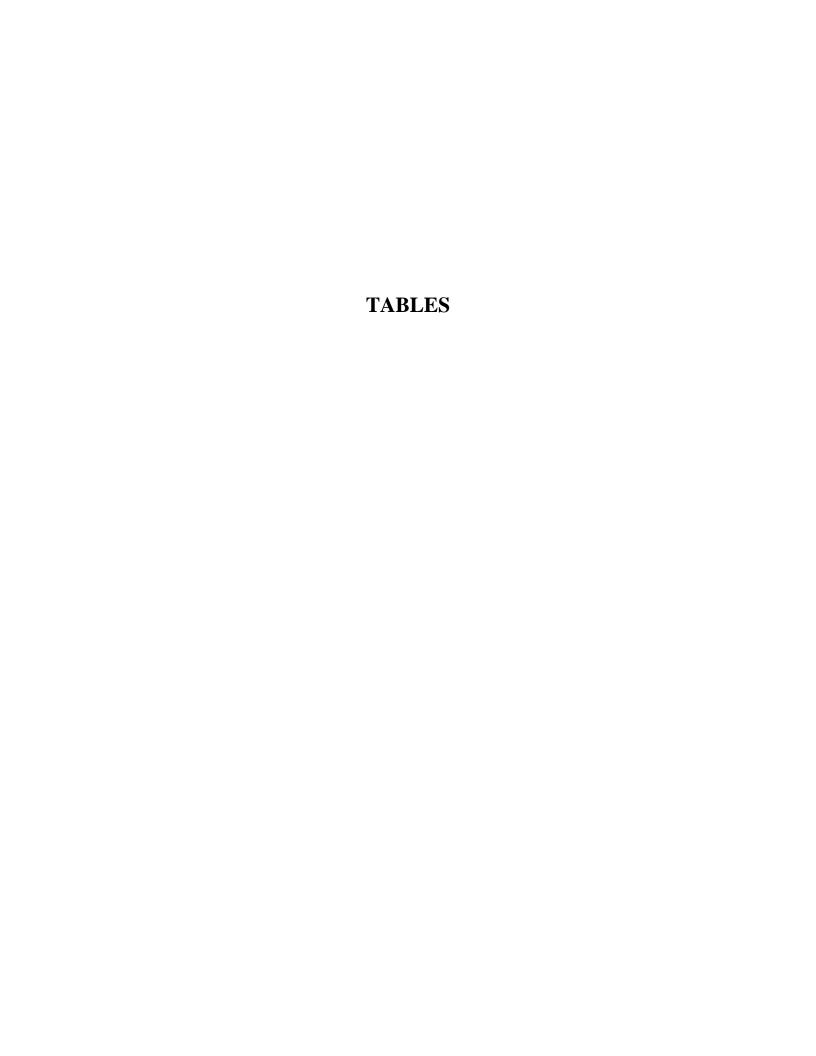

DRAWING NO. 1312-A02C

FIGURE NO. 1

Well	TOC Elevation (feet) ⁸	Ground Elevation (feet) ⁸	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ^B	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ⁸	Flekt Comments
OW-1	Historical o	roundwater e	levation data p				3/7/2002	5.72	747.70	
	751.57	752.04	8.5	5	748.10	743.10	9/16/2002	4.48	747.09	
							10/24/2002 11/7/2002	5.21	746.36	
							11/15/2002	5.45	746.12	
							11/22/2002	6.22	745.35	
							12/20/2002	4.78	746.79	
							1/20/2003		-	
							2/17/2003	7.94	743.63	
							3/19/2003	6.91		unable to sample - dry bailer
							4/23/2003 5/14/2003	3.76 3.49	747.81 748.08	
							6/25/2003	4.30	747.27	
							9/24/2003	5.18	746.39	unable to sample - dry bailer
							12/22/2003	5.15	746.42	
							4/21/2004	4.43	747.14	
							6/28/2004 7/26/2004	1.54 2.79	750.03 748.78	
							8/23/2004	3.24	748.78	
							12/14/2004	2.03		elevation may have changed due to park redevelopment
							3/8/2005	4.49		elevation may have changed due to park redevelopment
	750.79	750.95	7.70	5	748.10	743.10	6/8/2005	3.10	747.69	
							9/21/2005	3.62	747.17	
							10/11/2005	4.02	746.77	
							12/12/2005 3/7/2006	3.66 4.73	747.13	
							6/19/2006	4.73	746.06 746.71	
							9/5/2006	3.81	746.98	
							12/1/2006	3.80	746.99	
							3/26/2007	3.82	746.97	
							6/27/2007	4.04	746.75	
							9/10/2007 11/30/2007	4.07		wet dry , no purge
P-101	Historical o	roundwater e	levation data p	rovided in r	revious repor	ta	3/7/2002	4.79 8.11	746.00 745.82	
	751.69	751.99	30.3	5	726.40	721.40	9/16/2002	4.80	746.89	
							10/24/2002	4.95	746.74	
							11/7/2002			
							11/15/2002	4.90	746.79	
							11/22/2002	5.25	746.44	
							12/20/2002 1/20/2003	5.23	746.46	
							2/17/2003			
							3/19/2003	4.72	746.97	
							4/23/2003	2.84	748.85	
							5/14/2003	1.28	750,41	
							6/25/2003	3.31	748.38	
							9/24/2003 12/22/2003	2.09	749.60	bailed dry
							4/21/2004	7.93	743.76	Outer casing frozen
							6/28/2004	4.42	747.27	
							7/26/2004	4.49	747.20	
							8/23/2004	5.72	745.97	
							12/14/2004	3.53		elevation may have changed due to park redevelopment
	750.87	751.09	29.5	5	726.40	721.40	3/8/2005	5.60	747.00	elevation may have changed due to park redevelopment
	750.67	751.05	29.5	3	720.40	721.40	6/8/2005 9/21/2005	3.87 3.62	747.00 747.25	
							9/5/2006	4.54	746.33	
		,					3/26/2007		Abandonment	•
OW-3R	751.81	752.03	13.8	10	748.01	738.01	9/16/2002	5.00	746.81	
							10/24/2002	5.03	746.78	
							11/7/2002	5.66	746.15	
							11/15/2002 11/22/2002	6.30 6.55	745.51 745.26	
							12/20/2002	6.74	745.26	
							1/20/2003	7.00	744.81	•
•							2/17/2003	7.14	744.67	
,							3/19/2003	7.20	744.04	
									744.61	
							4/23/2003	5.58	746.23	
	751.68	752.03	13.5	10	748.00	738 00	4/23/2003 5/14/2003	5.58 5.12	746.23 746.69	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003 6/25/2003	5.58 5.12 5.39	746.23 746.69 746.29	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003	5.58 5.12	746.23 746.69	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004	5.58 5.12 5.39 5.10 5.37 5.30	746.23 746.69 746.29 746.58 746.31 746.38	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004	5.58 5.12 5.39 5.10 5.37 5.30 3.95	746.23 746.69 746.29 746.58 746.31 746.38 747.73	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83	
	751.68	752.03	13.5	10	748.00	738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50	elevation may have changed due to park redevelopment
			13.5	10		738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50	elevation may have changed due to park redevelopment unable to locate, during park redevelopment activities
	751.68 751.72	752.03 751.9	13.5	10	748.00 748.00	738.00 738.00	4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50	elevation may have changed due to park redevelopment unable to locate, during park redevelopment activities
							4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 9/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 4.98 5.18	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.50 746.50	
							4/23/2003 5/14/2003 5/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 1/26/2004 3/3/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50	
							4/23/2003 5/14/2003 9/25/2003 9/24/2003 12/22/2003 4/21/2004 8/28/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2005 6/8/2005 9/21/2005 9/21/2005 3/7/2006	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 	746.23 746.69 746.29 746.31 746.38 747.73 746.83 746.50 — 746.89 746.69 746.47 745.47	
							4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 3/7/2006 6/19/2006	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 9.98 9.98 5.03 5.25 6.25 4.80	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50 746.69 746.47 745.47	
							4/23/2003 5/14/2003 9/25/2003 9/24/2003 12/22/2003 4/21/2004 8/28/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2005 6/8/2005 9/21/2005 9/21/2005 3/7/2006	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50 746.69 746.69 746.47 745.47 746.92	
							4/23/2003 5/25/2003 9/24/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 12/14/2005 5/21/2005 9/21/2005 3/7/2006 9/5/2006	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 9.98 9.98 5.03 5.25 6.25 4.80	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50 746.69 746.47 745.47	
							4/23/2003 6/25/2003 9/24/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 8/23/2005 9/21/2005 9/21/2005 9/5/2006 9/5/2006 9/5/2006	5.58 5.12 5.39 5.10 5.37 5.30 3.95 4.85 5.18 4.98 	746.23 746.69 746.29 746.58 746.31 746.38 747.73 746.83 746.50 	

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ⁸	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ⁸	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Field Comments
P-102R	751.65	751.95	29.7	5	726.95	721.95	9/16/2002	5.00	746.65	<u> </u>
		, 01100	20.7	-	. 20.00	721.00	10/24/2002	4.87	746.78	
							11/7/2002	5.50	746.15	
							11/15/2002	5.75	745.90	
	751.65	751.95	29.7	5	726.95	721.95	11/22/2002	5.81 5.94	745.84 745.71	
				•	. 40.00	,	1/20/2003	6.45	745.20	
							2/17/2003	6.60	745.05	·
							3/19/2003 4/23/2003	6.45 5.41	745.20 746.24	
							5/14/2003	5.76	745.89	
							6/25/2003	5.14	746.51	
							9/24/2003	5.20	746.45	
							12/22/2003 4/21/2004	5.35 5.49	746.30 746.16	
							6/28/2004	3.93	747.72	
							7/26/2004	4.90	746.75	
					:		8/23/2004	5.06	746.59	
							12/14/2004 3/8/2005		-	unable to locate, during park redevelopment activities unable to locate, during park redevelopment activities
	751.65	751.91	29.70	5	727.00	722.00	6/8/2005	5.06	746.59	
							9/21/2005	5.25	746.40	
OW 4	- Ulabariani -			and deal in			9/5/2006	Proposed for Ab		
OW-4	750.75	751.05	elevation data p	rovided in p	748.97	743.97	3/7/2002 9/16/2002	6.45 5.30	745.94 745.45	
	.00.70	.5	0.0	3	. 40.31	, 40.31	10/24/2002	3.85	746.90	
							11/7/2002	4.31	746.44	
							11/15/2002	4.80	745.95	
							11/22/2002	5.06 5.28	745.69 745.47	[
							1/20/2002	5.71	745.47	
							2/17/2003	6.02	744.73	
							3/19/2003	_		Unable to locate due to snow
							4/23/2003	4.47	746.28	
							5/14/2003 6/25/2003	3.98 4.19	746.77 746.56	
							9/24/2003	4.32	746.43	
							12/22/2003	4.53	746.22	
							4/21/2004	4,81	745.94	
							6/28/2004 7/26/2004	3.08	747.67	
							8/23/2004	3.85 4.35	746.90 746.40	
							G E G E G E	4.00	140.40	elevation based on STS June 2005 survey due to park
							12/14/2004	3.97	746.73	redevelopment elevation based on STS June 2005 survey due to park
	750.70	751.03	6.70	5	749.00	744.00	3/8/2005 6/8/2005	4.77 4.21	745.93 746.49	redevelopment
	700.70	701.00	0.70	•	745.00	744.00	9/21/2005	3.17	747.53	
							10/11/2005	4.23	746.47	
							12/12/2005	4.52	746.18	
							3/7/2006 6/19/2006	5.52 4.13	745.18 746.57	water inside flush mount
							9/5/2006	4.42	746.28	Water Hand Heart House
							12/1/2006	4.46	746.24	
							3/26/2007	5.50	745.20	
							6/26/2007	4.26	746.44	
							9/10/2007 11/30/2007	4.48 3.63	746.22 747.07	
GW-1	Historical o	roundwater	elevation data p	provided in r	previous reno	rts	3/7/2002	3.92	746.05	
	749.83	750.26	12.3	10	747.50	737.50	9/16/2002	2.88	746.95	
							10/24/2002	nm	nm	
							11/7/2002	3.04	746.79	
							11/15/2002 11/22/2002	nm 3.31	nm 746.52	1
							12/20/2002	3.35	746.48	
							1/20/2003	4.17	745.66	<u>}</u>
							2/17/2003			
							3/19/2003	4.15	745.68	
							4/23/2003 5/14/2003	3.36 2.65	746.4 7 747.18	
							6/25/2003	3.05	746.78	
							9/24/2003	3.20	746.63	
							12/22/2003	2,82	747.01	
							4/21/2004 6/28/2004	3.70 2.30	746.13 747.53	
							7/26/2004	2.96	746.87	
							8/23/2004			unable to measure beneath job trailer
							12/14/2004			unable to measure beneath job trailer
***************************************	750.02	750.24	12.5	10	747.50	737.50	3/8/2005 6/8/2005	3.03	746.99	unable to measure beneath job trailer
					, 100		9/21/2005	3.27	746.75	
							10/11/2005	3.17	746.85	
							12/12/2005	3.45	746.57	
							3/7/2006	4.36	745.66	
							6/19/2006 9/5/2006	3.02 3.30	747.00 746.72	
							12/1/2006	3.27	746.75	
							3/26/2007	4.06	745.96	i
							6/26/2007 9/10/2007	3.10 3.09	746.92 746.93	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ^B	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ⁸	Base of Screen Elevation (feet) ⁸	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Field Comments
GW-2			elevation data p				3/7/2002	3.45	746.17	
	749.56	750.12	12.5	10	747.10	737.10	9/16/2002 10/24/2002	2.65 2.60	746.91 746.96	
							11/7/2002	3.15	746.41	
							11/15/2002	3.55	746.01	
							11/22/2002	3.70	745.86	
							12/20/2002	3.75	745.81	1
							1/20/2003	4.39	745.17	
			•				2/17/2003	4.50	745.06	
							3/19/2003	4.55	745.01	Sheen
							4/23/2003 5/14/2003	3.14 2.53	746.42 747.03	
							6/25/2003	8.82	740.74	
							9/24/2003	2.80		black sheen, coal tar,odor
					٠		12/22/2003	2.88	746.68	
							4/21/2004	3.22	746.34	Tar, odor, black sheen
							6/28/2004 7/26/2004	0.50 2.58	749.06 746.98	
							8/23/2004	2.82	746.74	•
							12/14/2004	4.62		elevation may have changed due to park redevelopment
							3/8/2005	6.06		elevation may have changed due to park redevelopment
	•						6/8/2005			damaged casing
GW-2R	751.25	ns	14.00	10	747.25	737.25	Monitoring We 9/21/2005	4.72	746.53	
G.17-Z.N	.01.20	110		.0	, -1.23	.01.23	10/11/2005	4.40	746.85	
							12/12/2005	4.74	746.51	
							3/7/2006	5.67	745.58	L .
							6/19/2006	4.24	745.07	Tar present
							9/5/2006 12/1/2006	5.00 4.49	746.25 746.76	Tar present
							3/26/2007	5.27	745.98	
							6/26/2007	4.28	746.97	
							9/10/2007	4.25	747.00	
							11/30/2007	5.22	746.03	
P-2			elevation data p				3/7/2002	3.52	745.89	
	749.70	750.20	28.2	5	726.50	721.50	9/16/2002 10/24/2002	3.00 2.90	746.70 746.80	
							11/7/2002	3.55	746.15	
							11/15/2002	3.80	745.90	
							11/22/2002	3.84	745.86	
							12/20/2002	4.01	745.69	
							1/20/2003	4.53	745.17	
							2/17/2003 3/19/2003	4.73 4.58	744.97 745.12	no sample-bailer frozen in well
							4/23/2003	3.52	746.18	To sample-ballot nozemin neil
							5/14/2003	2.85	746.85	
							6/25/2003	3.22	746.48	
							9/24/2003	3.30	746.40	į
							12/22/2003 4/21/2004	3.50 3.63	746.20 746.07	odor
							6/28/2004	2.14	747.56	000
							7/26/2004	3.08	746.62	
							8/23/2004	3.28	746.42	
							12/14/2004	-		unable to locate, during park redevelopment activities
							3/8/2005 6/8/2005			unable to locate, during park redevelopment activities damaged casing
P-2R	751.30	ns	29.0	5	727.30	722.30	Monitoring We 9/21/2005			adding
F-2.n	751.50	112	25.0	3	727.30	722.30	9/5/2006	4.98	746.32	
GW-3	Historical c	roundwater	elevation data p	neoulded in a	roulous rono	rte	3/26/2007	3.21	Abandonment 745.81	
	750.03	750.35	14.0	10	746.03	736.03	9/16/2002	3.10	746.93	***************************************
							10/24/2002	3.03	747.00	·
							11/7/2002	3.41	746.62	
							11/15/2002	3.75	746.28	
							11/22/2002	3.81	746.22	
							12/20/2002	3.92 4.49	746.11 745.54	
							2/17/2003	4.59	745.44	
							3/19/2003	4.50	745.53	Sheen
							4/23/2003	3.52	746.51	
							5/14/2003	3.86	746.17	
							6/25/2003 9/24/2003	3.22 3.80	746.81 746.23	
							12/22/2003	3.00		Outer casing frozen
							4/21/2004	3.85	746.18	
							6/28/2004	2.37	747.66	
							7/26/2004	3.59	746.44	some surface water went in well
							8/23/2004 12/14/2004	3.46 3.52	746.57	elevation may have changed due to park redevelopment
							3/8/2005	4.33		elevation may have changed due to park redevelopment
							6/8/2005			buried during park redevelopment
	750.23	750.29	14.20	10	746.00	736.00	9/21/2005 10/11/2005	3,41 3,28	746.82 746.95	needs to be resurveyed
							12/12/2005	3.28	746.95 746.64	1
							3/7/2006	4,43	745.80	
							6/19/2006	3.17	747.06	Broken inner cap replaced
							9/5/2006	3.48	746.75	
							12/1/2006	3,40	746.83	
							3/26/2007	4,11	746.12	
							6/26/2007	3.14	747.09	Ì
							9/10/2007	3.20	747.03	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ⁸	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ⁸	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ⁸	Field Comments
P-103	Historical gr	roundwater e	levation data p	rovided in p	revious repor	ts.	3/7/2002	3.04	746.02	
***************************************	750.02	750.33	30.4	5	724.61	719.61	9/16/2002	3.28	746.74	
							10/24/2002	3.20	746.82	
							11/7/2002	3.85	746.17	
							11/15/2002	4.05	745.97	
							11/22/2002	4.13	745.89	
							12/20/2002	4.23	745.79	
							1/20/2003	4.82	745.20	
							2/17/2003 3/19/2003	5.00	745.02	
								4.87	745.15	Sheen
							4/23/2003 5/14/2003	3.84 3.16	746.18 746.86	
							6/25/2003	3.53	746.49	
							9/24/2003	3.60	746.42	
			* - 1				12/22/2003		-	Outer casing frozen
							4/21/2004	3.91	746.11	_
							6/28/2004	2.35	747.67	
							7/26/2004	3.41	746.61	some surface water went in well
							8/23/2004	3.53	746.49	
							12/14/2004	3.48	746.54	elevation based on STS June 2005 survey due to park redevelopment elevation based on STS June 2005 survey due to park
		******************************					3/8/2005 6/8/2005	4.30 	745.72	redevelopment buried during park redevelopment
	750.02	750.20	30.4	5	724.60	719.60	9/21/2005	3.64	746.38	
							9/5/2006	3.75	746.27	
							3/26/2007	4.11	745.91	
							6/26/2007	3.50	746.52	
							9/10/2007	3.38	746.64	
P-105	Historical	roundwater 4	elevation data p	rovided in :	mevious room	19	11/30/2007 3/7/2002	4.24 3.04	745.78 745.93	
	749.96	750.29	45.8	5	709.20	704.20	9/16/2002	2.80	745.93 747.16	
				~	. 00.20		10/24/2002	1.54	748.42	
							11/7/2002	3.51	746.45	
							11/15/2002	3.90	746.06	
							11/22/2002	4.04	745.92	
							12/20/2002	4.15	745.81	
							1/20/2003	4.70	745.26	
							2/17/2003	4.90	745.06	
							3/19/2003	4.72	745.24	
							4/23/2003	3.79	746.17	
							5/14/2003	3.31	746.65	
							6/25/2003	3.48	746.48	
							9/24/2003 12/22/2003	3.51	746.45	
							4/21/2004	3.64 3.54	746.32 746.42	
							6/28/2004	1.57	748.39	
							7/26/2004	1.23	748.73	some surface water went in well
							8/23/2004	1,25	748.71	elevation based on STS June 2005 survey due to park
							12/14/2004	3.55 3.82	746,47 746.20	redevelopment elevation based on STS June 2005 survey due to park redevelopment
							6/8/2005		***	buried during park redevelopment
	750.02	750.15	45.8	5	709.20	704.20	9/21/2005	3.64	746.38	
							9/5/2006	4.09	745.93	
							3/26/2007	3.48	746.54	
							6/26/2007	3.53	746.49	
							9/10/2007	3.45	746.57	went dry
GW-4	Historias I	roundwater	- حدد ممانوسهاد	roulded I-	roulous		11/30/2007	6.79	743.23	
	Historical gi 749.87		elevation data p	I NI DSDIVON			5/30/2001 8/13/2001	2.67	747,15	
		/50.11		10	746.77	736.77	8/13/2001	3.00	746.87	
	, 45,01		701.					272		
	, 10.01						9/27/2001 11/13/2001	2.73 3.24	747.14	
	, 45.07		70.7				9/27/2001 11/13/2001 3/7/2002	3.24	747.14 746.63	
	7-15.07						11/13/2001		747.14	
	7-10.07						11/13/2001 3/7/2002 9/16/2002 10/24/2002	3.24 3.88 3.00 2.82	747.14 746.63 745.99	
	740.07						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002	3.24 3.88 3.00 2.82 3.07	747.14 746.63 745.99 746.87 747.05 746.80	
	, 13.0						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002	3.24 3.88 3.00 2.82 3.07 3.30	747.14 746.63 745.99 746.87 747.05 746.80 746.57	
	,43,67						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002 11/22/2002	3,24 3,88 3,00 2,82 3,07 3,30 3,31	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56	
	,43,67						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002 11/22/2002 12/20/2002	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56 746.46	
	.43.6						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002 11/22/2002 12/20/2002 1/20/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56 746.46	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002 11/22/2002 12/20/2002 1/20/2003 2/17/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56 746.46	
	7450						11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/15/2002 11/22/2002 12/20/2002 1/20/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00	747.14 746.63 745.99 746.87 747.05 746.50 746.57 746.56 746.46 745.87	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						11/13/2001 37/2002 9/16/2002 10/24/2002 11/7/2002 11/75/2002 11/25/2002 12/20/2003 2/17/2003 3/19/2003 5/14/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.15 3.33 2.59	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56 746.46	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						11/13/2001 37/2002 9/16/2002 10/24/2002 11/1/2002 11/15/2002 11/22/2002 12/20/2003 2/17/2003 4/23/2003 4/23/2003 6/25/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.15 3.33 2.59 2.94	747.14 746.63 745.99 746.87 747.05 746.80 746.57 746.56 746.46 745.87	
							11/13/2001 37/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/15/2002 12/20/2002 1/20/2003 3/19/2003 4/23/2003 5/14/2003 9/24/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12	747.14 746.63 745.99 746.87 747.05 746.50 746.56 746.56 745.47 - - 745.72 746.54 747.28 746.53	
							11/13/2001 377/2002 916/2002 10/24/2002 11/17/2002 11/15/2002 11/20/2002 12/20/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 	747.14 746.83 745.99 746.87 747.05 746.80 746.57 746.56 745.87 745.72 746.54 747.28 746.93 746.75	
							11/13/2001 37/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 12/20/2002 1/20/2003 3/19/2003 4/23/2003 5/14/2003 9/24/2003 4/21/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74	747.14 746.63 745.99 746.87 747.05 746.80 746.56 746.56 745.87 746.54 747.28 746.93 746.75 746.93 746.75	
							11/13/2001 9/16/2002 9/16/2002 10/24/2002 11/15/2002 11/15/2002 12/20/2002 12/20/2003 2/17/2003 3/19/2003 5/14/2003 9/24/2003 12/22/2003 4/23/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23	747.14 746.83 745.99 746.87 747.05 746.57 746.56 746.46 745.87	
							11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/22/2002 12/20/2002 1/20/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 4/21/2004 6/28/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80	747.14 746.63 745.99 746.87 747.05 746.50 746.56 746.66 745.87	
							11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/75/2002 11/22/2002 12/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89	747.14 746.63 745.99 746.87 747.05 746.80 746.56 746.56 745.87 746.54 747.28 746.75 746.30 746.13 747.64 747.98	
							11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/15/2002 11/22/2002 1/20/2003 3/19/2003 4/23/2003 4/23/2003 4/23/2003 4/21/2004 4/28/2004 1/26/2004 1/26/2004 1/26/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20	747.14 746.83 745.99 746.87 747.05 746.50 746.56 746.46 745.87 745.72 746.93 746.93 746.13 747.07 746.98 746.98 746.98	
		750 15.		10.	745.90	736 PA	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/22/2002 1/20/2003 2/17/2003 3/19/2003 4/23/2003 9/24/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05	747.14 746.83 745.99 746.87 747.05 746.56 746.56 746.56 745.87	
	749.89	750.15	13.1	10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/75/2002 11/75/2002 11/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2004 6/28/2004 6/28/2004 6/28/2004 6/28/2004 6/28/2004	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05	747.14 746.83 745.99 746.87 747.05 746.57 746.56 746.56 746.56 745.67 745.72 745.54 747.28 746.93 746.75 746.30 746.13 747.07 746.98 746.67 745.82	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/15/2002 11/22/2002 12/20/2003 3/19/2003 3/19/2003 4/23/2003 5/14/2003 9/24/2003 4/21/2004 8/23/2004 4/26/2004 8/23/2004 5/6/2005 6/6/2005 9/21/2005	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.40	747.14 746.83 745.99 746.87 747.05 746.80 746.57 746.56 746.46 745.87	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/22/2002 11/20/2003 2/17/2003 3/19/2003 4/23/2003 9/24/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 8/23/2005 6/25/2005 9/24/2005 5/21/2005 5/21/2005	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10	747.14 746.83 745.99 746.87 747.05 746.80 746.56 746.56 746.66 745.87	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/75/2002 11/75/2002 11/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 12/22/2003 12/22/2003 12/22/2004 6/28/2004 8/23/2004 12/14/2004 8/23/2004 12/14/2004 12/14/2004 12/14/2005 9/21/2005 9/21/2005	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30	747.14 746.83 745.99 746.87 747.05 746.57 746.56 746.46 745.87 745.87 746.93 746.13 747.64 747.07 746.98 746.67 745.82 746.70 746.70 746.82 746.70 746.83	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/7/2002 11/22/2002 1/20/2002 1/20/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/23/2004 12/14/2005 5/6/2005 5/14/2005 12/12/2005	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30 4.14	747.14 746.83 745.99 746.87 747.05 746.80 746.57 746.56 746.46 745.87	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/75/2002 11/75/2002 11/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 12/22/2003 12/22/2003 12/22/2004 6/28/2004 8/23/2004 12/14/2004 8/23/2004 12/14/2004 12/14/2004 12/14/2005 9/21/2005 9/21/2005	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.00 4.15 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30	747.14 746.83 745.99 746.87 747.05 746.57 746.56 746.46 745.87 745.87 746.93 746.13 747.64 747.07 746.98 746.67 745.82 746.70 746.70 746.82 746.70 746.83	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/22/2002 11/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2004 4/21/2004 6/28/2004 12/14/2004 12/14/2004 12/14/2004 12/14/2004 12/14/2005 9/21/2005 9/21/2005 10/11/2005 12/12/2006 3/7/2006	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30 4.14 2.93	747.14 746.83 745.99 746.87 747.05 746.50 746.56 746.66 745.87 745.72 746.54 747.28 746.93 746.75 746.93 746.67 747.07 746.98 746.67 747.07 746.98 746.79 746.59 746.79 746.59	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/75/2002 11/75/2002 11/75/2002 11/22/2002 21/20/2003 2/17/2003 3/19/2003 4/23/2003 5/25/2003 9/24/2003 4/23/2004 12/14/2004 6/28/2004 12/14/2004 8/23/2005 9/21/2005 3/7/2006 0/19/2006 9/5/2006 12/1/2006 9/5/2006 9/5/2006 12/1/2006 9/5/2006	3.24 3.88 3.00 2.82 3.07 3.30 3.31 3.41 4.00 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30 4.14 2.93 3.14 3.15 3.82	747.14 746.83 745.99 746.87 747.05 746.50 746.56 746.46 745.87 745.52 746.54 747.28 746.93 746.13 747.64 747.07 746.98 746.67 745.82 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79 746.79	
		750.15		10	746.80	736.80	11/13/2001 3/7/2002 9/16/2002 10/24/2002 11/7/2002 11/7/2002 11/7/2003 2/17/2003 2/17/2003 2/17/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 8/23/2004 12/14/2004 12/14/2004 12/14/2005 10/11/2005 12/12/2006 9/5/2006 9/5/2006	3.24 3.88 3.00 2.82 3.07 3.30 3.31 4.40 4.16 3.33 2.59 2.94 3.12 3.57 3.74 2.23 2.80 2.89 3.20 4.05 2.87 3.19 3.10 3.30 4.14 2.93 3.14 2.93 3.14 3.15	747.14 746.83 745.99 746.87 747.05 746.80 746.56 746.56 745.87	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ^B	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ^a	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Field Comments
P-4	Historical g 749.84	750.17	elevation data p				3/7/2002	4.22	745.85	
	749.64	/50.1/	28.5	5	726.33	721.33	9/16/2002 10/24/2002	3.14 3.05	746.70	
							11/7/2002	3.62	746.79 746.22	
							11/15/2002	3.90	745.94	
							11/22/2002	3.93	745.91	
							12/20/2002	4.05	745.79	
							1/20/2003	4.61	745.23	
							2/17/2003	-		
							3/19/2003	4.65	745.19	
							4/23/2003	3.61	746.23	
							5/14/2003 6/25/2003	2.93	746.91	
							9/24/2003	3.29 3.42	746.55 746.42	
	5 (1)						12/22/2003	2.90	746.94	No. 1
							4/21/2004	3.71	746.13	
							6/28/2004	2.20	747.64	
							7/26/2004	3.03	746.81	
							8/23/2004	3.30	746.54	
							12/14/2004	3.34	746.50	
!*!	749.80	750.11	28.50	5	726.30	721.30	3/8/2005	4.09	745.75	
	743.00	750.11	20.50	5	720.00	721.30	6/8/2005 9/21/2005	3.93	745.87	
							9/5/2006	3.48 Proposed to be A	746.32 Abandoned	
MW-101R	752.89	753.04	14.1	10	748.79	738.79	9/16/2002	6.00	746.89	
							10/24/2002	2.92	749.97	
							11/7/2002	6.24	746.65	•
							11/15/2002	6.45	746.44	
							11/22/2002	6.54	746.35	
							12/20/2002	7.19	745.70	
							1/20/2003	7.55	745.34	
							2/17/2003 3/19/2003	7.86	745.03	Cool Too Share
							4/23/2003	7.60 6.45	745.29 746.44	Coal Tar , Sheen
							5/14/2003	5.75	747.14	
	752.75	753.04	14.1	10	748.79	738.79	6/25/2003	5.97	746.78	
							9/24/2003	6.15	746.60	black, odor, sheen
							12/22/2003	6.37	746.38	
							4/21/2004	6.72	746.03	
							6/28/2004	5.09	747.66	
							7/26/2004	5.80	746.95	
							8/23/2004	5.98	746.77	l
							12/14/2004	6.10	740.00	elevation based on STS June 2005 survey due to park
							3/8/2005	6.10	746.63	redevelopment unable to locate, during park redevelopment activities
******************	752.73	752.97	14.1	10	748.80	738.80	6/8/2005	5.95	746.78	annual to 10000, coming part to detail printing and the second
							9/21/2005	6.23	746.50	
							10/11/2005	6.20	746.53	
							12/12/2005	6.49	746.24	
							3/7/2006	7.20	745.53	
							6/19/2006	5.96	746.77	<u>L</u>
							9/5/2006 12/1/2006	6.41	746.32	Tar present
							3/26/2007	6.23 6.62	746.50 746.11	
							6/26/2007	6.09	746.64	
							9/10/2007	5.85	746.88	
							11/30/2007	6.84	745.89	
MW-102	Historical gr		elevation data p				3/7/2002	7.01	746.81	
	752.69	753.31	14.4	10	748.33	738.33	9/16/2002	5.95	746.74	
							11/15/2002	7.90	744.79	
							11/22/2002	8.29	744.40	
							12/20/2002 1/20/2003	8.23	744.46	
							2/17/2003	-		*
							3/19/2003	8,51	744.18	Sheen
							4/23/2003	6.51	746.18	
							5/14/2003	6.16	746.53	
							6/25/2003	6.35	746.34	
							9/24/2003	6.23	746.46	gray, odor
							12/22/2003			Outer casing frozen
							4/21/2004	6.31	746.38	
							6/28/2004	0.50	752.19	
							7/26/2004 8/23/2004	5.89	746.80	
							0/23/2UU4	6.34	746.35	
							12/14/2004	8.69		elevation may have changed due to park redevelopment
							3/8/2005		i	unable to locate, during park redevelopment activities
	755.36	755.49	17.1	10	748.30	738.30	6/8/2005	8.41	746.95	
							9/21/2005	8.65	746.71	
							10/11/2005	8.52	746.84	
							12/12/2005	8.92	746.44	
									l	
							3/7/2006		745.00	unable to locate, well is most likely under construction debris
							6/19/2006 9/5/2006	8.46	746.90	
							9/5/2006 12/1/2006	8.73 8.66	746.63	
							3/26/2007	9.38	746.70 745.98	
							6/26/2007	9.38 8.47	745.98	
							9/10/2007	8.35	747.01	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ⁸	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ⁸	Base of Screen Elevation (feet) ⁹	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ⁸	Field Comments
P-106	Historical g	roundwater	elevation date p	provided in p	orevious repor	nts	3/7/2002	8.76	744.45	
	752.29	752.82	56.2	5	701.13	696.13	9/16/2002	6.75	745.54	The state of the s
				**			11/15/2002	6.80	745.49	
							11/22/2002	6.87	745.42	
							12/20/2002 1/20/2003	7.00 7.61	745.29 744.68	
							2/17/2003	7.60	744.69	•
							3/19/2003			Unable to locate due to snow
							4/23/2003	6.46	745.83	
							5/14/2003	5.78	746.51	
							6/25/2003	6.13	746.16	
							9/24/2003 12/22/2003	6.30 6.57	745.99 745.72	
							4/21/2004	5.78	746.51	
							6/28/2004	4.88	747,41	S. 1
							7/26/2004	5.07	747.22	
							8/23/2004	5.15	747.14	
							12/14/2004 3/8/2005	10.70	_	elevation may have changed due to park redevelopment unable to locate, during park redevelopment activities
	756.80	757.04	60.70	5	701.10	696.10	6/8/2005	10.72	746.08	unable to locate, during park recoverophies it activities
				-			9/21/2005	10.96	745.84	
							9/5/2006	10.73	746.07	
							3/26/2007	11.55	745.25	
							6/26/2007 9/10/2007	10.76	746.04	1
							11/30/2007	10.64 11.33	746.16 745.47	
MW-103	Historical c	roundwater	elevation data	provided in	previous repo	rts	3/7/2002	6.51	746.50	
***************************************	749.77	750.73	12.4	10	747.36	737.36	9/16/2002	3.00	746.77	
							10/24/2002	5.00	744.77	1
							11/7/2002	4.26	745.51	
							11/15/2002 11/22/2002	4.20 4.28	745.57 745.49	
							12/20/2002	4.37	745.49	
							1/20/2003			
							2/17/2003			
							3/19/2003			Unable to locate due to snow
							4/23/2003 5/14/2003	3.25 2.72	746.52 747.05	
							6/25/2003	3.25	746.52	
							9/24/2003	3.57	746.20	
							12/22/2003	3.34	746.43	i
							4/21/2004	3.94	745.83	j
							6/28/2004	1.99	747.78	
							7/26/2004	2.62	747.15	
							8/23/2004 12/14/2004	3.40 6.90	746.37	elevation may have changed due to park redevelopment
							3/8/2005	7.93		elevation may have changed due to park redevelopment
	755.21	755.59	17.80	10	747.40	737.40	6/8/2005		-	unaccessible
							9/21/2005	8.54	746.67	
							10/11/2005 12/12/2005	8.56 8.85	746.65 746.36	
							3/7/2006	9.75	745.46	
							6/19/2006	8.44	746.77	
							9/5/2006	8.76	746.45	
							12/1/2006	8.37	746.84	
							3/26/2007 6/26/2007	8.44	746.77	
							9/10/2007	8.56 8.19	746.65 747.02	
							11/30/2007	9.45	745.76	
W-104			elevation data				3/7/2002	6.83	747.58	
	751.38	751.62	12.4	10	748.94	738.94	9/16/2002	4.64	746.74	
							11/7/2002 11/15/2002	5.25 5.55	746.13	
							11/15/2002	5.62	745.83 745.76	
							12/20/2002	5.78	745.60	
							1/20/2003	5.92	745.46	
							2/17/2003	6.23	745.15	
							3/19/2003	6.48	744.90	i
							4/23/2003 5/14/2003	5.00 4.20	746.38 747.18	
							6/25/2003	4.72	747.18 746.66	
							9/24/2003	4.80	746.58	
							12/22/2003	4.42	746.96	
							4/21/2004	4.25	747.13	
							6/28/2004 7/26/2004	4.47 5.71	746.91	
							7/26/2004 8/23/2004	5.71 6.90	745.67 744.48	
							12/14/2004	4.58		elevation may have changed due to park redevelopment
							3/8/2005	4.87		elevation may have changed due to park redevelopment
	751.29	751.60	12.4	10	748.90	738.90	6/8/2005	4.29	747.00	
***************************************							9/21/2005	4.64	746.65	
ramanan oman							10/11/2005	4.51	746.78	
·amanananana							12/12/2005	4.52 5.02	746.77 746.27	
·«(111/1/1/10)										
***************************************							3/7/2006 6/19/2006			
, and 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					•		6/19/2006 9/5/2006	4.19 4.93	747.10 746.36	
amonomana.							6/19/2006 9/5/2006 12/1/2006	4.19	747.10	
ramonomenta e					•		6/19/2006 9/5/2006 12/1/2006 3/26/2007	4.19 4.93 4.45 4.03	747,10 746,36 746,84 747,26	
***************************************					•		6/19/2006 9/5/2006 12/1/2006	4.19 4.93 4.45	747.10 746.36 746.84	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

P-104 Historical g 751.46 751.61 751.61 752.22	751.89 751.80	49.80 49.7	provided in 5	706.80	701.78 701.80	3/7/2002 9/16/2002 11/7/2002 11/7/2002 11/7/2002 11/22/2002 12/20/2003 2/17/2003 3/19/2003 4/23/2003 4/23/2003 4/21/2004 6/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 12/14/2004 6/28/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2007 6/26/2007 6/26/2007 6/26/2007 9/16/2002 11/7/2002 11/7/2002 11/7/2002	7.34 7.22 7.36 7.65 7.67 7.87 8.47 - 8.60 7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.83 7.73 5.24 5.65	744.05 744.24 744.10 743.81 743.79 742.89 742.86 744.31 745.40 744.93 745.71 748.11 747.38 746.72	some surface water went in well elevation may have changed due to park redevelopment elevation may have changed due to park redevelopment
751.61 MW-108R 752.35	751.80	49.80	5	706.80	701.80	11/7/2002 11/15/2002 11/22/2002 11/22/2003 2/17/2003 3/19/2003 3/19/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 12/22/2003 12/22/2003 12/22/2003 12/23/2004 12/14/2004 3/8/2005 6/8/2005 6/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2007 9/16/2002 10/24/2002 10/24/2002	7.36 7.65 7.67 7.87 8.47 	744.61 744.72 744.83 742.86 742.86 744.31 745.40 744.93 744.18 744.99 745.71 748.11 747.38 746.72	elevation may have changed due to park redevelopment
MW-108R 752.35	5 752.53			:		11/15/2002 11/22/2002 11/20/2002 11/20/2002 1/20/2003 3/19/2003 4/23/2003 4/23/2003 4/21/2003 4/21/2003 4/21/2003 4/21/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 11/3/2007 9/16/2002 10/24/2002 10/24/2002	7.65 7.67 7.87 7.87 8.47 8.60 7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.40 7.41 7.68 6.89 6.83 6.89 6.83 7.73 5.24	743.81 743.79 743.59 742.86 744.31 745.40 744.93 744.18 744.99 745.71 748.11 747.38 746.72	elevation may have changed due to park redevelopment
MW-108R 752.35	5 752.53			:		11/15/2002 11/22/2002 11/20/2002 11/20/2002 1/20/2003 3/19/2003 4/23/2003 4/23/2003 4/21/2003 4/21/2003 4/21/2003 4/21/2004 8/23/2004 8/23/2004 8/23/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 11/3/2007 9/16/2002 10/24/2002 10/24/2002	7.65 7.87 7.87 7.87 8.47 8.60 7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.40 7.41 7.68 6.89 6.83 6.89 6.83 7.73 5.24	743.81 743.79 743.59 742.86 744.31 745.40 744.93 744.18 744.99 745.71 748.11 747.38 746.72	elevation may have changed due to park redevelopment
MW-108R 752.35	5 752.53			:		11/22/2002 1/20/2002 1/20/2003 2/17/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005	7.67 7.87 8.47 - 8.60 7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.83 6.83 6.83 7.73 5.24	744.59 742.86 744.81 744.83 744.93 744.93 745.71 748.11 747.38 746.72	elevation may have changed due to park redevelopment
MW-108R 752.35	5 752.53			:		12/20/2002 1/20/2003 2/17/2003 3/19/2003 3/19/2003 5/14/2003 6/25/2003 9/24/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/20/2007 9/10/2007 9/10/2007 9/16/2002 10/24/2002 10/24/2002	7.87 8.47 	744.61 744.62 744.63 744.93 744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.61 744.61 744.61 744.61 744.61 744.72 744.72 744.72 744.78	elevation may have changed due to park redevelopment
MW-108R 752.35	5 752.53			:		1/20/2003 2/17/2003 2/17/2003 3/19/2003 4/23/2003 5/25/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002	8.47 	742.99	elevation may have changed due to park redevelopment
WW-108R 752.35	5 752.53			:		2/17/2003 3/19/2003 4/23/2003 5/14/2003 6/25/2003 9/24/2003 12/22/2003 12/22/2003 1/21/2004 6/28/2004 7/26/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2007 9/16/2002 10/24/2002 10/24/2002	-8.60 7.15 8.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.61 744.72 744.72 744.72 744.72 744.61 744.61 744.61 744.61 744.72 744.72 744.72 744.73 743.88	elevation may have changed due to park redevelopment
WW-108R 752.35	5 752.53			:		3/19/2003 4/23/2003 4/23/2003 6/25/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005	7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.31 745.40 744.93 744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.73 743.88	elevation may have changed due to park redevelopment
WW-109R 752.35	5 752.53			:		4/23/2003 5/14/2003 5/25/2003 9/24/2003 12/22/2003 12/22/2003 12/12/2004 6/28/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 9/2007 9/10/2007 9/10/2007 9/16/2002 10/24/2002	7.15 6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.31 745.40 744.93 744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.73 743.88	elevation may have changed due to park redevelopment
WW-109R 752.35	5 752.53			:		5/14/2003 6/25/2003 9/24/2003 12/22/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 12/14/2004 3/8/2005 6/2/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 9/21/2005 11/3/2007	6.06 6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.93 744.93 744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88	elevation may have changed due to park redevelopment
AW-108R 752.35	5 752.53			:		6/25/2003 9/24/2003 9/24/2003 4/21/2004 6/28/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 11/30/2007 9/16/2002 11/7/2002	6.53 7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.93 744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.61 744.20 743.93 744.72 744.78 743.88	elevation may have changed due to park redevelopment
AW-108R 752.35	5 752.53			:		9/24/2003 12/22/2003 12/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 12/14/2005 9/21/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 9/10/2007 9/16/2002 10/24/2002 11/7/2002	7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88	elevation may have changed due to park redevelopment
AW-108R 752.35	5 752.53			:		9/24/2003 12/22/2003 12/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 12/14/2005 9/21/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 9/10/2007 9/16/2002 10/24/2002 11/7/2002	7.28 6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.18 744.99 745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88	elevation may have changed due to park redevelopment
NW-108R 752.35	5 752.53			:		12/22/2003 4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2005 9/21/2005 1/2/2007 9/10/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002	6.47 5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.61 748.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88	elevation may have changed due to park redevelopment
NW-108R 752.35	5 752.53			:		4/21/2004 6/28/2004 7/26/2004 8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 11/30/2007 9/16/2002 10/4/2002	5.75 3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	745.71 748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88	elevation may have changed due to park redevelopment
IW-108R 752.35	5 752.53			:		6/28/2004 7/26/2004 8/23/2004 12/14/2004 12/14/2005 6/26/2005 9/21/2005 9/21/2005 9/26/2007 9/10/2007 9/10/2007 9/16/2002 10/24/2002 11/7/2002	3.35 4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	748.11 747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.73 743.88 747.11	elevation may have changed due to park redevelopment
IW-108R 752.35	5 752.53			:		7/26/2004 8/23/2004 12/14/2004 3/8/2005 9/21/2005 9/21/2005 9/26/2007 6/26/2007 9/10/2007 11/30/2007 11/2/002 10/24/2002	4.08 4.74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	747.38 746.72 744.61 744.20 743.93 744.72 744.72 744.78 743.88 747.11	elevation may have changed due to park redevelopment
NW-108R 752.35	5 752.53			:		8/23/2004 12/14/2004 3/8/2005 6/8/2005 9/21/2006 3/26/2007 6/26/2007 9/10/2007 11/30/2002 10/24/2002 11/7/2002	4,74 6.78 7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.61 744.61 744.20 743.93 744.72 744.72 744.78 743.88 747.11	elevation may have changed due to park redevelopment
IW-108R 752.35	5 752.53			:		12/14/2004 3/8/2005 6/8/2005 9/21/2005 9/21/2006 3/26/2007 6/26/2007 11/30/2007 11/30/2002 10/24/2002 10/24/2002	7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.61 744.20 743.93 744.72 744.72 744.78 743.88 747.11	
IW-108R 752.35	5 752.53			:		3/8/2005 6/8/2005 9/21/2005 9/21/2006 3/26/2007 9/10/2007 11/30/2007 10/24/2002 10/24/2002	7.45 7.00 7.41 7.68 6.89 6.89 6.83 7.73 5.24	744.20 743.93 744.72 744.72 744.78 743.88 747.11	
W-109R 752.35	5 752.53			:		6/8/2005 9/21/2005 9/5/2006 3/26/2007 6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	7.00 7.41 7.68 6.89 6.89 6.83 7.73	744.20 743.93 744.72 744.72 744.78 743.88 747.11	elevation may have changed due to park redevelopment
NW-108R 752.35	5 752.53			:		9/21/2005 9/5/2006 3/26/2007 6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	7.41 7.68 6.89 6.89 6.83 7.73	744.20 743.93 744.72 744.72 744.78 743.88 747.11	
752.22		14.7	10	: , 747.65	737.65	9/5/2006 3/26/2007 6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	7.68 6.89 6.89 6.83 7.73 5.24	743.93 744.72 744.72 744.78 743.88 747.11	
752.22		14.7	10	747.65	737.65	9/5/2006 3/26/2007 6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	7.68 6.89 6.89 6.83 7.73 5.24	743.93 744.72 744.72 744.78 743.88 747.11	
752.22		14.7	10	747.65	737.65	3/26/2007 6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	6.89 6.89 6.83 7.73 5.24	744.72 744.72 744.78 743.88 747.11	
752.22		14.7	10	: , 747.65	737.65	6/26/2007 9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	6.89 6.83 7.73 5.24	744.72 744.78 743.88 747.11	
752.22		14.7	10	: , 747.65	737.65	9/10/2007 11/30/2007 9/16/2002 10/24/2002 11/7/2002	6.83 7.73 5.24	744.78 743.88 747.11	
752.22		14.7	10	747.65	737.65	11/30/2007 9/16/2002 10/24/2002 11/7/2002	7.73 5.24	743.88 747.11	
752.22		14.7	10	, 747.65	737.65	9/16/2002 10/24/2002 11/7/2002	5.24	747.11	•
752.22		14.7	10	, /47.65	/37.65	10/24/2002 11/7/2002			i
	2 752.53					11/7/2002	5.65	7AE 70	i
	2 752.53								
	2 752.53					44/4-1-4-	6.31	746.04	
	2 752.53					11/15/2002	6.15	746.20	
	2 752.53					11/22/2002	6.25	746.10	
	2 752.53					12/20/2002	6.56	745.79	
	2 752.53					1/20/2003	7.01	745.34	
	2 752.53					2/17/2003	••		1
	2 752.53						7.32		
	2 752.53					3/19/2003		745.03	
	752.53					4/23/2003	6.18	746.17	
	2 752.53					5/14/2003	5.59	746.76	
751.78		14.5	10	747.70	737.70	6/25/2003	5.61	746.61	
751.78						9/24/2003	5.76	746.46	sheen
751.78						12/22/2003	5.50	746.72	
751.78						4/21/2004	5.95	746.27	t
751.78						6/28/2004	3.44	748.78	
751.78						7/26/2004	4.33	747.89	
751.78						8/23/2004	4.50	747.00	located beneath soil pile
751.78						12/14/2004	5.10	-	elevation may have changed due to park redevelopment
751.78						3/8/2005	5.10		unable to locate, during park redevelopment activities
/51./6	751.95		10	747.70	737.70			746.67	Tunable to locate, during park redevelopment activities
	3 731.33	14.1	10	747.70	131.10	6/8/2005	5.11		
						9/21/2005	5.18	746.60	
						10/11/2005	5.28	746.50	
						12/12/2005	5.49	746.29	1
						3/7/2006	6.00	745.78	1
						6/19/2006	5.06	746.72	1
						9/5/2006	nn	nm	
						12/1/2006	5.35	746.43	1
						3/26/2007	5.74	746.04	1
									1
						6/26/2007	5.21	746.57	1
						9/10/2007	5.02	746.76	
100P						11/30/2007	5.80	745.98	
W-109R 752.77	7 752.95	14.5	10	748.27	738.27	9/16/2002	6.03	746.74	
						10/24/2002	5.98	746.79	1
						11/7/2002	6.93	745.84	
•						11/15/2002	7.25	745.52	1
						11/22/2002	7.32	745.45	1
						12/20/2002	7.44	745.33	1
						1/20/2003	7.89	744.88	1
						2/17/2003	8.02	744.75	1
						3/19/2003	7.88	744.75 744.89	Shoop
									Sheen
						4/23/2003	6.59	746.18	1
						5/14/2003	6.05	746.72	
752.65	·		10	748.27	738.27	6/25/2003	6.33	746.32	L
	5 752.95	14.5				9/24/2003	6.37	746.28	Black, sheen, odor
	5 752.95	14.5				12/22/2003	6.51	746.14	
	5 752.95	14.5				4/21/2004	6.58	746.07	1
	5 752.95	14.5				6/28/2004	4.96	747.69	1
	5 752.95	14.5				7/26/2004	5.99	746.66	
	5 752.95	14.5				8/23/2004		, ,,,,,,,	1
	5 752.95	14.5				のとごとしいな	£ 20		1
	5 752.95	14.5					6.39	746.26	
	5 752.95	14.5				12/14/2004	13.15		elevation may have changed due to park redevelopment
			***************************************	 		12/14/2004 3/8/2005	13.15 14.64	746.26	elevation may have changed due to park redevelopment elevation may have changed due to park redevelopment
759.07		14.5	10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005	13.15	746.26 746.50	
759.07			10	748.30	738.30	12/14/2004 3/8/2005	13.15 14.64	746.26 746.50	
759.07			10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005	13.15 14.64 12.57 12.47	746.26 746.50 746.60	
759.07			10	748,30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005	13.15 14.64 12.57 12.47 12.99	746.26 746.50 746.60 746.08	
759.07			10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006	13.15 14.64 12.57 12.47 12.99 13.78	746.26 746.50 746.60 746.08 745.29	
759.07			10	748,30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006 6/19/2006	13.15 14.64 12.57 12.47 12.99 13.78 12.23	746.26 746.50 746.60 746.08 745.29 746.84	
759.07			10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006 6/19/2006 9/5/2006	13.15 14.64 12.57 12.47 12.99 13.78 12.23 12.84	746.26 746.50 746.60 746.08 745.29 746.84 746.23	
759.07			10	748,30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006 6/19/2006 9/5/2006 12/1/2006	13.15 14.64 12.57 12.47 12.99 13.78 12.23 12.84 12.71	746.26 746.50 746.60 746.08 745.29 746.84 746.23 746.36	
759.07			10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006 6/19/2006 9/5/2006 12/1/2006 3/26/2007	13.15 14.64 12.57 12.47 12.99 13.78 12.23 12.84 12.71 13.19	746.26 746.50 746.60 746.08 745.29 746.84 746.23 746.36 745.88	
759.07			10	748.30	738.30	12/14/2004 3/8/2005 6/8/2005 9/21/2005 12/12/2005 3/7/2006 6/19/2006 9/5/2006 12/1/2006	13.15 14.64 12.57 12.47 12.99 13.78 12.23 12.84 12.71	746.26 746.50 746.60 746.08 745.29 746.84 746.23 746.36	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B	Ground Elevation (feet) ^B	Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ^B	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ⁸	Field Comments
P-107R	752.66	752.88	48.1	5	709.60	704.60	9/16/2002	6.01	746.65	
							10/24/2002	5.90	746.76	
							11/7/2002	6.52	746.14	•
							11/15/2002	6.80	745.86	
							11/22/2002	6.82	745.84	
							12/20/2002	6.99	745.67	
							1/20/2003 2/17/2003	7.50 7.64	745.16 745.02	
							3/19/2003	7.52	745.14	
				•			4/23/2003	6.44	746.22	
							5/14/2003	5.79	746.87	
							6/25/2003	6.17	746.49	
							9/24/2003	6.27	746.39	
							12/22/2003	6.44	746.22	
							4/21/2004	6.57	746.09	· ·
							6/28/2004	5.00	747.66	
							7/26/2004	5.91	746.75	
							8/23/2004	6.18	746.48	
							12/14/2004	12.76		elevation may have changed due to park redevelopment
	758.83	759.33	54.2	<u>-</u>	709.60	704.60	3/8/2005	13.62	746.11	elevation may have changed due to park redevelopment
	/30.03	155.55	54.6	5	103.00	704.00	6/8/2005 9/21/2005	12.72 12.69	746.11 746.14	
							9/5/2006	12.59	746.14 746.24	
							3/26/2007	12.96	745.87	
							6/26/2007	12.35	746.48	
							9/10/2007	12.19	746.64	
							11/30/2007	13.08	745.75	<u> </u>
MW-110	749.53	749.86	15.0	10	744.53	734.53	11/13/2001	2.94	746.59	,
							3/7/2002	3.38	746.15	1
							9/16/2002	2.68	746.85	
							10/24/2002	2.49	747.04	1
							11/7/2002	2.72	746.81	
							11/15/2002	3.00	746.53	
							12/20/2002	3.05	746.48	
							1/20/2003 2/17/2003	4,71 	744.82	
							3/19/2003	3.86	745.67	
							4/23/2003	2.72	746.81	
							5/14/2003	2.20	747.33	
							6/25/2003	2.62	746.91	
							9/24/2003	2.73	746.80	
							12/22/2003	2.99	746.54	
							4/21/2004	3.30	746.23	
							6/28/2004	1.91	747.62	•
							7/26/2004	2.51	747.02	1
							8/23/2004	2.68	746.85	1
							12/14/2004	2.62	746.91	1
							3/8/2005	3.60	745.93	
							6/8/2005 9/21/2005	2.70 2.93	746.83 746.60	
							10/11/2005	2.75	746.78	
							12/12/2005	3.26	746.27	
							3/7/2006	3.80	745.73	
							6/19/2006	2.66	746.87	
							9/5/2006	3.33	746.20	
							12/1/2006	2.64	746.89	1
							3/26/2007	3.05	746.48	
							6/26/2007	2.70	746.83	
							9/10/2007	2.56	746.97	
					2,		11/30/2007	3.36	746.17	
P-108	749.41	749.78	43.5	5	710.91	705.91	11/13/2001	3.12	746.29	
							3/7/2002	3.52	745.89	
	•						9/16/2002	2.70	746.71	
							10/24/2002 11/7/2002	2.64 3.30	746.77 746.11	
							11/15/2002	3.50	745.11	
							12/20/2002	3.72	745.69	
							1/20/2003	4.25	745.09	1
							2/17/2003			1
							3/19/2003	4.23	745.18	1
							4/23/2003	3.21	746.20	1
							5/14/2003	2.56	746.85	
							6/25/2003	2.90	746.51	1
							9/24/2003	3.19	746.22	
							12/22/2003	3.11	746.30	
							4/21/2004	3.40	746.01	
							6/28/2004	1.75	747.66	
							7/26/2004	2.66	746.75	
							8/23/2004	2.91	746.50	
							12/14/2004	2.87	746.54	
							3/8/2005	3.70	745.71	,
							6/8/2005	2.86	746.55	
							9/21/2005	3.07	746.34	
							9/5/2006 3/26/2007	3.18 3.54	746.23 745.87	
							6/26/2007	2.89	745.87 746.52	
							9/10/2007	2.89	746.65	

Table 1 - Groundwater Elevation Summary Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

Well	TOC Elevation (feet) ^B		Well Depth from TOC (feet)	Well Screen Length (feet)	Top of Screen Elevation (feet) ^B	Base of Screen Elevation (feet) ^B	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ⁸	Field Comments
P-109	751.95	752.27	88.0	5	669.27	664.27	4/21/2004	29.40	722.55	
	701.00	,02.2,	00.0	•	000.47	001.41	6/28/2004	6.24	745.71	•
							7/26/2004	7.45	744.50	•
	***********						8/23/2004	9.21	742.74	
	750.85	751.11	86.6	5	669.27	664.27	12/14/2004	8.65	742.20	Elevation changed; surveyed on 1/18/05
	750.81	751.06	86.5	5	669.27	664.27	3/8/2005	8.83 7.85	742.02	
	/50.61	751.06	60.5	9	009.27	004.27	6/8/2005 9/21/2005	10.01	742.96 740.80	
							9/5/2006	9.05	741.76	
							3/26/2007	8.21	742.60	
							6/26/2007	7.18	743.63	
							9/10/2007	8.37	742,44	
D 440	700.04	250.50	07.0		200.50	000 50	11/30/2007	9.76	741.05	
P-110	750.31	750.59	67.0	5.00 .	688.59	683.59	4/21/2004 6/28/2004	7.36 3.83	742.95 746.48	
							7/26/2004	3.95	746.36	
				:			8/23/2004	4.41	745.90	
							12/14/2004	5.75	744.56	
							3/8/2005	7.77	742.54	1
							6/8/2005	6.74	743.57	
							9/21/2005	7.19	743.12	
	Č.						9/5/2006 3/26/2007	7.25 6.39	743.06 743.92	1
							6/26/2007	5.86	744.45	i e
							9/10/2007	6.54	743.77	
			•				11/30/2007	7.24	743.07	
P-111	751.96	752.42	72.0	5.00	685.42	680.42	8/23/2004	9.24	742.72	·
•							12/14/2004	9.35	742.61	·
			70.00				3/8/2005 6/8/2005	9.61	742.35	
			70.00				9/21/2005	9.26 9.97	742.70 741.99	
							9/5/2006	10.36	741.60	
							3/26/2007	8.29	743.67	
							6/26/2007	8.80	743.16	
							9/10/2007	8.56	743.40	
							11/30/2007	9.78	742.18	
RW-101	751.66	752.09	17.0	15	749.66	734.66	11/19/1998 12/1/1998	A 4.39	A 747,27	sheen and emulsified tar
	751.71	752.20	17.0	15	749.71	734.71	5/30/2001	3.36	748.35	
							8/13/2001	3.85	747.86	Tar present
							9/27/2001	3.00	748.71	i '
							11/13/2001	3.98	747.73	
							3/7/2002	4.45	747.26	1
		Ground	entry et 1915	51 -4	2.11.11.11.11.11.11	11.	Well Abandon	eo .		
ti ind 8			6.	1.5		a de la composición del composición de la composición de la composición de la composición del composición de la composic	Monitoring	Depth to Water	River Elevation	Field Comments
Divine			Programme and the			25 2 5 6				
River Benchmark		Elevation			114 0404 1410 440	and the first terms of the	Date			
River Benchmark BM-3	na		ı ∩a		<u> 104 (498) 15 (498)</u>	<u>stavárení</u>	Date 2/27/2001	(feet) 4.37	(feet) ^B 745.59	River Elevation
Benchmark		Elevation (feet) ⁸			Circonses	<u> sub-rûmbrii</u>	2/27/2001 5/30/2001	(feet) 4.37 2.61	745.59 747.35	River Elevation
Benchmark BM-3		Elevation (feet) ⁸			<u> Diuskus Bras</u>	<u>strikeri.</u>	2/27/2001 5/30/2001 8/13/2001	(feet) 4.37 2.61 3.14	745.59 747.35 746.82	River Elevation
Benchmark BM-3		Elevation (feet) ⁸			Citedan Sans	<u>ab rúmmi</u>	2/27/2001 5/30/2001 8/13/2001 9/27/2001	4.37 2.61 3.14 3.18	745.59 747.35 746.82 746.78	River Elevation
Benchmark BM-3		Elevation (feet) ⁸			<u> </u>	<u>ab Kürtkii.</u>	2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001	4.37 2.61 3.14 3.18 3.03	745.59 747.35 746.82 746.78 746.93	River Elevation
Benchmark BM-3		Elevation (feet) ⁸ 749.96			- C1	<u> </u>	2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001	4.37 2.61 3.14 3.18 3.03 3.56	745.59 747.35 746.82 746.78 746.93 746.40	River Elevation
Benchmark BM-3		Elevation (feet) ⁸				<u> </u>	2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001	4.37 2.61 3.14 3.18 3.03	745.59 747.35 746.82 746.78 746.93	River Elevation
Benchmark BM-3		Elevation (feet) ⁸ 749.96					2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19	745.59 747.35 746.82 746.78 746.93 746.40	River Elevation
Benchmark BM-3 PK nail	na	Elevation (feet) ⁸ 749.96	na				2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 2/17/2003	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice	(feet) ⁸ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm	
Benchmark BM-3		restlement (feet) ⁸ 749.96 ns	na				2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice	(feet) ⁸ 745.59 747.35 746.82 746.78 746.93 746.40 ns	River Elevation
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na				2/27/2001 5/80/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00	745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm	
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na				2/27/2001 5/80/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 2/17/2003 4/23/2003 5/14/2003 12/22/2003	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86	(feet) ⁸ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74	River Elevation
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na				2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 2/17/2003 4/23/2003 5/14/2003 9/24/2003 4/21/2004	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14	(feet) ⁸ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74	River Elevation
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na		State the state of		2/27/2001 5/30/2001 9/37/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003 12/22/2003 12/22/2003 4/23/2004	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36	River Elevation
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na		Statement	<u> </u>	2/27/2001 5/30/2001 9/31/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 12/22/2003 4/21/2004 4/23/2004 4/23/2004 4/23/2004	(feet) 4.37 2.61 3.14 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 nm 746.50 749.34 743.49 741.74 747.36 747.20 746.97	River Elevation
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na			<u> </u>	2/27/2001 5/30/2001 9/37/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003 12/22/2003 12/22/2003 4/23/2004	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36	River Elevation from wooden fender from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) ⁸ 749.96 ns	na			ab det	2/27/2001 5/30/2001 5/30/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 3/8/2005 6/8/2005 9/21/2005	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36 747.20 746.97	River Elevation from wooden fender from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab Cent	2/27/2001 5/30/2001 8/33/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2003 2/17/2003 4/23/2003 5/14/2003 12/22/2003 12/22/2003 4/21/2004 4/28/2004 7/28/2004 7/28/2004 7/28/2005 9/21/2005 10/11/2005	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 62 62 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 RS nm nm 746.50 749.34 743.49 741.74 747.36 747.20 746.92 746.92 746.71 746.79	River Elevation from wooden fender from wooden fender .
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			aŭ rûmb î	2/27/2001 5/30/2001 8/3/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 9/24/2003 4/23/2004 4/23/2004 4/23/2004 3/8/2005 9/21/2005 9/21/2005 9/21/2005 10/11/2005	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36 747.20 746.97 745.85 746.92 746.71 746.79	River Elevation from wooden fender from wooden fender from wooden fender, ice
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab deti	2/27/2001 5/30/2001 5/30/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 4/23/2003 5/14/2003 4/23/2003 6/28/2004 7/26/2004 3/8/2005 9/21/2005 10/11/2005 12/12/2005 12/12/2005	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80	(feet) ⁸ 745.59 747.45.57 746.82 746.93 746.40 746.93 746.40 749.34 743.49 741.74 747.36 747.20 746.97 746.82 746.71 746.79 746.79	River Elevation from wooden fender from wooden fender from wooden fender, ice from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab deti-	2/27/2001 5/30/2001 8/3/2001 9/27/2001 10/11/2001 11/13/2001 11/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003 12/22/2003 4/21/2004 4/21/2004 4/21/2005 9/21/2005 9/21/2005 9/21/2005 10/11/2005 10/19/2006 6/19/2006	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 6e 6e 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80 2.65	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36 747.20 746.97 745.85 746.79 746.47 745.70 746.85	River Elevation from wooden fender from wooden fender from wooden fender, ice
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab Cort	2/27/2001 5/30/2001 8/3/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 9/24/2004 3/8/2004 3/8/2004 3/8/2005 9/21/2005 10/11/2005 10/11/2005 3/7/2006 9/5/2006	(feet) 4.37 2.61 3.14 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80 2.65	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 749.34 743.49 741.74 747.36 747.20 746.97 745.85 746.72	River Elevation from wooden fender from wooden fender from wooden fender, ice from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab Cort	2/27/2001 5/30/2001 8/13/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 7/26/2004 6/20/2005 6/6/2005 10/11/2005 6/19/2006 6/19/2006 9/5/2006	(feet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80 2.65 4.88 5.02	(feet) ⁹ 745.59 747.45.57 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.20 746.97 745.85 746.71 746.79 746.47 745.70 746.85 746.82 746.85	River Elevation from wooden fender from wooden fender from wooden fender, ice from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab Cott	2/27/2001 5/30/2001 8/3/2001 9/27/2001 10/11/2001 11/13/2001 12/20/2002 1/20/2003 5/14/2003 5/14/2003 9/24/2004 3/8/2004 3/8/2004 3/8/2005 9/21/2005 10/11/2005 10/11/2005 3/7/2006 9/5/2006	(feet) 4.37 2.61 3.14 3.03 3.56 5.19 ice ice 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80 2.65	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 749.34 743.49 741.74 747.36 747.20 746.97 745.85 746.72	River Elevation from wooden fender from wooden fender from wooden fender, ice from wooden fender
Benchmark BM-3 PK nail	na 749.50	restlement (feet) (feet	na			ab deti-	2/27/2001 5/30/2001 5/30/2001 9/27/2001 10/11/2001 11/13/2001 11/20/2003 2/17/2003 4/23/2003 5/14/2003 9/24/2003 12/22/2003 4/21/2004 6/28/2004 7/26/2004 6/28/2005 9/21/2005 9/21/2005 10/11/2005 6/19/2006 9/5/2006 9/5/2006 12/12/2005 9/5/2006	(teet) 4.37 2.61 3.14 3.18 3.03 3.56 5.19 6e 6e 3.00 2.26 8.11 9.86 2.14 2.30 4.63 5.75 4.68 4.89 4.81 3.03 3.80 2.65 4.88 5.02 5.66	(feet) ⁹ 745.59 747.35 746.82 746.78 746.93 746.40 ns nm nm 746.50 749.34 743.49 741.74 747.36 747.20 746.97 745.85 746.79 746.47 745.70 746.85 746.72 746.85 746.72	River Elevation from wooden fender from wooden fender from wooden fender, ice from wooden fender

(KMZ/BJK 02/98)(JTB/AAS 4/01)(JTB/SAG 11/01)(BGH/HMS 11/02)(PAH/RJC 03/03)(RJC/PAH 03/03)(HMS/LJH 06/03)(JKY 09/03 HMS 11/03)(JKL/HMS 12/24/03)(JK/YHMS 07/07/04)
(HMS/JTB 041015)(HMS/PAR 3/0/05)(HMS/MJR 10/05)(RJG/MS 07/05)(HMS/RJG 09/05)(HMS/PAR 3/07)(HMS 9/07)(RJG/KJB 12/07)

- TOC: Top of Well Casing.

 *In Depth to water is estimated from soil boring log

 -: Well not locatable/accessible

 A: Depth to water is estimated from soil boring log

 -: Well not locatable/accessible

 A: Depth to water measurement for the groundwater sampling date was not included in the Simon Hydro-Search 1994 Report

 B: Elevations relative to National Vertical Geodetic Datum.

 Notes: 1) New survey data by Roehilg Land Surveying on August 17, 2001. Elevations prior to 1999 indicated by breakline are relative to a different benchmark with a discrepancy of approximately +2 feet compared to Roehilg's 2001 benchmark.

 2) 1985 through 1994 water level data obtained from Hydro-Search, Inc., Phase II Investigation Report Wisconsin Public Service Comparation, Oshikosh, Wisconsin.

 3) Site resurveyed by Roehilg Land Surveying on September 25, 2002.

 4) MW-110 and P-108 TOC elevations surveyed by NRT on November 11, 2002.

 5) Due to construction activities, total well depths are approximate and will be evaluated following additional survey work in 2003

 6) Groundwater extraction began on October 24, 2002 after initial groundwater elevations measured

 7) OW-3R, MW-101R, MW-109R and MW 108R TOCs were cut and resurveyed on 8(25/03.

 8) P-109, P-110 and GW-6 were surveyed by R.A. Smith and Associates on May 10, 2004. GW-6 TOC was cut on 4/29/04. PVC cut 4.94 inches.

 9) Site resurveyed by STS Consultants on June 7, 2005 after park redevelopment activities completed.

Table 2. Groundwater Analytical Summary - BTEX (µg/L), Trimethylbenzenes (ug/L), and Cyanides (mg/L)

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

1	Collection		В	TEX and Trim	ethylbenzene	5			Cyanides	
<i>D</i>	Oate (Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Groundy	vater Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Act	tion Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement S	Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
GW01										
1/2	9/1992	< 10	< 10	< 10	18			0.075		
3/1	7/1992	< 10	10	< 10	< 10			0.073		
12/	/20/1993	2.2	4.3	< 1	7.8			0.056	0.032	0.018
11/	18/1998	<u>1.6</u>	2	< 0.27	3.5			0.025	0.025	< 0.034
2/2	8/2001	2.2	3.2	0.42 Q	5.1	9.4	2.7	0.018	0.01	0.053
5/3	0/2001	<u>1.8</u>	1.6	0.29 Q	1.9	2.9	0.83	0.044	0.022	0.02
8/1	3/2001	<u>1.9</u>	3.9	0.46 Q	4.7	11	2	0.077	0.0029 Q	0.017
3/8	3/2002	<u>1.5</u>	2.4	< 0.47	1.7	6.2	1.9	0.035	0.035	< 0.0022
9/1	6/2002	<u>3.4</u>	8.3	< 0.68	7.5	28	4.8	0.067	0.067	0.004 Q
3/2	20/2003	<u>1.6</u>	4.2	< 0.58	5.8 Q	11	3.1	0.064	0.064	0.0031 Q
9/2	25/2003	<u>1.8</u>	4.6	< 0.67	5.4	15	3.9	0.031 Q	0.023	0.0058 Q
4/2	1/2004	1.2	3.1	< 0.36	2.57 Q	3.6	1.2 Q			0.018
9/2	1/2005	<u>1.5</u>	2.3	< 0.36	2.9	9	2.5			< 0.0025 Q
9/5	5/2006	<u>0.83</u>	0.88 Q	< 0.36	1.4	2.5	1.1 Q			
9/1	0/2007	<u>0.7</u>	1.1 Q	< 0.36	1.5	3.5	1.1 Q			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

*	pple ID Collection Date		В	TEX and Trim	ethylbenzene	S			Cyanides	
ì	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wis	consin Groundy	water Qualit	y Standard:	(NR 140,	February 200	4)		
Preventive Ac	ction Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement	Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
GW02										
1/2	29/1992	<u>1200</u>	<u>410</u>	<u>370</u>	640			2.5		
3/	17/1992	<u>950</u>	<u>460</u>	<u>420</u>	640			3.3		
12	2/21/1993	<u>520</u>	<u>320</u>	110	300			1.9	0.21	0.72
3/	7/2002	<u>500</u>	220	7.4	165	<u> 180</u>	<u>32</u>	2.9	2.9	0.19
9/	16/2002	<u>350</u>	<u>190</u>	9.9	136	140	<u>21</u>	0.88	0.52	0.03
3/2	20/2003	<u>1100</u>	<u>340</u>	< 29	230 Q	210	<u>47</u>	1.2	1.2	0.12
9/2	25/2003	<u>560</u>	230	8.2 Q	170	<u>130</u>	<u>25</u>	0.6	0.59	0.015
4/2	22/2004	<u>380</u>	<u>190</u>	3.8	135	<u>120</u>	<u>19</u>			0.016 Q
8/2	23/2004	<u>750 Q</u>	<u>260 Q</u>	< 18	220 Q	<u>150 Q</u>	<u>24 Q</u>			0.029
GW02R										
9/	5/2006	3200	<u>980</u>	<u>1500</u>	2160	<u>350</u>	<u>130</u>			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collection		В	TEX and Trim	ethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
GW03									
1/29/1992	33	39	40	88			< 0.01		
3/12/1992	< 25	27	< 25	36			0.13		
11/18/1998	<u>840</u>	<u>270</u>	<u>270</u>	550			0.012	0.012	< 0.0034
8/13/2001	322	<u>235</u>	159	472	<u>126</u>	<u>45</u>	0.046	0.025	0.005
3/7/2002	<u>560 Q</u>	<u>280 Q</u>	<u>260 Q</u>	570 Q	<u>94 Q</u>	<u>38 Q</u>	0.04	0.04	0.0033 C
9/16/2002	<u>210</u>	<u>180</u>	84	350	94	<u>34</u>	0.16	0.03	0.008
3/20/2003	<u>17</u>	33	7.8 Q	59	32	14	0.055	0.055	0.0016 C
9/25/2003	<u>16</u>	28	6.2	54	29	9.5	0.11	0.11	0.0028 C
4/22/2004	<u>10</u>	4.6	0.5 Q	5.6 Q	4.8	1.7			< 0.0053
8/23/2004	<u>36</u>	33	7.8	57	28	10			< 0.0053
9/21/2005	<u>38</u>	30	4.9	26	22	5.8			
9/5/2006	9.9	10	2.1	8.9	7.3	2.3			
9/10/2007	<u>77</u>	37	6.8	54	26	8.6			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	ample ID Collection Date		В	TEX and Trim	ethylbenzene	S			Cyanides	
		Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	4)		
Preventive A	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcemen	t Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
GW04										
	3/16/1992	< 1	< 1	< 1	< 1			0.12		
	12/17/1993	< 1	< 1	< 1	< 3			0.16	0.16	< 0.006
	5/30/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.11	0.037	0.031
	8/13/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.15	0.014	0.017
	3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.085	0.085	0.0027 Q
	9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.069	0.017	< 0.0014
	3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.091	0.091	0.0042 Q
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.058	0.058	0.0038 Q
	4/21/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
	8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/10/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
GW05										
	3/16/1992	< 1	< 1	< 1	< 1			0.12		
	12/20/1993	< 1	< 1	< 1	< 3			0.6	0.017	0.032
	8/13/2001	< 0.21	< 0.23	1	< 0.44	< 0.23	< 0.21	0.076	< 0.0021	0.005
	9/16/2002				Mon	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

ample ID Collection			В	TEX and Trin	nethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable	
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcemen	nt Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
GW06										
	3/17/1992	< 1	< 1	< 1	< 1			0.01		
	12/16/1993	< 1	< 1	< 1	< 3			< 0.006	< 0.006	< 0.006
	2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.001 Q	< 0.001	0.001 Q
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.0063	0.0063	0.0031 Q
	4/22/2004	0.41 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
	9/21/2005				Mor	nitoring Well Ab	andoned			
HP101										
	12/2/1993	< 1	< 1	< 1	< 3					
HP102										
	12/20/1993	< 1	< 1	1.4	< 3			0.13	0.13	0.025
HP103										
	12/9/1993	<u>150</u>	66	< 5	56			1.5	1.5	0.047
HP104										
	12/9/1993	<u>570</u>	<u>1300</u>	37	440			3	0.9	0.14
HP105										
	12/9/1993	< 1	1.3	2.4	4.8			0.68	0.68	0.017
MW101										
	12/29/1993	<u>1100</u>	4000	<u>320</u>	<u>4100</u>			0.24	0.24	0.02
	3/7/2002	<u>1800</u>	<u>3900</u>	<u>370</u>	<u>3500</u>	920	220	0.38	0.38	< 0.0022
	9/16/2002				Mor	nitoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	S		Cyanides		
	Date		Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforceme	ent Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
MW101R										
	9/16/2002	<u>1600</u>	3400	<u>410</u>	3100	<u>580</u>	<u>150</u>	0.25	0.05	0.007
	3/20/2003	<u>1500</u>	3800	130	3200	560	<u>150</u>	0.0082 Q	0.0082	< 0.0014
	9/25/2003	1600	3000	50 Q	<u>2590</u>	460	<u>120</u>	0.13	0.13	0.0058
	4/22/2004	<u>37</u>	200	1.8	138	69	12			0.034
	8/23/2004	<u>97</u>	<u>500</u>	6.6 Q	450	130	<u>34</u>			< 0.0053
MW102										
	12/16/1993	5400	<u>5800</u>	240	4900			0.5	0.4	0.079
	11/20/1997	8700	<u>7300</u>	180	4100			0.51	< 0.0054	0.14
	11/18/1998	9700	<u>7900</u>	180	3800			0.3	0.3	0.017
	2/28/2001	6590	<u>5980</u>	139	2730	1090	<u>133</u>	0.12	0.67	0.67
	5/30/2001	4680	<u>4550</u>	<u>453</u>	2900	1020	<u>237</u>	0.61	0.1	0.055
	8/13/2001	3720	<u>3310</u>	<u>249</u>	<u>2150</u>	758	<u>147</u>	1.8	1.8	0.067
	3/8/2002	6300	6000	140 Q	<u>2420</u>	930	<u>140 Q</u>	0.67	0.66	0.0074
	9/16/2002	6000	<u>5000</u>	< 27	780 Q	<u>810</u>	< 38	0.59	0.52	0.013
	3/20/2003	3900	3800	< 14	395 Q	<u>730</u>	< 13	0.58	0.58	0.03
	9/25/2003	4100	3400	< 17	280	<u>612</u>	< 21	0.56	0.56	0.014
	4/21/2004	4000	3800	46	720	640	<u>45</u> 29			0.047
	8/23/2004	2300	2200	11 Q	303	<u>450</u>	<u>29</u>			0.03
	9/21/2005	3100	2700	24 Q	430	490	<u>64</u>			0.0069 (
	9/6/2006	2500	<u>2500</u>	36	450	<u>470</u>	<u>64</u> <u>75</u>			
	9/10/2007	1700	<u>1900</u>	21 Q	330	<u>410</u>	<u>50</u>			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collection		В	TEX and Trim	ethylbenzene	s			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
MW103									
12/21/1993	<u>1.9</u>	< 1	1.4	< 3			0.71	0.26	0.14
11/20/1997	0.69	0.52	< 0.22	1			0.54	< 0.0054	0.073
11/18/1998	< 0.27	< 0.32	0.47	0.48			0.22	0.22	0.022
2/28/2001	< 0.21	< 0.23	0.41 Q	0.9 Q	12	0.83	0.075	0.47	0.47
5/30/2001	0.25 Q	< 0.23	0.52	1.3	21	0.57 Q	0.43	0.11	0.11
3/8/2002	< 0.48	< 0.43	0.49 Q	0.95 Q	26	< 0.52	0.46	0.46	0.0085
9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.089	0.082	0.005
9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.039	0.039	0.004 Q
4/22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/6/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/10/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID (ample ID Collection Date		В	TEX and Trim	ethylbenzene	5			Cyanides	
1		Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wisc	onsin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Ac	tion Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement S	Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
MW104										
12	2/28/1993	<u>23</u>	32	< 25	53			1.6	1.6	0.059
11	/20/1997	6.7	0.62	6.9	7.6			3.3	0.3	0.16
11	/18/1998	<u>12</u>	9.2	1.7	11.6			1	1.1	0.033
2/2	28/2001	<u>7.6</u>	2.1	0.29 Q	1.5	1.6	0.48 Q	0.14	2.6	2.6
5/3	30/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	3.2	0.5	0.17
8/1	13/2001	< 2.1	< 2.3	< 2.2	< 4.4	3.6 Q	< 2.1	7.1	8	0.11
3/8	8/2002	2.9	< 0.43	< 0.47	< 1.4	0.89 Q	< 0.52	5	5	0.02
9/1	16/2002	<u>10</u>	14	0.73 Q	4.6	1.9 Q	< 0.94	5.4	0.6	0.072
3/2	20/2003	<u> 26</u>	29	1.6 Q	9.5	5.8	< 0.52	1.2	1.2	0.032
9/2	25/2003	<u>15</u>	19	1.1 Q	3.1	2.1 Q	< 0.83	6.3	6.3	0.071
4/2	21/2004	0.39 Q	< 0.4	< 0.36	< 0.74	0.79 Q	< 0.4			0.55
8/2	23/2004	2.4	4.1	< 0.36	6.2	8.4	3.6			0.029
9/2	21/2005	4.1	12	< 0.36	1.63 Q	< 0.39	< 0.4			0.015 Q
9/5	5/2006	0.31 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/	10/2007	<u>1.3</u>	4	< 0.36	0.4 Q	< 0.39	< 0.4			
MW106										
11	/19/1998	260	<u>530</u>	180	540			1.4	1.4	< 0.0034
2/2	28/2001				Mon	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

4	mple ID Collection Date		\boldsymbol{B}	TEX and Trim	ethylbenzene	S			Cyanides	
1	Date		Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Ac	tion Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement S	Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
MW108										
11	/19/1998	< 0.26	< 0.24	< 0.21	< 0.97			0.078	0.078	0.017
5/3	30/2001	< 0.19	< 0.13	< 0.11	< 0.3	< 0.12	< 0.11	0.16	0.03	0.037
8/1	13/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.34	0.0029 Q	0.051
3/1	12/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.94	< 0.92	0.028	0.028	0.0028 Q
9/1	16/2002				Mor	itoring Well Ab	andoned			
MW108R										
9/1	16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.15	0.087	0.013
3/2	20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.093	0.093	0.0066
9/2	25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.12	0.1	0.0043 Q
4/2	22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.082
3/7	7/2006									
MW109										
2/2	28/2001	994	<u>961</u>	73	577	237	<u>68</u>	0.001 Q	0.005	0.006
5/3	30/2001	<u>153</u>	<u>162</u>	5.7	99	61	15	0.007	0.002	0.002
8/1	13/2001	<u>116</u>	102	3.5	59	28	5.7	0.015	< 0.0021	0.003 Q
3/8	8/2002	3000	2100	78	<u>1090</u>	420	<u>110</u>	0.0087	0.0087	< 0.0022
9/1	16/2002				Mon	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	5			Cyanides	
	Date		Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcemen	nt Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
MW109R										
	9/16/2002	4000	<u>2500</u>	100	<u>1450</u>	<u>480</u>	<u>110</u>	0.015	0.015	< 0.0014
	3/20/2003	1200	<u>1700</u>	44 Q	<u>1010</u>	<u>460</u>	<u>110</u>	0.015	0.015 Q	< 0.0014
	9/25/2003	1600	<u>800</u>	31	440	<u>170</u>	<u>46</u>	0.014 Q	0.014	0.0026 Q
	4/22/2004	200	<u>310</u>	6.9	155	80	<u>17</u>			< 0.0053
	8/23/2004	<u>710</u>	<u>550</u>	17	290	<u>110</u>	<u>26</u>			0.012 Q
	9/21/2005	1800	<u>830</u>	32	430	<u>130</u>	<u>37</u>			
	9/5/2006	1300	<u>740</u>	21	340	<u>120</u>	<u>21</u>			
	9/10/2007	<u>190</u>	200	4.2	90	57	10			
MW110										
	11/13/2001	< 0.19	< 0.13	< 0.11	< 0.3	< 0.12	< 0.11	0.53	0.005	0.18
	3/7/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.62	0.06	0.092
	9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.5	0.14	< 0.0014
	3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.43	0.43	0.026
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.44	0.41	0.011 Q
	4/22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.03
	8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.0089 Q
	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.0053 Q
	9/6/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/11/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

ample ID Collection Date		В	STEX and Trim	ethylbenzene	s			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
OW01									
5/14/1985	<u>890</u>	<u>1100</u>	<u>1400</u>	< 2000			0.41		
2/4/1992	4.9	20	< 2	15			0.496	0.087	
12/15/1993	<u>3.2</u> <u>2</u>	13	2	23			0.63	0.63	0.043
11/20/1997	<u>2</u>	0.91	1.1	6.3			0.68	< 0.0054	0.11
11/18/1998	<u>5.6</u>	6	2.9	24.2			0.43	0.43	0.019
2/28/2001	<u>0.8</u>	0.47 Q	0.62 Q	2.8	0.58 Q	0.7	0.2	0.12	2.6
5/30/2001	< 0.21	< 0.23	0.23 Q	< 0.44	< 0.23	< 0.21	< 0.001	< 0.001	< 0.001
3/7/2002	1.4 Q	< 0.43	< 0.47	1.9	1 Q	< 0.52	2.2	2.2	< 0.0022
9/16/2002	<u>0.51 Q</u>	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	2.2	0.3	0.028
3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52			
9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	1.1	1.1	0.028 Q
8/23/2004	0.58	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/21/2005	0.14 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/5/2006	0.37 Q	< 0.4	0.39 Q	0.45 Q	< 0.39	< 0.4			
9/10/2007	< 0.14	< 0.4	0.53 Q	1.03 Q	< 0.39	< 0.4			
OW02									
5/14/1985	<u>5900</u>	<u>5900</u>	6300	<u>16000</u>			0.6		
2/4/1992				Mor	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	5			Cyanides		
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable	
		Wise	consin Ground	water Qualit	y Standard:	s (NR 140,	February 200	4)			
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04	
Enforcemen	nt Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2	
OW03											
	5/14/1985	<u>6</u>	2	< 1	< 10						
	2/4/1992	< 0.6	< 1.5	< 2	< 2.5			71.2 Q	0.309		
	12/14/1993	<u>1.3</u>	< 1	< 1	< 3			0.9	0.9	0.05	
	11/20/1997	< 0.13	< 0.2	< 0.22	< 0.23			0.48	< 0.0054	0.075	
	11/18/1998	<u>1.5</u>	< 0.32	< 0.27	< 0.43			0.41	0.41	0.027	
	2/28/2001	4.7	0.53 Q	0.54 Q	1.3 Q	0.51 Q	1.1	0.083	0.02	0.45	
	5/30/2001	22	0.76 Q	< 0.22	0.61 Q	4.2	0.37 Q	0.42	0.09	0.054	
	8/13/2001	1.2	0.53 Q	0.74	0.92 Q	0.35	0.93	1.2	1.2	0.13	
	3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.94	0.09	0.026	
	9/16/2002				Mon	itoring Well Ab	andoned				
OW03R											
	9/16/2002	<u>41</u>	16	7.7	14.7	9.3	2.2 Q	0.7	0.28	0.022	
	3/20/2003	<u>4.9</u>	2.3	0.78 Q	3.4 Q	3.8	1.1 Q	0.68	0.68	0.046	
	9/25/2003	<u>13</u>	2.8	0.87 Q	2.2 Q	3.9	< 0.83	0.69	0.69	0.016	
	4/22/2004	<u>13</u> <u>4</u>	1.5	< 0.36	0.85 Q	< 0.39	< 0.4			0.01 Q	
	8/23/2004	20	4	0.5 Q	2.8 Q	0.53 Q	< 0.4			0.018	
	9/21/2005	<u>19</u>	0.66 Q	< 0.36	1.23 Q	< 0.39	< 0.4			0.04 Q	
	9/5/2006	20 19 6.5	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4				
	9/10/2007	<u>6.3</u>	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4				

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

ample ID Collection Date		В	TEX and Trim	ethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
OW04									
5/14/1985	< 1	< 1	< 1	< 10			0.07		
2/4/1992	< 0.6	< 1.5	< 2	< 2.5			0.149	0.016	
12/28/1993	< 1	< 1	< 1	< 3			0.053	0.053	0.029
11/20/1997	< 0.13	< 0.2	< 0.22	< 0.23			0.0086	< 0.0054	< 0.0054
11/18/1998	< 0.27	< 0.32	< 0.27	< 0.43			< 0.0047	< 0.0043	< 0.0034
2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.025	0.002 Q	0.003 Q
5/30/2001	4640	<u>4520</u>	<u>457</u>	2850	1020	<u>233</u>	0.086	0.069	0.018
9/17/2001	< 0.23	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21			
3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.0059 Q	0.0059 Q	< 0.0022
9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.007	0.007	< 0.0014
9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.022	0.022	0.0049 Q
4/22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collectio	n	E	BTEX and Trim	ethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wis	sconsin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Lin	nit (PAL) 0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard	<u>d (ES)</u> 5	700	1000	10000	480	480	NS	NS	0.2
P02									
3/16/1992	<u>4</u>	6	3	13					
12/21/1993	< 1	< 1	< 1	< 3			0.077	< 0.005	0.012
2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.077	0.015	0.063
5/30/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.007	0.004	0.014
8/13/2001	< 0.21	0.28 Q	< 0.22	0.56 Q	0.28 Q	< 0.21	0.036	< 0.0021	0.001 Q
3/7/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.016	0.016	< 0.0022
9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.037	0.018	0.003 C
9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.028	0.028	0.0034 (
4/22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
8/23/2004	0.4 Q	3.5	0.4 Q	1.1 Q	1 Q	< 0.4			< 0.0053
P02R									
9/5/2006	<u>4.4</u>	2.4	< 0.36	2.9	2.9	0.7 Q			
P03									
3/16/1992	< 200	< 200	< 200	< 200			0.027		
12/14/1993	<u>20</u>	9.4	< 2	10			0.038	0.038	< 0.006
11/20/1997				Mon	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene.	s			Cyanides		
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable	
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	14)			
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04	
Enforceme	ent Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2	
P04											
	3/16/1992	< 1	< 1	< 1	< 1			0.022			
	12/16/1993	< 1	< 1	< 1	< 3			0.029	0.029	< 0.006	
	2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	0.27 Q	< 0.21	0.007	0.017	0.018	
	5/30/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.013	< 0.001	0.006	
	8/13/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.014	< 0.0021	0.009	
	3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.024	0.024	0.0028 Q	
	9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.014	0.002 Q	0.006	
	3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.017 Q	0.017	< 0.0014	
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.011	0.0098	0.005 Q	
	4/21/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053	
	8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053	
P101											
	12/16/1993	< 1	< 1	3.1	< 3			< 0.006	< 0.006	< 0.006	
	11/20/1997	< 0.13	< 0.2	< 0.22	< 0.23			0.012	0.012	< 0.0054	
	11/18/1998	< 0.27	< 0.32	< 0.27	< 0.43			< 0.0047	< 0.0043	< 0.0034	
	2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	< 0.001	< 0.001	< 0.001	
	5/30/2001	< 0.21	< 0.23	0.23 Q	< 0.44	< 0.23	< 0.21	< 0.001	< 0.001	< 0.001	
	3/7/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.051	< 0.52	0.0021	< 0.0021	< 0.0022	
	9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	< 0.0014	< 0.0014	< 0.0014	
	3/20/2003	< 0.3	< 0.6	50	< 1.2	< 0.66	< 0.52	0.0041 Q	0.0041 Q	< 0.0014	
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.002 Q	0.002 Q	< 0.0019	
	4/29/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.013 Q	
	8/23/2004	0.17 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053	

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	BTEX and Trimethylbenzenes							Cyanides		
		Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable	
		Wisc	onsin Ground	water Quality	y Standard:	s (NR 140,	February 200	04)			
Preventive Action Limit (PAL)		0.5	140	200	1000	96	96	NS	NS	0.04	
Enforcement Standard (ES)		5	700	1000	10000	480	480	NS	NS	0.2	
P102											
	12/14/1993	440	600	< 20	< 60			0.14	0.14	< 0.006	
	11/20/1997	<u>18</u>	0.45	20	2.4			0.16	< 0.0054	0.044	
	11/18/1998	<u>74</u>	95	0.6	12.1			0.092	0.092	0.02	
	2/28/2001	<u>758</u>	987	< 5.5	70	<u>106</u>	<u>9 Q</u>	0.035	0.08	0.081	
	5/30/2001	<u>664</u>	<u>864</u>	2.5 Q	59	<u>127</u>	<u>12</u>	0.057	0.034	0.014	
	8/13/2001	692	<u>879</u>	6.3 Q	82	<u>128</u>	<u>13</u>	0.22	< 0.0021	0.005	
	9/17/2001	<u>791</u>	<u>1020</u>	2.6	56	<u>144</u>	<u>13 Q</u>				
	3/8/2002	<u>750 Q</u>	<u>1000 Q</u>	< 9.4 Q	28 Q	<u>120 Q</u>	<u>12 Q</u>	0.071 Q	0.07	0.0067	
	9/16/2002	Monitoring Well Abandoned									
P102R											
	9/16/2002	<u>620</u>	800	3 Q	62	100	<u>10</u>	0.1	0.03	0.007	
	3/20/2003	<u>350</u>	<u>500</u>	8.6 Q	73	71	9	0.15	0.15	0.0049	
	9/25/2003	<u>390</u>	<u>560</u>	4.8 Q	70	72	6.6 Q	0.11	0.11	0.0082	
	4/22/2004	<u>360</u>	<u>540</u>	2.6 Q	58	76	7.3			0.0093 Q	
	8/23/2004	<u>470 Q</u>	<u>680 Q</u>	< 3.6	65 Q	<u>88 Q</u>	<u>8.7 Q</u>			0.0097 Q	

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collection		В	TEX and Trim	ethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P103									
12/14/1993	<u>46</u>	1.2	1.2	4.1			0.056	0.056	< 0.006
11/20/1997	<u>4.6</u>	< 0.22	0.42	0.78			0.0094	< 0.0054	0.0056
11/18/1998	48	0.5	< 0.27	3.26			0.011	0.011	< 0.0034
5/30/2001	<u>77</u>	1.7	0.24 Q	3.6	6.2	0.58	0.018	0.003	0.012
8/13/2001	<u>51</u>	0.56 Q	0.26	2.1	3.2	0.33 Q	0.07	0.034	0.009
3/7/2002	<u>58</u>	< 0.43	< 0.47	1.3 Q	3.7	< 0.52	0.028	0.028	0.0029 Q
9/16/2002	<u>34</u>	< 0.82	< 0.68	1.6 Q	4.8	< 0.94	0.017	0.01	0.002 Q
3/20/2003	2.8	1.8 Q	1.1 Q	5.3 Q	4.5	0.84 Q	0.0048 Q	0.048	< 0.0014
9/25/2003	20	15	< 0.67	9.2 Q	3.9	< 0.83	0.005 Q	0.005 Q	0.0022
4/21/2004	<u>110</u>	20	0.49 Q	28	20	2.5			< 0.0053
8/23/2004	22	7.8	< 0.36	7.4	7.7	1.1 Q			< 0.0053
9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	0.43 Q	< 0.4			
9/5/2006	<u>15</u>	6.1	< 0.36	5.4	9.3	1.1 Q			
9/10/2007	<u>10</u>	1.6	< 0.36	3.8 Q	9.2	1.5			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collection		В	TEX and Trim	ethylbenzene	S			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P104									
7/10/1996	< 0.5	< 1	< 1	< 3			0.057	0.057	0.021
8/14/1996	<u>1.9</u>	< 1	< 1	< 3			0.071	0.055	0.011
11/20/1997	< 0.13	< 0.2	< 0.22	0.46			0.029	< 0.0054	0.019
11/18/1998	< 0.27	< 0.32	< 0.27	< 0.43			0.031	0.031	0.005
2/28/2001	< 0.19	< 0.13	< 0.11	< 0.3	< 0.12	< 0.11	0.021	0.054	0.056
5/30/2001	<u>6.6 Q</u>	< 2.3	< 2.2	< 4.4	< 2.3	< 2.1	0.066	0.035	0.022
8/13/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.11	0.092	0.024
3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	< 0.0021	< 0.0021	0.0022
9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.052	0.016	< 0.0014
3/20/2003	< 0.3	< 0.6	190	< 1.2	< 0.66	< 0.52	0.035	0.035	0.003 Q
9/25/2003	< 0.41	< 0.54	3.1	< 1.8	< 0.97	< 0.83	0.043 Q	0.043	0.0057
4/21/2004	< 0.14	< 0.4	0.51 Q	< 0.74	< 0.39	< 0.4			0.0067
8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/10/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID Collection		В	TEX and Trim	ethylbenzene	s			Cyanides	
Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
	Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P105									
7/10/1996	<u>18</u>	< 1	1.8	12			0.012	0.012	< 0.005
8/14/1996	3.9	< 1	< 1	< 3			0.0077	0.0077	< 0.005
11/20/1997	0.33	0.56	0.26	0.8			< 0.0054	< 0.0054	< 0.0054
11/18/1998	0.31	< 0.32	< 0.27	< 0.43			< 0.0047	< 0.0043	< 0.0034
5/30/2001	0.35 Q	< 0.13	< 0.11	< 0.3	< 0.12	< 0.11	< 0.001	< 0.001	0.007
8/13/2001	0.73	< 0.23	0.56	< 0.44	0.46 Q	< 0.21	0.0078	< 0.0021	0.004
3/7/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.0035 Q	0.0035 Q	< 0.0022
9/16/2002	0.49	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.012	0.008	< 0.0014
3/20/2003	0.38 Q	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.0057 Q	0.0057	< 0.0014
9/25/2003	2.4	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.0054	0.0054	0.0028 Q
4/21/2004	0.33 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
8/23/2004	0.4 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
9/21/2005	0.22 Q	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
9/10/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Preventive Ac Enforcement P106 7/ 8/ 11 11 2/ 5/ 8/ 9/ 9/ 9/	Collection		В	TEX and Trim	ethylbenzene	S			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	94)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforceme	nt Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P106										
	7/9/1996	<u>3.1</u>	3.4	< 2	17			0.011	< 0.005	< 0.005
	8/14/1996	<u>1.6</u>	< 1	< 1	4.7			0.012	0.012	< 0.005
	11/20/1997	0.27	< 0.2	< 0.22	0.89			0.012	< 0.0054	0.0071
	11/18/1998	< 0.27	< 0.32	< 0.27	< 0.43			< 0.0047	< 0.0043	< 0.0034
	2/28/2001	< 0.19	< 0.13	0.52	< 0.3	< 0.12	< 0.11	0.002 Q	0.006	0.008
	5/30/2001	0.24 Q	0.72 Q	0.43 Q	0.6 Q	18	1.7	0.006	0.005	0.004
	8/13/2001	< 2.1	< 2.3	< 2.2	< 4.4	2.7 Q	< 2.1	0.13	0.092	0.027
	9/17/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21			
	3/7/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.0073	0.0073	0.004 Q
	9/16/2002	<u>1.8</u>	< 0.82	< 0.68	< 1.7	< 0.092	< 0.94	0.011	0.006	< 0.0014
	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.0018 Q	0.0018 Q	< 0.0019
	8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
	9/21/2005	<u>1.3</u>	< 0.4	< 0.36	1.6	< 0.39	< 0.4			
	9/6/2006	<u>0.85</u>	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/10/2007	<u>3</u>	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
P107										
	2/28/2001	<u>136</u>	<u>423</u>	23	244	147	<u>35</u>	0.004	0.013	0.014
	5/30/2001	<u>218</u>	<u>669</u>	41	326	<u>299</u>	<u>60</u>	0.097	0.018	0.02
	8/13/2001	<u>155</u>	<u>422</u>	17	205	<u>194</u>	<u>37</u>	0.14	0.0042 Q	0.018
	3/8/2002	200	<u>570</u>	25	282	<u>180</u>	<u>42</u>	0.052	0.051	0.0063 Q
	9/16/2002				Mon	itoring Well Ab	andoned			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	5			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wisc	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforceme	ent Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P107R										
	9/16/2002	<u>170</u>	<u>590</u>	19	311	<u>250</u>	<u>53</u>	0.046	0.034	< 0.0014
	3/20/2003	<u>77</u>	<u>390</u>	< 12	222 Q	<u>180</u>	<u>38</u>	0.13	0.13	0.0065
	9/25/2003	540	2200	61	<u>1760</u>	<u>1400</u>	330	0.012 Q	0.0087	0.0034 Q
	4/22/2004	<u>42 Q</u>	58 Q	5.1 Q	108 Q	<u>84 Q</u>	<u>20 Q</u>			< 0.0053
	8/23/2004	<u>140</u>	<u>410</u>	12 Q	197 Q	<u>160</u>	<u>33</u>			< 0.0053
	9/21/2005	43	<u>220</u>	4.3	134	<u>130</u>	<u>28</u>			
	9/6/2006	<u>23</u> <u>44</u>	77	1.8	59	48	13			
	9/10/2007	44	<u>280</u>	6.7 Q	147	<u>140</u>	<u>28</u>			
P108										
	11/13/2001	<u>39</u>	41	0.72	33	27	3	0.026	< 0.001	0.01
	3/7/2002	<u>39</u> <u>56</u>	69	1 Q	39.6	26	2.1	0.029	0.028	0.021
	9/16/2002	<u>39</u>	30	< 0.68	31.3 Q	31	2.9 Q	0.035	0.018	0.003 Q
	3/20/2003	<u>5.3</u>	1.6 Q	< 0.58	6.9 Q	12	1 Q	0.012	0.012 Q	0.0015 Q
	9/25/2003	0.3	< 0.54	< 0.67	4.2	12	0.93 Q	0.011 Q	0.011	0.0049 Q
	4/22/2004	1.4	1.2 Q	< 0.36	1.2	2.2	< 0.4			< 0.0053
	8/23/2004	<u>11</u>	2.6	0.47 Q	9.7	17	1.4			< 0.0053
	9/21/2005	<u>1.1</u>	< 0.4	< 0.36	< 0.74	7	0.68 Q			
	9/6/2006	0.28 Q	< 0.4	< 0.36	0.77 Q	2.7	< 0.4			
	9/11/2007	<u>1.6</u>	< 0.4	< 0.36	1.97 Q	11	0.96 Q			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	s			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforceme	ent Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
P109										
	4/29/2004	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	8/23/2004	2.8	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	12/14/2004	0.44 Q	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	3/8/2005	0.45 Q	< 0.4	< 0.36	< 1	< 0.39	< 0.4			
	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/11/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
P110										
	4/29/2004	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	8/23/2004	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	12/14/2004	<u>3.5</u>	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	3/8/2005	< 0.14	< 0.4	< 0.36	< 1	< 0.39	< 0.4			
	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/6/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/11/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
P111										
	8/23/2004	< 0.41	< 0.54	0.71 Q	< 1.8	< 0.97	< 0.83			< 0.0053
	12/14/2004	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
	3/8/2005	< 0.14	< 0.4	< 0.36	< 1	< 0.39	< 0.4			
	6/8/2005	< 0.14	< 0.4	< 0.36	< 1	< 0.39	< 0.4			
	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	9/11/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		\boldsymbol{B}	TEX and Trim	ethylbenzene	S			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wisco	nsin Groundv	vater Qualit	y Standard:	s (NR 140,	February 200	04)		
Preventive A	action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcement	t Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
QC01										
	2/4/1992	3.6	18	< 2	12					
(MW102) 1	12/16/1993	4400	5400	200	4500			0.52	0.41	0.083
(MW102) 1	12/17/1993	< 1	< 1	< 1	< 3			0.15	0.089	0.027
(OW01) 1	11/20/1997	<u>5.7</u>	0.48	5.3	6.2			2.9	0.3	0.13
(MW104) 2	2/28/2001	8.4	2.5	0.32 Q	1.6	1.6	0.49 Q	0.1	0.32	4.3
(MW109) 5	5/30/2001	<u>110</u>	<u>195</u>	< 11	117	<u>99</u>	<u>31</u>	0.004	< 0.001	0.004
(MW109) E	3/13/2001	<u>116</u>	102	3.5	59	28	5.7	0.015	< 0.0021	0.003 Q
(P103)	3/7/2002	<u>55</u>	< 0.43	< 0.47	1.2 Q	3.7	< 0.52	0.02	0.02	< 0.0022
(GW04)	3/8/2002	< 0.48	< 0.43	< 0.47	< 1.4	< 0.51	< 0.52	0.12	0.11	0.0039
(P105)	9/16/2002							0.015	0.01	< 0.0014
(GW04) 3	3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.095	0.095	< 0.007
(GW01) g	9/25/2003	<u>1.2 Q</u>	2.8	< 0.67	4.1	12	3	0.021 Q	0.021	0.0059 Q
(P04) Z	1/21/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
(P108) 8	3/23/2004	<u>11</u>	2.8	0.51 Q	10.1	18	1.6			< 0.0053
(MW110) g	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.0038 Q
(P104) g	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
(P111)	9/11/2007	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzene	S			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Ground	water Qualit	y Standard	s (NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforceme	ent Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
QC02										
(MW103)	12/21/1993	<u>1.4</u>	< 1	1.6	< 3			0.52	0.089	0.12
(P103)	11/20/1997	4.1	< 0.2	< 0.22	0.42			< 0.0054	< 0.0054	0.0097
(P02)	2/28/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.007	0.026	0.08
(P04)	5/30/2001	< 0.21	< 0.23	< 0.22	< 0.44	< 0.23	< 0.21	0.013	0.003 Q	0.005
(GW04)	8/13/2001	< 0.21	0.53 Q	0.22	0.64 Q	0.44 Q	< 0.21	0.13	< 0.0021	0.012
(P108)	3/7/2002	<u>54</u>	62	1.1 Q	29.8 Q	12	0.83 Q	0.029	0.028	0.022
(MW109)	3/8/2002	3000	2100	78	1090	420	<u>110</u>	0.0087	0.0087	< 0.0022
(P101)	9/16/2002	< 0.45	< 0.82	< 0.68	< 1.7	< 0.92	< 0.94	0.003 Q	0.003 Q	< 0.0014
(P04)	3/20/2003	< 0.3	< 0.6	< 0.58	< 1.2	< 0.66	< 0.52	0.016	0.016	0.0029 Q
(P108)	9/25/2003	<u>4.3</u>	< 0.54	< 0.67	4.4	12	1 Q	0.011 Q	0.011	0.006 Q
(MW103)	4/22/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			0.0073 Q
(GW04)	8/23/2004	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			< 0.0053
(P109)	9/21/2005	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
(P111)	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
QC03										
(P103)	8/13/2001	<u>51</u>	0.54 Q	< 0.22	1.8	2.1	0.21	0.057	< 0.0021	0.011
(P107R)	9/16/2002	<u>170</u>	<u>610</u>	19	314	<u>260</u>	<u>54</u>	0.039	0.013	< 0.0014
(MW103)	9/25/2003	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83	0.038 Q	0.028	0.0051 Q
(P110)	4/29/2004	< 0.41	< 0.54	< 0.67	< 1.8	< 0.97	< 0.83			< 0.0053
(P107R)	8/23/2004	140	<u>420</u>	12 Q	198	<u>160</u>	<u>35</u>			< 0.0053

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection		В	TEX and Trim	ethylbenzenes	7			Cyanides	
	Date	Benzene	Ethylbenzene	Toluene	Xylenes, Total	1,2,4- Trimethly- benzene	1,3,5- Trimethly- benzene	Total	Amenable	Weak Acid Dissociable
		Wise	consin Groundy	vater Qualit	y Standards	(NR 140,	February 200	04)		
Preventive	Action Limit (PAL)	0.5	140	200	1000	96	96	NS	NS	0.04
Enforcemen	nt Standard (ES)	5	700	1000	10000	480	480	NS	NS	0.2
ТВ										
	10/11/2005	< 0.21	< 0.4	< 0.36	< 0.74					
	9/5/2006	< 0.14	< 0.4	< 0.36	< 0.74	< 0.39	< 0.4			
	12/1/2006	< 0.14	< 0.4	< 0.36	< 0.74					
	9/10/2007	< 0.14	< 0.4	< 0.36	< 0.74					

Notes

- 1) Parameters that attain or exceed the NR 140 Wisconsin Groundwater Quality Preventive Action Limit (PAL) Standard are identified in italics and underlined.
- 2) Parameters that attain or exceed the NR 140 Wisconsin Groundwater Quality Enforcement Standard (ES) are identified in bold and underlined.
- 3) Reference the laboratory analytical report for full list of compounds analyzed.
- 4) 1,2,4 and 1,3,5- Trimethylbenzene analytical results combined for comparison against the NR 140 PAL and ES standards.
- <2.0 : Parameter not detected above the Limit of Detection indicated.
- NS: NR 140 Wisconsin Groundwater Quality Standard not established for this parameter.
- Q: Analyte result has been qualified, see laboratory analytical report for additional information.
- --: Analysis not performed.
- TB: Trip Blank for QA/QC.
- QC: Quality Control duplicate sample.

Table 3. Groundwater Laboratory Analytical Results - Polynuclear Aromatic Hydrocarbon (PAH) µg/L

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene		Acenaphthen	e Acenaph - thylene	Anthracen	e Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	fluorant	k) Chrysene hene	Dibenz (a,h) anthrace		ne Fluorene	Indeno (1,2,3-cd pyrene	Naphthalene ()	Phenanthren	e Pyrene
					Wi	sconsin G	Froundwat	er Qualit	y Standard	s (NR 14	0, Februa	ry 2004)							
Preventive 1	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	nt Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
W01																			
1/2	29/1992			42	110	23	0.41	0.54	<u>1.6</u>	0.66	< 0.043	<u>1.6</u>	< 0.025	< 0.53	20	0.71	280	19	2.1
3/2	27/1992			38	< 2	29	0.29	< 0.2	0.77	0.28	< 0.043	0.27	< 0.025	< 0.53	18	< 0.04	240	17	2.4
12	2/20/1993			< 1	< 2	3.5	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	0.34	10	< 0.1	<u>45</u>	18	< 0.2
11	/20/1997	24	6.5	< 1	< 0.93	1.5	1.4	0.21	0.34	0.14	0.26	2.2	< 0.14	1.1	8.4	0.19	<u>27</u>	5.7	2.9
11	/18/1998	25	< 7.2	19	< 8.2	3.5	1	0.83	0.72	< 0.42	0.36	<u>1.1</u>	8.0	2.7	8.6	1.6	21	17	3.5
2/2	28/2001	83	24	43	< 0.15	10	3.3	< 0.013	0.67	2.6	< 0.11	<u>5.3</u>	< 0.068	24	20	2.2	<u>84</u>	36	9
5/3	30/2001	62	10	36	< 0.15	10	< 0.11	1.2	<u>11</u>	0.96	< 0.11	4.6	< 0.068	22	18	0.53	<u>61</u>	34	7.6
8/	13/2001	65	16	44	< 0.15	9.6	< 0.11	< 0.013	4.5	2.3	< 0.11	< 0.059	< 0.068	7.9	20	2.9	<u>102</u>	33	7.8
3/8	8/2002	62 Q	15 Q	36 Q	< 4.6 Q	6.3 Q	< 3.8 Q	< 2.4 Q	0.29	0.21	0.36	< 3.6 Q	0.12	< 5.6 Q	17 Q	0.19	59 Q	20 Q	4.2 Q
9/	16/2002	97 Q	22 Q	51 Q	1.3 Q	7.1	1 Q	0.42 Q	< 0.28	< 0.3	0.29 Q	0.93 Q	< 0.34	4.1	25 Q	< 0.28	<u>140 Q</u>	30 Q	4.3
3/2	20/2003	64 Q	17 Q	37 Q	1.2	5.8	1.3	0.63 Q	0.33 Q	< 0.32	0.5 Q	1.2	< 0.32	4.1	14 Q	< 0.42	<u>86 Q</u>	20 Q	4.6
9/2	25/2003	41 Q	6.6 Q	24 Q	< 1.9	3.4 Q	< 1.2	< 1.4	< 1.3	< 1.6	< 1.9	< 1.4	< 1.6	1.6 Q	9.1 Q	< 2.1	<u>41 Q</u>	8.7 Q	2 Q
4/2	21/2004	22 Q	2.5 Q	14 Q	0.27 Q	1.7 Q	0.11	0.061 Q	0.028 Q	0.027 Q	0.03 Q	0.08 Q	< 0.015	< 0.92 Q	6.1 Q	0.024 Q	<u>21 Q</u>	4.9 Q	< 1.2
9/2	21/2005	55 Q	13 Q	29 Q	1.2	3.4	1.1	0.57 Q	0.39 Q	< 0.39	0.39 Q	0.86 Q	< 0.38	2.3	10 Q	< 0.38	<u>73 Q</u>	13 Q	2.7
9/5	5/2006	22 Q	2.3	18 Q	0.68	1.8 Q	0.37 Q	< 0.37 Q	< 0.31 Q	< 0.39 Q	< 0.39 Q	0.39 Q	< 0.38	1.3	0.24 Q	< 0.38	<u>12 Q</u>	4.8 Q	1.3
9/	10/2007	26	3.4 Q	19	0.93 Q	2.1 Q	0.44 Q	< 0.37	< 0.31 Q	< 0.39	< 0.39 Q	0.47 Q	< 0.38	1.5	5.3	< 0.38	21	3.8 Q	1.6 Q
V02												· 							
1/2	29/1992			470	960	140	1.9	2.1	<u>4</u>	1.7	0.82	3.9	0.7	46	140	0.51	<u>5900</u>	130	14
3/	17/1992			470	810	200	2.9	2.6	<u>7.5</u>	3.6	1.6	6.7	1.3	58	130	2.9	7200	150	19
	2/21/1993			< 1	< 2	14	1.9	1.6	< 0.05	1.4	0.12	1.4	< 0.1	23	92	0.48	4500	110	8.8
3/7	7/2002	380 Q	560 Q	590 Q	< 280	< 240	240 Q	210	170 Q	< 180	190 Q	< 220	< 200	750 Q	400 Q	< 170	4000	1300	520 Q
	16/2002	370 Q	430 Q	490 Q	< 230	< 200	230 Q	160 Q	< 140	< 150	< 130	< 180	< 170	560 Q	310 Q	< 140	3500	960	410 Q
	20/2003	430 Q	300 Q	550 Q	< 190	270 Q	210 Q	210 Q	< 130	< 160	< 190	190 Q	< 160	660	310 Q	< 210	6100	1000	480 Q
	25/2003	300 Q	250	430 Q	69	180	220	160	110	74	110	120	24 Q	540 Q	250	73	3100 Q	790 Q	410 Q
	22/2004	84 Q	24	120 Q	22	45	64 Q	46	33	18	34	30	6.5	180 Q	68 Q	18	800 Q	220 Q	140 Q
	23/2004	290 Q	110	390 Q	33	120	95	89	<u>54</u>	41	68	63	< 11	250 Q	200	38	3900 Q	450 Q	210
W02R	' 	_00 %	•			•		<u></u>	<u> </u>	* *		<u></u>				30	<u> </u>	.50 🗬	
	5/2006	270 Q	320 Q	290 Q	20	35 Q	4.6 Q	2.6 Q	<u>1.9 Q</u>	< 1.9 Q	2.7 Q	2.9 Q	< 1.9	32	1.7 Q	< 1.9	8900 Q	160 Q	19

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphtheno	e Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	Benzo (k fluorant	k) Chrysene hene	Dibenz (a,h) anthracen		ne Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene	Phenanthren	ne Pyrene
					Wi	sconsin G	roundwate	er Qualit	y Standards	(NR 140	, Februa	ry 2004)							
Preventive	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforcem	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
W03																			
1	/29/1992			79	130	240	17	<u>21</u>	<u>63</u>	27	11	<u>31</u>	< 0.25	<u>140</u>	37	19	<u>310</u>	54	42
3	3/12/1992			700	650	<u>2800</u>	230	260	<u>770</u>	380	15	460	140	1800	<u>400</u>	230	3400	910	630
	1/18/1998	2000	< 140	110	< 8.2	15	3	2.5	<u>2</u>	1.5	1	2.9	2.1	14	43	< 10	<u>1700</u>	73	11
8	3/13/2001	245	402	376	< 0.15	102	61	8.9	22	13	21	28	< 0.068	<u>126</u>	<u>192</u>	19	4790	360	<u>87</u>
3	3/7/2002	220	320	220	< 28	47 Q	26 Q	22 Q	< 17	< 18	17 Q	<u>24 Q</u>	< 20	<u>81 Q</u>	<u>110</u>	< 17	4300 Q	200	<u>60 Q</u>
	9/16/2002	< 220	< 220	160 Q	< 180	< 160	< 150	< 96	< 110	< 120	< 100	< 140	< 140	< 220	< 170	< 110	2200	< 150	< 160
3	3/20/2003	120	110	160	17 Q	71	48	<u>39</u>	<u>25</u>	16 Q	26	<u>40</u>	7.4 Q	140	<u>96</u>	16 Q	<u>910 Q</u>	240 Q	<u>52</u>
9)/25/2003	120	110	130	9.8 Q	35	11 Q	< 7	< 6.5	< 8	< 9.5	<u>12 Q</u>	< 8	36	62	< 10	820 Q	110	33
4	1/22/2004	66 Q	15 Q	62 Q	4.5 Q	19 Q	13 Q	9.8 Q	<u>6.7 Q</u>	4.2 Q	6.6 Q	<u>11 Q</u>	< 1.5 Q	34 Q	30 Q	3.6 Q	<u>150 Q</u>	85 Q	28 Q
8	3/23/2004	140	120	160	< 9.7	28 Q	< 9.8	< 9.1	< 8.9	< 10	< 9.7	<u>8.7 Q</u>	< 11	32	72	< 8.5	1000 Q	120	30
9	9/21/2005	95	13 Q	95	< 4.3	21	< 8.2	< 9.6	< 8.2 Q	< 10	< 10 Q	< 10	< 9.9	26 Q	42	< 9.9	350 Q	84	20 Q
9	9/5/2006	26	< 5.6	110 Q	9.8 Q	31	21 Q	<u>20 Q</u>	<u>11 Q</u>	< 9.6 Q	18 Q	24 Q	< 9.4	74	35	< 9.4	<u>25 Q</u>	39 Q	62
9	9/10/2007	99 Q	43 Q	170 Q	10	87 Q	30	<u>21</u>	<u>15 Q</u>	9.2	16 Q	22	2.7 Q	57 Q	61 Q	8.6	680 Q	160 Q	47 Q
W04																			
3	3/16/1992			470	960	140	1.9	<u>2.1</u>	<u>4</u>	1.7	0.82	3.9	0.7	46	140	0.51	<u>5900</u>	130	14
1	2/17/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
5	5/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.4	< 0.11	0.75	<u>1.4</u>	0.71	0.52	<u>3.1</u>	< 0.068	2.8	< 0.11	0.9	1.6	1.8	2
8	3/13/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.12	< 0.11	0.29	0.39	0.3	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
3	3/8/2002	< 0.081	< 0.084	0.079 Q	0.13 Q	0.13 Q	0.54	0.49	0.4	0.3	0.35	0.43	0.11 Q	0.92	0.067 Q	0.28	0.17 Q	0.41	0.73
g	9/16/2002	0.06 Q	0.068 Q	0.081	0.075	0.078	0.24	0.21	<u>0.15</u>	0.13	0.12	0.16	0.039 Q	0.33	0.053 Q	0.12	0.27	0.2	0.32
3	3/20/2003	0.04 Q	0.034 Q	0.06	0.045 Q	0.052 Q	0.16	0.16	0.14	0.1	0.12	0.15	0.038 Q	0.29	0.027 Q	0.098	0.21	0.16	0.25
g	9/25/2003	1.6	2.1 Q	0.48	< 0.076	< 0.08	< 0.048	< 0.056	< 0.052	< 0.064	< 0.076	< 0.056	< 0.064	0.076 Q	0.13 Q	< 0.084	12 Q	0.15 Q	0.081 Q
4	1/21/2004	0.029 Q	< 0.016	0.032 Q	0.022 Q	0.022 Q	0.046	0.049 Q	0.035 Q	0.032 Q	0.033 Q	0.04 Q	< 0.015	0.074	< 0.016	0.026 Q	0.041 Q	0.052 Q	0.082
8	3/23/2004	0.12 Q	< 0.091	0.11 Q	< 0.077	< 0.071	< 0.078	< 0.072	< 0.072	< 0.083	< 0.077	< 0.066	< 0.088	< 0.066	< 0.087	< 0.068	1.4 Q	< 0.082	< 0.065
9	9/21/2005	0.11	0.074	0.08	0.15	0.13	0.46 Q	0.39	<u>0.33 Q</u>	0.27	0.29 Q	0.33	0.099	0.73 Q	0.049	0.25	1.2 Q	0.36	0.6 Q
g	9/5/2006	0.042	0.061	0.066 Q	0.03	0.038 Q	0.11	0.12 Q	0.1 Q	0.079 Q	0.096 Q	0.1	< 0.019	0.23	0.03 Q	0.061 Q	1.4 Q	0.13 Q	0.18
g	9/10/2007	0.011 Q	< 0.011	0.038	0.013 Q	0.022 Q	0.05 Q	0.051 Q	0.12 Q	0.038 Q	0.072 Q	0.051 Q	< 0.019	0.09	0.012 Q	0.028 Q	0.02 Q	0.053	0.085
W05								_											
	3/16/1992			0.39	< 2	< 0.5	< 0.01	< 0.02	< 0.45	< 0.07	< 0.43	< 0.05	< 0.025	< 0.53	< 0.1	< 0.04	< 2.5	< 0.2	< 0.05
	2/20/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
	3/13/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.19	< 0.11	0.87	<u>1.4</u>	0.69	< 0.11	3.8	< 0.068	2.8	0.18 Q	0.98	0.27	1.8	2.1
	0/16/2002									ng Well Aban									
W06										-									
	3/17/1992			< 0.2	< 2	< 0.5	< 0.01	< 0.02	< 0.45	< 0.07	< 0.43	< 0.05	< 0.025	< 0.53	< 0.1	< 0.04	< 2.5	< 0.2	< 0.05
	2/16/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
	2/28/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
	0/25/2003	0.44 Q	0.51 Q	< 0.18	< 0.19	< 0.2	< 0.12	0.17 Q	0.28 Q	0.23 Q	< 0.19	0.25 Q	< 0.16	0.33 Q	< 0.17	< 0.21	2.8	0.21 Q	0.33 Q
	1/22/2004	0.093	0.042 Q		< 0.018	< 0.019	0.028 Q	0.066 Q		0.095 Q	0.082 Q	0.081 Q	0.019 Q	0.1	0.017 Q	0.073 Q	0.44	0.061	0.1
	0/21/2005	3.000	0.0 /L Q	0.0 TO Q	. 0.010	. 0.010	5.5 <u>2</u> 5 &	<u> </u>		ng Well Aban		<u>0.001 Q</u>	0.010 Q	0.1	0.017 Q	0.070 Q	V. 77	0.001	0.1

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	Benzo (l fluorant	k) Chrysene thene	Dibenz (a,h) anthracei	Fluoranthen 1e	e Fluorene	Indeno 1 (1,2,3-cd) pyrene	Naphthalene	Phenanthren	e Pyrene
					Wis	sconsin Gı	roundwate	er Qualit	y Standard	s (NR 140), Februa	ry 2004)							
Preventive	e Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforcem	nent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
HP101																			
	12/3/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
1 P102																			
	12/12/1993			< 1	< 2	17	2.8	<u>1.8</u>	<u>1.2</u>	1.2	0.2	<u>2.1</u>	< 0.1	8.6	1.6	0.86	< 1	16	1.2
HP103																			
	12/9/1993			< 1	< 2	8.5	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	28	< 0.1	900	54	< 0.2
HP104																			
	12/9/1993			< 1	< 2	34	11	<u>10</u>	<u>1.1</u>	6.9	3.4	<u>13</u>	< 0.1	<u>80</u>	<u>170</u>	5.6	<u>2500</u>	210	12
1P105																			
	12/9/1993			< 1	< 2	0.74	1.1	0.4	< 0.05	< 0.1	< 0.05	0.42	< 0.1	1.3	1.8	< 0.1	<u>21</u>	2.6	< 0.2
/W101																			
	12/29/1993			< 160	< 320	2700	2400	930	<u>280</u>	380	280	980		<u>8500</u>	4300	320	34000	10000	<u>1500</u>
	3/7/2002	17000	22000	8900	< 3500	4000 Q	< 2900	< 1800	< 2100	< 2300	< 2000	< 2700	< 2600	< 4200	3900 Q	< 2100	<u>41000</u>	12000	<u>5500 Q</u>
	9/16/2002								Monitori	ng Well Abar	ndoned								
/W101R	0/46/2002	950.0	1000 0	. 260.0	46	. 400	24	04	0.7	7.5	10	20	. 17	. F60 O	. 420.0	<i>E</i> 0	F400 O	. 200 0	. 400 0
	9/16/2002 3/20/2003	850 Q 4100	1000 Q 4600	< 360 Q 2500	46 < 570	< 400 1200 Q	34 500 Q	<u>21</u> < 420	<u>8.7</u> < 390	7.5 < 480	12 < 570	<u>30</u>	< 1.7 < 480	< 560 Q	< 420 Q	5.9 < 630	<u>5100 Q</u> 11000	< 380 Q 3300	< 400 Q
	9/25/2003	1200 Q	1300 Q	500 Q	100	220	120			< 460 24 Q	39	670 Q	< 460 < 8	<u>1000 Q</u> <u>200</u>	<u>1200 Q</u> <u>200</u>	20 Q	5100 Q	570 Q	1500 260 O
	4/22/2004	150 Q	61 Q	63 Q	23 Q	< 22	< 14	<u>73</u> 6.5	<u>28</u> <u>3.2</u>	2.3	3	<u>120</u> < 16 Q	0.73 Q	18 Q	25 Q	1.9	270 Q	54 Q	260 Q 25 Q
	8/23/2004	570 Q	570 Q	290 Q	86	160	100	<u>72</u>	33	25 Q	42	98	< 11	170	140	18 Q	2000 Q	330 Q	200 Q
/W102	0/20/2001	0.0 Q	0,0 Q	200 Q	00	100	100	<u> ,,,,</u>	<u>-00</u>	20 Q		<u>-55-</u>	`	170	<u></u>	10 Q	<u> 2000 Q</u>	000 Q	<u> 200 q</u>
	12/16/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	3100	1.4	< 0.2
	11/20/1997	3600	270	< 0.96	< 0.89	0.18	< 0.032	< 0.063	< 0.088	< 0.11	< 0.061	< 0.021	< 0.13	1.1	< 0.075	< 0.057	<u>510</u>	2	0.92
	11/18/1998	90	110	< 9.4	27	< 0.42	< 0.28	< 0.3	< 0.3	< 0.42	< 0.18	< 0.32	< 0.4	< 0.3	2.2	< 0.5	1700	3.5	< 0.34
	2/28/2001	163	163		< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	3620	3.9	< 0.032
	5/30/2001	161	189	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	3990	< 0.045	< 0.032
8	8/13/2001	176	204	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	5220	< 0.045	< 0.032
;	3/8/2002	< 260 Q	< 270 Q	4.1	2.1	< 0.4	< 0.38	0.32 Q	0.29 Q	< 0.3	< 0.26	< 0.36	< 0.34	< 0.56	0.76 Q	< 0.28	2300 Q	1.2	0.58 Q
9	9/16/2002	< 270 Q	< 280 Q	4.6 Q	< 2.3	< 2	< 1.9	< 1.2	< 1.4	< 1.5	< 1.3	< 1.8	< 1.7	< 2.8	< 2.1	< 1.4	2800 Q	< 1.9	< 2
;	3/20/2003	89	96 Q	4.9 Q	< 3.8	< 4	< 2.4	< 2.8	< 2.6	< 3.2	< 3.8	< 2.8	< 3.2	< 2.6	< 3.4	< 4.2	2300 Q	< 3.2	< 3.4
	9/25/2003	52	60	< 3.6	< 3.8	< 4	< 2.4	< 2.8	< 2.6	< 3.2	< 3.8	< 2.8	< 3.2	< 2.6	< 3.4	< 4.2	2100 Q	< 3.2	< 3.4
	4/21/2004	7.7 Q	7.5 Q	2.4 Q	0.99 Q	< 0.75	< 0.45	< 0.53 Q	< 0.49	< 0.6	< 0.72	< 0.53 Q	< 0.6	< 0.49	< 0.64 Q	< 0.79	<u>190 Q</u>	0.67 Q	< 0.64
	8/23/2004	54	34	< 3.9	< 3.9	< 3.5	< 3.9	< 3.6	< 3.6	< 4.1	< 3.9	< 3.3	< 4.4	< 3.3	< 4.4	< 3.4	<u>1200 Q</u>	< 4.1	< 3.3
	9/21/2005	71	49	2.3 Q	< 1.6	< 2.3	< 3.1	< 3.7	< 3.1 Q	< 3.9	< 3.9 Q	< 3.8	< 3.8	< 3.1	< 1.8	< 3.8	<u>1600 Q</u>	< 2.3	< 2.9
	9/6/2006	27	12	< 1.6 Q	< 1.6	< 2.3	< 3.1	< 3.7 Q	< 3.1 Q	< 3.9 Q	< 3.9 Q	< 3.8	< 3.8	< 3.1	< 1.8	< 3.8	<u>610 Q</u>	< 2.3 Q	< 2.9
9	9/10/2007	44 Q	15	1.4 Q	1.1 Q	< 1.2	< 1.6	< 1.8	< 1.6 Q	< 1.9	< 1.9 Q	< 1.9	< 1.9	< 1.5	< 0.91	< 1.9	<u>780 Q</u>	1.5 Q	< 1.5

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthen	e Acenaph - thylene	Anthracene	e Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	Benzo (l fluorani	k) Chrysene Thene	Dibenz (a,h) anthracei		ne Fluorene	Indeno 1 (1,2,3-cd) pyrene	Naphthalene 	Phenanthren	e Pyrene
					Wis	sconsin G	roundwat	er Qualit	y Standard	s (NR 140), Februa	ry 2004)							
Preventive .	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
W103																			
12	2/21/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
11	1/20/1997	< 0.58	< 0.65	< 0.96	< 0.89	< 0.02	< 0.032	< 0.063	< 0.088	< 0.11	< 0.061	< 0.021	< 0.13	< 0.06	< 0.075	< 0.057	< 0.31	< 0.025	< 0.064
11	1/18/1998	2.7	< 0.36	0.51	< 0.41	< 0.021	0.031	< 0.015	< 0.015	0.038	< 0.009	0.04	0.034	0.049	0.17	0.095	6.3	0.1	0.071
2/	28/2001	4.8	< 0.072	0.99	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	0.76	< 0.068	< 0.066	< 0.11	< 0.08	<u>10</u>	< 0.045	< 0.032
5/	30/2001	3.6	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	6.5	< 0.045	0.28
3/	8/2002	4.7 Q	0.29	< 0.9 Q	0.057 Q	0.038 Q	0.2	0.17	0.11	0.12	0.12	0.17	0.035 Q	0.19	0.086	0.09	<u>14 Q</u>	0.1	0.26
9/	16/2002	0.57	< 0.056 Q	0.34	0.066 Q	0.054 Q	0.18	0.17	0.12	0.13	0.11	0.17	< 0.034	0.2	0.069 Q	0.095	0.58 Q	0.13	0.29
9/	25/2003	0.9	< 0.068	0.27	< 0.076	< 0.08	0.11 Q	0.091 Q	0.062 Q	0.067	< 0.076	0.12 Q	< 0.064	0.14 Q	< 0.068	< 0.084	0.72	0.097 Q	0.91
4/	22/2004	0.15 Q	< 0.08	0.097 Q	< 0.09	< 0.094	0.15 Q	0.16 Q	<u>0.1 Q</u>	0.11 Q	0.11 Q	0.17 Q	< 0.075	0.2 Q	< 0.08	< 0.099 Q	1.2	0.15 Q	0.26 Q
8/	23/2004	0.079 Q	0.092 Q	0.07 Q	< 0.039	< 0.035	< 0.039	< 0.036	< 0.036	< 0.041	< 0.039	< 0.033	< 0.044	< 0.033	< 0.044	< 0.034	0.67 Q	< 0.041	< 0.033
9/	21/2005	0.052	0.028 Q	0.03	0.023 Q	0.023 Q	0.044 Q	0.035 Q	0.029 Q	0.027 Q	0.024 Q	0.036 Q	< 0.019	0.046 Q	0.022 Q	0.023 Q	0.31	0.056	0.054
9/	6/2006	0.033 Q	0.024 Q	0.039 Q	0.014 Q	0.014 Q	0.03 Q	0.039 Q	0.026 Q	0.028 Q	0.031 Q	0.034 Q	< 0.019	0.052	0.018 Q	0.019 Q	0.4 Q	0.04 Q	0.051
	10/2007	0.028 Q	0.012 Q	0.028	0.056	0.048	0.16	0.17	0.15	0.12	0.11	0.16	0.033 Q	0.21	0.026 Q	0.096	0.037 Q	0.099	0.25
W104																			
	2/28/1993			< 1	< 2	9.9	2.3	<u>1.3</u>	1.3	1.2	0.53	<u>1.4</u>	< 0.1	16	31	1.1	<u>83</u>	48	5.6
	1/20/1997	30	10	< 0.99	< 0.92	3.6	2.3	1.7	0.62	1.1	1.1	1.2	< 0.13	12	7.8	0.87	12	11	7.2
	1/18/1998	35	< 7.2	19	16	4.7	1.4	1.4	1.3	1.1	0.69	1.3	1.3	7.4	12	3.4	15	24	5.5
	28/2001	8	10	14	5.1	6.5	4.1	0.93	0.39	1.1	1.8	0.44	< 0.068	15	9.7	1.3	0.91	13	11
	30/2001	15	< 0.072	25	< 0.15	10	7	0.19	1.1	1.4	0.46	4	< 0.068	20	20	1.9	2	28	14
	13/2001	15	< 0.72	35	10	27	, 41	5.9	6.6	3.9	5	7.1	< 0.068	57	25	5.4	6.7	73	37
	8/2002	11 Q	< 5.6	16	12 Q	12 Q	13	13	9.2	6.2 Q	8.9	10 Q	< 3.4	40	16	6.7 Q	< 5.4	38	27
	16/2002	27 Q	< 0.56	35 Q	21 Q	12 Q 12 Q	11 Q	13 8.6	<u>5.9</u>	4.1	6.1		0.71 Q	40 Q	29 Q	4.2	5.3 Q	46 Q	27 Q
	20/2003	33	< 1.7	39 Q	20	5.5 Q	7.2	6.7	<u>4.5</u>	3.5 Q	5.2 Q	<u>7</u>	< 1.6	40 Q 27	28	3.5 Q	9.7	23	18
	25/2003 25/2003	24	< 3.4	39 44		7.7 Q				3.4 Q	5.2 Q 5.3 Q	<u>6</u>				< 4.2	< 4.8	9.9 Q	
					21		8.4	5.9 Q	3.9 Q			7.9 Q	< 3.2	29 4	29				24
	21/2004	3.4 Q 19	< 0.32 3.1 Q	4.4 Q	4.8 Q	1.1 Q	1.7 6.9	3.88 Q	<u>2</u>	2.2 3.5 Q	1.6 5.3.0	1.3 Q	0.62 Q	4 28	1.8	2	5.4 <u>57 Q</u>	0.91 Q	2.9
	23/2004			27 19	14 15	7.3 4.3	6.9 14	<u>6 Q</u>	4.6 Q	3.5 Q 6.1 Q	5.3 Q 9.2 Q	<u>6.2</u> 11	< 2.2	28 45	13 10	3 Q	<u>57 Q</u> < 4.7	25 10	23
	21/2005	2.1 Q	< 1.1					<u>12</u>	<u>9 Q</u>				< 1.9	_	_	6 Q		-	29
	5/2006	< 1	< 1.1	4.2 Q	18	4.9	33	33 Q	23 Q	16 Q	25 Q	<u>25</u>	3.9 Q	60 Q	1.4 Q	14	1.4 Q	3.6 Q	44
	10/2007	0.47 Q	< 0.24	3.3	18 Q	3.8	23 Q	<u>25 Q</u>	<u>16 Q</u>	13 Q	21 Q	<u>21 Q</u>	4.6	41 Q	1.3	12 Q	0.67 Q	1.7	33 Q
W106	1/40/4000	400	400	4-	40	4.0	4.6	0.55		0.00	0.00		0.40	0.0	40	4.4	=	60	4.0
	1/19/1998	130	160	45	43	< 4.2	1.2	0.89	0.83	0.62	0.32	<u>1</u>	0.42	3.3	< 12	1.1	<u>710</u>	29	4.2
	28/2001								Monitori	ng Well Aba	naoned								
W108																			
	1/19/1998	< 0.36	< 0.36	< 0.47	< 0.41	< 0.021	0.018	< 0.015	< 0.015	0.025	< 0.009	< 0.016	0.022	0.05	< 0.058	< 0.025	< 0.42	0.32	0.059
	30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
	13/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.09	0.73	<u>1.1</u>	0.41	0.26	0.94	0.57	< 0.068	0.81	< 0.11	0.31	0.15 Q	0.41	0.74
	12/2002	0.041 Q	0.049 Q	0.019 Q	< 0.023	< 0.02	0.058 Q	0.065	<u>0.056</u>	0.05	0.054	<u>0.061</u>	< 0.017	0.1	< 0.021	0.042 Q	0.11	0.041 Q	0.092
9/	16/2002								Monitori	ng Well Abai	ndoned								

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene		Acenaphthene	Acenaph - thylene	Anthracen	e Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	fluorant	k) Chrysene hene	Dibenz (a,h) anthrace		ne Fluorene	Indeno (1,2,3-cd pyrene	Naphthalene)	Phenanthren	e Pyrene
					Wi	sconsin G	iroundwat	er Qualit	y Standards	s (NR 14	0, Februa	ry 2004)							
<u>Preventive</u>	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
/W108R																			
9,	/16/2002	0.15 Q	0.12 Q	0.14 Q	0.25	0.23	0.64	0.59	0.35	0.36	0.28	0.43	0.09 Q	0.71	0.12 Q	0.28	0.17 Q	0.46	0.85
3	/20/2003	0.2	0.15	0.12	0.14	0.15	0.39	0.45	0.3	0.32	0.3	0.37	0.1	0.57 Q	0.067	0.25	0.62 Q	0.43	0.62 Q
	/25/2003	0.44	0.29	0.25	0.1 Q	0.084	0.19	0.18	<u>0.1</u>	0.12	0.11 Q	0.18	0.039 Q	0.24	0.11 Q	0.094 Q	0.53	0.24	0.3
	/22/2004	0.062	0.049 Q	0.058	0.092	0.1	0.25	0.28 Q	<u>0.17 Q</u>	0.18 Q	0.16 Q	0.24 Q	0.059 Q	0.3	0.045 Q	0.13 Q	0.096	0.25	0.45
3,	/7/2006																		
1W109																			
2,	/28/2001	78	40	38	< 0.15	17	21	7.6	<u>4</u>	4.7	3	9.3	< 0.068	26	29	4.5	<u>329</u>	44	27
5,	/30/2001	1020	576	795	< 0.75	464	< 0.57	4.6	<u>52</u>	43	< 0.57	352	< 0.34	<u>581</u>	<u>497</u>	46	2490	1170	833
8,	/13/2001	211	126	107	43	15	< 0.11	< 0.013	< 0.055	5.7	< 0.11	< 0.059	< 0.068	11	37	9.8	1020	47	21
3,	/8/2002	460 Q	< 280	< 180	< 230	< 200	< 190	< 120	< 140	< 150	< 130	< 180	< 170	< 280	< 210	< 140	2600	< 190	< 200
9,	/16/2002								Monitorii	ng Well Aba	indoned								
/W109R																			
9,	/16/2002	580 Q	430 Q	200 Q	< 180	< 160	< 150	< 96	< 110	< 120	< 100	< 140	< 140	< 220	< 170	< 110	<u>3500</u>	< 150	< 160
3,	/20/2003	690 Q	410 Q	260 Q	52	67	27	23	<u>9.5 Q</u>	8.3 Q	13 Q	<u>34</u>	< 8	52	<u>110</u>	< 10	3400 Q	210	<u>85</u>
9,	/25/2003	300 Q	170	110	21 Q	19 Q	6.2 Q	< 7	< 6.5	< 8	< 9.5	7.9 Q	< 8	11 Q	42	< 10	<u>1600 Q</u>	59	19 Q
4,	/22/2004	120 Q	46 Q	47 Q	< 23 Q	< 24 Q	< 14 Q	< 17 Q	<u>6.1</u>	5.3	5.4	< 17 Q	1.9	< 16 Q	< 20 Q	4.5	370 Q	32 Q	< 20 Q
8	/23/2004	390 Q	160	110	18 Q	14 Q	< 9.8	< 9.1	< 8.9	< 10	< 9.7	< 8.2	< 11	< 8.2	32 Q	< 8.5	2100 Q	44	13 Q
9,	/21/2005	220 Q	120	86	13 Q	11 Q	< 7.8	< 9.2	< 7.8 Q	< 9.6	< 9.7 Q	< 9.5	< 9.4	8.4 Q	28	< 9.4	<u>1300 Q</u>	36	12 Q
9,	/5/2006	530 Q	150	230 Q	27	27	< 7.8	< 9.2 Q	< 7.8 Q	< 9.6 Q	< 9.7 Q	< 9.5	< 9.4	14 Q	72	< 9.4	2800 Q	95 Q	21 Q
9,	/10/2007	89 Q	< 11 Q	47 Q	8.6	8.9	4.9	8.3	<u>6.1 Q</u>	5.1	3.8 Q	4.6	1.4	7.2	< 9.1 Q	4	270 Q	21 Q	< 15 Q
/W110																			
1	1/13/2001	< 0.25	< 0.22	< 0.4	< 0.46	< 0.06	< 0.34	< 0.04	< 0.17	< 0.22	< 0.34	< 0.18	< 0.21	< 0.2	< 0.34	< 0.24	< 0.17	< 0.14	< 0.097
3,	/7/2002	< 0.22	< 0.22	< 0.14	< 0.18	0.2 Q	0.79	0.79	0.76	0.57	0.61	0.77	0.17 Q	2.1	< 0.17	0.48	0.69 Q	0.57	1.6
9,	/16/2002	0.41 Q	0.36 Q	< 0.18	< 0.23	0.2 Q	0.84	0.88	0.72	0.55	0.52	0.72	< 0.17	1.7	< 0.21	0.49	2.8	0.47 Q	1.5
3,	/20/2003	0.082	0.092	0.067	0.089	0.12	0.49	0.59 Q	0.46 Q	0.39	0.39	0.5	0.12	1.1 Q	0.066	0.36	0.22	0.3	0.98 Q
9,	/25/2003	< 0.09	< 0.085	< 0.09	0.12 Q	0.13 Q	0.75 Q	0.71 Q	0.58 Q	0.5 Q	0.55 Q	0.7 Q	0.14 Q	1.3 Q	< 0.085	0.41 Q	0.2 Q	0.35 Q	1.2 Q
	/22/2004	0.095	0.063	0.086	0.05 Q	0.068	0.18	0.22 Q	0.18 Q	0.15 Q	0.16 Q	0.21 Q	0.043 Q	0.36	0.038 Q	0.12 Q	0.67 Q	0.17	0.37
8,	/23/2004	0.13	0.13	0.095	< 0.019	0.018 Q	0.038 Q	0.034 Q	0.026 Q	0.024 Q	0.029 Q	0.034 Q	< 0.022	0.11	0.031 Q	0.019 Q	0.78 Q	0.042 Q	0.13
	/21/2005	0.036	0.074	0.12	0.11	0.13	0.48 Q	0.48 Q	0.46 Q	0.41	0.41 Q	0.41	0.12	0.93 Q	0.036	0.36	0.2	0.3	0.86 Q
	/6/2006	< 0.2	< 0.22	0.25 Q	0.25 Q	0.39 Q	1.5	2 Q	1.4 Q	1.5 Q	1.7 Q	1.7	< 0.38	3.5	< 0.18	1.1 Q	0.62 Q	1.2 Q	3.1
	/11/2007	0.022 Q	0.034 Q	0.075	0.1	0.14	0.52 Q	0.63 Q	0.64 Q	0.49 Q	0.46 Q	0.55 Q	0.12	1.2 Q	0.041	0.41	0.14	0.33	0.98 Q

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	Benzo (l fluorant	k) Chrysene Thene	Dibenz (a,h) anthracei		e Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene	Phenanthren	e Pyrene
					Wis	sconsin Gr	roundwate	er Qualit	y Standards	s (NR 140), Februa	ry 2004)							
Preventive	e Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforcem	nent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
N01																			
	5/14/1985			< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	1	< 1	< 10	< 1	6	2
	2/4/1992			71	71	2.1	0.45	< 0.82	0.52	nd	0.9	<u>1.2</u>	< 0.7	7.5	21	2.1	4.5	7.6	5.1
	12/15/1993			< 1	< 2	1.6	0.46	< 0.2	< 0.05	< 0.1	< 0.05	<u>0.1</u>	< 0.1	2	17	< 0.1	<u>14</u>	5	< 0.2
	11/20/1997	6.9	1.6	< 0.96	< 0.89	0.3	0.1	< 0.063	< 0.088	< 0.11	< 0.061	< 0.021	< 0.13	1.4	1.9	< 0.057	< 0.31	0.81	0.66
	11/18/1998	34	< 7.2	15	< 8.2	< 0.42	< 0.28	< 0.3	< 0.3	< 0.42	< 0.18	< 0.32	< 0.4	0.36	4.3	< 0.5	< 8.4	8.3	0.72
	2/28/2001	5.8	< 0.072	8.6	< 0.15	1.1	< 0.11	< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	3.4	< 0.08	0.33	< 0.045	1.3
	5/30/2001	< 0.083	< 0.072	0.5	< 0.15	0.12	< 0.11	< 0.013		< 0.074	< 0.11	< 0.06	< 0.069	< 0.067	< 0.11	< 0.081	< 0.056	< 0.046	< 0.032
	3/7/2002	2.5	2.5	2.3	< 0.23	< 0.2	< 0.19	< 0.12	< 0.14	< 0.15	< 0.13	< 0.18	< 0.17	< 0.28	0.96	< 0.14	< 0.27	0.35 Q	0.27 Q
	9/16/2002	0.25	< 0.056	0.44	0.098 Q	0.11 Q	0.13	<u>0.1</u>	<u>0.1</u>	0.092 Q	0.094	<u>0.13</u>	0.034 Q	0.17 Q	0.26	0.068 Q	0.44 Q	0.19	0.34
	9/29/2003	0.031 Q	0.029 Q	0.05 Q	0.047 Q	0.034 Q	0.081	<u>0.074</u>	<u>0.066</u>	0.066	0.049 Q	<u>0.077 Q</u>	0.028 Q	0.082	0.025 Q	0.063 Q	0.064 Q	0.095	0.14
	8/23/2004	0.56	< 0.1		< 0.088	0.084 Q	< 0.089	< 0.083		< 0.094	< 0.088	< 0.075	< 0.1	0.12 Q	0.18 Q	< 0.078	1.2	0.12 Q	0.19 Q
	9/21/2005	0.1	0.096 Q	0.21	0.18	0.15	0.74	<u>0.73</u>	<u>0.65 Q</u>	0.61	0.52 Q	<u>0.56</u>	0.18 Q	0.94	0.06 Q	0.51	0.32 Q	0.48	1
	9/5/2006	0.24	0.1 Q	2.6 Q	0.13	0.16 Q	0.17 Q	<u>0.17 Q</u>	<u>0.1 Q</u>	0.12 Q	0.14 Q	<u>0.28 Q</u>	< 0.091	0.56	0.63	< 0.091	0.32 Q	0.18 Q	1.5
	9/10/2007	0.65	< 0.12	2.4	0.13 Q	0.13 Q	< 0.17	< 0.2	< 0.17	< 0.21	< 0.21	< 0.2	< 0.2	0.18 Q	0.62	< 0.2	0.29 Q	< 0.12	0.43 Q
N02	E /4 4 /4 00E			. 4	4.4	40	. 10	. 40	< 10	< 10	. 40	< 10	. 40	40	. 4	. 40	5500	40	20
	5/14/1985			< 1	11	10	< 10	< 10		< 10 ng Well Aban	< 10	< 10	< 10	18	< 1	< 10	<u>5500</u>	40	20
	2/4/1992								IVIOTIILOTI	ng well Aban	laonea								
W03	5/14/1985			< 1	- 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	- 1	- 1	< 10	72	17	- 1
	2/4/1992		 	< 0.52	< 1 < 1.4	< 0.062	< 0.44	< 0.82	< 0.19	< 0.82	< 0.76	< 0.19	< 0.7	< 1 18	< 1 < 0.062	< 0.38	<u>72</u> 4	< 0.19	< 1 < 0.72
	12/14/1993	 	 	< 1	< 2	< 0.002	< 0.44	< 0.82	< 0.19	< 0.02	< 0.76	< 0.19	< 0.1	< 0.2	< 0.4	< 0.36		< 0.19	< 0.72
	12/14/1993 11/20/1997	< 0.61	< 0.68	< 1	< 0.93	0.14	0.5			0.82	0.35	<u>0.38</u>	< 0.14	1	0.1	0.54	< 1 < 0.33	0.25	0.81
	11/18/1998	< 0.36	< 0.36	0.52	< 0.41	< 0.021	0.015	<u>0.67</u> 0.025	<u>0.35</u> 0.026	0.032	0.013	0.017	< 0.14	0.092	0.23	0.079	< 0.42	0.25	0.078
	2/28/2001	< 0.082	< 0.072	< 0.13	< 0.41	0.31	< 0.11	0.34	0.4	0.61	3.4	< 0.059	< 0.068	1.4	< 0.11	0.38	0.33	< 0.045	0.75
	5/30/2001	0.29	0.25	< 0.13	< 0.15	0.08	< 0.11	< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	1.3	< 0.045	< 0.032
	8/13/2001	< 0.084	< 0.073	< 0.13	< 0.15	< 0.02	< 0.12	< 0.013		< 0.075	< 0.11	< 0.061	< 0.069	< 0.067	< 0.12	< 0.068	< 0.057	< 0.046	< 0.033
	3/8/2002	< 0.054	< 0.056	0.34 Q	0.13 Q	0.11	0.28	0.28	0.23	0.2	0.19	0.17	0.072 Q	0.54	0.28	0.18	< 0.054	0.078 Q	0.55
	9/16/2002	0.001	. 0.000	0.01 Q	0.10 Q	0.11	0.20	0.20		ng Well Aban		0.77	0.072 Q	0.01	0.20	0.10	1 0.001	0.070 Q	0.00
W03R	0/10/2002								Worldon	ing Woll Aban	lacrica								
	9/16/2002	26 Q	11 Q	14 Q	5.7	2.7	1.4	<u>1.1</u>	<u>0.54 Q</u>	0.5 Q	0.57 Q	<u>1.3</u>	< 0.34	2.6	7.9	0.38 Q	5.9 Q	7.9	3.3
	3/20/2003	26	17	13	2.4 Q	2.4 Q	< 1.2	< 1.4	< 1.3	< 1.6	< 1.9	1.4	< 1.6	1.7 Q	6.1	< 2.1	45_	9.2	2.3 Q
	9/25/2003	24	1.9 Q	9.9	3.5 Q	2.5 Q	< 1.2	< 1.4	< 1.3	< 1.6	< 1.9	< 1.4	< 1.6	< 1.3	5.8	< 2.1	<u> 43</u> <u>14</u>	7.3	1.8 Q
	4/22/2004	14 Q	0.26 Q	6.6	2.8	2.5 Q	2.4	2.6	<u>1</u>	0.85 Q	1.3	2.2	0.29 Q	2.3	4.2	0.71 Q	1.5	6.6	3.4
	8/23/2004	5.5	< 0.45	2.8	1.1 Q	0.96 Q	< 0.39	< 0.36	< 0.36	< 0.41	< 0.39	0.35 Q	< 0.44	0.61 Q	1.7	< 0.34	2.7 Q	3.2	0.79 Q
	9/21/2005	26 Q	0.28 Q	13 Q	4.4	3.5	3.5	3.2	1.7 Q	1.3	1.7 Q	2.7	0.52 Q	3.7	8	1.1 Q	2.7 Q	12 Q	4.9
	9/5/2006	12 Q	0.20 Q 0.69 Q	13 Q 12 Q	4.3	2.3	3.4	3.5 Q	1.4 Q	1.3 1.2 Q	1.7 Q 1.9 Q	2.8	< 0.38	3.8	< 0.18	0.88 Q	6.8 Q	4.7 Q	4.6
C			0.00 🔾	1 <u>~</u> \	7.0	2.0	∪.¬r	U.U W							\$ U.1U	0.00 Q	0.0 0	7.1 🔾	⊤. ∪

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene		Acenaphthene	Acenaph - thylene	Anthracene	e Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	fluorant	k) Chrysene thene	Dibenz (a,h) anthracei		ne Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene)	Phenanthren	e Pyrene
					Wi	sconsin G	roundwate	er Qualit	y Standard	s (NR 140	0, Februa	ry 2004)							
<u>Preventive</u>	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforcem	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
W04																			
5	/14/1985			< 1	< 1	< 1	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 1	< 1	< 10	< 1	< 1	< 1
2	/4/1992			< 0.56	< 1.4	< 0.062	8.7	< 0.82	< 0.19	< 0.82	6.7	< 0.19	< 0.7	< 0.19	< 0.062	< 0.38	5.4	< 0.19	< 0.76
1	2/28/1993			< 1	< 2	< 0.2	0.62	0.45	0.46	0.17	0.15	0.41	< 0.1	1.1	< 0.4	0.41	< 1	0.88	0.47
1	1/20/1997	< 0.64	< 0.72	< 1.1	< 0.98	0.08	0.31	0.34	0.21	0.77	0.46	0.3	< 0.14	1.2	< 0.082	0.44	< 0.34	0.21	1.3
1	1/18/1998	< 0.36	< 0.36	< 0.47	< 0.41	0.097	< 0.014	0.33	0.08	0.29	0.025	0.23	0.28	0.34	< 0.058	0.15	< 0.42	0.12	0.39
2	/28/2001	0.4	0.46	0.26	< 0.16	0.83	< 0.12	<u>3.1</u>	2.8	2.6	0.55	3.3	< 0.071	6.5	1.2	2.7	2.9	2.6	5.4
5	/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	0.63	0.5	0.22	0.19 Q	< 0.11	0.24	< 0.068	0.41	< 0.11	0.2 Q	< 0.056	< 0.045	0.41
3	/8/2002	2.2 Q	3.1 Q	0.7 Q	0.33	0.23	1 Q	1.2 Q	0.84 Q	0.77 Q	0.92 Q	0.95 Q	0.22	1.3 Q	0.16	0.72 Q	<u>10 Q</u>	0.7 Q	1.4 Q
9	/16/2002	0.14 Q	0.16 Q	0.2	0.28	0.2 Q	0.64	0.7	0.52	0.49	0.51	0.56	0.17 Q	0.94	0.093 Q	0.4	0.54 Q	0.41	1
9	/25/2003	< 0.18	< 0.17	0.34 Q	0.74	0.46 Q	1.8	<u>1.9</u>	<u>1.3</u>	1.2	1.4	1.8	0.33 Q	2.7	< 0.17	1	0.74 Q	0.86	3.1
4	/22/2004	0.19	0.094	0.31	0.1	0.097	0.17	0.23 Q	0.17 Q	0.13 Q	0.16 Q	0.19 Q	0.046 Q	0.29	0.12	0.12 Q	0.047 Q	0.14	0.35
8	/23/2004	0.23 Q	0.24 Q	0.26 Q	0.25 Q	0.18 Q	0.53	0.6	0.43	0.39	0.43	0.45	0.11 Q	0.7	< 0.11	0.32	0.94 Q	0.31 Q	0.88
02																			
	/16/1992			< 0.2	< 2	8.1	< 0.01	0.24	2.6	< 0.07	0.53	< 0.05	0.28	15	8.1	< 0.04	300	17	0.37
1	2/21/1993			< 1	< 2	4.1	0.49	< 0.2	0.05	< 0.1	< 0.05	0.24	< 0.1	6.7	3.8	< 0.1	28	20	2.3
	/28/2001	0.47	< 0.072	1.8	< 0.15	0.52	0.55	< 0.013	0.25	0.1 Q	< 0.11	0.23	< 0.068	1.8	1	< 0.08	3.1	1.3	0.99
	/30/2001	0.29	< 0.072	1.2	< 0.15	0.42	0.19 Q	0.34	0.49	0.28	0.16 Q	0.38	< 0.068	1.8	< 0.11	0.32	0.5	0.57	1.2
	/13/2001	0.41	< 0.072	1.7	< 0.15	0.5	0.49	0.26	0.37	0.21 Q	< 0.11	0.31	< 0.068	1.9	0.49	0.16 Q	1.1	0.57	1.4
	/7/2002	0.39	0.18	1.1 Q	0.3	0.46	0.66 Q	0.67 Q	0.46 Q	0.39	0.5 Q	0.5 Q	0.15	1.7 Q	0.35	0.4	1.2 Q	0.68 Q	1 Q
	/16/2002	1.2 Q	0.66 Q	3	0.88 Q	3.2	2.6	2.2	1.4	1.1	1.2	1.6	0.38 Q	6	2	1.1	2.4	5.3	4.1
	/25/2003	0.83	0.61	1.2	0.23 Q	0.69	0.56	0.44	0.33 Q	0.25 Q	0.31 Q	0.43	< 0.13	1.4	0.54	0.22 Q	2.6	1	1.1
	/22/2004	1.2 Q	1.1 Q	2.7 Q	0.83 Q	3.7	2.6	2.2 Q	1.3	0.86 Q	1.2 Q	1.6 Q	0.31 Q	6.4	2.3	0.89 Q	3.4	7.3 Q	4.6
	/23/2004	2.1	1.3 Q	2.2	0.39 Q	2.3	1.3 Q	1.1 Q	0.76 Q	0.68 Q	1.1 Q	1.2	< 0.44	3.5	1.4 Q	0.55 Q	<u>12 Q</u>	4.7	3
02R																			
	/5/2006	< 0.1	< 0.11	0.22 Q	0.34	0.28 Q	0.38 Q	0.39 Q	0.22 Q	< 0.19 Q	0.36 Q	0.33 Q	< 0.19	1.5	0.12 Q	< 0.19	0.28 Q	0.72 Q	2.8
03	-	-	-					<u> </u>			•			-					-
	/16/1992			160	63	110	4	4.2	<u>14</u>	5.5	2.8	<u>6.5</u>	1.7	61	33	3.5	<u>820</u>	35	13
	2/14/1993			< 1	< 2	5.2	0.13	< 0.2	< 0.05	< 0.1	< 0.05	0.13	< 0.1	7.6	16	< 0.1	<u>52</u>	20	1.9
	1/20/1997			- 1	` -	U.L	0.10	· 0.2		ng Well Abai		0.10			.0	. 0.1	<u> 52</u>	20	1.0

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthene	Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	fluoran	k) Chrysene thene	Dibenz (a,h) anthracei		e Fluorene	Indeno (1,2,3-cd) pyrene		Phenanthren	e Pyrene
					Wi	sconsin G	roundwate	er Qualit	y Standard	s (NR 140), Februa	ry 2004)							
<u>Preventive</u>	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforcem	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
04																			
	3/16/1992			< 0.2	< 2	< 0.5	0.07	0.11	< 0.45	< 0.07	< 0.43	<u>0.15</u>	0.05	< 0.53	< 0.1	< 0.04	1	< 0.2	0.17
1	2/16/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
2	2/28/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
5	5/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
3	3/8/2002	< 0.027	< 0.028	0.033 Q	< 0.023	< 0.02	< 0.012	< 0.012	< 0.014	< 0.015	< 0.013	< 0.018	< 0.017	< 0.028	< 0.021	< 0.014	0.12	< 0.019	< 0.02
9	/16/2002	0.029 Q	< 0.028	0.053 Q	< 0.023	< 0.02	< 0.019	< 0.012	< 0.014	< 0.015	< 0.013	< 0.018	< 0.017	0.028 Q	0.022 Q	< 0.014	0.083 Q	0.054 Q	0.026 Q
3	3/20/2003	0.064	0.047 Q	0.11	0.027 Q	0.046 Q	0.086	0.075	0.062	0.039 Q	0.052 Q	0.052 Q	< 0.016	0.18	0.054	0.042 Q	0.3	0.2	0.14
9)/25/2003	0.088	0.053 Q	0.054 Q	< 0.019	< 0.02	< 0.012	< 0.014	< 0.013	0.017 Q	< 0.019	< 0.014	0.02 Q	0.017 Q	< 0.017	< 0.021	0.46	0.033 Q	0.017 Q
4	/21/2004	0.034 Q	< 0.016	0.036 Q	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	0.013 Q	< 0.016	< 0.02	0.037 Q	0.016 Q	< 0.016
8	3/23/2004	0.031 Q	0.03 Q	0.025 Q	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	< 0.016	< 0.022	< 0.017	0.19 Q	< 0.02	< 0.016
101																			
1	2/16/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
1	1/20/1997	< 0.75	< 0.84	< 1.2	< 1.2	< 0.026	< 0.042	< 0.082	< 0.11	< 0.14	< 0.079	< 0.027	< 0.17	< 0.078	< 0.098	< 0.074	< 0.4	< 0.032	< 0.083
1	1/18/1998	< 0.36	< 0.36	< 0.47	< 0.41	< 0.021	< 0.014	< 0.015	< 0.015	< 0.021	< 0.009	< 0.016	< 0.02	< 0.015	< 0.058	< 0.025	< 0.42	< 0.046	< 0.017
2	2/28/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
5	5/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	0.08 Q	< 0.045	< 0.032
3	3/8/2002	0.04 Q	0.049 Q	0.027 Q	< 0.024	< 0.021	0.032 Q	0.023 Q	0.019 Q	0.075	0.014 Q	0.069	< 0.018	< 0.029	< 0.022	< 0.014	0.15	0.075	0.068
9	/16/2002	0.044 Q	0.049 Q	< 0.018	< 0.023	< 0.02	0.021 Q	< 0.012	< 0.014	< 0.015	< 0.013	< 0.018	< 0.017	< 0.028	< 0.021	< 0.014	0.86 Q	0.065	0.027 Q
3	3/20/2003	0.046 Q	0.038 Q	< 0.036	< 0.038	< 0.04	< 0.024	< 0.028	< 0.026	< 0.032	< 0.038	< 0.028	< 0.032	< 0.026	< 0.034	< 0.042	0.43	0.048 Q	< 0.034
9	/25/2003	0.029 Q	0.023 Q	0.039 Q	< 0.019	< 0.02	< 0.012	< 0.014	< 0.013	0.017 Q	< 0.019	< 0.014	< 0.016	< 0.013	< 0.017	< 0.021	0.06 Q	0.026 Q	< 0.017
4	/29/2004	< 0.017	0.023 Q	< 0.017	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	< 0.012	< 0.016	< 0.02	0.061 Q	< 0.015	< 0.016
8	3/23/2004	0.046 Q	< 0.045	< 0.039	< 0.039	< 0.035	< 0.039	< 0.036	< 0.036	< 0.041	< 0.039	< 0.033	< 0.044	< 0.033	< 0.044	< 0.034	0.55 Q	0.041 Q	< 0.033
102																			
1	2/14/1993			< 1	< 2	1.8	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	27	< 0.1	2300	21	< 0.2
1	1/20/1997	< 0.63	< 0.7	< 1	< 0.96	< 0.022	< 0.035	< 0.068	< 0.095	< 0.12	< 0.066	< 0.023	< 0.14	< 0.065	< 0.081	< 0.062	< 0.33	< 0.027	< 0.069
1	1/18/1998	5.2	3.7	4.2	< 0.41	0.089	< 0.014	< 0.015	0.02	< 0.021	< 0.009	0.02	< 0.02	0.025	0.73	0.031	6.9	0.73	0.026
2	2/28/2001	290	349	197	< 0.15	1.1	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	28	< 0.08	<u>2510</u>	11	< 0.032
5	5/30/2001	261	329	201	< 0.15	2.9	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	34	< 0.08	< 0.056	6.6	< 0.032
8	3/13/2001	297	401	251	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	2700	< 0.045	< 0.032
3	3/8/2002	240 Q	200 Q	150 Q	1.3 Q	1.4	< 0.38	< 0.24	< 0.28	< 0.3	< 0.26	< 0.36	< 0.34	< 0.56	25 Q	< 0.24	120 Q	13 Q	< 0.4
9)/16/2002								Monitori	ng Well Abaı	ndoned								
102R																			
	/16/2002	230 Q	270 Q	130 Q	1.6	0.95 Q	< 0.38	< 0.24	< 0.28	< 0.3	< 0.26	< 0.36	< 0.34	< 0.56	< 84 Q	< 0.28	<u>1700 Q</u>	7.6	< 0.4
	3/20/2003	160 Q	140 Q	82 Q	1.3	0.44 Q	< 0.24	< 0.28	< 0.26	< 0.32	< 0.38	< 0.28	< 0.32	< 0.26	< 14 Q	< 0.42	390 Q	3.3	< 0.34
	0/14/2003	96 Q	89 Q	< 36 Q	0.68 Q	< 0.4	< 0.24	< 0.28	< 0.26	< 0.32 Q	< 0.38	< 0.28	< 0.32 Q	< 0.26	7.3	< 0.42 Q	290 Q	2.2	< 0.34
	/22/2004	200 Q	200 Q	92 Q	1.3 Q	0.38 Q	< 0.17	< 0.2		< 0.23 Q	< 0.27	< 0.2	< 0.23	< 0.18	< 30	< 0.3	710 Q	3.2	< 0.24
	3/23/2004	77 Q	68 Q	49 Q	< 1.9	< 1.8	< 2	< 1.8	< 1.8	< 2.1	< 1.9	< 1.6	< 2.2	< 1.6	7.6	< 1.7	500 Q	3.5 Q	< 1.6

305 Ceape Avenue, Oshkosh, Wisconsin

Sample D	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphtheno	e Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthen	Benzo e (ghi) perylene	fluorant	k) Chrysene hene	Dibenz (a,h) anthracen		e Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene	Phenanthreno	e Pyrene
					Wi	sconsin G	roundwat	er Qualit	y Standaro	ds (NR 14	0, Februa	ry 2004)							
Preventive .	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
03																			
12	2/14/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.01	< 0.2	0.97	< 0.01	< 1	0.74	< 0.2
11	1/20/1997	< 0.61	< 0.68	< 1	< 0.93	< 0.021	0.069	0.11	< 0.092	< 0.12	0.14	0.088	< 0.14	0.24	< 0.079	< 0.06	< 0.33	0.071	0.15
11	1/18/1998	3.1	< 0.36	1.7	< 0.41	0.027	0.024	< 0.015	0.028	0.022	< 0.009	0.024	< 0.02	0.049	0.26	< 0.025	0.52	0.14	0.037
5/	30/2001	11	< 0.072	5.2	< 0.15	0.07	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.06	< 0.069	< 0.067	0.85	< 0.081	1.4	0.18	< 0.032
8/	13/2001	8.6	< 0.072	5	< 0.15	0.06 Q	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	0.72	< 0.08	1.3	0.22	< 0.032
3/	7/2002	8.1	< 0.56	4.1	< 0.46	< 0.4	< 0.38	< 0.24	< 0.28	< 0.3	< 0.26	< 0.36	< 0.34	< 0.56	0.57 Q	< 0.28	2.1	< 0.38	< 0.4
9/	16/2002	7.6	< 0.7	3.8	< 0.57	< 0.5	0.48 Q	0.46 Q	<u>0.36 Q</u>	< 0.38	< 0.33	< 0.45	< 0.42	0.82 Q	< 0.53	< 0.35	0.89 Q	< 0.47	0.84 Q
3/	20/2003	10	< 0.42	6.9	1.7	1.4 Q	3.3	3.5	3.2	2.6	2.6	3.7	0.78 Q	6.4	1.4	2.2	1.2 Q	2.9	6
9/	25/2003	13 Q	2.1	5.2	< 0.38	< 0.4	< 0.24	< 0.28	< 0.26	< 0.32	< 0.38	< 0.28	< 0.32	0.34 Q	0.83 Q	< 0.42	<u>15 Q</u>	0.43 Q	0.36 Q
4/	21/2004	11 Q	2 Q	4.6 Q	0.23 Q	0.16	0.27	0.29 Q	0.21	0.19	0.18	0.25 Q	0.06	0.41	0.74 Q	0.16	7.6 Q	0.48 Q	0.48
8/	23/2004	12 Q	1.9	5	< 0.39	< 0.35	< 0.39	< 0.36	< 0.36	< 0.41	< 0.39	< 0.33	< 0.44	< 0.33	0.73 Q	< 0.34	9 Q	< 0.41	< 0.33
9/	21/2005	1.2	0.15 Q	0.76	0.14 Q	0.099 Q	0.35	0.38	<u>0.35 Q</u>	0.31 Q	0.34 Q	0.41	< 0.11	0.54	0.068 Q	0.26 Q	0.57 Q	0.29	0.59
9/	/5/2006	17 Q	7 Q	6.9 Q	0.15	0.058	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	0.03 Q	0.02 Q	< 0.019	6.2 Q	0.32 Q	0.023 Q
9/	10/2007	18 Q	9.6 Q	7.8	0.22 Q	< 0.23	< 0.31	< 0.37	< 0.31 Q	< 0.39	< 0.39 Q	< 0.38	< 0.38	< 0.31	0.99	< 0.38	<u>16 Q</u>	0.41 Q	< 0.29
04																			
7/	10/1996	< 1	< 1	< 1	< 2	< 0.2	< 0.05	< 0.024	< 0.05	< 0.2	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
8/	14/1996	< 1	< 1	< 1	< 2	< 0.2	0.1	< 0.024	< 0.05	< 0.2	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
11	1/20/1997	< 0.58	< 0.65	< 0.96	< 0.89	< 0.02	< 0.032	< 0.063	< 0.088	< 0.11	< 0.061	< 0.021	< 0.13	< 0.06	< 0.075	< 0.057	< 0.31	< 0.025	< 0.064
11	1/18/1998	< 0.36	< 0.36	< 0.47	< 0.41	0.027	0.03	< 0.015	< 0.015	0.03	< 0.009	0.034	0.025	0.055	< 0.058	0.066	< 0.42	< 0.046	0.067
2/	28/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	<u>0.1 Q</u>	< 0.068	< 0.066	< 0.11	< 0.08	0.35	< 0.045	< 0.032
5/	/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
8/	13/2001	< 0.25	< 0.22	< 0.4	< 0.46	< 0.06	< 0.34	< 0.04	< 0.17	< 0.22	< 0.34	< 0.18	< 0.21	< 0.2	< 0.34	< 0.24	< 0.17	< 0.14	< 0.097
	/8/2002	< 0.09	< 0.093	< 0.06	< 0.077	< 0.067	0.34	0.43	0.49	0.32	0.37	0.46	0.11 Q	1.1	< 0.07	0.29	0.24 Q	0.5	0.71
9/	16/2002	< 0.027	< 0.028	< 0.018	0.057 Q	0.032 Q	0.099	0.085	0.058	0.052	0.046	0.077	< 0.017	0.11	< 0.021	0.045	0.044 Q	0.066	0.13
3/	20/2003	0.097 Q	0.1 Q	0.077 Q	0.048 Q	< 0.04	0.064 Q	0.072 Q	0.069 Q	0.052 Q	0.053 Q	0.066 Q	< 0.032	0.13 Q	0.05 Q	0.046 Q	0.46 Q	0.12	0.12
	29/2003	< 0.018	< 0.017	0.022 Q	0.026 Q	< 0.02	0.042	0.038 Q	0.039 Q	0.035 Q	0.03 Q	0.042 Q	< 0.016	0.053	< 0.017	0.03 Q	< 0.024	0.029 Q	0.063
	21/2004	0.023 Q	< 0.016		< 0.018 Q	< 0.019		< 0.013 Q	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	0.015 Q	< 0.016 Q	< 0.02	0.22	< 0.015 Q	< 0.016
	23/2004	0.11	0.13		< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	0.02 Q	< 0.022	< 0.017	0.66 Q	0.032 Q	0.023 Q
	/21/2005	0.012 Q	0.018 Q	< 0.0082	0.022 Q	0.012 Q	0.029 Q	0.034 Q	0.031 Q	0.026 Q	0.026 Q	0.027 Q	< 0.019	0.035 Q	< 0.0091	0.023 Q	< 0.047	0.023 Q	0.035 Q
	/5/2006	0.1	0.043		< 0.0081	< 0.012	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	0.019 Q	0.025 Q	< 0.019	0.11 Q	0.052 Q	0.015 Q
	10/2007	< 0.01	< 0.011		0.0087 Q	< 0.012	0.017 Q	< 0.018	< 0.016	< 0.019	< 0.019	0.02 Q	< 0.019	0.023 Q	< 0.0091	< 0.019	0.014 Q	0.021 Q	0.02 Q

305 Ceape Avenue, Oshkosh, Wisconsin

Sample D	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene	Acenaphthen	e Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo (ghi) perylene	fluorant	k) Chrysene thene	Dibenz (a,h) anthracei		e Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene	Phenanthren	ne Pyrene
					Wi	sconsin Gr	oundwate	er Qualit	y Standards	s (NR 140	0, Februa	ry 2004)							
Preventive	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
05																			
7/	/10/1996	< 1	< 1	< 1	< 2	1.7	1.8	1.2	0.35	1.2	0.37	0.72	< 0.1	7.8	< 0.4	0.72	< 1	2	0.59
8/	/14/1996	< 1	< 1	< 1	< 2	< 0.2	0.57	0.31	2.5	< 0.2	< 0.05	0.15	< 0.1	0.7	< 0.4	< 0.1	< 1	< 0.4	2.2
1	1/20/1997	< 0.61	< 0.68	< 1	< 0.93	0.22	0.25	0.12	0.11	< 0.12	0.12	0.3	< 0.14	1	< 0.079	< 0.06	< 0.33	0.35	0.51
1	1/18/1998	< 0.36	< 0.36	< 0.47	< 0.41	< 0.021	< 0.014	< 0.015	< 0.015	0.043	0.0093	0.095	0.051	0.28	< 0.058	0.14	< 0.42	0.1	0.41
5/	/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.25	2	0.68	0.24	0.2 Q	0.17 Q	0.37	< 0.068	2.2	< 0.11	0.26 Q	0.22	0.23	1.9
8/	/13/2001	< 0.082	< 0.072	< 0.13	< 0.15	0.2	< 0.11	0.49	< 0.055	0.14 Q	< 0.11	0.41	< 0.068	1.3	< 0.11	0.23 Q	0.16 Q	0.24	1.5
3/	/7/2002	0.077 Q	0.097	0.14	0.51 Q	0.22	0.8 Q	0.7 Q	0.42	0.35	0.4	0.74 Q	0.17	1 Q	0.5 Q	0.29	1.1 Q	0.19	1.3 Q
9/	/16/2002	0.29 Q	0.25 Q	0.42 Q	0.73	0.51	1.8	1.6	1.1	1.2	1.1	1.4	0.34 Q	2.1	0.23 Q	0.97	1.8	0.99	2.4
3/	/20/2003	0.15 Q	< 0.14	0.28 Q	0.48	0.35 Q	1.1	1.2	0.92	0.79	0.73	1.1	0.27 Q	1.7	0.14 Q	0.63	0.77	0.61	1.9
9/	/25/2003	0.14 Q	< 0.085	0.29 Q	0.52	0.26 Q	0.88	0.71	0.44	0.49	0.45	0.87	0.17 Q	1	0.12 Q	0.36	0.17 Q	0.35	1.4
4,	/21/2004	0.12 Q	0.038 Q	0.2 Q	0.41 Q	0.2	0.53	0.57 Q	0.27	0.26	0.27	0.47 Q	0.11	0.56	0.059 Q	0.23	0.09 Q	0.18 Q	0.87
8/	/23/2004	< 0.02	< 0.023	< 0.019	0.02 Q	< 0.018	0.03 Q	0.027 Q		< 0.021	< 0.019	0.026 Q	< 0.022	0.024 Q	< 0.022	< 0.017	0.25 Q	< 0.02	0.039 Q
9/	/21/2005	0.024 Q	0.026 Q	0.039	0.022 Q	0.02 Q	0.033 Q	0.026 Q	0.02 Q	0.028 Q	< 0.019 Q	0.029 Q	< 0.019	0.042 Q	0.01 Q	< 0.019	0.066 Q	0.044	0.053
9/	/5/2006	0.075 Q	0.084 Q	0.17 Q	0.44	0.28	0.76	0.81 Q	<u>0.41 Q</u>	0.45 Q	0.51 Q	0.79	0.12 Q	0.92	0.096 Q	0.32	0.19 Q	0.38 Q	1.1
9/	/10/2007	0.053 Q	< 0.056	0.12 Q	0.6	0.3	0.94	0.87	0.63 Q	0.48	0.47 Q	0.99	0.15 Q	1.1	0.17	0.34	0.066 Q	0.24	1.4
06									<u> </u>										
7,	/9/1996	< 1	< 1	< 1	< 2	< 0.2	< 0.05	< 0.024	< 0.05	< 0.2	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
8/	/14/1996	< 1	< 1	< 1	< 2	1.8	0.73	0.27	0.29	< 0.2	< 0.05	0.23	< 0.1	3.2	1.6	< 0.1	< 1	< 0.4	1.9
	1/20/1997	7.5	1.9	< 1	< 0.93	0.53	0.23	0.12	< 0.092	< 0.12	< 0.064	0.089	< 0.14	0.51	1.2	< 0.06	1.2	1.4	1.2
	1/18/1998	0.57	< 0.36	1.5	< 0.41	0.29	0.018	< 0.015	< 0.015	0.023	0.0097	0.073	0.039	0.23	0.078	0.083	< 0.42	0.62	0.34
	/28/2001	< 0.25	< 0.22	< 0.4	< 0.46	< 0.06	< 0.34	< 0.04	< 0.17	< 0.22	< 0.34	0.3 Q	< 0.21	< 0.2	< 0.34	< 0.24	0.41 Q	< 0.14	< 0.097
	/31/2001	< 0.25	< 0.22	< 0.4	< 0.46	< 0.06	< 0.34	< 0.04	< 0.17	< 0.22	< 0.34	< 0.18	< 0.21	< 0.2	< 0.34	< 0.24	< 0.17	< 0.14	< 0.097
	/13/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
	/7/2002	0.15	0.14	0.18	0.035 Q	0.16	0.021 Q	< 0.012		< 0.015	< 0.013	0.021 Q	< 0.017	0.13	0.039 Q	< 0.014	0.4	0.091	0.21
	/16/2002	0.13 Q	0.14 Q	0.14	0.14 Q	0.16	0.2	<u>0.15</u>	0.092	0.11	0.096	0.2	0.036 Q	0.23	0.072 Q	0.082 Q	0.46 Q	0.46	0.31
	/25/2003	< 0.14	< 0.14	< 0.14	0.93	0.29 Q	1.3	0.94	0.37	0.33 Q	0.46 Q	1.3	< 0.13	1.1	< 0.14	0.25 Q	0.86	< 0.13	2.1
	/23/2004	0.097	0.051 Q	0.075	0.063 Q	0.028 Q	0.037 Q	0.041 Q	0.026 Q	0.029 Q	0.025 Q	<u>0.035</u> Q	< 0.022	0.035 Q	0.035 Q	0.022 Q	0.27 Q	0.075	0.061
	/21/2005	0.27	0.35	0.031	0.087	0.1	0.13	0.097	0.073 Q	0.068	0.056 Q	<u>0.13</u>	0.05 Q	0.082	0.13	0.063 Q	1.2 Q	0.54 Q	0.078
	/6/2006	0.2	0.2	0.048 Q	0.074	0.048	0.041 Q	0.039 Q	0.033 Q	0.033 Q	0.027 Q	0.048 Q	< 0.019	0.051 Q	0.13 Q	0.025 Q	0.95 Q	0.2 Q	0.039 Q
	/10/2007	0.38	0.31 Q	0.17 Q	0.48	0.7	1.2	1.1	1.1	0.79	0.69 Q	1.3	0.24 Q	2.1	0.55	0.66 Q	1	1.6	2
07		0.00	J.J. Q	J.11 G	00				<u></u>	J J	5.50 Q	<u></u>	J i G		0.00	J.JU Q	,		_
	/28/2001	269	249	89	49	4.5	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	25	< 0.08	1160	10	2.4
	/30/2001	535	384	187	< 0.15	< 0.02		< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	66	< 0.08	3230	53	4.1
	/13/2001	468	363	193	< 0.15	7.9		< 0.013		< 0.074	< 0.11	< 0.059	< 0.068	6.1	76	< 0.08	2650	53	6.6
	/8/2002	530	370	160	< 58	< 50	< 48	< 30	< 35	< 38	< 32	< 45	< 42	< 70	< 52	< 35	1600 Q	< 48	< 50
	/16/2002	330	0.0	100	~ 50	~ 00	~ 40	` 00		ng Well Aba		\ -TO	¬ -T∠	~ 70	\ U_	` 00	1000 &	` +0	` 00

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene		Acenaphthen e	e Acenaph - thylene	Anthracene	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthend	Benzo e (ghi) perylene	fluorant	c) Chrysene hene	Dibenz (a,h) anthrace		ne Fluorene	Indeno (1,2,3-cd) pyrene		Phenanthren	e Pyrene
					Wi	sconsin G	roundwat	er Qualit	y Standard	ls (NR 14	0, Februa	ry 2004)							
Preventive .	Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforceme	ent Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
107R																			
	/16/2002	550 Q	500 Q	170 Q	< 180	< 160	< 150	< 96	< 110	< 120	< 100	< 140	< 140	< 220	< 170	< 110	2200	< 150	< 160
3/	/20/2003	630 Q	450 Q	220 Q	23	42	23	<u>16</u>	7.2	6.1	8.9	23	3.4 Q	34	<u>88 Q</u>	4.6 Q	570 Q	130 Q	47
9/	/25/2003	610 Q	440 Q	240 Q	39 Q	79 Q	51 Q	28 Q	13 Q	10 Q	13 Q	47 Q	5.8 Q	66 Q	92 Q	8.3 Q	290 Q	230 Q	<u>96 Q</u>
4/	/22/2004	140 Q	9.3 Q	75 Q	4.7 Q	7.2 Q	< 2.3 Q	< 2.6 Q	0.41 Q	0.33 Q	0.43 Q	< 2.6	0.17 Q	3.2 Q	18 Q	0.25 Q	< 4.5	26 Q	5 Q
8/	/23/2004	440 Q	190 Q	150 Q	9.2 Q	14	< 3.9	< 3.6	< 3.6	< 4.1	< 3.9	< 3.3	< 4.4	4.7 Q	40	< 3.4	1600 Q	49	7.7 Q
9/	/21/2005	260 Q	7.9	120 Q	7.4	10	< 3.1	< 3.7	< 3.1 Q	< 3.9	< 3.9 Q	< 3.8	< 3.8	3.8 Q	40	< 3.8	< 9.4	45	4.5 Q
9/	/6/2006	37	< 1.1	32 Q	3.2	7.1	< 1.6	< 1.8 Q	< 1.6 Q	< 1.9 Q	< 1.9 Q	< 1.9	< 1.9	3.4 Q	26	< 1.9	1.6 Q	22 Q	4.6 Q
	/10/2007	470 Q	280 Q	180 Q	14	28	9	<u>6.1</u>	3.5 Q	2.5 Q	3.3 Q	<u>10</u>	< 1.9	16	48 Q	< 1.9	200 Q	82 Q	23
108												<u></u>							
	1/13/2001	43	< 0.072	10	< 0.15	0.37	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	8.7	< 0.08	<u>87</u>	2.7	< 0.032
	/7/2002	39	< 8.4	12 Q	< 6.9	< 6	< 5.7	< 3.6	< 4.2	< 4.5	< 3.9	< 5.4	< 5.1	< 8.4	< 6.3	< 4.2	96	< 5.7	< 6
	/16/2002	39	3.1 Q	12	< 2.3	< 2	< 1.9	< 1.2	< 1.4	< 1.5	< 1.3	< 1.8	< 1.7	< 2.8	< 2.1	< 1.4	46	< 1.9	< 2
3/	/20/2003	8.7 Q	0.98 Q	3.6 Q	0.12	0.052 Q	< 0.012	< 0.014	< 0.013	< 0.016	< 0.019	< 0.014	< 0.016	0.015 Q	0.79 Q	< 0.021	5.3	0.24	< 0.017
	/25/2003	5.8 Q	0.43 Q	3.2 Q	< 0.38	< 0.4	< 0.24	< 0.28	< 0.26	< 0.32	< 0.38	< 0.28	< 0.32	< 0.26	0.42 Q	< 0.42	< 0.48	< 0.32	< 0.34
	/22/2004	1.4	0.12 Q	0.57	< 0.09	< 0.094	< 0.057	< 0.066	< 0.061	< 0.075	< 0.09	< 0.066	< 0.075	0.064 Q	0.1 Q	< 0.099	1.4	0.099 Q	< 0.08
	/23/2004	17 Q	1.1 Q	5.6 Q	< 0.39	< 0.35	< 0.39	< 0.36	< 0.36	< 0.41	< 0.39	< 0.33	< 0.44	< 0.33 Q	0.88 Q	< 0.34	8.2 Q	0.51 Q	< 0.33
	/21/2005	12 Q	1.1	4.2	< 0.16	< 0.23	< 0.31	< 0.37	< 0.31 Q	< 0.39	< 0.39 Q	< 0.38	< 0.38	< 0.31	0.64	< 0.38	1.4 Q	0.31 Q	< 0.29
	/6/2006	4.4 Q	0.28	2.2 Q	0.077	0.037 Q	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	< 0.015	0.32	< 0.019	0.43 Q	0.13 Q	< 0.015
	/11/2007	17 Q	1.7 Q	5.4 Q	0.18	0.13	< 0.016	< 0.018	< 0.016 Q	< 0.019	< 0.019 Q	< 0.019	< 0.019	< 0.015	0.94 Q	< 0.019	1.4 Q	< 0.91 Q	< 0.015
109																			
	/29/2004	< 0.017	< 0.016	< 0.017	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	< 0.012	< 0.016	< 0.02	< 0.023	< 0.015	< 0.016
	/23/2004	0.064 Q	0.05 Q	0.023 Q	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	< 0.016 Q	< 0.022 Q	< 0.017	0.24 Q	< 0.02 Q	< 0.016 Q
12	2/14/2004	0.024 Q	0.032 Q	< 0.019	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	0.021 Q	< 0.022	< 0.017	0.065 Q	0.034 Q	0.026 Q
	/8/2005	0.025 Q	< 0.023	< 0.019	< 0.019	< 0.018	0.031 Q	0.039 Q	0.031 Q	0.041 Q	0.03 Q	0.037 Q	< 0.022	0.067	< 0.022	0.026 Q	0.13	0.068	0.078
	/21/2005	0.11	0.022 Q	0.039	0.014 Q	< 0.012	0.017 Q	0.02 Q	0.019 Q	< 0.019	< 0.019 Q	< 0.019	< 0.019	0.032 Q	0.02 Q	< 0.019	0.063 Q	0.043	0.032 Q
	/5/2006	0.072	0.022 Q	0.077 Q	< 0.011	< 0.015		< 0.024 Q		< 0.025 Q	< 0.025 Q	< 0.025	< 0.025	< 0.02	0.018 Q	< 0.025	0.11 Q	0.026 Q	< 0.019
	/11/2007	< 0.01	< 0.011	< 0.0082	< 0.0081	< 0.012	< 0.016	< 0.018		< 0.019	< 0.019 Q	< 0.019	< 0.019	0.016 Q	< 0.0091	< 0.019	0.02 Q	0.011 Q	0.022 Q
110																		•	
	/29/2004	0.022 Q	0.04 Q	< 0.017	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	< 0.012	< 0.016	< 0.02	< 0.023	< 0.015	< 0.016
	/23/2004	0.17 Q	0.095 Q	0.05 Q	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	< 0.016	< 0.022	< 0.017	0.75 Q	< 0.02	< 0.016
	2/14/2004	< 0.02	0.03 Q	< 0.019	< 0.019	< 0.018	0.027 Q	0.027 Q	0.021 Q	< 0.021	0.019 Q	0.024 Q	< 0.022	0.034 Q	< 0.022	< 0.017	0.066 Q	0.036 Q	0.046 Q
	/8/2005	0.071	0.032 Q	< 0.019	< 0.019	< 0.018	< 0.02	0.019 Q	0.022 Q	0.022 Q	0.022 Q	0.031 Q	< 0.022	0.061	< 0.022	< 0.017	0.48 Q	0.056 Q	0.056
	/21/2005	0.029 Q	0.062		< 0.0081	< 0.012	0.023 Q	0.022 Q	0.022 Q	< 0.019	0.021 Q	0.022 Q	< 0.019	0.034 Q	< 0.0091	< 0.019	0.22	0.018 Q	0.031 Q
	/6/2006	0.081	0.037 Q	0.04 Q	0.0086 Q	0.017 Q	0.054	0.11 Q	0.14 Q	0.12 Q	0.021 Q	<u>0.022 Q</u> <u>0.1</u>	0.025 Q	0.24	0.02 Q	0.088	0.19 Q	0.12 Q	0.16
	/11/2007	< 0.01	< 0.011		< 0.0081	< 0.012	< 0.016	0.021 Q	0.032 Q	0.026 Q	< 0.019	0.031 Q	< 0.019	0.24 0.042 Q	< 0.0091	< 0.019	< 0.012	0.032 Q	0.039 Q

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalene		ne Acenaph - thylene	Anthraceno	Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthend	Benzo e (ghi) peryleno	fluorant	k) Chrysene hene	Dibenz (a,h) anthracei		ne Fluorene	Indeno (1,2,3-cd) pyrene	Naphthalene	Phenanthren	e Pyrene
					W	isconsin G	roundwat	er Qualit	y Standard	ls (NR 14	0, Februa	ry 2004)							
Preventi	ive Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforce	ement Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
P111																			
	8/23/2004	0.7 Q	0.27 Q	0.15 Q	< 0.02	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.02	< 0.017	< 0.022	< 0.017 Q	0.048 Q	< 0.017	2.7 Q	0.024 Q	< 0.017 Q
	12/14/2004	0.022 Q	0.028 Q	< 0.02	< 0.02	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.02	< 0.017	< 0.022	< 0.017	< 0.022	< 0.017	< 0.023	< 0.021	< 0.017
	3/8/2005	< 0.02	< 0.023	< 0.019	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	< 0.016	< 0.022	< 0.016	< 0.022	< 0.017	0.12	< 0.02	< 0.016
	9/21/2005	0.021 Q	0.042	< 0.0082	< 0.0081	< 0.012	< 0.016	< 0.018	< 0.016 Q	< 0.019	< 0.019 Q	< 0.019	< 0.019	< 0.015	< 0.0091	< 0.019	0.2 Q	< 0.011	< 0.015
	9/5/2006	0.094	0.051	0.058 Q	< 0.0081	< 0.012	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	< 0.015	0.017 Q	< 0.019	0.24 Q	0.022 Q	< 0.015
	9/11/2007	< 0.01	< 0.011	< 0.0082	< 0.0081	< 0.012	< 0.016	< 0.018	< 0.016	< 0.019	< 0.019	< 0.019	< 0.019	< 0.015	< 0.0091	< 0.019	0.013 Q	< 0.011	< 0.015
QC01																			
(MW102)	12/16/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	3400	1.4	< 0.2
(MW102)	12/17/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
(OW01)	11/20/1997	36	12	< 0.96	< 0.89	3.5	1.3	<u>1.1</u>	0.41	0.62	0.58	0.84	< 0.13	9.9	6.7	0.58	<u>18</u>	11	5.5
(MW104)	2/28/2001	16	< 0.072	27	9.2	13	7.6	0.34	<u>0.83</u>	2.5	1.2	<u>4.7</u>	< 0.068	39	16	2.5	4	36	23
(MW109)	5/30/2001	682	362	492	< 0.75	259	< 0.57	<u>50</u>	<u>38</u>	42	< 0.57	<u>102</u>	< 0.34	<u>370</u>	<u>731</u>	23	<u>1770</u>	681	<u>466</u>
(P103)	3/7/2002	11 Q	0.32	5.7 Q	0.14	0.063 Q	0.039 Q	0.033 Q	0.023 Q	0.019 Q	0.024 Q	0.031 Q	< 0.017	0.085 Q	< 1.1	0.016 Q	< 1.3	0.19	0.072
(P105)	9/16/2002	0.3 Q	0.23 Q	0.22 Q	0.54	0.36	1.2	1.2	<u>0.7</u>	0.75	0.59	0.85	0.2 Q	1.4	0.13 Q	0.61	1.2	0.55	1.6
(GW04)	3/20/2003	< 0.036	< 0.034	0.063 Q	0.088 Q	0.11 Q	0.33	0.35	0.29	0.22	0.27	0.33	0.067 Q	0.65	0.041 Q	0.19	0.061 Q	0.28	0.56
(GW01)	9/25/2003	75 Q	18 Q	34 Q	0.85 Q	< 8	0.6 Q	0.19 Q	0.11 Q	0.067 Q	0.11 Q	0.49 Q	< 0.032	< 5.2	13 Q	0.057 Q	<u>87 Q</u>	15 Q	< 6.8
(P04)	4/21/2004	0.11 Q	0.089	0.03 Q	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	< 0.012	< 0.016	< 0.02	4 Q	< 0.015	< 0.016
(P108)	8/23/2004	7.4 Q	0.57 Q	2.6 Q	< 0.39	< 0.35	< 0.39	< 0.36	< 0.36	< 0.41	< 0.39	< 0.33	< 0.44	< 0.33	< 0.44	< 0.34	5 Q	< 0.41	< 0.33
(MW110)	9/21/2005	< 0.081	0.095 Q	0.15 Q	0.18 Q	0.19 Q	0.89	<u>1.1</u>	<u>0.99 Q</u>	0.81	0.79 Q	0.89	0.17 Q	2	0.075 Q	0.66	0.43 Q	0.58	1.7
(P104)	9/5/2006	0.087	0.035 Q	0.062 Q	< 0.0081	< 0.012 Q	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	0.016 Q	0.02 Q	< 0.019	0.088 Q	0.035 Q	< 0.015
(P111)	9/11/2007	0.01 Q	< 0.011	< 0.0082	0.0086 Q	< 0.012	< 0.016	< 0.018	< 0.016	< 0.019	< 0.019	< 0.019	< 0.019	0.022 Q	< 0.0091	< 0.019	0.02 Q	0.024 Q	0.024 Q
QC02																			
(MW103)	12/21/1993			< 1	< 2	< 0.2	< 0.05	< 0.2	< 0.05	< 0.1	< 0.05	< 0.1	< 0.1	< 0.2	< 0.4	< 0.1	< 1	< 0.4	< 0.2
(P103)	11/20/1997	< 0.6	< 0.67	< 0.99	< 0.92	< 0.021	< 0.033	< 0.065	< 0.091	< 0.11	< 0.063	0.086	< 0.13	0.32	< 0.077	< 0.059	< 0.32	0.043	0.17
(P02)	2/28/2001	0.44	< 0.072	2.1	< 0.15	0.49	0.47	< 0.013	0.16 Q	0.15 Q	0.12 Q	0.27	< 0.068	1.7	0.92	< 0.08	3	1.2	0.98
(P04)	5/30/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	< 0.055	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	< 0.056	< 0.045	< 0.032
(GW04)	8/13/2001	< 0.082	< 0.072	< 0.13	< 0.15	< 0.02	< 0.11	< 0.013	0.21	< 0.074	< 0.11	< 0.059	< 0.068	< 0.066	< 0.11	< 0.08	0.16 Q	0.19	< 0.032
(P108)	3/7/2002	34	< 8.4	10 Q	< 6.9	< 6	< 5.7	< 3.6	< 4.2	< 4.5	< 3.9	< 5.4	< 5.1	< 8.4	< 6.3	< 4.2	<u>85</u>	< 5.7	< 6
(P101)	9/16/2002	0.12 Q	0.12 Q	0.045 Q	< 0.046	< 0.04	< 0.038	< 0.024	< 0.028	< 0.03	< 0.026	< 0.036	< 0.034	< 0.056	< 0.042	< 0.028	0.74	0.08 Q	< 0.04
(P04)	3/20/2003	0.049 Q	0.037 Q	0.076	0.024 Q	0.029 Q	0.06	0.052	0.04 Q	0.029 Q	0.042 Q	0.042 Q	< 0.016	0.13	0.034 Q	0.029 Q	0.28	0.12	0.098
(P108)	9/25/2003	7.9 Q	0.63 Q	3.5 Q	0.11 Q	0.049 Q	0.021 Q	< 0.014	< 0.013	< 0.016	< 0.019	0.022 Q	< 0.016	0.022 Q	0.36 Q	< 0.021	0.31 Q	0.23 Q	0.037 Q
(MW103)	4/22/2004	0.068	0.027 Q	0.066	0.074	0.066	0.23	<u>0.26 Q</u>	0.17 Q	0.18 Q	0.16 Q	<u>0.25 Q</u>	0.046 Q	0.27	0.025 Q	0.13 Q	0.19	0.15	0.42
(GW04)	8/23/2004	0.028 Q	< 0.023	0.024 Q	< 0.019	< 0.018	< 0.02	< 0.018	< 0.018	< 0.021	< 0.019	0.016 Q	< 0.022	0.024 Q	< 0.022	< 0.017	0.11 Q	0.024 Q	0.033 Q
(P109)	9/21/2005	0.015 Q	0.02 Q	< 0.0082	0.016 Q	< 0.012	< 0.016	< 0.018	0.019 Q	< 0.019	< 0.019 Q	< 0.019	< 0.019	0.026 Q	< 0.0091	< 0.019	< 0.047 Q	0.024 Q	0.029 Q
(P111)	9/5/2006	0.074	0.044 Q	0.048 Q	< 0.0081	< 0.012 Q	< 0.016	< 0.018 Q	< 0.016 Q	< 0.019 Q	< 0.019 Q	< 0.019	< 0.019	< 0.015	0.015 Q	< 0.019	0.18 Q	0.022 Q	< 0.015

Wisconsin Public Service Corp., Former Manufactured Gas Plant Site - Oshkosh

305 Ceape Avenue, Oshkosh, Wisconsin

Sample ID	Collection Date	1-Methyl naphthalene	2-Methyl naphthalen	Acenaphthen e	e Acenaph - thylene		e Benz (a) anthracene	Benzo (a) pyrene	Benzo (b) fluoranthene	Benzo e (ghi) perylene	fluoran	k) Chrysene thene	Dibenz (a,h) anthrace		ne Fluorene	Indeno (1,2,3-cd ₎ pyrene	Naphthalene)	Phenanthren	e Pyrene
					Wi	sconsin C	Groundwate	er Qualit	y Standard	ls (NR 140	0, Februa	ry 2004)							
Preventi	ve Action Limit	NS	NS	NS	NS	600	NS	0.02	0.02	NS	NS	0.02	NS	80	80	NS	10	NS	50
Enforce	ment Standard	NS	NS	NS	NS	3000	NS	0.2	0.2	NS	NS	0.2	NS	400	400	NS	100	NS	250
QC03																			
(P103)	8/13/2001	8.4	< 0.072	4.6	< 0.15	< 0.02	0.15 Q	< 0.013	< 0.055	< 0.074	< 0.11	<u>0.1 Q</u>	< 0.068	< 0.066	0.78	< 0.08	1.1	0.19	< 0.032
(OW04)	3/8/2002	0.074	0.028	0.062 Q	0.048 Q	0.042 Q	0.15	0.13	0.12	0.09	0.099	0.11	0.03 Q	0.25	0.033 Q	0.08	0.15	0.15	0.21
(P107R)	9/16/2002	790 Q	770 Q	310 Q	< 230	< 200	< 190	< 120	< 140	< 150	< 130	< 180	< 170	< 280	< 210	< 140	2700	310 Q	< 200
(GW02)	3/20/2003	380 Q	< 340	520 Q	< 380	< 400	< 240	< 280	< 260	< 320	< 380	310 Q	< 320	<u>650 Q</u>	< 340	< 420	4200	960 Q	470 Q
(MW103)	9/25/2003	0.98 Q	< 0.068	0.29 Q	< 0.076	< 0.08	0.053 Q	< 0.056	< 0.056	< 0.064	< 0.076	< 0.056	< 0.064	0.059	< 0.068	< 0.084	0.62 Q	< 0.064	0.085 Q
(P110)	4/29/2004	< 0.017	< 0.016	< 0.017	< 0.018	< 0.019	< 0.011	< 0.013	< 0.012	< 0.015	< 0.018	< 0.013	< 0.015	< 0.012	< 0.016	< 0.02	< 0.023	< 0.015	< 0.016
(P107R)	8/23/2004	220 Q	76 Q	85 Q	7.1 Q	14 Q	5	3.4	<u>1.4</u>	1.2 Q	1.6	4.7	< 0.44	7.4 Q	27 Q	0.85 Q	790 Q	< 51	13 Q

Notes

¹⁾ Parameters that attain or exceed the NR 140 Wisconsin Groundwater Quality Preventive Action Limit (PAL) Standard are identified in italics and underlined.

²⁾ Parameters that attain or exceed the NR 140 Wisconsin Groundwater Quality Enforcement Standard (ES) are identified in bold and underlined.

<2.0 : Parameter not detected above the Limit of Detection indicated.

NS: NR 140 Wisconsin Groundwater Quality Standard has not been established for this parameter.

TB: Trip Blank for QA/QC.

QC: Quality Control duplicate sample.

Q: Analyte result has been qualified, see laboratory analytical report for additional information.

^{--:} Analysis not performed.

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-1	750.95	11.5	11/7/2002	5.71	745.24	3	11/11/02 system off 11/12/02 system on due to maintenance	1
			11/18/2002	6.63	744.32	2		
			12/20/2002	7.81	743.14	2	12/7/02 shutdown due to DNAPL tank high level alarm-no DNAPL in tank only water. 12/12/03 turned on.	5
			1/20/2003	6.88	744.07	4	Dislodged an obstruction from pump.	
			2/17/2003	7.65	743.30	2		-
			3/19/2003	8.18	742.77	2		
			4/23/2003	4.96	745.99	2	Shutdown system 4/9/03 to reprogram CPU, started system 4/23/03.	14
		-	5/16/2003	4.65	746.30	3		
			6/16/2003	4.70	746.25	3		
			6/25/2003	4.75	746.20	3	system shut down when arrived on site, sump alarm due to significant condensation within treatment room	1
			7/21/2003	nm	nm	4	7/4/03 system shut down due to significant condensation within treatment room.	1
		-	8/18/2003	6.50	744.45	5		
			9/24/2003	4.71	746.24	0	DS-1 running at pump and valve, however computer control panel shows gpm rate at 0	1
		-	10/2/2003	nm	nm	0	Turned pump off; pump not working properly.	
			10/3/2003	nm	nm	0	Turned off 10/2/03	
			10/14/2003	nm	nm	0	Pump removed for Annual Maintenance; part wore out cover under warranty.	
		-	11/20/2003	5.25	745.70	0*	Pump replaced at this visit and restarted. Counter not working at control panel, but counter at the pump working correctly.	50
			12/14/2003	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off.	
		-	12/16/2003	nm	nm	nm	Emptied sump and fixed air stripper discharge. System on	2
			12/22/2003	4.83	746.12	2		

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-1 con't	750.95	. 11.5	3/29/2004	nm	nm	0*	Cycle counter not working properly and removed for repair.	
			4/21/2004	5.90	745.05	nm	Counters on pump removed 3/04. Flow not recorded at control panel.	
		•	6/9/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. CPU needs reprogramming	
			6/23/2004	nm	nm	3**	Counters and CPU replaced and system started (manual count 000212)	14
			6/28/2004	3.32	747.63	0	(manual count 002268)	
			7/4/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. System turned on 7/6/04	2
			7/26/2004	4.42	746.53	0*	Flow rate slower than 1 gpm. (manual count 217617)	
			7/29/2004	4.82	746.13	0*	Flow rate slower than 1 gpm. (manual count 244994)	
			8/6/2004	5.14	745.81	0*	(manual counter 311768)	
			8/23/2004	4.73	746.22	nm	(manual counter 423106)	
			8/31/2004	nm	nm	0	System shut down due to City park redevelopment activities caused a shortage to the panel	
		_	9/9/2004	nm	nm	nm	System on; shortage repaired	9
			12/15/2004	4.49	746.51	0	New top of sump elevation based on STS June 2005 survey. Pump not working properly. Took pump off-line for repairs.	16
			1/24/2005	6.33	744.67	**	New top of sump elevation based on STS June 2005 survey	
		_	2/24/2005	nm	nm	nm	Installed repair pump	55
		_	3/8/2005	5.34	745.66	**	New top of sump elevation from City work; elevation based on STS June 2005 survey	
		_	4/2/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 4/4/05	2
			4/20/2005	nm	nm	nm	Reroute manifold	1
		· · · · · · · · · · · · · · · · · · ·	5/20/2005	nm	nm		Shutdown system bag filter alarm. Bag changed on 5/23/05	3

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Minnitoring	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-1 con't	751.00	11.5	6/8/2005	4.23	746.77	**		
			6/10/2005	nm	nm	nm	Shutdown system sump alarm due to condensation. Sump emptied on 6/13/05	3
			7/7/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 7/11/05	4
			9/14/2005	nm	nm	nm	Shutdown due to phase failure system running on 9/28/05	14
			10/11/2005	4.42	746.58	**	Annual cleaning	
			12/12/2005	4.74	746.26	3.5	flow reading from new rotometer	
			12/25/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/3/06	6
		•	1/3/2006	nm	nm	nm	Changed bag filters	3
		-	1/27/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/30/06	3
		-	3/7/2006	5.68	745.32	2.5	flow reading from rotometer	
		-	5/28/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/31/06	3
		-	6/19/2006	4.34	746.66	nm	cycle # 807543	
		-	9/5/2006	4.7	746.30	nm		
		_	12/1/2006	nm	nm	nm		
			12/22/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/9/07	9

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-1 con't	751.00	11.5	1/9/2007	nm	nm	nm	Bag changed today.	9
			3/11/2007	nm	nm	nm	Low temperature alarm in equipment room. Thermostat not working properly. Turned thermostat off on 3/16/07 until replacement	5
		•	3/26/2007	5.17	-5.17	nm	(manual counter #159342)	
			6/3/2007	nm	nm	nm	Phase Fail possiblly from bad weather. Operating 6/4/07	1
			6/26/2007	4.37	-4.37	nm	(manual counter #159342)	
			9/11/2007.	4.26	-4.26	nm		
		_	10/1/2007	nm	nm	nm	Air bubbles noticed in oil/water separtor.	20
			10/4/2007	nm	nm	nm	System not working properly; air bubbles in oil/water separator. System running; had to adjust fittings and location of pump	3
			10/12/2007	nm	nm	nm	System not working properly; air bubbles. System running; set too low and air leaks	8
			11/20/07	nm	nm	nm	DS-1 pump not working properly. DS-2 pump was installed in DS-1 sump to continue pumping while WPSC personnel inspect DS-1 pump.	10
		-	11/30/2007	5.27	-5.27	nm		

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-2	752.06	11.5	11/7/2002	6.80	745.26	4	11/11/02 system off 11/12/02 system on due to maintenance	1
		,	11/18/2002	7.72	744.34	3		
			12/20/2002	8.01	744.05	1	12/7/02 shutdown due to DNAPL tank high level alarm-no DNAPL in tank only water. 12/12/03 turned on.	5
			1/20/2003	8.10	743.96	2		
			2/17/2003	8.12	743.94	1		
			3/19/2003	8.21	743.85	2		
			4/23/2003	6.05	746.01	2	Shutdown system 4/9/03 to reprogram CPU, started system 4/23/03.	14
			5/16/2003	6.71	745.35	0	Turned off 5/7/03	
			6/16/2003	5.78	746.28	0	Turned off 5/7/03	
		_	6/25/2003	5.84	746.22	0	Turned off 5/7/03	15
			8/18/2003	8.70	743.36	0	Turned off 5/7/03	
		•	9/24/2003	5.80	746.26	0	Turned off 5/7/03	
		•	10/2/2003	nm	nm	6	Turned pump on since DS-1 not running.	94
			10/3/2003	nm	nm	2		
		-	10/14/2003	nm	nm	4		
			11/20/2003	6.58	745.48	0	Pump removed and replaced for Annual Maintenance. Pump off.	
			12/14/2003	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off.	
		-	12/16/2003	nm	nm	nm	Emptied sump and fixed air stripper discharge. System on	2
		_	12/22/2003	5.88	746.18	0	Pump turned off	41
		·	1/6/2004	nm	nm	nm	Pump turned on since DS-4 pump in for repairs Cycle counter not working properly and removed for	15
		_	3/29/2004	nm	nm	0*	cycle counter not working property and removed for	
·			4/21/2004	5.58	746.48	nm	Counters on pump removed 3/04. Flow not recorded at control panel.	

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-2 con't	752.06	11.5	6/9/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. CPU needs reprogramming	
			6/23/2004	nm	nm	1**	Counters and CPU replaced and system started (manual count 975062)	14
			6/28/2004	4.39	747.67	1	(manual count 980390)	
		,	7/4/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. System turned on 7/6/04	2
			7/26/2004	5.45	746.61	0	Flow rate slower than 1 gpm. (manual count 47562)	
			7/29/2004	5.58	746.48	0*	Flow rate slower than 1 gpm. (manual count 0055484)	
			8/6/2004	5.52	746.54	0*	Flow rate slower than 1 gpm. (manual count 0055916)	
			8/23/2004	5.80	746.26	nm	(manual count 088347)	
			8/31/2004	nm	nm	0	System shut down due to City park redevelopment activities caused a shortage to the panel	
			9/9/2004	nm	nm	nm	System on; shortage repaired	9
			12/15/2004	5.52	746.56	**	New top of sump elevation from City work; elevation based on STS June 2005 survey	
		•	1/3/2005	nm	nm	nm	Air in water line. Pump turned off for inspection.	
			1/24/2005	5.85	746.21	**	Pump pulled and actuator rod broken. In for repairs; elevation based on STS June 2005 survey	
		•	2/24/2005	nm	nm	nm	Installed repair pump	52
			3/8/2005	6.42	745.64	**	Elevation based on STS June 2005 survey	
		-	4/2/2005	nm	nm .	nm	Shutdown system bag filter alarm. Bag changed on 4/4/05	2
			4/20/2005	nm	nm	nm	Reroute manifold	1
			4/28/2005	nm	nm	nm	Turned pump off	
	752.08	11.5	6/8/2005	5.20	746.88	**	Pump off	41
		_	10/11/2005	5.37	746.71	**	Pump off, annual cleaning	125
		-	12/12/2005	5.67	746.41	nm	pump off	62
			12/31/2005	nm	nm	nm	pump off	19

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-2 con't	752.08	11.5	1/27/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/30/06	27
			3/7/2006	6.63	745.45	nm	pump off	39
			5/28/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/31/06	82
			6/19/2006	5.26	746.82	nm	cycle # 524663	22
		•	9/5/2006	5.61	746.47	nm		78
			12/1/2006	nm	nm	nm		87
		•	3/26/2007	6.17	745.91	nm	(manual counter #524664)	115
			6/27/2007	5.22	746.86	nm	(manual counter #524665)	93
			9/11/2007	5.29	746.79	nm		76
			11/30/2007	6.18	745.90	nm		80
DS-3	749.57	11.5	11/7/2002	4.06	745.51	4	11/11/02 system off 11/12/02 system on due to maintenance	1
		•	11/18/2002	4.77	744.80	3		
			12/20/2002	5.50	744.07	3	12/7/02 shutdown due to DNAPL tank high level alarm-no DNAPL in tank only water. 12/12/03 turned on.	5

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-3 con't	749.57	11.5	1/20/2003	6.02	743.55	5		
			2/17/2003	6.30	743.27	2		
			3/19/2003	5.91	743.66	4		
			4/23/2003	3.64	745.93	3	Shutdown system 4/9/03 to reprogram CPU, started system 4/23/03.	14
			5/16/2003	3.08	746.49	3	Reduced flow 5/7/03	
			6/16/2003	3.25	746.32	3		
			6/25/2003	3.35	746.22	3	system shut down when arrived on site, sump alarm due to significant condensation within treatment room	1
			7/21/2003	nm	nm	0	7/4/03 system shut down due to significant condensation within treatment room.	1
			8/18/2003	6.00	743.57	0		
			9/24/2003	3.35	746.22	0		1
			10/2/2003	nm	nm	0	OWS high water alarm on due to bacterial growth at OWS outlet; noted pump has air in water line may have caused the bacterial growth at outlet. Turned pump off.	
			10/3/2003.	nm	nm	0	Bacterial growth removed from OWS outlet. Turned off 10/2/03	
		_	10/14/2003	nm	nm	0	Pump removed for Annual Maintenance; magnetic set screw missing.	
			11/20/2003	3.60	745.97	0*	Pump replaced at this visit and restarted. Counter not working at control panel, but counter at the pump working correctly.	50
		_	12/14/2003	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off.	
		_	12/16/2003	nm	nm	nm	Emptied sump and fixed air stripper discharge. System on	2
		_	12/22/2003	3.48	746.09	4		3
			3/29/2004	nm	nm	0*	Cycle counter not working properly and removed for	-

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-3 con't	749.57	11.5	4/21/2004	3.52	746.05	nm	Counters on pump removed 3/04. Flow not recorded at control panel.	
ļ			6/9/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. CPU needs reprogramming	
			6/23/2004	nm	nm	0**	Counters and CPU replaced and system started (manual count 876690)	14
		-	6/28/2004	1.90	747.67	0	(manual count 932396)	
			7/4/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. System turned on 7/6/04	2
			7/26/2004	2.96	746.61	0	Pump not operating properly. Shut off pump. (manual count 981774)	22
			7/29/2004	2.91	746.66	0	Pump off, repairs needed. (Manual count not taken at this visit. Will be taken when pump reinstalled)	3
		-	8/6/2004	3.21	746.36	0	Pump restarted this visit. (manual counter 981778 after start up)	8
			8/23/2004	3.33	746.24	nm	(manual count 290334)	
			8/31/2004	nm	nm	0	System shut down due to City park redevelopment activities caused a shortage to the panel	
		-	9/9/2004	nm	nm	nm	System on; shortage repaired	9
		_	9/17/2004	nm	nm	0	Turned pump off; to be retrofitted for final park grades	
		-	11/4/2004	nm	nm	nm	Turned pump on	48
			12/15/2004	10.94	746.54	**	New top of sump elevation from City work; elevation based on STS June 2005 survey	

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-3 con't	749.57	11.5	1/24/2005	nm	nm	nm	·	
			3/8/2005	11.96	745.52	**	New top of sump elevation from City work; elevation based on STS June 2005 survey	
			3/14/2005	nm	nm	nm	Noticed pump not operation, turned pump off	
			4/2/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 4/4/05	
			4/20/2005	nm	nm	nm	Reroute manifold	
			4/28/2005	nm	nm	nm	Installed repaired pump	45
			5/20/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/23/05 Shutdown system sump alarm due to condensation. Sump	3
	757.48	19.4	6/8/2005	11.09	746.39	**		
			6/10/2005	nm	nm	nm	Shutdown system sump alarm due to condensation. Sump emptied on 6/13/05	3
			7/7/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 7/11/05	4
			9/14/2005	nm	nm	nm	Shutdown due to phase failure system running on 9/28/05	14
			10/11/2005	11.29	746.19	**	Annual Cleaning	
			12/12/2005	11.59	745.89	3.5	flow reading from new rotometer	
			12/25/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/3/06	6
			1/3/2006	nm	nm	nm	Changed bag filters	3
			1/27/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/30/06	3
			3/7/2006	13.63	743.85	3.0	flow reading from new rotometer	
		·	5/28/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/31/06	3
			6/19/2006	10.92	746.56	nm	cycle # 355974	
			9/5/2006	11.74	745.74	<0.1	Y-strainer build-up-manifold disassembled and cleaned pump. Rate of 2-4 gpm after cleaning	
			10/26/2006	nm	nm	nm	Pump not working properly due to a kink in air line	
			12/1/2006	nm	nm	nm		
		•	12/22/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/9/07	9

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-3 con't	757.48	19.40	1/9/2007	nm	nm	nm	Bag changed today.	9
			3/11/2007	nm	nm	nm	Low temperature alarm in equipment room. Thermostat not working properly. Turned thermostat off on 3/16/07 until replacement	5
		-	3/26/2007	11.78	745.70	nm	manual counter not installed	
		-	6/3/2007	nm	nm	nm	Phase Fail possiblly from bad weather. Operating 6/4/07	1
			6/27/2007	11.17	746.31	nm	(manual count #355974)	
		_	9/11/2007	10.83	746.65	nm		
			10/1/2007	nm	nm	nm	Air bubbles noticed in oil/water separtor.	20
			10/4/2007	nm	nm	nm	System not working properly; air bubbles in oil/water separator. System running; had to adjust fittings and location of pump	3
			10/12/2007	nm	nm	nm	System not working properly; air bubbles. DS-3 pump working properly.	
			11/30/2007	12.13	745.35	nm		
DS-4	750.77	11.5	11/7/2002	5.10	745.67	4	11/11/02 system off 11/12/02 system on due to maintenance	1
		_	11/18/2002	5.43	745.34	4		
	+		12/20/2002	5.65	745.12	6	12/7/02 shutdown due to DNAPL tank high level alarm-no DNAPL in tank only water. 12/12/03 turned on.	5

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-4 con't	750.77	11.5	1/20/2003	6.15	744.62	5		
			2/17/2003			5	sump buried in snow	
			3/19/2003	6.10	744.67	6		
			4/23/2003	4.79	745.98	2	Shutdown system 4/9/03 to reprogram CPU, started system 4/23/03.	14
			5/16/2003	4.23	746.54	2	Reduced flow 5/7/03	
			6/16/2003	4.41	746.36	2		
			6/25/2003	4.52	746.25	2	system shut down when arrived on site, sump alarm due to significant condensation within treatment room	1
			7/21/2003	nm	nm	2	7/4/03 system shut down due to significant condensation within treatment room.	1
		-	8/18/2003	4.80	745.97	2		
		- -	9/24/2003	4.56	746.21	2		1
		-	10/2/2003	nm	nm	2		
			10/3/2003	nm	nm	3		
			10/14/2003	nm	nm	2		1
			11/20/2003	4.80	745.97	0*	Counter not working at control panel, but counter at the pump working correctly.	
		_	12/14/2003	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off.	
		_	12/16/2003	nm	nm	nm	Emptied sump and fixed air stripper discharge. System on	2
			12/22/2003	4.70	746.07	2		

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-4 con't	750.77	11.5	1/6/2004	nm	nm	nm	Apparently pump not working properly, no flow. Pump turned off.	
			3/29/2004	nm	nm	0*	Cycle counter not working properly and removed for repair. Pump turned on.	83
		_	4/21/2004	4.71	746.06	nm	Counters on pump removed 3/04. Flow not recorded at control panel.	
		_	6/9/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. CPU needs reprogramming	
			6/23/2004	nm	nm	5**	Counters CPU replaced and system started (manual count 373202)	14
		_	6/28/2004	3.11	747.66	6	(manual count 565535)	
		_	7/4/2004	nm	nm	nm	Air stripper discharge overflow, building sump alarm. System off. System turned on 7/6/04	2
		_	7/26/2004	4.22	746.55	6	(manual count 158109)	
		_	7/29/2004	4.32	746.45	6	(manual count 254961)	
			8/6/2004	4.82	745.95	7	(manual count 502433)	
		_	8/23/2004	4.58	746.19	nm	(manual count 982156)	
		_	8/31/2004	nm	nm	11 1	System shut down due to City park redevelopment activities caused a shortage to the panel	
		_	9/9/2004	nm	nm	nm	System on; shortage repaired	9
			12/15/2004	4.24	746.57	**	New top of sump elevation from City work; elevation based on STS June 2005 survey	

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-4 con't	750.77	11.5	1/3/2005	nm	nm	nm	Air in water line. Pump turned off for inspection.	
			1/24/2005	nm	nm	nm	Pump pulled and actuator rod broken. In for repairs	,
			2/24/2005	nm	nm	nm	Installed repair pump	52
			3/8/2005	5.12	745.65	**	Elevation based on STS June 2005 survey	
			4/2/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 4/4/05	2
			4/20/2005	nm	nm	nm	Reroute manifold	1
			5/20/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/23/05	3
	750.81	11.5	6/8/2005	4.42	746.39	**	/	
			6/10/2005	nm	nm	nm	Shutdown system sump alarm due to condensation. Sump emptied on 6/13/05	3
			7/7/2005	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 7/11/05	4
			9/14/2005	nm	nm	nm	Shutdown due to phase failure system running on 9/28/05	14
			10/11/2005	4.50	746.31	**	Annual Cleaning	
			12/12/2005	4.83	745.98	2.0	flow reading from new rotometer	
			12/25/2005	nm_	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/3/06	6
			1/3/2006	nm	nm	nm	Changed bag filters	3
			1/27/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/30/06	3
			3/7/2006	5.32	745.49	2.0	flow reading from rotometer	
			5/28/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 5/31/06	3
		-	6/19/2006	4.35	746.46	nm	cycle # 662547	
		•	9/5/2006	4.76	746.05	<0.1	Y-strainer build-up-manifold disassembled and cleaned pump. Rate of 2-4 gpm after cleaning	
		-	10/26/2006	nm	nm	nm	Pump not working properly due to a kink in air line	
		-	12/1/2006	nm	nm	nm		
			12/22/2006	nm	nm	nm	Shutdown system bag filter alarm. Bag changed on 1/9/07	9

Table 4 - Dewatering Sump Groundwater Elevation Summary and System Operational Data Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

Sump	TOS ^A Elevation (feet) ^B	Sump Depth from TOS (feet)	Monitoring Date	Depth to Groundwater (feet)	Groundwater Elevation (feet) ^B	Flowrate (gpm)	Operation Notes	Not in Operation (days)
DS-4 con't	750.81	11.5	1/9/2007	nm	nm	nm	Bag changed today.	9
			3/11/2007	nm	nm	nm	Low temperature alarm in equipment room. Thermostat not working properly. Turned thermostat off on 3/16/07 until replacement	5
		•	3/26/2007	5.97	744.84	nm	manual counter not installed	
			6/3/2007	nm	nm	nm	Phase Fail possiblly from bad weather. Operating 6/4/07	1
		_	6/27/2007	4.51	746.30	nm	(Manual Counter #662547)	
			9/11/2007	4.20	746.61	nm		
			10/1/2007	nm	nm	nm	Air bubbles noticed in oil/water separtor.	20
			10/4/2007	nm	nm	nm	System not working properly; air bubbles in oil/water separator. System running; had to adjust fittings and location of pump	3
			10/12/2007	nm	nm	nm	System not working properly; air bubbles. Had to lift DS-up from bottom of sump.	8
			11/30/2007	5.26	745.55	nm		

(O:HMS 11/19/02 C-DWB 1/2/03)(JKY/HMS031205)(jky/HMS040514)(JKY/HMS07/04)(JKY/HMS-08/04)(HMS 11/04)(HMS/PAR 3/05)(RJG/HMS 07/06)(HMS/RJG 09/06)(HMS/RJG 07/07)(HMS 9/07

A: TOS - Top of Sump Cover

na: Not available

B: Elevations relative to National Vertical Geodetic Datum

nm: Not measured

-: Sump not locatable/accessible

gpm: gallons per minute

Notes:

- 1) New survey data was taken by Roehlig Land Surveying on September 25, 2002 due to construction activities.
- 2) " * " Flow rate on control panel is based on the electric counter reading. Counter and pump working at each of the sumps, but the electric counter reading in control panel not working properly causing a zero gpm reading.
- 3) " ** " Flow rate on control panel is based on the electric counter reading after installation. Counter not working at the sump.
- 4) Dewatering sumps were raised/lower during park redevelopment activities. On June 7, 2005, STS Consultants surveyed top of sumps.

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			BTEX	(Parameters	(µg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^c	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP		nl	nl	nl	nl	nl	nl	2,130	340	1.9	100
DS-1	10/24/2002	140	380	38	257	815	926	1,298	<10	0.7	4.1
(Dewatering	11/4/2002	290	550	36	300	1,176	1,060	1,774	16	0.5	3.7*
Sump No. 1)	11/11/2002	270	900	72	610	1,852	1,419	2,523	27	1.6	3.7*
i	11/18/2002	170	450	45	270	935	1,109	1,582	54	0.65	<1.2
	12/20/2002	290	800	100	640	1,830	2,368	3,682	<5	2.1	2.6
	1/20/2003	180	490	79	370	1,119	1,676	2,160	22	1.1	4.5
	2/17/2003	280	910	110	780	2,080	2,377	3,480	5.6	1.1	3.0*
	05/16/2003	330	870	70	620	1,890	1,815	2,791	12	0.31	<1.0
	12/22/2003	290	490	37	280	1,097	1,127	1,791	5.6	0.4	<0.98
	03/29/2004	170	380	34	203	787	462	950	na	8.5	na
	06/28/2004	360	1,600	81	900	2,941	1,849	3,742	na	0.9	na
	08/23/2004	190	880	21	360	1,451	234	1,263	na	0.46	na
	3/8/2005	15	20	5.80	44	85	51	59	na	0.30	na
	6/8/2005	29	79	14	84	206	19	122	na	0.73	na
	10/11/2005	120	160	16	112	408	356	569	na	0.47	na
ļ .	12/12/2005	11	180	16	120	327	22	306	na	0.73	na
	3/7/2006	340	2,900	250	1,930	5,420	1,197	4,548	na	0.77	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			BTEX	Parameters	(μg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^c	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP	Limits	nl	nl	nl	nl	nl	nl	2,130	340	1.9	100
DS-2	10/24/2002	760	2000	340	1370	4,470	2,840	5,500	< 5	3.7	5.9
(Dewatering	11/4/2002	890	1900	190	1190	4,170	3,814	6,278	14	1.9	7.1
Sump No. 2)	11/11/2002	1100	1700	100	870	3,770	2,778	5,349	13	1.2	4.3
	11/18/2002	1100	1900	110	990	4,100	2,821	5,427	15	1.3	5.3
	12/20/2002	1000	1900	150	1090	4,140	2,200	5,440	<5	1.9	2.9
	1/20/2003	230	910	160	760	2,060	2,769	3,688	14	1.3	3.9
ľ	2/17/2003	320	1500	240	1370	3,430	2,377	4,340	<4	0.99	3.5*
	10/21/2003	630	1500	98	880	3,108	3,289	4,953	na	na	na
	3/29/2004	130	470	22	204	826	434	937	na	0.22	na
	6/28/2004	350	2,000	92	1,120	3,562	1,910	4,344	na	0.72	na
	8/23/2004	170	750	18	310	1,248	270	1,144	na	0.50	na
	3/8/2005	440	970	55	430	1,895	1,657	2,870	na	0.38	na
	6/8/2005	na	na	na	na	na	na	na	na	na	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			BTEX	Parameters	(µg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^c	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP	Limits	nl	nl	nl	nl	nl	nl	2,130	340	1.9	100
DS-3	10/24/2002	580	2,900	160	1,550	5,190	2,710	5,740	23	0.38	2.3*
(Dewatering	11/4/2002	780	4,600	700	3,200	9,280	2,478	8,174	28	0.25	3*
Sump No. 3)	11/11/2002	550	3,800	620	3,100	8,070	1,966	6,749	23	0.17	2.1*
	11/18/2002	680	4,800	890	4,000	10,370	2,532	8,459	18	0.3	1.6*
	12/20/2002	940	7,400	1,500	6,400	16,240	4,727	13,981	11	0.27	2.3*
	1/20/2003	890	8,200	1,700	7,900	18,690	5,271	15,636	10	0.26	5.3
	2/17/2003	910	8,900	1,900	8,600	20,310	4,396	16,310	7.2	0.17	3.8*
	5/16/2003	280	1,600	210	1,310	3,400	1,705	3,490	15	0.059	< 0.97
	12/22/2003	380	1,900	63	630	2,973	942	3,133	13	0.13	1*
	3/29/2004	110	470	12	160	752	220	739	na	0.19	na
	6/28/2004	370	2,900	120	1,600	4,990	1,788	5,162	па	0.14	na
	8/23/2004	190	760	20	320	1,290	1,083	1,886	na	0.37	na
	3/8/2005	310	1,800	46	570	2,726	1,343	3,328	na	0.19	na
	6/8/2005	200	1,500	85	790	2,575	1,406	2,963	na	0.30	na
1	10/11/2005	130	1,300	44	570	2,044	1,061	2,360	na	0.52	na
	12/12/2005	120	1,100	32	420	1,672	361	1,464	na	0.57	na
	3/7/2006	490	4,500	390	2,900	8,280	2,431	7,558	na	0.38	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			BTEX	(Parameters	(µg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^C	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP		nl	nl	nl	nl	nl	nl	2,130	340	1.9	100
DS-4	10/24/2002	4.8	12	<0.68	4.7	22	40	24	11	0.078	2.3*
(Dewatering	11/4/2002	16.0	25	<0.68	6.3	47	36	41	16	0.075	<1.2
Sump No. 4)	11/11/2002	22.0	38	0.81*	11.3	72	103	113	28	0.057	<1.2
	11/18/2002	48	43	1.2*	13	105	204	215	14	0.059	5.3
	12/20/2002	140	82	3.1*	30	256	84	288	<5	0.033	1.2*
Ī	1/20/2003	180	200	17	107	504	286	564	15	0.037	1.5*
	2/17/2003	220	210	8.2	83	521	231	574	<4	0.026	< 1.2
	5/16/2003	110	350	40	280	780	960	1,269	16	0.096	< 1.0
	10/21/2003	77	100	4.4	41	222	713	726	na	na	na
	3/29/2004	4.9	6.4	< 0.36	2.7	14	77	36	na	0.11	na
1	6/28/2004	13	70	2.8	36	122	230	263	na	0.20	na
	8/23/2004	100	290	7.1	114	511	383	686	na	0.32	na
	3/8/2005	8.8	11	<0.36	4.1	24	34	11	na	0.085	na
	6/8/2005	56	140	3.2	58	257	68	218	na	0.16	na
	10/11/2005	18	29	<0.36	5.77	53	44	58	na	0.27	na
	12/12/2005	27	100	1.1	32.5	161	63	151	па	0.62	na
	3/7/2006	34	79	1 *	19.3	133	71	130	na	0.31	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

	· <u> </u>		BTEX	Parameters	(μg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^C	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP	Limits	nl	nl	nl	nl	nl	nl	2,130	340	1.9	100
os	10/24/2002	na	na	na	na		na	na	16	na	4.8
(effluent from	11/4/2002	na	na	na	na		na	na	22	na	2.2*
multi-phase	11/11/2002	na	na	na	na		na	na	20	na	2.8*
separator)	11/18/2002	na	na	na	na		na	na	28	na	3.9
	12/20/2002	na	na	na	na		na	na	30	na	4.3
	1/20/2003	na	na	na	na		na	na	38	na	6.7
	2/17/2003	na	na	na	na		na	na	4	na	3.0*
Influent	12/14/2004	3.6	12	0.65*	8.2	24	21	12	na	0.80	na
	6/26/2007	100	430	27	240	797	493	952	na	0.89	na
	9/11/2007	85	380	15	145	625	499	866	na	0.47	na
EFF	10/24/2002	390	1,400	150	880	2,820	2,510	5,405	11.0	1.2	5.4
(prior to air	11/4/2002	520	2,000	240	1,300	4,060	1,258	3,832	15.0	0.79	2.5*
stripper installment)	11/4/02 ⁸	456	1,770	181	1,193	3,600	1,373	3,776	11.0	0.465	na
	11/5/02 ^B	502	1,410	110	851	2,873	1,368	3,382	2.4	0.481	na
ļ	11/6/02 ^B	408	1,440	103	843	2,794	1,965	3,909	4.6	0.522	na
	11/11/2002	510	1,700	210	1220	3,640	1,789	3,918	13.0	0.61	4.4
ľ	11/18/2002	550	2,000	310	1520	4,380	1,061	3,728	22.0	0.66	4.3
	12/20/2002	560	2,700	500	2240	6,000	2,186	5,781	7.0	0.57	2.6*
Ī	1/20/2003	530	3,500	650	3000	7,680	2,626	7,098	7.0	0.57	3.9
	02/6/03 ^B	490	537	534	3490	5,051	3,404	4,513	na	0.26	na
	2/17/2003	520	3,700	690	3200	8,110	2,098	7,370	4.0	0.39	4.6
	05/16/03	220	780	99	700	1,799	1,158	2,005	16.0	0.16	1.6*
	06/5/03 ^B	320	1,630	187	1,867	4,004	1,508	3,348	na	0.147	na
1	06/18/03	270	1,200	170	1,070	2,710	1,396	2,808	na	0.14	na
	06/25/03	260	1,400	220	1,260	3,140	1,865	3,465	na	0.13	na
	9/5/2003 ^B	23.8	34.2	5.46	117	180	24	75	na	0.07	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			BTEX	Parameters	(µg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^c	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP	Limits	ni	nl	nl	nl	nl	nl	2,130	340	1.9	100
Pre-Air Stipper ⁰	10/14/2003	460	1,200	76	690	2,426	1,926	3,336	9.5	na	4.5
	10/21/2003	na	na	na	na	na	na	na	na	0.3	na
	11/20/2003	320	610	41	370	1,341	1,295	1,990	4.8	0.21	<0.99
	12/22/2003	140	430	16	188	774	130	614	14	0.17	2.2*
	6/28/2004	170	800	45	570	1,585	720	1,635	na	0.23	na
EFF	10/14/2003	16	36	2.6	29	84	36	52	7.5	na	3.3
Post-Air Stripper	10/21/2003	na	na	na	na	na	na	na	na	0.29	na
	11/20/2003	12	21	1.5	16.5	51	2.2	35	5.2	0.23	<0.99
	11/26/2003 ⁸	15.1	32	<6	21.5	69	25	65	na	0.175	na
	12/22/2003	11	33	1.4*	20	65	25	55	15	0.17	1.5*
	3/29/2004	<0.14	<0.40	<0.36	<0.74	nd	1.05	<10	32	0.19	<1.0
	6/28/2004	3.4	16	0.91	15	35	31	16	31	0.27	<0.57
	8/23/2004	31	84	3.0	60	178	105	164	88	0.37	1.9*
	9/10/2004 ^B	3.6	22.5	0.582	9.47	36	10.8	23	na	0.27	na
	12/14/2004	<0.14	<0.40	<0.36	<0.74	nd	0.6	<10	29	0.62	1.5*
	3/8/2005	9.3	28	1.3	21	59	80	62	7	0.23	na
	3/30/2005 ^B	33.0	41	3.5	43	121	298	271	na	0.51	na
ĺ	5/31/2005 ^B	3.0	15	1.5	30	50	44	37	na	na	na
	6/8/2005	4.3	21	1.6	16.6	44	3.3	21	11	0.19	na
	7/14/2005 ^B	4.4	21	1.5	16.4	43	19.2	21	na	na	na
	10/11/2005	14	50	3.3	46	113	23	64	na	0.51	na
	11/4/2005 ^B	50	226	11	129	416	72	316	na	0.622	na
	12/12/2005	43	150	7.6	100	301	16	193	4.6	0.57	na
	3/7/2006	74	540	46	370	1,030	47	676	na	0.35	na
	6/19/2006	5.9	12	0.92 *	11.1	30	24	12	na	0.61	na
	9/5/2006	<0.14	<0.40	<0.36	<0.74	nd	0.2	nd	11.0	0.97	na
	9/6/2006 ^B	4.0	9.8	1	5.38	20	6.1	nd	na	7.28	na
	12/1/2006	1.1	3.5	<0.36	2.1	6.7	12	nd	5.8	0.51	na
	3/26/2007	1.9	7.8	0.68 Q	6.8	17	21	nd	·· 8.0	0.50	na

Table 5 - Gradient Control System Analytical Results Wisconsin Public Service Corporation
Oshkosh Former Manufactured Gas Plant Site

			BTEX	Parameters	(µg/L)		μg/L	μg/L		mg/L	
Location	Date	Benzene	Ethylbenzene	Toluene	Xylenes (total)	Total BTEX	Total PAH ^c	Total Toxic Organics ^A	Total Suspended Solids (TSS)	Total Cyanide	Oil and Grease
OWWTP	Limits	nl	nl	ni	nl	nl	nl	2,130	340	1.9	100
EFF con't	6/26/2007	12	45	2.9	32	92	14	57	na	0.78	na
	8/9/2007 ^B	23.5	22	23	<33.5	69	2.27	70	na	na	na
	9/11/2007	6.5	11	1.20 Q	22	40	2	11	35.0	0.24	na
	10/8/2007 ^B	49.0	198	36.00 Q	120	403	81.85	310	na	na	na
	11/30/2007	5.9	21	1.00 Q	12	40	33	32	na	0.79	na

1)(HMS/JKY 7/04)(JKY/HMS 9/04)(HMS/JTB 12/04)(HMS/RHS 3/05)(HMS/PAR 6/05)(HMS/PAR 10/05)(HMS/JTB 12/05)(RJG/HMS 07/06)(HMS/PAR 09/06)(PAR/HMS 4/07)(HMS/RJG 7/07)[HMS/RJG 12/07][RJG/KJB 01/08]

Notes:

* =Analyte detected between the LOD and LOQ

nd = no detect

na = not analyzed

nl = no limit

A = Total Toxic Organics is equal to the sum of all detected concentrations over 0.01 mg/L (10 ug/L) for the compunds listed in 40 CFR part 413.02, includes the following: Benzene, Ethylbenzene, Toluene, Acenaphthene, Acenaphthylene, Anthracene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(ghi)perylene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, Chrysene, Dibenzo(ah)anthracene, Fluoranthene, Fluoranthene, Phenanthrene, Pyrene.

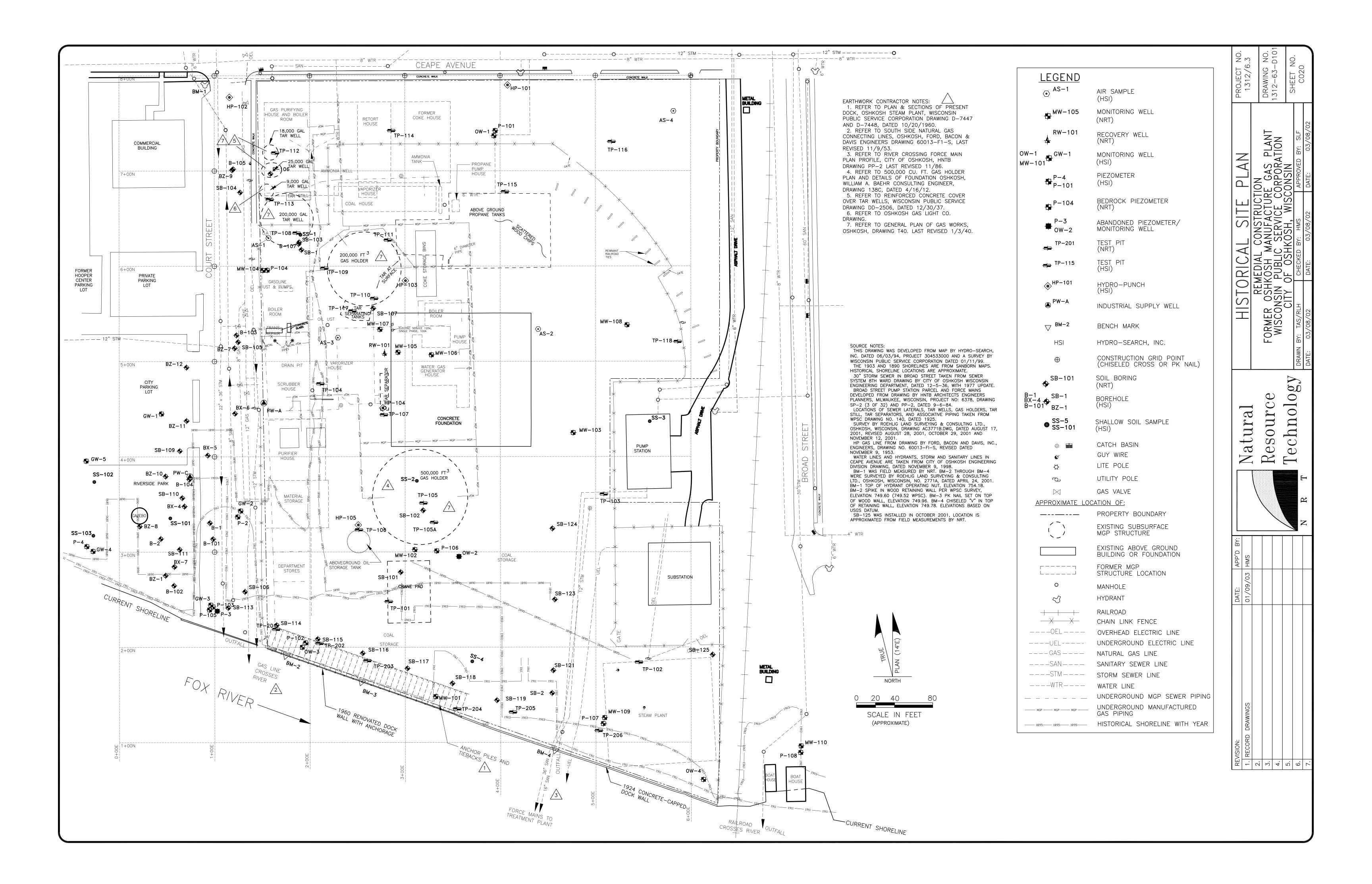
B = Sample collected by the City of Oshkosh

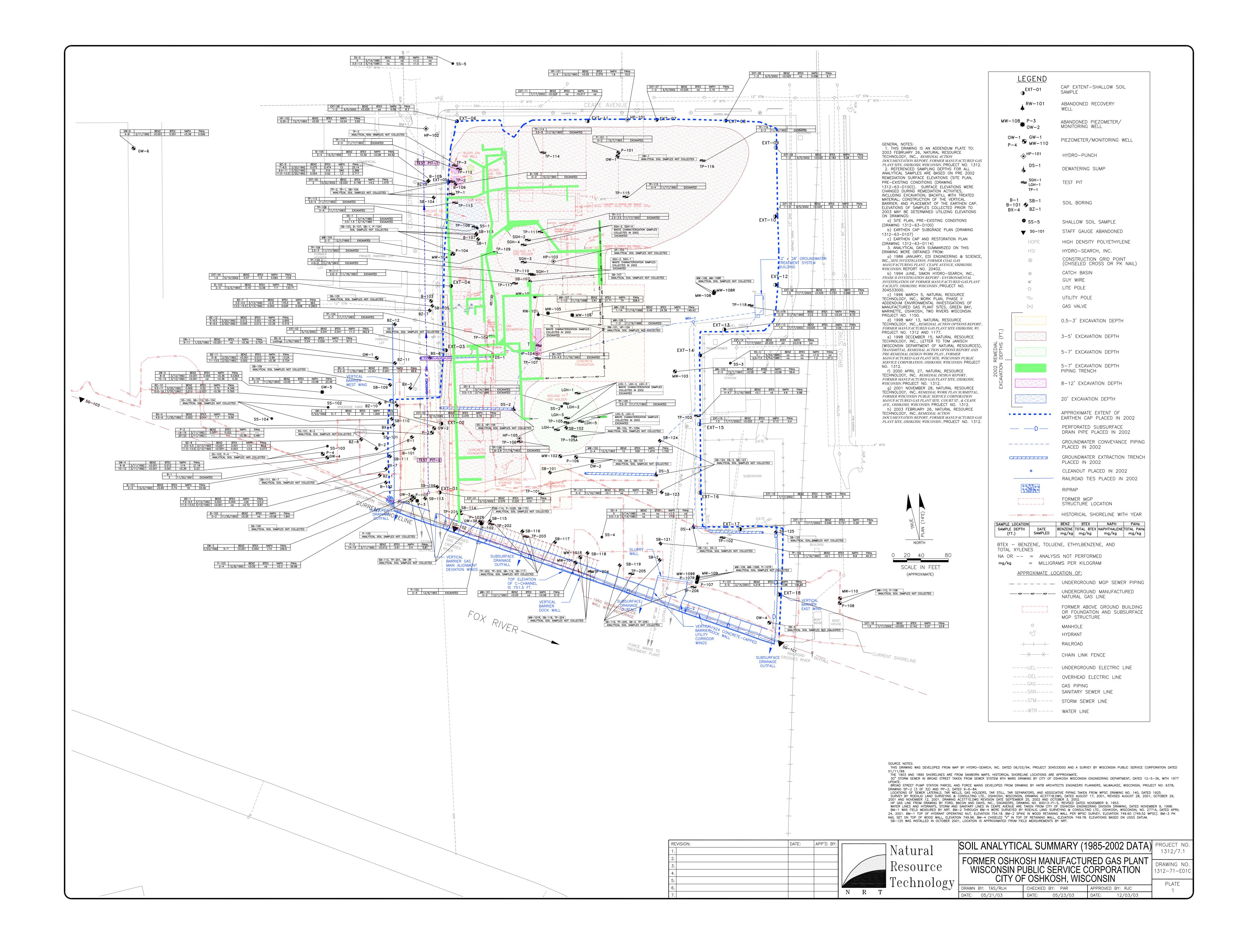
C = Total Polynuclear Aromatic Hydrocarbons is equal to the sum of detects only for the following compounds: Acenaphthene, Acenaphthylene, Anthracene, Benz(a)anthracene, Benz(a)pyrene, Benzo(b)fluoranthene, Benzo(ghi)perylene, Benzo(k)fluoranthene, Indeno(1,2,3-cd)pyrene, Chrysene, Dibenz(ah)anthracene, Fluoranthene, Fluorene, 1-Methylnaphalene, 2-Methylnaphalene, Naphthalene, Phenanthrene, and Pyrene.

D = Pre-Air Stripper samples are collected at the sample tap between the bag filters and the air stripper.

Table 6. Groundwater and System Monitoring Schedule (Revised December 2007) Wisconsin Public Service Corporation - Former Oshkosh Manufactured Gas Plant Site Oshkosh, WI

	Mar-07	Jun-07	Sep-07	Dec-07	Mar-08	Jun-08	Sep-08	Dec-08
Treatment System Monitoria								
Effluent								
BTEX (8021B)	Х	Х	Х	Х	Х	Х	Х	Х
PAH (8270-SIM)	Х	Х	Х	Х	Х	Х	X	X
Total Cyanide (9012A)	X	X	X	X	X	$\frac{\hat{x}}{x}$	X	X
TSS (EPA 160.2)	$\frac{\hat{x}}{x}$		X		X		X	
Influent (Composite from al		mps)	· · · ·		L?			
BTEX (8021B)	X	прој	Х		Х		Х	
PAH (8270C-SIM)	×		X		X		X	
Total Cyanide (9012A)	Î x		$\frac{\lambda}{X}$		x			_
Dewatering Sumps	^					· · · · · · ·	X	
	1							
DS-1	W	W	W	w	WF	WF	WF	WF.
DS-2	W	W	<u> </u>	W	WF	WF	WF	WF
DS-3	W	<u> </u>	W	W	WF	WF	WF_	WF
DS-4	W	W	W	W	WF	WF	WF	WF
Groundwater Monitoring								
Monitoring Wells								
OW-1	W	W	Х	W	W	W	Х	W
OW-4	w	W	W	W	w	w	w	w
GW-1	w	W	X	W	W	W	X	W
GW-2R	W	W	W	W	W	W	W	W
GW-3	W	W	Х	W	W	W	Х	W
GW-4	W	W	X	W	W	W	X	W
OW-3R	W	W	Χ	W	W	W	Х	W
MW-101R	W	W	W	W	W	W	W	W
MW-102	W	W	Х	W	W	W	X	W
MW-103	W	W	Х	W	W	W	Х	W
MW-104	W	W	Х	W	W	W	Х	W
MW-108R	W	W	W	W	W	W	W	W .
MW-109R	W	W	Χ	W	W	W	Х	W
MW-110	W	W	X	W	W	W	X	W
P-101					Proposed			
P-102R	Proposed	for Abando	onment (Pe	nding Age	Proposed	for Abando	nment (Pe	nding Age
P-2R	Proposed	for Abando	onment (Pe	nding Age	Proposed	for Abando	nment (Pe	nding Age
P-4					Proposed	for Abando	nment (Pe	nding Age
P-103	W	W	X	W		_	X	
P-104	W	W	X	W	<u> </u>		X	
P-105 P-106	W	<u>W</u>	X	W	ļ		. X	
P-106 P-107R	W	<u>W</u>	X	W W			X	
P-107R	W W	W	X	W			X	
P-109	W	W VV	- X	W W	<u> </u>		X	
P-110	- W	W	X	W			<u>^</u>	
P-111	- W	W	X	w	 		- x	
Staff Gauge	- l 	w	$-\hat{w}$	w	w	w	$-\hat{w}$	W
Field Parameters	1					**		77
Water Quality Probe	1		Х		I		~	
Water Levels	×	Х	x	Х		Х	X	
Netec:	<u> </u>		^	. ^	Х			X


Notes


- 1. X Indicates planned site visit, scheduled activity or sample collected during that visit.
- 2. W Water level only.
- 3. Water quality probe parameters and samples will only be collected from monitoring wells that do not contain coal tar as observed during that monitoring event.
- 4. Water quality probe parameters include dissolved oxygen, pH, temperature, specific conductance and oxidation / reduction potential.
- 5. F Measure flow rate.

APPENDIX A SITE INVESTIGATION SOIL DOCUMENTATION

APPENDIX A1 SITE FIGURES

APPENDIX A2 SITE INVESTIGATION SOIL ANALYTICAL TABLES

TABLE 4-3	 SUMMARY 	OF SOIL	SAMPLE	ANALYTICAL	RESULTS - OPCANICS	

Sample ID		SS-1	SS-1	SS-2	SS-2	SS-3 ,	<u>s</u> s-3 ,	SS-4	SS-4	SS-5	SS-5
Location		TAR	TAR	BIG	BIG	JEST T	- East-	SOUTH	SOUTH	OFF-SITE	OFF-SITE
		WELL	WELL	HOLDER	HOLDER	CENTER	CENTER	CENTER	CENTER	NE CORNER	NE CORNER
Depth (ft bgs)		SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5
Date Collected	Ð	CAVATE	25/14/85 DEXCAVAT	05/14/85 ED EXCAND	05/14/85 FW EX	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85
DETECTED PAHS	UNITS						· · · · · · · · · · · · · · · · · · ·			······································	
Acenaphthylene	mg/kg	×	1.80	NO	ND	ND	ND	ND	ND	NO	NO
Anthracene	mg/kg	ND	1,40	ND	ND	_ NO	ND	ND	ND	ND	ND
Benzo(a)anthracene	mg/kg	ND	10,00	NO	3-00	NO	4.80	ND	NO	NO	NC
Benzo(k)fluoranthene	mg/kg	ND	19.00	NO	8,00	- NO	4.80	NO	NO	NO	NO
Benzo(a)pyrene	mg/kg	ND	12-00	ND	5.00	NO	5.20	ND	NO	NO	NC
Benzo(g,h,i)perylene	mg∕kg	NO	5,20	ND	5.80	NO	2.60	NO	NO	NO	NO
Bis-(2-ethyl hexyl)phthalate	mg/kg	ND	24.00	ND	3,90	ND	NO	NO	NO	NO	NO
Chrysene	mg/kg	NO	6.80	, ND	/ ND	ND	ND	NO	NO	NO	NO
Dibenzo(a,h)anthracene	mg/kg	ND	3.80	ND	5000	ND	OM	ND	NO	NO	NO
Di-N-Butyl Phthalate	mg/kg	NÖ	NO	ND	ND.	ND	1.10	1.30	NO	NO	NO
Fluoranthene	mg/kg	ИD	15,000	ND	3,90	NO	2.40	NO	NO	NO	NO
Indeno(1,2,3-cd)pyrene	mg/kg	NO	2,86	ND	/ NO	ND	2.90	NO	NO	NO	NO
Naphthalene	mg/kg	ND	NO.	ND	1.40	ON	1.20	NO	NO	NO	NO
Phenanthrene	mg/kg	ND	5,00	ND	1,20	, NO	2.50	ND	1.20	NO	NO
Pyrene	mg/kg	ND	18.00	ND	3.60	ND	3.50	NO	NO	NO	NO
Sum of PAH Detections	mg/kg	0,0	125.0	هره	48.0	0.0	31.0	1.3	1,2	0.0	0.0

/ : Excavated/Removed (EX)

Exceed Outdoor Worker

SSL & Ingestion - Dermal

(EPA supplemental guidance, Dec. 2002)

_: Exceed Migration to Groundwater (EPA)

Sample ID		B-1	GW-1	GW-2	GW-3	BX-4	BX-5	BX-6	BZ-1	BZ-1	P-2	P-2
Location		OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SIT
		COURT ST.	PKNG. LOT	COURT ST.	COURT ST.	PARK	COURT ST.	COURT ST.	PARK	PARK	COURT ST.	COURT S
Depth (ft bgs)		APPROX. 3	9.0-11.0	5.0-7.0	5.0-7.0	4.5-6.0	4.8-6.3	CUTTINGS	7.5-9.5	11.5-13.5		
Date Collected		11/20/91 E X	01/23/92	01/24/92	01/24/92	01/30/92	01/30/92	01/30/92	03/12/92	03/12/92	03/11/92	03/11/92
DETECTED VOCs	צדואט											
Benzene	mg/kg		ND	16.000	ND	0.002	ND	0.240	0.003	ND	0.001	NA
n-Butylbenzene	mg/kg	16,000	ND	0.130	0.064	0.001	0.001	0.024	ND	ND	ND	NA
sec-Butylbenzene	mg/kg	* ND	ND	ND	0.038	ND	ND	ND	ND	ND	ND	NA
Carbon tetrachloride	mg/kg	ND	ND	ND	ND	0.002	ND	ND	ND	ND	ND	NA
Chloroform	mg/kg	ND	ND	ND	0,002	0.004	ND	ND	ND	ND	0.001	NA
Dibromomethane	mg/kg	ND	ND	ND	0.002	0.001	ND	ND	ND	ND	ND	NA
Dichlorodifluoromethane	mg/kg	ND	DM	ND	0.002	ND	ND	0.004	ND	ND	ND	NA
1,1-Dichloroethane	mg/kg	ND	0.004	ND	0.009	0.032	0.004	0.004	ND	0.001	0.003	NA
1,2-Dichloroethane	mg/kg	ND	0.001	ND	0.003	0.002	ND	ND	ND	ND	ND	NA
cis-1,2-Dichloroethene	mg/kg	ND	ND	ND	ND	0.001	ND	DM	ND	ND	ND	NA
trans-1,2-Dichloroethene	mg/kg	ND	0.001	ND	0.003	0.003	0.001	0.001	ND	ND	ND	NA
1,3-Dichloropropane	mg/kg	ND	_ ND	ND	0.001	ND	ND	ND	ND	ND	ND	NA
Ethylbenzene	mg/kg			16,000	. ND	ND	0.001	0.160	ND	ND	0.004	NA
Isopropylbenzene	mg/kg	3,800	ND	3.000	0.011	ND	ND	0.042	ND	מא	0.001	NA
p-Isopropyltoluene	mg/kg	2,686	ND	0.220	ND	ND	ND	0.016	ND	סא	0.006	NA
Methylene chloride	mg/kg	5,300	0.008	0.130	0.048	0.120	0.029	0.058	0.006	0.009	0.010	NA
n-Propylbenzene	mg/kg	3,000	ND	0.330	0.035	ND	ND	0.013	ND	ND	ND	NA
Toluene	mg/kg	ND	ND	18.000	ND	0.001	ND	0.007	ND	0.001	0.006	NA
1,1,2,2-Tetrachloroethane	mg/kg	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND	NA
Tetrachloroethene	mg/kg	ND	ND	ND	0.001	ND	ND	ND	CM	ND	ND	NA
1,1,1-Trichloroethane	mg/kg	ND	ND	ND	ND	0.007	0.001	ND	ND	ND	ND	NA
1,1,2-Trichloroethane	mg/kg	ND	0.016	ND	0.032	0.012	0.004	0.006	ND	ND	0.002	NA
Trichloroethene	mg/kg	ND ND	ND	ND	ND	0,001	ND	ND	ND	ND	ND	NA
Trichlorofluoromethane	mg/kg		- ND	ND	ND	0,017	ND	ND	ND	ND	ND	NA
1,2,4-Trimethylbenzene	mg/kg		ND	29.000	0.039	0.001	0.003	0.410	ND	ND	0.004	NA
1,3,5-Trimethylbenzene	mg/kg			12.000	0.025	ND	ND	0.020	ND	ND	0.001	NA
Xylenes	mg/kg			41,000		0.001	ND	0.119	0.001	ND	0.011	NA
Sum of BETX Detections	mg/kg					0.004	0.001	0.526	0.004	0.001	0.022	NA.
Sum of VOC Detections	mg/kg		•			0.206		0.884	0.007	0.011	0.049	NA.

: Excavated | Removed (EX) : Exceed Outdoor Worker,

Exceed: Migration to Grandwater

TABLE 4-3. SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - ORGANICS (CONT'D.)

Page	3	of	11	

Sample ID		B-1	GW-1	GW-2	GW3	BX-4	BX-5	BX-6	BZ-1	BZ-1	P-2	P-2
Location		OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE
		COURT ST.	PRKG. LOT	COURT ST.	COURT ST.	PARK	COURT ST.	COURT ST.	PARK	PARK	COURT ST	. COURT ST
Depth (ft bgs)		APPROX. 3	9.0-11.0	5.0-7.0	5.0-7.0	4.5-6.0	4.8-6.3	CUTTINGS	7.5-9.5	11.5-13.5	14.0-16.0	20.0-22.0
Date Collected		11/20/91 EX	01/23/92	01/24/92	01/24/92	01/30/92	01/30/92	01/30/92	03/12/92	03/12/92		03/11/92
DETECTED PAHS	UNITS	5							······································			
Naphthalene	mg/kg	93,00	0.001	1,500.000	NO	1.700	J 0.002	NO	0.001	ND	0.120	NO
Acenaphthylene	mg/kg	72,00	ND	200.000	ND	2.100	ND	ND	NO	NO	NA	NO
Acenaphthene	mg/kg	230,00	, NO	490.000	15.000	1.200	ND	NO	ND	1.200	NA	NO
Fluorene	mg/kg	3 65.00	ND	95.000	3.600	0.280	ND	NO	ND	0.120	NA	NO
Phenanthrene	mg/kg	130.60	NO	330.000	9.500	0.300	NO	NO	ND	0.550	NA	NO
Anthracene	mg/kg	188.00	ND	850.000	110,000	1.600	18.000	21.000	33.000	2.700	NA	ΝĐ
Fluoranthene	mg/kg	00-00 ء	0,190	440.000	62.000	0.770	13.000	11.000	24.000	1.700	NA	0.11
Pyrene	mg/kg	100,00	ND	220.000	21.000	0.220	2.700	2.700	NO	NO	NA	NO
Benzo(a) anthracene	mg/kg	3 /47.00	0.021	12.93 (000	400947.00	0.160	28600+	- 2,400	3.800	0.250	NA	0.015
Chrysene	mg/kg	95,000	0.076	200.000	18.000	0.240	4.900	4.600	9.400	0.600	NA	0.042
Benzo(b)fluoranthene	mg/kg	140,00	0.170	¥270.000	\$2.0000*	0.420	796400	9 8 8 7 0 0 L	18,000	0.970	NA	0.140
Benzo(k)fluoranthene	mg/kg	35.00	0.029	9459-(000)	112	0.084	1,900	1.800	3.600	0.210	NA	0.041
Benzo(a)pyrene	mg/kg	3 60.00	0.032	<u> 140.000</u>	92,000	0.180	(74): 100	3,900	7.300	0:360	NA	0.033
Dibenzo(a,h)anthracene	mg/kg	g NO	NO	46,000	ND	0.090	13400	4008White	3.500			0.036
Benzo(ghi)perylene	mg/kg	120,00	0.086	180.000	15.000	0.240	4.300	4.200	11.000	0.590	NA.	0.092
Indeno(1,2,3-cd)pyrene	mg/kg	32,60	0.100	\$1200000	# <u>1577000</u>	0.120	:4 000	y spelloo.	9,400	0.420	NA	0.098
Sum of PAH Detections	mg/kg	1,779,00	0.71	5,233.00	339.60	9.70	66.80	67.20	123.00	9.87	0.12	0.61

/: Excavated (Removed (EX)

: Exceed Outdoor Worker

SSLs Trigesti on-Dermal

Exceed Migration to Groundwater

Sample ID		P-3	GW-4	GW-4	GW-5	GW-5	GW-6	BZ-7	BZ-7	BZ-8	BZ-8
Location		OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE
		COURT ST.	PARK	PARK	PRKG. LOT	PRKG. LOT	ALLEY	COURT ST.	COURT ST.	PARK	PARK
Depth (ft bgs)		14.0-16.0	6.0-8.0	10.0-12.0	8.0-9.0	10.0-12.0	4.0-6.0	3.5-4.5	13.5-15.5	3.5-4.5	11.5-13.5
Date Collected		03/11/92	03/11/92	03/11/92	03/12/92	03/12/92	03/12/92	03/13/92	03/13/92	03/13/92	03/13/92
DETECTED VOCs	UNITS									**************************************	
Benzene	mg/kg	ND	ND	ND	ND	ND	ND	ND	0.002	ND	ND
n-Butylbenzene	mg/kg	ND	0.014	ND	ND	ND	ND	ND	ND	ND	ND
sec-Butylbenzene	mg/kg	ND	0.017	ND	ND	ND	NO	ND	ND	ND	ND
tert-Butylbenzene	mg/kg	ND .	0.011	ND	ND	ND	ND	ND	מא	ND	ND
Chloroform	mg/kg	ND	ND	0,002	ND	ND	ND	ND	0.001	סא	0.001
1,1-Dichloroethane	mg/kg	ND	0.003	0.004	0.001	ND	ND	ND	0.003	0.002	0.005
1,1-Dichloroethene	mg/kg	ND	ND	ND .	0.002	. ND	ND	ND	0.002	0.001	ND
1,3-Dichloropropane	mg/kg	ND	0.002	0.002	0.001	ND	ND	ND	ND	ND	ND
Ethylbenzene	mg/kg	0.180	0.008	ND	0.001	ND	ND	72.000	0.008	ND	ND
Isopropylbenzene	mg/kg	0.018	ND	ND	ND	ND	ND	2,600	ND	ND	ND
Methylene chioride	mg/kg	0.022	0.007	0.006	0.007	0.004	0.009	6.000	0.013	0.004	0.013
n-Propylbenzene	mg/kg	ND	0.020	ND	DM	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/kg	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	mg/kg	ND	ND	ND	0.001	ND	ND	ND	ND	ND	ND
Toluene	mg/kg	ND	ND	0.001	0.002	ND	0.001	5.300	0.008	0.001	0.002
1,1,1-Trichloroethane	mg/kg	ND	ND	ND	0.003	ND	ND	ND	0.001	0.001	ND
1,1,2-Trichloroethane	mg/kg	ND	0.005	0.006	0.005	0.001	ND	ND	0.002	0.002	0.004
Trichloroethene	mg/kg	ND	ND	ND	0.002	ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/kg	0.150	0.009	ND	ND	ND	ND	12.000	0.001	ND	ND
1,3,5-Trimethylbenzene	mg/kg	0.050	0.004	ND	ND	ND	ND	3,800	ND	ND	ND
Xylenes	mg/kg	0.430	0.004	ND	0.001	ND	ND	33.000	0.006	ND	0.001
Sum of BETX Detections	mg/kg	0.510	0.012	0.001	0.004	0.000	0,001	110.300	0.024	0.001	0.003
Sum of VOC Detections	mg/kg	0.850	0.104	0.021	0.026	0.005	0.010	134.700	0.047	0,011	0.026

Sample ID		P-3	GW-4	GW-4	GW-5	GW-5	GW-6	BZ-7	B <i>Z</i> -7	BZ-8	BZ-8
Location		OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	- - -	OFF-SITE	OFF-SIT
	C	OURT ST.	PARK	PARK	PRKG. LOT	PRKG. LOT	ALLEY	COURT ST.	COURT ST.	PARK	PARK
Depth (ft bgs)	1	4.0-16.0	6.0-8.0	10.0-12.0	8.0-9.0	10.0-12.0	4.0-6.0	3.5-4.5	13.5-15.5	3.5-4.5	11.5-13.
Date Collected		03/11/92	03/11/92	03/11/92	03/12/92	03/12/92	03/12/92	03/13/92		03/13/92	03/13/9
DETECTED PAHS	UNITS										
Naph tha Lene	mg/kg	12.000	ND	ND .	ND	0.0010	ND	82.000	0.0080	NO	ND
Acenaphthylene	mg/kg	NO	ND	NO	ND	ND	. ND	NO	NO	NO.	ND
Acenaph thene	mg/kg	NO	ND	NO	NO	NÖ	ND	72.000	ND	NO	ND.
Fluorene	mg/kg	NO	ND	ND	ND	0.0440	NO	12.000	ND	ND	ND
Phenanthrene	mg/kg	NO	ND	NO	ND	ND	ND	46.000	NO	NO	NO
Anthracene	mg/kg	NO	ND	ND	NO	NÖ	ND	130.000	ND	22.000	ND
Fluoranthene	mg/kg	ND	3.000	0.0730	ND	0.0550	ND	110.000	0.0960	16.000	NO.
Pyrene	mg/kg	NO	ND	ND	NO	ND	NO	49.000	ND	6.200	ND
Benzo(a) anthracene	mg/kg	0.022	0.520	0.0071	ND	0.0054	NO	19.000	0.0027	2.800	NO
Chrysene	mg/kg	0.065	1.400	NO	ND	ND	NO	34,000	NO	6.200	NO
Benzo(b)fluoranthene	mg/kg	ND	2.600	ND	0.0120	ND .	0.0055	\$17,000	0.0650	21(0)X000	
Benzo(k)fluoranthene	mg/kg	ND	0.580	NO	0.0037	0.0290	ND	11,000	0.0190	2.300	NO.
Benzo(a)pyrene	mg/kg	0.033	0.350	0.0210	0.0048	0.0190	ND	178.000	0.0086	4.3100	_
Dibenzo(a,h)anthracene	mg/kg	0.050	-0Znok	. NO	ND	0.0280	ND	8.000		2:1000	
Benzo(ghi)perylene	mg/kg	0.130	1.600	0.0760	ND	0.0680	ND	26.000	0.0510	6.300	NO NO
Indeno(1,2,3-cd)pyrene	mg/kg	0.110	1.300	0.0560	0.0099	0.0710	ND	7.18%.000	0.0400	⁷ 5%0,000.	, ND
Sum of PAH Detections	mg/kg	12.410	12.060	0.2331	0.0304	0.3204	0.0055	685.000	0.2903	82.900	0.073

Sample ID		BZ-9	BZ-9	BZ-9	BZ-10	BZ-10	BZ-11	BZ-11	8Z-12	8Z-12
Location	01	F-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE
	CC	OURT ST.	COURT ST.	COURT ST.	PARK	PARK	PRKG. LOT	PRKG. LOT	PRKG. LOT	PRKG. LOT
Depth (ft bgs)	7	7.0-8.5	9.5-11.0	11.5-13.5	9.5-11.0	12.5-14.0	5.0-8.0	11.0-13.5	5.0-6.5	8.0-9.5
Date Collected										
DETECTED VOCs	UNITS		· · · · · · · · · · · · · · · · · · ·	·						
Benzene	mg/kg	0.072	25.000	0.054	0.009	0.012	ND	0.002	0.012	0.005
n-Butyl benzene	mg/kg	0.010	8.100	ND	0.005	ND	0.005	ND	ND	ND
Dibromamethane	mg/kg	ND	DM	ND	ND	0.001	ND	ND	ND	ND
Dichlorodifluoromethane	mg/kg	ND	ND	0.042	ND	ND	0.003	ND	0.007	0.003
1,1-Dichloroethane	mg/kg	ND	ND	ND	ND	0.002	ND	ND	ND	ND
1,1-Dichloroethene	mg/kg	0.002	ND	ND	0.002	0.002	ND	ND	ND	ND
Ethylbenzene	mg/kg	0.130	13.000	0.026	0.001	ND	0.002	ND	ND	ND
Isopropylbenzene	mg/kg	0.011	ND	ND	0.005	ND	0.008	- ND	ND	ND
p-Isopropyltoluene	mg/kg	0.007	ND	ND	0.047	0.003	0.014	ND	ND	ND
Methylene chloride	mg/kg	0.003	8.300	0.018	0.006	0.005	0.004	0.006	0,008	0.01
n-Propylbenzene	mg/kg	0.006	ND	ND	0.002	ND	0.002	ND	ND	ND
Toluene	mg/kg	0.022	83.000	0.100	0.004	0.009	0.002	0.001	0.007	0.008
1,1,1-Trichloroethane	mg/kg	0.005	ND	ND	0.003	0.002	ND	ND	ND	ND
1,1,2-Trichloroethane	mg/kg	0.001	ND	ND	ND	0.002	ND	DM	ND	ND
Trichloroethene	mg/kg	0.003	ND	ND	0.001	0.002	ND	ND	ND	ND
1,2,4-Trimethylbenzene	mg/kg	0.240	75.000	0.100	0.004	ND	0.014	ND	ND	ND
1,3,5-Trimethylbenzene	mg/kg	0.068	27.000	0.033	0.002	ND	0.003	ND	ND	ND
Xylenes	mg/kg	0.250	198.000	0.340	0.006	0.002	0.009	ND	0.002	ND
Sum of BETX Detections	mg/kg	0.474	319.000	0.520	0.020	0.023	0.013	0.003	0.021	0.013
Sum of VOC Detections	mg/kg	0.830	437.400	0.713	0.097	0.042	0.066	0.009	0.036	0.026

Sample ID		BZ-9	82-9	BZ-9	BZ-10	BZ-10	BZ-11	BZ-11	BZ-12	BZ-12
Location	01	FF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	OFF-SITE
	C	OURT ST.	COURT ST.	COURT ST.	PARK	PARK	PRKG. LOT	PRKG. LOT	PRKG. LOT	PRKG. LOT
Depth (ft bgs)	;	7.0-8.5	9.5-11.0	11.5-13.5	9.5-11.0	12.5-14.0	5.0-8.0	11.0-13.5	5.0-6.5	8.0-9.5
Date Collected										
DETECTED PAHs	UNITS		540	:					W. I. W. I.	
Naphthalene	mg/kg	24.000	2,000,00	1.300	0.720	ND	0.890	NO	NO	NO
Acenaphthylene	mg/kg	5,900	230.00	ND	ND	NO	- 1.500	NO	NO	ND
Acenaphthene	mg/kg	3.200	170.00	ND	1.100	NO	NÖ	ND	NO	NO
Fluorene	mg/kg	0.820	86.00	0.110	0.200	NO	0.270	NO	NO	NO
Phenanthrene	mg/kg	NO	180.00	0.230	0.540	NO	0.500	NO	0.200	NO
Anthracene	mg/kg	1.200	405.00	0.570	0.830	ND	2.500	NO	0.400	ND
Fluoranthene	mg/kg	0.400	290.00	0.370	0.620	ND	1,500	0.200	0.800	NO
Pyrene	mg/kg	0.130	100.00	0.160	0.120	NO	0.600	NO	0.120	NO
Benzo(a) anthracene	mg/kg	0.021	36:00	0.053	0.033	0.0032	0.250	0.011	0.045	0.0044
Chrysene	mg/kg	0.063	70.00	0.140	4.600	0.1200	1.500	. NO	0.390	NO
Benzo(b) fluoranthene	mg/kg	0.130	11102.001	0.250	0.220	0.0650	1.300	0.210	0.320	0.1100
Benzo(k)fluoranthene	mg/kg	0.027	23.00	0.059	0.045	0.0170	0.280	0.037	0.058	0.0210
Benzo(a)pyrene	mg/kg	0.044	381.00	0.085	0.100	0.0250	- 03470	× 0.017	0.089	0.0220
Dibenzo(a,h)anthracene	mg/kg	0.034	048000°	0.070	NO	0.0140		0.070	0.070	0.0210
Benzo(ghi)perylene	mg/kg	0.089	50.00	0.160	0.120	0.0610	0.770	0.120	0.140	0.0630
Indeno(1,2,3-cd)pyrene	mg/kg	0.084	≈43%00¢	0.160	0.098	0.0500	0.620	0.059	0.023	0.0740
Sum of PAH Detections	mg∕kg	36.142	3,849.00	3.717	9.346	0.3552	13.240	0.724	2.655	0.3154

Test Pit ID		TP-101	TP-102	TP-103	TP-104	TP-105	TP-106	TP-107	TP-108	TP-109
Location		SOUTH	SOUTH	EAST	WEST - BY	OVER LARGE	OVER	BY TAR	OVER	WEST
		SIDE	SIDE	SIDE	DRAIN PIT	GAS HLDR.	OIL TANK	SEPARATOR	TAR WELL	SIDE
Depth (ft bgs)		3.0-4.0	1.0-3.0	4.0-4.7	2.0-3.0	3.5-5.0	1.8-2.8	3.5-4.5	2.0-4.0	2.5-3.0
Date Collected		11/16/93	11/16/93	11/16/93	11/17/93 EX	11/17/93 EX	11/18/93	11/18/93 EX	11/17/93 EX	11/17/93 EX
PARAMETERS	UNITS									
Total Phenol	mg/kg	0.11	NO	NO	بمجمو	0.33	NO	NO	9,23	NO
VOCs						•	•			
Benzene	mg/kg	ND	ND	NO	ND	1/50	ND	NO	0,14	, NO
Ethylbenzene	mg/kg	ND	ND	ND	ND	37,00	NO	NO.	9/5	NO
Toluene	mg/kg	ND	0.11	NO	243	JAME TO STATE OF THE STATE OF T	ND	ND	0,76	NO
Xylenes	mg/kg	ND	ND	ND	ND	36,00	ND	ND	0.81	NO
Sum of VOC Detections	mg/kg	0.00	0.11	0.00	0 13	69.07	0.00	0.00	3/2	0.00
DETECTED PAHS							,		•	
Anthracene	mg/kg	0.580	0.740	0.170	00	0.073	9.036	کاملاوہ ۔	7,100	7,800
Benzo(a) anthracene	mg/kg	#4100	24.500	0.900	7,300	9,240	0,500	1,186	38,000	31,000
Benzo(b) fluor an thene	mg/kg	0,870	₩2,200	0.140	20,000	9.051	9,410	1.800	15,000	59,000
Benzo(k)fluoranthene	mg/kg	1.600	1.200	0.220	12,000	0.030	0,038	0.350	8)100	25,000
Benzo(a)pyrene	mg/kg	44.800	3.100	0.760	31,000	0,089	0,40	3.200	21,000	82.000
Benzo(ghi)perylene	mg/kg	5.200	2.800	1.100	69,800	1,200	0,460	00موق	18,000	130,000
Chrysene	mg/kg	2.700	2.600	0.440	NO.	0,10	9.087	0.640	16,000	19-000
Fluoranthene	mg/kg	5.200	7.900	0.170	22,000	0,360	0,400	0.340	68,000	84.000
Fluorene	mg/kg	0.210	0.370	NO	ND	/ NO	, ĺνο,	, NO	11,000	9.040
Indeno(1,2,3-cd)pyrene	mg/kg	77-677-1:00·*	v. :::•2.7400÷	0.820	14-000	0,037	120 بھر	5,400	16,000	86.000
Naphthalene	mg/kg	1.100	8.800	4.600	44,000	140,000	(אס	1.860	ON	NO
Phenanthrene	mg/kg	0.910	6.100	0.110	7,600	0.480	0,256	0.240	39,000	45.600
Pyrene	mg/kg	4.400	2.600	0.450	ND	9/10	0.320	0.240	25,080	92,000
Sum of PAH Detections	mg/kg	35.770	45.310	9.880	227.360	142,894	2,241	21,7970	282_500	651.40

Test Pit ID		TP-110	TP-111	TP-112	TP-113	TP-114	TP-115	TP-116	TP-117	TP-118
Location		IN SMALL	NORTH OF	NW - BY	NW - BY	NORTH	NORTH	NORTHEAST	OVER TAR	EAST
		GAS HLDR.	TP-110	TAR WELLS	TAR WELL	SIDE	SIDE	CORNER	SEPARATORS	SIDE
Depth (ft bgs)	o	2.5-3.0	2.5-3.5	2.0-3.0	3.5-4.0	3.5-5.0	3.0-4.0	2.0-3.0	2.5-3.0	2.0-3.0
Date Collected		11/18/93 ∈ X	11/17/93 €X	11/17/93 EX	11/17/93 EX	11/16/93 EX	11/17/93 € X	11/16/93	11/18/93 EX	11/16/93
PARAMETERS	UNITS									
Total Phenol	mg/kg	150.00	ND	ND	925	ND	ND	کی وال	ND	ND
VOCs			_				•			
Benzene	mg/kg	240.00	_ ND	סא	ND	ND	ND	ND	2.24	0.12
Ethylbenzene	mg/kg	30-06	ND	ND	ND	ND	ND	ND	DN	ND
Toluene	mg/kg	380,00	ND	9-25	ND	ND	ND	ND	كهمو	ND
Xylenes	mg/kg	310,00	ND	ND	ND	ND	ND	ND	9.45	ND
Sum of VOC Detections	mg/kg	960.00	0.00	9/23	0.00	0.00	0.00	0.00	0.82	0.12
DETECTED PAHS		_	- ,	. ,					,	
Anthracene	mg/kg	1,110.0	. عمد ا	6,400	15-000	0,840	ND	4,600	2.200	0.130
Benzo(a)anthracene	mg/kg	2545.0	. ND	15,000	28,000	2.300	34-000	10,000	8,200	0.640
Benzo(b)fluoranthene	mg/kg	200.0	DN	. 29.000	29-860	3,100	12-800	11-000	5.400	0.910
Benzo(k)fluoranthene	mg/kg	330.0	0.430	16.000	14.000	9000	2_800	5_100	3-200	0.450
Benzo(a)pyrene	mg/kg	418.0	0.300	34-000	34.000	3,000	25,000	13.000	11-000	AMIN 000
Benzo(ghi)perylene	mg/kg	170.0	0.390	27,000	33.000	2.800	32-000	14.000	7.800	1.400
Chrysene	mg/kg	470.0	0,190	3,400	28,000	2,200	18-000	11.000	2,000	0.670
Fluoranthene	mg/kg	290.0	0.520	23.000	81.000	5,400	73-800	36-000	14.000	1.800
fluorene	mg/kg	1,630.0	0.027	21,000	11,000	ND	5,000	2.500	ND	ND
Indeno(1,2,3-cd)pyrene	mg/kg	150.0	0.320	23,000	29_800	2,460	19_000	11.000	5-100	1.100
Naphthalene	· · ·	14,900.0	ND	ND	סא	, ND	ND	ND	ND	ND
Phenanthrene	mg/kg	4,900.0	1.400	16,000	57,000	2,300	40.000	23~000	7,000	0.920
Pyrene	mg/kg	620.0	ND	ND	47.000	2,900	56,000	22.000	5,800	0.710
Sum of PAH Detections	mg/kg	25,725.0	3.677	214.500	406,000	27.110	318.800	163,200	77,400	9.730

Sample ID		B-101	B-102	B-103	B-104	B-105	8-106	MW-101	MW-102	MW 103
Location	0	FF-SITE C	FF-SITE	OFF-SITE	OFF-SITE	OFF-SITE	NW - BY	SOUTH - BY	CENTER	EAST
	С	OURT ST.	PARK	COURT ST.	PARK	COURT ST.	TAR WELL	FOX RIVER	GAS HLDR	CENTER
Depth (ft bgs)		2.0-4.0	0.0-2.0	2.0-4.0	2.0-4.0	2.0-4.0	0.0-2.0	0.0-2.0	2.0-4.0	2.0-3.0
Date Collected		12/02/93	11/30/93	12/02/93	11/30/93	12/02/93	12-03/93 EX	12/01/93	12/02/93	12/01/93
PARAMETER	UNITS									
Total Phenol	mg/kg	ND	ND	1.29	NO	ND .	. NO	ND	0.75	NO
VOCs										
Benzene	mg/kg	NO	ND	0.19	NÖ	13.00	ND	NO	12.00	NO
Ethylbenzene	mg/kg	0.74	. ND	6.50	ON	0.63	ND	NO	260.00	ND
Toluene	″ mg/kg	ND	ND	1.20	ND	0.26	ND	ND	14.00	ND
Xylenes	mg/kg	ND	NO	4.20	NO	1.50	NO	ND	240.00	ND
Sum of VOC Detections	mg/kg	0.74	0.00	12.09	0.00	15.39	0.00	0.00	526.00	0.00
DETECTED PAHS								,		
Anthracene	mg/kg	1.400	ND	1.100	0.510	0.960	0,160	-	3.100	1.100
Benzo(a) anthracene	mg/kg	ND	0.066	2,200	1,700	8.3500		-	0.210	4-900
Benzo(b) fluor anthene	mg/kg	NO	0.035	0.980	1.800	3.100			2.600	ु-3/46/00 (i
Benzo(k)fluoranthene	mg/kg	ND	0.031	0.530	0.940	0.900	0.250		1.700	1.600
Benzo(a)pyrene	mg/kg	1401960	40,840	1.700	2,200	##800°			# 248 00	4.300
Benzo(ghi)perylene	mg/kg	ND	0.470	1.500	2.000	5.300	0,560		3.000	5.100
Chrysene	mg/kg	0.530	0.093	1.200	2.000	2.600	0.480	0.020	3.300	3.100
Fluoranthene	mg/kg	5.300	0.130	4.500	4.700	6.300	000	0.058	15.000	13.000
Fluorene	mg/kg	2.100	NO	1.500	0.440	0.860	NO		5.100	1,100
Indeno(1,2,3-cd)pyrene	mg/kg	ND	ND	1.100	1.500	-4,000	0,436	NO	NO	37,900%
Naphthalene	mg/kg	19.000	ND		, NO	NO	ND	/	1,670.000	ND
Phenanthrene	mg/kg	3.800	0.680	4.800	3.400	4.100	0.550		8.900	8.300
Pyrene	mg/kg	· NO	0.096	1.600	2.300	3.300	9.500	0.030	4.600	9.800
Sum of PAH Detections	mg/kg	33.090	1.841	133.710	23.490	44.520	5.186	0.122	1,720.310	59.600

TABLE 4-3. SUM	MARY OF SO	IL SAMPLE	ANALYTICAL	RESULTS -	ORGANICS	(CONT'D.)
----------------	------------	-----------	------------	-----------	----------	-----------

Page	11	of	11

Sample ID		MW-104	P-101	P-102	P-103	HP-101	HP-102
Location		WEST	NORTH	SOUTHWEST	OFF-SITE	NORTH	OFF-SITE
		SIDE	CENTER	CORNER	COURT ST.	CENTER	COURT ST
Depth (ft bgs)		2.0-3:0	0.0-2.0	2.0-4.0	2.0-4.0	2.0-4.0	0.25-2.0
Date Collected		12/01/93 EX	12/07/93 EX	12/09/93 EX	12/08/93	12/02/93	12/09/93
PARAMETER	UNITS			,			
Total Phenol	mg/kg	МD	ND	ND	NO	NO	ND
VOCs							
Benzene	mg/kg	NO	NO	كهمو	ND	NO	ND
Ethylbenzene	mg/kg	ND	NO	0.20	ND	0.120	ND
Toluene	mg/kg	NO	NO	9-20	ND	0.055	ND
Xytenes	mg/kg	ND	ND	اهو	NO.	0.200	ND
Sum of VOC Detections	mg/kg	0.00	0.00	0.58	0.00	0.375	0.000
DETECTED PAHs				_			
An thracene	mg/kg	1,200	0,220	0.240	1.200	0.180	0.078
Benzo(a) anthracene	mg/kg	2,300	1_000	5,900	114,300,	0.750	0.410
Benzo(b)fluoranthene	mg/kg	1-200	1,100	3,500	+22500°,	0.620	0.290
Benzo(k)fluoranthene	mg/kg	200ءبد`	6,460	1,280	1.200	0.290	0.130
Benzo(a)pyrene	mg/kg	3,600	1,200	5,200	3.600	0.780	0.500
Benzo(ghi)perylene	mg/kg	500ءسل	1,500	5,500	2.500	0.890	0.550
Chrysene	mg/kg	2.500	0.820	3,200	3.100	0.570	0.340
Fluoranthene	mg/kg	-5-800	2,300	11,000	9.100	1.600	0.630
Fluorene	mg/kg	, NO	0.126	9-250	0.180	0.041	ND
Indeno(1,2,3-cd)pyrene	mg/kg	كالمتسول	1.200	4,600	-12#400i+	0.690	0.450
Naphthalene	mg/kg	, NO	1,800	ND	NO	1.800	NO
Phenanthrene	mg/kg	1-500	1.580	2.600	3.100	0.920	0.300
Pyrrene	mg/kg	2.600	1.200	7.500	7.000	1.000	0,240
Gum of PAH Detections	mg/kg	23,800	14,020	52.346	39.980	10.131	3.918

Notes: ft bgs = feet below ground surface

VOCs = Volatile Organic Compounds

NO = Parameter not detected above method detection limit

mg/kg = milligrams per kilogram

PAHs = Polynuclear Aromatic Hydrocarbons

NA = Parameter not analyzed

Sample ID		SS-1	SS-1	SS-2	SS-2	55-3	55-3	SS-4	SS-4	SS~5	SS-5
Location		TAR	TAR	BIG	BIG	WEST	WEST	SOUTH	SOUTH	OFF-SITE	OFF-SITE
		WELL	WELL	HOLDER	HOLDER	CENTER	CENTER	CENTER	CENTER	NE CORNER	NE CORNER
Depth (ft bgs)		SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5	SURFACE	0.5-1.5
Date Collected		15/14/85 EX	05/14/85 EX	05/14/85 EX	05/14/85 EX	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85
PARAMETERS	UNITS										
Total Cyanide	mg/kg	NO	0/28	NO	كاممر	0.20	· 0.68	NO	NO	NO	NO
Amenable Cyanide	mg/kg	NO	NO	NO	ND	0.10	0.48	NO	ND	NO	ND
									***************************************		· · · · · · · · · · · · · · · · · · ·
Sample ID Location		GV-6 OFF-SITE	TP-101 SOUTH	TP-103 EAST	TP-107 BY TAR	TP-109 WEST		TP-113 NV - OVER	TP~114 NORTH	TP-115 NORTH	TP116 NORHTEAST
Location		OFF-SITE ALLEY	SOUTH SIDE	EAST SIDE	BY TAR SEPARATOR	WEST SIDE	NORTH OF	NV - OVER	NORTH SIDE	NORTH SIDE	NORHTEAST CORNER
Location Depth (ft bgs)		OFF-SITE ALLEY 4.0-6.0	SOUTH SIDE 3.0-4.0	EAST SIDE 4.0-4.7	BY TAR SEPARATOR 4.0-4.5	WEST SIDE 2.5-3.0	NORTH OF GAS HLDR 2.4-3.0	NV - OVER TAR WELL 1.0-1.5	NORTH SIDE 3.5-5.0	NORTH SIDE 3.5-6.0	NORHTEAST CORNER 1.7-2.0
Location		OFF-SITE ALLEY	SOUTH SIDE	EAST SIDE	BY TAR SEPARATOR 4.0-4.5 11/18/93	WEST SIDE 2.5-3.0 11/17/93	NORTH OF GAS HLDR 2.4-3.0	NV - OVER TAR WELL 1.0-1.5 11/17/93	NORTH SIDE 3.5-5.0	NORTH SIDE 3.5-6.0 11/17/93	NORHTEAST CORNER 1.7-2.0 11/16/93
Location Depth (ft bgs) Date Collected	UNITS	OFF-SITE ALLEY 4.0-6.0	SOUTH SIDE 3.0-4.0	EAST SIDE 4.0-4.7	BY TAR SEPARATOR 4.0-4.5	WEST SIDE 2.5-3.0	NORTH OF GAS HLDR 2.4-3.0	NV - OVER TAR WELL 1.0-1.5	NORTH SIDE 3.5-5.0 11/16/93	NORTH SIDE 3.5-6.0	NORHTEAST CORNER 1.7-2.0
Location Depth (ft bgs)	UNITS mg/kg	OFF-SITE ALLEY 4.0-6.0	SOUTH SIDE 3.0-4.0	EAST SIDE 4.0-4.7	BY TAR SEPARATOR 4.0-4.5 11/18/93	WEST SIDE 2.5-3.0 11/17/93	NORTH OF GAS HLDR 2.4-3.0 11/17/93	NV - OVER TAR WELL 1.0-1.5 11/17/93	NORTH SIDE 3.5-5.0 11/16/93	NORTH SIDE 3.5-6.0 11/17/93	NORHTEAST CORNER 1.7-2.0 11/16/93
Depth (ft bgs) Date Collected		OFF-SITE ALLEY 4.0-6.0 03/12/92	SOUTH SIDE 3.0-4.0 11/16/93	EAST SIDE 4.0-4.7 11/16/93	BY TAR SEPARATOR 4.0-4.5 11/18/93	WEST SIDE 2.5-3.0 11/17/93 EX	NORTH OF GAS HLDR 2.4-3.0 11/17/93	NV - OVER TAR WELL 1.0-1.5 11/17/93	NORTH SIDE 3.5-5.0 11/16/93	NORTH SIDE 3.5-6.0 11/17/93 EX	NORHTEAST CORNER 1.7-2.0 11/16/93
Location Depth (ft bgs) Date Collected PARAMETERS Total Cyanide	mg/kg	OFF-SITE ALLEY 4.0-6.0 03/12/92	SOUTH SIDE 3.0-4.0 11/16/93	EAST SIDE 4.0-4.7 11/16/93	BY TAR SEPARATOR 4.0-4.5 11/18/93 EX	WEST SIDE 2.5-3.0 11/17/93 EX	HORTH OF GAS HLDR 2.4-3.0 11/17/93	NV - OVER .TAR WELL 1.0-1.5 11/17/93 EX	NORTH SIDE 3.5-5.0 11/16/93	NORTH SIDE 3.5-6.0 11/17/93 EX	NORHTEAST CORNER 1.7-2.0 11/16/93

TABLE 4-4.

Dissociable Cyanide

Sample ID SS-101 SS-101 55-102 SS-102 SS-103 SS-103 SS-104 SS-104 Location OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE PARK PARK PARK PARK PARK PARK PARK PARK Depth (ft bgs) 0.0-0.3 0.3-1.5 0.0-0.3 0.3-1.5 0.0-0.3 0.3-1.5 0.0-0.3 0.3-1.5 11/30/93 11/30/93 11/30/93 11/30/93 11/30/93 11/30/93 11/30/93 Date Collected PARAMETERS UNITS Total Cyanide mg/kg NO NO ND. NO NO ND Amenable Cyanide mg/kg ND NO NO ND NO NO NO NO Weak Acid

ND

NO

ND

ND

NO

ND

SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - CYANIDE COMPOUNDS (CONT'D.)

ND

Sample ID MV-103 P-101 B-102 8-104 HP-101 B-105 Location EAST NORTH OFF-SITE OFF-SITE OFF-SITE NORTH SIDE SIDE PARK PARK COURT ST. SIDE Depth (ft bgs) 2.9-4.0 2.0-4.0 6.0-6.2 4.5-5.2 1.6-2.0 4.0-4.3 Date Collected 12/01/93 12/07/93 11/31/93 11/30/93 12/02/93 12/02/93 PARAMETERS UNITS Total Cyanide 3.9 mg/kg NO NO NO 8.2 NO Amenable Cyanide mg/kg NO NA 3.9 ND 8.2 ND Weak Acid Dissociable Cyanide ND NA NO NO ND NO mg/kg

mg/kg

NO

Sample ID GW--1 GW-2 GW-3 BX-4 BX-5 BX-6 OFF-SITE OFF-SITE OFF-SITE OFF-SITE OFF-SITE Location PKG LOT COURT ST COURT ST PARK COURT ST COURT ST Depth (ft bgs) 9.0-11.0 5.0-7.0 5.0-7.0 4.5-6.0 4.8-6.3 Cuttings 1/23/92 1/24/92 1/24/92 1/30/92 1/30/92 1/30/92 Date Collected UNITS **PARAMETERS** Total Cyanide 1.2 2.0 3.1 mg/kg 0.69 85 3.8 Amenable Cyanide mg/kg NA NA NA NA NA NA Weak Acid Dissociable Cyanide mg/kg NA NA NA NA NA NA

TABLE 4-4. SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - CYANIDE COMPOUNDS (CONT'D.)

Notes: feet bgs = feet below ground surface

mg/kg = milligrams per kilogram

NO = Parameter not detected above method detection limits

NA = Parameter not analyzed

TABLE 4-5. SUMMARY OF SOIL SAMPLE ANALYTICAL RESULTS - METALS

Soil Sample ID		SS-1	SS-1	SS-2	\$S-2	SS-3	SS-3	SS-4	SS-4	SS-5	SS-5
Sample Depth ('t bgs)	0.0-0.5	0.5-1.5	0.0-0.5	0.5-1.5	0.0-0.5	0.5-1.5	0.0-0.5	0.5-1.5	0.0-0.5	0.5-1.5
Date Sample Co	ltected	05/14/85 EX	05/14/85 EX	05/14/85 EX	05/14/85 EX	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85	05/14/85
PARAMETERS	UNITS			7 \			· · · · · · · · · · · · · · · · · · ·		F1 i		
Arsenic	mg/kg	1)26	, 0,94	0,64	, 1,10	1.60	##11 #30 #	0.54	771.00°	· 0.90	0.72
Chromium	mg/kg	NO	_ NO	ַ אס	4.86	NO	2.40	~2.40	44.00	3.00	NO
Copper	mg/kg	NO	11,00	8,26	20.00	7.80	20.00	11.00	18.00	7.20	4.80
Lead	mg/kg	NO	40.00	110,00	كاهر 170	110.00	51.00	85.00	19.00	11.00	7.80
Mercury	mg/kg	NO	0,08	ND	0.05	NO	0.06	0.04	ND	NO	NO
Nickel	mg/kg	2,80	4.58	3.80	3.180	4.80	11.00	ND	8.40	5.80	4.80
Setenium	mg/kg	• ,	مهلاوکا	ND	9.02	0.04	0.21	0.05	0.42	0.06	0.01
Silver	mg/kg	0,24	فصو	0,22	0.30	0.26	0.24	NO	ND	NO	ND
Thatlium	mg/kg	1,78	2,30	1.60	2,40	2.00	ND	1.30	МD	0.86	1.40
Zinc	mg/kg	3,20	32,00	72,80	56.00	36.00	80.00	34.00	58.00	24.00	15.00

Soil Sample ID	GW-6	B-1	TP-101	TP-102	SS-101	SS-101	SS-102	SS-102	SS-103	SS-103	SS-104	SS-104
Sample Depth (ft bgs)	4.0-6.0	Approx. 3	3.0-4.0	1.0-3.0	0.0-0.3	0.3-1.5	0.0-0.3	0.3-1.5	0.0-0.3	0.3-1.5	0.0-0.3	0.3-1.5
Date Sample Collected	03/12/92	11/20/91	11/16/93	11/16/93	11/30/93	11/30/93	11/30/93	11/30/93	11/30/93	11/30/93	11/30/93	11/30/93

PARAMETERS	UNITS												
Arsenic	mg/kg	08%50 <i>*</i> f	## !9 7,30	*4580°÷	4714.00°	NO							
8arium	mg/kg	62.00	32.00	68	41	57.00	59.00	49.00	64.00	35.00	69.00	41.00	57.00
Cadmium	mg/kg	NO	2.00	ND .	NO	NO	ND	NO	NO	ND	NO	NO	NO
Chromium	mg/kg	13.00	4.20	3.6	2.9	13.00	11.00	12.00	12.00	5.50	12.00	7.20	7.60
Lead	mg/kg	2.60	71.00	540.0	13.0	15.00	5.00	21.00	6.40	10.00	4.80	12.00	11.00
Mercury	mg/kg	NO	0.48	0.090	0.180	NO	NO	NO	NO	NO	NO	ND	ND

Notes: ft bgs = feet below ground surface

mg/kg = milligrams per kilogram

ND = Parameter not detected above method detection limits

Table 1 - Soil Analytical Results - Total Organic Carbon (TOC)
Phase II Investigation - Oshkosh MGP Site - WPSC

Sample	Sample	TOC		Fie	eld Observations
Location	Date	(mg/kg)	ODOR	TAR	Other
SB-101 (3)	4/29/1996	31,000	yes	no	Sheen on spoon below water table
SB-101 (5)	4/29/1996	36,000	yes	no	
SB-102 (5)	4/29/1996	nd	yes-solvent	no	
SB-103 (1)	4/29/1996	3,300	no		dark staining
SB-104 (3)	4/30/1996	32,000	yes	no	some wood, black staining below 8'
SB-105 (7)	4/30/1996	68,000	yes	no	peat present
SB-106 (3)	4/30/1996	25,000	yes	below 10'	charcoal, some wood
SB-106 (13)	4/30/1996	2,800	yes	yes	

Notes:

reporting limit for TOC = 1,000 mg/kg

na = not analyzed

nd = parameter not detected

Table 6 - Summary of Soil Treatability Laboratory Analyses Remedial Design Report Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant Site

			eren in de gelan. Andrew de belg	estepatata na jito Kotta njino obj	BTEX µg/kg Polynuclear Aromatic Hydrocarbons (PAHs) µg/kg																								
Samble (Barrell of the Barrell of th	Sample Depth (feet)	Date Collected	Benzen	Ethyl benzene	Poluene	Total Xylenes	Xylenes, .m, .p	Xylene, .o	Total BTEX	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Huorene	Indeno(1,2,3-cd)pyrene	1-Methylnaphthalene	2-Methylnaphthalene	Naphthalene	Phenauthrene	Arene	Total PAHS	Total Petroleum Hydrocarbons (mg/kg)
MW-106	1-3	11/19/1998	<25	<25	<25	<25	<25	<25	<25	83	170	110	610	1,000	880	970	620	630	250	820	110	920	110	120	200	460	960	9,023	-
MW-107	1-13	11/19/1998	810	16,000	<250	4,900	1300	3600	21,710	21,000	5,700	11,000	9,200	11,000	6,000	4,100	6,000	9,700	2,600	15,000	16,000	4,100	37,000	21,000	74,000	37,000	18,000	308,400	-
MW-105	1-14	11/19/1998	490	15,000	400	8,500	4300	4200	24,390	9,700	4,100	5,500	5,200	4,900	2,700	1,400	3,000	5,000	830	8,400	8,300	1,600	18,000	11,000	31,000	19,000	9,800	149,430	-
SE COMP UPPER	0-4	12/17/1998	320	430	380	960	390	570	2,090	6,000	11,000	28,000	48,000	50,000	44,000	35,000	27,000	43,000	11,000	92,000	24,000	33,000	9,400	6,000	23,000	79,000	78,000	647,400	-
SE COMP LOWER	4-15	12/17/1998	1,600	17,000	500	12,200	7,300	4,900	31,300	2,100	<280	1,300	1,200	1,200	770	680	780	1,300	<290	2,500	1,200	670	5,800	4,300	13,000	3,600	2,100	42,500	
SW COMP UPPER	. 0-4	12/17/1998	180	230	220	530	390	140	1,160	760	1,200	5,200	13,000	18,000	16,000	15,000	9,400	14,000	4,700	25,000	1,800	13,000	1,200	1,100	2,400	15,000	19,000	175,760	-
SW COMP LOWER	4-14	12/17/1998	150	450	150	920	600	320	1,670	7,600	1,100	6,800	6,800	6,500	4,900	4,600	4,300	6,000	1,500	14,000	6,100	4,200	6,300	7,700	37,000	20,000	9,900	155,300	-
W COMP UPPER	0-4	12/18/1998	<25	34	79	198	120	78	311	220	<36	260	950	1,100	1,000	710	630	940	320	1,400	280	760	1,100	1,300	520	1,100	1,000	13,590	-
W COMP LOWER	4-12	12/18/1998	<25	<25	<25	<25	<25	<25	<25	430	<81	120	180	210	160	160	160	190	<83	240	220	160	1,200	. 120	280	330	210	4,370	
E COMP UPPER	0-4	12/21/1998	1,000	2,200	1,400	5,500	2,500	3,000	10,100	<670	2,900	2,600	20,000	17,000	13,000	9,500	10,000	25,000	4,900	19,000	2,000	8,400	5,900	5,300	9,900	6,100	41,000	202,500	-
E COMP LOWER	4-14	12/21/1998	2,700	63,000	1,100	74,000	47,000	27,000	140,800	110,000	<5,600	60,000	35,000	27,000	12,000	11,000	17,000	34,000	<5,800	56,000	67,000	12,000	220,000	230,000	430,000	160,000	65,000	1,546,000	-
DSP COMP	na	12/18/1998	220	-	_	-	-	-	-				-	-		-		-	-	-		-	-	-	-	-	-	-	
RO COMP	na	1/19/1999	-	-	-	-			-	-	_	-		-	-	-		-	-	-	-	-	<u> </u>		-	-	-	-	820

									an in iraini											······································
		*										Inorg	anics (m	g/kg)						
Sample ID	Sample Depth (feet)	Date Collected	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickeli	Silver	Zinc	Phenolics, total recoverable	Sulfide, reactive	Sulfur**	Cyanide, reactive	Oyanide, total	PCBs	Chlorine (% by weight)	TCLP, Lead (mg/l)
MW-106	1-3	11/19/1998	-	-		-	-	8.1	-	-	- .	-	-	-	-	-	5.6		_	-
MW-107	1-13	11/19/1998	-	-	-	-	-	37	,	-	•		-		-	- :	3.3	-	-	
SE COMP UPPER	. 0-4	12/17/1998	-	-	-	-	-	250	1	4.		-	-	- :	4,100*	-	6.4	-	-	-
SE COMP LOWER	4-15	12/17/1998	-	-		-	-	75		-		_	-		860*	-	1.3	-	-	-
SW COMP UPPER	0-4	12/17/1998		-	-		-	300	_	-	-	-	~	-	1,100*	-	8.9	-	-	-
SW COMP LOWER	4-14	12/17/1998	-	-	-		-	300	-	-	_ :		-	-	2,200*	-	4.9	-	-	-
W COMP UPPER	0-4	12/18/1998	-	_	-	_	-	88	-		-	-	-	-	2,000*		1.3	-	-	-
W COMP LOWER	4-12	12/18/1998	-	-	-	-	-	14	-	-	-	-	-	-	1,900*	-	1.9	-	-	-
E COMP UPPER	0-4	12/21/1998	-		-	-	-	110	-	<u>-</u>	-	-	-	-	1,800	-	1.5	-	-	-
E COMP LOWER	4-14	12/21/1998		-	_	_	-	28	-	-		-	-	_	1,600	-	0.38		-	-
DSP COMP	na	12/18/1998	8.7	80	0.72	15	74	180	0.58	24	0.43	260	6.5	<10	-	<2.5		<5.7	0.053	-
RO COMP	na	1/19/1999	-	-	-	-	-	-	-		-	-	-		-	+	-	-	-	<0.2

SLF/CAR/1-26-99 SLF/DVP/2-3-99

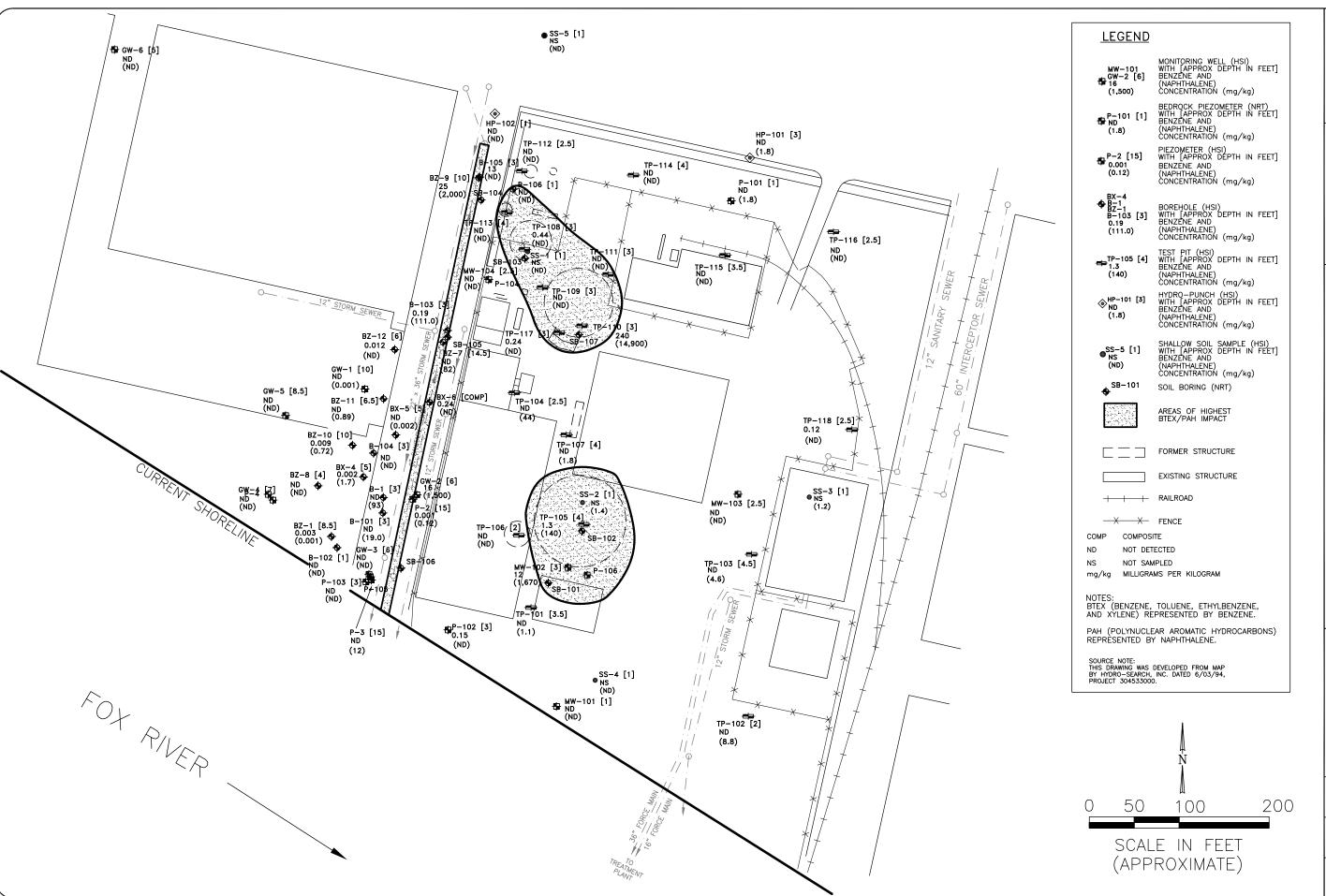
Notes:

*Hold time exceeded for sulfur analysis.

several compounds detected between the limit of detection and the limit of quantitation na = parameter not applicable

- = parameter not analyzed.

TCLP = Toxicity Characteristic Leaching Procedure
W COMP UPPER & LOWER represents composite samples of SB-109, 110, 111
SW COMP UPPER & LOWER represents soil borings SB-112 through 116


SE COMP UPPER & LOWER represents soil borings SB-117 through 119 E COMP UPPER & LOWER represents soil borings SB-121, 123 and 124

DSP COMP represents a composite of SB-109 through 124

RO COMP represents a composite sample collected from drill cuttings for disposal

^{**} Sulfur expressed as wet weight.

APPENDIX A3 REMEDIAL ACTION OPTION REPORT FIGURES

DISTRIBUTION OF BTEX AND PAH IMPACTS IN UNSATURATED SOIL REMEDIAL ACTION OPTIONS REPORT FORMER OSHKOSH MGP SITE - WPSC OSHKOSH, WISCONSIN

Natural

Resource Technology

PROJECT NO. 1177/2.3/OSHK

DRAWING NO.

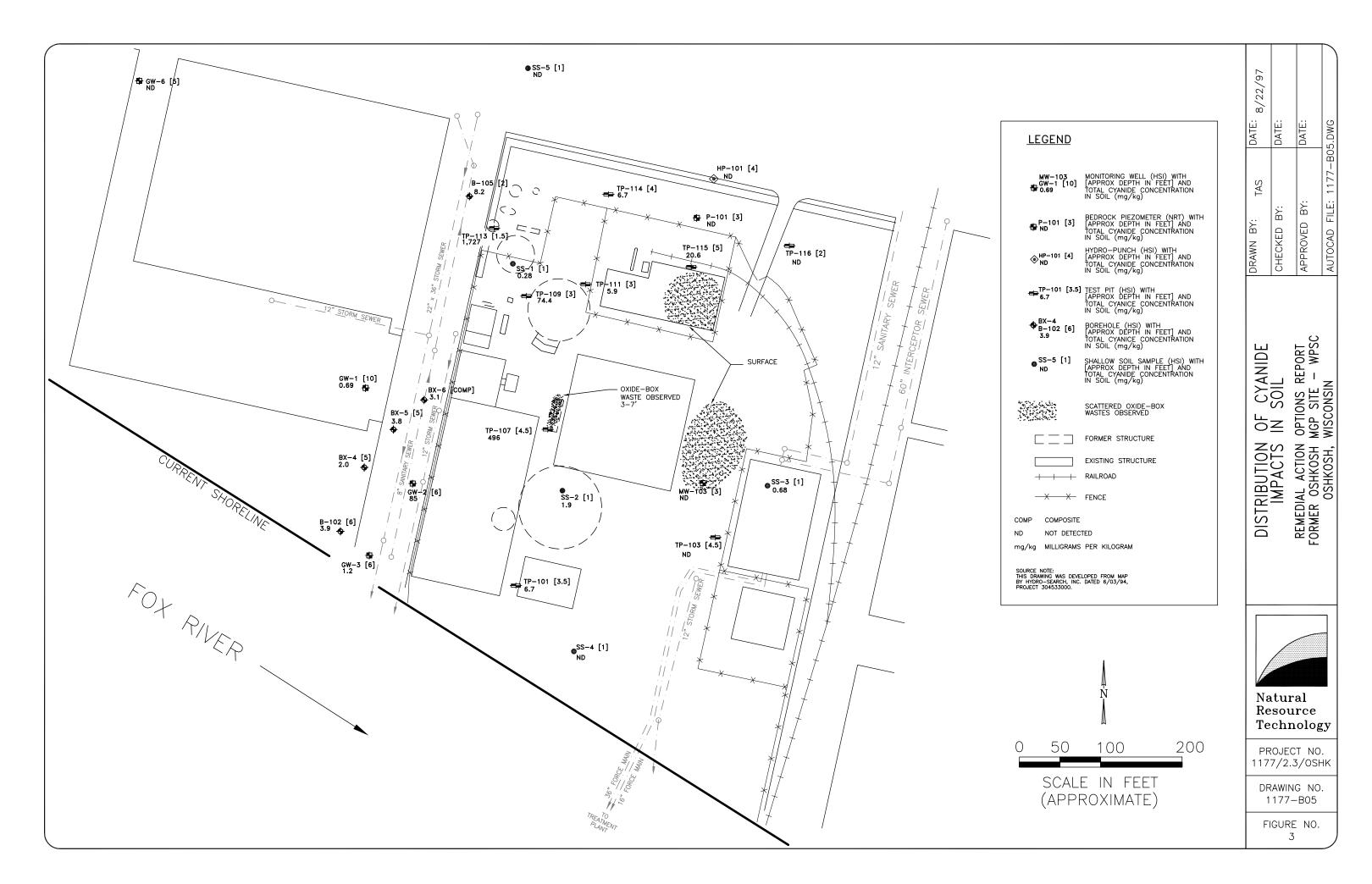
1177-B02

FIGURE NO. 2

12/15/97

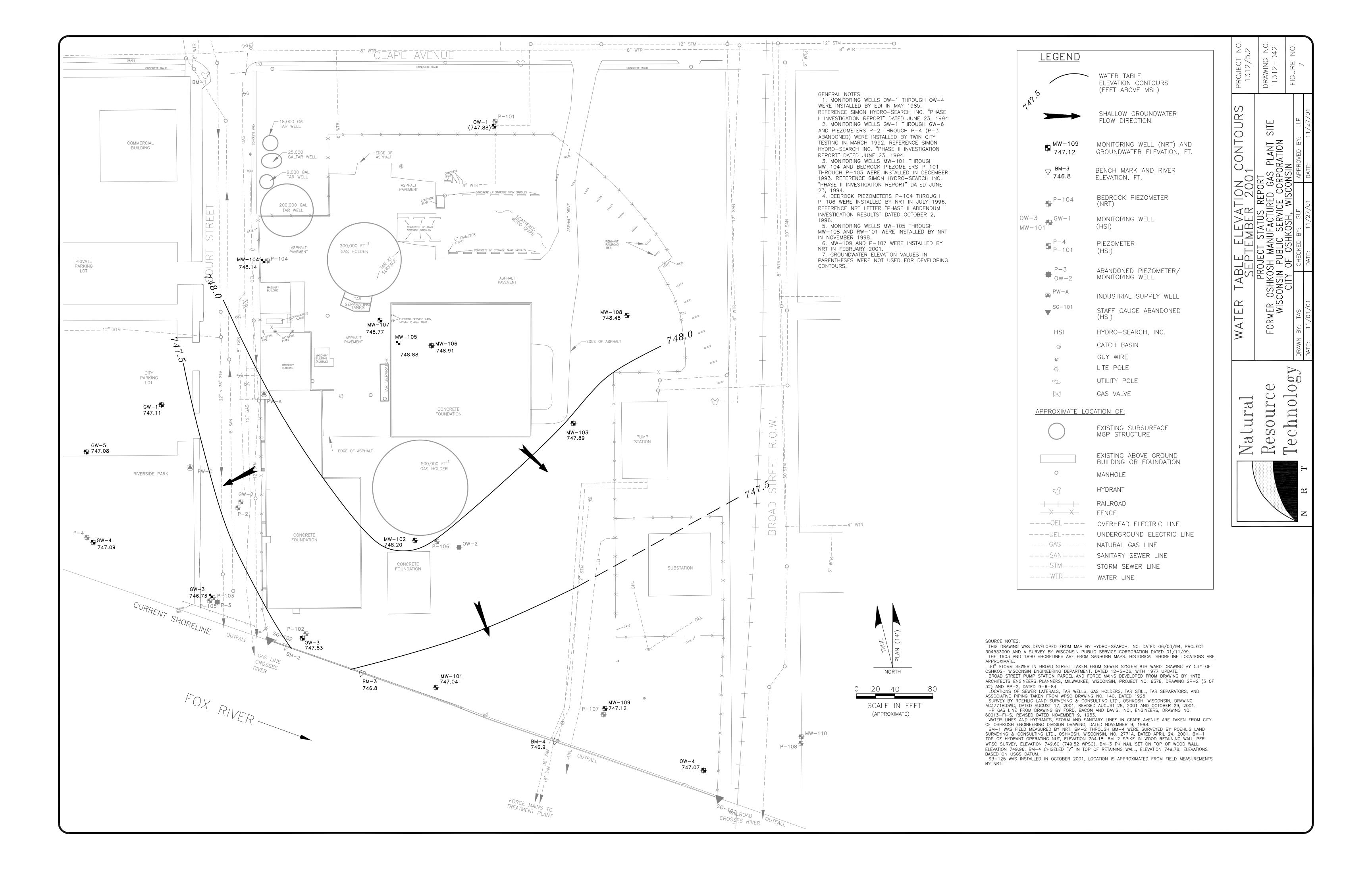
TAS

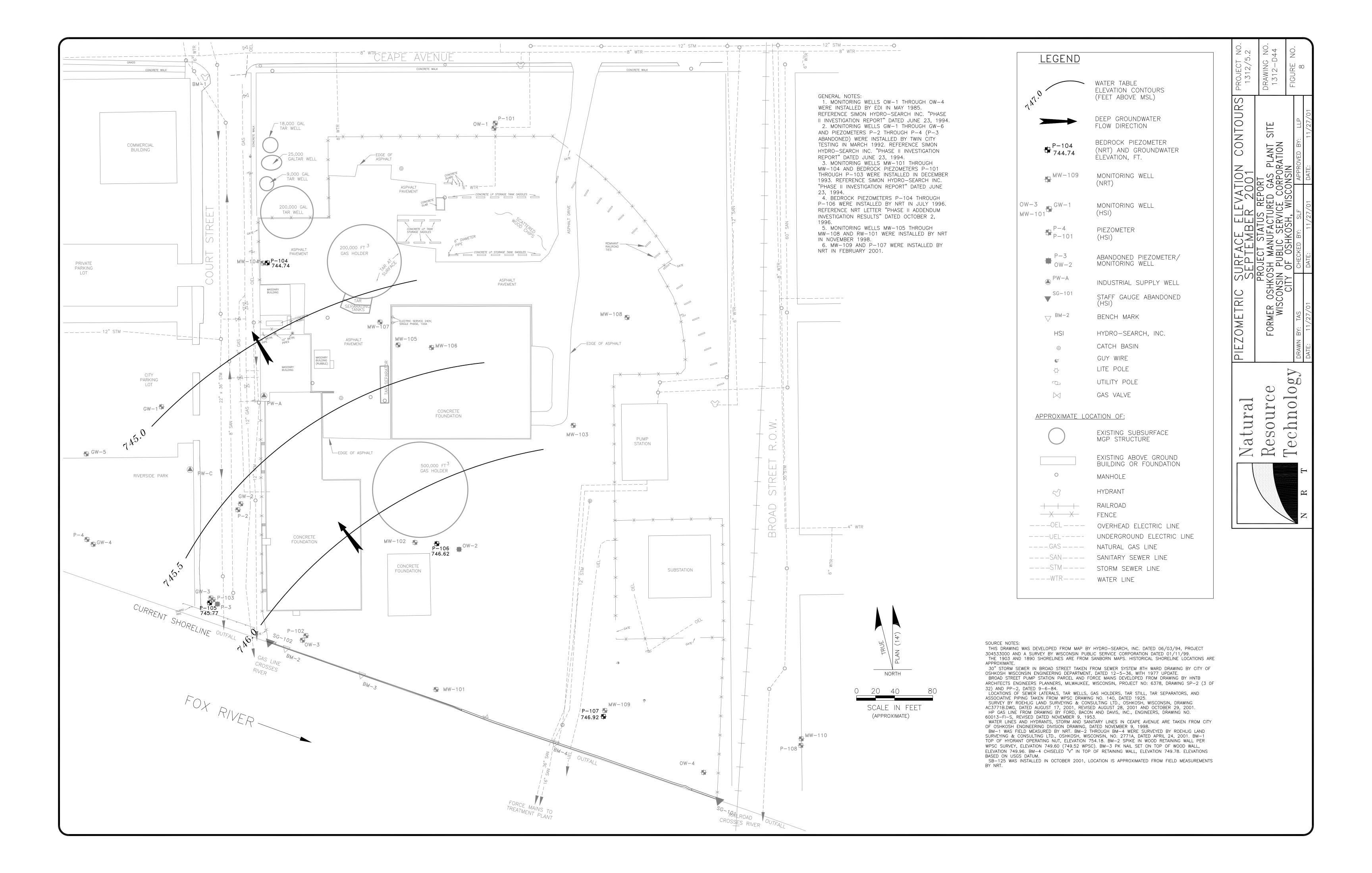
DATE:

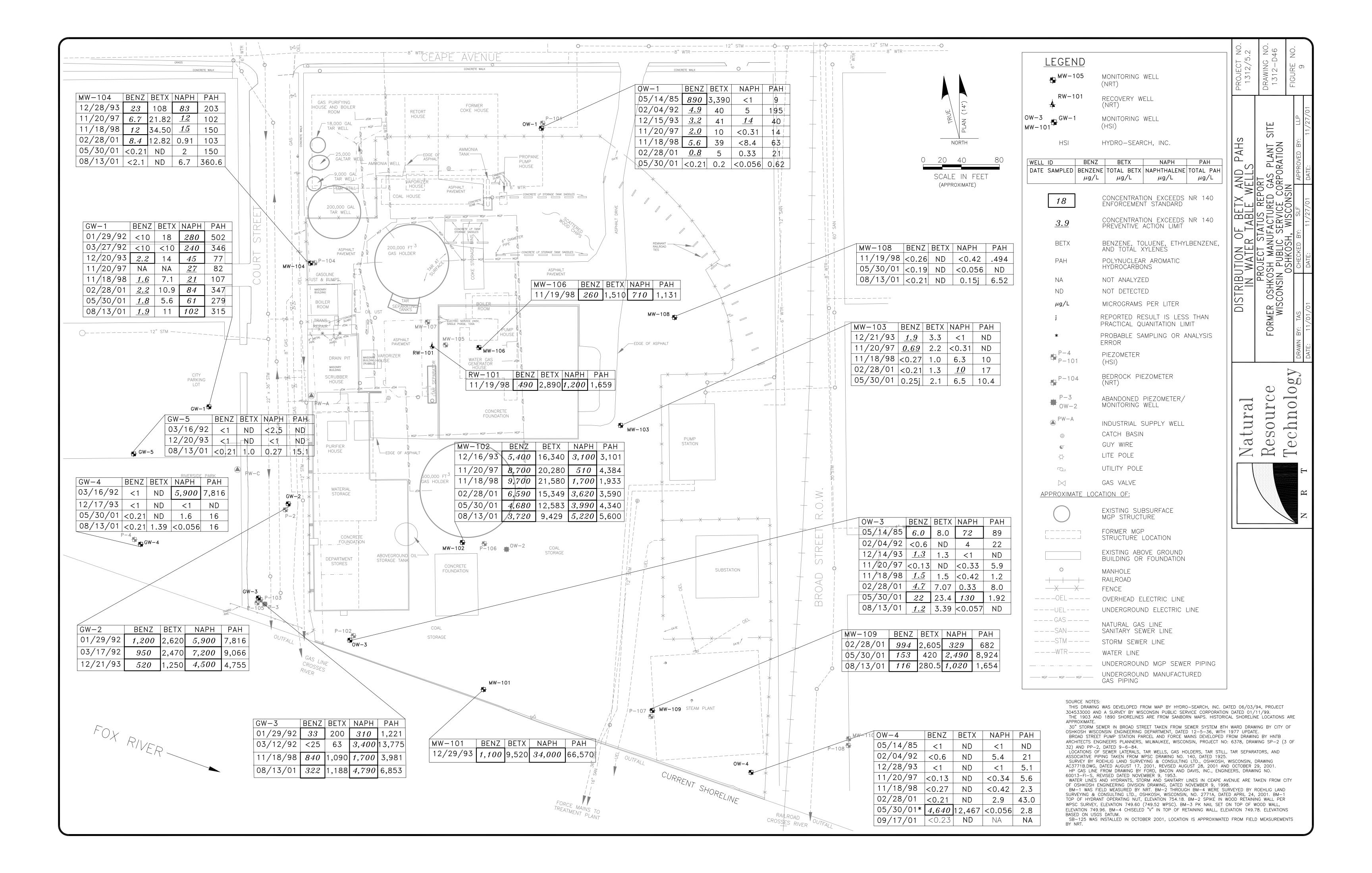

BY:

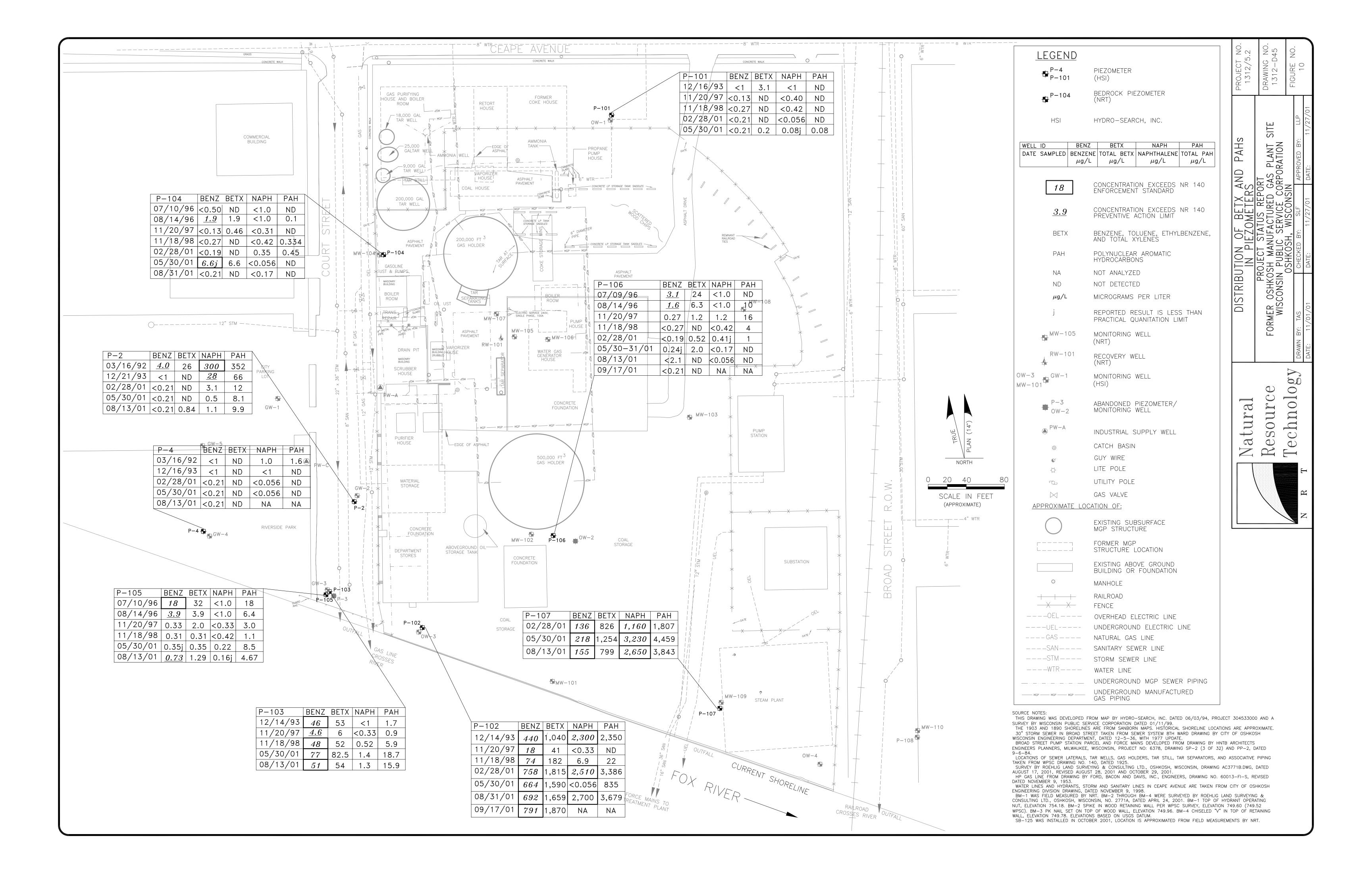
CHECKED

DATE:


BY:


APPROVED




APPENDIX B SITE INVESTIGATION GROUNDWATER DOCUMENTATION

APPENDIX B1 REMEDIAL WORK PLAN FIGURES

APPENDIX C SITE INVESTIGATION SEDIMENT DOCUMENTATION

APPENDIX C1 SITE INVESTIGATION DOCUMENTATION PRIOR TO 2001

Summary of Sediment Sampling Analytical Results Table 1.

		· · · · · · · · · · · · · · · · · · ·				١			•		
Distance From Si	mple Number: Location: ate Sampled: hore (feet):	4/28/04	SD-102 Center 4/27/94 6	SD-103 West 4/27/94 50	SD-104 West 4/27/94 6	SD-105 East 4/28/94 15	SD-106 Center 4/27/94 10	SD-107 Center 4/27/94 26	SD-108 Center 4/27/94 50	SD-109 East 4/28/94 60	SD-110 East 4/28/94
Phenol Solids, Total TOC, dry wt.	(mg/kg) X X	<0.50 58.6 6.61	<0.50 46.1 3.00	<0.50 71.1 1.57	<0.50 74.2 5.00	<0.50 78.7 5.70	<0.50 46.4 2.83	<0.50 60.0 1.43	<0.50 65.1 3.60	<0.50 68.6 1.36	NA NA NA
Benzene Ethylbenzene Toluene Xylenes, Total TOTAL BETX (mg/kg)	(mg/kg) (mg/kg) (mg/kg) (mg/kg)	0.32 0.53 0.23 0.72	23.3 13 19.7 7.2 24.2	<0.050 <0.050 <0.050 <0.15	0.087 <0.066 0.15 0.28	0.11 <0.050 0.12 0.21	28.6 4.3 4.3 4.6 17.5	0.37 <0.15 0.23 0.37 0.97	<0.050 <0.050 <0.050 <0.15	<0.10 <0.10 <0.10 <0.19	NA HA HA HA
Detected PAHs Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(a)pyrene Benzo(ghi)perylene Chrysene Fluoranthene Fluorene Indeno(1,1,3-cd)pyre Naphthalene Phenanthrene Pyrene	e (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μg/kg) (μα/kg)	77,000 2,100 3,100 7,600 6,000 8,400 27,000 3,200	210 330 270 160 410 380 420 4,000 250 <160 820 490	<8.0 <2.0 <2.0 <2.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4.0 <4	24 110 47 130 160 130 290 <32 100 160 140	460 840 7720 260 940 940 330 730 330 730 2,000	54 160 60 58	330 980 470 110 540 510 460 500 360 2,300 1,300 540	<pre></pre>	<pre></pre>	#A 1,700 6,900 860 2,000 2,000 1,900 590 3,000 14,800 6,800 2,000
TOTAL DETECTED PAHS	(μg/kg)	160,700	5,010	ND	1,651	17,080	1,982	9,800	VD.	. ₹8.U ₩D	2,300 43,150

Notes: Hilligrams per kilogram which is equivalent to parts per million. mg/kg μg/kg Micrograms per kilogram which is equivalent to parts per billion. BETX Benzene, ethylbenzene, toluene, and total xylenes.

PAHs Polynuclear aromatic hydrocarbons

ND Parameters not detected above method detection limits NA

Parameter not analyzed

: TEC; McDonald 2000

-: PEC; McDonald 2000 for PAHs

-: EPA Ecotox Threshold for BTEX

Table 4-2. BETX and PAH Sediment Sample Results (µg/kg) Former Oshkosh MGP Site - WPSC

Sample	Benzene	Ethyl	Toluene	Xylenes	Total	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)	Benzo(b)	Benzo(k)
1D		benzene]	(Total)	BETX	,	, , , , ,		anthracene	fluoranthene	
mdl	5	5	5	15		40	80	8	2	nuoraninene	fluoranthene
T101A-5 (4'-6')	35,000	120,000	743000	÷974000	324,000	92,000	<1600	22,000	24.000	4 700	2
T101A-9 (8'-10)	4,400	33,000	14,000	28,000	79,400	**I-1,000°	<1600		31.000	6,700	ଃଃ300ା
T101B-9 (8'-10')	18	210	15	110	353	<40	<80	39.000	4,100	≪800∞.	930
T101C-3 (2'-4')	38	340	8.6	275	413.6	<40		10	8.5	<2.0	<2.0
T101C-9 (8'-10')	<100	330	<100	310	640	- 	<80	- 59	77	11	8.6
T101C-11 (10'-12')	8.6	63	18			<u> 6,000</u>	<u>52,000</u>	<u>.8,200</u> >	<u>6,400</u> %	1,300	1,200
T102A-3 (2'-4')	7.4	63	8.3	28	117.6	<40	<80	17	18	6.4	4.7
T102D-5 (4'-6')	8.5	5		<u> </u>	105.7	<40	<80	220	>(170)	41	42
T103A-3 (2'-4')	6.9		50	<15	63.5	<40	<80	<8.0	2.4	2.1	<2.0
T104A-3 (2'-4')		13	<5.0	<15	19.9	<40	<80	12	11	3.1	<2.0
· · · · · · · · · · · · · · · · · · ·	2460⊴	4,500	22	1,600	6,582	320	<80	₹97	73	15	14
T104A-11 (10'-12')		26	6.3	22	84.3	<40	<80	<8.0	<2.0	<2.0	<2.0
T104B-5 (4'-6')	13		6.6	<15	30.6	<40	<80	33	2.7	9.9	7.1
T105A-3 (2'-4')	9,900-	27.000	500	<u> 5,100</u>	42,500	2,100	<80	520%	₹780 -	110	
T105A-9 (8'-10')	<u>⊚900</u> %	2,900	2,600	3:700	10,100	430	<80	73 %	42		97
T105B-3 (2'-4')	9.6	11	13	<15	33.6	<40	<80	<8.0	T-1111-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	8.6	5.6
T106A-3 (2'-4')	<5.0	6.7	<5.0	<15	6.7	<40	<80	21	<2.0	<2.0	<2.0
T106A-9 (8'-10')	<5.0	<5.0	<5.0	<15	0	<40	· · · · · · · · · · · · · · · · · · ·		ু160÷	46	35
T106B-3 (2'-4')	<5.0	<5.0	<5.0	<15	0	<40	<80	<8.0	<2.0	<2.0	<2.0
	<u> </u>		1 5.5	-13	<u> </u>	<u> </u>	<80	<8.0	<2.0	<2.0	<2.0

Notes: mdl is the Method Detection Limits

Exceed McDonald 2000

- Exceed PEC; mcDonald 2000 for PAHS

- Exceed EPA Ecotox Threshold for BTEX

Table 4-2. BETX and PAH Sediment Sample Results ($\mu g/kg$) - continued Former Oshkosh MGP Site - WPSC

Sample	Benzo(a)	Benzo(ghi)	Chrysene	Dibenzo(a,h)	Eluganatha I	TI TI	7	,			
1D	pyrene	perylene	Onlyacite		Fluoranthene	Fluorene	Indeno(1,2,3-cd)	Naphthalene	Phenanthrene	Pyrene	Total
mdl	4	4	4	anthracene	_		ругепе				PAHs
T'101A-5 (4'-6')	19,000	17,000		4	8	16	4	25	16	8	
T101A-9 (8'-10)	2.200	2,600	15,000	1 <u>2.000</u>	48,000	<u>128,000</u>	4:400	360,000	102,000	24.000	889,400
T101B-9 (8'-10')	<4.0		2,000	<80	<u></u>	<u>4.000</u>	510	49,000	4.15.000	3,300	150.740
T101C-3 (2'-4')		<4.()	5.4	<4.0	16	<16	. <4.0	130	33	10	
	28	26	28	<4.()	82	130	16	3\$ 2 \$000 ==	290		213
T101C-9 (8'-10')	4,600	:2,900	<u>4:700</u>	\$23300	1.8:000	34.000	45500			. 64	2,820
T101C-11 (10'-12')	12	14	14	<4.0	4()	36	11	79.000	37.000	<u> </u>	280,100
T102A-3 (2'-4')	140	100	120	<4.0	380	240	52	280	53	29	535 .
T102B-5 (4'-6')	<4.0	<4.0	<4.0	<4.0	11	<16	<4.0	∴570 °	3 650	ু200	2,925
T103A-3 (2'-4')	10	1	9.7	<4.0	39	37		<25	<16	II	27
T104A-3 (2'-4')	58	31	60	<4.0	210		7.4	110	40	20	310
T104A-11 (10'-12')	<4.0	<4.0	<4.0	- <4.0	<8.0	200	18	2,400	330	140	-3,966
T104B-5 (4'-6')	28	20	26	<4.0	98	<16	<4.0	44	<16	<8.0	44
T105A-3 (2'-4')	420	250	≥420∞	260		40	12	69	110	65	545
T105A-9 (8'-10')	42	35	36		*1,900 ₌	1,400	140	<u>5.700</u>	2.500	41.200	17,797
T105B-3 (2'-4')	<4.0	<4.0	<4.0	<4.0	160	300	16	<u>-1.600</u>	240	29290	3,278
T106A-3 (2'-4')	140	110	110	<4.0	<8.0	<16	<4.0	<25	<16	<8.0	0 1-1
T106A-9 (8'-10')	<4.0			<4.0	130	<16	75	54	41	100	1,022
T106B-3 (2'-4')		<4.0	<4.0	<4.0	<8.0	<16	<4.0	<25	<16	<8.0	·
110005-0 (2-4)	<4.0	<4.0	<4.0	<4.0	<8.0	<16	<4.0	<25	<16	<8.0	0 - 10 - 10

Notes: mdl is the Method Detection Limits

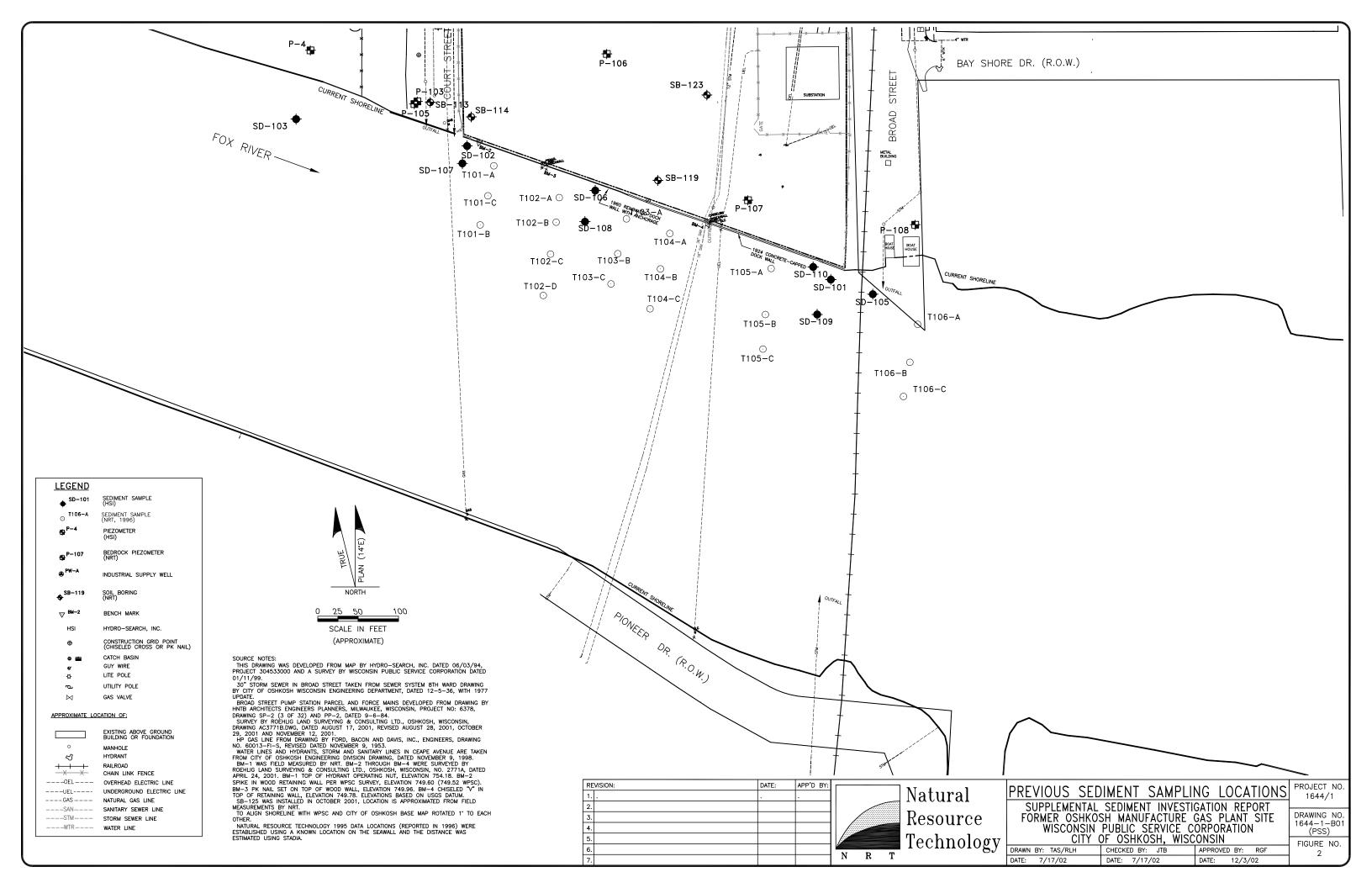
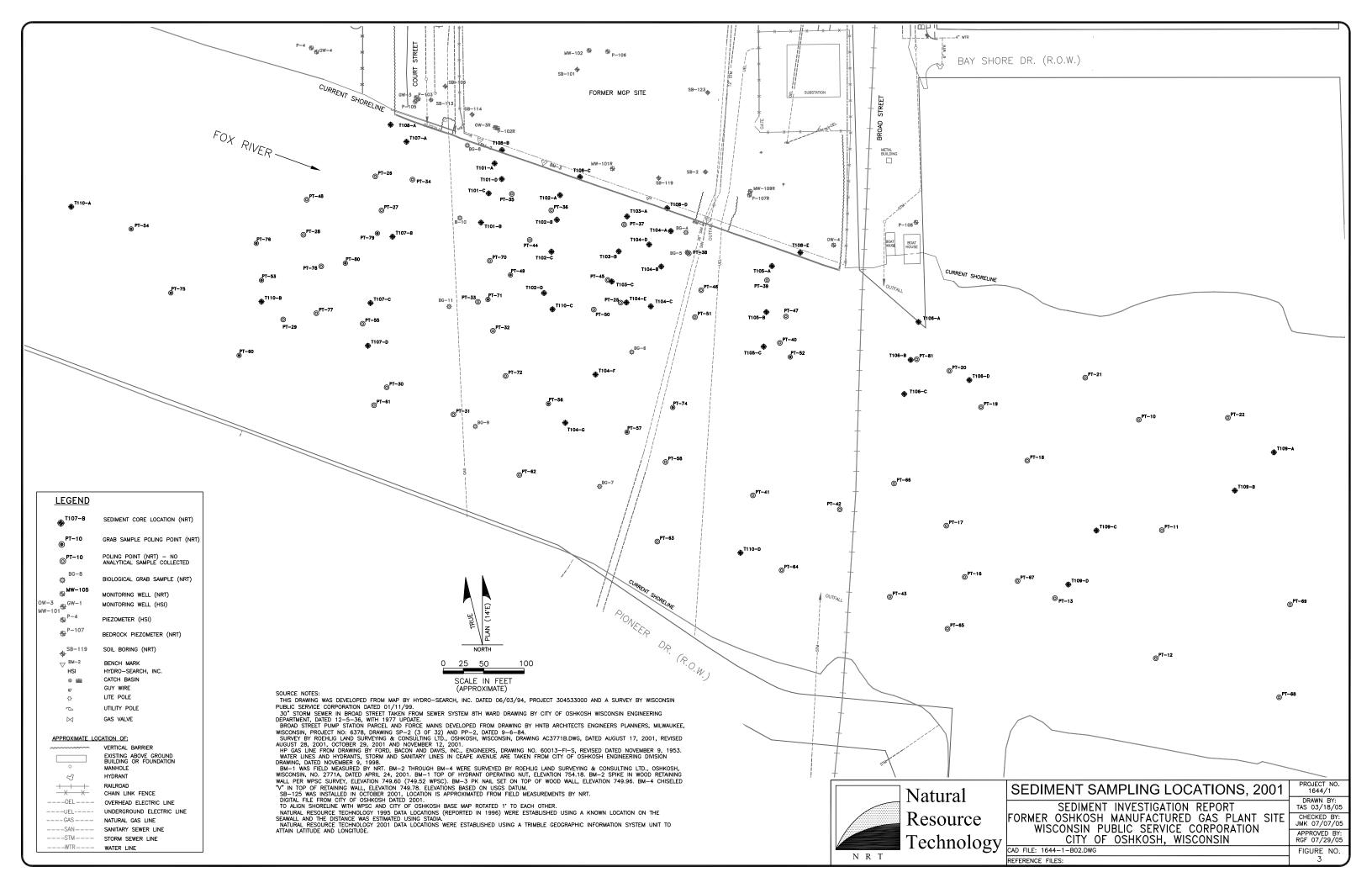
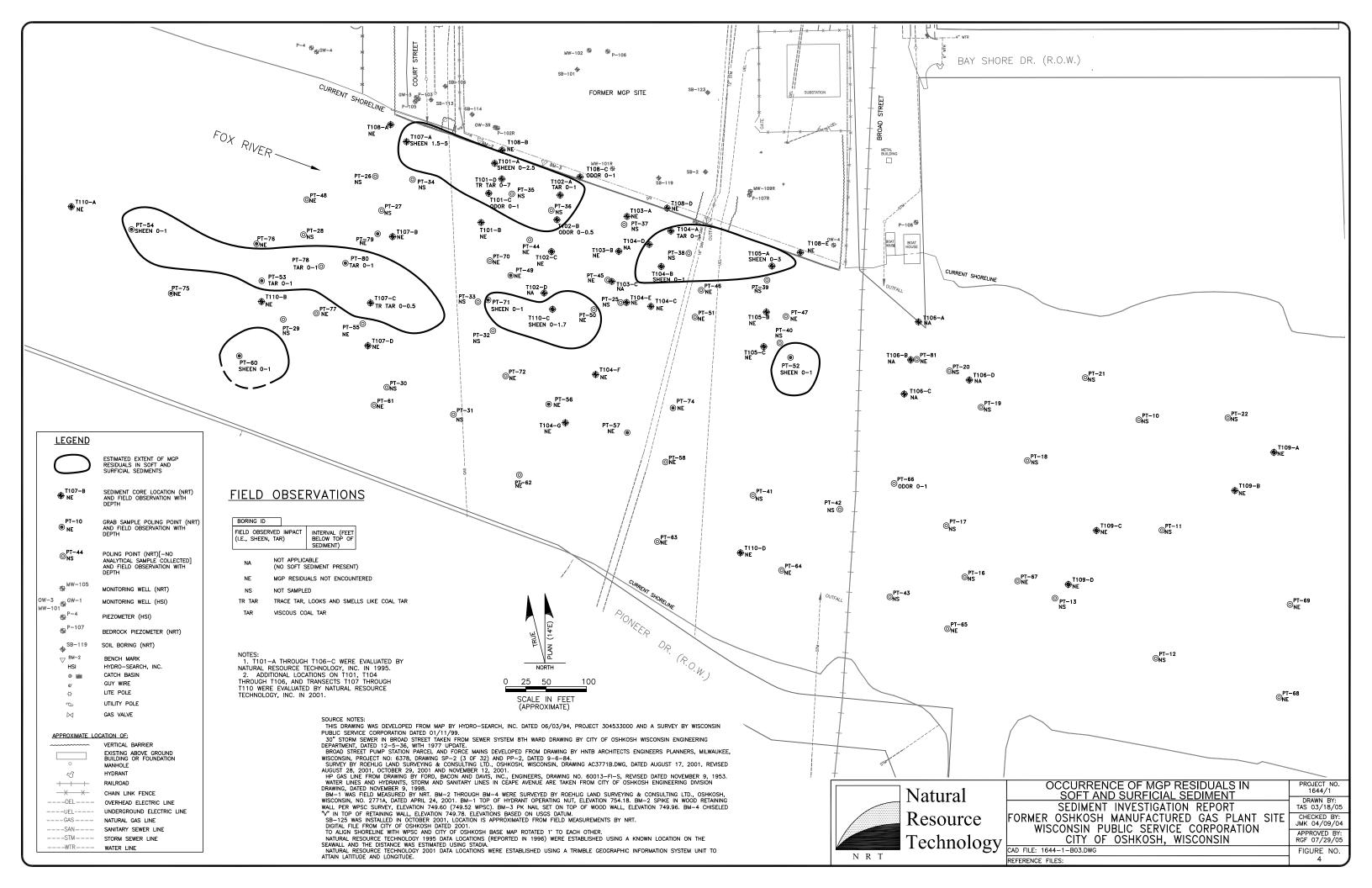
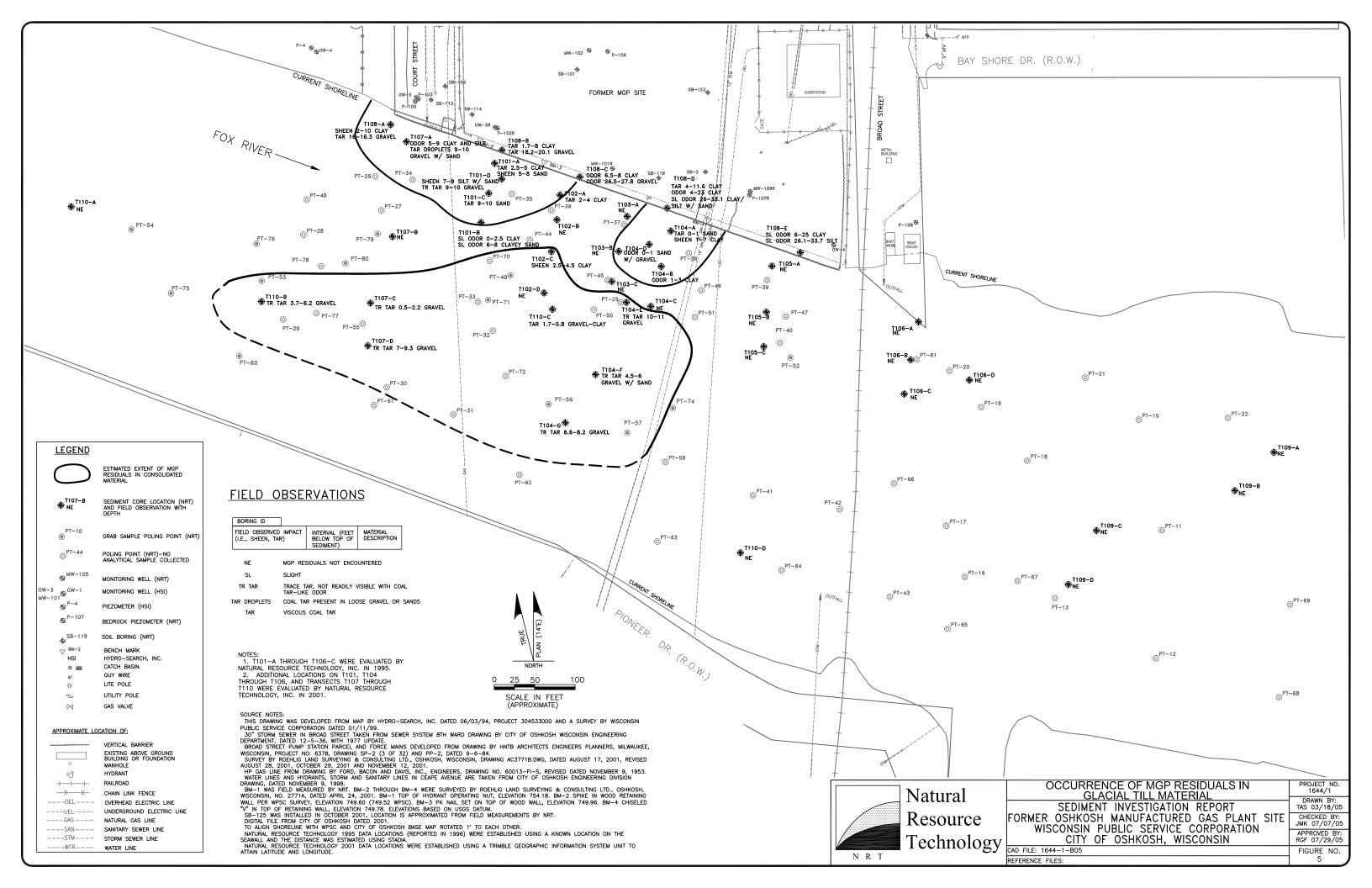
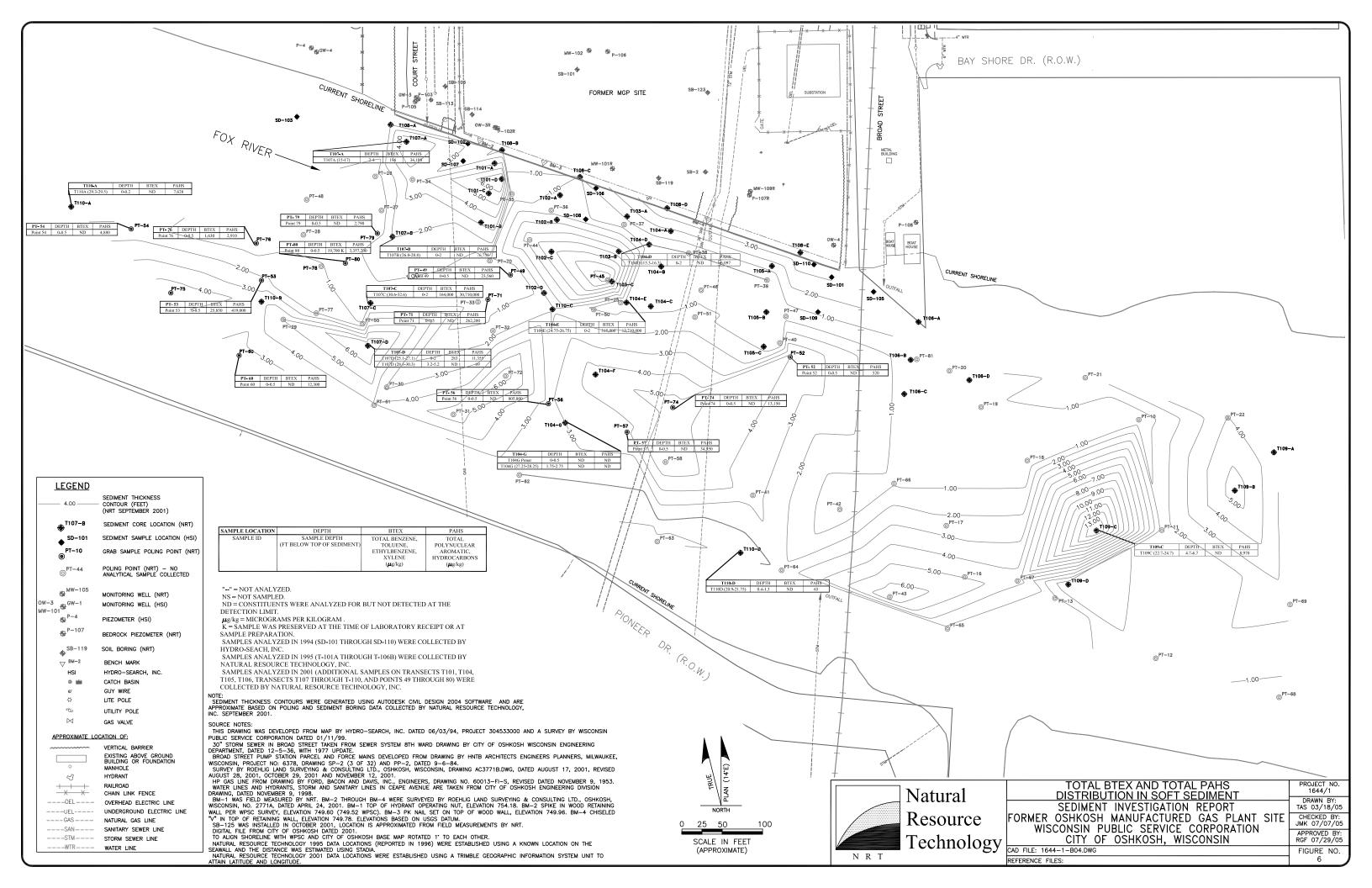

: Exceed TEC; McDonald 2000 -: Exceed PEC; McDonald 2000

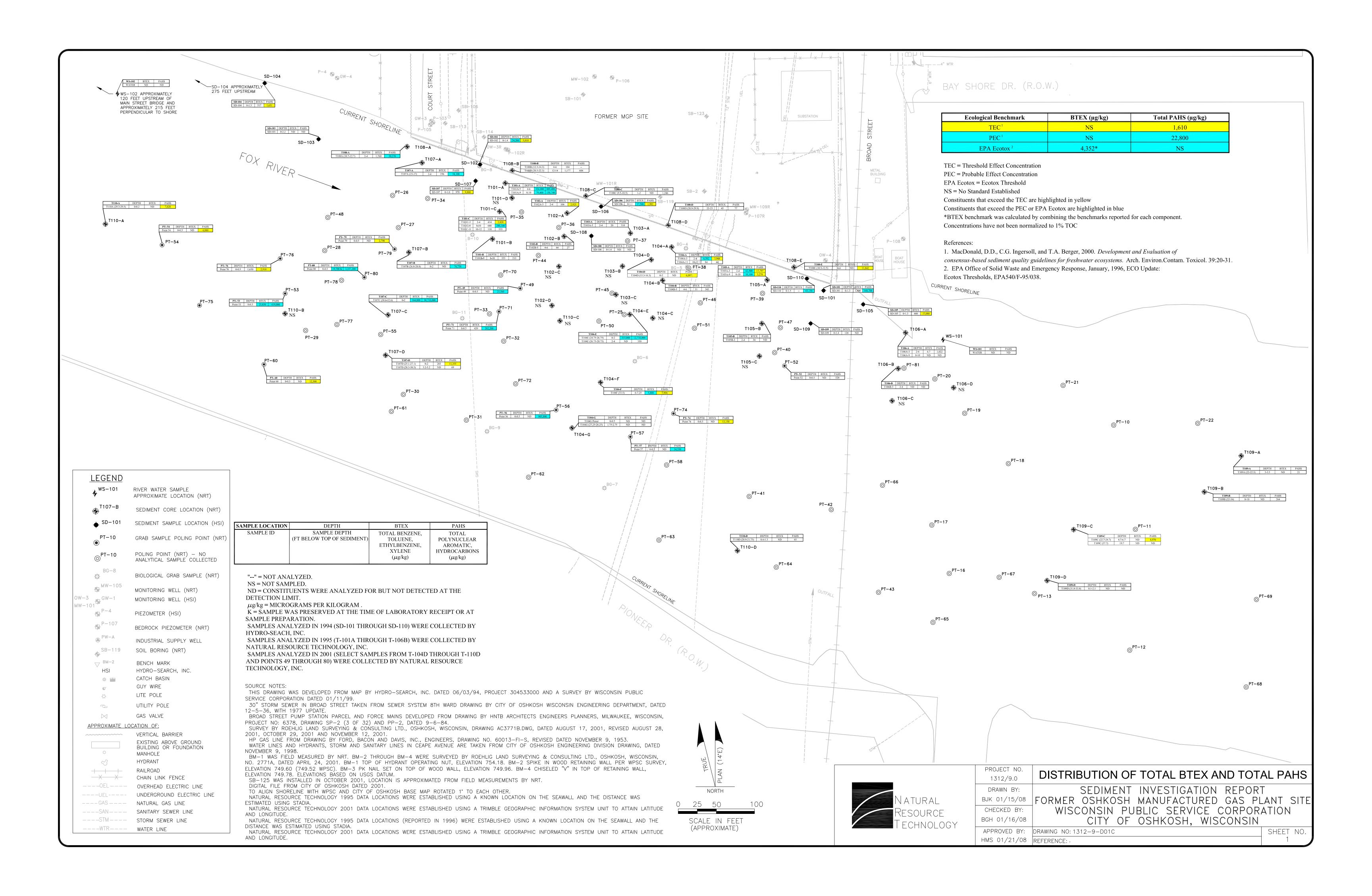
Table 4-3. Cyanide, TOC, Oil and Grease, and Grain Size Results Sediment Sampling - Former Oshkosh MGP Site - WPSC

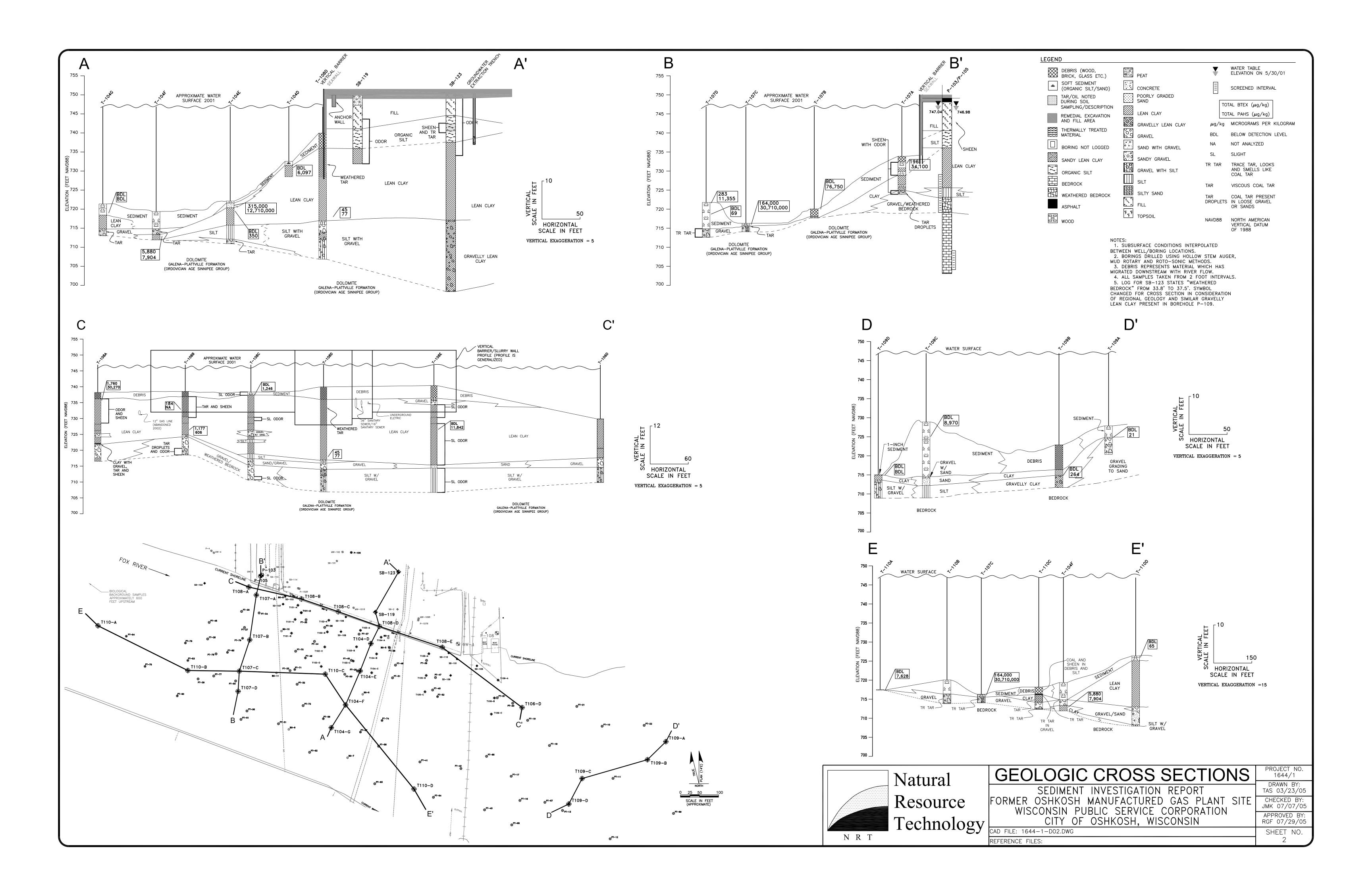

Sample			Parameter	(mg/kg)		G	rain Si	ze Resu	Its	
(D	Cyanide (dissociable)	Cyanide (total)	Phenol	Total Organic Carbon	Oil & Grease	Gravel			Clay	USCS Classification
T101A-5 (4'-6')	<0.25	<0.25	√-6°	na	na	па	na			Classification
T101C-3 (2'-4')	<0.25	<0.25	0.19	na	na	na	na	na	na	*****
T101C-9 (8'-10')	< 0.25	<0.25	< 0.13	na	na	1		na	na	
T102A-3 (2'-4')	< 0.25	<0.25	< 0.13	na	na	na	na	na	na	
T103A-3 (2'-4')	< 0.25	<0.25	<0.13	na		па	na	na	na	
T104A-3 (2'-4')	< 0.25	<0.25	0.26	па	na	na	па	па	na	
T104B-5 (4'-6')	<0.25	<0.25	0.15	na	na	па	na	na	na	
T105A-3 (2'-4')	<0.25	<0.25	0.63	na	na	na	na	na	na	
T105B-3 (2'-4')	<0.25	<0.25	<0.13		na	na	па	na	па	
T106A-3 (2'-4')	<0.25	<0.25	0.15	na	na	na	na	па	na	
T101A-1-5 (0'-6')	na	na		na 1 coo	na T o o o	na	na	na	na j	
T102A-1&3 (0'-4')	na		118	1,600	7,900	0.0%			45.2%	,,,
T103A-1&3 (0'-4')		na	na	1,200	<500	0.0%	47.4%	19.7%	32.9%	Sandy clay
T104A-1&3 (0'-4')	na	na	na	3,600	<500	0.0%	25.9%	27.7%	46.4%	
T105A-1&3 (0'-4')	na	па	па	<1,000	570	0.0%	52.9%	34.0%	13.1%	
7 100/3-1000 (0 -4)	па	na	na	1,600	<500	0.0%	34.5%	27.6%	37,9%	Sandy clay


Notes: na: Parameter not analyzed for in this sample:


: Exceed TEC; McDonald 2000
- : Exceed PEC; McDonald 2000




APPENDIX C2 2005 FIGURES AND SHEETS



APPENDIX C3 2005 TABLES

Table 1 - Sediment Poling and Ponar Grab Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

	Depth to	Top of Sediment	Approximate	Depth		·		
	Sediment	Elevation	Thickness of Soft	(
C 1 YD			Sediment	sed. surface)	Soil or Rock Descriptions	Odor	Sheen	Tar
Sample ID	(feet)	(feet - msl) A	(feet)	(feet)		Noted	Noted	Noted
D : / 10 I		1		g Sample Location	ons		<u> </u>	<u>. </u>
Point 10	19.9	727.0	0.3	NA	NA	NS	NS	NS
Point 11	25.0	721.9	1.5	NA	NA	NS	NS	NS
Point 12	25.1	721.8	1.6	NA	NA	NS	NS	NS
Point 13	31.3	715.6	NA	NA	NA	NS	NS	NS
Point 16	>30	NA	>30	NA	NA	NS	NS	NS
Point 17	>30	NA	>30	NA	NA	NS	NS	NS
Point 18	24.0	722.9	0.0	NA	Rock & Gravel	NS	NS	NS
Point 19	19.3	727.6	0.8	NA	NA	NS	NS	NS
Point 20	15.8	731.2	0.6	NA	Gravel	NS	NS	NS
Point 21	15.4	731.5	1.6	NA	Gravel	NS	NS	NS
Point 22	13.1	733.8	4.0	NA	Silt & Clay	NS	NS	NS
Point 25	24.8	722.2	0.3	NA	Gravel	NS	NS	NS
Point 26	19.6	727.3	0.5	NA	Sand	NS	NS	NS
Point 27	27.7	719.2	0.5	NA	NA	NS	NS	NS
Point 28	28.9	718.0	0.3	NA	NA	NS	NS	NS
Point 29	26.5	720.4	5.0	NA	NA	NS	NS	NS
Point 30	21.6	725.3	2.9	NA	NA	NS	NS	NS NS
Point 31	23.8	723.2	5.5	NA	NA	NS	NS	NS NS
Point 32	27.9	719.0	1.4	NA	NA	NS	NS	NS
Point 33	27.1	719.8	0.1	NA	NA	NS	NS	NS
Point 34	20.3	726.7	3.5	NA	NA	NS	NS	NS
Point 35	16.0	730.9	0.3	NA	Rock	NS	NS NS	NS NS
Point 36	15.3	731.7	1.6	NA	Rock & Sand	NS NS	NS NS	NS NS
Point 37	15.0	731.9	0.5	NA	Sand	NS NS	NS NS	NS NS
Point 38	12.6	734.3	0.0	NA	Rock	NS NS	NS NS	
Point 39	14.0	732.9	0.0	NA	Rock	NS NS	NS NS	NS
Point 40	23.1	723.8	0.3	NA	Rock	NS NS	NS NS	NS NS

Table 1 - Sediment Poling and Ponar Grab Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl) A	Approximate Thickness of Soft Sediment (feet) Polin	Depth (from top of sed. surface) (feet) g Sample Locati	Soil or Rock Descriptions	Odor Noted	Sheen Noted	Tar Noted
Point 41	27.9	719.0	3.4	NA	NA I	NS	NS	NS
Point 42	25.3	721.7	0.1	NA	NA	NS	NS	NS
Point 43	26.1	720.8	6.7	NA	Red Clay	NS	NS	NS
Point 68	24.0	722.9	4.5	NA	Organic Material	No	NS NS	NS
Point 69	20.3	726.6	8.7	NA	Organic Material	No	NS NS	NS
			Poling an	d Ponar grab Lo		140	No	N2
Point 44	22.9	724.0	0.7	<1	Organic Material	No	No	
Point 45	23.8	723.1	0.4	<1	Organic Material	No	No No	No
Point 46	19.9	727.0	- 0.3	<1	Rock/Gravel	No	No No	No
Point 47	17.2	729.7	0.0	<1	Organic Material with Sand (B)	No	No	No No
Point 48	26.9	720.0	0.9	<1	Organic Material (B)	No	No	No No
Point 49	27.4	719.5	1.2	<1	Organic Material	No	No	No No
Point 50	26.3	720.6	4.0	<1	Organic Material	No	No	Yes
Point 51	24.9	722.0	2.1	<1	Rock	No	No	No
Point 52	25.0	721.9	1.3	<1	Sand with Gyttja (B)	No	Yes	No
Point 53	29.4	717.5	0.9	<1	Organic Material	Yes	Yes	Yes
Point 54	27.8	719.2	2.7	<1	Organic Material	No	Yes (HC)	No
Point 55	27.3	719.6	3.7	<1	Organic Material	No	No	No
Point 56	26.0	720.9	6.0	<1	Bark	No	No	No
Point 57	26.0	720.9	2.5	<1	Organic Material	No	No	No
Point 58	24.6	722.3	4.0	<1	Organic Material	No	No	No
Point 60	20.8	726.1	2.0	<1	Organic Material	No	Yes	No
Point 61	20.4	726.5	0.6	<1	Organic Material	No	No No	No
Point 62	16.2	730.7	2.3	<1	Organic Material	No	No	No
Point 63	14.3	732.6	2.9	<1	Organic Material	No	No	
Point 64	18.7	728.2	0.8	<1	Rock with Sand	No	No No	No
Point 65	22.9	724.0	4.4	<1	Organic Material	No	No No	No No
Point 66	31.9	715.0	0.6	<1	Rock with Sand	Yes	No	No No

Table 1 - Sediment Poling and Ponar Grab Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl)	Approximate Thickness of Soft Sediment (feet)	Depth (from top of sed. surface) (feet)	Soil or Rock Descriptions	Odor Noted	Sheen Noted	Tar Noted
			Poling an	d Ponar grab Lo	cations	2.000	110100	110100
Point 67	32.0	714.9	2.3	<]	Organic Material	No	No	No
Point 70	26.8	720.2	0.7	<1	Organic Material	No	No	No
Point 71	27.0	719.9	0.5	<1	Organic Material (B)	No	Yes	
Point 72	25.0	721.9	6.5	<1	Organic Material	No	No	No
Point 74	26.0	720.9	5.5	<1	Organic Material	No	No No	No
Point 75	27.9	719.0	4.6	<1	Organic Material	No	No No	No
Point 76	29.0	717.9	0.3	<1	Rock with Organic Material	No		No
Point 77	26.4	720.5	1.6	<1	Organic Material	No	No	No
Point 78	29.7	717.2	1.1	<1	Rock with Organic Material		No	No
Point 79	27.0	719.9	0.3	<1	Organic Material	Yes	Yes	Yes
Point 80	29.4	717.5	0.4	<1		No	No	No
Point 81	17.3	729.6	0.2	<1	Organic Material Shell Fragments	Yes No	Yes No	Yes No

- 1. Points 10 through 81 were sampled September 20 through 27, 2001.
- A: msl is Mean Sea Level Water at mouth of Fox River is 746.9 feet msl from USGS topo quadrangle Assumed for river over entire site.
- B: Small pieces of coal present in sediments
- (HC): Hydrocarbon odor or sheen may be petroleum based (oil/grease from boat motors industry rather than from MGP operations).
- NA: Not Applicable
- NS: Not Sampled

Organic Mater = Strongly decomposed plant remains, shells and fine particles.

Table 2 - Sediment Borehole Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl) A	Approximate Borehole Depth (feet)	Approximate Bottomof Borehole Elevation (feet - msl) A	Depth (from top of sed. surface) (feet)	Soil or Rock Descriptions	Odor Noted	Sheen Noted	Tar
Г-101D ^В	13.5	733.4	10.0	723.4	0-1				Noted
			10,0	725.4	1-7	Sand & Gravel	Yes	No	Yes
					7-9	Clay	No	No	Yes
					9-10	Silt with Sand	Yes	Yes	no
T-104D ^B	14.3	732.6	4.0	#00 <i>c</i>		Gravel	No	No	Yes
	1,.5	752.0	4.0	728.6	0-1	Sand & Gravel	Yes	No	No
T-104E ^B	24.0	700.0		· · · · · · · · · · · · · · · · · · ·	1-4	Clay	No	No	No
1-104E	24.8	722.2	10.5	711.7	0-0.5	Gyttja	No	No	No
					0.5-1.5	Sand	No	No	No
					1.5-6.5	Clay	No	No	No
					6.5-9.5	Silt	No	No	No
					9.5-10.5	Gravel	Yes	No	Yes
Г-104F ^в	27.5	719.4	7.0	712.4	0-5	Organic Material	No	No	No
	[5-6	Gravel with Sand	No	No	Yes
					6-7	Clay	No	No	No
Г-104G ^в	25.5	721.4	8.0	713.4	0-3	Organic Material	No	* *** * * *	
	ĺ				3-7	Clay	No	No No	No
					7-8	Gravel	No	No No	No
Г-106D ^в	16.9	730.0	21.0	709.0	0-13		····		Yes
	}			,05,0	13-16	Clay Gravel	No	No	No
			-		16-21	Silt with Gravel	No	No	No
Γ-107A ^B	13.0	733.9	10.0	723.9			No	No	No
		153,7	10.0	143.9	0-1.5	Debris	No	No	No
			į	Ì	1.5-7.5	Clay	Yes	Yes	No
•					7.5-8.0	Silt	Yes	No	No
					8-9	Clay	Yes	No	No
Г-107В ^В	26.8	720.1			9-10	Gravel with Sand	Yes	Yes	Yes
	···	720.1	2.25	717.9	0-2.25	Debris/Organic Material	No	No	No
Г-107С ^В	30.6	716.3	2.25	714.1	0-1	Organic Material	No	No	Yes
					1-2.25	Gravel with silt	No	No	Yes

Table 2 - Sediment Borehole Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl) A	Approximate Borehole Depth (feet)	Approximate Bottomof Borehole Elevation (feet - msl) A	Depth (from top of sed. surface) (feet)	Soil or Rock Descriptions	Odor	Sheen	Tar
T-107D ^B	25.1	721.8	9.0	712.8			Noted	Noted	Noted
		721.0	9.0	/12.8	0-2 2-7	Gyttja	No	No	No
					2-7 7-9	Sandy Silt	No	No	No
T-108A ^B	8.7	738.2	20,7	717.6		Gravel with Sand	Yes	No	Yes
		, J U , L	20,7	717.5	0-2	Debris	No	No	No
					2-12	Clay	Yes	Yes	No
					12-13	Clay	Yes	Yes	Yes
					13-14 14-16	Gravel	No	No	No
					14-16 16-20	Clay	No	No	No
			ļ	ļ	20-20.66	Gravel with Sand	No	No	Yes
Г-108В ^В	8.3	738.6	20.0	718.6		Clay	No	No	No
		, 50.0	20.0	/18.6	0-1	Debris/Organic Material	No	No	No
					1-8	Clay	No	Yes	Yes
					8-12	Gravel/Clay	No	No	No
					12-15	Sand with Silt	No	No	No
Г-108С ^В	28.7	718.2	27.5		13-20	Gravel	Yes	no	Yes
	20	/10.2	21.3	690.7	0-1	Organic Material	Yes	No	No
					1-12	Clay	Yes	No	No
Í					12-14	Gravel with Sand	No	No	No
		İ		· ·	14-15	Clay	No	No	No
				Í	15-17	Silt with Clay	No	No	No
					17-19 19-20.5	Clay	No	No	No
]	Sandy Silt with Gravel	No	No	No
	ļ				20.5-21	Sand with Gravel	No	No	No
					21-21.5 21.5-22.5	Gravel	No	No	No
					22.5-27.5	Sand with Gravel	No	No	No
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	<u> </u>	44.3-41.3	Gravel	Yes	No	No

Table 2 - Sediment Borehole Sampling Locations and Field Observations Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl) ^A	Approximate Borehole Depth (feet)	Approximate Bottomof Borehole Elevation (feet - msl)	Depth (from top of sed. surface) (feet)		Odor	Sheen	Tar
T-108D ^B	31.8	715.1	33.0	682.1	`````		Noted	Noted	Noted
		1	22.0	082.1	0-4 4-23	Debris	No	No	No
					23-24	Clay Gravel	Yes	No	Yes
					24-27	1	No	No	No
					27-33	Clay with Gravel	Yes	No	No
T-108E ^B	6,5	740.4	33.7	7067		Silt with Sand	Yes	No	No
		, , , , ,	33.1	706.7	0-4	Debris	No	No	No
					4-4.5	Gravel	No	No	No
	1		ļ		4.5-5	Clay	No	No	No
					5-6.5	Gravel	No	No	No
				İ	6.5-25.5	Clay	Yes	No	No
					25.5-26.5	Sand	No	No	No
Γ-109A ^B	19.0	727.0			26.5-33.66	Silt	Yes	No	No
100/1	19.0	727.9	7.5	720.4	0-3	Soft Sediment	No	No	No
					3-7	Gravel with Sand	No	No	No
Г-109В ^В					7-7.5	Sand	No	No	No
1-103D	24.0	722.9	11.2	711.7	0-6.5	Debris/Sand and gravel	No	-	
		-		ŀ	6.5-8	Clay	No	No	No
					8-11	Gravel and Clay	No	No	No
Г-109С ^в	18.0	728.9	19.9	709.0	0-14		* * * * * * * * * * * * * * * * * * *	No	No
		ĺ			14-16	Organic Material Gravel with Sand/Sand	No	No	No
					16-19.92		No	No	No
Г-109 D ^в	31.8	715.1	6.0	709.1		Silt with Clay	No	No	No
			5,0	103.1	0-1.5	Clay	No	No	No
					1.5-2	Gravel with Sand	No	No	No
T-110A ^B	29.3	717.6	0,2	5157		Silt with Clay and Gravel	No	No	No
C-110B ^B	26.6	720.3		717.4	05	Organic Material	No	No	No
	20.0	120.3	6.3	714.0	0-4	Organic Material	No	No	No
					4-6.3	Organic Material	Yes	No	Yes

Table 2 - Sediment Borehole Sampling Locations and Field Observations **Sediment Investigation Report** Former Oshkosh MGP Site - WPSC

Sample ID	Depth to Sediment (feet)	Top of Sediment Elevation (feet - msl) ^A	Approximate Borehole Depth (feet)	Approximate Bottomof Borehole Elevation (feet - msl) A	Depth (from top of sed. surface) (feet)	Soil or Rock Descriptions	Odor Noted	Sheen Noted	Tar Noted
Т-110С ^В	28.6	718.3	5.8	712.5	0-2	Debris/Organic Material	Yes	Yes	
					2-2.5	Gravel	No	No	No Yes
					2.5-4	Gravel	No	No	Yes
					4-5	Gravel/Clay	No	No	No
		ļ			5-6	Gravel	No	No	No
					6-25	Clay	Yes	No	No
					25-26	Sand	No	No	No
Г-110 D ^B	20.6				26-33.7	Silt	Yes	No	No
-11019	20.6	726.3	18.0	708.3	0-1	Organic Material	No	No	No
					1-13	Clay	No	No	No
1					13-14	Gravel	No	No	No
					14-18	Sand/Silt with Gravel	No	No	No

- A: msl is Mean Sea Level Water at mouth of Fox River is 746.9 feet msl from USGS topo quadrangle Assumed for river over entire site.
- B: Sample collected on September 20 through 27, 2001.
- (HC): Hydrocarbon odor or sheen may be petroleum based (oil/grease from boat motors industry rather than from MGP operations).
- NA: Not Applicable

Organic Material = Strongly decomposed plant remains, shells and fine particles.

Table 3 Fox River Flow Summary Statistics - Water Years 1992 through 2000 Sediment Investigation Report Former Oshkosh MGP Site - WPSC

Flow Regime	Lowest	Highest	Average for WY 1992- 2000
Annual Total Flow (cf)	104 Billion (1999)	228 Billion (1993)	139 Billion
Annual Mean Flow (cfs) Water Velocity (ft/sec)	3,290 (1999) 0.30	7,220 (1993) 0.67	4,420 0,41
Highest Monthly Mean (cfs) Water Velocity (ft/sec)		13,440 (July 1993) 1,24	8,010 (April) 0,74
Lowest Monthly Mean (cfs) Water Velocity (ft/sec)	1,580 (Sept. 1998) 0.15		2,660 (Jan) 0.25
Daily Mean (cfs) Water Velocity (ft/sec)	-6,270 (11/01/92) -0.58	18,600 (06/25/93) 1.72	4,420 0.41
Mont	hly Mean Streamflow (cfs)	& Corresponding Velocity (f	/sec)
Jan - 2,658 (0.25) Feb - 2,978 (0.28)	Apr - 8,013 (0.74) May - 6,133 (0.57)	Jul - 5,064 (0.47)	Oct - 3,264 (0.30)
Mar - 5,121 (0.47)	Jun - 5,403 (0.50)	Aug - 3,572 (0.33) Sep - 3,211 (0.30)	Nov - 4,081 (0.38) Dec - 3,489 (0.32)

NOTES:

- 1) United States Geological Survey (USGS) Acoustical Velocity Meter (AVM) stream gauge system (Hydrologic Unit 04030201) located approximately 1,500 feet upstream from the Oshkosh MGP site.
- 2) Water velocity calculations used a river cross-sectional area at the downstream end of the site (just upstream of the railroad bridge) of 10,800 ft².
- 3) 89 of 3,288 days had reversed flow (a negative flow value). 58 of these days (65%) occurred between September and November. October had 31 days (35%) with reversed flow - the highest of any month.
- 4) cf = cubic feet.
- 5) cfs = cubic feet per second.

Table 4 -Sediment Analytical Results - BTEX **Sediment Investigation Report** Former Oshkosh MGP Site - WPSC

	1				RTFY Par	ameters (µg/l	(0)	
÷				<u> </u>	اللاء لاستدرد	micrete (hB)	(F)	,
Sampling Location & Depth	Depth from top of Sediment (Feet)	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, -m, -p	Xylene, -0	Total BTEX
09/01 T104D (15.3-16.3)	0-2	09/25/01	<25	<25	<25	<25	<25	BDL
D9/01 T104E (24.75-26.75	0-2	09/26/01	35,000	130.000	33,000	74,000	43,000	315,000
09/01 T104E (26.75-28.75	2-4	09/26/01	<25	<25	<25	<25	<25	BDL
09/01 T104F (33.5)	6-7.25	09/26/01	্য ;400	2,200	160	1,400	720	5,880
)9/01 T104G (27.25-28.25	1.75-2.75	09/26/01	<25	<25	<25	<25	<25	BDL
09/01 T107A(15-17)	2-4	09/21/01	<25	160	<25	<25	36 Q	196
09/01 T107B (26.8-28.8)	0-2	09/24/01	<25	<25	<25	<25	<25	BDL.
09/01 T107C (30.6-32.6)	0-2	09/24/01	24,000	46,000	34.000	39,000	21,000	164,000
09/01 T107D (25.1-27.1)	0-2	09/24/01	<25	77	61	91	54	283
09/01 T107D (28.3-30.3)	3.2-5.2	09/24/01	<25	<25	<25	<25	<25	BDL
09/01 T108A (10.7-12.7)	2-4	09/20/01	<50 k	1,500K	<50 k	100 Q K	<u>160 K</u>	1,760
09/01 T108B (12.3-14.3)	4-6	09/21/01	<25	150	<25	<25	34 Q	184
09/01 T108B (20.3-22.3)	12-14	09/21/01	360	470	47 Q	180	120	1,177
09/01 T108C (9.5-10.5)	1-2	09/24/01	<25	<25	<25	<25	<25	BDL
09/01 T108D (28.9-29.9)	22-23	09/26/01	<25	45 Q	<25	<25	<25	45
09/01T108E (10.5-12.5)	4-6	09/26/01	2 5	2 5	<25	<25	<25	BDL

: Exceed TEC; McDonald 2000 - : Exceed EPA Ecotox Threshold

Table 4 -Sediment Analytical Results - BTEX Sediment Investigation Report Former Oshkosh MGP Site - WPSC

			<u></u>		RTEY Par	ameters (µg/	ka)	
Depth						The state of the s		
Sampling Location & Depth	Depth from top of Sediment (Feet)	Sample Date	Benzene	Ethylbenzene	Toluene	Xylenes, .mp	Xylene, -0	Total BTEX
09/01 T109A (22-22.5)	3-3.5	09/25/01	<25	<25	<25	<25	<25	BDL
09/01 T109B (32-34)	8-10	09/25/01	<25	<25	<25	<25	<25	BDL
09/01 T109C (22.7-24.7)	4.7-6.7	09/25/01	<25	<25	<25	<25	<25	BD1.
09/01 T109C (37.7)	19.7	09/25/01	<25	<25	<25	<25	<25	BDL
09/01 T109D (31.8-33.8)	0.1-2.1	09/25/01	<25	<25	<25	<25	<25	BDL
09/01 T110A (29.3-29.5)	0-0.2	09/27/01	<25	<25	<25	<25	<25	BDL
09/01 T110D (20.9-21.75)	0.4-1.3	09/27/01	<25	<25	<25	<25	<25	BDL
POINT 49	less than 1	09/26/01	<25	<25	<25	<25	<25	BDL
POINT 52	less than]	09/26/01	<25	<25	<25	<25	<25	BDL
POINT 53	less than 1	09/26/01	<u>3,100</u>	13,000	350	4 <u>5,200</u>	4,200	25,850
POINT 54	less than I	09/26/01	<25	<25	<25	<25	<25	BDL
POINT 56	less than I	09/26/01	<25	<25	<25	<25	<25	BDL
POINT 57	less than 1	09/26/01	<25	<25	<25	<25	<25	BDL
POINT 60	less than 1	09/27/01	<25	<25	<25	<25	<25	BDL.
POINT 71	less than 1	09/27/01	<25	270	150 Q	<25	<25	160
POINT 74	less than 1	09/27/01	<25	<25	<25	<25	<25	BDL
POINT 76	less than I	09/27/01	<u>340 Q</u>	580	710	<25	<25	1,630
POINT 79	less than 1	09/27/01	<25	<25	<25	<25	<25	BDL
POINT 80	less than 1	09/27/01	<100 K	12,000 K	<100 K	2,900 K	4,800 K	19,700
09/01 T104G PONAR	less than I	09/26/01	<25	<25	<25	<25	<25	BDL

Q = The analyte has been detected between the limit of detection (LOD) and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations.

K = Sample was preserved at the time of laboratory receipt or at sample preparation. nd = analytes not detected.

< = The analyte value is less than the limit of detection (LOD).

BDL = Below the limit of detection.

: Exceed TEC

o-JTB/c-AAS

Natural Resource Technology, Inc.

Table 5 - Sediment Analytical Results - Polynuclear Aromatic Hydrocarbons (PAHs) **Sediment Investigation Report** Former Oshkosh MGP Site - WPSC

Ep (†										POLYNUC	LEAR ARON	MATIC HYL	ROCARBO	√S (µg/kg)							
Sample Location & Dep	Depth from top of Sediment (Feet)	Sample Date	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH's
09/01 T104D (15.3-16.3)	0-2	09/25/01	200	<u>290</u>	260	ୃ95	380	340	280	170	110	200	290	52	≥540∻	210	140	<u>800</u>	760	∘600 _%	<i>≟</i> 6,097
09/01 T104E (24.75-26.75	0-2	09/26/01	1,600,000 E	1,700,000 I	1. <u>000,000</u> D	180,000	730,000 D	290,000	180,000	<u>77,000</u>	74,000	130,000	<u>290,000</u>	32,000	370,000 D	650,000 D	67,000	3,300,000 D	1,400,000 I	<u>640.000</u> ₽	12,710,000
09/01 T104E (26.75-28.75	2-4	09/26/01	84	<16	_89	<17	36 Q	<18	<17	<15	<16	<18	<18	<15	<14	57	<16	<23	84	<16	350
09/01 T104F (33.5)	6-7.25	09/26/01	1,100	1,100	<u>380</u>	82 Q	≈180 _≥	71 Q	<55	<49	<51	<58	97 Q	<49	84 Q	150 Q	<51	4,200	∜300 ∻	160 Q	7,904
09/01 T104G (27.25-28.25	1.75-2.75	09/26/01	<45	<38	<52	<40	<38	<43	<40	<35	<37	<41	<43	<35	<33	<40 .	<37	<54	<35	<38	BDL
09/01 T107A (15-17)	2-4	09/21/01	3,400	5,800	4,100	<170	<u>950</u>	630	≈520 Q≔	380 Q**	250 Q	:420°Q ∧	550 Q	<150	1,700	1,500	300 Q	9,700	2,700	4,200	34,100
09/01 T107B (26.8-28.8)	0-2	09/24/01	1,000	1,300	2,400	<u>750</u>	<u>5,100</u>	4,800	<u>4,300</u> ⊗	.2,800	1,900	3,900	4,500	620	10,000	2,500	2,400	780 €	<u>13,000</u>	9,600	76,750
09/01 T107C (30.6-32.6)	0-2	09/24/01	1,700,000 D	2 <u>,400,000</u> D	1, <u>200,00</u> 0 D	820,000	2,000,000	1 <u>,000,000</u> D	<u>7</u> 10,000 D	690,000	280,000	760,000	8 <u>90</u> ,000 D	120,000	2,400,000 D	1 <u>,500.000</u> D	440,000	8,000,000 D	3 <u>,900,000</u> E	1 <u>,900.000</u> D	30,710,000
09/01 T107D (25.1-27.1)	0-2	09/24/01	420	710	<u>430</u>	<u>270</u>	∴580 _a .	≈2460°	410	≈300 ≠	≈170 <i>∞</i>	%320	<i>≘</i> 390 ≨	75	-l-,100	ॢ≲530⊘	€230	1-700	al,800	್ಮ880	al 1,355
09/01 T107D (28.3-30.3)	3.2-5.2	09/24/01	<19	<16	<22	<17	<16	<18	<17	<15	<16	<18	<18	<15	<14	<17	<16	69 Q	<15	<16	69
09/01 T108A (10.7-12.7)	2-4	09/20/01	5,100	27,600€	<u>3,400</u> *	<u>170 O</u>	<u>860</u>	530	360⊴	180 Q	∘170 Q	250 Q	520	<100	870,	1,400	160 Q	4,700	3,000	ી,000	30,270
09/01 T108B (20.3-22.3)	12-14	09/21/01	68	81≋	<22	<17	<16	<18	<17	<15	<15	<17	<18	<15	<14	<17	<15	440	17 Q	<16	606
09/01 T108C (9.5-10.5)	1-2	09/24/01	80	₹100	≈.70 ≥	€17 Q	71	66	55	34 Q	25 Q	41 Q	64	<13	130	46	27 Q	80	200	140	1,246
09/01 T108D (28.9-29.9)	22-23	09/26/01	<16	22 Q	<18	<14	<13	<15	<14	<12	<13	<15	<15	<12	<12	<14	<13	36 Q	19 Q	<13	77
09/01 T108E (10.5-12.5)	4-6	09/26/01	350	_660	<u>300</u> .	<u>190</u>	<i>₹</i> 760%	∕700≽	600 ∞	∛370 _≫	≫2 7 0.≈	420	⊚690 ⊍	92	∌13 0 0∌	380	≈330 ₌	490 ≥	<u>1900</u> ≉	140Q	∴d.l;842
09/01 T109A (22-22.5)	3-3.5	09/25/01	<20	<17	<23	<18	<17	<19	<18	<15	<16	<18	<19	<15	<15	<18	<16	<24	21 Q	<17	21
09/01 T109B (32-34)	8-10	09/25/01	<15	15 Q	<18	15 Q	24 Q	19 Q	<13	<12	<12	<14	19 Q	<12	29 Q	23 Q	<12	20 Q	69	31 Q	264
09/01 T109C (22.7-24.7)	4.7-6.7	09/25/01	900	970	<u>_620</u>	180 Q	360₃	430 ş	√520×	∘320 ₅	≈290±	440	490	120 Q	≈5.90∉	310	310,	450 .	930	740	_8.970
09/01 T109C (37.7)	19.7	09/25/01	<15	<13	<18	<14	<13	<15	<14	<12	<12	<14	<15	<12	<11	<14	<12	<18	<12	<13	BDL
09/01 T109D (31.8-33.8)	0.1-2.1	09/25/01	<60	<51	<71	<53	< 51	<58	<53	<47	<49	<56	<58	<47	<45	<53 `	<49	<73	<47	<51	BDL
09/01 T110A (29.3-29.5)	0-0.2	09/27/01	<88	≈78 ©	180 Q	130 Q	260≯	≈ 4 9 0	≈530 ≈	530 >	340°	≈500 ×	540	120 Q	ાર100જે	140 Q	400	340 Q⊹	850		7,628
09/01 T110D (20.9-21.75)	0.4-1.3	09/27/01	<47	<40	<55	<42	<40	<45	<42	<37	<39	<44	<45	<37	<35	<42	<39	65 Q	<37	<40	65

: Exceed TEC; McDonald 2000 - Exceed PEC; McDonald 2000

Natural Resource Technology, Inc.

Table 5 -Sediment Analytical Results - Polynuclear Aromatic Hydrocarbons (PAHs) **Sediment Investigation Report** Former Oshkosh MGP Site - WPSC

	1	T	· · · · · · · · · · · · · · · · · · ·							POLYNUCI	EAR AROM	ATIC HYD	ROCARBON	IS (µg/kg)					1		<u> </u>
Sample Location & Dept	Depth from top of Sediment (Feet)	Sample Date	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benz(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	Total PAH's
POINT 49	less than 1	09/26/01	270 Q	240 Q	230 Q	250 Q	900	1,700	1,500	1,300	·860	1,200	1,600	£310	4,500	-390	1,100	210.0	3,900	<u>3,100</u>	23,560
POINT 52	less than 1	09/26/01	<170	<140	<200	<150	<140	<160	<150	<130	<140	<150	<160	<130	210 Q	<150	<140	<200	140 Q	170 Q	520
POINT 53	less than I	09/26/01	57,000	73,000	34,000	<u>4,400</u>	્ર <u>15,000</u>	8,300	5,400	2,900 ℚ	2,300 Q	3,600≆Q	10,000	<1100	14,000	15,000	2,100 Q	£100,000	52,000	20,000	4194000
POINT 54	less than 1	09/26/01	<140	-130 Q	<170	<130	130 Q	420 Q	460	380	320 Q	390 €	420 Q	≠120 Q	7.0 0	<130	400	<170	470	540	4,880
POINT 56	less than 1	09/26/01	2,600 Q	2,900 Q	8,700	12,000	<u>53,000</u>	54,000	49,000	36,000	26,000	39,000	47,000	6,900	=150,000	21,000	34,000	3,700 Q	150,000	110,000	805,800
POINT 57	less than 1	09/26/01	3,200	2,100	2,100	> 700	1,400=	<u>-1,700</u>	:1 ;40 0	4,000	640	1,100	1,500	260 Q	3,700	<u>15500</u>	₹ 850	<u>4,500</u>	4,300	<u>2;60</u> 0 ∞	-34;550
POINT 60	less than I	09/27/01	230 Q	280-0	160 Q	<100	-130 Q-	630	810	750	470.	_730	820	130 Q	£,900	⊴170 Q	600	<u>860</u>	1,900	1,500:	12:300
POINT 71	less than I	09/27/01	21,000	27,000	19,000	<u>-</u> 3;800	14,000	12,000	9,600	-5,700	4:200	-6,400	12,000	<u>1,700 Q</u>	23,000	*1 <u>0,000</u>	4,800	<u>18,000</u>	45,000	25,000	262,200
POINT 74	less than 1	09/27/01	1,300		620	310 Q	590 ≍	700	#540 =	310 ℚ	290 Q	320 Q	710	130 Q	≈ 93 0≊	≈330.Q	270 ℚ	1,200	1,700	F,100	13,150
POINT 76	less than 1	09/27/01	390 Q	370 Q	260 Q	<180	<170	<190	<180	<160	<160	<190	<190	<160	210 Q	<180	180 Q	<u>950</u>	340 Q	210 Q	2,910
POINT 79	less than 1	09/27/01	<180	<150	<210	<160	<150	250 Q	∋290 Q	240 Q	230 Q	280 ℚ	280 Q≗	<140	440	<160	240 Q	<210	210 Q	330 Q	2,790
POINT 80	less than I	09/27/01	490,000 D	640,000 D	300,000 D	34,000	130,000	70,000	49,000	24,000	17:000	26,000	82,000	8,200	120,000	140,000	17,000	690,000 D	370,000 D	150,000	3,357,200
09/01 T104G PONAR	less than l	09/26/01	<110	<92	<130	<96	<92	<100	<96	<85	<88	<100	<100	< 8 5	<81	<96	<88	<130	<85	<92	BDL

Q = The analyte has been detected between the limit of detection (LOD) and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.

D = The analyte value is from a diluted analysis.

<= The analyte value is less than the limit of detection (LOD).

BDL = Below the limit of detection.

All Point sediment samples were collected with a Ponar Grab.

Table 6 -Sediment Analytical Results - Metals, Cyanide, PCBs, Ammonia, and TOC Sediment Investigation Report Former Oshkosh MGP Site - WPSC

		i					Total	✓ Metals (m	g/kg)										
Sample Location & Depth	Depth from top of Sediment (Feet)	Sampling Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Total PCB (µg/kg)	Nitrogen, ammonia (mg/kg)	Cyanide, total (mg/kg)	Solids, percent (%)	TOC as NPOC (mg/kg)	Iron (mg/kg)
09/01 T104D (15.3-16.3)	0-2	09/25/01				- -								_		-	84.9	38,000	
09/01 T104E (24.75-26.75)	0-2	09/26/01											-	-+			27.2		
09/01 TI04E (26.75-28.75)	2-4	09/26/01														<0.27	73.4	2,900	
09/01 T104F (33.5)	6-7.25	09/26/01	2.2	24	0.071 Q	8.7	12	5.4	<0.0057	8.7	0.32 Q	<0.17	15	<42	34	<0.27	90.4	20,000	
09/01 T104G (27.25-28.25)	1.75-2.75	09/26/01															62.9	**	
09/01 T107A (15-17)	2-4	09/21/01	7.1	150	0.19 Q	32	34	9.00	0.01Q	31.00	0.31 Q	<0.20	58		53	<0.32	75.5	39,000	
09/01 T107B (26.8-28.8)	0-2	09/24/01									_						68.6		
09/01 T107C (30.6-32.6)	0-2	09/24/01	3.7	53	0.51	21	14	20	0.094	8.9	1.5 Q	<0.37	63	<190	280	0.84 Q	40.8		
09/01 T107D (25.1-27.1)	0-2	09/24/01											 :				58.5	63,000	
09/01 T107D (28.3-30.3)	3.2-5.2	09/24/01	3.3	34	0.12 Q	8.3	3.4	2.2	<0.007	5.9	0.39 Q	<0.20	15		46	<0.33	73.6		
09/01 T108A(10.7-12.7)	2-4	09/20/01	2.5	52	0.10 Q	16	17	12.00	0.01Q	15.00	0.27 Q	<0.17	31		62	<0.28	87.7	37,000	
09/01 T108B (12.3-14.3)	4-6	09/21/01											+-				85.4	40 - AA	
09/01 T108B (20.3-22.3)	12-14	09/21/01															75.2		
09/01 T108C (9.5-10.5)	1-2	09/24/01	1.7	59	0.13 Q	18	18	7.8	0.0064 Q	17 N	0.46 Q	<0.17	31	<22	41	<0.28	86.6	37,000	
09/01 T108D (28.9-29.9)	22-23	09/26/01	1								:						89.3		
09/01 T108E (10.5-12.5)	4-6	09/26/01															24.80		
09/01 T109A (22-22.5)	3-3.5	09/25/01		-										<u></u>			71.3	21,000	

: Exceed TEC; McDonald 2000 -: Exceed PEC; McDonald 2000

Table 6 -Sediment Analytical Results - Metals, Cyanide, PCBs, Ammonia, and TOC Sediment Investigation Report Former Oshkosh MGP Site - WPSC

	Ī						Tota	l Metals (m	ıg/kg)			T							
Sample Location & Depth	Depth from top of Sediment (Feet)	Sampling Date	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Selenium	Silver	Zinc	Total PCB (µg/kg)	Nitrogen, ammonia (mg/kg)	Cyanide, total (mg/kg)	Solids, percent (%)	TOC as NPOC (mg/kg)	Iron (mg/kg)
09/01 T109B (32-34)	8-10	09/25/01			-												92.9		
09/01 T109C (22.7-24.7)	4.7-6.7	09/25/01	+-												-		27.3	56,000	
09/01 T109C (37.7)	19.7	09/25/01							-			-					92.5		
09/01 T109D (31.8-33.8)	0.1-2.1	09/25/01															46.8	14,000	
09/01T110A(29.3-29.5)	0-0.2	09/27/01										-+					31.9		
09/01 T110D (20.9-21.75)	0.4-1.3	09/27/01															16.80		
POINT 49	less than 1	09/26/01															28.8		
POINT 52	less than I	09/26/01	-														59.70		
POINT 53	less than 1	09/26/01									***			<390	290		19.4		22,000
POINT 54	less than I	09/26/01												<390	200		19.5		
POINT 56	less than 1	09/26/01	**						+-								32.0		
POINT 57	less than l	09/26/01															21.0		
POINT 60	less than 1	09/27/01									**						77.10		-
POINT 71	less than I	09/27/01															30.4		<u>u-</u>
POINT 74	less than 1	09/27/01	***														17.5		
POINT 76	less than I	09/27/01															14.0		
POINT 79	less than 1	09/27/01															16.0		
POINT 80	less than I	09/27/01												<300	240		25.7		25,000
09/01 T104G PONAR	less than 1	09/26/01				**								.			26.0	 B/c-AAS U-H	

PCB = Polychlorinated Biphenyl

Q = The analyte has been detected between the limit of detection (LOD) and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.

N= Spiked recovery sample not within control limits.

-- = analyte not sampled for.

< = The analyte value is less than the limit of detection (LOD).

Table 7 -Surface Water Analytical Results - BTEX, Cyanide, Ammonia, TOC and TSS **Sediment Investigation Report** Former Oshkosh MGP Site - WPSC

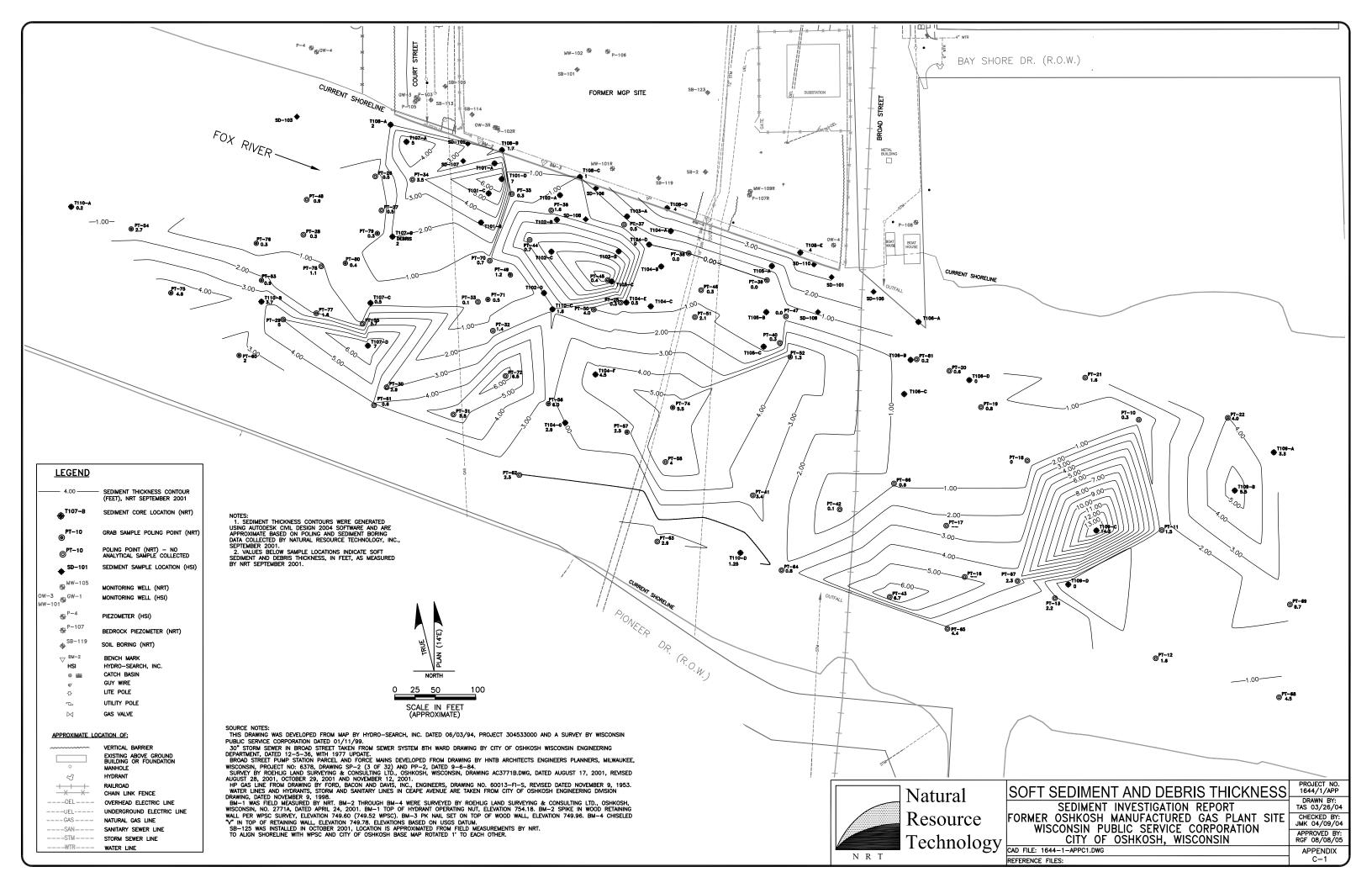
	···			BTEX (m	g/L)			Cyanides (mg	/I.)			
Sample ID	Date	Benzene	Ethylbenzene	Toulene	Xylenes, -m, -p	Xylene, -o				Ammonia (mg/L)	TOC (mg/L)	Tee (ma/t)
WS-101	11/13/01	<0.45	<0.82	<0.68	<1.7	<0.77	<0.0021	<0.0021	<0.0021	<0.060	5.6 A	17 (mg/L)
WS-102	11/13/01	<0.45	<0.82	<0.68	<1.7	<0.77	<0.0021	<0.0021	<0.0021			17
				-0.00	×1.7	<0.77	<0.0021	<0.0021	<0.0021	0.06 Q	6.8 A	18

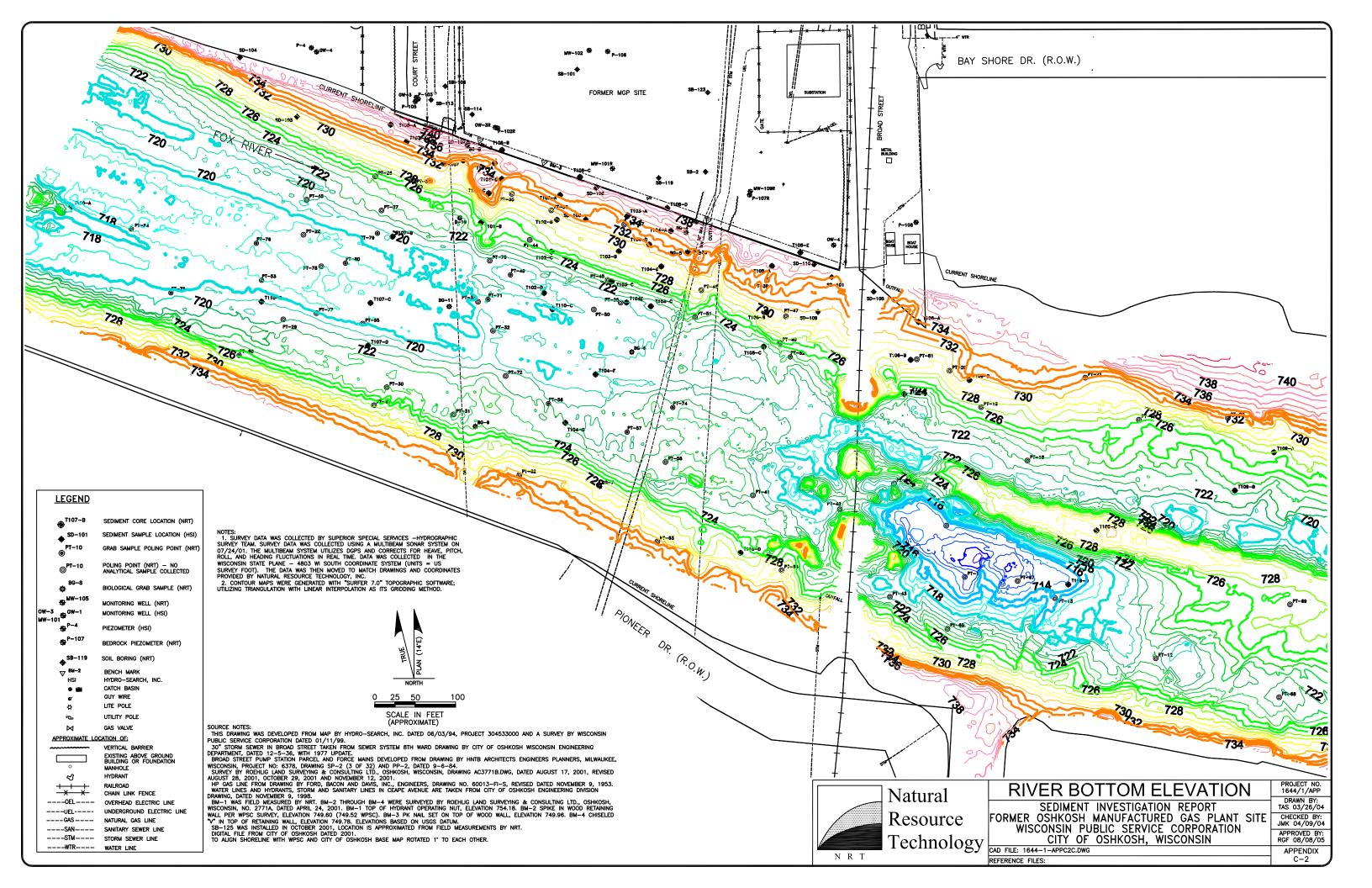
Total suspended solids (TSS)

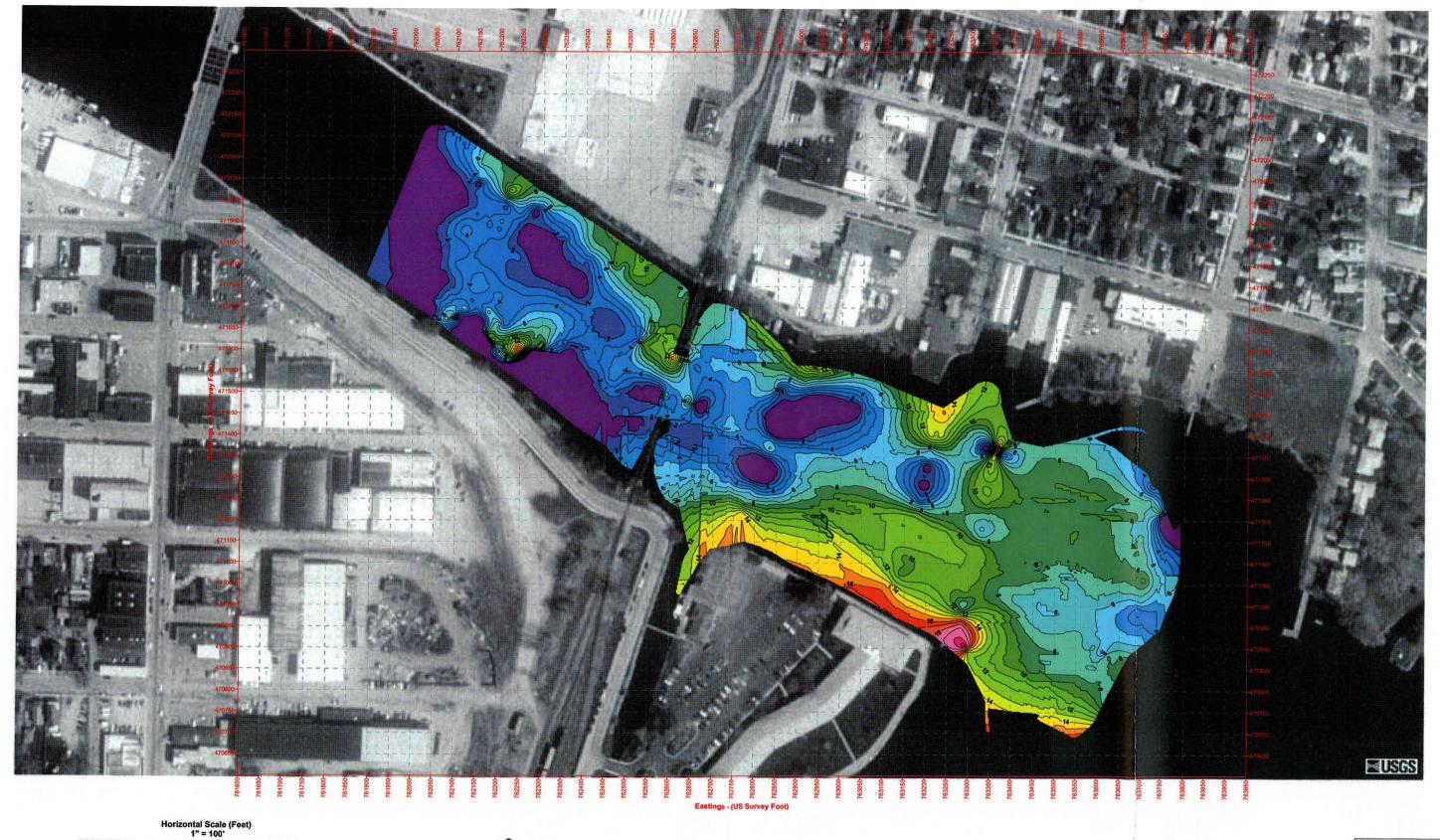
Total organic carbon (TOC)

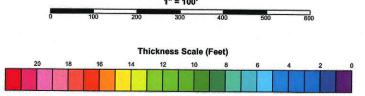
A = Analyte present in trip blank at 0,70 mg/L

Q = The analyte has been detected between the limit of detection (LOD) and the limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.


< = The analyte value is less than the limit of detection (LOD).


Table 8 -Surface Water Analytical Results - Polynuclear Aromatic Hydrocarbons (PAHs) Sediment Investigation Report Former Oshkosh MGP Site - WPSC


								Po	lynuclear	Aromatic	Hydroca	rbons (ug	;/L)				·····		
Sample ID	Date	1-Methylnaphtbalene	2-Methylnaphthalene	Naphthalene	Acenapthylene	Acenapthene	Fluorene	Phenanthene	Anthracene	Fluoranthene	Pyrene	Benz(a)anthracene	Chrysene	Benzo(b)flourauthene	Benzo(k)fluoranthene	Вепzо(а)ругепе	Indeno(1,2,3-cd)pyrene	Dibenz(a,h)anthracene	Benzo(g,h,l)perylene
WS-101	11/13/01	<0.027	<0.028	<0.027	<0.023	<0.018	<0.021	<0.019	<0.020	<0.028	<0.020	<0.019	<0.018	<0.014	<0.013	<0.012	<0.014	<0.017	<0.015
WS-102	11/13/01	<0.027	<0.028	<0.027	<0.023	<0.018	<0.021	<0.019	<0.020	<0.028	<0.020	<0.019	<0.018	<0.014	<0.013	<0.012	<0.014	<0.017	<0.015


< = The analyte value is less than the limit of detection (LOD).

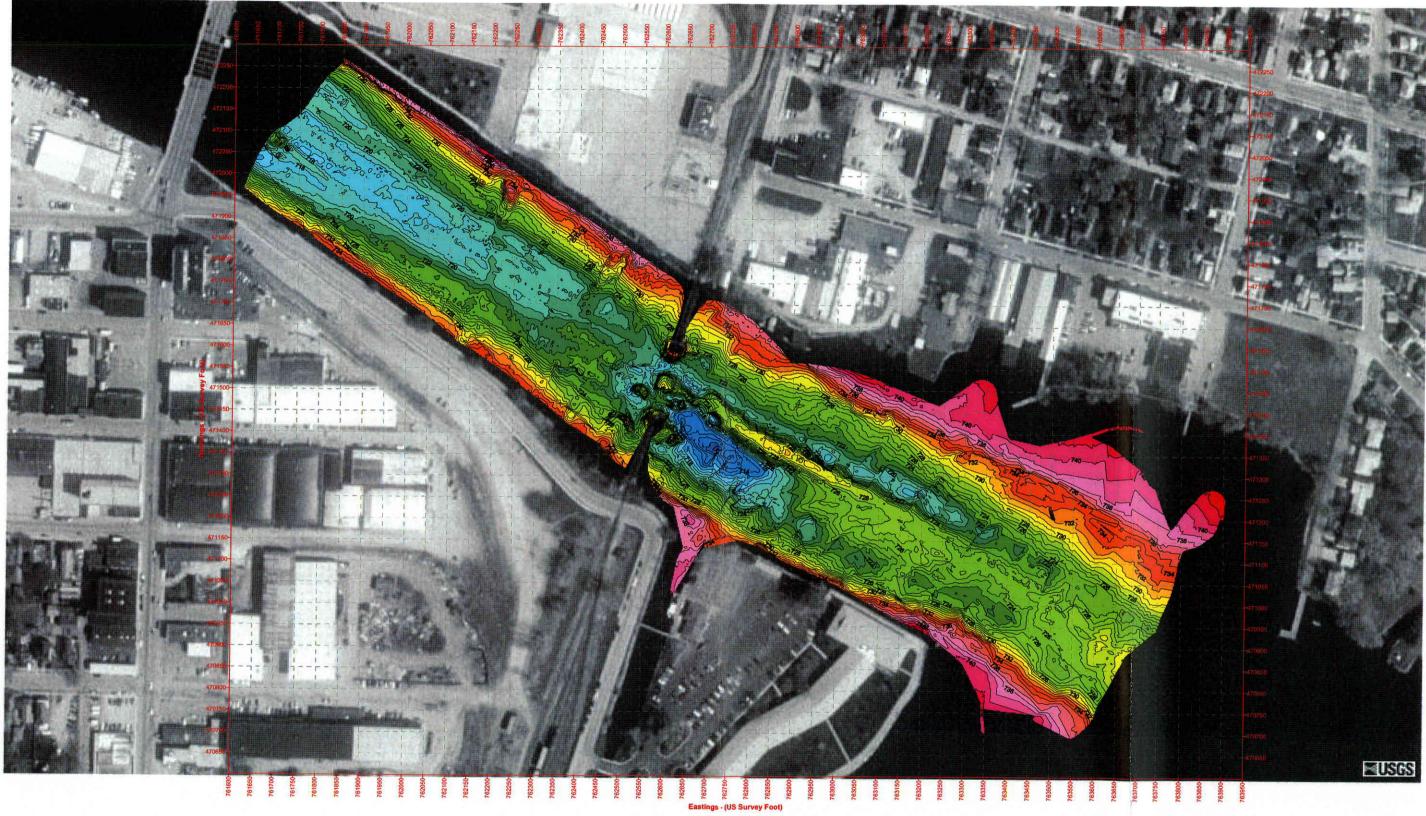
APPENDIX C4 RIVER PROFILING

NOTES:

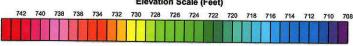
1) Survey data was collected by Superior Special Services - Hydrographic Survey Team. Survey data was collected using a sub-bottom sonar system on 07/25/01. The sub-bottom system utilized a Trimble DGPS Beacon for realtime positioning. The data was then moved to match drawings and coordinates provided by Natural Resource Technology, Inc.

2) The sub-bottom sonar system is an Edgetech SB-216S with an X-Star processor.

3) Contour maps were generated with "SURFER 7.0" topographic software; utilizing Kriging as it's gridding method.


4) Depth contours represented at 1' intervals.

5) Position of contours relative to aerial photo is approximate.


COLOR FILLED SEDIMENT THICKNESS (ISOPACH) CONTOUR MAP

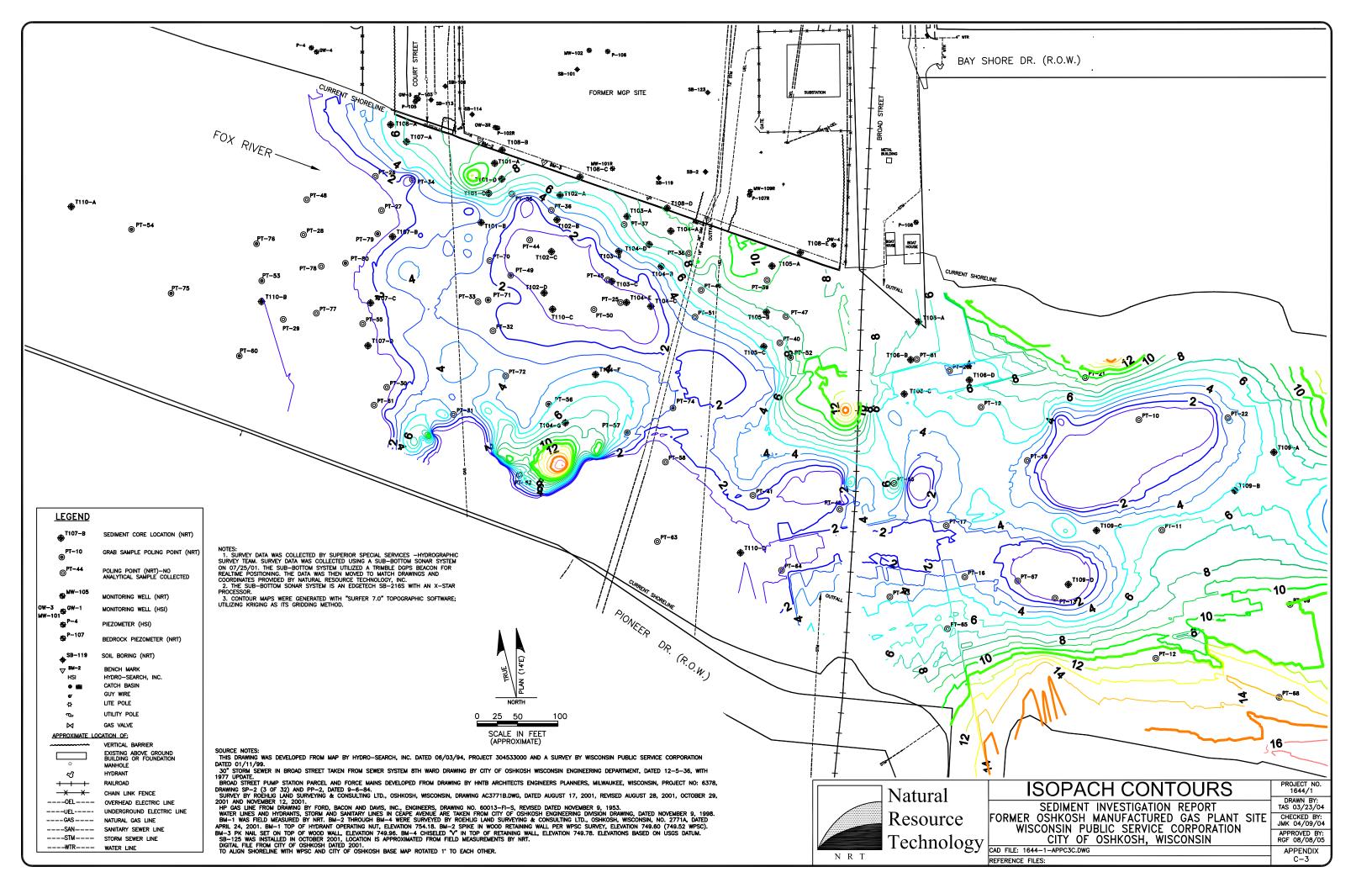
FOX RIVER - OSHKOSH, WI COLOR FILLED SEDIMENT THICKNESS (ISOPACH) CONTOUR MAP JULY 25, 2001

Horizontal Scale (Feet) 1" = 100'

NOTES:

1) Survey data was collected by Superior Special Services - Hydrographic Survey Team. Survey data was collected using a multibeam sonar system on 07/24/01. The multibeam system utilizes DGPS and corrects for heave, pitch, roil, and heading fluctuations in real time. Data was collected in the Wisconsin State Plane - 4803 WI South coordinate system (units = US Survey Foot). The data was then moved to match drawings and coordinates provided by Natural Resource Technology, Inc.

2) Confour maps were generated with "SURFER 7.0" topographic software; utilizing Triangulation with linear interpolation as it's gridding method.


3) Confours represented at 'i nitervals.

4) Position of contours relative to aerial photo is approximate.

COLOR FILLED ELEVATION CONTOUR MAP

FOX RIVER - OSHKOSH, WI COLOR FILLED CONTOUR MAP MULTIBEAM SONAR SURVEY JULY 24, 2001

APPENDIX C5 PRELIMINARY BENTHIC COMMUNITY SURVEY

Application of Benthic Community Surveys

Biological criteria for aquatic systems typically include an assessment of the water body's physical habitat, including the surrounding riparian zone, and the use of benthic macroinvertebrates in evaluating water quality. They provide an evaluation benchmark for direct assessment of the condition of the biota that spend either all or some portion of their life in aquatic systems by describing (either through narrative and/or using numeric criteria) the expected biological condition of a minimally impaired aquatic community. Biological criteria can be used in conjunction with traditional measurements (e.g., chemical concentrations) for planning and management frameworks to prioritize water quality problems, and to document the effectiveness of remediation. Reasons for including biological criteria as a tool for sediment investigation include the following:

- Biological communities reflect the overall ecological integrity of a river system, including the biological, chemical and physical components;
- Benthic communities integrate stress over time so they are able to measure fluctuating environmental conditions;
- Where criteria for specific ambient impacts do not exist (i.e., no standards currently exist) biological communities may be the only practical means of evaluation.

USEPA cites several advantages to using benthic macroinvertebrates for ecological surveys:

- They are good indicators of localized conditions, because many benthic macroinvertebrates have a limited migration pattern, or a sessile mode of life;
- They integrate the effects of short-term environmental variation;
- Degraded conditions can often be detected by an experienced biologist with only a cursory examination of the benthic macroinvertbrate assemblage;
- Benthic community structures are made up of species that constitute a broad range of trophic levels and pollution tolerances, thus providing information for interpreting cumulative effects, and;
- Benthic macroinvertebrates serve as a primary food source for fish, including many recreationally and commercially important species.

Approach

A preliminary benthic community study was conducted to survey the dominant macroinvertebrate groups that make up the upper Fox River community at the Oshkosh MGP site on July 9, 2001. The study was intended to be a screening level qualitative look at the dominant groups of organisms with an overview of the macroinvertebrate densities. The design of the study was to compare an upstream location (control) with two transects, that based upon previous investigation (NRT, October, 15, 1996) exhibited MGP residuals (see attached Figure for locations). Transects were located at the east end of the site (near Broad Street), the west end of the site, near Court Street and upstream of the Main Street Bridge (control). The east and west transects each had four sampling stations, with four replicate samples taken at each station. The control had three stations with four replicate samples being taken at each station.

Field Activities

Sediment samples were collected with a PonarTM grab and then sieved through a screen with a standard 500 μ m mesh size to separate the fine sediments from the macroinvertebrates. The sample was then preserved with 70% alcohol in the field for later identification and enumeration.

Each sample was then processed following the general guidelines outlined in *Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers* (EPA 1999). Each sample was sorted for approximately thirty minutes and removed organisms were identified (see Preliminary Benthic Community Structure Bench Sheets). It should be noted that for purposes of the screening survey, identifications to the Family level taxonomy was chosen over Genus/species identifications because that level of resolution met the criteria for this study. Taxonomy at the Family level provides a higher degree of precision among samples and accelerates the assessment results. This level was chosen with the caveat that Genus/species taxonomic resolutions provide better information on ecological/environmental relationships and sensitivity to impairment, but this level of resolution was more costly and therefore not needed for this survey. A few macroinvertebrates were identified to a lower taxonomic resolution due to ease in their identification.

Substrates encountered during biological grab sampling consisted of soft sediments derived from decaying organic material, or cobble and sand. Debris such as broken brick, coal pieces and degraded tree bark were also common components in the grab samples. Grab samples located at BG-6 and BG-9 contained viscous tar intermixed within the soft sediment matrix. Location BG-4 exhibited sheen when the sediment was disturbed by the grab sampler.

Results

Specimens were enumerated, and the data were used to calculate diversity by taking the average of the sum of the Simpson, Shannon, and Brillouin diversity indices for each station. The Shannon and Brillouin diversity indices are referred to as Type I diversity indices that weight rare taxa. The Simpson diversity index is a Type II diversity index that is more sensitive to changes in the more abundant taxa. The community diversity, which is an integrated measure of taxa abundance and their distribution within taxa, tends to be higher at the east and west transects than the control (Figures 1 through 3). This trend is believed to be due to the greater variety of substrates (cobble, bark, sand, organics) at the West (BG-8 through BG-11) and East Transect (BG-4 through BG-7), compared with more limited substrates (bark and organics) at the Control Transect (BG-1 through BG-3). The diversity of rare weighted taxa and common weighted taxa appears to be proportional between the Control, and West and East Transect. River impacts appear not to be selective for either rare or common (abundant) taxa.

The average abundance/m² is greater at the Control Transect than at the West or East transects (Figure 4). Oligochaeta (segmented worms) and chironomidae (midges) were the dominant invertebrate groups in the soft sediments. Planarians (flat worms) were dominant on the hard substrates (cobble and bark). Members of the Oligochaetes and Chironomidae are typical of disturbed habitats, and as a group are also considered pollution tolerant. More environmentally sensitive groups, including the trichoptera (caddisflies) and ephemeroptera (mayflies), were encountered in low numbers at all three transects. In addition, leptoceridae (longhorn caddisflies) occurred at the control and western transects, while an ephemerellidae (mayfly) was collected at the eastern transect. In a more amiable environment, a greater proportion of more pollution sensitive taxa would be expected (e.g., mayflies). *Hexagenia* mayfly adults were collected upstream of the site but no nymphs were found in the samples.

Figure 1. Fauna Diversity at the Control Transect.

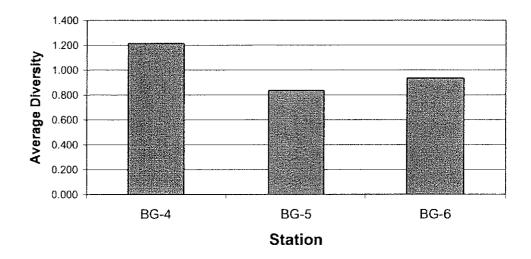


Figure 2. Fauna Diversity at the West Transect.

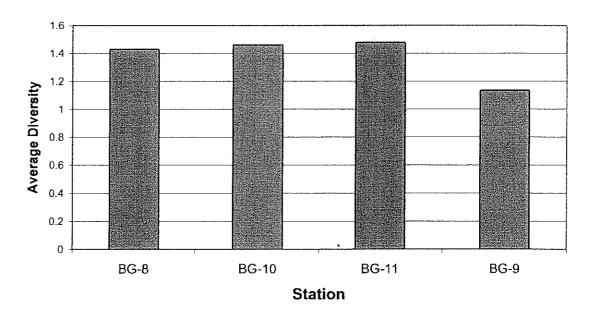


Figure 3. Fauna Diversity at the East Transect.

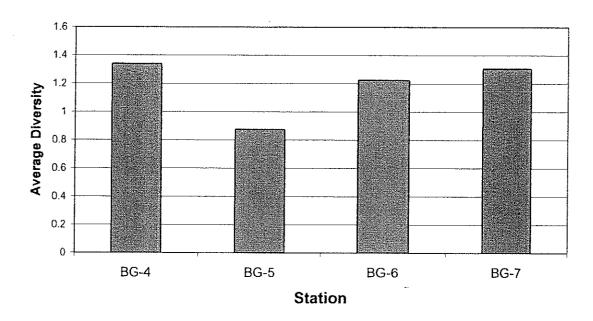
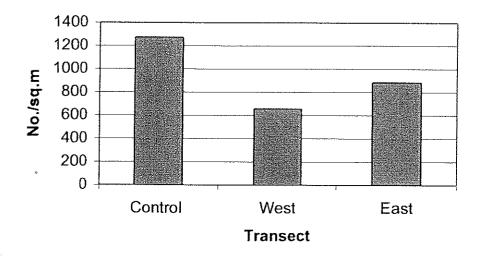



Figure 4. Average Fauna Abundance/m²

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

(25 feet from north shore) Control 1 N 44° 00.852 W088°32.331 4 of 4 2 of 4 3 of 4 1 of 4 23 23 26 24 Depth (feet) organics organics organics Sediment organics

		Fauna (No./grab))		Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria					0	0
Phylum Nematoda					0	0
, ,,,,c.,, , to,,,c.c.						
Phylum Annelida					0	0
Subclass Oligochaeta	18	32	24	7	20.25	872
Subclass Hirudinea		1			0.25	11
Outoidad i in damida						
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae				1	0.25	11
Order Amphipoda					0	0
Family Gammaridae					0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Epherellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae	1			1	0.5	22
Order Diptera	,			•	0	0
Family Ceratopogonidae			1		0.25	11
Family Culicidae		1			0.25	11
Family Chironomidae	3	9	2	3	4.25	183
Chironomus sp.	6	4	5	10	6.25	269
Ormonomas op.	•					
Phylum Mollusca					0	0
Order Gastropoda					0	0
Family Physidae					0	0
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea					0	0
Dreissena polymorpha	3				0.75	32
Total # of Individuals	31	47	32	22		1421
Total Taxa	5	5	4	5		
TOTALIANA	•	•				

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

Control 2 (125 feet from north shore) N 44° 00.835 W088°32.327 1 of 4 2 of 4 3 of 4 4 of 4 Depth (feet) 25 25 26 25 Sediment organics bark+organics organics organics

	3		3	g		
		Fauna (No./grab)	4		Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria					0	0
Phylum Nematoda					0	0
Phylum Annelida					0	0
Subclass Oligochaeta	26	12	26	25	22.25	958
Subclass Hirudinea					0	0
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda			•		0	0
Family Asellidae	1		1		0.5	22
Order Amphipoda					0	0
Family Gammaridae					0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Epherellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae					0	0
Order Diptera					0	0
Family Ceratopogonidae					0	0
Family Culicidae					0	0
Family Chironomidae	4	2		4	2.5	108
Chironomus sp.	7	3	6	3	4.75	205
Phylum Mollusca					0	0
Order Gastropoda					0	. 0
Family Physidae					0	0
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea					0	0
Dreissena polymorpha					0	0
Total # of Individuals	38	17	33	32		1292
Total Taxa	4	3	3	3		

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

Control 3 (100 feet from south shore) N 44° 00.810 W088°32.344 1 of 4 2 of 4 3 of 4 4 of 4 Depth (feet) 25 24 24 24 Sediment bark+rock bark+organics organics organics

		Fauna (No./grab)		Avg	No./m²
Phylum Platyhelminthes		···			0	0
Class Turbellaria	1			4	1.25	54
Phylum Nematoda					0	0
Phylum Annelida					0	0
Subclass Oligochaeta	6		49	17	18	775
Subclass Hirudinea					0	0
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae	3		1		1	43
Order Amphipoda					0	0
Family Gammaridae					0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Ephemerellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae					0	0
Order Diptera					0	0
Family Ceratopogonidae				1	0.25	11
Family Culicidae					. 0	0
Family Chironomidae		1	6	3	2.5	108
Chironomus sp.		1	9	1	2.75	118
Phylum Mollusca					0	0
Order Gastropoda			ā		0	0
Family Physidae					0	0
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea					0	0
Dreissena polymorpha					0	0
Total # Number of Individuals	10	2	65	26		1109
Total Taxa	3	2	4	5		

Fox River

West 1 N 44° 00.768 W088°32.106	(12 feet from no	orth shore)				
	1 of 4	2 of 4	3 of 4	4 of 4		
Depth (feet)	13	11	11	11		
Sediment	organics	rock+sand	sand	sand	4	
		Fauna (No./grab)			Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria	5	3	1	3	3	129
Phylum Nematoda					0	0
Phylum Annelida					0	0
Subclass Oligochaeta	22	2	4	7	8.75	377
Subclass Hirudinea		1			0.25	11
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda		1			0.25	11
Family Asellidae		·			0	0
Order Amphipoda					0	0
Family Gammaridae					Ö	0
Class Insecta					0	Ö
Order Ephemeroptera					0	0
Family Ephemerellidae					0	0
Order Trichoptera		•			0	0
Family Leptoceridae		1	1		0.5	22
Order Diptera					0	0
Family Ceratopogonidae					0	0
Family Culicidae					0	0
Family Chironomidae	12			1	3.25	140
Chironomus sp.	4				1	43
Phylum Mollusca					0	0
Order Gastropoda					ő	0
Family Physidae					0	Ö
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea					Ö	0
Dreissena polymorpha	. 1	6			1.75	75
Total # of Individuals	44	14	6	11		807
Total Taxa	5	6	3	3		

Fox River

West 2	(50 feet from no	orth shore)		
N 44° 00.712				
W088°32.123				
	1 of 4	2 of 4	3 of 4	4 of 4
Depth (feet)	19	23	23	23
Sediment	bark	bark	bark	organics+bark

		Fauna (No./grab)			Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria	4	14			4.5	194
Phylum Nematoda					0	0
Phylum Annelida					0	0
Subclass Oligochaeta		2		3	1.25	54
Subclass Hirudinea				1	0.25	11
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae	3		3	3	2.25	97
Order Amphipoda					0	0
Family Gammaridae					0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Ephemerellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae				1	0.25	11
Order Diptera					0	0
Family Ceratopogonidae					0	0
Family Culicidae					0	0
Family Chironomidae	6				1.5	65
Chironomus sp.					0	0
Phylum Mollusca					0	0
Order Gastropoda					0	0
Family Physidae					0	0
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea					0	Ō
Dreissena polymorpha	1				0.25	11
Total # of Indivduals	14	19	3	8		441
Total Taxa	4	3	1	4		

Fox River

West 3 N 44° 00.754 W088°32.113	(75 feet from no	orth shore)				
	1 of 4	2 of 4	3 of 4	4 of 4		
Depth (feet)	25	25	25	25		
Sediment	organics	coal+rock	organics	organics		
	-	Fauna (Na Jarah	١		Avg	No./m²
		Fauna (No./grab)		0	0
Phylum Platyhelminthes	_					140
Class Turbellaria	2	10		1	3.25	140
Phylum Nematoda				1	0.25	11
Phylum Annelida					0	0
Subclass Oligochaeta	25	1	9	7	10.5	452
Subclass Hirudinea					0	0
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae					0	0
Order Amphipoda	•				0	0
Family Gammaridae	•				0	0
Class Insecta	'				0	0
Order Ephemeroptera					0	0
Family Ephemerellidae	:				0	0
Order Trichoptera					0	0
Family Leptoceridae	!				0	0
Order Diptera					0	0
Family Ceratopogonidae	:				0	0
Family Culicidae					0	0
Family Chironomidae		7		3	3.75	161
Chironomus sp.				5	2.75	118
Phylum Mollusca					0	0
Order Gastropoda					0	0
Family Physidae	!				0	0
Order Bivalvia					0	0
Family Sphaeriidae	:				0	0
Superfamily Dreissenacea					0_	0
Dreissena polymorpha	·	6			1.5	65
Total # of Individuals	38	24	9	17		947
Total Taxa	4	4	1	5		

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

West 4 (225 feet from north shore, mid-channel) N 44° 00.737 W088°32.122

1 of 4 2 of 4 3 of 4 4 of 4

Depth (feet) 29 29 29

Sediment organics organics organics organics

		Fauna (No./grab)		Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria					0	0
Phylum Nematoda					0	0
Phylum Annelida					0	0
Subclass Oligochaeta	20	32	27	9	22	947
Subclass Hirudinea					0	0
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae	1	3	9	1	3.5	151
Order Amphipoda					0	0
Family Gammaridae					0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Ephemerellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae	1				0.25	11
Order Diptera					0	0
Family Ceratopogonidae					0	0
Family Culicidae					0	0
Family Chironomidae	4	3	2	4	3.25	140
Chironomus sp.	4	4	5	2	3.75	161
Phylum Mollusca					0	0
Order Gastropoda			•	•	0	0
Family Physidae					0	0
Order Bivalvia					0	0
Family Sphaeriidae			1	1	0.5	22
Superfamily Dreissenacea					0	0
Dreissena polymorpha					0	. 0
Total # of Individuals	30	42	47	17		1432
Total Taxa	5	4	6	5		

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

East 1 (25 feet from north shore) N 44° 00.740 W088°32.052 1 of 4 2 of 4

 1 of 4
 2 of 4
 3 of 4
 4 of 4

 Depth (feet)
 10
 10
 10
 10

 Sediment
 coal+organics
 coal+rock
 coal+rock
 coal+rock

Class Turbellaria			Fauna (No./grab)		Avg	No./m²
Phylum Nematoda	Phylum Platyhelminthes					0	0
Phylum Annelida	Class Turbellaria	1	3	4	1	2.25	97
Subclass Oligochaeta 8 16 2 5 7.75 334 Subclass Hirudinea 5 1 1.5 65 Phylum Arthropoda 0 0 0 Class Crustacea 0 0 0 Order Isopoda 1 0.25 11 Order Amphipoda 1 0.25 11 Order Amphipoda 0 0 0 Family Gammaridae 1 0.25 11 Class Insecta 0 0 0 Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 0 Order Trichoptera 0 0 0 Family Leptoceridae 0 0 0 Order Diptera 0 0 0 Family Ceratopogonidae 0 0 0 Family Chicidae 0 0 0 Family Chicidae 0 0 0 Family Chicae 0	Phylum Nematoda					0	0
Subclass Hirudinea 5	Phylum Annelida					0	0
Phylum Arthropoda 0	Subclass Oligochaeta	8	16	2	5	7.75	334
Class Crustacea Order Isopoda Family Asellidae Order Amphipoda Family Gammaridae I Class Insecta Order Ephemeroptera Order Ephemeroptera Family Ephemerellidae Order Trichoptera Family Leptoceridae Order Diptera Family Ceratopogonidae Family Culicidae Family Chironomidae Family Chironomidae Chironomus sp. Phylum Mollusca Order Gastropoda Family Physidae Order Bivalvia Family Superidae Superfamily Sphaeriidae Superfamily Sphaeriidae Superfamily Sphaeriidae Superfamily Depissenacea Dreissena polymorpha I I I I I I I I I I I I I I I I I I I	Subclass Hirudinea				1	1.5	65
Family Asellidae 1 0.25 11 Order Amphipoda 0 0 Family Gammaridae 1 0.25 11 Class Insecta 0 0 0 Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 0 Order Trichoptera 0 0 0 Family Leptoceridae 0 0 0 Order Diptera 0 0 0 Family Ceratopogonidae 0 0 0 Family Culicidae 0 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 0 0 0 Phylum Mollusca 2 0	Class Crustacea						
Order Amphipoda 0 0 Family Gammaridae 1 0.25 11 Class Insecta 0 0 Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Culicidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 0 0 Phylum Mollusca 2 1 1 6 2.5 108 Chironomus sp. 2 0.5 22 0.5 22 Order Gastropoda 2 0.5 22 Order Bivalvia 0 0 0 Family Sphaeriidae 0 0 0 Superfamily Dreissenacea 0 0	•					_	0
Family Gammaridae 1 0.25 11 Class Insecta 0 0 Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0	· · · · · · · · · · · · · · · · · · ·			1			11
Class Insecta 0 0 Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0						0	0
Order Ephemeroptera 1 0.25 11 Family Ephemerellidae 0 0 Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 0 Phylum Mollusca 0 0 0 0 0 Order Gastropoda 0 0 0 0 0 0 Family Physidae 2 0.5 22 0.5 22 Order Bivalvia 0 0 0 0 0 Family Sphaeriidae 0 0 0 0 0 0 Superfamily Dreissenacea 0 0 0 0 0 0 0 0 0 0 0		1					11
Family Ephemerellidae 0 0 Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0							0
Order Trichoptera 0 0 Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 0 Phylum Mollusca 0 0 0 0 0 0 Order Gastropoda 0				1		0.25	11
Family Leptoceridae 0 0 Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0						0	0
Order Diptera 0 0 Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 0 Phylum Mollusca 0	·					0	0
Family Ceratopogonidae 0 0 Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 0 Phylum Mollusca 0 0 0 0 Order Gastropoda 0 0 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 0 Family Sphaeriidae 0 0 0 Superfamily Dreissenacea 0 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678						0	0
Family Culicidae 0 0 Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 Phylum Mollusca 0 0 0 Order Gastropoda 0 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 0 Family Sphaeriidae 0 0 0 Superfamily Dreissenacea 0 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	Order Diptera					0	0
Family Chironomidae 2 1 1 6 2.5 108 Chironomus sp. 0 0 0 Phylum Mollusca 0 0 0 Order Gastropoda 0 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 0 Family Sphaeriidae 0 0 0 Superfamily Dreissenacea 0 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	Family Ceratopogonidae					0	0
Chironomus sp. 0 0 Phylum Mollusca 0 0 Order Gastropoda 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 Total # of Individuals 13 21 16 13 678	Family Culicidae					0	0
Phylum Mollusca 0 0 Order Gastropoda 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	Family Chironomidae	2	1	1	6	2.5	108
Order Gastropoda 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	Chironomus sp.					0	0
Order Gastropoda 0 0 Family Physidae 2 0.5 22 Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	Phylum Mollusca					0	0
Family Physidae 2 0.5 22 Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	-	9					
Order Bivalvia 0 0 Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678	•			2		_	
Family Sphaeriidae 0 0 Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678				2			
Superfamily Dreissenacea 0 0 Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678							
Dreissena polymorpha 1 1 0.5 22 Total # of Individuals 13 21 16 13 678						_	
Total # of Individuals 13 21 16 13 678		1	1				
				16	13		
· · · · · · · · · · · · · · · · · · ·	Total Taxa	5	4	7	4		0,0

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

East 2 N 44° 00.736 W088°32.053	(50 feet from no	orth shore)				
Depth (feet) Sediment	1 of 4 12 coal+rock	2 of 4 12 coal+rock	3 of 4 12 rock	4 of 4 * 12 rock		
		Fauna (No./grab)			Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria	30	4	4	Yes	12.67	545
Phylum Nematoda					. 0	0
Phylum Annelida					0	0
Subclass Oligochaeta	1			Yes	0.33	14
Subclass Hirudinea				Yes	0	0
Phylum Arthropoda					0	0
Class Crustacea					0	0
Order Isopoda					0	0
Family Asellidae	;	1			0.33	14
Order Amphipoda					0	0
Family Gammaridae	:				0	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Ephemerellidae	:				0	0
Order Trichoptera					0	0
Family Leptoceridae)				0	0
Order Diptera					0	0

Pnylum Moliusca				U	U
Order Gastropoda				0	0
Family Physidae				0	0
Order Bivalvia				0	0
Family Sphaeriidae	1			0.33	14
Superfamily Dreissenacea				0	0
Dreissena polymorpha	6	. 1	2	3	129
Total # of Individuals	55	6	9		947

1

0

0

230

0

0

5.33

Family Ceratopogonidae

Dhadras Mallina

Total Taxa

Family Chironomidae

Family Culicidae

Chironomus sp.

15

Fox River

East 3	(225 feet from north shore, mid-channel)					
N 44° 00.719						
W088°32.075						
	1 of 3	2 of 3	3 of 3			
Depth (feet)	25	27	27			
Sediment	organics	organics	organics			

		Fauna (No./grab)		Avg	No./m²
Phylum Platyhelminthes				0	0
Class Turbellaria	2		1	1	43
Phylum Nematoda				0	0
Phylum Annelida				0	0
Subclass Oligochaeta	4	7	15	8.67	373
Subclass Hirudinea	3			1	43
Phylum Arthropoda				0	0
Class Crustacea				. 0	0
Order Isopoda				0	0
Family Asellidae				0	0
Order Amphipoda				0	0
Family Gammaridae				0	0
Class Insecta				0	0
Order Ephemeroptera				0	0
Family Ephemerellidae				0	0
Order Trichoptera				0	0
Family Leptoceridae				0	0
Order Diptera				0	0
Family Ceratopogonidae				0	0
Family Culicidae				0	0
Family Chironomidae	2	2	4	2.67	115
Chironomus sp.	1		3	1.33	57
Phylum Mollusca				0	0
Order Gastropoda				0	0
Family Physidae				0	0
Order Bivalvia				0	0
Family Sphaeriidae				0	0
Superfamily Dreissenacea				0	0
Dreissena polymorpha				0	0
Total # of Individuals	12	9	23		631
Total Taxa	5	2	4		

Benthic Community Structure Survey

Fox River

East 4

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

(50 feet from south shore)

N 44° 00.694 W088°32.093						
VVUQU 32.093	1 of 4	2 of 4	3 of 4	4 of 4		
Depth (feet)	22	20	20	25		
Deptil (lect)			bark+			
Sediment	bark+rock	bark+rock	organics	organics		
		Fauna (No./grab))		Avg	No./m²
Phylum Platyhelminthes					0	0
Class Turbellaria	1	39	2	8	12.5	538
Phylum Nematoda					0	0
					_	
Phylum Annelida					0	0
Subclass Oligochaeta	4	4	19	11	9.5	409
Subclass Hirudinea					0	0
					0	0
Phylum Arthropoda					0 0	0 0
Class Crustacea					0	0
Order Isopoda			-	4	3	129
Family Asellidae	1	2	5	4	ა 0	0
Order Amphipoda					0.25	11
Family Gammaridae		1			0.23	0
Class Insecta					0	0
Order Ephemeroptera					0	0
Family Ephemerellidae					0	0
Order Trichoptera					0	0
Family Leptoceridae					0	0
Order Diptera					0	0
Family Ceratopogonidae					. 0	0
Family Culicidae		2	1	7	2.5	108
Family Chironomidae	2	2	1	,	0.5	22
<i>Chironomus</i> sp.	2				0.0	
Di i Akillinan					0	0
Phylum Mollusca					0	0
Order Gastropoda		1			0.25	11
Family Physidae		•			0	0
Order Bivalvia					0	0
Family Sphaeriidae					0	0
Superfamily Dreissenacea Dreissena polymorpha		3		2	1.25	54
	8	53	27	36		1281
Total # of Individuals	4	8	4	6		
Total Taxa	4	J	,	ū		

Fox River

Wisconsin Public Service Corporation - Oshkosh Former Manufactured Gas Plant Site

NOTES:

Macroinvertebrate samples collected from the Fox River, located in the City of Oshkosh,

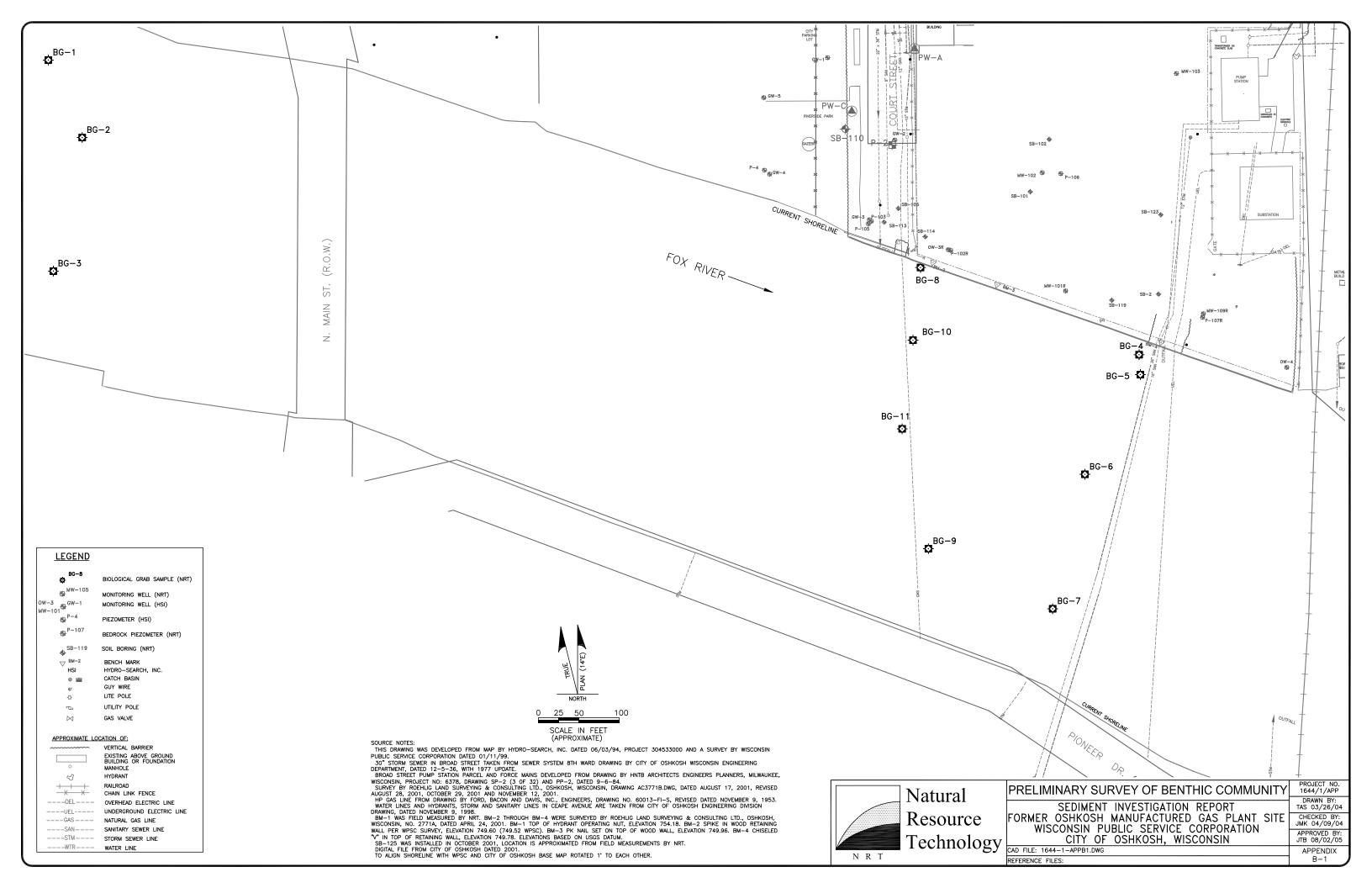
Winnebago County, WI. on July 9, 2001.

The samples were screened (0.5 mm) to separate the fine sediment from the organisms and preserved in 70% alcohol in the field.

All samples hand sorted for approximately 30 minutes each.

The East 2, replicate 4 sample was qualitative only due to rocky substrate hampering the Ponar ™ Grab.

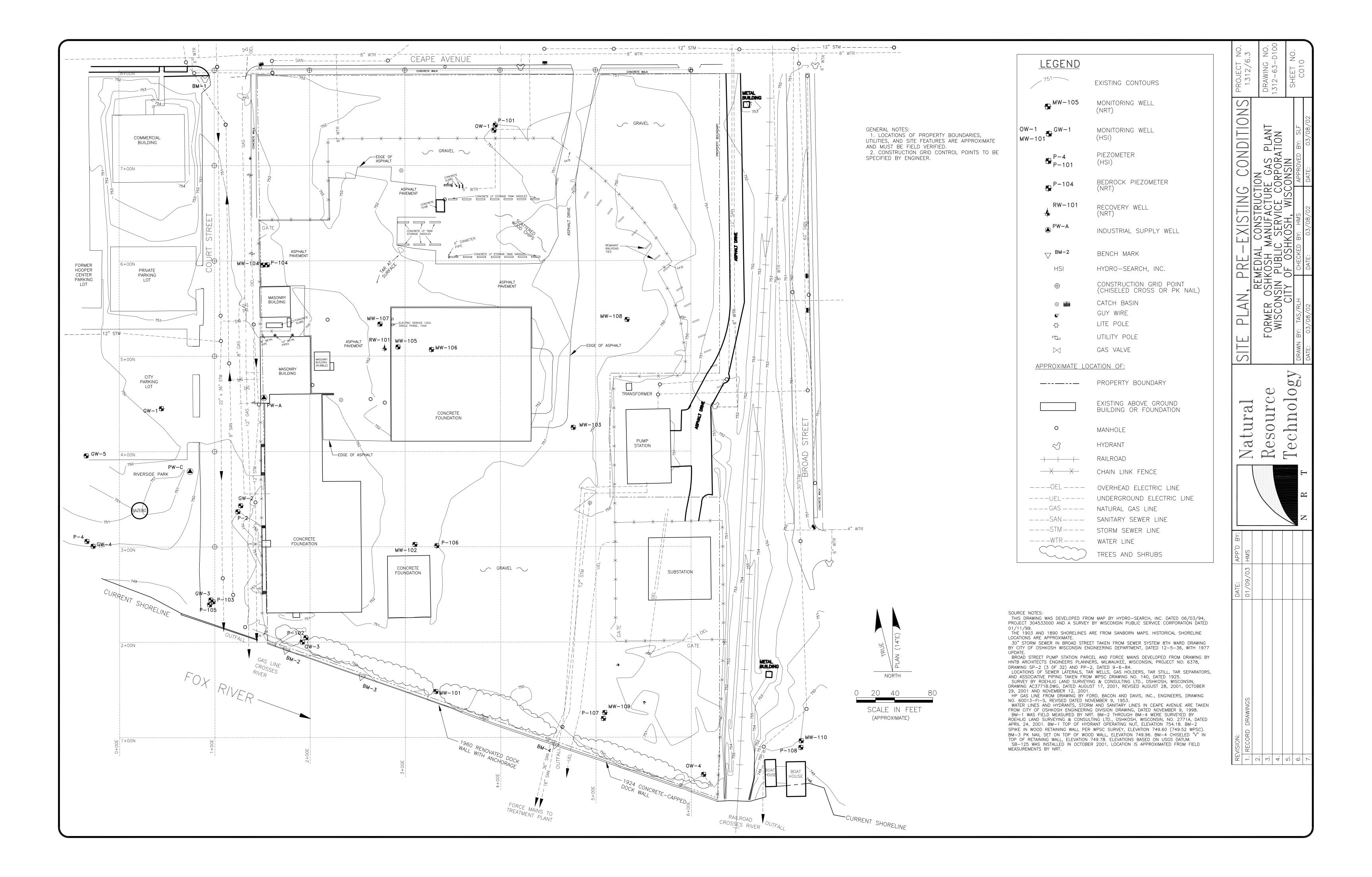
1 of 4: Indicates replicate number 1 of a total of 4 replicate samples for the station.

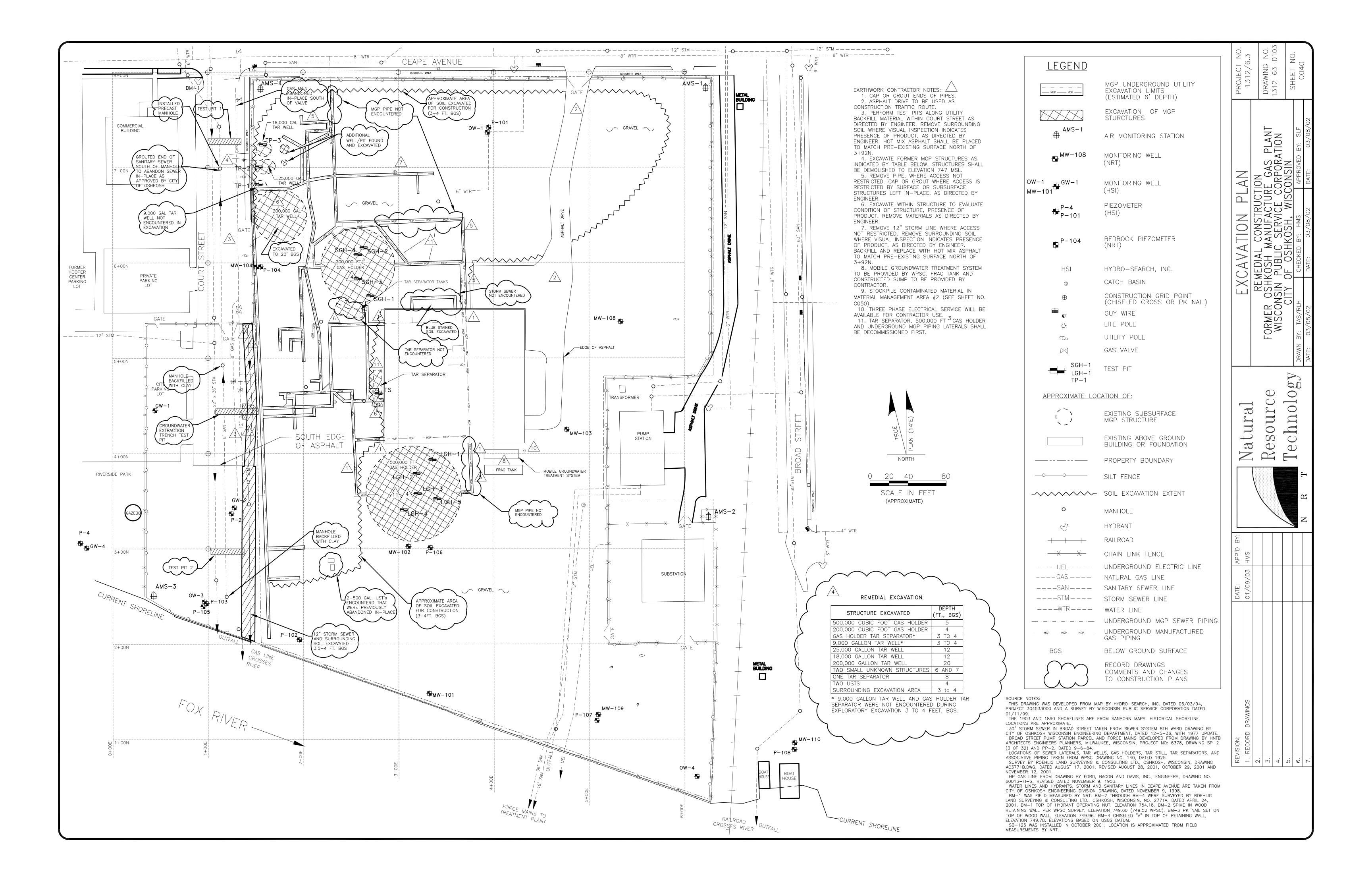

(No./grab): The number of individuals collected per single grab sample.

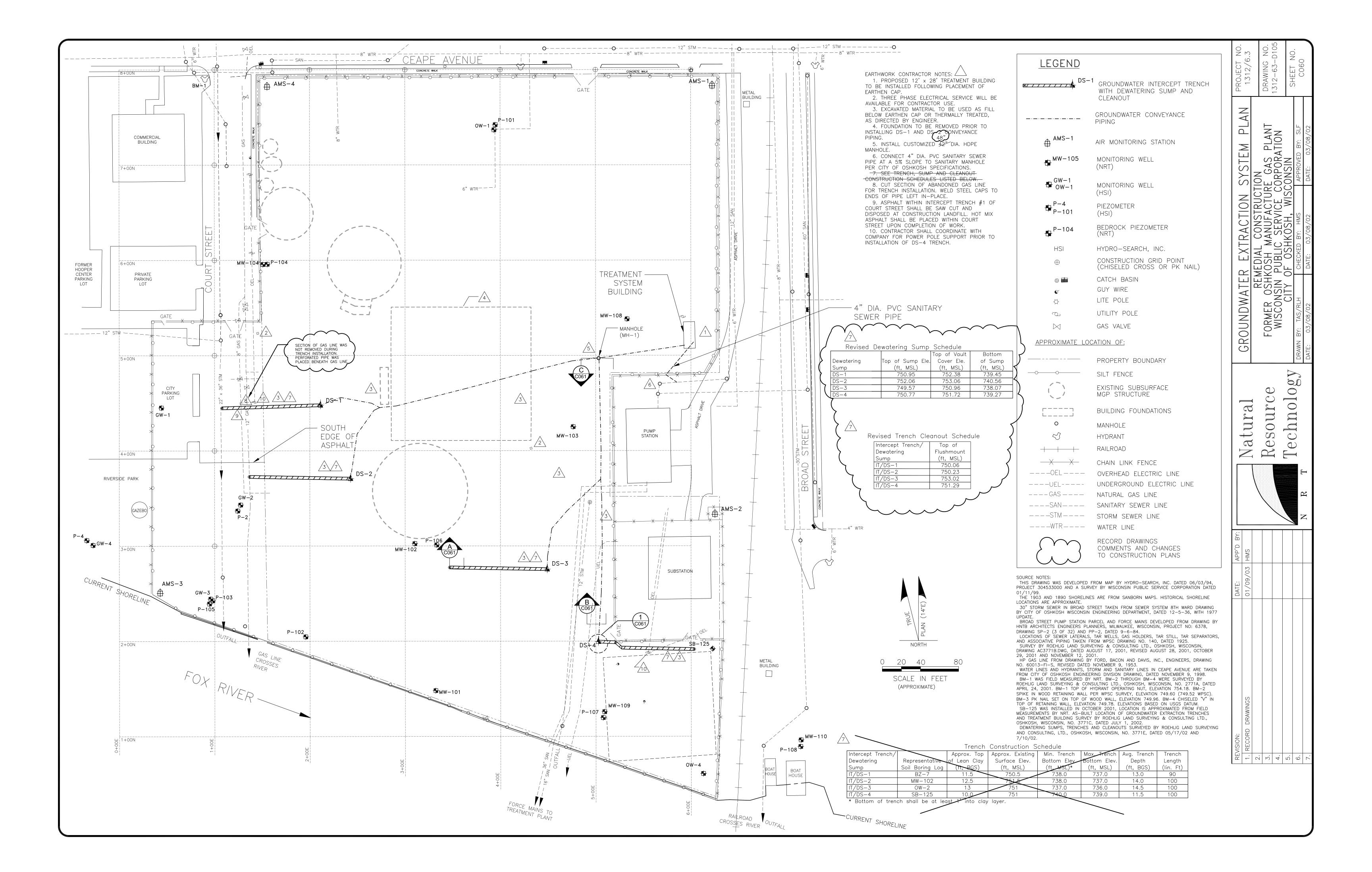
Avg: The average number of individuals collected per station.

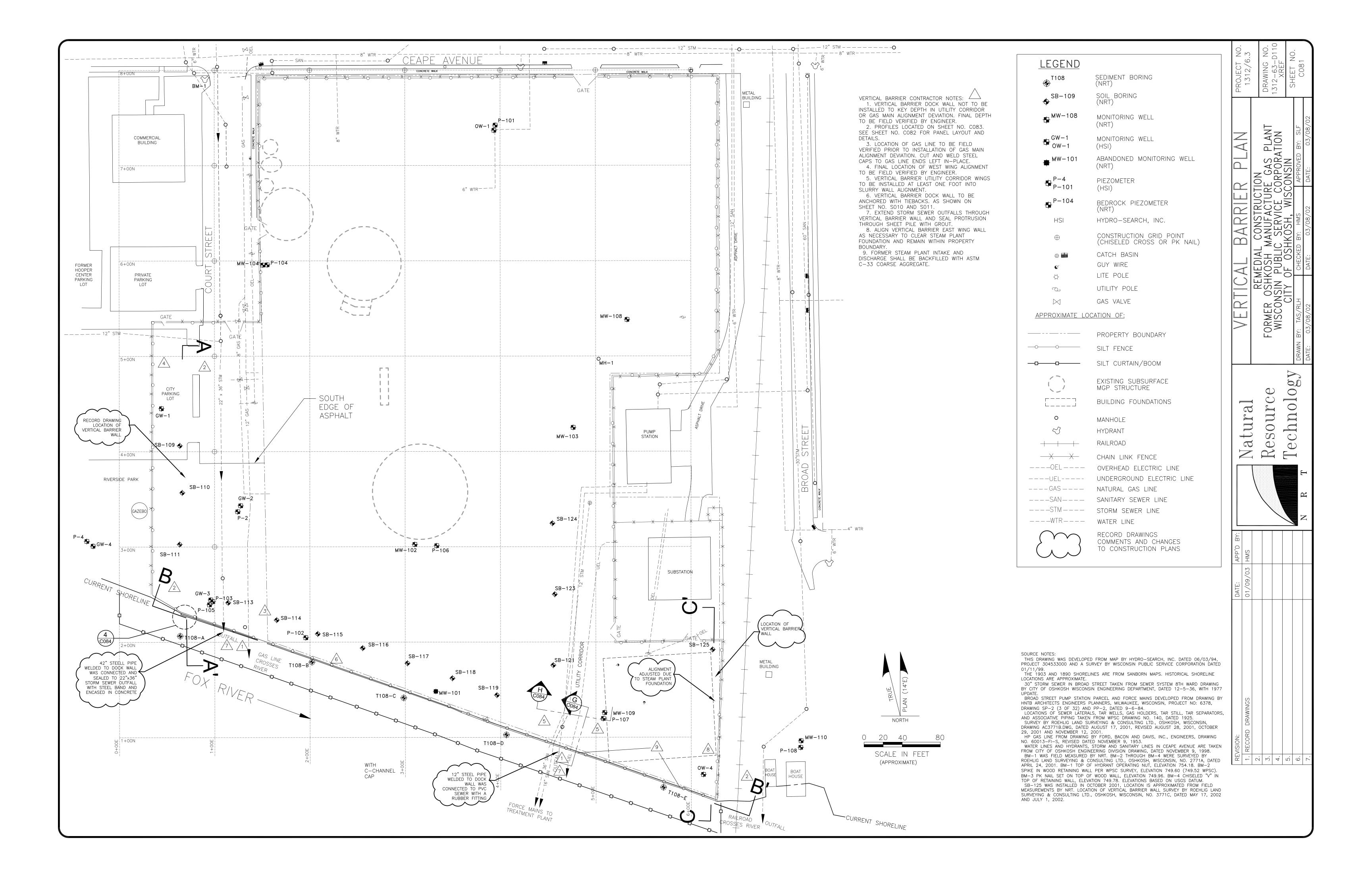
No./m²: The calculated number of potential idividuals per square meter of substrate.

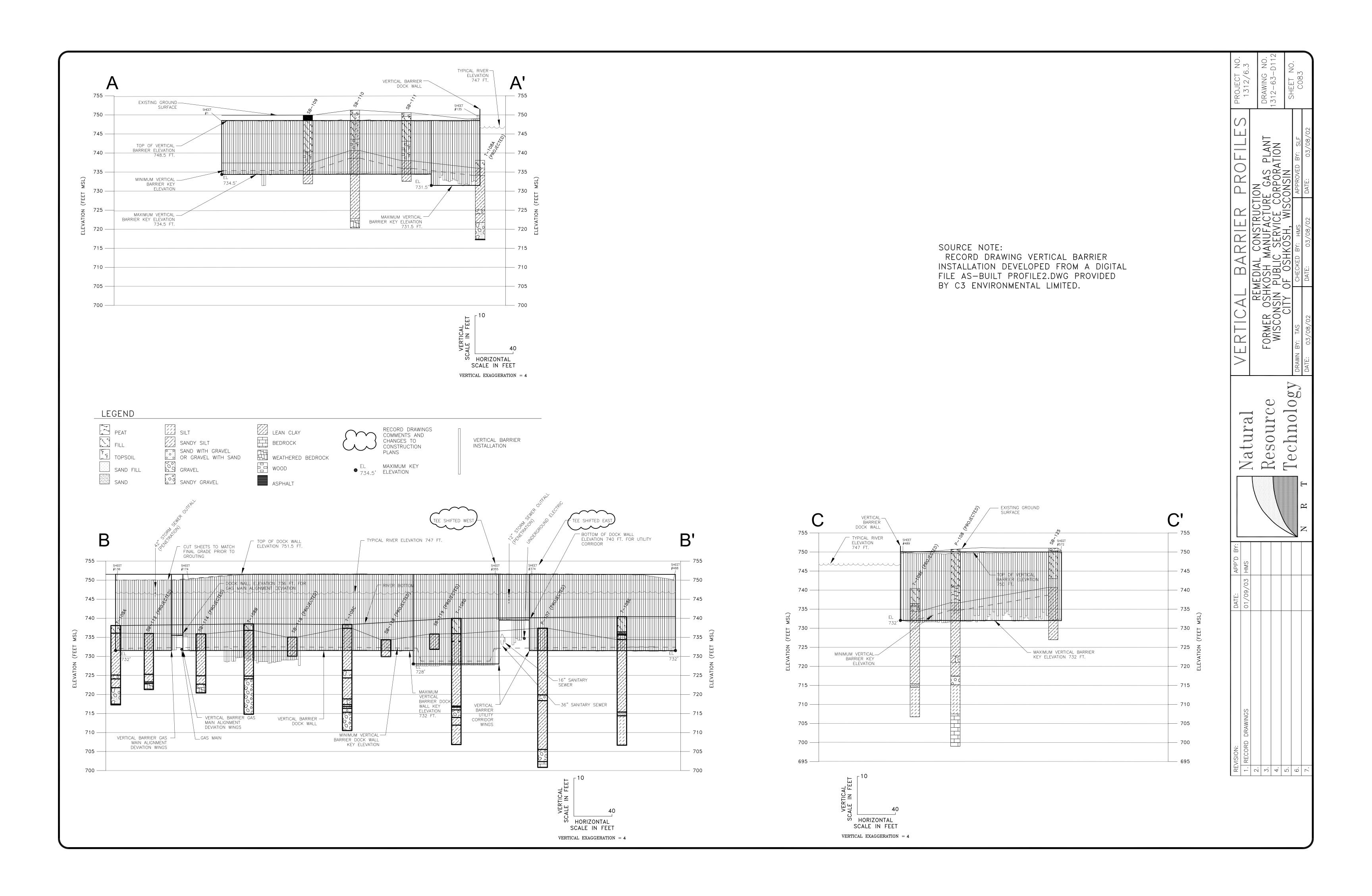
organics: Substrate consisting of mainly decaying organic material (gyttja).

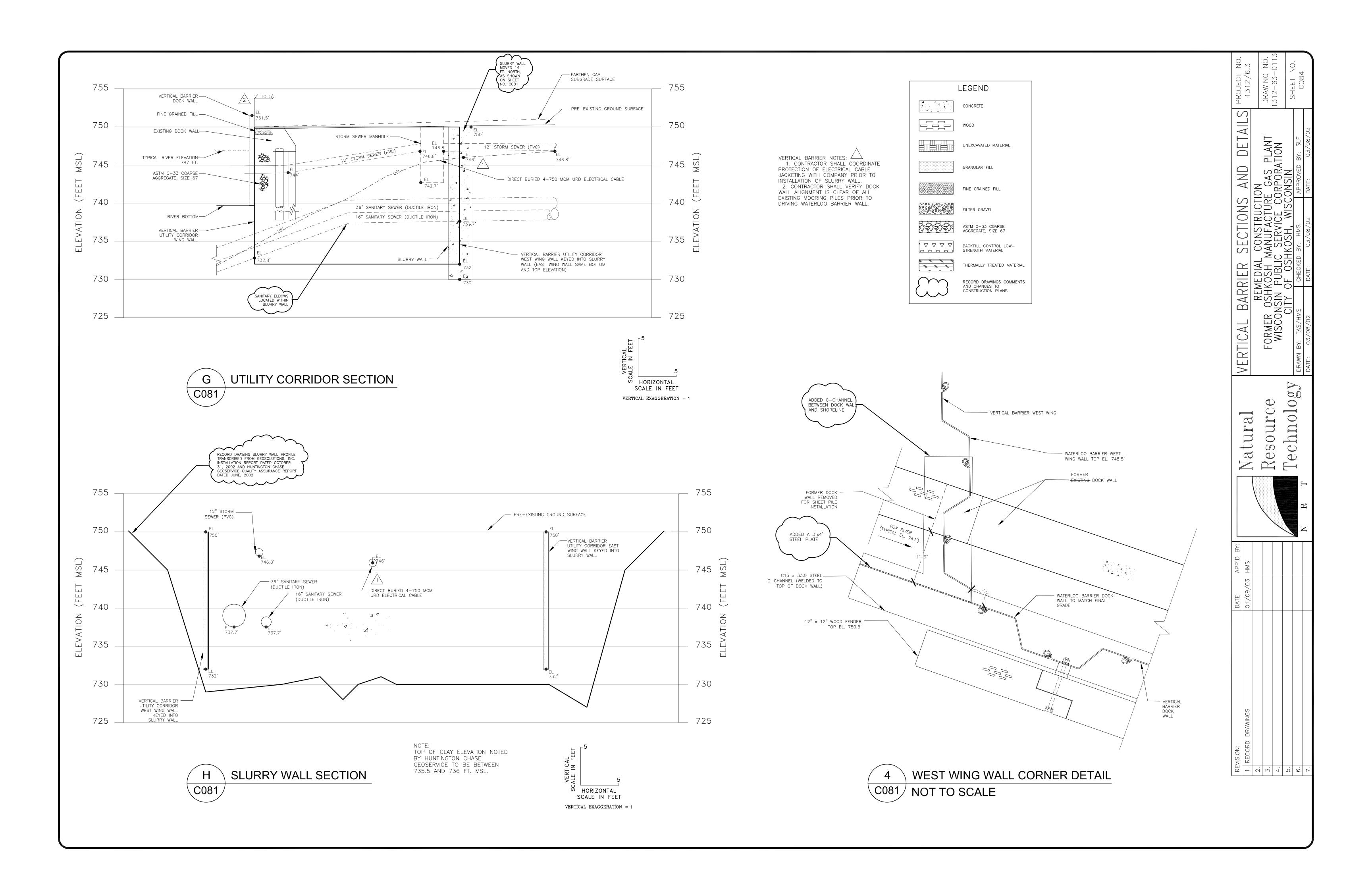

Depth (feet): Depth in feet fromsurface of river to sediment surface.

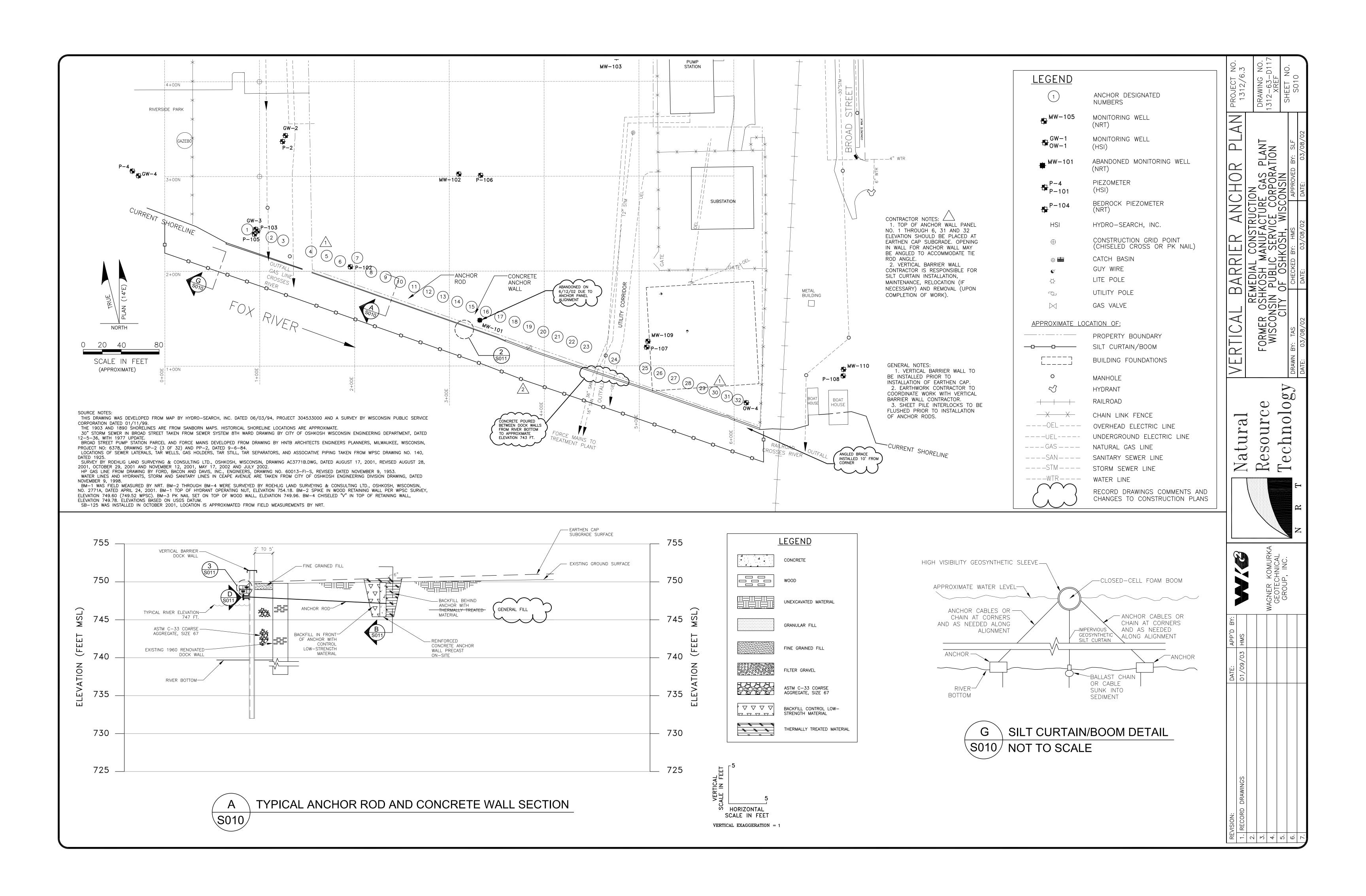


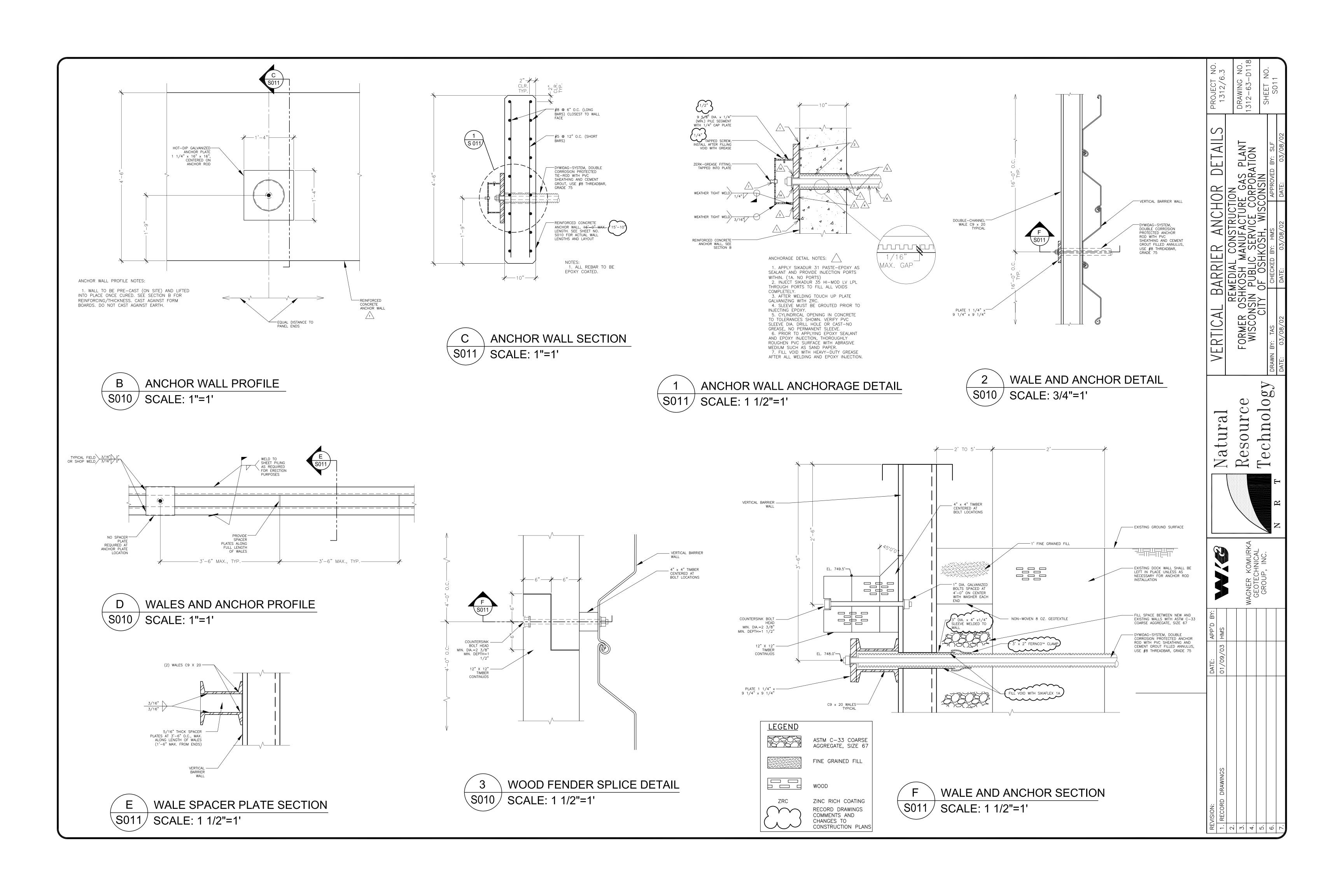

APPENDIX D REMEDIAL ACTION DOCUMENTATION

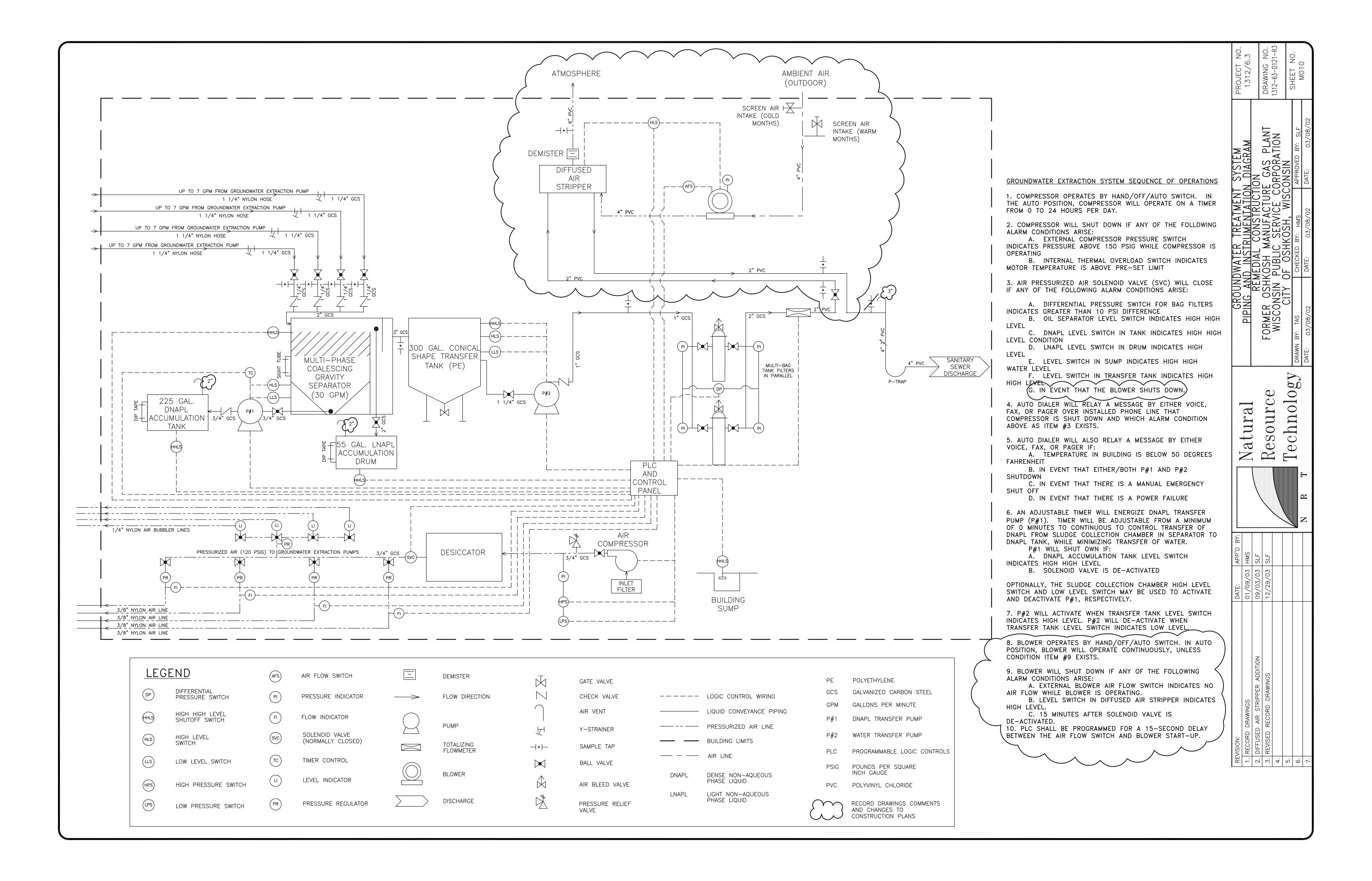

APPENDIX D1


REMEDIAL ACTION DOCUMENTATION FIGURES









APPENDIX D2

REMEDIAL ACTION DOCUMENTATION TABLES

Table 1 - Summary of Waste Characterization for Treatment and Disposal Remedial Action Documentation Report Former Oshkosh Manufactured Gas Plant Site - WPSC

							In	organic Re	esults								%
Sample ID	Date	Benzene (ug/kg)	Benzene TCLP (mg/L)	Barium TCLP (mg/L)	Chlorine (% wt.)	Nickel (TCLP) (mg/L)	British Thermal Units (BTU)	Flashpoint (deg. F)	Free Liquids (Paint Filter) (%)	pH (su)	Phenolics, total recoverable -TCLP (mg/L)	TPH-IR - soil (mg/kg)	Sulfide, reactive (mg/kg)	TOC as NPOC (mg/kg)	Arolclor 1260 (ug/kg)	Cresol (mg/L)	Total Solids
SGH-1	3/18/2002	na	0.91	na	na	na	na	na	na	na	na	na	na	na	na	na	91.4
SGH-2	3/18/2002	na	1.5	na	na	na	na	na	na	na	na	na	na	na	na	na	84.6
SGH-3	3/19/2002	na	0.69	na	na	na	na	na	na	na	na	na	na	na	na	na	88.3
SGH-4	3/27/2002	na	11	0.22	< 0.025	0.1	na	>210	NFLP	8	4.6	3,600	25	180,000	<290	2.2	76.3
SGH-5	5/7/2002	340	na	na	na	na	na	na	na	na	na	na	na	na	na	na	na
LGH-1	3/18/2002	na	0.28	na	na	na	na	na	na	na	na	na	na	na	na	na	85.1
LGH-2	3/18/2002	na	0.15	na	na	na	na	na	na	na	na	na	na	na	na	na	85.1
LGH-3	3/18/2002	na	0.025	na	na	na	na	na	na	na	na	na	na	na	na	na	92.5
LGH-4	3/18/2002	na	0.29	na	na	na	na	na	na	na	na	na	na	na	na	na	95
LGH-5	3/18/2002	na	0.21	na	na	na	na	na	na	na	na	na	na	na	na	na	67.7
TW	3/18/2002	na	0.082	na	na	na	na	na	na	na	na	na	na	na	na	na	82.2
S COMP	3/18/2002	na	0.29	0.55	0.012	< 0.05	na	>210	0.0	8.2	< 0.1	na	<25	na	120	< 0.05	78.9
TS	3/18/2002	na	13	< 0.2	0.034	< 0.05	16710	160	24	7.3	11	55000	<25	na	<4,400	6	79.8
WM Accept	tance Limits	nl	0.5	100	1	35	nl	>140	0	2 <ph<12.5< th=""><th>2000</th><th>nl</th><th>200</th><th>nl</th><th>nl</th><th>200</th><th>nl</th></ph<12.5<>	2000	nl	200	nl	nl	200	nl

Notes:

(O-MJR 9/02 C-HMS 9/02)

- 1. na = not analyzed
- 2. nd = not detected
- 3. WM= Waste Management
- 4. nl=no limit
- 5. NFLP=no free liquid present

Table 3 - Post-treatment Soil Analytical Results Remedial Action Documentation Report Former Oshkosh Manufactured Gas Plant Site - WPSC

		Volatile	Organic (Compound	ds (VOC'	s) µg/kg							P	olynucl	ear Aro	matic H	lydroca	arbons (PAHs)	μg/kg							%	mţ	g/kg
Sample ID	Date	Вепzепе	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene [c]	Benzo(a)pyrene [c]	Benzo(b)fluoranthene [c]	Benzo(ghi)perylene	Benzo(k)fluoranthene [c]	Chrysene [c]	Dibenzo(a,h)anthracene [c]	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene [c]	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total cPAHs	Total Solids	Total Lead	Total Cyanide
PST-01	4/5/2002	96	81	95	141	413	18*	33*	<17	<13	<13	<14	<13	<12	<12	<14	<14	<12	12*	<13	<12	1,100	38	<13	1,201	nd	95.2	960	<0.26
PST-02	4/6/2002	<u>57*</u>	120	80	192	. 449	<15	<13	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	<11	<14.	<13	230	<12	<13	230	nd	91.4	730	0.37*
PST-03	4/6/2002	<u>59*</u>	<25	36*	<25	95	<16	19*	<19	<14	<14	<15	<14	<12	<13	<15	<15	<12	<12	<14	<13	310	<12	<14	329	nd	88.5	8.8	<0.28
PST-04	4/8/2002	76	<25	62	28*	166	41*	72	84	<14	46	31*	<14	32*	<13	16*	62	<12	310	<14	<13	1,200	550	120	2,564	141	88.5	490	0.37*
PST-05	4/10/2002	<25	<25	<25	<25	nd	<16	<14	<19	<14	<14	<15	<14	<13	<13	<15	<15	<13	<12	<14	<13	31*	<13	<14	31	nd	87.9	300	<0.28
PST-06	4/12/2002	<25	<25	<25	<25	nd	<15	<13	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	<11	<14	<13	44*	17*	<13	61	nd	87.8	450	0.38*
PST-07	4/12/2002	<25	<25	<25	<25	nd	16*	24*	<18	26*	35*	19*	16*	<12	<13	<15	17*	<12	31*	20*	<13	76	81	43	404	52	89.4	520	<0.28
PST-08	4/13/2002	<25	<25	<25	<25	nd	<15	<13	<18	<13	<13	<14	<13	<12	<12	<14	<14	<12	<11	<13	<12	32*	<12	<13	32	nd	93.9	730	0.33*
PST-09	4/14/2002	<25	<25	<25	<25	nd	<16	<13	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	<12	<14	<13	73	<12	<13	73	nd	89.9	510	<0.28
PST-10	4/15/2002	77	<25	<25	<25	77	19*	31*	<18	<13	<13	<15	<13	<12	<12	<14	<15	<12	<11	<13	<12	270	17*	<13	337	nd	92.9	1,000	1.9
PST-11	4/17/2002	180	<25	39*	<25	219	110	180	<34	<26	<25	<28	<26	<23	<24	<27	<28	<23	<22	<26	<24	1,300	110	<25	1,700	лd	96.6	420	<0.26
PST-12	4/18/2002	160	<25	84	<25	244	44*	71	<16	<12	22*	<14	<12	<11	<12	<13	<14	<11	<10	<12	<12	390	22*	<12	549	nd	91.5	310	0.35*
PST-13	4/19/2002	69	<25	<25	<25	69	<15	16*	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	29*	<14	<13	140	58	28*	271	nd	91.9	590	0.39*
PST-14	4/21/2002	130	<25	50*	<25	180	<16	14*	<19	<14	<14	<15	<14	<13	<13	<15	<15	<13	14*	<14	<13	250	56	<14	334	nd	87.5	330	<0.29
PST-15	4/22/2002	80	<25	<25	<25	80	<16	27*	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	17*	<14	<13	320	64	13*	441	nd	89.8	360	0.66*
PST-16	4/23/2002	200	<25	80	<25	280	70	94	<17	<13	<13	<14	<13	<12	<12	<14	<14	<12	<11	<13	<12	680	53	<13	897	nd	94.5	380	0.51*
PST-17	4/24/2002	<u>33</u> *	<25	<25	<25	33	<15	<13	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	<11	<14	<13	150	27*	<13	177	nd	91.8	240	<0.27
PST-18	4/26/2002	_	<25	76	<25	286	57	86	<19	24*	24*	<16	<15	<13	<13	<15	22*	<13	71	<15	<13	690	290	27*	1,291	22	85.2	310	<0.29
PST-19	4/27/2002	İ	<25	<25	<25	54	<90	<71	<64	<57	<40	<57	<44	<78	<86	<120	<87	<60	<62	<69	<140	190*	<72	<82	190	nd	88.6	280	0.69*
PST-20	4/28/2002	<25	<25	<25	<25	nd	<90	<71	<64	<56	<40	<57	<44	<77	<85	<120	<87	<60	<62	<68	<140	120*	<72	<82	120	nd	88.9	330	0.41*
PST-21	4/30/2002	<25	<25	<25	<25	nd	<16	<13	<18	<14	<13	<15	<14	<12	<13	<14	<15	<12	<12	<14	<13	27*	20*	<13	47	nd	89.7	280	0.65*
PST-22	5/1/2002	36*	<25	<25	<25	36	<58 ^F	<46 ^F	<41 F	<36 ^F	<26 ^F	<37	<28	<50	<55	<76	<56	<39	<40 F	<44 F	<90	94 ^{F*}	52 F*	<53 ^F	146	nd	92	400	0.53*
PST-23	5/2/2002	100	<25	35*	<25	135	<58	<45	<41	<36	<26	<36	<28	<49		<75	<55	<38	<40	<44	<89	300	160	<52	460	nd	92.9	280	1
PST-24	5/3/2002		<25	<25	<25	nd	<59	<46	<42	<37	<26	<37	<28	<50	<56	<77	<57	<39	<41	<45	<91	51*	<47	<54	51	nd	90.8	320	<0.28
PST-25	5/7/2002	<25	<25	<25	<25	nd	<61	<48	<43	<38	<27	<39	<30 ~15	<53	<58	<80 <22	<59	<41 ~17	<42 ~15	<46 -18	<95 -21	<44 23	<49 18	<56 ~30	nd 41	nd nd	87.1 87.5	390 370	<0.29 0.14 *
PST-26	5/8/2002	<25	<25 <25	<25	<25 -25	nd	<18 <18	<19 <19	<15 <15	<16	<14 <14	<18 <18	<15 <15	<14 <14		<22 <22	<15 <15	<17 <17	<15 <15	<18 <18	<21 <21	23 <18	18 <15	<39 <39	41 nd	nd nd	87.3 79.5	350	<0.31
PST-27 Treatment St	5/10/2002 tandards	<25 500	<25 2,900	<25 1,500	<25 4,100	nd	ns	ns	ns	700	ns	ns	ns	ns	ns		ns	ns	ns	ns	ns		1,800		50,000	10,000		ns	50
a reatment St	unuanus	200	2,700	1,500	7,200	1 113	1173	113	113		120												,		-,	,			

Table 3 - Post-treatment Soil Analytical Results Remedial Action Documentation Report Former Oshkosh Manufactured Gas Plant Site - WPSC

		Volatile	Organic	Compoun	ds (VOC's	s) µg/kg							Pe	olynucie	ar Aro	matic H	lydroca	rbons (PAHs) į	ug/kg							%	mę	g/kg
Sample ID	Date	Benzene	Ethylbenzene	Toluene	Total Xylenes	Total BTEX	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene [c]	Benzo(a)pyrene [c]	Benzo(b)fluoranthene [c]	Benzo(ghi)perylene	Benzo(k)fluoranthene [c]	Chrysene [c]	Dibenzo(a,h)anthracene [c]	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene [c]	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total cPAHs	Total Solids	Total Lead	Total Cyanide
PST-28	5/10/2002	26*	<25	<25	<25	26	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	44*	<15	<39	44	nd	85.4	350	<0.29
PST-29	5/11/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	<18	<15	<39	nd	nd	83.3	350	<0.30
PST-30	5/12/2002	26*	<25	<25	<25	26	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	67	<15	<39	67	nd	88.5	280	<0.28
PST-31	5/14/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	40*	<15	<39	40	nd	89	340	<0.28
PST-32	5/15/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	<18	<15	<39	nd	nd	85	260	<0.29
PST-33	5/16/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	<18	<15	<39	nd	nd	84.5	290	<0.30
PST-34	5/20/2002	62*	<25	<25	<25	62	31*	46*	<15	31*	22*	<18	<15	<14	<18	<22	28*	<17	63	<18	<21	600	170	66*	1,057	28	78.4	440	<0.32
PST-35	5/20/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	64	17*	<39	81	nd	79	320	<0.32
PST-36	5/20/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	<18	<15	<39	nd	nd	81.9	230	<0.31
PST-37	5/21/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	47*	<15	<39	47	nd	80	310	<0.31
PST-38	5/22/2002	<25	<25	<25	<25	nd	<18	24*	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	100	<15	<39	124	nd	88.7	390	<0.28
PST-39	5/24/2002	<25	<25	<25	<25	nd	<18	<19	<15	<16	<14	<18	<15	<14	<18	<22	<15	<17	<15	<18	<21	25*	<15	<39	25	nd	88.8	350	0.30*
PST-40	5/28/2002	40*	<25	<25	<25	40	170*	180*	<100	<88	<77	<110	<88	<140	<88	<120	<130	<71	160*	<120	<88	1,400	490	180*	2,580	nd	84.8	370	<0.29
PST-41	5/28/2002	32*	<25	<25	<25	32	<83	<95	<100	<89	<77	<110	<89	<140	<89	<120	<130	<71	<140	<120	<89	1,000	300	<140	1,300	nd	84	330	<0.30
PST-42	5/28/2002	<25	<25	<25	<25	ba	<80	<91	<97	<85	<74	<100	<85	<140	<85	<110	<130	<68	<140	<110	<85	150*	<74	<140	150	nd	88	260	<0.28
PST-43	5/28/2002	<25	<25	<25	<25	nd	<85	<97	<100	<91	<79	<110	<91	<140	<91	<120	<130	<72	<140	<120	<91	180*	<79	<140	180	nd	82.8	280	<0.30
PST-44	6/7/2002	<25	<25	<25	<25	nd	20*	30*	<20	<15	<14	<16	<15	<13	<14	<15	<16	<13	<12	<15	<14	180	<13	<14	230	nd	84	400	<0.30
PST-45	6/10/2002	<25	<25	<25	<25	nd	<32	<27	<37	<28	<27	<30	<28	<25	<26	<29	<30	<25	<24	<28	<26	<38	<25	<27	nd	nd	88.6	500	<0.28
1	6/13/2002		<25	<25	<25	nd	<16	<14											<12			<19	<12		nd	nd	88	300	0.51*
PST-47			<25	<25	<25	nd	<17	14*	<19					<13						<15	<14	38*	<13		52	nd a	84.8	340	0.35*
PST-48			<25	<25	<25	nd	36*	91											<13				<13		181	nd	82.6	450	<0.30
Treatment St	andards	500	2,900	1,500	4,100	ns	ns	ns	ns	700	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	ns	400	1,800	ПS	50,000	10,000	L ==	ns	30

Notes:

1. ns = no standard

- 2. Treatment Standards based on the Remedial Work Plan Treatment Performance Criteria
- 3. [c]= carcinogenic PAH, classified as B2 probable human carcinogen
- 4. cPAHs=carcinogenic PAHs
- 5. na = not analyzed

6. Detected values bolded

7. =concentrations above the treatment standards. Soil was retreated.

8. * = The reported result is less than the practical quantitation limit (reference laboratory reports)

9. F = Surrogate results outside control criteria.

{(O-MJR 8/29/02 C-HMS 9/4/02)

Table 4 - Soil Contaminant Mass Removal Summary Remedial Action Documentation Report Former Oshkosh Manufactured Gas Plant Site - WPSC

		BTEX	PAHs	Total CN
PRE-TREATMENT SOIL				
Average concentration	$(\mu g/kg)$	113,798	1,463,801	50,857
Contaminant Mass	(tons)	2.7	34.4	1.20
POST-TREATMENT SOIL				
Average concentration	$(\mu g/kg)$	116	173	560
Contaminant Mass	(tons)	0.0027	0.004	0.013
CONTAMINANT REMOVAL - SOIL				
Contaminant Removed	(percent)	99.90%	99.99%	98.90%
Mass Removed	(tons)	2.672	34.395	1.182
Mass Removed	(lbs.)	5,343	68,790	2,364
CONTAMINANT REMOVAL - BTEX + PAHs IN	SOIL (lbs.)	74,1	34	

(O-HMS 11/20/02 C- SLF 11/21/02)

Notes:

- 1. Mass removal based on 23,500 tons of soil treated and arithmetic mean of pre-treatment and post-treatment BTEX, PAH, and Total Cyanide values.
- 2. Post samples PST-1,4,11,16,18,34,40,41 were not included in post-trreatment soil average concentration, due to re-treatment of these piles.
- 3. Non-detectable post treatment samples were not included in post-treatment soil average concentration.

Table 6 - Summary of Earthen Cap Extent - Shallow Soil Quality Results Remedial Action Documentation Report Former Oshkosh Manufactured Gas Plant Site - WPSC

	l Vo	latile Orga	nic Compo	ounds (mg/	kg)								Polyi	nuclear Ai	romatic Hy	drocarbo	ns (PAH's)	mg/kg								%	mg	g/kg
Sample ID Date Depth (feet)	Benzene	Toluene	Ethylbenzene	Total Xylenes	Total BTEX	1-Methylnaphthalene	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene [c]	Benzo(a)pyrene [c]	Benzo(b)fluoranthene [c]	Benzo(ghi)perylene	Benzo(k)fluoranthene [c]	Chrysene [c]	Dibenzo(a,h)anthracene [c]	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene [c]	Naphthalene	Phenanthrene	Pyrene	Total PAHs	Total cPAHs	Total Solids	Total Lead	Total Cyanide
EXT-01 5/10/2002 2	0.079	0.027*	0.039*	0.080*	0.225*	0.170*	0.29	<0.07	0.98	0.39	1.6	\$2:1\$	1.9	2.1	1.7	1.9	≈0.45 ≪	1.8	0.057*	1.6	0.51	0.74	2.7	21	11.3	94	47	2 ^A
EXT-01 5/10/2002 2 EXT-02 5/10/2002 2	0.13	0.027	0.055	0.156*	0.479	0.220*	0.25	0.14*	1.1	0.6		· 4 ·	3.2	3.5	2.7	2.6	0.8	2.9	0.3	333 ·	0.76	1.4	3.6	33.7	18.9	86.2	66	9.8
EXT-03 5/10/2002 2	0.041*	<0.025	< 0.025	<0.025	0.041	<1.1	< 0.94	<1.3	7	4.7	22.38 42 **	<u>.46</u> ≉	42	21	≆36 ≠	35	<u>8</u> *	62	< 0.98	30 ½	<1.3	9.2	50	392.9	239	76.2	270	11
EXT-04 5/10/2002 1.5	0.47_	0.46	0.15	0.42	1.5	0.039*	0.050*	0.099*	0.26	0.18	0.94	1.8	1.3	1.7	1.4	0.92	£0.41;	1	0.037*	2.1	0.092*	0.41	1.1	13.8	8.9	91.5	39	2.4
EXT-05 5/22/2002 2	< 0.025	0.054	< 0.025	0.094	0.148	<3.4	<2.9	<4	38	13	170	<u> 170</u> *	110	مام	<u>≥130</u> ÷	$\frac{170}{0.71}$	18	180	<3.1	<u>76</u> 、	<4.2	24	310	1,475	844	81.8	- 88	3.5
EXT-06 6/5/2002 1-2	< 0.025	<0.025	< 0.025	< 0.025	nd	0.018*	0.027 *	< 0.018	0.13	0.16	0.8	0.92	0.73	0.45	0.76	0.71	0.12	1	0.028 *	0.58	0.09	0.43	1.3	8.3	4.6	89.5	29 *	0.34 *
EXT-07 6/5/2002 1-2	< 0.025	< 0.025	< 0.025	<0.025	nd	<66	0.061*	0.087*	0.14 *	0.49	1.1	1:54	1	0.69	1.5	1.3	0.13*	2.8	0.13 *	0.87	0.16 *	1.9	3.1	17	7.4	84.5	200	0.97
EXT-08 6/5/2002 I-2	< 0.025	<0.025	< 0.025	<0.025	nd	0.022 *	0.026 *	< 0.019	0.094	0.11	0.61	20.76	0.67	0.38	0.63	0.57	0.081	0.81	0.033*	0.47	0.056 *	0.44	0.98	6.7	3.8	86.9	220	0.45*
EXT-09 6/5/2002 1-2	< 0.025	0.053*	< 0.025	0.13 *	0.183	0.31	0.39	0.035*	0.13	0.22	0.73	0.97	0.9	0.54	0.83	0.81	0.18	1.4	0.067	0.65	0.28	1.1	1.4	10.9	5.1	88.5	160	1.4
EXT-10 6/5/2002 1-1.5	< 0.025	< 0.025	< 0.025	0.042*	42	0.096	0.13	0.021*	0.057	0.1	0.36	0.42	0.4	0.26	0.36	0.39	0.076	0.75	0.037*	0.25	0.12	0.57	0.79	5.2	2.3	87.3	63	0.6 *
EXT-11 7/17/2002 1	< 0.025	< 0.025	< 0.025	<0.025	nd	<0.014	< 0.012	< 0.017	< 0.013	< 0.012	< 0.014	<0.013	<0.011	<0.012	<0.013	<0.014	<0.011	0.014*	<0.013	<0.012	< 0.017	< 0.011	0.016*	0.0	nd	98.2	45	1.4 <0.11
EXT-12 7/17/2002 1.5	< 0.025	0.072*	< 0.025	0.081*	0.153	0.057	0.078	0.019*	0.049	0.078	0.34	0.4	0.5	0.22	0.39	0.38	0.068	0.52	0.027*	0.27	0.064	0.41	0.72	4.6 2.4	2.3	91.5 94.4	42 27	<0.11 1.1
EXT-13 7/17/2002 1.5	< 0.025	< 0.025	< 0.025	<0.025	nd	0.022*	0.028*	< 0.016	0.034*	0.036*	0.14	0.21*	0.28	0.13	0.18	0.27	0.042	0.36	<0.012	0.15	0.04*	0.12 < 0.012	0.37	nd	1.3	94.4	25	0.13*
EXT-14 7/17/2002 1.5	< 0.025	< 0.025	< 0.025	< 0.025	nd	<0.015	< 0.013	<0.018	< 0.013	< 0.013	<0.015	<0.013	< 0.012	<0.012	< 0.014	<0.015	<0.012	<0.011 0.022*	<0.013 <0.015	<0.012 <0.013	<0.018 0.13	0.012 0.058	<0.013 0.027*	0.4	nd 0.1	86	26	0.13*
EXT-15 7/17/2002 1.5	<0.025	< 0.025	< 0.025	< 0.025	nd	0.054	0.066	<0.019	< 0.015	< 0.014	0.016*	0.016*	0.015*	0.016*	<0.015	0.024*	< 0.013	0.022**	0.015	0.16	0.13	0.038	0.027	5	1.4	89.5	32	< 0.11
EXT-16 7/17/2002 1	_2_	2.3	0.17	1.58	6.05	0.73	0.92	0.019*	0.043*	0.058	0.27	40:24% 22:7%	0.21 2.9	0.025*	0.21 2	0.26 3.2	0.041 0.61	3.8	0.023	1.5	0.29*	3.9	7.3	36	16.2	96	640	0.37
EXT-17 7/17/2002 1.5	0.046*	0.044*	<0.025	0.031*	0.121	0.38*	0.29*	<0.17	1.3	0.72 0.35	33± 32±	2.4	1.9	1.4 1.5	2	2.1	5.0.45	3.1	0.075*	1.8	0.27*	1.5	3.7	23.8	10.4	96.1	160	8.7
EXT-18 7/17/2002 1.5	<0.025	0.039*	<0.025	0.103*	0.142	0.21*	0.25	<0.086	0.16	0.33	1922.0	13000100000			NARV CI		LEVELS (0.07.0									
C I I P I PCI	0.0055	1.7	2.0	4.1		22	20	38	1	3,000	17	48	360	6,800	870	37	38	500	100	680	0.4	1.8	8,700	ns	ns		ns	ns
Groundwater Pathway RCL	0.0055	1.5	2.9	4.1	ns	23				3,000		-70		0,000		<u> </u>							,		,			
Direct Contact Pathway-Non- industrial RCL	1.1	ns	ns	ns	ns	1,100	600	900	18	5,000	0.088	0.0088	0.088	1.8	0.88	8.8	0.0088	600	600	0.088	20	18	500	ns	ns	••	50	ns
Direct Contact Pathway- Industrial RCL	ns	ns	ns	ns	ns	70,000	40,000	60,000	360	300,000	3.9	0.39	3.9	39	39	390	0.39	40,000	40,000	3.9	110	390	30,000	ns	ns		500	ns
US EPA Residential PRGs	0.65	520	230	210	ns	ns	ns	3,700	ns	22,000	0.62	0.062	0.62	ns	6.2	62	0.062	2,300	2,600	0.62	56	ns	2,300	ns	ns		400	ns
US EPA Industrial PRGs	1.5	520	230	210	ns	ns	ns	38,000	ns	100,000	2.9	0.29	2.9	ns	29	290	0.29	30,000	33,000	2.9	190	ns	54,000	ns	ns		750	ns
Notes:																								(O-MJR 8	/26/02 C-HMS	9/4/02 U-HN	IS 10/9/02 C-	-MJR 10/9/02)

Notes:

1. na = not analyzed

2. nd = not detected

3. ns = no standard

4. * = The reported result is less than the practical quantitation limit

5. [c]= carcinogenic PAH, classified as B2 probable human carcinogen

6. cPAHs=carcinogenic PAHs

7. RCL = WDNR generic Residual Contaminant Level

8. PRG = US EPA Region 9 Preliminary Remediation Goals for direct contact

9. Detected values bolded

: Exceed Outdoor __: Exceed Migration to Worker SSLs Groundwater

Ingestion-Dermal

APPENDIX D3 WDNR SPECIAL WASTE APPROVAL

State of Wisconsin \ DEPARTMENT OF NATURAL RESOURCES

Scott McCallum, Governor Darrell Bazzell, Secretary

101 S. Webster St. Box 7921 Madison, Wisconsin 53707-7921 Telephone 608-266-2621 FAX 608-267-3579 TTY 608-267-6897

April 22, 2002

APR 2 5 2002

Ms Connie K. Lawniczak Wisconsin Public Service Corp. P.O. Box 19002 Green Bay, Wi 54307-9002

Subject: WPS-Oshkosh Coal Gas Site

Dear Ms Lawniczak:

This letter in part responds to Mr. Mark Thimke's April 8, 2002 letter to Mr. Bruce Urben, in which he requested assistance for WPS, to allow it to thermally treat on-site manufactured gas plant (MGP) related wastes that exceed the benzene threshold under the TCLP test.

The Department recognizes that recently, the United States Environmental Protection Agency issued a final rule that exempts MGP wastes from the TCLP test. Wisconsin has not yet adopted this federal exemption.

I took the opportunity to discuss the Oshkosh coal gas site situation with our Bureau Director Sue Bangert, Policy Section Chief John Melby, and Hazardous Waste Team Leader Pat Chabot. After our discussion, we agreed that since the Department intends to adopt the federal rule exemption, we would not require WPS to handle the MGP waste exceeding TCLP for benzene as a hazardous waste in the interim. We agreed that it made sense to allow this contaminated media to be thermally treated on-site along with other media not exceeding the TCLP limit. The Department's Coal Gas Team had a conference call last Thursday and they too were supportive of this decision.

In the coming weeks, the Department may prepare more formal guidance for both staff and the utilities on this matter. Please call me at 920-492-5870 if you would like to discuss this issue further.

Sincerely.

Len Polczinsk), Region Program Manager

NER-WA Program

cc. Bruce Urben

Sue Bangert/John Melby/Pat Chabot

Mark A. Thimke Foley Lardner 777 East Wisconsin Ave., Suite 3900 Milwaukee 53202-5367 Spiros Fafalios 23713 W. Paul Rd. Suite D Pewaukee, WI 53072

Jennifer Pelczar - Oshkosh

APPENDIX D4

RIVERSIDE PARK CONSTRUCTION DOCUMENTATION REPORT

June 9, 2006

Ms. Kathleen Sylvester Wisconsin Department of Natural Resources 625 East County Trunk Y, Suite 700 Oshkosh, Wisconsin 54901

Re: Riverside Park Construction Documentation Report, City of Oshkosh, Wisconsin – STS Project No. 4-26678XA

Dear Ms. Sylvester:

STS Consultants, Ltd. (STS) is pleased to present this construction documentation report (CDR) for the Riverside Park redevelopment in the City of Oshkosh, Wisconsin (site). This CDR was prepared in general accordance with the Park Development Plan (PDP) submitted by STS, on behalf of the City of Oshkosh, in July 2004. This CDR provides the Wisconsin Department of Natural Resources (WDNR) a record of site modifications associated with the park redevelopment. This CDR includes:

- Site record drawings
- Record of monitoring well and groundwater collection trench system modifications
- Record of environmental cap installation and modifications
- Description of trench plugs and trench liner
- Record of disposal for contaminated soil and groundwater
- Record of environmental site monitoring

As-Built Conditions

The following site record drawings were created and are attached to the report:

- R-0: Cover Sheet Site location and drawing index
- R-1: Record Topographic Survey Post-construction surveyed site conditions
- R-2: Record Paving Plan Pavement sections and locations of pavements and heavy duty pavement
- R-3: Record Grades & Cap Thickness Plan Surveyed grades, cap thickness labels, and location of geocomposite liner (GCL) and geotextile warning layer.
- R-4: Record Water Utility Plan Phase I existing water main and structure layout with descriptions.
- R-5: Record Sanitary Sewer Plan Phase I existing sanitary sewer and structure layout with descriptions.
- R-6: Record Storm Sewer Plan Phase I existing storm sewer and structure layout with descriptions.
- R-7: Record Cross Sections (A-A' & B-B') Cross sectional views of surface and subsurface materials/structures through two representative angles of the development.
- R-8: Record Planting Detail Detail sections of the parking island planter and river walk area plantings.

WDNR – Riverside Park STS Project No. 4-26678XA June 9, 2006

Record Electrical Plan – Location and descriptions of existing Phase I electrical layout.

These record drawings document the as-built conditions and identify site modifications required to complete the redevelopment. Deviations from the July 2004 PDP are presented in more detail below.

Groundwater Collection System

Monitoring wells and components of the groundwater collection trench system were protected during construction and adjusted to final design grades of the park. Final design grades were generally higher than anticipated, therefore ultimate modifications to the groundwater collection system components varied from those identified in the July 2004 PDP. Components associated with DS-1, DS-3, and DS-4 were raised between approximately 0.4 to 10 feet. Components associated with DS-2 were not adjusted, as the final design grades generally matched the original elevations of those structures.

Two monitoring well were damaged and subsequently replaced during utility construction. Monitoring wells P-2 and GW-2 were replaced with P-2R and GW-2R, respectively. Monitoring well abandonment, construction, and development forms are attached. The groundwater collection system and replacement wells are presented on sheet R-1 of the record drawings.

Engineered Environmental Caps

Engineered environmental caps were installed to limit human direct contact with and reduce surface water infiltration through residual contaminated soil on the site. The caps were constructed with a combination of new asphalt and concrete pavement and reused soil barrier material. Where asphalt and concrete were not placed, the soil cap generally consisted of 6 inches of clay under 6 inches of sand, all overlaid by 6 inches of topsoil. Where the soil cap thickness could not be obtained due to other site considerations, a GCL with specified permeability of less than 1x10⁻⁷ centimeters per second, was installed to replace the desired 6 inches of clay material. Field density tests were performed on the asphalt and soil caps, and the compaction summary sheets are attached. Record Drawing R-3 identifies two locations where a GCL was utilized in place of 6-inches of compacted clay. In both instances, the GCL was tied 2-feet into the adjoining clay layer and covered with 6-inches of granular fill and 6-inches of topsoil. In addition to the locations identified on the record drawings, a GCL was also used as a temporary cover for a stockpile of excess soil generated during the redevelopment. In this location, the GCL was covered with 18 inches of topsoil and vegetated with grass. The City is assessing final disposal options for the excess soil.

Utility Construction

The site redevelopment included installation of water main, storm sewer, and sanitary sewer systems. Soil generated during utility trench excavations was either replaced within the utility trenches as backfill or used as general fill for grading the hillside seating area of the park. Low permeability plugs were installed within utility trenches that exited the site or penetrated the existing vertical sheet pile barrier wall. Trench plugs installed within utility trenches exiting the site were constructed of lean concrete on top of bentonite instead of re-compacted silty clay as described in the July 2004 PDP. The trench plug installed within the sole utility trench that penetrated the vertical sheet pile barrier wall was constructed of bentonite. Utility details are presented on sheets R-4 through R-6 of the record drawings.

Tree Planting

Initial redevelopment plans included the importation of amended soil for use in the tree planters. However, on site topsoil was used instead to reduce planting costs and satisfy the cut/fill balance of the site. As indicated on Record Drawing R-8, a GCL was placed in the planting trenches below 36 inches of

WDNR – Riverside Park STS Project No. 4-26678XA June 9, 2006

topsoil to establish a hydraulic barrier over the solid waste. The GCL was interconnected with a drain tile system that utilized perforated pipe below the plantings and a solid pipe below paved areas.

A 6-ounce, non-woven geotextile was installed in the tree planting areas as a warning layer above the GCL and underlying contaminated soil. The geotextile was overlapped 18 inches and placed on the east and south slopes of the hillside seating area from top to toe of the slope. The extent of geotextile warning layer placement is presented on Record Drawing R-3.

Excess Soil

Approximately 5,628 tons of excess residual contaminated soil was generated during the site redevelopment. The excess material, which was unable to be reused on the site, was transported to the Waste Management (WM) Valley Trail Recycle and Disposal Facility in Berlin, Wisconsin for disposal. The WM load tickets are enclosed.

Riverfront Improvements

Riverfront improvements were not anticipated as part of the Phase I construction. However, additional funding made it possible to construct the pedestrian walkway, decorative fencing, and restroom facilities. The pedestrian walkway was constructed of brick and concrete sloped at a two percent grade toward the Fox River. The GCL associated with the engineered environmental cap was installed up to the pedestrian walkway to maintain a continuous impervious barrier to the river. The GCL was overlapped 18 inches and granular bentonite was installed between the overlapped layers. A cross-section detail of the pedestrian walkway and decorative fence is presented on Record Drawing R-8.

The restrooms along the river walkway were constructed on concrete-filled piles. Impacted soil encountered within the piles was removed (prior to filling the piles with concrete) and managed as a special solid waste. The piles were constructed below the environmental cap to limit the infiltration of groundwater. A plan view of the restrooms and pedestrian walkway is presented on Record Drawing R-1.

The purchase agreement between WPSC and the City established a Sediment Project Easement along the Fox River, the extent of which is presented on Record Drawing R-1. The easement will allow access to the Fox River for future dredging activities and can be used to stage dredged piles.

Site Dewatering

Although not anticipated during the development of the July 2004 PDP, site dewatering was required during the site redevelopment. Water encountered during the redevelopment (primarily within excavated utility trenches) was pumped into temporary holding tanks to reduce total suspended solids and capture free product prior to discharging to the City's Waste Water Treatment Plant. The City granted approval for the discharge in a letter (attached) dated August 30, 2004.

Free product was not observed in the temporary holding tanks during site dewatering and discharge activities. Solids which settled at the bottom of the temporary tanks were either transported to the WM Valley Trail facility for disposal or placed beneath engineered environmental caps on the site.

Air Monitoring

Ambient air monitoring was completed during the redevelopment to assess the presence of volatile hazardous substances within the interior and at the perimeter of the site. Air monitoring was completed each morning and afternoon by screening the site with a photoionization detector (PID). PID readings in the ambient air did not exceed the target thresholds of 50 and 10 PID units established in the July 2004 PDP for the interior areas and at the perimeter of the site, respectively.

WDNR - Riverside Park STS Project No. 4-26678XA June 9, 2006

Dust Control

Dust suppression was completed during excavation activities to reduce particulate hazardous substances generated within the interior and at the perimeter of the site. Impacted soil was maintained moist by spraying with water in general accordance with BMPs defined in the "Wisconsin Construction Site Best Management Practices Handbook", and as described in the Erosion Control Plan.

Operation and Cap Maintenance Plan

Engineered caps were installed at the redevelopment Riverside Park to reduce the potential for human direct contact and to limit surface water infiltration through residual soil contamination consisting of polynuclear aromatic hydrocarbons (PAHs); benzene, toluene, ethylbenzene, and xylene (BTEX); total cyanide; arsenic, and lead. The impacted soil was capped with a combination of asphalt and concrete pavement, brick pavers buildings, and vegetated soil barriers constructed of clay or GCL overlain by granular material and/or topsoil. The engineered caps shall be observed by the property owner on an annual basis during the months of May through August to assess their integrity and effectiveness. The property owner shall maintain the caps by:

- Sealing and/or patching cracks observed in asphalt and concrete pavement;
- Repairing and/or replacing damaged and disturbed brick pavers;
- Repairing building foundations and soil caps in green space areas that have the potential to compromise the effectiveness of the caps.

The property owner shall keep documentation of the annual inspections and maintenance items completed.

Closing

We appreciate your assistance with making Riverside Park a successful development for the City of Oshkosh. If you have any questions regarding this submittal, please contact us.

Sincerely,

STS CONSULTANTS, LTD.

Suzanne M. Murawski, P.E. Senjor Project Engineer

Paul J. Killian M. Murawski, P.E. Paul J. Killian, P.E.

Principal Engineer

WDNR – Riverside Park STS Project No. 4-26678XA June 9, 2006

Attachments

Monitoring Well Abandonment, Construction, and Development Forms City of Oshkosh POTW Discharge Approval Letter Waste Management Valley Trial Recycle and Disposal Facility Load Tickets Compaction Summary Reports Site Record Drawing Set

CC: Ms. Kristi Bales
City of Oshkosh
215 Church Avenue
Oshkosh, Wisconsin 54903-1130

Mr. Brian F. Bartoszek WPS 700 North Adams Street Green Bay, Wisconsin 54307-9002

State of Wisconsin
Department of Natural Resources

WELL/DRILLHOLE/BOREHOLE ABANDONMENT Form 3300-SP 2/2000 Page 1 of 2

Notice: Please complete Form 3300-5P and return it to the appropriate DNR office and burnau. Completion of this report is required by the 160, 281, 283, 289, 291, 292, 293, 295, and 259, Wiz. Stan., and the NR 141. Wis. Adm. Code. In accordance with this form may result in a fortesture of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved.

Personally identifiable information on this form is not intended to be used for any other purpose. NOTE: See the instructions for more information.

ROULE 10: Drinking Water Watershod/Wastowater Waste Man	TOTAL WORLD TO THE PROPERTY OF
	(2) FACUTY/OWNER INFORMATION
WI Unique Well No. DNR Well ID No. County	Pacifity Name
Winnebago	Place State Park
Common Well Name Govt Lot Of amplicable	Facility ID License/Permit/Menitoring No.
1/4 of 1/4 of Sec : T. N:R.	Street Address of Well
Grid Location	L. L. M. DE MESE
± □ N. □ S., n. □ E □ W.	Osh Rosh I
Local Grid Origin (estimated:) or Well Location	Prescan Well Owner Original Owner
Lac Long or	
St. Plane ft. Nft. E. C. Zone	Street Address or Route of Owner
- omigae realition	City, State, Zip Code
(3) WELL/DRILLHOLE/BOREHOLE INFORMATION	
	(a) Pump, liner, screen, casing, & sealing material
Original Construction Date	Pump & Piping Removed? Yes No Re Not Ambigable
Monitoring Well	Liner(s) Removed? Yes No Per Nor Applicable
Water Well If a Well Construction Report	School Action of the Amplication
Borehole / Drillhole Is available, please attach.	Casing Left in Fiscar
Construction Type:	Was Casing Cut Off Below Surface? Yes No
Drillisc Doven (Sandpoint) Dug	Did Scaling Material Rise to Surface? Xes No
Other (Specify)	Did Maurial Sende After 24 Hours? Yes 3-No
Pormazion Type:	HYCz, War Holc Resupped? Yes No
Unconsolidated Formetion Bedrock	Required Mexico of Planing Scaling Material
·· · · · · · · · ·	Conductor Pipe Gravity Conductor Pipe Pumped
Total Well Depth (ft.) 29 Casing Dismeter (in.) 2:1 (From groundsurface) Casing Dopth (ft.)	Screened & Pourced Department (Explain)
Lower Drillhole Diameter (in.)	Sealing Materials For monitoring wells and Neat Cement Groun monitoring well borcholes only
Wax Well Admiliar Space Grouted? Yes No Unknown	Sand-Cement (Concrete) Growt
If Yes, To What Dopth? Feet	
	Clay-Sand Slumy (11 lb/gal wz) Crompler Bentonite Bentonite-Sand Slumy " - Bentonite - Coment Grow
Depth to Water (Foca) 5.5	Benzonite Chips Bentonite - Sand Slurry
(5) Material Uzed To Fill Well/Drillholte	From (Ft.) To (Ft.) Sacks Sealant (Circle Mix Regio
(TC)	or Volume One) or Mud Weight
25.5	Surface 1.0
Bent Cement Good	10 291 6:1
5) Comments:	
7) Name of Person or Firm Doing Sealing Work Date of Abandons	
adger State Drilling Co., Inc. 6-30-05	
ignature Person Doth Work Date Signed	FOR DNR OR COUNTY USE ONLY Date Received Noted By
7/6/05	
Tolephone Number	Comments
Store Susiness Park Cr. (608) 877-9770	
toughton, WI 53589	

₽AGE 04/11

BSD

BAD	GER	STAT	E DR	ILL	IN(G CO.	, INC.	•		EIEI D	DODAN	.	. .		She	et		l	Of	1
5TOU FOR	CHITON	l, WISC	ONSIN	- {	کر	K					BORINI	G LU	M.	ſ		o No.	3	98°		
•						لکلاب	•			/ ELE		•	<u> </u>			ring N			2 R	
GF	IOUN		Mhile dri				60			er drilling				-			S	au (-30-	05
W	ATE	₹	Before ca After casi	_			<u> </u>		Depth to Depth to								1	nît <u>12</u>	120 .m	
4	22	Blo	ws on mpler	1	Τ	1							Casing	Probe Z	11				AS ON	
Sample	Moisture	<u></u>	T	Bampi	Total Bintys		VISUAL I	FIELD CLA	SSIFICAT	DHA NOT	REMARKS			140		Unconfined Strength	Boulders			Brad Hvad
	, F	0/6	6/12	a) a	ß	6"	7.5							30		25.5	88	Ceeing Stre	Probe	5 % HXA
-	M	3	9	a	æ	7 8	. <i>T</i> =	1-25	ح < د	14. 0	Sendy		<u></u> -					4	0.10	65
	771	3	4	.l	1		•	0003	~ <u>~</u> .		sury	- 61	0			22				1
1	m	15	12	10	9	7														
3	w	G	4	10	//	5	wo	acl						2.			-		<u> </u>	
4	W	1	16	 	7	1		rood)				38		1.1					
		Ź	5			Υ		•			111		. ,	٠.,	\exists					
5	W	0	0		1	└					.14			100	<u>}</u>					
G	W	0	Ž	12	0	EBr	F. c	orgu	4.'C	0.	COOS R	٤ ٢	外人							
7	722	10	2/	183	14	1 BV	100	n He	end	cla	· w	< X V	ルタ	nuel		118				
	92	व	10	2		£ 15 (V. H	iJ 🛴	-			,,		40	\exists	70				
8	رر	20	23	14.	36	₫ .	ب							15 -		7:5				
9	لن	25	31	8	4 /5	2, ک−‡ کرکہ_ڈ									=	4.5				
10	iv	25	27	Ko	9 3	‡										4				
) "		14	15		,	<u>†</u> ∞								20 -						士
11_	w.	8	73	183	22	‡									=	4.5	\dashv			
12	4	20	24	27	33	Ė				:					\exists	45				世
13	W	99	18	อน	26	25	-							28 =	=	4	\dashv			
		6	8		2212	ŧ									\exists	76.5				
14	w	29	100	#	1	₹/~~					·				\triangleleft					-}-
13	w	بد	7	Ia.	29	1600	F.F.	U-de	use	2,114	4/3	u	1	23	2					
					\dashv	= E	0.	13 3	0.2	5	5	150	ve.	en	크					
						_		50	Q.	er 09	£ 20	ر	\sim	_	=					
								100	ىت 		مرس د	7 . (ン				\dashv			
						— 3s —) / _	الصراح / الم	ν 2 1 2 1	2		35 =	日					
					-	_		17	I.	ne		١.			\exists		\dashv			
								And a	1.1.	105	· :	1	··		\equiv		1			
				,		40	(בלן <i>ב</i>	1.0)		40 -	크		-			
						~		\mathcal{Q}	46	»Sh	l.o		•		士		士			
					_	_			Con	cnb	De		٠.		=		\dashv			
			lary.		7	46					· · · · · · · · · · · · · · · · · · ·		••	4E -	丰		\downarrow			
		<u></u>													=		\dashv			
	α.				1	- (~)/; <u>~</u>				•	•			丰		1			
						<u> </u>	ج (َ	+07	7.						1		\dashv			

or some they be now

7)	id Waste [] Haz Waste [] & Repair [] Underground		MONITORING WELL CONSTRUCTION Form 4400-113A Rev. 4-90
Facility/Project Namo	Local Grid Location of Wel	1	Well Name
Kinerside Fank		ft DE.	P-DIC
Mal V	Grid Origin Location		Mes targic Well Name - STERR WATEN THE
Type of Well Water Table Observation Well [] []	LatI		Date Well Installed
Piczometer 12		. N, & E	_(0120103
Distance Well Is From Waster/Source Boundary	Section Location of Waste/S	F"3 to	m m d d y y Well Installed By: (Person's Name and Firm)
fi	1/4 of1/4 of Sec.,_		K. M.Cambe
Is Well A Point of Enforcement Std. Application?	Location of Well Relative w	Sidegradient	RCA
D Yes □ No	d Downgradient n	□ Not Known	1921
A. Protective pipe, top clavation	L MSL	1. Cap and lock?	
B. Well casing, top elevation i	L MSL	2. Protective cov a. Inside diame	~ · · · · · · · · · · · · · · · · · · ·
C. Land surface elevation f	L MSL	b. Length:	_1.CR
D. Surface seal, bottom ft. MSL or	n_ (200)	o Material:	Steel 0 04
12 USCS classification of soil near screen:	A SECTION AND A	d Additional	
CP D CM D CC D CW D SW D :	五百 / 月	If yes, desc	ribe:
SM SC O MLO MAD CLO	CH D	3. Surface seal:	Bentonite 🖸 30
Bedrock 13. Sieve analysis attached? Yes 1		J. Daniel Cal	Concrete D 01
	" 1 183 18	×	Other []
14. Drilling method used: Rorary [1]		ci 4. inibiguri delan	en well casing and protective pipe: Bentonie [] 30
Hollow Stem Auger R		.	Annudar space seal
			Other 🗆
15. Drilling fluid used: Water 1 02 Air 1	01	5. Annular space	30300
Drilling Mad [] 03 None 25	99		al mud weight Bentonite sand slurry [] 35
45 77 45		m -	al mud weight Bentomite shirry [] 31
16. Drilling additives used? I Yes	4 5	d% Ber	ntonite Bentonite-cement grout D 50
Describo		£	Ft volume added for any of the above
17. Source of water (attach analysis):		f. How instal	en 1
		.	Tranie pumped 🔲 02
		6. Brntonine seal	Cravity [] 08 2. Berntonite granules [] 33
E. Bentonite seal, top ft. MSL or	60m		B8/8 in. D 1/2 in, Bentonite pellets D 32
F. Fine send, top ft. MSL or _ C	AJ.O.1.	7. Fine sand mai	erial: Manufactura, product name & mesh size
G. Pilter pack, top ft_MSL or _ C	12.0tr	b. Volume ad	70 Tring
H. Screen joint, top ft. MSL or	40-10-		60 4 5
I. Well bottom ft. MSL or	710h	b. Volume ac 9. Woll casing:	Frush threaded PVC schedule 40 23 Flush threaded PVC schedule 80 0 24
J. Finer pack, bonom fl. MSL or	300 n		Other []
K. Borchole, bottom ft. MSL or	200m	10. Screen materi a. Screen typ	e: Factory cut
L. Borchole diameter		14-15-	Continuous stot [] 01
M. O.D. well casing	•	c. Slot size: d. Slotted lex	0.QQ Qin.
N. I.D. well easing E.O in.		\	rial (below filter pack): None 1 4 Other 1
I hereby ferrify that the information on this	s form is true and cor	rect to the best of my	
Signatur	Fam 2./		
1 Without	1 Dad	ger State D	cilling, Inc
Please complete tourisates of this form any return to and ch. NR 141, Wis. Ad. Code. In accordance with \$5000 for each day of violation. In accordance with	ch.144. Wis Stats., failure i	n file this form may result in	a forfeigne of not less than \$10, nor more than

day of violation. NOTE: Shaded areas are for DNR use only. See instructions for more information including where the completed form should be sent.

PAGE 06/11 Ø 005

BSD

State of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Rev. 4-90

Rouse to: Env. Respo	Solid Waste 🗍 Haz. W onse & Repair 🗍 Und	aste Wastewater	Dither Di	
Ferility/Project Name	County Name		Woll Name	:
Pacility License, Permit or Monitoring Number	County Code	Was I Falley, Well A	united to the second	ali Notrea
1. Can this well be purged dry?	Bis D No	11. Dopth to Water	Before Development	After Development
2. Well development method surged with bailer and bailed surged with bailer and pumped surged with block and bailed surged with block and pumped surged with block, bailed and pumped compressed air bailed only pumped only pumped slowly Other	41 0 61 0 42 0 62 0 70 0 20 0 10 0 51 0 50	(from top of well casing) Date Time 12. Sediment in well bottom 13. Water clarity	b 2 / 6 5 m m d d y y	
Time spent developing well Depth of well (from top of well casising)	<u> </u>		(Opsgribe)	(Describe)
	Z Q in			
6. Yolume of water in filter pack and well casing 7. Volume of water removed from well 8. Volume of water added (if any) 9. Source of water added	gal gal gal.	Fill in if drilling fluid 14. Total suspended solids 15. COD	is were used and wall is a mg/l	mg/l
10. Analysis performed on water added? (If yes, attach results)	□Yes □ No			İ
16. Additional comments on development: Bea, led Dry	3 T. me	2S		
Well developed by: Person's Name and Firm Name: U. M.Cum Bey		Signature: Print Initials:	he above information is in	
NOTE: Shaded areas are the DATE		Firm: LOd	ger State D	illing, INC.

State of Wisconsin
Department of Nannal Resources

WELL/DRILLHOLE/BOREHOLE ABANDONMENT Focm 3300-5P 2/2000 Page 1 of 2

Notice: Please complete Form 3300-5P and return it to the appropriate DNR office and bursay. Completion of this report is required by ch. 160, 281, 283, 289, 291, 292, 293, 295, and 299. Wis. Stats., and ch. NR 141, Wis. Adm. Code. In accordance with ch. 281, 289, 291, 292, 293, 295, and 299. Wis. Stats., failure to file this form may result in a forteinure of between \$10 and \$25,000, or imprisonment for up to one year, depending on the program and conduct involved. Parsonally identifiable information on this form is not intended to be used for any other purpose. NOTE: See the instructions for more information.

Route for Drinking Water Watershed/Wastewater Water Mana	gement Remediation/Redevelorment Och
(1) GENERAL INFORMATION WI Unique Well No. DAR WOLLD NO. COUNTY	(2) FACILITY OWNER INFORMATION
1 1 2	Pacifity Name
Winnebuyo	Kiverside Park
Common Well Name 6W-2 Govt Lot (If applicable)	
1/4 of 1/4 of Scc ; T N; R W	Street Address of Well,
	City, Village, or Town
Local Grid Origin (estimated:) or Well Location	Prescut Well Owner Original Owner
Lat Long or	Original Owner
St. Plane ft. N. ft. E. S C N Zone	Street Address of Route of Owner
Reason For Abandonment WI Unique Well No.	City, State, Zip Code
Stoken of Replacement Well	
(3) WELL/DRILLHOLE/ROREHOLE INFORMATION	(4) Pump, liner, screen, casing, & sealing material
Origina) Construction Date	Pump & Piping Removed? Yes No St Not Applicable
Monitoring Well	Lines(s) Rerocved? Yes No. 87 Not Applicable
Water Well Construction Report	Screen Removed? Yes \ No \ Not Applicable
Borehole / Drillhole is available, please attach.	Gasing Left in Place? Yes No
Continuation Types	Was Casing Cut Off Below Surface? Pres No
Dailled Dover (Sandpoint) Dug	Did Scaling Material Rise to Surface?
Other (Specify)	Did Marcrial Scale After 24 Hours? Yes No
Formation Type:	If Yes, War Hole Reropped? Yes No
Unconsolidated Formation Bedrock	Required Method of Flacing Scaling Material Conductor Pipe Oravity Conductor Pipe Pumped
Total Well Depth (ft.) 14 Caring Diameter (in.) Z!	
(From groundsurface) Casing Depth (ft.)	(Ecutonite Chips)
Lower Drillhole Diameter (in.)	Scaling Materials For monitoring wells and I Neat Cement Grout monitoring well borcholes only
Was Well Annular Space Grouted? Yes No Unknown	Sand-Coment (Concrete) Grout Bentonite Chips
If Yes, To What Depth? Peet	Concrete Clay-Sand Sharry (11 ib/gal. wt.)
Depth to Water (Foot) 3/5	Bentonite-Sand Shary " " Bentonite - Comen Groun
	Bentonite Chips Bentonite - Sand Siurry
(5) Marrial Used To Fill Well/Drillbole	From (FL) To (FL) Sacks Scalant (Circle Mix Ratio or Volume One) or Mud Weight
1.5	Sturface 36
But Coment Covort	· 6 14 6:1
6) Comments:	
7) Name of Person or Firm Doing Sealing Work Dute of Abandons	AART .
Badger State Drilling Co., Inc. 6-30-05	
Signatur Al Proper Denny Work Date Signed	Date Received Noted By
7/6/AC	
Telephone Number	Comments
360 Business Park Cr. (608) 877-9770 City, Slate, Zip Code	
Stoughton, WI 53589	

BAD	GER	STAT	E DR	ILL	INC	CO., INC.	She	et		Ĺ	Of,	7
STOUC FOR	HON	wisco	ONSIN Ce		R.	K Ferra	Jot	No.	3	88	۶	
						ELEV.	Bor	ing N	lo4	Ga	1-2	R_
GR	OUN	D V	Vhile dril	ling		6.0 Time after drilling			St	art 6	- 30	20
	ATEF	ß	elore cas				····				120	
		- A	iter cosii Ne on	Ī	T.,	Depth to cave-in	7/1		D)		K, u	
Semple Na.	Acisture		ubje.	Sample	Blow	VISUAL FIELD CLASSIFICATION AND REMARKS Wolgh! 40		Unconfined Strength	<u>\$</u>	Bloc	ws on	2 .8
Sen S	٤			88	lotal	7		Stren	Boulders	Casing Size	الع	Z S
		0/8	6/12	 	-	/12		~		5 3	Probe	HER
7	m	8	3	छ	10	Br F. Silty meddense South willay			-	3424	 	5
~~~		4	111				1					
2	m	3	12	10	10	Br 30H Clay ws, 14	_	175				
13	m	4	5	a	ਉ	5		. 76	-			
		3	Ž					- <del>y</del> 12		<u> </u>		
4	4)	0	/	14	/	Black it U. Loose Sitty Sandy						
	w	6	3	4	4							
		Ø	0			10 10	=					
Ce	M	3	2/	0	3	Br F. organic Stit V. Couse						
7	w	14	13	10	30	Br. F. m. Sand if 5 + mgravel Tense	_=					-
		- 12			7.0	Breezen Hund Clay w/5:14	月	45	-0			
									·			
				-	-	E.O.B 1415 Saturally 111	Ξ					
				-		1015		~				
						E.O.B 14.5 Setwell 14.0	耳					
	<del></del>		<b> </b>			(TO) FILL- 3.0	$\exists$					
			ļ	-	H		$\exists$					
						0 Fine	$\exists$					
				<u> </u>		-25 (T) Chios 1 - 25	=	i				
						10 M	$\exists$		$\dashv$			1
						D FT. 1.	$\exists$					
						D B A	=		-			
					$\vdash \vdash$	OChips 1:0 25 OFhigh  OChips 1:0  Concrete  20	日					
							=					
						<u>.                                    </u>	$\exists$		$\Box$			
		,	<u> </u>		$\vdash$		$\exists$		-4			
						عمد ع35 عمد ع35 عمد ع35 عمد ع35 عمد ع35 عمد ع35 عمد عثم عمد عثم عمد عثم عثم عثم عثم عثم عثم عثم عثم عثم عثم	극					
						, etc	$\exists$					
					$\vdash \vdash$		=		耳			
						<i>y</i> *	크	-	-			
						40 <b>4</b> 0			_			
				$\vdash \vdash$			$\exists$		$\Box$			
				$\vdash$	-1		#		$-\!\!\!\!+$	·		
						(5	_=		_			
			· ·			40	耳		$\Box$			
						:	3	<del>- ,  </del>	$\dashv$			
						PT 208	=		_			
1			[ ]		F	・ 、 しょ みんど)	$\exists$					

Ø 007

Env. Response	id Waste D Haz, Waste D W & Repair D Underground To	astewater []	MONITORING WI Form 4400-113A	ELL CONSTRUCTION Rov. 4.90
Recipient Name Park	Local Orid Location of Well  ft. US.		SW-2R	
<b>A</b> D // = *	Grid Origin Location LetLong		VIEW SERVICE VALUE OF THE	T DSB-Verticalist
Type of Well Water Table Observation Well 11	St. Plane ft. N.	ft. B.	Date Well Installed	7 / 100
Distance Well Is From Waste/Source Boundary	Section Location of Waste/Sou 1/4 of1/4 of Sec		Well Installed By: (Person	on's Name and Pinm)
Is Well A Point of Enforcement Std. Application?    Yes     No	Location of Well Relative to W  U Dipgradient s  d Downgradient n	aste/Source Sidegradient Not Known	R. Melion BSD	ber
A. Protective pipe, top elevation		1. Cap and lock? 2. Protective cover		A La D No
	L MSL	a. Inside diamen		90 in
· · · · · · · · · · · · · · · · · · ·	MSL	b. Length:		4.50
D. Surface seal, bottom ft. MSL or  12 USCS classification of soil near screen:				Steel <b>€</b> }—04 — Other □
GP GM GC GW GSW GSW GSW GSW GSW GSW GSW GSW GSW	P D X	d. Additional pr	otection? )e:	□ Ye □ No
SM D SC D ML D MH D CL D C	H D III	3. Surface seal:	E	Bentonite D 30
13. Sieve analysis attached?   Yes   N	6			Concacte 01
14. Drilling method used: Rotary 5		4. Matcrial botween	n well casing and protection	Other D
Hollow Stem Auger—27 4		·		Bentonite □ 30
			Annul	ar space scal []
15. Drilling fluid used: Water 12 02 Air 12 0 Drilling Mud 12 03 None 15 9	1 100 100	5. Annular space se	ul: a Granul	ler Benionite D 33
			mud weight Bentonia	
16. Drilling additives used? D Yes N	·   📓 🕷		mud weight Ben mile Bentonite <	
Describe		eFt	volume added for any o	of the above
17. Source of water (attach analysis):		f. How installed		Tremic   01 mie pumped   02
				Gravity 🛘 08
E. Bentonite scal, top ft. MSL or		6. Bentomite seal:  b. D14 in 4	a Bernson [978 in 🗆 1/2 in Bernson	nite granules [] 33 Onite pellets [] 32
F. Fine sand top ft. MSL or	a.	/	al: Majorfactorer, produ	Other D
G. Filter pack, top ft. MSL or	O ft.	b. Volume adde	14000	· · · · · · · · · · · · · · · · · · ·
H. Screen joint, top ft. MSL or	(On )		ish Manufacturer, produ	ot name and mesh size
I. Well bottom ft. MSL or 14	10 h	<ul><li>b. Volume adilor</li><li>9. Well casing:</li></ul>	Flush threaded PVC po	
I. Filter pack, bottom ft. MSL or /S	10 m		Flush threaded PVC so	•
K. Borehole, bottom ft. MSL or	Otc	10. Screen material: a. Screen type:	Seh 40	Pactory con 1
L. Borehole, diameter		<u> </u>		innous slot  01
M. O.D. well casing 238 in.		b. Manufacourer c. Slot size:	monople	0.010m
N. ID. well cosing ZO in.		d Slotted length		None-10 T4
I hereby centify that the information on this	form is true and correct	to the hest of my ka-	wiedee	Other []
Signature M	$R_{-1}$	-11 N		
Piense complete both sides of this form and return to the and ch. NR 141, Wis. Ad. Code. In accordance with ci	e appropriate DNR office listo		ling INC	2-2120 W. C.
and ch. NR 141. Wis. Ad. Code. In accordance with ch \$5000 for each day of violation. In accordance with ch day of violation. NOTE: Shaded areas are for DNR use	147 Wir Cour failure an El-	THE TOTAL MAN LEWIS ME & M.	or terture of not less than !	\$10, nor more than
		TO THE WALL WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE PARTY WITH THE	nu confucirit tollis	NOTICE OF ROUT

**12** 008

Scan of Wisconsin Department of Natural Resources

MONITORING WELL DEVELOPMENT Form 4400-113B Roy, 4.90

		ste □ Westewater □ rground Tanks □ Otl		
Facility/Project Name Park Project Name Park Park Park Park Park Park Park Park	County Name	ne bego	Well Name	P
Facility License, Permit or Mordioning Number	County Code	AND DESCRIPTION		DODDINE PROGRAMMA SANDA
1. Can this well be purged dry?	Yes D No	11. Depth to Water	Before Development	After Development
surged with builer and pumped	41	(from top of well casing)	· _20.00	ft.
surged with block and bailed  surged with block and pumped  surged with block bailed and pumped	70	Date	b. m m d d y y  c. 9 20 pm	* *
compressed air   bailed only   pumped only	20 10 51	Tunc 12. Sædiment in well	<b>b</b> 0	1/2: 00 p.m.
Other	50	bottom 13. Water clarity	Clear D 10 Turbid St 15	Clear [ 20 Turbid [ 25
	7 Onin. 13. Pr		Describe) Black	Describe) Black
• • •	-12-15 in			
6. Volume of water in filter pack and well casing	gal.			
7. Volume of water removed from well	CO. Ogal	Fill in if drilling fluid	ds were used and well is a	t solid waste facility:
8. Volume of water added (if my)	£&].	solids		
9. Source of water added		15. COD	mg/l	mg/l
10. Analysis performed on water added?	Yes 🗓 No			I
16. Additional comments on development:  Been held Dry.	Three	Times		
Well developed by: Person's Name and Firm		I hereby certify that of my knowledge.	the above information is to	the first correct to the best
Nome: Alex Pranner	-	Signature:	block (	2
Firm: (BSD)	-	Print Initials:		<b>N</b>
		Firm:	idger >taxe	Drilling, Iv.

NOTE: Shaded areas are for DNR use only. See instructions for more information including a list of county codes.



Inspection Services

920-236-5049) (Fax 920-236-5106)

P O Box 1130

Oshkosh WI 54902-1130

August 30, 2004

Paul Timm STS Consultants 558 N Main St. Oshkosh, WI 54901

Re: Groundwater discharge to sanitary sewer from Wisconsin Public Service former Gas Manufacturing Plant in the City of Oshkosh.

Dear Mr. Timm,

Your request for discharge of impacted groundwater to the sanitary sewer has been reviewed and approved for the dates of August 30 through September 20, 2004. The fee for this discharge is waived because the site is a public works project. This discharge is however, regulated by the sewer use ordinance for the City of Oshkosh. The discharge must meet the limitations contained in that ordinance as discussed over the phone. Any future discharge planned for this site must be conducted under a separate letter of agreement.

If you have questions concerning this agreement, feel free to call. (236-5049)

Respectfully,

Richard Wood

Plumbing Inspector / Pretreatment Control Coordinator



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286

Customer: Account Number: Invoice Date: invoice Number:

Page 2 of 4 CITY OF OSHKOSH 293-0000496-2293-9 04/01/2005

0003635-2293-9 Due Upon Receipt 00004-67203-03006

Due Date:	,
WM ezPay A	ccount ID:

03/15/05 80	ation: 293 496 City Of Oshkosh 305 Ceape ket Description	Quantity			
00/13/03 80		Guaranty	. U/M	Rate	Amount
	Industrial tons	17.97	TON	40.7-	
	Wi generator tax/fees Ticket total	,	ION	13.70	246.
03/15/05 80	2317 Veh#				68.2
	Industrial tons				314.4
	Wi generator tax/fees	20.25	TON	12 70	
	Ticket total			13.70	277.4
03/15/05 802	318 Veh#.				76.9
	Industrial tons				354.3
	Wi generator tax/fees	21.93	TON	13.70	300,4
00145165	Ticket total			_	83,3
03/15/05 802					383,7
	Industrial tons	20 ro			000,7
	Wi generator tax/fees	20.56	TON	13.70	281.6
N3/45/05 000	Ticket total				78.13
03/15/05 802					359.80
	Industrial tons	19.37	TON		
•	Wi generator tax/fees Ticket total	13.31	ION	13.70	265.37
3/15/05 802:	337 Veh#				73.61
	Industrial tons				338.98
	Wi generator tax/fees	20.72	TON	13.70	
	Ticket total			13.70	283.86
3/15/05 8023	40 Veh#:			•	78.74
	Industrial tons				362.60
	Wi generator tax/fees	19.85	TON	13.70	271.95
3/1E/05 0000	Ticket total				75.43
3/15/05 8023					347.38
	Industrial tons	19.38	TON		
	Wi generator tax/fees Ticket tota!	13.35	TON	13.70	265.51
8/15/05 8023	58 Veh#-				73.64
	Industrial tons				339.15
	Wi generator tax/fees	19.74	TON	12.70	
	Ticket total			13.70	270.44
/15/05 80236	i1 Veh#:				75.01
	Industrial tons				345.45
	Wi generator tax/fees	20.64	TON	13.70	282.77
14 E 10 E	Ticket total			,, ,	78.43
/15/05 80236					361.20
	Industrial tons	21.07	TON		1.20
	Wi generator tax/fees Ticket total	21.07	TON	13.70	288.66
15/05 80238	Veh#:				80.07
00200	Industrial tons				368.73
	Wi generator tax/fees	20.92	TON	45	
	Ticket total		1014	13.70	286.60
15/05 80238	2 Veh#:				79.50
	Industrial tons				366.10
	Wi generator tax/fees	21.53	TON	13.70	204.55
15/05 555	Ticket total				294.96
15/05 802385					81.81 376.77
	Industrial tons	04.64			3/0,//
	Wi generator tax/fees	21_01	TON	13.70	287.84
5/05 802387	licket total				79.84
-,00 002387					367.68
	Industrial tons	21,71	TON		
		A 1, 1 1	1 OIN	13.70	297.43

	ocation, 293-498 Gity Of Oshikosh Ticket Description				
	Wi generator tax/fees	Quant	ty U/M	Pate	Amount
	Ticket total				82.:
03/15/05	802407 Veh#:				379,
	Industrial tons				5/9,
	Wi generator tax/fees	19.4	46 TON	13.70	266.6
	Ticket total				73.9
03/15/05	802408 Veh#:				340.5
	Industrial tons		. ===		040.
	Wi generator tax/fees	21.4	7 TON	13.70	294.1
	Ticket total			. •	81.5
03/15/05	802409 Veh#:				375.7
	Industrial tons				575.7
	Wi generator tax/fees	20.5	D TON	13.70	280.8
	Ticket total				77.9
03/15/05	802410 Veh#:				358.7
	Industrial tons				556.7
	Wi generator tax/fees	24.0	5 TON	13.70	329.4
	Ticket total				91.3
03/21/05	802854 Veh#:	•			420.88
	Industrial tons				, 720.00
	Wi generator tax/fees	19.5	3 TON	13.70	267.56
	Ticket total				74.21
13/21/05	302855 Veh#:				341.77
	Industrial tons				341.11
	Wi generator tax/fees	20.49	TON	13.70	280.71
	Ticket total			•	77.86
3/21/05 8	102857. Veh#:				358.57
	Industrial tons				000.57
	Wi generator tax/fees	19.94	TON	13.70	273.18
204105 -	Ticket total				75.77
3/21/05 8	02858 Veh#:				348.95
	Industrial tons	40.40			- 10.00
	Wi generator tax/fees	16.46	TON	13.70	225.50
2/04/05 6	Ticket total				62.55
01211/U5 B	02861 Veh#:				288.05
	Industrial tons	40.40			
	Wi generator tax/fees	19.46	TON	13.70	266,60
173110E B	Ticket total				73.95
#2 NO5 80	02871 Veh#:		•		340.55
	Industrial tons	10.45			
	Wi generator tax/fees	18.15	TON	13,70	248.66
/21/0E 00	Ticket total	•	•		68.97
12 1/U3 BL	2873 Veh#:		•		317.63
	Industrial tons	10.00	7011		
	Wi generator tax/fees	19.26	TON	13.70	263.86
/21/05 80	Ticket total				73,19
~ 1/00 00	2875 Veh#;				337.05
	Industrial tons	20.58	TON		_
	Wi generator tax/fees	20.36	TON	13.70	281.95
'21/05 an	Ticket total 2880 Veh#:				78.20
					360.15
	Industrial tons	21.00	TON	40	
	Wi generator tax/fees	21.00	TON .	13.70	287.70
21/05 802	Ticket total 2881 Veh#:				79.80
	Industrial tons				367.50
	Wi paparator to 4	15.38	TON		
	Wi generator tax/fees Ticket total	,5,56	ION	13.70	210,71
21/05 802	Licket total				58.44



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286 Account Number: invoice Date:

293-0000496-2293-9 04/01/2005

Invoice Number:

0003635-2293-9

Due Date: WM ezPay Account ID:

Due Upon Receipt 00004-67203-03006

Date	Ticket	nii 293 498 City Of Osnikoshi 305 Geaj Description	Quantity			
		Industrial tons	18.06	U/M	Rate	Amount
		Wi generator tax/fees	10.00	TON	13.70	247.42
		Ticket total	•			68.63
03/21/05	802890	) Veh#:				316.05
		Industrial tons	20.87	TON		
		Wi generator tax/fees	20.87	TON	13.70	285.92
		Ticket total				79.31
3/21/05	802892	? Veh#;				365,23
		Industrial tons	10.60	700		
		Wi generator tax/fees	19.66	TON	13.70	269.34
		Ticket total	•			74.71
3/21/05	802901	Veh#;				344.05
		Industrial tons	22.21	TON		
		Wi generator tax/fees	22.21	TON	13.70	304,28
	٠.	Ticket total				84.40
3/21/05	802902					388.68
		Industrial tons	15.84	TOU		
•		Wi generator tax/fees	13.04	TON	13.70	217.01
		Ticket total			•	60.19
3/21/05	802914					277.20
		Industrial tons	8.51	TON		
		Wi generator tax/fees	0.3)	TON	13.70	116.59
		Ticket total				32.34
3/21/05	802915					148.93
		Industrial tons	18.13	TON		
		Wi generator tax/fees	10,13	TON	13,70	248.38
		Ticket total				68.89
		Total Current Charges		<del></del>		317.27
		and dea				
		•				12,349.09

Payments Received Details 12/09/2002 Payment - thank you 5,128.20
Total Payments Received

5,128.20-



**Total Current Charges** 

## INVOICE

**VALLEY TRAIL RECYCLE & DISPOSAL FACILITY** PO BOX 286 BERLIN WI 54923-0286

(800) 504-1062 (920) 361-4995 (920) 361-4663 FAX

Customer: Account Number: Invoice Date:

Invoice Number:

Due Date:

59,630.26

CITY OF OSHKOSI 293-0000496-2293-

05/01/200

0003667-2293-Due Upon Receip 00004-67203-0300

**Current Invoice Amount** 

**Total Amount Due** 

59,630.26

WM ezPay Account ID:

71 979 35

Account Summary	
Description	Amount
Previous Balance	12,349.09
Total Credits and Adjustments	0.00
Total Payments Received	0.00
Total Current Charges	59,630.26
Total Amount Due	71,979.35
Total Amount Past Due	12,349.09
Santa Pera Paga April niscom 200k	

Description	Amount
Landfill	59,630.26

Please pay total amount due. Thank you for your business. THANK YOU FOR CHOOSING WASTE MANAGEMENT!!

Want to pay this bill on-line? Go to www.wm.com to learn more about WMezPay and make a convenient, secure

	XQVA430	Civersit		- cvar Pu	- logilie
59,630.26	12,349.09	0.00	0.00	0.00	71,979.35

We keep IIIII WASOARI. clean.

NASCAR' is a registered trademark of the National Association for Stock Car Auto Racing, Inc.

**VALLEY TRAIL RECYCLE & DISPOSAL FACILITY** PO BOX 286

BERLIN WI 54923-0286

(800) 504-1062 (920) 361-4995 (920) 361-4663 FAX

Winner Keep America Beautiful Vision Award for civic, social and environmental stewardship

Payment Coupon

**Upon Receipt** 

Please detach and enclose this portion with your payment - do not send cash.

_Invoice Date Your invoice Number 05/01/2005 0003667-2293-2

Total Due Amount Paid 71,979.35

Waste Management introduces WM ezPay!! Pay your WM bill on-line at www.wm.com.

Paying by credit card? Please fill out the revers side of the Payment Coupon.

### 22932930000496000036670000596302600007197935 7

0000082 NM

CP4 12293L42

CITY OF OSHKOSH **305 CEAPE STREET OSHKOSH WI 54901** 

Check Payable To:

Mallimithtallimillimithalididitalidid Please make VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 9001054 Louisville, KY 40290-1054

Your-Account Number

293-0000496-2293-9



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286 Customer: Account Number:

Invoice Date: Invoice Number: Due Date:

WM ezPay Account ID:

CITY OF OSHKOS 293-0000496-2293-05/01/200 0003667-2293-Due Upon Recei

00004-67203-030

Date	1 ICKE1	Description		O	11	-	
04/06/05	Ticket 804545	Description Vob#		Quantity	U/M	Rate	Amount
04/00/03	004343	Industrial tons		20.70	TON		
		Wi generator tax/fees		20.70	TON	13.70	283.59
		Ticket total					78.66
04/06/05	804546						362.25
04/00/03	004040	Industrial tons		40.07	7011		
		Wi generator tax/fees		19.87	TON	13.70	272.22
		Ticket total					75.51
04/06/05	804550						347.73
04/00/03	004330	Industrial tons		40.40	TON		
		Wi generator tax/fees		18.19	TON	13.70	249.20
		Ticket total				•	69.12
04/06/05	804551						318.32
04/00/03	004001	Industrial tons		40.00	TON		
		Wi generator tax/fees		19.00	TON	13.70	260.30
		Ticket total					72.20
04/06/05	804553						332.50
04/00/03	004333	Industrial tons		40.04	TON		
		Wi generator tax/fees		19.94	TON	13.70	273.18
		Ticket total					75.77
04/06/05	804566					$\mathcal{F}_{i} = \mathcal{F}_{i}$	348.95
0-17-0-07-0-0	007000	Industrial tons		19.83	TON	40.70	
		Wi generator tax/fees		19.03	TON	13.70	271.67
		Ticket total					75.35
04/06/05	804569						347.02
	00 7000	Industrial tons		19.87	TON	13.70	272.00
		Wi generator tax/fees		19.07	1014	13.70	272.22
		Ticket total					75.51
04/06/05	804571						347.73
		Industrial tons		20.22	TON	13.70	277.01
		Wi generator tax/fees		20.22	, 011	15.70	76.84
		Ticket total					353.85
04/06/05	804573						333.03
•		Industrial tons		19.87	TON	13.70	272. <b>2</b> 2
		Wi generator tax/fees				10.70	75.51
		Ticket total					347.73
04/06/05	804574	Veh#:					017.70
		Industrial tons		24.83	TON	13.70	340.17
		Wi generator tax/fees					94.35
		Ticket total					434.52
04/06/05	804581	Veh#:				% <del>-</del> ,	-
		Industrial tons	,	22.03	TON	13.70	301.81
		Wi generator tax/fees					83.71
		Ticket total					385.52
04/06/05	804586						
		Industrial tons		20.49	TON	13.70	280.71
		Wi generator tax/fees	ů.				77. <b>8</b> 6
: <b>.</b>		Ticket total		•			358.57
04/06/05	804593						
		Industrial tons		21.27	TON	13,70	291.40
		Wi generator tax/fees					80.83
		Ticket total					372.23
04/06/05	804600						
		Industrial tons		21.78	TON	13.70	298.39
		Wi generator tax/fees					82.76
04/00/05	004005	Ticket total					381.15
	RUNKUK	Veh#:					
04/06/05	004003	Industrial tons		20.86	TON	13.70	285.78



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286 Account Number: Invoice Date:

Invoice Number: Due Date:

05/01/20C 0003667-2293-Due Upon Receil 00004-67203-030

293-0000496-2293-

Due Date: WM ezPay Account ID:

	Ticket	Decorption	≝305 Seape Sheet⊞Sankoah W≓52904			
Date	Ticket	Description	Quantity	U/M	Rate	Amount
		Industrial tons	19.68	TON	13.70	269.62
		Wi generator tax/fees				74.78
04100105	004005	Ticket total				344.40
04/06/05	804665					
		Industrial tons	20.49	TON	13.70	280.71
		Wi generator tax/fees				77:86
0.4100101	004000	Ticket total				358.57
04/06/05	804666					
		Industrial tons	19.87	TON	13.70	272.22
		Wi generator tax/fees				75.51
DAIDCIDE	004667	Ticket total				347.73
04/06/05	804667					*
		Industrial tons	18.43	TON	13.70	252.49
		Wi generator tax/fees				70.03
04107107	004704	Ticket total				322.52
04/07/05	804704					
		Industrial tons	20.17	TON	13.70	276.33
		Wi generator tax/fees		-		76.65
04/07/05	804708	Ticket total				352.98
04/07/05	004700	ven#. Industrial tons	.00.00			
		Wi generator tax/fees	20.22	TON	13.70	277.01
		Ticket total				76.84
04/07/05	804709					353.85
04/01/00	007100	Industrial tons	20.60	TON	10 70	
		Wi generator tax/fees	20.60	TON	13.70	282.22
	•	Ticket total	·			78.28
04/07/05	804711					360.50
,		Industrial tons	19.94	TON	12 70	070.40
		Wi generator tax/fees	15.54	ION	13.70	273. <b>1</b> 8 75.77
		Ticket total				348.95
04/07/05	804712	Veh#:				340.93
		Industrial tons	18.46	TON	13.70	252.90
		Wi generator tax/fees			10.70	70.15
		Ticket total				323.05
04/07/05	804726	Veh#:				020.00
•	-	Industrial tons	19.39	TON	13.70	265.64
•		Wi generator tax/fees				73.68
		Ticket total				339.32
04/07/05	804727					
		Industrial tons	19.15	TON	13.70	262. <b>3</b> 6
		Wi generator tax/fees				72.77
		Ticket total				335.13
04/07/05	804728					
		Industrial tons	18.28	TON	13.70	250.44
		Wi generator tax/fees				69.46
	004700	Ticket total				319.90
04/07/05	604729		1			
		Industrial tons	18.80	TON	13.70	257. <b>5</b> 6
		Wi generator tax/fees Ticket total				71.44
04/07/05	804722			-		329.00
04/07/03	004132	Industrial tons				
			20.12	TON	13.70	275.64
		Wi generator tax/fees Ticket total				76.46
04/07/05	804751					352.10
J-7,01700	- 507101	Industrial tons	20.00	TON	46 ===	0-0 4-
		Wi generator tax/fees	20.69	TON	13.70	283.45
		Ticket total				78.62
		::errer retidl				362.07



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286

BERLIN WI 54923-0286

Account Number: Invoice Date:

Invoice Number: Due Date:

WM ezPay Account ID:

293-0000496-2293-05/01/200

0003667-2293-Due Upon Receit 00004-67203-030(

				VV IVI E	ezPay Accor	unt ID: 000	)04-67203-030
	Location		n=4054Ceane-Street=051kos	ii:Wii:54901			
Date	Ticket	Description		Quantity	U/M	· Rate	Amount
04/07/05	904922	Ticket total					334.07
04/07/05	804822	ven#. Industrial tons		10.00			
		Wi generator tax/fees		19.20	TON	13.70	263.04
		Ticket total					72.96
04/07/05	804823					•	336.00
		Industrial tons		18.40	TON	40.70	
		Wi generator tax/fees	•	10.40	1011	13,70	252.08
		Ticket total					69.92
04/07/05	804824						322.00
		Industrial tons		18.47	TON	13.70	252.54
		Wi generator tax/fees		, ,	1011	15.10	253.04
		Ticket total					70. <b>1</b> 9 323.23
04/07/05	804828	Veh#:					323.23
		Industrial tons		18.75	TON	13.70	256.88
		Wi generator tax/fees					71.25
		Ticket total					328.13
04/07/05 804829	- *					020.10	
		Industrial tons		18.07	TON	13.70	247.56
		Wi generator tax/fees					68.67
04107105	004027	Ticket total					316.23
04/07/05	804837						
		Industrial tons Wi generator tax/fees		20.34	TON	13,70	278.66
		Ticket total			•		77.29
04/07/05	804841						355. <b>9</b> 5
0 1/01/00	00 10 11	Industrial tons		18.74	TON	10.75	
		Wi generator tax/fees		10.74	TON	13.70	256.74
		Ticket total					71.21
04/07/05	804842						327.95
		Industrial tons		19.26	TON	13.70	263,86
•		Wi generator tax/fees		10.20	7011	15.70	73.19
		Ticket total					337.05
04/07/05	804845	Veh#:					001.00
		Industrial tons		18.65	TON	13.70	255.51
		Wi generator tax/fees					70.87
0.4107105		Ticket total					326.38
04/07/05	804849						
		Industrial tons		18.95	TON	13.70	259.62
		Wi generator tax/fees Ticket total					72.01
04/07/05	804850		*				331.63
04/0//03	004000	Industrial tons		00.70			
		Wi generator tax/fees		20.70	TON	13.70	283.59
		Ticket total					78.66
04/08/05	804886						362.25
		Industrial tons		19.15	TON	40.70	000.00
		Wi generator tax/fees		19.15	TON	13.70	262.36
		Ticket total					72. <b>7</b> 7 335.13
04/08/05	804888						333, 13
		Industrial tons		19.19	TON	13.70	262.90
		Wi generator tax/fees			, ,,,	, 10.76	72.92
		Ticket total	·				335.82
04/08/05	804912						000.02
		Industrial tons		22.26	TON	13.70	304.96
		Wi generator tax/fees					84.59
04/00/05	004047	Ticket total					389.55
04/08/05	804917						
		Industrial tons		22.29	TON	13.70	305.37



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY

PO BOX 286 BERLIN WI 54923-0286 Account Number: Invoice Date:

Invoice Number: Due Date:

WM ezPay Account ID:

293-0000496-2293 05/01/20(

0003667-2293 Due Upon Recei 00004-67203-030

Date	Ticket	293-496 City Of Oshkosh: 305 Go Description				
Date	TICKEL	Industrial tons	Quantity	U/M	Rate	Amount
			19.74	TON	13.70	270.44
		Wi generator tax/fees Ticket total				75.01
04/09/05	805078					345.45
04/09/05	603076		40.04	<b>T</b> 0.11	·	
		Industrial tons	16.84	TON	13.70	230.71
		Wi generator tax/fees				63.99
0.410010E	005000	Ticket total				294.70
04/09/05	805080					
		Industrial tons	18.44	TON	13.70	252.63
		Wi generator tax/fees	•			70.07
O A IO D IO E	005004	Ticket total				322.70
04/09/05	805081		40.00			
		Industrial tons	19.03	TON	13.70	260.71
		Wi generator tax/fees	•			72.31
04100105	005000	Ticket total				333.02
04/09/05	805083					
		Industrial tons	18.99	TON	13.70	260.16
		Wi generator tax/fees				72.18
04100105	005004	Ticket total				332.32
04/09/05	805084					
		Industrial tons	18.06	TON	13.70	247.42
		Wi generator tax/fees				68.63
n a innine	005000	Ticket total				316.05
04/09/05	805086		40.07			
		Industrial tons	19.37	TON	13.70	265.37
		Wi generator tax/fees			•	73.61
04/09/05	005000	Ticket total				338.98
04/09/05	805092		00754			
		Industrial tons	20.51	TON	13.70	280.99
		Wi generator tax/fees Ticket total				77.94
04/09/05	805094					358.93
04/03/03	000004	Industrial tons	40.07	TON	40.70	88.88
		Wi generator tax/fees	19.27	TON	13.70	264.00
		Ticket total				73.23
04/09/05	805095					337.23
0 1100100	000000	Industrial tons	18.15	TON	40.70	0.40.00
		Wi generator tax/fees	16.13	TON	13.70	248.66
		Ticket total				68.97
04/09/05	805098					317.63
	000000	Industrial tons	24.47	TON	:40.70	225.0
		Wi generator tax/fees	24.47	1011	13.70	335.24
		Ticket total				92.99 428.23
04/09/05	805100					420.23
	000,00	Industrial tons	18.76	TON	13.70	257.01
		Wi generator tax/fees	10.70	1011	13.70	71.29
		Ticket total				328.30
04/09/05	805101					320.30
		Industrial tons	18.17	TON	13.70	248.93
		Wi generator tax/fees	10.17	1011	15.70	69.05
		Ticket total				317.98
04/09/05	805102					317.50
		Industrial tons	18.07	TON	13.70	247.56
		Wi generator tax/fees	10.07	. 0.14	10.70	68.67
		Ticket total				316.23
04/09/05	805105					510.20
		Industrial tons	20.94	TON	13.70	286.88
	•		20.04	1 014	10.10	
		Wi generator tax/fees				70 57
		Wi generator tax/fees Ticket total				79.57 366.45



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286 Account Number: Invoice Date:

Invoice Number: Due Date:

WM ezPay Account ID:

293-0000496-2293-05/01/200

0003667-2293-Due Upon Recei_l 00004-67203-030-

		298-49816 ity OlfOslikosh 305 Ge				
Date	Ticket	Description	Quantity	U/M	Rate	Amount
04/09/05	805148	Ticket total				327.07
04/09/05	003140	Industrial tons	20.96	TON	40.70	207.15
		Wi generator tax/fees	20.96	TON	13.70	287.15
		Ticket total			•	79.65 366.80
04/09/05	805149					300.60
		Industrial tons	20.06	TON	13.70	274.82
		Wi generator tax/fees				76.23
		Ticket total			* ** ** ** ** ** ** ** ** ** ** ** ** *	351.05
04/09/05	805150					
		Industrial tons	17.64	TON	13.70	241.67
		Wi generator tax/fees Ticket total				67.03
04/09/05	805153					308.70
	000100	Industrial tons	19.68	TON	13.70	269.62
		Wi generator tax/fees	10.00	, 0,1	15.70	74.78
		Ticket total				344.40
04/09/05	805154	Veh#:				011.10
		Industrial tons	16.10	TON	13.70	220.57
		Wi generator tax/fees				61,18
DATODIOE	005456	Ticket total				281.75
04/09/05	805156	Industrial tons	21.48	TON	40.70	001.00
		Wi generator tax/fees	21.40	TON	13.70	294.28
		Ticket total				81.62 375.90
04/09/05	805157					373.90
		Industrial tons	23.28	TON	13.70	318.94
		Wi generator tax/fees				88.46
		Ticket total				407.40
04/09/05	805158			<b>T</b> 011		
		Industrial tons Wi generator tax/fees	21.33	TON	13.70	292.22
		Ticket total				81.05
04/09/05	805168		•			373.27
		Industrial tons	21.71	TON	13.70	297.43
		Wi generator tax/fees	·			82.50
		Ticket total		,		379.93
04/09/05	805169					
		Industrial tons	19.26	TON	13.70	263.86
_		Wi generator tax/fees Ticket total				73.19
04/12/05	805332					337. <b>0</b> 5
0 11 12/00	000002	Industrial tons	19.04	TON	13.70	260.85
		Wi generator tax/fees	10.04	1014	,1 <b>3.70</b>	72.35
		Ticket total				333.20
04/12/05	805334				•	
14		Industrial tons	20.60	TON	13.70	282.22
		Wi generator tax/fees				78.28
04/40/05	005000	Ticket total			i i	360.50
04/12/05	805336	ven#. Industrial tons	24.04	TON	40.70	
		Wi generator tax/fees	21.84	TON	13.70	299.21 82.99
		Ticket total			•	382.20
04/12/05	805337					002.20
		Industrial tons	20.63	TON	13.70	282.63
		Wi generator tax/fees				78.39
04440155	0055==	Ticket total				361.02
04/12/05	805338			Man and a -		
		Industrial tons	21.44	TON	13.70	293.73



VALLEY TRAIL RECYCLE & DISPOSAL FACILITY PO BOX 286 BERLIN WI 54923-0286 Account Number: Invoice Date: Invoice Number: 293-0000496-2293-05/01/200 0003667-2293-Due Upon Recei

00004-67203-030

Due Date: WM ezPay Account ID:

			ish≕305 Ceape Shreef-Oshkesii Wi 5				
Date	Ticket	Description	Qua		U/M	Rate	Amount
		Industrial tons	2	1.42	TON	13.70	293.45
		Wi generator tax/fees					81.40
04/12/05	805442	Ticket total					374.85
04/12/03	003442	Industrial tons		4.00	TON		
		Wi generator tax/fees	2	1.69	TON	13.70	297.15
		Ticket total				•	82.42
04/12/05	805446						379.57
		Industrial tons	2	1.24	TON	13.70	900.00
		Wi generator tax/fees	2	1.47	ION	13.70	290.99
		Ticket total				4,	80.71
04/12/05	805466						371.70
		Industrial tons	1	9.81	TON	13.70	271.40
		Wi generator tax/fees	·		. 0.1	15.70	75.28
		Ticket total					346.68
04/12/05	805467	Veh#:					040.00
		Industrial tons	2	1.72	TON	13.70	297.56
		Wi generator tax/fees					82.54
		Ticket total					380.10
04/12/05	805471						-,
		Industrial tons	1	8.57	TON	13.70	254.41
		Wi generator tax/fees					70.57
04/12/05	805473	Ticket total					324.98
04/12/03	603473	Industrial tons			Tou		
		Wi generator tax/fees	2	1.44	TON	13.70	293.73
		Ticket total					81.47
04/20/05	806281						375.20
		Industrial tons	1	9.61	TON	13.70	268.66
		Wi generator tax/fees	·	0.01	1011	15.70	74.52
		Ticket total					343.18
04/20/05	806282	Veh#:					040.10
		Industrial tons	1.	5.03	TON	<b>1</b> 3.70	205.91
		Wi generator tax/fees					57.11
0.4/00/05	000000	Ticket total	•				263.02
04/20/05	806283						
		Industrial tons	1	8.58	TON	13.70	254.55
•		Wi generator tax/fees Ticket total					70.60
04/20/05	806286						325.15
04/20/00	000200	Industrial tons		4.00	TON	40.70	
		Wi generator tax/fees	2	1.66	TON	13.70	296.74
		Ticket total					82.31 379.05
04/20/05	806299						3/9.03
		Industrial tons	1	9.86	TON	13.70	272.08
		Wi generator tax/fees		-,	.•	10.70	75.47
		Ticket total					347.55
04/20/05	806300						
		Industrial tons	· 1	5.87	TON	13.70	217.42
		Wi generator tax/fees				,	60.31
04/00/05	000004	Ticket total					277.73
04/20/05	806301					i	
•		Industrial tons	1	6.24	TON	13.70	222.49
		Wi generator tax/fees Ticket total					61.71
04/20/05	806304						284.20
J 11,20700	555557	Industrial tons	2	2.97	TON	40.70	244 60
		Wi generator tax/fees	. 2	Z.31	TON	13.70	314.69 87.29
		Ticket total					401.29
							701.50



Ditu	minous r	leid Compaction S							
Project Name: River			verside Park			<del>-</del> -	Project No.	.: 26538D	
Locat	tion <u>:</u>	O ₅	shkosh, WI			_	Record No.	·:	
	· ·		Method of	Field D	ensity Me	easureme	ent		
		Field Cores		ar Method		]			
Test No.	Date	Location	Lift No. or Elev.	Mtl. Mark	Marshall Density	"D" Theor. Density	In Place Density	Percent* Compaction	Comments
1	11/12/04	See Diagram	Binder		160.0		145.6	91.0%	
_2	11/12/04	See Diagram	Binder		160.0		148.0	92.5%	242F
3	11/12/04	See Diagram	Binder		160.0		143.4	89.6%	<b>4</b> 1 - 1
4	11/12/04	See Diagram	Binder		160.0		145.0	90.6%	
5	11/12/04	See Diagram	Binder		160.0		140.5	87.8%	260F
6	11/12/04	See Diagram	Binder		160.0		146.9	91.8%	280F
7	11/12/04	See Diagram	Binder		160.0		146.5	91.6%	Retest 5
8	11/12/04	See Diagram	Binder		160.0		142.0	88.8%	2.5" Thick
9	11/12/04	See Diagram	Binder		160.0		148.3	92.7%	Retest 8
10	11/12/04	See Diagram	Binder		160.0		149.9	93.7%	2" Thick
11	11/12/04	See Diagram	Binder		160.0		145.1	90.7%	Z IIIUN
12	11/12/04	See Diagram	Binder		160.0		145.3	90.8%	
13	11/12/04	See Diagram	Binder		160.0		147.7	92.3%	250F
14	11/12/04	See Diagram	Binder		160.0		146.3	91.4%	Z00F
15	11/12/04	See Diagram	Binder		160.0		144.0	90.0%	
16	11/12/04	See Diagram	Binder		160.0		145.3	90.8%	240F
17	11/12/04	See Diagram	Binder		160.0		143.1	89.4%	2401
18	11/12/04	See Diagram	Binder		160.0		147.4	92.1%	
19	11/12/04	See Diagram	Binder		160.0		144.9	90.6%	2.5" Thick
20	11/12/04	See Diagram	Binder		160.0		144.9	90.6%	
21	11/12/04	See Diagram	Binder		160.0		145.6	91.0%	293F
22	11/12/04	See Diagram	Binder		160.0		143.0	89.5%	230F
23	05/23/05	See Diagram	Surface		150.7		148.1	<del></del>	2.5" Thick
24	05/23/05	See Diagram	Surface		150.7			98.3%	280F
25	05/23/05	See Diagram	Surface		150.7		147.4	97.8%	
			Odnace	ļ!	150.7		144.5	95.9%	

Percent Compaction Based on Marshall Density

75 Blows

50 Blows - Theoretical Density

☐Big "D"

4	

Ditu	minous F	riela Compaction S	Jummary						
Proje	ect Name:	Riv	verside Park			-	Project No.	.: 26538D	
Locat	ilon <u>:</u>	Os	shkosh, WI			-	Record No.	··	
		:	Method of	Field D	ensity Me	easureme	nt		
		Field Cores							
Test No.	Date	Location	Lift No. or Elev.	Mtl. Mark	Marshall Density	"D" Theor. Density	In Place Density	Percent* Compaction	Comments
51	05/24/05	See Diagram	Surface		150.7		144.3	95.8%	260F
52	05/24/05	See Diagram	Surface		150.7		143.2	95.0%	
53	05/24/05	See Diagram	Surface		150.7		145.2	96.4%	
54	05/24/05	See Diagram	Surface		150.7		144.7	96.0%	
55	05/24/05	See Diagram	Surface		150.7		142.4	94.5%	
56	05/24/05	See Diagram	Surface		150.7		143.6	95.3%	
57	05/24/05	See Diagram	Surface		150.7		145.3	96.4%	
58	05/24/05	See Diagram	Surface		150.7		142.2	94.4%	294F
59	05/24/05	See Diagram	Surface		150.7		144.7	96.0%	4011
60	05/24/05	See Diagram	Surface		150.7		145.3	96.4%	
61	05/24/05	See Diagram	Surface		150.7		145.7	96.7%	
62	05/24/05	See Diagram	Surface		150.7		143.5	95.2%	
63	05/24/05	See Diagram	Surface		150.7		144.6	96.0%	
64	05/24/05	See Diagram	Surface		150.7		145.9	96.8%	
65	05/24/05	See Diagram	Surface		150.7		141.7	94.0%	
66	05/24/05	See Diagram	Surface		150.7		144.1	95.6%	
67	05/24/05	See Diagram	Surface		150.7		143.2	95.0%	
68	05/24/05	See Diagram	Surface		150.7		140.8	93.4%	
69	05/24/05	See Diagram	Surface		150.7		140.2	93.0%	
70								#DIV/0!	
71		i					1	#DIV/0!	
72		i						#DIV/0!	
73								#DIV/0!	
74								#DIV/0!	
75		······································				1		#DIV/01	

75 Blows

50 Blows - Theoretical Density

Big "D"

^{*}Percent Compaction Based on Marshall Density

## Field Compaction Summary

SR

Project Name: Riverside Park Redevelopment Job No.: 26538D

Location: Oshkosh, WI Page No.: 1A

Test No. Date Location Test Mtt. Number Lab Dry Density Density In-Place Water Dry Density	Percent Comments
1 11/10/04 Clay Cap See Dia 1 113.0 128.6 18.9 108.2	95.7
2 11/10/04 1 113.0 128.1 18.3 108.3	95.8
3 11/10/04 1 113.0 132.3 17.8 112.3	99.4
4 11/10/04 1 113.0 131.0 19.4 109.7	97.1
5 11/10/04 1 113.0 127.9 19.0 107.5	95.1
6 11/10/04 1 113.0 125.0 16.0 107.8	95.4
7 11/10/04 1 113.0 125.9 17.2 107.4	95.1
8 11/10/04 1 113.0 137.0 15.3 118.8	105.2
9 11/10/04 1 113.0 130.8 16.5 112.3	99.4
10 11/10/04 1 113.0 128.2 17.4 109.2	96.6
11     11/10/04     1     113.0     128.2     18.5     108.2	95.7
12 11/10/04 1 113.0 131.5 14.2 115.1	101.9
13     11/10/04     1     113.0     128.7     15.9     111.0	98.3
14         11/10/04         1         113.0         129.6         17.4         110.4	97.7
15         11/11/04         1         113.0         126.5         15.9         109.1	96.6
16     11/11/04     1     113.0     128.2     17.7     108.9	96.4
17     11/11/04     1     113.0     130.0     16.0     112.1	99.2
18     11/11/04     1     113.0     130.0     17.2     110.9	98.2
19     11/11/04     1     113.0     131.9     17.2     112.5	99.6
20 11/11/04 1 113.0 128.0 17.0 109.4	96.8
21     12/02/04     1     113.0     125.8     15.0     109.4	96.8
22     12/02/04     1     113.0     129.3     18.1     109.5	96.9
23   12/02/04   1   113.0   128.1   18.6   108.0	95.6
24     12/02/04     1     113.0     129.2     16.9     110.5	97.8
25   12/02/04	99.4

#### Notes:

- A. Contractor has selected test locations.
- B. Architect/ Engineer has selected test locations.
- C. STS has selected test locations and contractor has designated area and lift.
- D. STS has selected test locations and Arch./Eng. has designated area and lift.
- E. Underlying lifts not tested by STS.
- F. Subgrade not tested by STS.

Densities shown: Lbs. per cubic foot Water Content: Percent of dry weight

Percent Compaction: In-place dry density/lab max. dry density x 100

## Field Compaction Summary

<u>F</u>R

Project Name: Riverside Park Redevelopment Job No.: 26538D

Location: Oshkosh, WI Page No.: 1B

LUCAII	O11	USI	IKUSII	, 771			Pa	age No.:	1B		
Test No.	Date		ation	Test Elevation	Mtl. Number	Maximum Lab Dry Density	In-Place Wet Density	Water Content	In-Place Dry Density	Percent Compaction	Comments
1	11/10/04		ing Lot e Dia		1	143.5	144.6	3.9	139.2	97.0	
2	11/10/04				1	143.5	148.5	4.7	141.8	98.8	
3	11/10/04			-	1	143.5	141.9	3.4	137.2	95.6	
4	11/10/04				1	143.5	149.1	4.7	142.4	99.2	
5	11/10/04				1	143.5	141.3	3.0	137.2	95.6	
6	11/10/04				1	143.5	147.3	7.5	137.0	95.5	
7	11/10/04				1	143.5	147.3	5.2	140.0	97.6	
8	11/10/04				1	143.5	146.8	6.4	138.0	96.1	
9	11/10/04				1	143.5	143.1	5.1	136.2	94.9	
10	11/11/04	-			1	143.5	143.6	4.4	137.5	95.9	<del></del>
11	11/11/04				1	143.5	145.2	3.7	140.0	97.6	
12	11/11/04				1	143.5	144.3	4.4	138.2	96.3	
13	11/11/04				1	143.5	141.2	3.8	136.0	94.8	
14	11/11/04				1	143.5	142.6	4.3	136.7	95.3	
15	11/11/04		7		1	143.5	145.0	4.0	139.4	97.2	
16											
17											
18											
19											
20								:			·
21											
22											
23											
24											
25											
										i	

#### Notes:

- A. Contractor has selected test locations.
- B. Architect/ Engineer has selected test locations.
- C. STS has selected test locations and contractor has designated area and lift.
- D. STS has selected test locations and Arch./Eng. has designated area and lift.
- E. Underlying lifts not tested by STS.
- F. Subgrade not tested by STS.

Densities shown: Lbs. per cubic foot Water Content: Percent of dry weight

Percent Compaction: In-place dry density/lab max. dry density x 100

#### STS Construction Services Group

#### Field Compaction Summary

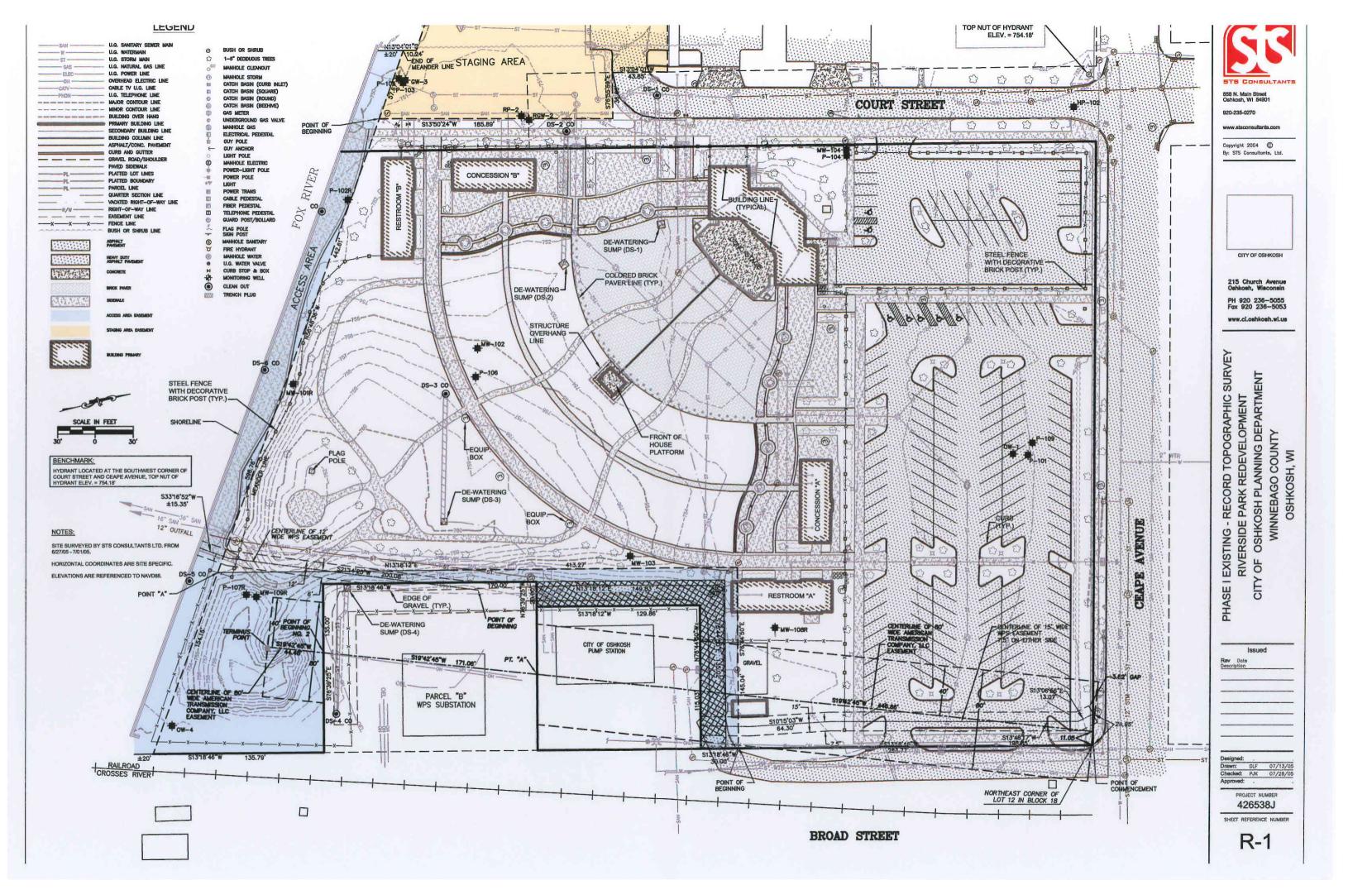
S.

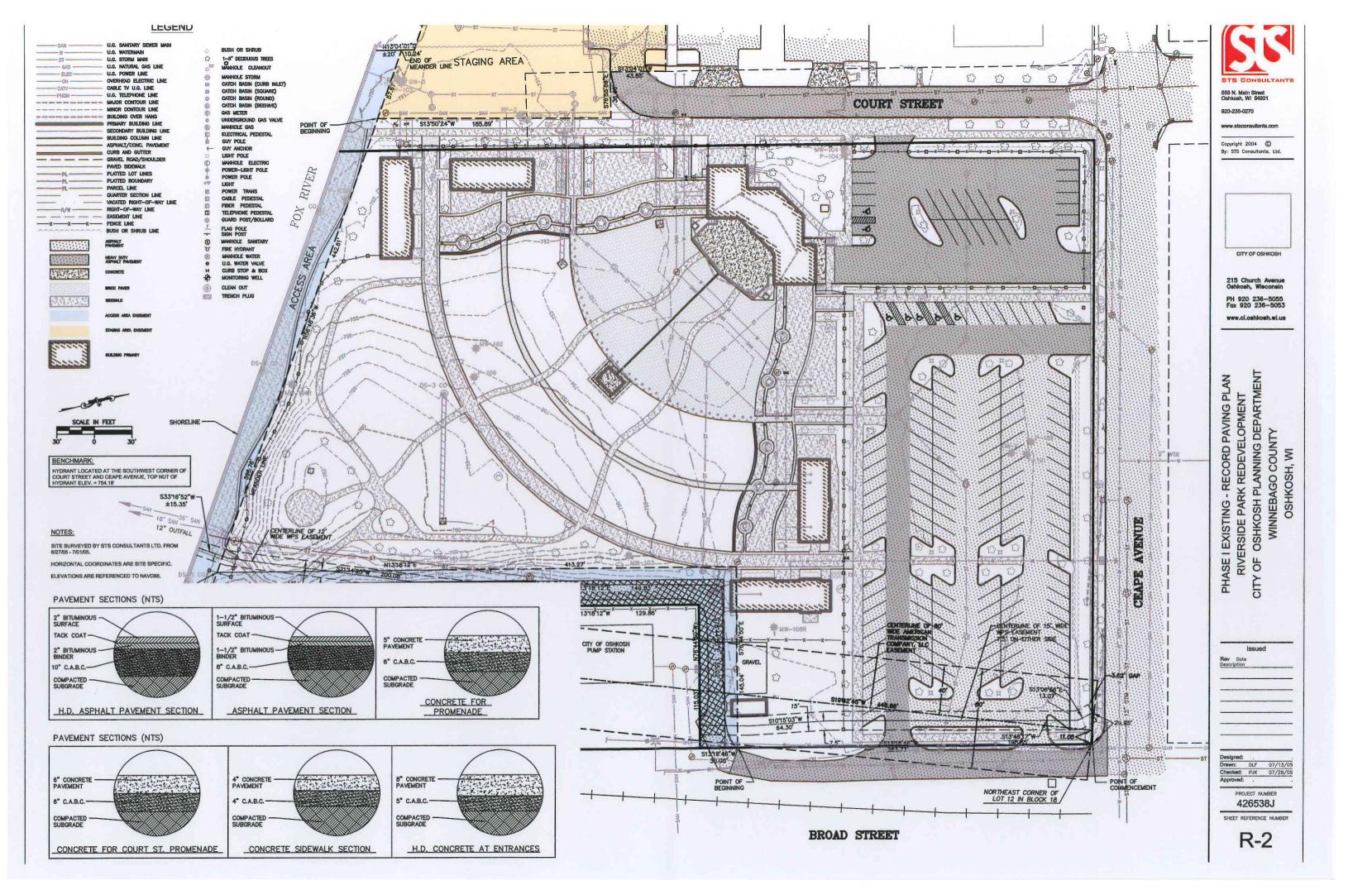
Project Name: Riverside Park Redevelopment

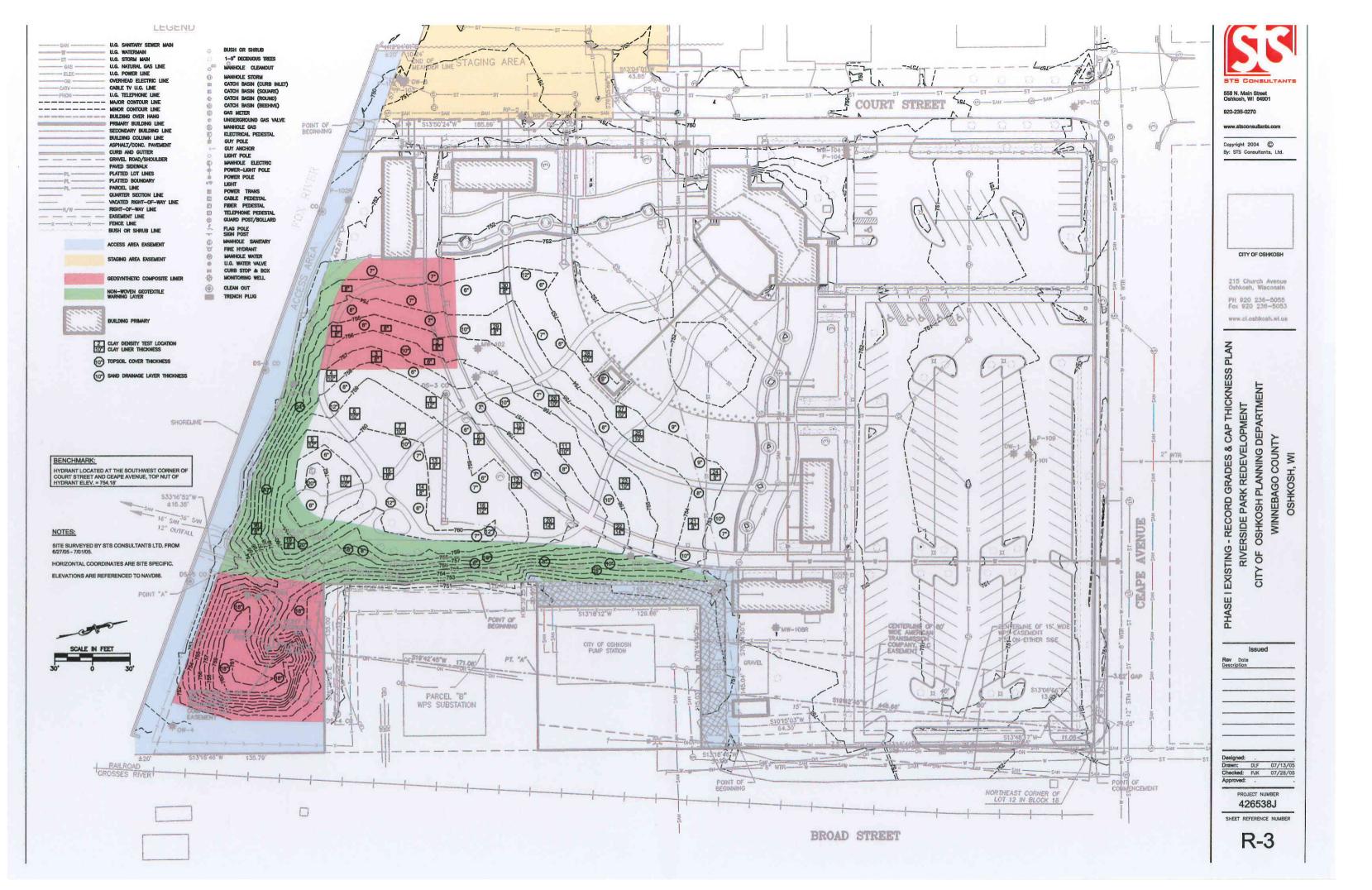
Job No.: 26538D

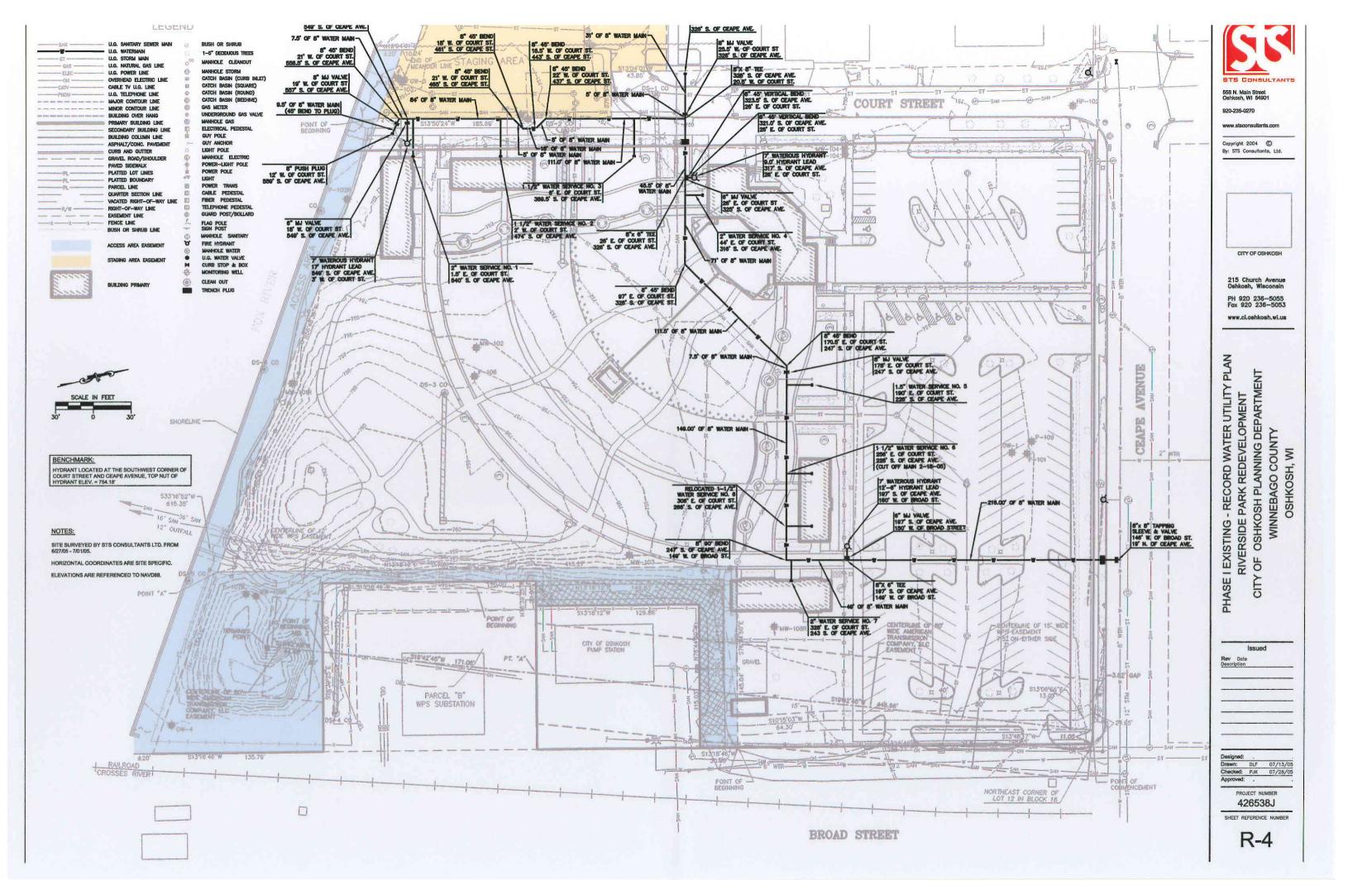
Location: Oshkosh, WI

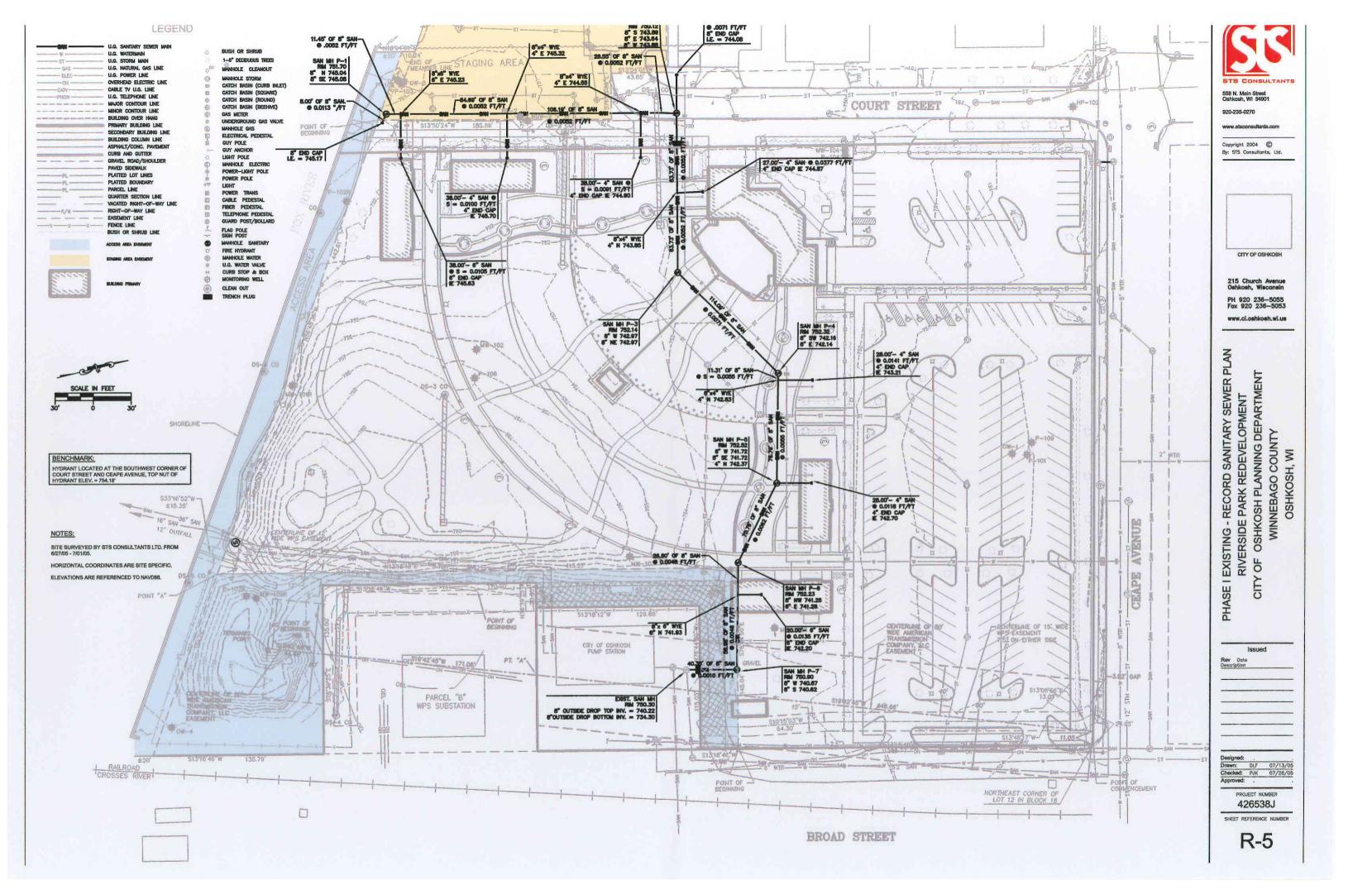
Page No.: 2A

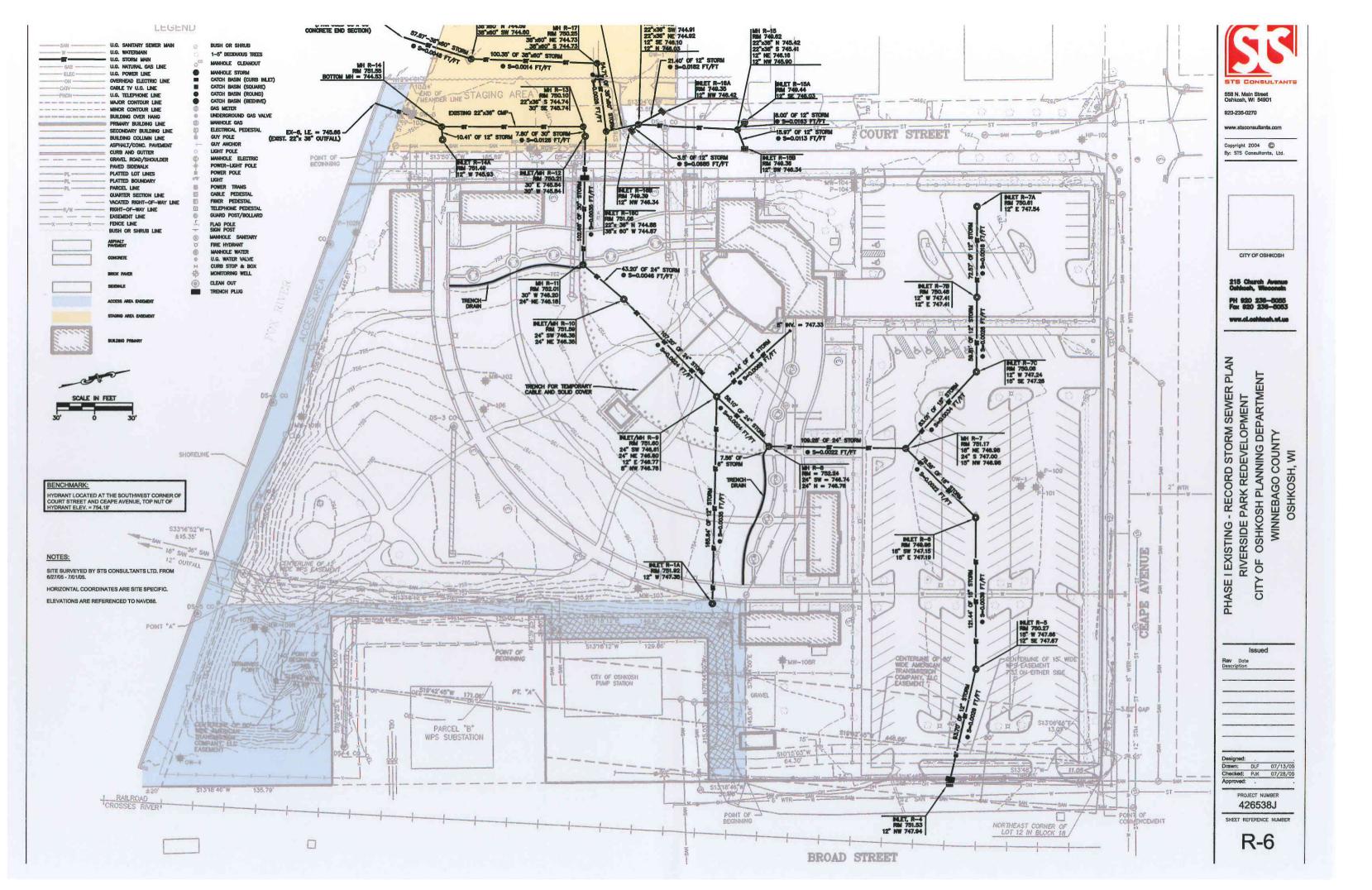

Locan	OTT	Uall	KOSII	, ••1			Pi	age No.:	<u>ZA</u>		
Test No.	Date	Loca		Test Elevation	Mtl. Number	Maximum Lab Dry Density	In-Place Wet Density	Water Content	In-Place Dry Density	Percent Compaction	Comments
26	12/09/04	Clay See	Cap Dia		1	113.0	128.6	18.9	108.2	95.7	
27	12/09/04				1	113.0	128.1	18.3	108.3	95.8	
28	12/09/04				1	113.0	132.3	17.8	112.3	99.4	
29	12/14/04				1	113.0	131.0	19.4	109.7	97.1	
30	12/15/04	•			1	113.0	127.9	19.0	107.5	95.1	
31		_									
32											
33									·		
34						•					
35								-		-	
36											
37			7								
38							<u> </u>				
39											
40								-			
41											
42											
43											
44				-							
45						~~					
46											
47											
48											
49											
50											

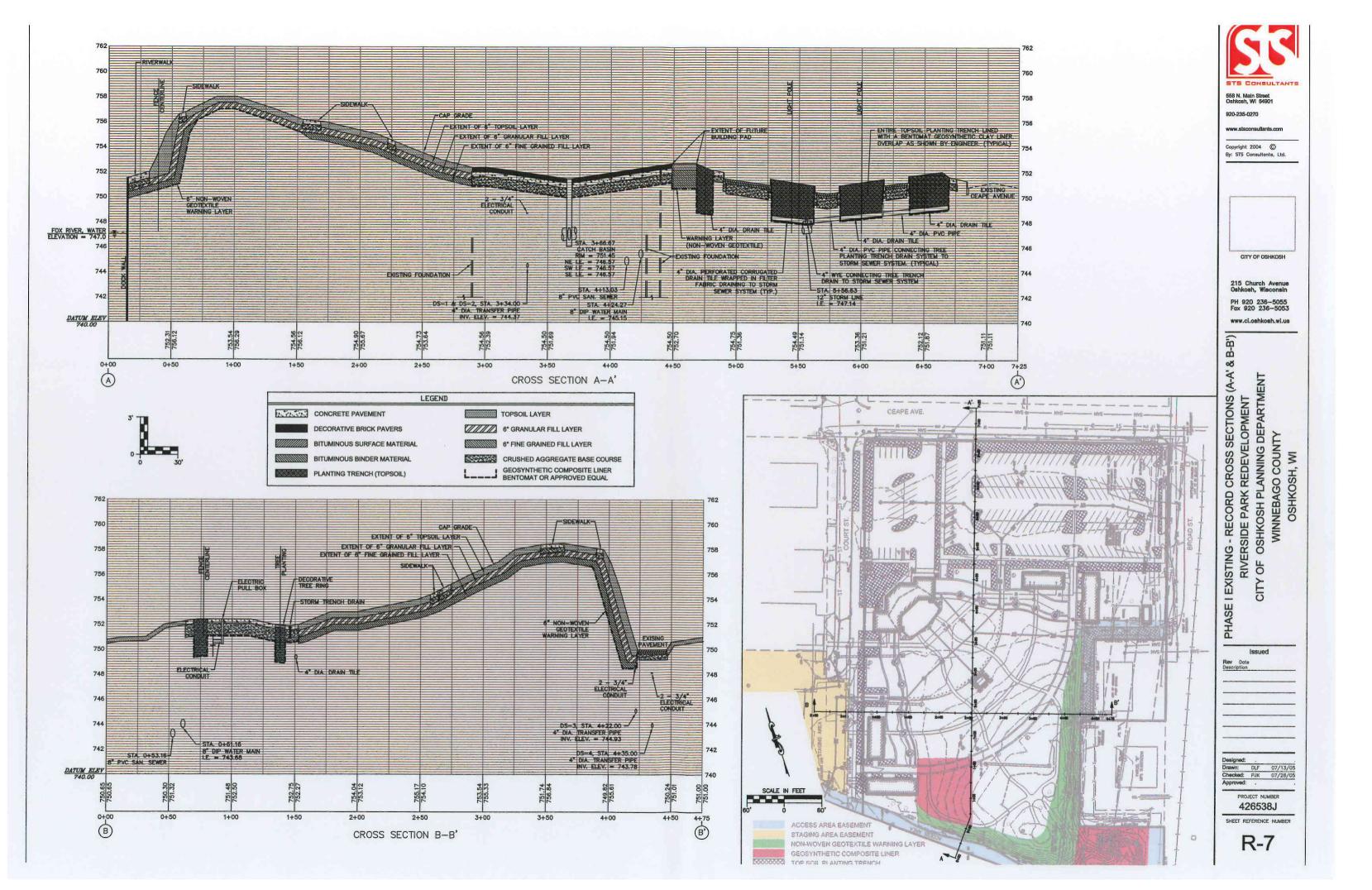

#### Notes:

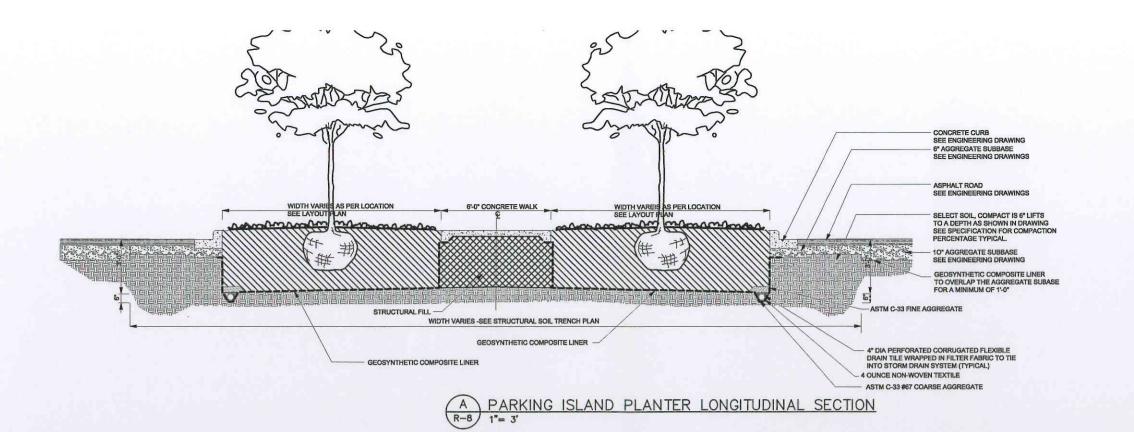

- A. Contractor has selected test locations.
- B. Architect/ Engineer has selected test locations.
- C. STS has selected test locations and contractor has designated area and lift.
- D. STS has selected test locations and Arch./Eng. has designated area and lift.
- E. Underlying lifts not tested by STS.
- F. Subgrade not tested by STS.

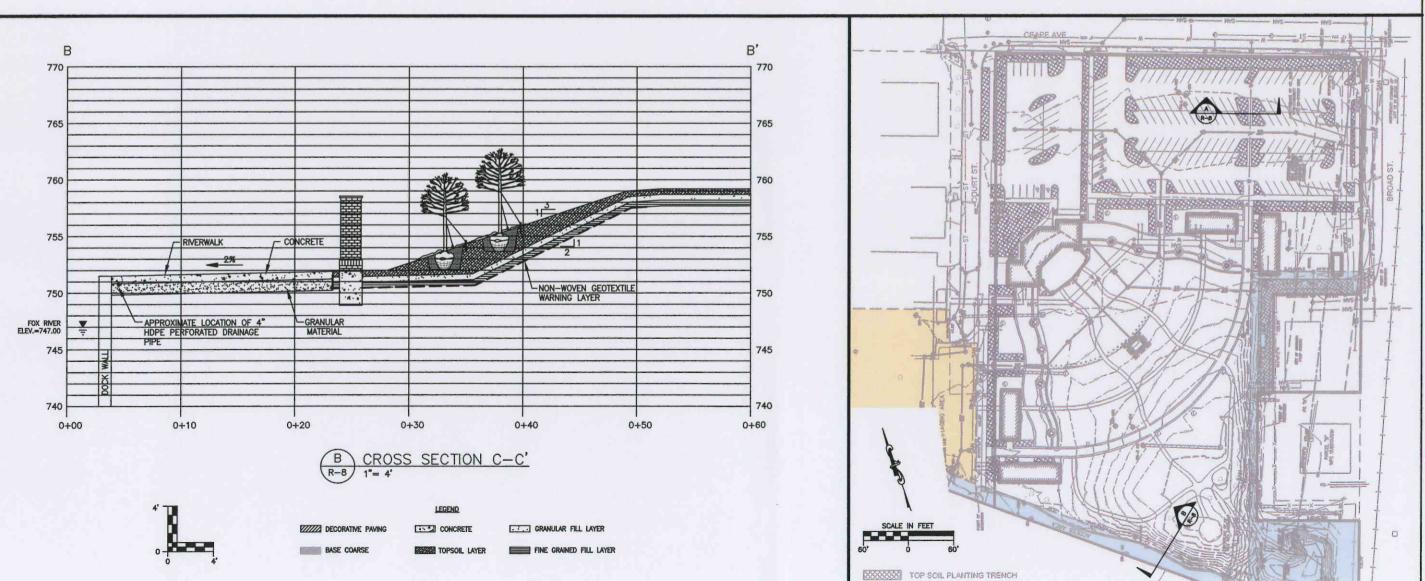

Densities shown: Lbs. per cubic foot Water Content: Percent of dry weight


Percent Compaction: In-place dry density/lab max. dry density x 100














920-235-0270

Copyright 2004 © By: STS Consultants, Ltd.



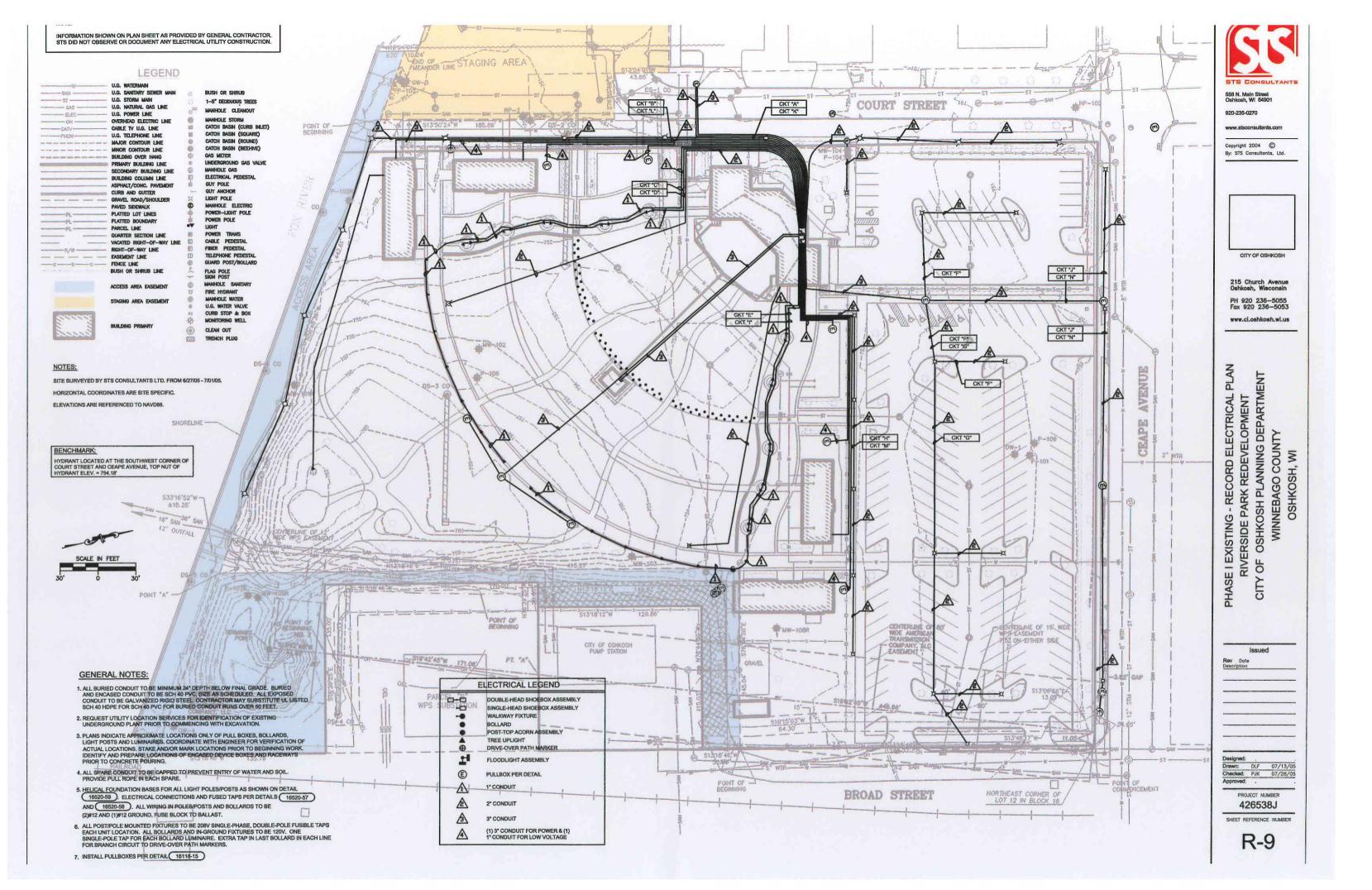
CITY OF OSHKOSH

215 Church Avenue Oshkosh, Wisconsin

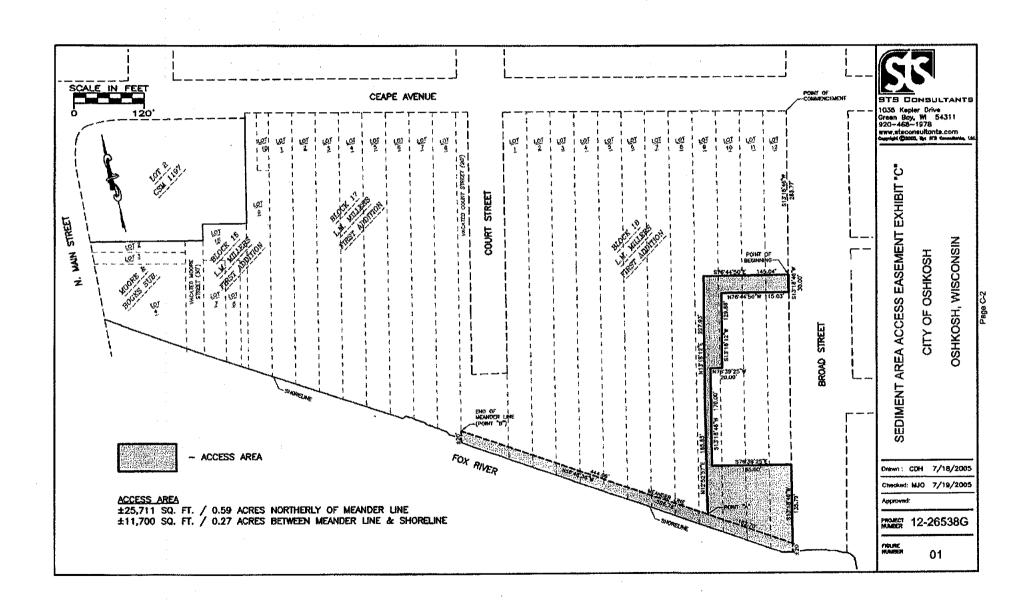
PH 920 236-5055 Fax 920 236-5053

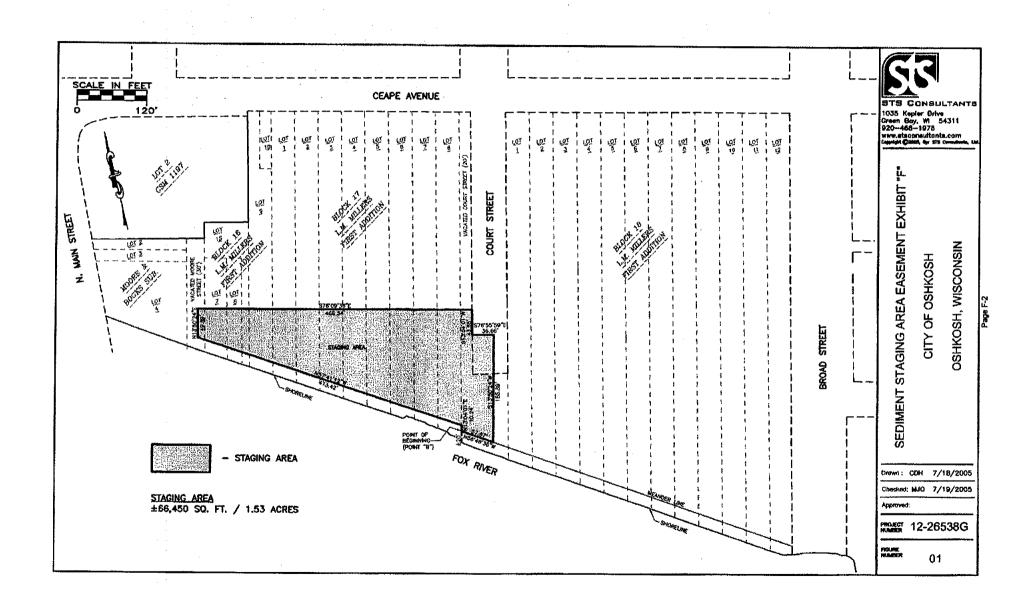
www.ci.oshkosh.wi.us

PHASE I EXISTING - RECORD PLANTING DETAIL RIVERSIDE PARK REDEVELOPMENT CITY OF OSHKOSH PLANNING DEPARTMENT WINNEBAGO COUNTY OSHKOSH, WI


Issued

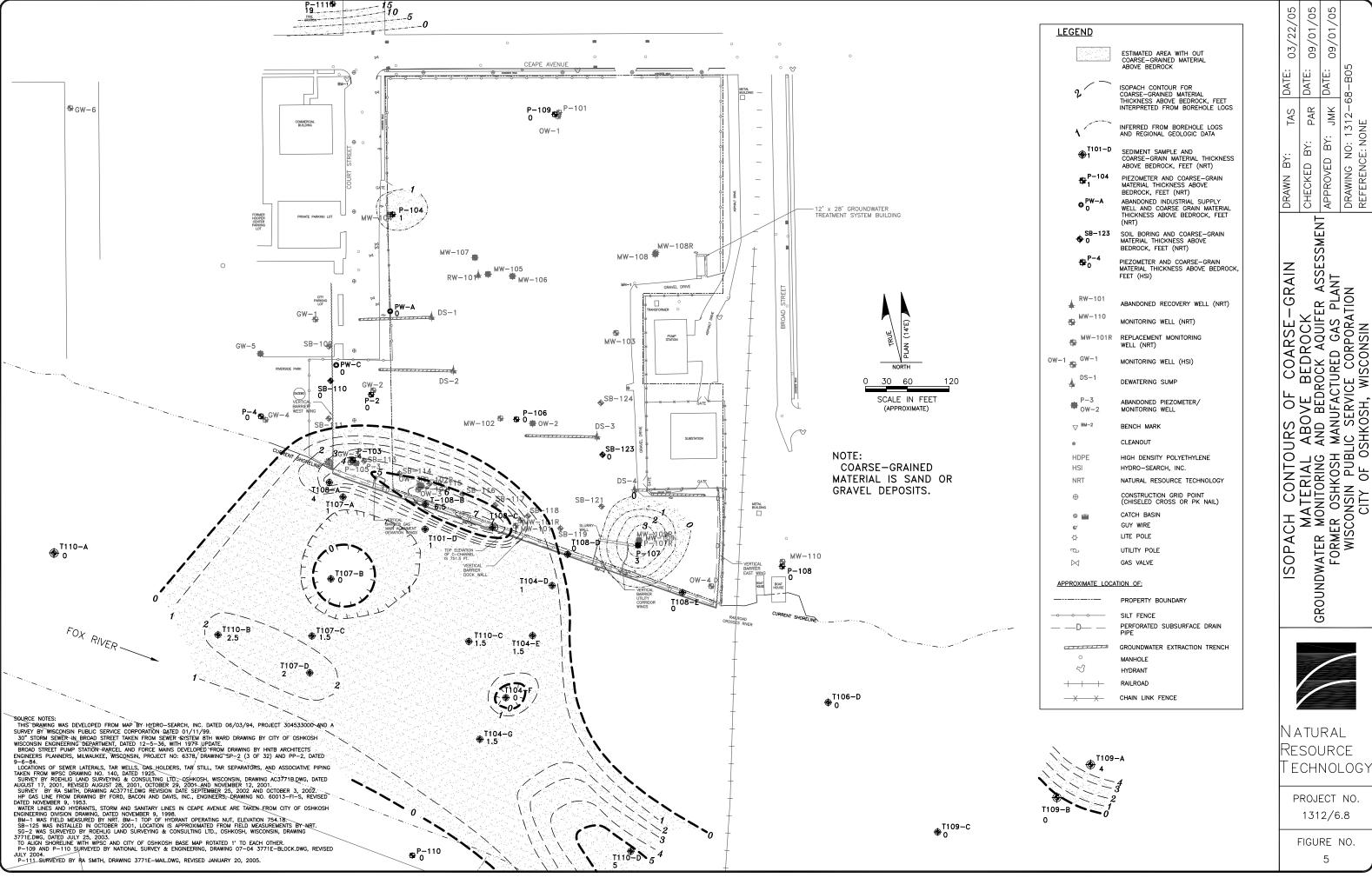
| Designed: | Drawn: | DLF | 07/13/05 | Checked: | PJK | 07/28/05 | Approved: | . |


PROJECT NUMBER 426538J

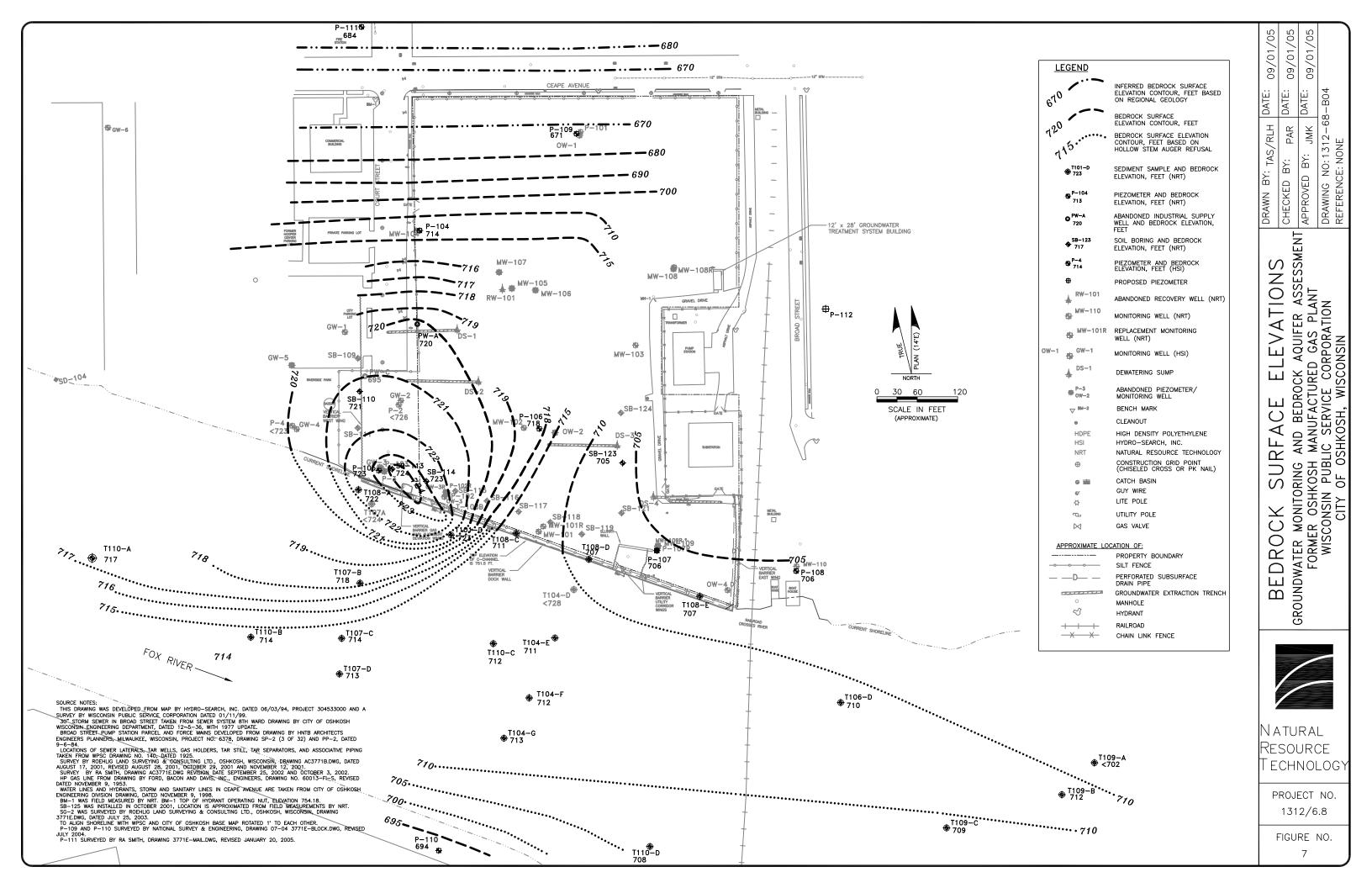

SHEET REFERENCE NUMBER

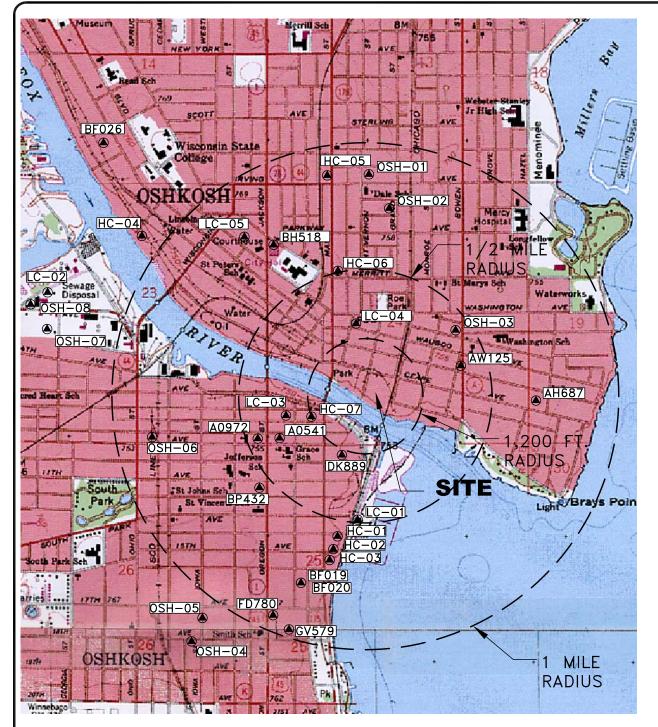
**R-8** 



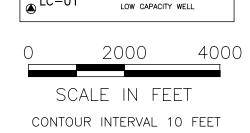

### APPENDIX D5 SEDIMENT EASEMENT







### APPENDIX E BEDROCK GROUNDWATER DOCUMENTATION

### APPENDIX E1 BEDROCK GROUNDWATER FIGURES




GROUNDWATER MO FORMER WISCON









PERMITTED WELL LOCATION

(CITY OF OSHKOSH HEALTH DEPARTMENT)

WELL WITH WISCONSIN DEPARTMENT OF NATURAL RESOURCES UNIQUE WELL IDENTIFICATION NUMBER

HIGH CAPACITY WELL

**LEGEND** 

**●** DK889

' **▲** HC−01

SOURCE:

1. EARTHVISIONS U.S.
TERRAIN SERIES, ©
EARTHVISIONS, INC.
603-433-8500. USGS 7.5
MINUTE QUADRANGLE,
OSHKOSH. DATED 1961.
PHOTOREVISED 1975.

2. WISCONSIN DEPARTMENT OF NATURAL RESOURCES PRIVATE AND HIGH CAPACITY WELL DATABASE 2003.

3. CITY OF OSHKOSH HEALTH DEPARTMENT PERMITTED WELL MAP 1995 THROUGH 1996.

4. LITHOLOGY IS SUMMARIZED DIRECTLY FROM WELL LOGS.

Well ID	Address	Well Type	Total Depth	Date	Hicap	Activity
			(feet)		Permit	-
DK889	50 East 10th Street	Private, non-pot			na	
FD780	1744 Oregon	Private			na	
GV579	150 West 18th Street	Private	120	4/28/1966	na	
BH518	420 Jackson Street	Private	195	5/23/1979	88612	Active
BF020	1642 Doty Street	Industrial	530	1/1/1954	66808	Inactive
BF019	1642 Doty Street	Industrial	516	1/2/1960	66807	Inactive
BF026	1005 High Avenue	Private	630	1/2/1960	66816	Inactive
AW125	217 Bowen	Non-commercial	128	10/18/1988	na	
AH687	1210 Ceape Avenue	Private-Minnow Tank	124	8/10/1988	na	
AO972	41 West 8th Avenue	Private	496			
AO541	856 Oregon Street	Private				
BP432	1127 South Main Street	Non-commercial	516			
OSH-	Wells are City of Oshkosh permit	ted wells, additional info	ormation was not pro	vided.		
HC-	High Capacity Well locations obta	nined from "Geology and	Water Resources of V	Winnebago County,	Wisconsin" (Ol	cott, 1966)
LC-	Low Capacity Well locations obta	ined from "Geology and '	Water Resources of W	/innebago County, V	Wisconsin" (Old	cott, 1966)

Well ID	Lithology	Casing	Approved	Distance	Direction	PLSS
	(feet)	Depth	Capacity/	(feet)		(Public Land Survey System)
		(feet)	Normal			• • •
			Pumpage			
DK889				1,250	S-SW	SW 1/4, SW 1/4, Sec. 24, T18N, R16E
FD780				4,750	S-SW	SW 1/4, NW 1/4, Sec. 25, T18N, R16E
GV579				5,000	S-SW	NW 1/4, SW 1/4, Sec. 25, T18N, R16E
BH518	Unlithified 0-95,	103	50 GPM/	3,500	NW	N 1/2, NW 1/4, Sec. 24, T18N, R16E
	Sinnipee 95-115,		1,000 GPD			
	Prairie 115-195					
BF020	Unlithified 0-15,	102	400 GPM/	4,000	S-SW	NW 1/4, SW 1/4, Sec. 25, T18N, R16E
	Sinnipee 15-130,		77,000 GPD			
	Ancell 130-310,					
	Cambrian 310-530					
BF019	Unlithified 0-13,	105	250 GPM/	4,000	S-SW	NW 1/4, SW 1/4, Sec. 25, T18N, R16E
	Sinnipee 13-150,		77,000 GPD			
	Ancell 150-325,					
	Cambrian 325-516					
BF026	Unlithified 0-35,	100	500 GPM/	7,250	NW	NW 1/4, SW 1/4, Sec. 14, T18N, R16E
	Sinnipee 35-120,		288,000 GPD			
	Ancell 120-130,					
	Prairie 130-285					
AW125	Unlithified 0-86,	87		1,500	E-NE	SE 1/4, Sec. 24, T18N, R16E
	Limestone 86-120,					
	Sandstone 120-128					
АН687	Unlithified 0-104,	104		3000	Е	SW 1/4, SE 1/4, Sec. 24, T18N, R 16E
AO972				2,250	W-SW	SW 1/4, SW 1/4, Sec. 24, T18N, R16E
AO541				2,000	W-SW	SW 1/4, SW 1/4, Sec. 25, T18N, R16E
BP432				3,000	SW	NE 1/4, SW 1/4, Sec. 28, T18N, R16E
OSH-	Wells are City of Oshkosh pe					
HC-						ounty, Wisconsin" (Olcott, 1966)
LC-	Low Capacity Well locations	obtained from	"Geology and Wate	r Resources of	Winnebago Co	ounty, Wisconsin" (Olcott, 1966)

na: not applicable

PRIVATE, COMMUNITY AND INDUSTRIAL
WELL INFORMATION
GROUNDWATER MONITORING AND BEDROCK AQUIFER ASSESSMENT
FORMER OSHKOSH MANUFACTURED GAS PLANT
WISCONSIN PUBLIC SERVICE CORPORATION
CITY OF OSHKOSH, WISCONSIN

Natural

Resource

ECHNOLOGY

PROJECT NO.

1312/6.8

FIGURE NO.

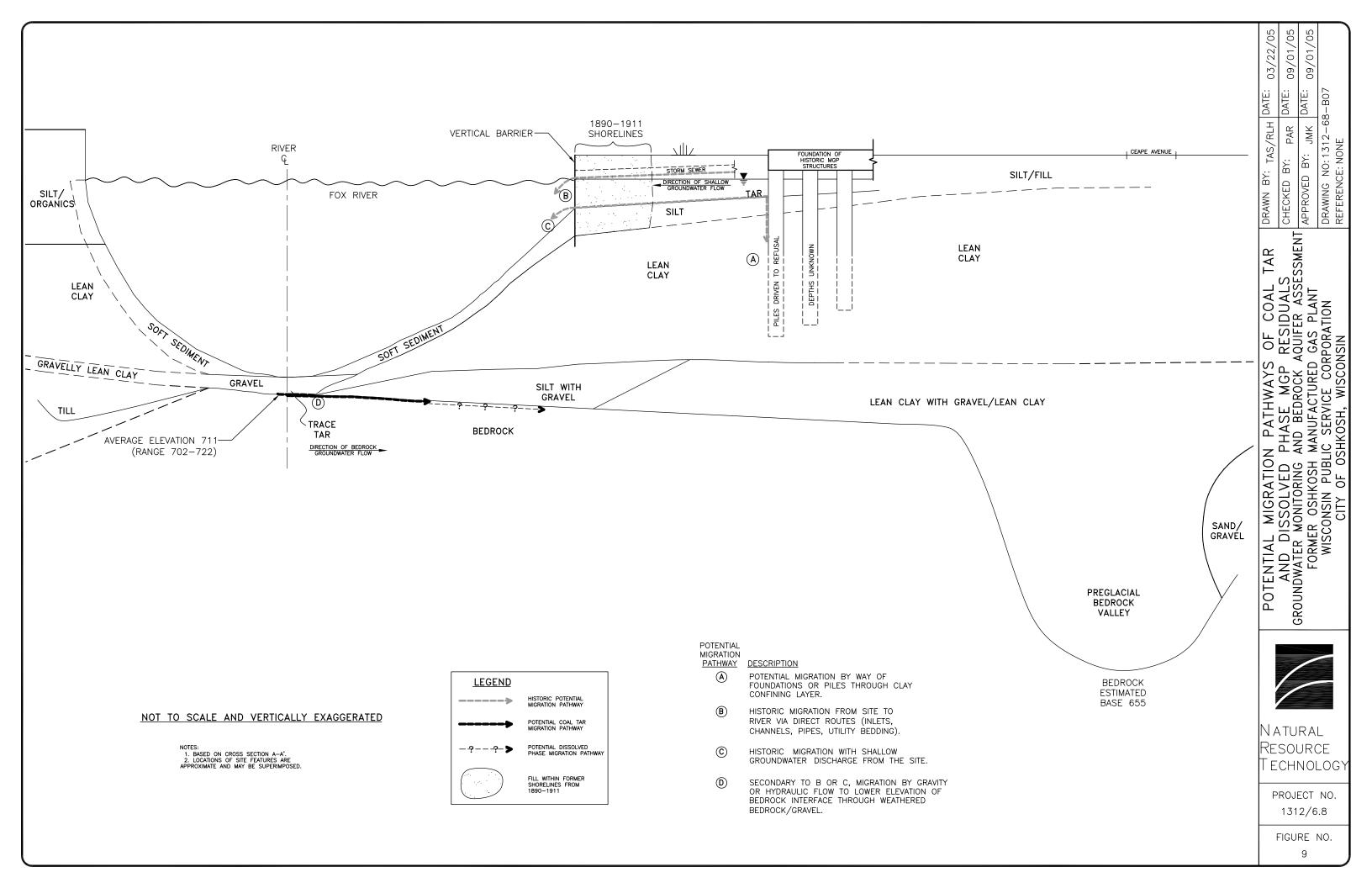
8

08/26/05

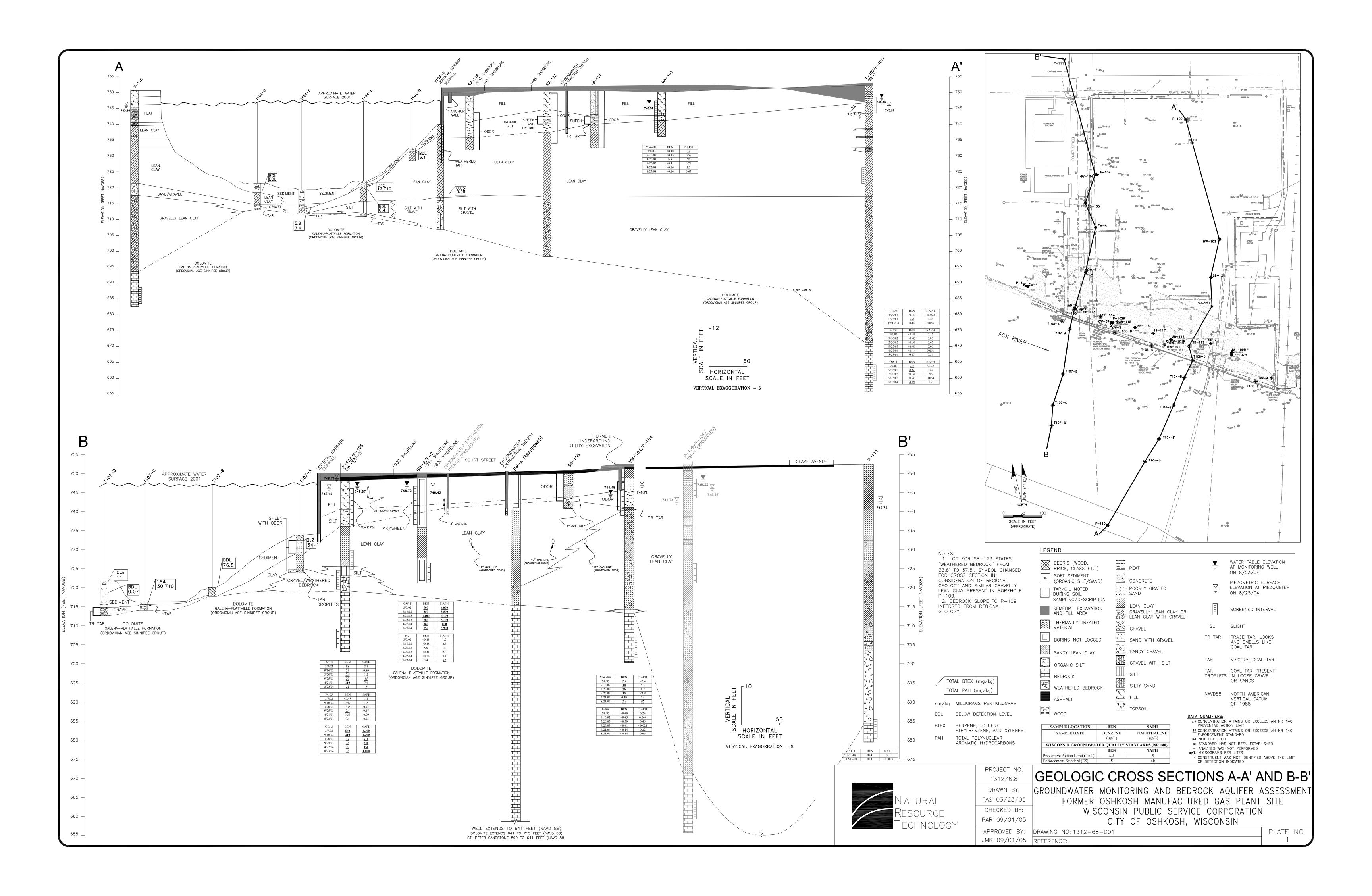
DATE: DATE:

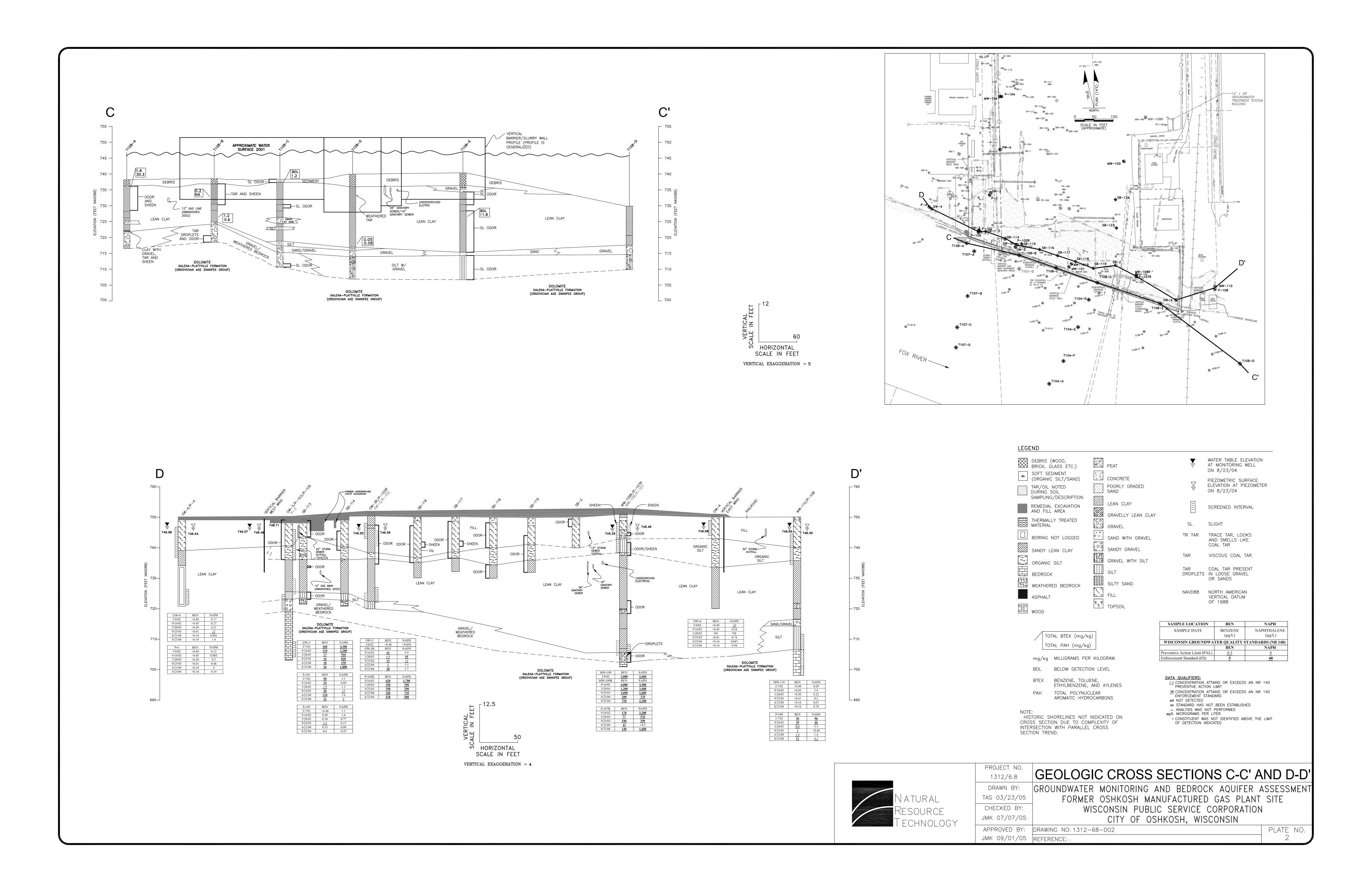
CHECKED

BY: RL


D BY:

ED BY:


RLH/TAS


^{--:} unknown

GPM: gallons per minute GPD: gallons per day



# APPENDIX E2 GEOLOGICAL CROSS SECTIONS





### APPENDIX F PERFORMANCE MONITORING DOCUMENTATION

# APPENDIX F1 FIELD NOTE SUMMARIES AND OPERATION LOGS



Y/N If not, why?

,
01
INEER
٩

Date of Site Visit:	31	26	10	/
Arrival Time:	1	(	73:	45
Departure Time		14:	30	
Signature:	le	M	do	<u>~</u>

*Emergency Shut Down
1. Push emergency stop
button on control panel
2. Shut air compressor
ball valve

3. Shut both bag filter ball valves

COMPDESSOR	MEVAID	WATW-SACT

Compressor turns ON at 100psi and turns OFF at 150psi.

Is system operating upon departure? Y/N If not, why?

Record compressor operation:

Is system operating upon arrival?

Record pressure:

ON /OFF /00/148 inches H

Each Visit	•
Inspect pressure relief valve	
Drain moisture from tank	
☐ Check Oil level; Topped off oil	Y / N * If Yes, note on compressor maintenance form
D Inspect air filter:	Good OK Bad
Quarterly	
Change Oil (Mar, June, Sept, Dec) *with Devair PR-20 oil:	Y/N *If Yes, note on compressor maintenance form
☐ Replace air filter (Mar.June,Sept,Dec) *with Devair filter:	Y / N * If Yes, note on compressor maintenance form
Check condition and alignment of belt, flywheel, and mo	otor pulley.
☐ Ensure compressor head unloads when motor shuts down	n.
☐ Clean pump fins and motor of dust and dirt.	* Note on compressor maintenance form
☐ Clean sediment/moisture trap of debris.	* Note on compressor maintenance form
2000 Hour Maintanence	
☐ Every 2000 hours, lubricate motor bearings	
☐ Inspect/Replace as necessary the following:	
☐ Pump Valves	Inspection (Good OK Bad)/Replaced
☐ Check Valves	Inspection (Good OK Bad)/Replaced
☐ Safety Valves	Inspection (Good OK Bad)/Replaced
☐ Pressure Gauge	Inspection (Good OK Bad)/Replaced
☐ Belts	Inspection (Good OK Bad) / Replaced

1312 Operation Log

1 of 4

Natural Resource Technology, Inc.



	2/21/-
Operations Log	Date of Site Visit: 3/06/0/
Wisconsin Public Service Corporation	Arrival Time: 13:45
Oshkosh Former Manufactured Gas Plant	Departure Time 4.30
Operator:	Signature: Mile Mason
DESICCATOR (HANKISON, DHW-25)	
☐ Is the desiccator on?	Y/N If not, why?
☐ Check the pressure gauges (tower on reads pressure and other	r tower off reads below 2 psig)
☐ Check prefilter and afterfilter indicators are in green area	* If red, then change filter
☐ Replaced prefilter / Replaced afterfilter	
☐ Record relative humidity:	
	7
MULTI-PHASE SEPARATOR	
Each Visit	
☐ Bubbles in influent chamber?	Y/N If yes, dewatering pumps needs to be inspected.
☐ Thickness of DNAPL inside sight tube:	(in. approx.)
☐ Is DNAPL level switch inside sight tube operating?	Y(N) Never has worked
☐ Note DNAPL tank level:	Empty 1/4 1/2 3/4* Full "If tank is 3/4 full, contact NRT for disposal.
☐ Thickness of LNAPL level inside sight tube:	- Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Constitution of the Cons
☐ Record LNAPL tank level:	*If tank is 3/4 full, contact NRT for disposal.
Quarterly	1 1 11 1 1
☐ Inspect water level at oil skimming weir plate:	about 1" below
☐ Condition of coalescing media:	oK
DNAPL PUMP (P-1/ MOXNO S00)	2
☐ Is pump operating?	Y (N) It not, why?
☐ Is packing gland leaking?	Y/N * If Yes, note on maintenance form
TRANSFER PUMP (P-2 / EBARA)	
☐ Is pump operating?	$\mathcal{Q}_{\scriptscriptstyle \mathrm{N}}$
	N/N
TRANSFER TANK	ak .
□ Note water level:	
☐ Note sediment thickness:	Not Moch (in. approx.)
☐ Removed accumulated sediment?	
	2 ¹ .
1312 Operation Log 2 of	Natural Resource Technology, Inc.



Operations Log	Date of Site Visit: 3/26/07
Wisconsin Public Service Corporation	Artival Time: 13:45
Oshkosh Former Manufactured Gas Plant	Departure Time 14:30
Operator:	Signature: Mile Moson
BAG FILTERS	) /
Record inlet pressure:	4
Record outlet pressure:	
☐ Inspect bag filters:	Good OK Bad
☐ Replaced bag filters?	Y/N
AIR STRIPPER  Is the air stripper operating?:  Inspect bearings:	Good (OK) Bad Sounds OK
□ Vent open to OUTSIDE of INSIDE?	Den
☐ Greasing Interval of Bearings Based on operating conditions	and operating temperature of Fan:
☐ Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo. 10	60-200F+ 1-2 Mo
☐ Moderate to Extremely Dirty: Up to 160F 1-2 mo, 160-2	00F+ 2-4 weeks
☐ Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo, 16	60-200F+ 1-2 Mo
** Temperatures OF to 200F inclusive use Mobil Oil-Mobilehux BP#2. Shell Oil-	Shell Alvania EP#2 or Chevron-Chevron SRI #2
☐ Record Pressure Reading:	
☐ Troubleshooting: Capacity or Pressure Below Rating	Y/N
☐ Troubleshooting: Vibration and Noise	Y/N
☐ Troubleshooting: Overheated Bearings	Y/N
☐ Troubleshooting: Overload on Motor	Y/N
OTHER Flow meter reading: //330705 Inspect piping and valves for leaks:	gallons
Comments/Notes: Int/vent Gauge	2° 5457/80
1312 Operation Log 3 of 4	\$ Northed Free also all translation of 18402



Operations Log Date of Site Visit: Wisconsin Public Service Corporation Arrival Time: Oshkosh Former Manufactured Gas Plant Departure Time Operator: DEWATERING PUMPS (HAMMERHEAD FIF43SEB) Gillons 54368 258436 83931 DS-1 ☐ Is the pump operating? ☐ Blow air (<15psi) through bubbler line to remove oil from outlet Complete adjacent table DS-1 ☐ Annual pump cleaning (Oct) DS-2 DS-2 DS-3 ☐ Is the purop operating? **DS-4** Blow air (<15psi) through bubble! Tine to remove oil from outlet TOTAL Complete adjacent table Annual pump cleaning (Oct) DS-3 ☐ Is the pump operating? ☐ Blow air (<15psi) through bubbler line to remove oil from outlet Complete adjacent table Annual pump cleaning (Oct) **DS-4** ☐ Is the pump operating? If not, why? ☐ Blow nir (<15psi) through bubbler line to remove all from autici Complete adjacent table ☐ Annual pump cleaning (Oct)

1312 Operation Log

4 of 4

Natural Recourse Technology, Inc.

/27/2007 (	09:50	920	433491	.6				į	VPSC	CEN	TRAL	LAE	3				
1 1				6	<u> </u>		1/2	با			نر	<b>L</b>	_1	d	, 3	ž	
126/07 Mile Mason			F 1 (1) 1 21 110	The Colores all sol	And the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of t	76	Sign 1 / 1/2 / 1/2 / Sign	armo course	4.1011	Wir Con Rit	115. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Only 1 Female + Balt To Share	لا لا	M. 1. 100 0019 181 NO	6.0	Je John St. Johnson	(5)
CONDITION FIELD FORM  Date: 3/	AT LEAST ONCE A YEAR	Estate Antique (Mestate Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antique Antiqu	Section (Section)												(8-109)		
WELL CONDITION	ЖТ		No No	2	S X	7 1	2	0	2		V (C)	7	7	) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	No	\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.\.	
sh MGP	EVERY SAMPLING EVENT		5 NOF NO	No P No	X G No	SVGN	5 No F No	3 X G No	5 No 5 No	5 X 6 No	S C No	No GINO	No G No	1 G No	No F No	5 G /	
Site: K65/ Project #: 3/22			9 9 1·m	00 7 9 7 mg	Sw. ( 6 6 6	30.5K 0 0 0	Gw-3 6 6 6	30.4 G G G	00.3KGG	MoviolAG G C	M.S. 102 Y G G	1410-103 G G G	10 9 9 S	MU-1086 G G	6.001 G 6 No	MW-119 G G G G	P. Poor Determine of Part Line
AR-27-2007	<u></u>	709.20 <b>4</b> 54	M 721	VI.			<u> </u>		21	1	7	7	*	97	I		D,

P : Poor - Potential or Evident Sample Lategrity Issues (additional comments required, picture(s) desirable)

P : Fair • Fulure Sample Integrity May Be Compromised it Well Repair/Opgrade is Not Undertaken (additional comments required, picture(s) desirable) G: Good (additional comments not required)

ns : Not Applicable

WELL CONDITION FIELD FORM

09/12

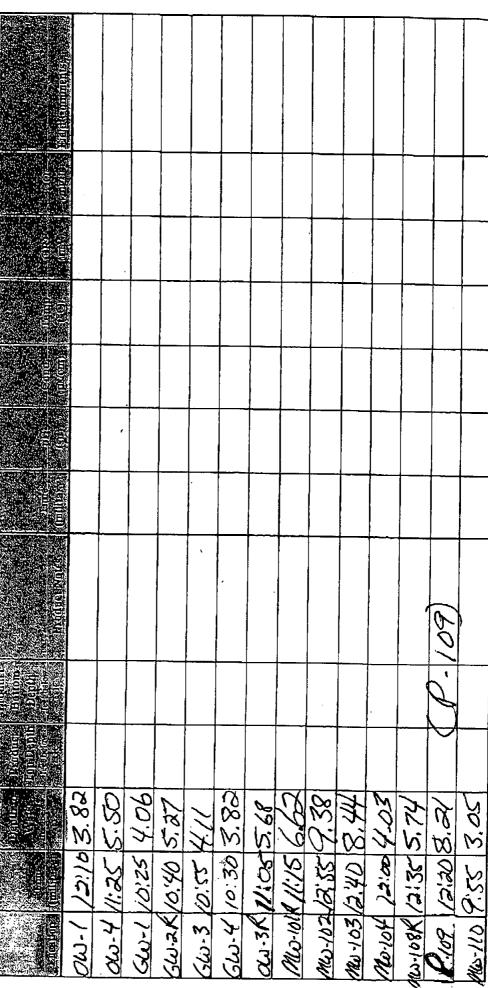
			14					V	d	70	3					
26/07 Mile Mason			Missing Internal Control	7	X	Xo	No. 25 10cK	M.c. 1 817 - CALL-0	form't tighten	O.1. 1 Balt ( Ather. )	N	ox A	70	ok ok	OK	OK
M	FAR	Netring Settings: Property							Luner							
Date : Samplers :	AT LEAST ONCE A YEAR								RR)	)						
WELL CONDITION FIELD FORM	ATLEAS	A Company	St. San St.						MW. J. 8R							
ON FIEL				1	\)	10	7	2	60	70	6	#\n	W//	M	#	77
FIGNOC					<u>-</u>									3		
WELL (	<u></u>		<u>&gt;</u>	>	<u>&gt;</u>	>	>	<u>&gt;</u>	>	<u> </u>	>	1/1/1	-		Z	MA
	EVERY SAMPLING EVENT		100	No	200	<i>S</i> 0	$\stackrel{\circ}{\sim}$	$\sim$	Ng	MN	$\mathcal{A}/\mathcal{A}$	NIA		 	×	NA
MGF	Y SAMPLI		<u>U</u>	S	0	9	5	9	7	$\mathcal{O}$	0	NA			$\searrow$	NA
sh	EVER			No	$\times$	/	No	$\times$	$\lesssim$	$\searrow$	<u>&gt;</u>	1/1/1/	,			NIA
hkost				5	0	5	0	$\frac{O}{C}$	0	S	0	; WH			$\gamma$	4 N/A
Os I			7	9	(N	7	(n)	7)	10	5	0	<u> </u>	01	()	0	1/1/1/1/
Site: Project # :	Section 1		103	104	30	7 901	7.107R C	901	10980	10 0	2 ///	7	N	8	46	T &
<b>Ŧ</b> .	- Kana		0	<i>S.</i>	9	0.	34916	0	MW	Ġ	9	Ä	R	K	K	VK.

P : Poor - Potenial or Evident Sample Integrity Issues (additional comments required, picture(s) desirable) F : Rair - Fulure Sample Integrity May Be Comprumised if Well Repäir/Upgrade is Not Undertaken (additional comments required, picture(s) desirable) G : Good (additional comments not required) n/a : Not Applicable

STATES AND STATES OF THE STATES

POLITICATION

10/12


PAGE

WELL LEVEL AND FIELD 1 ARAMETERS FIELD FORM

Water Level Indicator Serial #: Soiltert DR-766A Purge Device and Serial#;

Quality Probe Type and Serial #:

Calibration Check:



n/a: Not Applicable

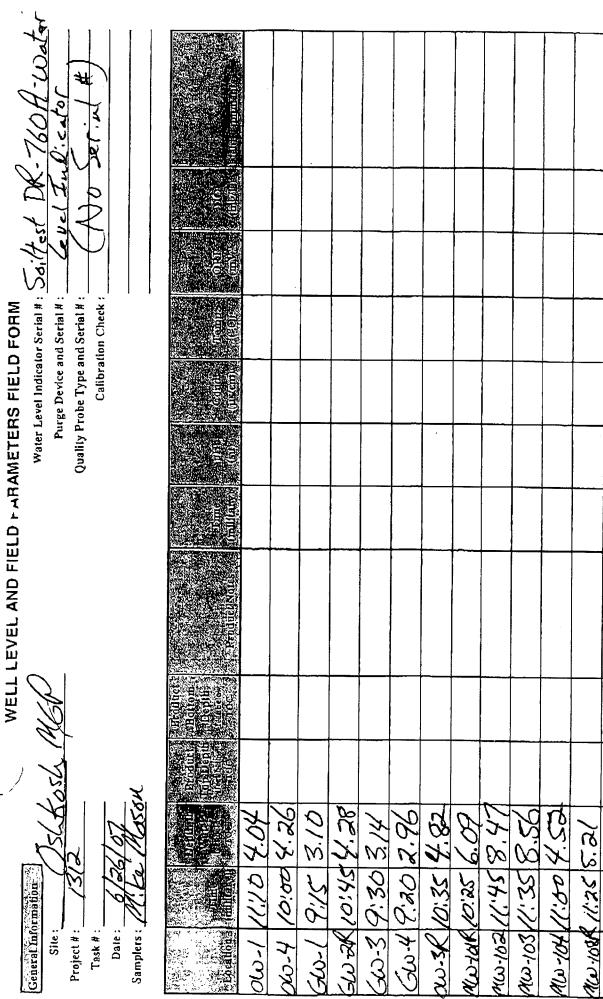
Project #: Task#; Samplers:

Le Kosh

General Information

WPSC CENTRAL LAB 03/27/2007 09:50 9204334916 PAGE 11/12 WELL LEVEL AND FIELD PARAMETERS FIELD FORM Soft Het DR-760H

Water Level Indicator Serial #: Lotter Level Tubecatar


Purge Device and Serial #: An Spiel # 224664 Quality Probe Type and Serial #; Calibration Check; 12:05 6.B 8/1.80 3.48 MW-109/11:45 13.19 P.110 9.45 6.39 107K 11:50 12.96 108 10100 3.54 13:10 11.78 13:15 5.97 10:10 8:39 1,20 5.66 SS://as.z/ 901-13:00 13:056. 10,20 General Information n'a: Not Applicable 100. Samplers ; Project # ; .103 · Task # 75-2 -409c ス・4 \ \ \

PUGANSIYANG ... Amenjirki DANDIQAKERKOT first

JUN-27-2007 09:36

9204334916

97%





n/a: Not Applicable

19:2012.61

Mo 109

107.602.11 01/201



Operations Log	
Wisconsin Public Service Con	poration
Oshkosh Former Manufactur	ed Gas Plant

Date of Site Visit:	6/26/1
Arrival Time:	13:00
Departure Time	14:00
	n //

Operator:	
WHEN	COMPLETED FAX TO (262) 523-9001
ATTN:	HEATHER SIMON, PROJECT ENGINEER

#### Signature: Male Moson *EmergencyShut Down

#### OVERALL TREATMENT SYSTEM

Is system operating upon arrival?

Y/N If not, why?___

Is system operating upon departure? Y/N If not, why?

*	Emerg	encysout nown	
U			٠
1	Duch	emodeticy SIOD	

- button on control panel
- 2. Shut air ampressor ball valve
- 3. Shut bothbag filter ball valves

#### COMPRESSOR (DEVAIR, VATY-5063)

Compressor turns ON at 100psi and turns OFF at 150psi.

Record compressor operation:

Record pressure:

ON / OFF OD/17 Zinches Hg

Each Visit	
Inspect pressure relief valve	
Drain moisture from tank	
Check Oil level; Topped off oil	Y / N * If Yes, note on compressor maintenance form
Inspect air filter:	Good OK Bad
Quarterly  Change Oil (Mar.June, Sept. Dec) *with Devair PR-20 oil:	Y/N * If Yes, note on compressor maintenance form
Replace air filter (Mar, June, Sept, Dec) *with Devair filter:	Y / N * If Yes, note on compressor maintenance form
☐ Check condition and alignment of belt, flywheel, and mo	otor pulley.
☐ Ensure compressor head unloads when motor shuts down	n.
Clean pump fins and motor of dust and dirt.	* Note on compressor maintenance form
Clean sediment/moisture trap of debris.	* Note on compressor maintenance form
2000 Hour Maintanence  ☐ Every 2000 hours, lubricate motor bearings	
☐ Inspect/Replace as necessary the following:	
☐ Pump Valves	Inspection (Good OK Bad)/Replaced
☐ Check Valves	Inspection (Good OK Bad)/Replaced
☐ Safety Valves	Inspection (Good OK Bad) / Replaced
☐ Pressure Gauge	Inspection (Good OK Bad)/Replaced
Belts	Inspection (Good OK Bad)/Replaced



Operations Log	Date of Site Visit: 6/26/07
Wisconsin Public Service Corporation	Arrival Time: 13.00
Oshkosh Former Manufactured Gas Plant	Departure Time 14:00
Operator:	Signature: Mile Moson
DESICCATOR (HANKISON, DHW-25)	
☐ Is the desiccator on?	Y N If not, why?
Check the pressure gauges (tower on reads pressure and	other tower off reads below 2 psig) N=7 Off=
☐ Check prefilter and afterfilter indicators are in green area	* If red, then change filter
☐ Replaced prefilter / Replaced afterfilter	
☐ Record relative humidity:	
MULTI-PHASE SEPARATOR	
Each Visit	
☐ Bubbles in influent chamber?	Y / N * If yes, downtering pumps needs to be inspected.
☐ Thickness of DNAPL inside sight tube:	(in. appro
☐ Is DNAPL level switch inside sight tube operating?	Y (N) Never has worked
☐ Note DNAPL tank level:	Empty 1/4 1/2 3/4* Full *If tank is 3/4 full, contact if for disposal.
☐ Thickness of LNAPL level inside sight tube:	. Or dispession
Record LNAPL tank level:	"If tank is 3/4 full, contact I for disposal.
Quarterly	L" D1
☐ Inspect water level at oil skimming weir plate:	2 Below
Condition of coalescing media:	oK_
DNAPL PUMP (P-1/ MOYNO 500)	
☐ Is pump operating?	Y /N /f not, why?
☐ Is packing gland leaking?	Y/N * If Yes, note on maintenance form
TRANSFER PUMP (P-2 / EBARA)	
☐ Is pump operating?	CYM
TRANSFER TANK	1
	OK.
☐ Note water level:	· • • • • • • • • • • • • • • • • • • •
☐ Note water level: ☐ Note sediment thickness:	(in. appro

1312 Operation Log

2 of 4

Natural Resource Technology, Inc.



Operations Log	Date of Site Visit: 6/26/07
Wisconsin Public Service Corporation	Arrival Time: 13:60
Oshkosh Former Manufactured Gas Plant	Departure Time 14:68
Operator:	Signature: Miles Moson
BAG FILTERS	
Record inlet pressure:	
Record outlet pressure:	3
☐ Inspect bag filters:	Good OK Bad
☐ Replaced bag filters?	
	Y/N
AIR STRIPPER	
Is the air stripper operating?:	$\bigcirc$ N
☐ Inspect bearings:	Good (OK) Bad
The outerpression of the pression OOD (OK) BAO	
□ Vent open to OUTSIDE (r INSIDE?)	Vent Open
Greasing Interval of Bearings Based on operating condition	ns and operating temperature of Fan:
☐ Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo,	160-200F+ 1-2 Mo
☐ Moderate to Extremely Dirty: Up to 160F 1-2 mo, 160	-200F+ 2-4 weeks
☐ Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo,	160-200F+ 1-2 Mo
** Temperatures OF to 200F inclusive use Mobil Oil-Mobilelux EP#2, Shell O	hil-Shell Alvania EP#2 or Chevron-Chevron SR1 #2
Record Pressure Reading:	<u></u>
☐ Troubleshooting: Capacity or Pressure Below Rating	Y/N
☐ Troubleshooting: Vibration and Noise	Y/N
☐ Troubleshooting: Overheated Bearings	Ϋ́N
☐ Troubleshooting: Overload on Motor	
1 Toubicshooting. Overload of Michol	Y/N
OTHER	
OTHER / 7xx	/ 67=
Flow meter reading: 12006	gallons
Inspect piping and valves for leaks:	
Comments/Notes:	
Influent Gauge:	611450
Intluent Osuge.	6// ( 830
<i>I</i>	
1312 Operation Log 3	oi 4 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 Natura Revolution 1 N

Date of Site Visit:

Arrival Time: Departure Time

Wisconsin Public Service Corporation Oshkosh Former Manufactured Gas Plant

Operator:

Operations Log

Signature:

Natural Resource Technology, Inc.

4064

DEWATERING PUMPS (HAMMERHEAD HF43SEB)		Monit	Monitoring Station/Well	Con	Control Panel	
		Pressione Regulator	e e de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de la complese de			
DS-1 [Y] If not why?	Location	Softmark (ma)	Colling Reading Water	Howalk at	elecycles	
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s			A secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secretary of the secr	Rokensy av	2) XXX (100 ) XXX (100 )	// ms
blow air (<1.)psi) infolga duodiei line to temave dii iron ounei	Dewalering Sumps	sauns				100
Complete adjacent table	DS-I	en		0	181227	24364
☐ Annual pump cleaning (Oct)	DS-2	0		0	861452	258436
DS:2	DS-3	1/5		0	279769	83431
☐ Is the pump operating? YAN If not, why? Kut-oft	DS-4	39		0	43512	13054
☐ Blow air (<15psi) through bubbler line to remove oil from outlet			TOTAL			
Complete adjacent table	_					4
☐ Annual pump cleaning (Oct)	<del>\</del>			+		
DS-3	4/01/	100/	1. * re-le br Sign	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	, <u>,</u>	
☐ Is the pump operating? (V) N If not, why?	-	` 3	+x e-301e	الردوات	•	
☐ Blow air (<15psi) through bubbler line to remove oil from outlet	7:6C	ريم ، کم	Vibration in ton	•		
☐ Complete adjacent table	00	go Su	pump offering			•
☐ Annual pump cleaning (Oct)	>	s		~	*	(2).E
DS-4				/ ods	<b>人</b>	1
☐ Is the pump operating? (Y)N If not, why?	11	/	of the following into	<b>.</b>	4:10	12 + 006.
☐ Blow air (<15psi) through bubbler line to remove oil from outlet	3 3	3 (	D OC	8.		
☐ Complete adjacent table	11.4	\B\ \\	The for source		•	
Annual pump cleaning (Oct)	<u>}</u>					

1312 Oper 1 Lng

Operations Log	Date of Site visit: 1, 10, 1, 4, 11, 1
Wisconsin Public Service Corporation	Arrival Time: 0745
Oshkosh Former Manufactured Gas Plant	Departure Time /530
Gorduled y: Mike Muson and Rick Or	rether Signature: A.J. A.J.
WHEN COMPLETED FAX TO (262) 523-9001	
ATTN: HEATHER SIMON, PROJECT ENGINE	EER *Emergency Shut Dow
OVERALL TREATMENT SYSTEM	1. Push emergency stop button on control panel 2. Shut air compressor
Is system operating upon arrival? Y/N If not, why?	ball valve  3. Shut both bag filter
Is system operating upon departure? Y/N If not, why?	valves -
COMPRESSOR (DEVAIR, VATV-5063)	y''. •
Compressor turns ON at 100psi and turns OFF at 150psi.	
Record compressor operation:	ON / OFF
Record pressure:	<u>/00//50</u> inches Hg
	<b>,</b>
Each Visit	
Inspect pressure relief valve	
Drain moisture from tank	
Check Oil level; Topped off oil Mark	Y / N * If Yes, note on compressor maintenance form
Inspect air filter:	Good OK Bad
/ Quarterly	
Change Oil (Mar,June,Sept,Dec) *with Devair PR-20 oil:	Y / N * If Yes, note on compressor maintenance form
Replace air filter (Mar,June,Sept,Dec) *with Devair filter:	Y / N * If Yes, note on compressor maintenance form
Check condition and alignment of belt, flywheel, and me	otor pulley.
☐ Ensure compressor head unloads when motor shuts dow	n.
☐ Clean pump fins and motor of dust and dirt.	* Note on compressor maintenance form
☐ Clean sediment/moisture trap of debris.	* Note on compressor maintenance form
2000 Hour Maintanence	
Every 2000 hours, lubricate motor bearings	
☐ Inspect/Replace as necessary the following:	
→ □ Pump Valves	Inspection (Good OK Bad)/Replaced
☐ Check Valves	Inspection (Good OK Bad)/Replaced
☐ Safety Valves	Inspection (Good OK Bad)/Replaced
□:Pressure Gauge	Inspection (Good OK Bad)/Replaced
, Belts	Inspection (Good OK Bad)/Replaced

Operations Log	Date of Site Visit:
Wisconsin Public Service Corporation	Arrival Time:
Oshkosh Former Manufactured Gas Plant	Departure Time
Operator:	Signature:
DESICCATOR (HANKISON, DHW-25)	^
☐ Is the desiccator on?	Of / N If not, why?
Check the pressure gauges (tower on reads pressure and oth	
Check prefilter and afterfilter indicators are in green area	* If red, then change filter
☐ Replaced prefilter / Replaced afterfilter	<u>,                                      </u>
☐ Record relative humidity:	
MULTI-PHASE SEPARATOR	
Each Visit	
☐ Bubbles in influent chamber?	Y / N * If yes, dewatering pumps needs to be inspected.
☐ Thickness of DNAPL inside sight tube:	(in. approx.)
☐ Is DNAPL level switch inside sight tube operating?	Y/O Nourhaswork
☐ Note DNAPL tank level:	Empty 1/4 1/2 3/4* Full *If tank is 3/4 full, contact NRT for disposal.
☐ Thickness of LNAPL level inside sight tube:	Tot disposal.
☐ Record LNAPL tank level:	*If tank is 3/4 full, contact NRT for disposal.
Quarterly Inspect water level at oil skimming weir plate:	ok Below
Condition of coalescing media:	OK
DNAPL PUMP (P-1/ MOYNO 500)  ☐ Is pump operating?	Y / 1 1 If not, why?
☐ Is packing gland leaking?	Y / N * If Yes, note on maintenance form
TRANSFER PUMP (P-2 / EBARA)  Ullis pump operating?	Ø/n
TRANSFER TANK  ☐ Note water level:	<u>'</u> 2
☐ Note sediment thickness:	(in. approx.)
☐ Removed accumulated sediment?	Y/ <b>(</b> ()

Óperations Log	Date of Site Visit:
Wisconsin Public Service Corporation	Алтіval Time:
Oshkosh Former Manufactured Gas Plant	Departure Time
Operator:	Signature:
BAG FILTERS	
Record inlet pressure:	
Record outlet pressure:	
Inspect bag filters:	Good OK Bad
☐ Replaced bag filters?	Y /200
AID CUDIDDED	
AIR STRIPPER  Is the air stripper operating?:	$\mathcal{O}_{iN}$
☐ Inspect bearings:	Good OD Bad
- 1000	
Greasing Interval of Bearings Based on operating conditio	
☐ Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo,	
Moderate to Extremely Dirty: Up to 160F 1-2 mo, 160	-200F+ 2-4 weeks
Fairly Clean: Up to 120F 6-12 Mo., 120-160F 2-3 mo,	160-200F+ 1-2 Mo
** Temperatures OF to 200F inclusive use Mobil Oil-Mobilelux EP#2, Shell O	oil-Shell Alvania EP#2 or Chevron-Chevron SRI #2
Record Pressure Reading:	21.5
Troubleshooting: Capacity or Pressure Below Rating	Y/N
☐ Troubleshooting: Vibration and Noise	Y/N
☐ Troubleshooting: Overheated Bearings	Y/N
☐ Troubleshooting: Overload on Motor	Y/N
OTHER Flow meter reading: 12352000	
Flow meter reading: 1 d 3 5 0 0 0 0	gallons
Inspect piping and valves for leaks:	
Comments/Notes:	
In F	genze 6450230 gals
	)
Company on a fact to be	C ml
Compressor running for 2 min ever	y 6 ml.

3 of 4

10mm/assensesess/11dehio/15g9/18e02

1312 Operation Log

Date of Site Visit: Oshkosh Former Manufactured Gas Plant Wisconsin Public Service Corporation Operations Log

Operations Log					
Wisconsin Public Service Corporation	Arrival Time:				
Oshkosh Former Manufactured Gas Plant	Departure Time	9(			
Oberator	Signature:				
Operator:					transfer .
DEWATERING PIIMPS (HAMMERHEAD HF43SEB)	<b></b>	Monitoring Station/Wel	ntion/Well	Control Panel	
		Bressure   Bubbler Depth	o ajjeda(ij - se		
Ę	Location	Setting Reading	ng March	Hibwikite M. Gyall	とう
☐ Is the pump operating? (✔/N If not, why?		f (psi) al (intervaler	( <u>er.)</u>		
☐ Blow air (<15psi) through bubbler line to remove oil from outlet	Dewatering Sumps	sdun		-	
☐ Complete adjacent table	DS-1	14		0 1812	82842 TSUST
☐ Annual pump cleaning (Oct)	DS-2	0		0 844	84453 25843
	DS-3	202		0, 2TR	277720 83931
☐ Is the pump operating? Y/Ø If not, why? 🗘 opund	DS-4	42		435	43512 130 St
☐ Blow air (<15psi) through bubbler line to remove oil from outlet			TOTAL		

	Ceds		18227 543C8	76483 258436	277720 83931	130 64	3
Control Panel	E GAVISS		18227	84453	271720	43512	
Contr	HijowaRate (lepint)		0	O	9	)	
rWell	Deptinto Water (fb.)					·	TOTAL
Monitoring Station/Well	Bubbler Reading (m.water)						
Monit	Regulator Setting	saums	1/7	0	202	42	
	Location T	Dewatering Sumps	DS-1	DS-2	DS-3	DS-4	
	Construction of Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Construction Co					•	

Natural Resource Technology, Inc.

4 of 4

 $\square$  Blow air (<15psi) through bubbler line to remove oil from outlet

☐ Annual pump cleaning (Oct)

□ Complete adjacent table

If not, why?

Z N

☐ Is the pump operating?

☐ Annual pump cleaning (Oct)

Complete adjacent table

□ Blow air (<15psi) through bubbler line to remove oil from outlet</p>

☐ Annual pump cleaning (Oct)

1312 Operation Log

☐ Complete adjacent table

If not, why?

Y/N

☐ Is the pump operating?

Water Level Indicator Serial #:
Quality Probe Type and Serial #:
Calibration Check: Well Depth from TOC (feet) : _____ Purge Device and Serial # : ____ Water Level Indicator Serial #: BITI- 1 MIRK MUSES Site: WPSC Oshkosh MGP Site General Internations Date: 4.10.7 Project #: 1312 Task #: 8.0 Samplers:

Well Depth from TOC (feet):

Purge Device and Serial #:

Water Level Indicator Serial #:

Water Level Indicator Serial #:

Quality Probe Type and Serial #:

	0	5 00 should a			1.	00%	202	800	Control Commence of the Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control of Control o	P20	Section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the section of the sectio	· · · · · · · · · · · · · · · · · · ·	6 13.28	771 62 6141	11.86	12.78	131.61.81 64	
Flejd/Comments	لاء ١٥ وكريا وك	Work Bry, No purge	5- total property		Ar Suit 10				POST-PURGE	(Disert)			1	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2		7.63	5,811+16:11	
Field Filtered Analysis: Field/Gomments	# 2	NA	A A				$\rightarrow \left  \right $	N		Color	750	V80-	لسيانيم	Lighten L	DIEK/MIT N	L.	13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	
Depth (g/SWL affer Punge (feet)	43.61	130	11,95	13.10	(1.10	4.45	3.42	7,2L		PAGE 1	( <u>Servison</u> )		17	1	7.24	<del>                                     </del>	98.9	
Volumes e Purged Strallons	<u> </u>	X	6,0	8,9	机	•	18.5	4.5	TECOPARACIES	PERSONAL PROPERTY.	S5-32	7/ 0.36 1		-	11. 454	19	14.27 08907	•
Purge Time	Sentininin V		7	3	$\alpha$	7	4	7		Temp		16.81	1	<u>'</u>	13.50	~	_	
Purge	Device (	~	Butu				>	Burd		ORP		3.4/ 176.6	1.20°C	· -	1024.4	-55.1	17941	
Depth (3 Purges Pu	SWL/(feet)	407	70.7	8.19	10,64	d 25	3.34	3.20		PRE-PONGE DISS.		3.41	1.1.	3.54	500	7.5H	(4.1)	
Total Well	Depth (feet)。 ぐン・バ	750	T-2	18.07	14.41		110	9.70		100		7	2 2	N	7	2	STATE INTERN	
Times	aux)	2000			2001	I		^~ p, Gi		E-50-20	Dio	\ <del> </del>	Parent Control	1	2 5 C	Thek-1	9	
	Date (milli	4.10.7	9.100	mo. 63 4.48"	0		>	0.6	Provide Alice		(30)	560	1 0				1-1	
Sample	Location	10/ 1	10 % O 11 W	300 M	7 0	B. D.	20.00	(F) 707	?	246	Sample: - Location	6-104	1-00	FOI MM	3010	0-10-9	50-m	

N/A - Not Applicable

SWL - Static Water Level

1312-GWMF-001 Page 1 of 100

GROUNI	GROUNI   Site: WPSC Oshkosh MGP Site   Project #: 1312   A · 16 · 7     Date: Q. G-/(N)R.   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place   Place	GROUNDWATER MONITORING INFORMATION FIELD FORM	Well Depth from TOC (feet): NA	Purge Device and Serial #: (3 ~1) ~~	Water Level Indicator Serial #: 44 18 46	Water Level Indicator Serial #:	Ouality Probe Type and Serial #: XST	Calibration Check: True Out	
	PSC Oshkosh MGP Site	GROUNI							22

	Fleidicomments.	With Dry NO Ruly	010	Water land only	Weter lave John	0 )	Water level Only	MS/20 012			POST-PURGE	Ooxygen Cond:		2.22 -1224 20.13 1.78K	14.69	3.60 -65.7 20.40 2.076		
	Field Fittered Analysis - Field Comments.	NA	NA			\$ 2		NA				Colors	60 Doy .	Myrkans //	- 2 - Jan	Chur N		
Depth to SWL	((ee))	1/2,2/1	2.67			11.63		3.09		L SE SE SE		Hd. (SS)	1	6.19	1	6, 34		
Volume Burged	(gallons)	288	6.6			6.25		7		WW.EEELDIPARAMETIERSW		Cond	0.725		14.49 11.656	1513		
RGERHASE MoTine	(minutés)*	10	7			6.5		5				Temp	54.21		<u> </u>	2 2.48	5	
e de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la constante de la consta	Pevices.	Bulke	i		8	boled		B.17.c				J480.+	-1333		5,421-	1.55.1		
	SWL (feet)	3.45	296	28.5	2.5.2 E	4.73	4.25	2,0%			PRE-PURGE	neg(XO)	1.0 6	\	78 5	6 C		
	(military)) ("Deptin (661) SWIL (661)	45.34	1150 12.50	1	(	13.70	١	Ht Q				Odor.		77	7	7		
	(milliarý):	Œ[]	1150	1155	1200	(710	,	1230				C6101	المرايد	10,10	100 K 124	()		
	Date	4.01.5						6.60	N.			DH S	<b>3</b>	1	7 h 3	6.21		
	Sample: Docation Date	SOID	13 J	MU lour	1-28	OWIR	でいる	1- M/				Sample	0 1 05	(Fig. 12)	A1120 C. 4C	22.3		

a 5.

NA · Not Applicable

SWL - Static Water Level

HATINE RISOLUE TELMO CA

SWL - Static Water Lave

GROUNDWATER MONITORING INFORMATION FIELD FORM

11 84 to	014 015 015 016 017 Ulber hevel any	POST-PURGE  Diss  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYGON  OXYG
Well Depth from TOC (feet):  Purge Device and Serial #: (3ch-c)  Water Level Indicator Serial #: Heres 11(8)  Water Level Indicator Serial #: (4cc)  Quality Probe Type and Serial #: (5ch-c)  Calibration Check: (1cc)  Calibrati	Wheen Treis nitered Malysis. Bild Comments 7.72 NA 013 WA NA 013 13.4 NA 01	6.70 dr w 6.70 dr w 7.71 cher m
WPURGERBYSER ONE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE OF THE VOICE O	Minima (Gallons)  6 wile S.4  2 2  3 3 4	18.4 2.4 8 18.4 2.4 8 18.4 5.0517 18.4 6.0 5.0517 19.44 1.787
	12.36 4.67 7 4.47 49.40 6.83 2 2.05 12.19 3.27 7.10 12.19 3.27 7.10 12.19 3.27 7.10 12.19 3.27 7.10 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12.19 12	PHE-PURGE PRE-PURGE N 2.40 N 1.05 N 3.42
Geografilinformations Sine: WPSC Oshkosh MGP Site Project #: 1312 Task #: \$ \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \times \ti	Samping Deces (Milliams)  M. W. M. M. M. M. M. M. M. M. M. M. M. M. M.	PHU CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTON CONTO

N/A - Not Applicable

SWL - Static Water Level

# GROUNDWATER MONITORING INFORMATION FIELD FORM

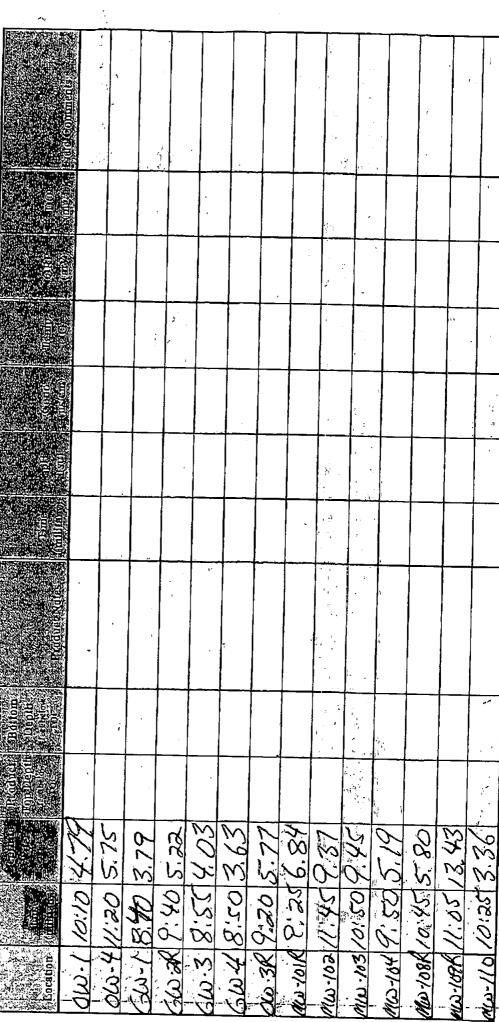
	GROUND WALEN MOINTLUM	INDIVATER MOINT OWN OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL OF THE CONTROL O
Cenera Information		Well Depth from TOC (feet): Arth
Site; WPSC Oshkosh MGP Site	TANF CO V	
Project # : 1312	14TH 092	Water Level Indicator Serial #:
Task #: 6.0	- - -	1 1
Samplers: 2 / / / / / / Samplers:		Calibration Check: Thus Por Denny
	THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECTION OF THE SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SECOND SE	

	410,017	070	120	Going Day	Water level only		>	Water hen only	POST-PURGE	Diss.		1/08.14	1.95 -960 19.72 0.901	4.78 -132.0 12.86 0328			e#			
FieldiFiltered:Analysis:	82	NA	NA	NA						2,1000		5	(12m N	(120 W	- Too acers		1			
DapthioSWI4    affer Purgers	863	3.68	2.94	59.55					THIS	446	(68)	702	1159	7.23						
Yourne Rurged (gallons)	6/3	7	28	773					WERIEINDIRATION EIGHEIS	300	)   (	0.440	2350	1,258		ń.				
pungeines Purgei∏me (minutes)	<b>6</b> h	8	30	15							Гещо	17.71	19.37	1	10,70					
Purge Purge	B. Jes		$\rightarrow$	Boren			•				CORP.	71.15	1.87 -100.6	-118,3	1473			r.e		
Deptity (o	25.8	2.56	2.76	6.54 Burn	72%	5.29	10.83	4.20	30010-300	DI88.	Oxygen	3.7b	1.87	1.2.1	13.31	1				
A TOURING BOTH OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY	8	12.58	0930 4296	1030 67,26			(	)			Odbr	/	) V	. '	λ,					
(Time)	0836		0,4 %	1030	1330	1235	1240	Shel			Color	アミスラ	(10,00)	<u> </u>	) <del>-</del>	1				
Date	9-11-7						<b>-&gt;</b>	9,11.7			(IS)	مادر")	1	727	0 0, 0,					
Sample:		MW/ID	80! d	0110	J-50	105-2	5-50	DS-4			Sample:	1111	011 July	8010					,	

N/A - Not Applicable

SWL - Static Water Level

(t)	
Operations Log	Date of Site Visit: ///30/87
Wisconsin Public Service Corporation	Arrival Time: 12:00
Oshkosh Former Manufactured Gas Plant	Departure Time 13:00
Operator:	Signature: Milas Mason
WHEN COMPLETED FAX TO (262) 523-9001	
ATTN: HEATHER SIMON, PROJECT ENGINE	EER *Emergency Shut Down
OVERALL TREATMENT SYSTEM	Push emergency stop     button on control panel
Is system operating upon arrival? Y/N If not, why?	2. Shut air compressor ball valve
Is system operating upon departure? Y/N If not, why?	3. Shut both bag filter ball valves
COMPRESSOR (DEVAIR, VATV-5063)	
Compressor turns ON at 100psi and turns OFF at 150psi.	
Record compressor operation:	on/off
Record pressure:	100/145 inches Hg
Mark 1	<b>(</b>
Each Visit	
Inspect pressure relief valve	
Drain moisture from lank	
Check Oil level; Topped off oil	Y/N * If Yes, note on compressor maintenance form
Inspect air filter:	Good OK Bad
Quarterly	
☐ Change Oil (Mar.June.Sept,Dec) *with Devair PR-20 oil:	Y/N * If Yes, note on compressor maintenance form
Replace air filter (Mar, June, Sept, Dec) *with Devair filter:	Y / N * If Yes, note on compressor maintenance form
☐ Check condition and alignment of belt, flywheel, and mo	otor pulley.
☐ Ensure compressor head unloads when motor shuts down	n.
☐ Clean pump fins and motor of dust and dirt.	* Note on compressor maintenance form
☐ Clean sediment/moisture trap of debris.	* Note on compressor maintenance form
2000 Hour Maintanence	
☐ Every 2000 hours, lubricate motor bearings	
☐ Inspect/Replace as necessary the following:	
☐ Pump Valves	Inspection (Good OK Bad)/Replaced
Check Valves	Inspection (Good OK Bad)/Replaced
☐ Safety Valves	Inspection (Good OK Bad)/Replaced
☐ Pressure Gauge	Inspection (Good OK Bad)/Replaced
☐ Belts	Inspection (Good OK Bad)/Replaced




Operations Log	Date of Site Visit: 11/30/07
Wisconsin Public Service Corporation	Arrival Time: 18:00
Oshkosh Former Manufactured Gas Plant	Departure Time 13160
Operator:	Signature: Miles Mason
DESICCATOR (HANKISON, DHW-25)	
☐ Is the desiccator on?	YN If not, why?
Check the pressure gauges (tower on reads pressure and	
☐ Check prefilter and afterfilter indicators are in green area	
Replaced prefilter / Replaced afterfilter	
☐ Record relative humidity:	
MULTI-PHASE SEPARATOR	•
Each Visit	
☐ Bubbles in influent chamber?	Y / N * If yes, dewatering pumps needs to be inspected.
☐ Thickness of DNAPL inside sight tube:	(in. approx.)
☐ Is DNAPL level switch inside sight tube operating?	Y (N)
☐ Note DNAPL tank level:	Empty 21/4 1/2 3/4* Full "If tank is 3/4 full, contact NRT
☐ Thickness of LNAPL level inside sight tube:	for disposal.
Record LNAPL tank level:	*If tank is 3/4 full, comtact NRT for disposal.
Quarterly	1 . 1
☐ Inspect water level at oil skimming weir plate:	OK & Below
☐ Condition of coalescing media:	_ OK
: :	
DNAPL PUMP (P-1/ MOYNO 500)	
☐ Is pump operating?	Y (N)If not, why?
☐ Is packing gland leaking?	Y/N * If Yes, note on maintenance form
TRANSFER PUMP (P-2 / EBARA)	
☐ Is pump operating?	YN
TRANSFER TANK	- L
□ Note water level:	
□ Note sediment thickness:	(in. approx.)
Removed accumulated sediment?	Y /(N )

		(3)	,	1	1 -	
Operations Log	`,	,	Date of Site Vis	it: 11/30	0/01	
Wisconsin Public Service Corpo	- AIP	• -	Arrival Time:	12:	50	
Oshkosh Former Manufactured	Gas Plant	, , <u>J</u>	Departure Time	13:0	90 <u> </u>	
Operator:	ł		Signature:	Vil. Mo	esa	
BAG FILTERS	,	1				
Record inlet pressure:	<u> </u>		<u>8.</u>	<b>.</b>	·	
Record outlet pressure:		<u> </u>				
Inspect bag filters:		Good OK	Bad	A. (1)	i	
☐ Replaced bag filters?	1	Y/N	) ·	The state of		
AIR STRIPPER		· •	**			•
ls the air stripper operating?:		(V)N	, s.	Maria Cara		
☐ Inspect bearings:		Good OK	Bad			-
□ Veni open to OUTSIDE or INSIDE	100	10000	<i>y</i> 25 cd	in the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	<u></u> ا ^{ري} ن پڙه
☐ Greasing Interval of Bearings Based	on operating cond	itions and operating to	emperature of F	an:		<u> </u>
☐ Fairly Clean: Up to 120F 6-12 M						<u></u>
☐ Moderate to Extremely Dirty: Up					x*;;;*	
☐ Fairly Clean: Up to 120F 6-12 M		<u> </u>	i,	4 4		<u> </u>
	As .	· · · · · · · · · · · · · · · · · · ·	5 150	A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA		
** Temperatures 0F to 200F inclusive use Mobil O  Record Pressure Reading:	n-Moodelax EP#2, She	UU-Shell Alvanja EP#2	or Chevron-Chevron	SRI #2	* •	1:
☐ Troubleshooting: Capacity or Pressur	re Below Rating	Y/N	_ <u></u>			
☐ Troubleshooting: Vibration and Nois	e	Y/N			<del></del>	
☐ Troubleshooting: Overheated Bearing	gs ·	Y/N		<del></del>	,	
Troubleshooting: Overload on Motor	·	Y/N				
		.,,,,,,		·	<del></del>	
OTHER (S)	2000					
Flow meter reading: 12683	000		gallons	· ••		
Inspect piping and valves for leaks:						``
		+-				
Comments/Notes:	<i>t</i>	. 1	المستمرسية			
Intlue	A Gala	a: Not	Ther.	Take	u Of	1
	7					
					<del>~</del>	
,			, , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		
						· ——
						<del></del>
1312 Operation t on						

	_	
	٠-,	`
		•
4	5	
ř	Ę	
7	ᅕ	
- 1	7	
-	_	,
L	ٻ	
ĭ	7	
Ξ	Ξ	1
Ц	L,	١
Ų	Ď	
٥	Ć	,
'n	J	
-		•
7	_	
3	÷	•2
5	Ľ	
Ц	,	
9 6	Ļ	
Ц	-	4
$\Box$	ָנ נ	
-	ļ	
Щ	١,	
WELL LEVEL AND PIFT D DABAMETEDS FIELD FORM	- [*]	
C	۱,	
Z		
d		1
1		,
ш	ĺ	r.
5	•	•
ш	ľ	
إ		
ٺ	i	
ت	^1*	
ш	١. `	•
≥		
	,:	
	٠	
	,4	./

Water Level Indicator Serial #: Heron - # 15868 Purge Device and Serial #: Quality Probe Type and Serial #; Calibration Check; Date: Project # : Task #: Sec Site: Samplers :





09/11



iva: Not Applicable

9204334916

	÷
# 1	Š
איניסייבר העסייבר	7 5
2.2	ž
AW	
אינטאני אָנעטיבי	Transport

1	130/07 Mile Maro	Ussing 1- Founds - Small Both	Come Temple Lath. Both
L CONDITION FIELD FORM	Samplers:	AT LEAST ONCE A YEAR  ST NEIGH  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER  WESTER	
) WELI			N/A V N/A V
4)W 1-14-			2 4 N/4 X
	) (SE)	6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108 6.108	25-2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6

P : Poor - Potential or Evident Sample Integrity Issues (additional comments required, picture(s) desirable)
F : Pair - Puture Sample Integrity May Be Compromised if Well Repair/Opgrade is Not Undertaken (additional comments required)
G : Good (additional comments not bequired)

n/a: Not Applicable

Pusanii Medekananiani ini isaya Feet fun

100 -41 . 9204334916 ::

Sin: Ogle Kosk, MCP WELL CONDITION PIELD FORM  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1 722  From 1							#	201	8	A	4. !				<i>,</i>		<b>&gt;</b>			
THE CALL CONDITION FIELD FORM  INTER  EVERY SAMPLING BVENT  C C C N C N Y C C C C C C N C N Y C C C C	1/2/	(10 / 0/		<u></u>				1 / / /	78							0.0	Macks gluein			
INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERPRESENTATION FIELD FORM  INTERP		12 i St.		A YEAR																,
COCOCO V C N V V C C C C C C C C C C C C C C C	ORM J	Sample		EAST ONCE		e de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della comp		<u> </u>									1.			
III. OSLKOL MCD WELL  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT	FIELD F(	1	:	ATL																
III. OSLKOL MCD WELL  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT  STATE SAMPLING BYENT	DITION	•	, 50	,			10	1		2/2	12	2	1/1	O	0	6	0	V	Q	0
COCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCOCO			- a			(IIII)	- Cartina						-				are Tho	2.3		
00000000000000000000000000000000000000	WE		<i>~</i> . │	BVENT	1			\ \rac{1}{2}				^  >				\(\frac{1}{2}\)		$\langle $	\(\frac{1}{2}\)	\ /
00000000000000000000000000000000000000	As S		145	MPLING			バリ	1	7	10	10	10	10	10	\ \ \ \	1	\ \ \ \		\ \ !	V   5
00000000000000000000000000000000000000	M		 	VERY SA		W. W. C.	$\mathcal{N}$	\rangle \rangle	\ \ \ \		2	\ \	\rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangle \rangl		\\ \times \					7
000000000000000000000000000000000000000	405/			3			N	9	5	0	0	9	0	0	5	5	7	1	<u>く</u>	17
000000000000000000000000000000000000000	326	,	- 200 m				U	ľ	0	O'.	0	2	9	0	<u></u>	0	0	0	5	9
1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2	1 L				5	0	0	5	0	0	9	0	$\vee$	V	0	0	0	0
	Site	Project.					/-ത	4-00	Sw-1	100 K	500.3	60.4	Oco 34	dw-1ak	MW-103	MW-103	100-104	12.108K	120.cm	011-0110

P ; Poor - Potentiat or Evident Sample Integrity Issues (additional comments required, picture(s) desirable)

F. Fair - Future Sample Integrity May Be Compromised if Well Repair/Upgrade is Not Undertaken (additional comments required, nicture(s) desirable)

G. Good (additional comments not required)

n/a: Not Applicable

PHONOTONIA INCREMISED SHICKESS

### APPENDIX F2 LABORATORY ANALYTICAL RESULTS



1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

**Analytical Report Number: 881945** 

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Brian Basten

Project Name: WPSC - OSHKOSH

Project Number: 1312

Lab Sample Number	Field ID	Matrix	Collection Date
881945-001	032607001	WATER	03/26/07 14:20
881945-002	TRIP BLANK	WATER	03/26/07

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Approval/Signature

Date

Page 1 of 12

Terphenyl-d14

#### **Analytical Report Number: 881945**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 032607001

Matrix Type: WATER

Collection Date: 03/26/07

**Report Date**: 03/29/07 **Lab Sample Number**: 881945-001

INORGANICS											
Test		Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date	Prep Method	Anl Method
Cyanide, Total		0.50	0.047	0.16		5	mg/L		03/28/07	EPA 335.4	EPA 335.4
Total Suspended Solids		8.0	0.34	1.1		1	mg/L		03/28/07	EPA 160.2	EPA 160.2
BTEX									· · · · · · · · · · · · · · · · · · ·	Prep Dat	e: 03/29/07
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Ani Method
Benzene		1.9	0.14	0.46		1	ug/L		03/29/07	SW846 5030B	SW846 8021E
Ethylbenzene		7.8	0.40	1.3		1	ug/L		03/29/07	SW846 5030B	SW846 8021E
Toluene		0.68	0.36	1.2		1	ug/L	Q	03/29/07	SW846 5030B	SW846 8021E
Xylene, m + p		2.5	0.74	2.5		1	ug/L		03/29/07	SW846 5030B	SW846 8021E
Xylene, o		4.3	0.36	1.2		1	ug/L		03/29/07	SW846 5030B	SW846 8021E
Surrogate			LCL	UCL			•				
a,a,a-Trifluorotoluene		101	80	124		1	%		03/29/07	SW846 5030B	SW846 8021E
PAH/ PNA										Prep Dat	e: 03/28/07
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Cod	e Anl Date	Prep Method	Anl Method
1-Methylnaphthalene		5.8	0.20	0.68		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
2-Methylnaphthalene	<	0.22	0.22	0.75		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Acenaphthene		5.4	0.16	0.54		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Acenaphthylene		1.0	0.16	0.54		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Anthracene		1.2	0.23	0.77		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Benzo(a)anthracene	<	0.31	0.31	1.0		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Benzo(a)pyrene	<	0.37	0.37	1.2		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	<	0.31	0.31	1.0		20	ug/L	Z	03/28/07	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	<	0.39	0.39	1.3		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	<	0.39	0.39	1.3		20	ug/L	Z	03/28/07	SW846 3510C	8270C-SIM
Chrysene	<	0.38	0.38	1.3		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	<	0.38	0.38	1.3		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Fluoranthene		1.4	0.31	1.0		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Fluorene		3.2	0.18	0.60		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	<	0.38	0.38	1.3		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Naphthalene	<	0.25	0.25	0.83		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Phenanthrene		1.3	0.23	0.76		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Pyrene		1.3	0.29	0.97		20	ug/L		03/28/07	SW846 3510C	8270C-SIM
Surrogate			LCL	UCL			-				
Nitrobenzene-d5		0	10	150		20	%	D	03/28/07	SW846 3510C	8270C-SIM
2-Fluorobiphenyl		0	20	111		20	%	D	03/28/07	SW846 3510C	8270C-SIM

20 %

115

03/28/07 SW846 3510C 8270C-SIM

**Analytical Report Number: 881945** 

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: TRIP BLANK

Matrix Type: WATER

Collection Date: 03/26/07

**Report Date**: 03/29/07 **Lab Sample Number**: 881945-002

BTEX									Prep Dat	e: 03/29/07
Analyte		Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date	Prep Method	Anl Method
Benzene	<	0.14	0.14	0.46		1	ug/L	03/29/07	SW846 5030B	SW846 8021B
Ethylbenzene	<	0.40	0.40	1.3		1	ug/L	03/29/07	SW846 5030B	SW846 8021B
Toluene	<	0.36	0.36	1.2		1	ug/L	03/29/07	SW846 5030B	SW846 8021B
Xylene, m + p	<	0.74	0.74	2.5		1	ug/L	03/29/07	SW846 5030B	SW846 8021B
Xylene, o	<	0.36	0.36	1.2		1	ug/L	03/29/07	SW846 5030B	SW846 8021B
Surrogate			LCL	UCL						
a,a,a-Trifluorotoluene		101	80	124		1	%	03/29/07	SW846 5030B	SW846 8021B

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupiD	Field ID	Comment
881945-	PAH+-W	All Samples	Inadequate sample volume received to perform the method required MS/MSD.

#### **Qualifier Codes**

Flag Applies To Exp	lanation
---------------------	----------

preparation.

Flag	Applies To	Explanation
Ā	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
E	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
K	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
N	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
X	All	See Sample Narrative.
Z	Organics	This compound was separated in the check standard but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
+	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
8	Inorganic	Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.
9	Inorganic	Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample

<b>Pace</b>	Ana	lytical
Servi	ces,	Inc.

#### Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	002
BTEX	G G
CYANIDE, TOTAL	В
PAH/ PNA	В
SOLIDS, TOTAL SUSPENDED	В

Code	WI Certification
В	405132750 / DATCP: 105-444
G	405132750
ł	

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

SDG: Prep Method: QC Batch Number: 19237 Lab Section: EPA 160.2 881945 WETCHEM QC Type MB CCS P PUP Client Sample ID 881905-001DUP 881935-001DUP WCG2178-002MBLCS WCG2178-002MB 881905-001DUP 881935-001DUP WCG2178-002MBLCS WCG2178-002MB Lab Sample ID

Analytical Method: EPA 160.2

Client Sample ID Lab Sample ID Client Sample ID

032607001 881945-001 MB

Lab Sample ID

LCSD         LCSD         LCSD         LCSD         Lab Dup RPD           LCS Recovery         Spiked Conc         LCSD Recovery         RPD RPD Recovery         LCL UCL RPD Sample Result         Result Dup RPD Limit         Dup RPD Limit           150         102.0             80         120         10         881905-001         64.00         60         6.5         10	150 102.0	24 147.0	Total Suspended Solids < 0.24
LCS/ LCSD LCS/ Control Limits Parent Lab Dup  Recovery Spiked LCSD Recovery RPD LCL UCL RPD Sample Result Dup RPD  % C Conc Conc % C % C % % % Number Conc Conc % C	150 102.0	<u> </u>	Total Suspended Solids < 0.24
	Recovery	LCS Spiked Conc	Method Blank Result Conc

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 19237

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Client Sample ID 032607001	Analytical Method: 8270C-SIM	Prep Method:	QC Batch Number: 19264	Lab Section:	Batch:
<b>Lab Sample ID</b> 881945-001	8270C-SIM	SW846 3510C	19264	BNASIM	881945
MB ID					
Client Sample ID					
Lab Sam	MSD	MS	LCS	MB	QC Type
Lab Sample ID MB ID	881884-001MSD	881884-001MS	svog2114-28LCS	svog2114-28MB	Client Sample ID
	881884-001MSD	881884-001MS	svog2114-28LCS	svog2114-28MB	Lab Sample ID

		Nitrobenzene-d5 62%	Pyrene < 0.015	Phenanthrene < 0.012	Naphthalene < 0.013	Indeno(1,2,3-cd)pyrene < 0.02	Fluorene < 0.0096	Fluoranthene < 0.016	Dibenz(a,h)anthracene < 0.02	Chrysene < 0.02	Benzo(k)fluoranthene < 0.02	Benzo(ghi)perylene < 0.02	Benzo(b)fluoranthene < 0.017	Benzo(a)pyrene < 0.019	Benzo(a)anthracene < 0.017	Anthracene < 0.012	Acenaphthylene < 0.0086	Acenaphthene < 0.0086	2-Methylnaphthalene < 0.012	1-Methylnaphthalene < 0.011		Method Blank
	1	ı	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	Spiked Conc (	
	- 51	50	0.12 62	0.12 61	0.11 55	0.12 58	0.11 54	0.15 75	0.11 53	0.14 70	0.15 75	0.12 59	0.13 63	0.13 64	0.12 61	0.1 51	0.11 53	0.11 54	0.11 54	0.1 52	Conc %	
	1	-	-	ł	-	1	1	ı	ı	1		1	1	1	ı	1	1	1	ı		C	LCSD
	ı	1	1	ı	1	i	1	1	ı	I	1	1	I	ı	ı	ı	1	I	1	1		
	1	1	1	l	1	1	1	1	!	1	!	!	1	1	1	ı	1	1	1	 	Conc % C	
	1	I	J	1	1		1	-	-	1	1		1	1		1	1	1	-	-	% RPD	
115	20 111	10 150	55 135	40 131	45 131	54 143	40 131	48 145	46 150	61 150	61 149	57 136	51 141	61 136	48 146	39 139	39 127	40 126	40 138	41 136	% %CL	130
-	1	1	20	25	ఆ	20	25	20	20	26	20	20	20	20	20	27	24	23	26	28	RPD	CSD
2004	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001	881884-001 <	881884-001	881884-001	881884-001	881884-001	881884-001	Sample Number	Parent
000	63%	60%	< 0.015	< 0.011	0.074	< 0.019	< 0.0091	< 0.016	< 0.019	< 0.019	< 0.02	< 0.019	< 0.016	< 0.019	< 0.016	0.013	< 0.0082	< 0.0082	< 0.011	0.010	Result Conc	Parent
	1	1	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	Spiked Conc	MS
ຄືວ	1	- 65	0.15 79	0.15 79	0.14 34	0.11 58	0.13 70	0.17 88	0.1 56	0.14 76	0.14 76	0.11 59	0.13 68	0.12 66	0.14 75	0.16 76	0.13 71	0.13 69	0.13 71	0.14 68	MS Recovery Conc % C	
1		1	0.19	0.19	N 0.19	N 0.19	0.19	0.19	0.19	0.19	0.19	N 0.19	N 0.19	N 0.19	0.19	0.19	0.19	0.19	0.19	0.19	/ery Spiked C Conc	
	1	1	9 0.15	9 0.15	9 0.14	9 0.13	9 0.15	9 0.17	9 0.13	9 0.15	9 0.16	9 0.14	9 0.15	9 0.15	9 0.15	9 0.17	9 0.14	9 0.14	9 0.14	9 0.15		
77	68	68	81	81	36 N	71	77	91	67	79	85	73	81	78	79	84	74	72	77	73	MSD Recovery Conc % C	
1	1	ı	2.5	2.7	21	20.1	9.9	2.8	18.9	3.0	12.0	20.2	17.8	16.2	5.6	9.6	4.1	4.1	8.2	7.1	% RPD	
4	20 1	10 1	71 1	58 1	ස 1	71 1	56 1	58 1	43 1	71 1	75 1	72 1	72 1	72 1	45 1	55 1	56	56 1	51 1	52 1	% [[]	MS
155	111	150	136 20	138 20	107 31	140 20	121 21	137 20	150 20	136 20	129 20	128 20	134 20	129 20	150 20	126 20	115 24	113 24	123 33	113 34	UCL RPD	MS/MSD Control Limits

Conc = ug/L unless otherwise noted C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 19264

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Client Sample ID 032607001	Alialytica Metilod: Syvoto ooz ib	Analytical Mathod:	Prep Method:	QC Batch Number: 19241	Lab Section:	Batch:
<b>Lab Sample ID</b> 881945-001	0404040	GM848 8031B	SW846 5030B	19241	GAS	881945
MB ID						
Client Sample ID TRIP BLANK						
<b>Lab Samp</b> 881945-002	MSD	MS	LCSD	LCS	MB	QC Type
Sample ID MB ID 45-002 MB	881984-012MSD	881984-012MS	GG2177-1MBLCSD	GG2177-1MBLCS	GG2177-1MB	Client Sample ID
	881984-012MSD	881984-012MS	GG2177-1MBLCSE	GG2177-1MBLCS	GG2177-1MB	Lab Sample ID

		Method	2			- Cep			LCS/	٥ <del>-</del>	LCS/LCSD Control Limits	nits			<b>N</b> 0			5		MS/ Control Limits	MS/	Cor	MS/MSD introl Limi	≝. ∪
Tool Name			2 7	2			9	1	1 5	2	5	]	2 0 0		. Z	;		N O			MOD			H
Test Name	_	Result	Spiked	LCSF	LCS Recovery	Spiked	LCSD	Recove	y RPD	딘	UCL	RPD	Sample		Spiked	MSR	ecovery	Spiked	MSD R	MSD Recovery	RPD	5	CC C	Z
		Conc	Conc	Conc	% C	% C Conc	Conc	%	Conc % C % C % %	%	%	%	Number	Conc	Conc	Conc	Conc Conc % C Conc Conc	Conc	Conc	% က	% C	%	%	
Benzene	^	0.14	20.000	21.9	110	20.000	21.1	105	4.1	85	115	20	881984-012	1330.0	200.00	1570.6 120		200.00 1569.2	1569.2	120	0.1	88	120	
Ethylbenzene	٨	0.4	20.00	21.6	108	20.00	21	105	3.0	85	115	20	881984-012	537.1	200.0	759	111	200.0	778.1	120	2.5	8	120	
Toluene	^	0.36	20.00	21.9	110	20.00	21.2	106	3.4	œ	115	28	881984-012	74.19	200.0	291.7	109	200.0	298.8	112	2.4	88	120	
Xylene, m + p	^	0.74	40.000	42.6	107	40.000	41.4	183	3.0	œ	115	20	881984-012	1126.2	400.00	1572.1	<b>1</b> 1	400.00	1608.2	120	2.3	78	124	20
Xylene, o	^	0.36	20.00	21.1	105	20.00	20.6	103	2.4	œ	115	20	881984-012	59.39	200.0	262.7	102	200.0	274.7	108	4.5	88	120	20
a,a,a-Trifluorotoluene		100%	1	1	101	1	1	101	1	8	124	ı	881984-012	97%	1	1	97	ı	1	97	1	8	124	+

QC Batch Number: 19241

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

	Lab Sample ID MB ID	Lab Sam	Client Sample ID	MB ID	<b>Lab Sample ID</b> 881945-001	Client Sample ID 032607001
881884-003MSD	881884-003MSD	MSD				
881987-001MSD	881987-001MSD	MSD			EFA 333.4	Allalytical Metriod. EFA 335.4
881884-003MS	881884-003MS	MS			EDA 335 A	Analytical Matheat
881987-001MS	881987-001MS	MS			FPA 335 4	Prep Method:
WCG2151-073MBLCS	WCG2151-073MBLCS	LCS			19229	QC Batch Number: 19229
WCG2151-073MB	WCG2151-073MB	MB			WETCHEM	Lab Section:
Lab Sample ID	Client Sample ID	QC Type			881945	Batch:

Cyanide, Total	Cyanide, Total	Test Name
^	^	· · · · · · · · · · · · · · · · · · ·
0.0094	0.0094	Method Blank Result Conc
0.10	0.10	LCS Spiked Conc
0.11 109.2	0.11 109.2	LCS R
109.2	109.2	ecovery
ı	1	LCSD Spiked Conc
ı	-	LCSD F
1		Recovery
1	-	LCS/ LCSD RPD % C
99	90	COI COI
110	110	Control Limit
26	20	SD mits RPD
90 110 20 881987-001 < 0.0094	90 110 20 881884-003	LCS/LCSD
< 0.0094	1.4	Parent Result Conc
0.10	0.10	MS Spiked Conc
0.12	1.5	MS F
0.12 124.9 N 0.10 0.12 123.5 N	124.6 + 0.10 1.4 86.1 + 2.6	MS MS Recovery Spiked MSD Recovery Conc Conc % C Conc Conc % C
0.10	0.10	MSD Spiked Conc
0.12	1.4	MS/ Contr MSD Recovery RPD LCL U Conc % C % C %
123.5	86.1	ecover
z	+	0
1.1	2.6	MS/ MSD RPD % C
98	90	Co
90 110 20	90 110 20	Control Limits LCL UCL RPD % % %
20	20	mits RPD

QC Batch Number: 19229

#### Sample Condition Upon Receipt



A Client Name	e: NRT		Project # <u>881945</u>
Courier: Fed Ex UPS USPS Cli			Optional our specific Projection Dates a Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Projection Dates and the Proje
Custody Seal on Cooler/Box Present:	no Seals	s intact:	no
Packing Material: Bubble Wrap Bubble	e Bags 🔲 None	Other	
Thermometer Used	Type of ice: Wei	Blue None	Samples on ice, cooling process has begun
Cooler Temperature  Temp should be above freezing to 6°C	Biological Tissue	is Frozen: Yes No Comments:	Date and Initials of person examining contents: ICLS 3-26-07
Chain of Custody Present:	Yes ONo ON/A	1.	<u>a</u>
Chain of Custody Filled Out:	DYes □No □N/A	2.	
Chain of Custody Relinquished:	∐Yes □No □N/A	3.	
Sampler Name & Signature on COC:	Yes 🗆 No 🗆 N/A	4.	
Samples Arrived within Hold Time:	ØYes □No □N/A	5.	
Short Hold Time Analysis (<72hr):	□Yes ZNo □N/A	6.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A	7.	
Sufficient Volume:	☑Yes □No □N/A	8.	
Correct Containers Used:	Yes ONo ON/A	9.	
-Pace Containers Used:	Yes ONo ON/A		
Containers Intact:	Yes 🗆 No 🗆 N/A	10.	
Filtered volume received for Dissolved tests	□Yes □No □N/A	11.	
Sample Labels match COC:	✓Yes □No □N/A	12.	
-Includes date/time/ID/Analysis Matrix:	<u>ww</u>		
All containers needing preservation have been checked.	□Yes □No ÆÑ/A	13.	
All containers needing preservation are found to be in compliance with EPA recommendation.	□Yes □No □N/A		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No	Initial when completed	Lot # of added preservative
Samples checked for dechlorination:	□Yes □No □N/A	14.	
Headspace in VOA Vials ( >6mm):	□Yes □No □N/A	15.	
Trip Blank Present:	ØY <del>es ØN</del> 6 □N/A	16.	
Trip Blank Custody Seals Present	✓ ☐Yes ☐No ☐N/A		
Pace Trip Blank Lot # (if purchased):			
Client Notification/ Resolution:  Person Contacted:  Comments/ Resolution:	Date/	Time:	Field Data Required? Y / N
Project Manager Review:	bK	•	Date: <u>3-27-</u> 0ソ

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Version 6.0 06/14/06											
Intact / Not Intact	Date/Time:	Received By:		Date/ilme:	_		Relinquished by:	Kelingo	release of liability	samples on nout are subject to special pricing and release of liability	
Coolel Custody Seal								2		Semple of HOLD	
Cooler Custody See							•			262-523-9001	
OK / Adjusted	Date/Time:	Received By:		Date/Time:	0		Relinquished By:	Relinqu		262-523-9000	
Sample Receipt pH		,									
Receipt lemp = RU C	Date/Time:	Received By:		Date/Time:	0		Relinquished By:		lrt.com	jbarbeau@naturalrt.com	Email #1:
					•				(complete	elim Rush Resul	Transmit Pi
(46128	Date/Time:	Received By:	0.00	ite/Time:			Relinquished By:	Relinqu	ded: Normal Turn	Date Needed:	(1.00)
	うな。 LaterTime:	Retained By:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	James J		<b>&gt;</b>	Sendo By	Resident	(Rush TAT subject to approval/surcharge)	urnaround fii TAT subject	(Rush
				L	┝					1	
						1					
									(		
									ina ICU	Parity 22	
									4 COC by	Added	
						<u> </u>					
3-4000 1161	68								blank *	trip 61	800
1-250 poly , 3-400- via 1											
1-ILAG KEDER 1-IL poly	-1		×	×		×	14.20mm	3/26/67	32607601	73260	001
(Lab Use Only)	COMMENTS		TSS	Tota			COLLECTION MATRIX	Ĭ	DID	5	PACE LAB #
LAB COMMENTS Profile #	CLIENT		S (E	al C			WW = Waste Water WP = Wipe	1	}	ECACI IA	
	Invoice To Phone:		PA 1	yanid	270C	<b>yses</b> 80211	OW = Drinking Water GW = Ground Water SW = Surface Water	C = Charcoal O = Oil	(billable)	EPA Level III	□ □ EPA
		· · · · · · · · · · · · · · · · · · ·	60.2)	e (90			Matrix Codes W=Water	3	MS/MSD On your sample	је Options њ)	Data Package Options (billable)
Samo	Invoice To Address:			12A)	<b>/</b> I)	ueste		Regulatory Program:			PO#:
Natural Resource Technology Inc.	Invoice To Company: Na					ıd		(	elen/Mason	jn):	Sampled By (Sign):
	Invoice To Contact:		Α	G	Α	Pok Leffer B	PRESERVATION (CODE)*		Mason - (WPSC)	nt): Mike	Sampled By (Print):
Pewaukee, Wl. 53072	Pe		z	z	z	ž Z	FILTERED? (YES/NO)		onsin	Wisconsin	Project State:
23713 W. Paul Road Unit D	Mail To Address: 23		J=Other		I=Sodium Thiosulfate		H=Sodium Bisulfate Solution		WPSC - Oshkosh	WPSO	Project Name:
Natural Resource Technology Inc.	Mail To Company: Na	G=NaOH	E=Methanol	*Preservation Codes NO3 E=DI Water	*Preser	C=H2SO4	A=None B=HCL			: 1312	Project Number:
Jody Barbeau	Mail To Contact: Jo	<b>∀</b>	<b>JSTOI</b>	F Cl	<b>2</b> 0	CHAIN OF CUST	``		262-522-1207	262-5	Phone:
	Quote #:			į	, josep en en en en en en en en en en en en en	:	***************************************		Heather Simon/Jody Barbeau		Project Contact:
COC No.	C			ğ	Analytical	Face Analytical	1		ukee, WI	n: Pewaukee,	Branch/Location:
	920-469-2436	MN: 612-607-1700 WI: 920-469-2436		- -	•	A STATE OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PARTY OF THE PAR		Inc.	Natural Resource Technology Inc.		Company Name:

(Please Print Clearly)

MN: 612-607-1700 WI: 920-469-2436

UPPER MIDWEST REGION



1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

#### **Analytical Report Number: 885345**

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Brian Basten

Project Name: WPSC-OSHKOSH

Project Number: 1312

Lab Sample Number	Field ID	Matrix	Collection Date
885345-001	062607001	WATER	06/26/07 13:30
885345-002	062607002	WATER	06/26/07 13:20
885345-003	TRIP BLANK	WATER	06/26/07

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Approval Signature

7-11-07

Page 1 of [

Date

**Analytical Report Number: 885345** 

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC-OSHKOSH

Project Number: 1312

Field ID: 062607001

Matrix Type: WATER

Collection Date: 06/26/07 Report Date: 07/11/07

Lab Sample Number: 885345-001

INORGANICS								<del> </del>		
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
Cyanide, Total	0.89	0.030	0.09		5	mg/L		07/10/07 04:44 PM		EPA 335.4
Cyanide, rotal	0.09	0.030	0.09		3	mg/L	Prep	Date/Time: 07/10/0		
BTEX							Prep	Date/Time: 06/28/0	7 12:05 PM A	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
Benzene	100	0.28	0.92		2	ug/L		06/28/07 12:05 PM	SW846 5030B	SW846 8021B
Ethylbenzene	430	0.80	2.7		2	ug/L		06/28/07 12:05 PM	SW846 5030B	SW846 8021B
Toluene	27	0.71	2.4		2	ug/L		06/28/07 12:05 PM	SW846 5030B	SW846 8021B
Xylene, m + p	110	1.5	4.9		2	ug/L		06/28/07 12:05 PM	SW846 5030B	SW846 8021B
Xylene, o	130	0.72	2.4		2	ug/L		06/28/07 12:05 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	98	80	124		1	%		06/28/07	SW846 5030E	SW846 8021E
PAH/ PNA							Prep	Date/Time: 06/29/0	7 8:32 AM A	nl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
1-Methylnaphthalene	57	20	68		2000	ug/L	QD	07/03/07 8:42 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	23	1.1	3.7		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Acenaphthene	20	0.82	2.7		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Acenaphthylene	13	0.81	2.7		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Anthracene	4.2	1.2	3.9		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 1.6	1.6	5.2		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 1.8	1.8	6.1		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 1.6	1.6	5.2		100	ug/L	Z	06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 1.9	1.9	6.4		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 1.9	1.9	6.4		100	ug/L	Z	06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Chrysene	< 1.9	1.9	6.3		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 1.9	1.9	6.3		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Fluoranthene	2.0	1.5	5.2		100	ug/L	Q	06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Fluorene	9.9	0.91	3.0		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 1.9	1.9	6.3		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Naphthalene	350	25	83		2000	ug/L	D	07/03/07 8:42 AM	SW846 3510C	8270C-SIM
Phenanthrene	12	1.1	3.8		100	ug/L		06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Pyrene	1.9	1.5	4.8		100	ug/L	Q	06/29/07 9:49 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0.0	10	150		100	%	D	06/29/07	SW846 35100	8270C-SIM
2-Fluorobiphenyl	0.0	20	111		100	%	D	06/29/07	SW846 35100	8270C-SIM
Terphenyl-d14	0.0	44	115		100	%	D	06/29/07	SW846 35100	8270C-SIM
•										

#### **Analytical Report Number: 885345**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC-OSHKOSH

**Project Number: 1312** 

Field ID: 062607002

Matrix Type: WATER

Collection Date: 06/26/07 Report Date: 07/11/07

Lab Sample Number: 885345-002

								•		
INORGANICS										
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Cyanide, Total	0.78	0.030	0.09		5	mg/L		07/10/07 04:49 PM	EPA 335.4	EPA 335.4
							Prep	Date/Time: 07/10/0	7 11:28 AM A	nl By: DAW
BTEX				•			Prep	Date/Time: 06/28/0	7 12:38 PM A	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Benzene	12	0.14	0.46		1	ug/L		06/28/07 12:38 PM	SW846 5030B	SW846 8021B
Ethylbenzene	45	0.40	1.3		1	ug/L		06/28/07 12:38 PM	SW846 5030B	SW846 8021B
Toluene	2.9	0.36	1.2		1	ug/L		06/28/07 12:38 PM	SW846 5030B	SW846 8021B
Xylene, m + p	13	0.74	2.5		1	ug/L		06/28/07 12:38 PM	SW846 5030B	SW846 8021B
Xylene, o	19	0.36	1.2		1	ug/L		06/28/07 12:38 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	100	80	124		1	%		06/28/07	SW846 5030E	3 SW846 8021
PAH/ PNA							Prep	Date/Time: 06/29/0	7 8:32 AM <b>A</b> ı	nl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.75	0.20	0.68		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 0.22	0.22	0.75		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Acenaphthene	5.5	0.16	0.54		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Acenaphthylene	0.53	0.16	0.54		20	ug/L	Q	06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Anthracene	0.87	0.23	0.77		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.31	0.31	1.0		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.37	0.37	1.2		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.31	0.31	1.0		20	ug/L	Z	06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.39	0.39	1.3		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.39	0.39	1.3		20	ug/L	Z	06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Chrysene	< 0.38	0.38	1.3		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.38	0.38	1.3		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Fluoranthene	1.7	0.31	1.0		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Fluorene	2.5	0.18	0.60		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.38	0.38	1.3		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Naphthalene	< 0.25	0.25	0.83		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Phenanthrene	< 0.23	0.23	0.76		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Pyrene	1.7	0.29	0.97		20	ug/L		06/29/07 7:49 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		20	%	D	06/29/07	SW846 35100	8270C-SIM
2-Fluorobiphenyl	0	20	111		20	%	D	06/29/07	SW846 35100	8270C-SIM
Terphenyl-d14	0	44	115		20	%	D	06/29/07	SW846 35100	8270C-SIM
•										

**Analytical Report Number: 885345** 

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC-OSHKOSH

Project Number: 1312

Field ID: TRIP BLANK

Matrix Type: WATER

Collection Date: 06/26/07

Report Date: 07/11/07

Lab Sample Number: 885345-003

BTEX							Prep Date/Time: 06/28/07 2:14 PM Anl By: SES				
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time	Prep Method	Anl Method		
Benzene	< 0.14	0.14	0.46		1	ug/L	06/28/07 2:14 PM	SW846 5030B	SW846 8021B		
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	06/28/07 2:14 PM	SW846 5030B	SW846 8021B		
Toluene	< 0.36	0.36	1.2		1	ug/L	06/28/07 2:14 PM	SW846 5030B	SW846 8021B		
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	06/28/07 2:14 PM	SW846 5030B	SW846 8021B		
Xylene, o	< 0.36	0.36	1.2		1	ug/L	06/28/07 2:14 PM	SW846 5030B	SW846 8021B		
Surrogate		LCL	UCL								
a,a,a-Trifluorotoluene	101	80	124		1	%	06/28/07	SW846 5030B	SW846 8021B		

)

#### **Qualifier Codes**

A morganic Analysis o detected in the method blank. Method blank corteria is evaluated to the laboratory method detection limit. Additionally, are evaluated on a sample by sample basis.  B inorganic The analysis has been detected between the method detection limit and the reporting limit.  Analysis is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, and the method blank criteria is evaluated to the laboratory method detection limit. Additionally, and the method blank criteria is evaluated to the laboratory method detection limit. Additionally, and the method blank criteria is evaluated to the laboratory method detection limit. Additionally, and the method blank criteria is evaluated to the laboratory method detection limit. Analysis and analysis or surrogate result not applicable due to sample dilution.  C All Elevated detection limit.  Elevated detection limit.  Elevated detection limit.  Analysis or analysis or surrogate result not applicable due to sample dilution.  C All C Analysis done on the ICP-MS. The sample concentration is greater than 50 times the IDL for analysis done on the ICP-MS. The sample soncentration is greater than 50 times the IDL for analysis done on the ICP-MS. The sample soncentration is greater than 50 times the IDL for analysis done on the ICP-MS. The sample soncentration is greater than 50 times the IDL for analysis done on the ICP-MS. The sample soncentration with the Equalifier to indicate that a physical interference was a control or detail.  E Organic Section of the ICP-MS. The result was estimated to oncentration or analysis and alternation method section limit is lass than the reporting limit and the section organic protection or analysis performed past behaling time.  I All C Preservation, extraction or analysis performed past behaling time.  I Progranic Section or analysis performed past behaling time.  Elevated detection limit may be elevated due to the presence of an unrequested analyste.  Elevated detect	Flag	Applies To	Explanation
Organic Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.  C All Elevated detection limit.  Analyte value from diluted analysis or surrogate result not applicable due to sample dilution. Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to near the established control limits of C-10%. The sample and concentration is greated than 50 time for or religion of the ICP or 100 times the control limits of C-10%. The sample size than 50 time for or religion to beserved.  For Organic Control limits of C-10%. The sample size than 50 time for or religion to be control limits of C-10%. The sample size than 50 time for or religion to be served. The control limits of C-10% for the sample size than 50 time for or religion to be control limits of C-10%. The sample by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been continued by and reported from an alternate method.  G All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.  For Organic Preservation, extraction or analysis performed past holding time.  J All Concentration detected equal to or greater than the method detection limit by sea for this project.  All Spiced detection limit due to low sample volume.  Sample performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed one organic performed in the laboratory beyond the recommended politic in the sample received in the sample volume.  Sample received within control limits.  All Spiced detection limit due to low sample volume.  Sample received of the	Α	Inorganic	method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and
method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.  All Elevated detection limit.  Inorganic Signaphi Cardina and the concentration of the total policiable due to sample dilution.  Estimated concentration due to matrix interferences. During the metats analysis the serial dilution failed to meet the established control limits of 1-01%. The sample concentration is greater than 50 times the 10L for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.  Analyte concentration exceeds calibration range.  To granic Inorganic Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.  The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.  All Concentration detected equal to or greater than 60 the foliog time.  All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Elevated detection limit due to low sample volume.  Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Elevated detection limit due to low sample volume.  Sample pri was greater than 2.  Spiked sample recovery not within control limits.  Sample pri was greater than 2.  All Elevated detection limit due to low sample volume.  Organic The relative percent difference between the limit of detection with quantitation (LOQ). The results are qualified due to the the results is uncontinued, it has been reported as a non-detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection with an elevated detection limit.	В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
All Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.  Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of c-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP-AIS. The result was flegged with the E quadifier to indicate that a physical interference was observed.  For panic Analyte concentration exceeds calibration range.  Due to operated interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 5010), this analyte has been confirmed by and reported from an attenute method.  For Organic Surrogate results usuated control criteria.  All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method delection limit is less than the reporting limit specified for this project.  For Interport of the interport of the interport of the properties of the properties of the properties.  Journal Preservation, extraction or analysis performed past holding time.  Journal Concentration detected equal to or greater than the method delection limit but less than the reporting limit.  Detection limit may be elevated due to the presence of an unrequested analyte.  Elevated detection limit due to low sample volume.  Sample preserved woreweight.  Organic Sample preceived overweight.  The relative percent difference between the two columns for detected concentrations was greater than 40%.  All Sample received overweight.  The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  Journal Control Spike recovery not within control limits.  All The analyte was not detected at or above the reporting limit.  All The analyte was not detected at or above the reporting limit.  All The analyte was received	В	Organic	method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and
Estimated concentration due to markin interferences. During the metals analysis the serial distinct failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 mess the IDC for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.  Forganic Roganic Analyte concentration exceeds calibration range.  Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.  Organic Surrogate results outside control criteria.  The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.  Preservation, extraction or analysis performed past holding time.  All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Detection limit may be elevated due to the presence of an unrequested analyte.  Elevated detection limit the tole was ample volume.  Sample perh was greater than 2.  All Spiked sample recovery not within control limits.  Sample received overweight.  The relative percent difference between the two oolumns for detected concentrations was greater than 40%.  The relative percent difference between the two oolumns for detected on excent internations. The results are qualified due to the uncertainty of analyte concentrations within this range.  All The analyte has been detected debetween the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  All The analyte was not detected at or above the reporting limit.  See Sample Narrative.  The sample result is greater than four t	С	All	Elevated detection limit.
control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the iDL for analysis done on the ICP-0-148. The results was flagged with the E qualifier to indicate that a physical inferference was observed.  E Organic Analyte concentration exceeds calibration range. Finorganic Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.  Surrogate results outside control criteria.  G All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.  This test is considered a field parameter, and the recommended holding time.  J All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  L All Elevated detection limit due to low sample volume.  M Organic Sample ph was greater than 2  Sample ph was greater than 2  Sample perior within control limits.  Sample received overweight.  The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  J All Concentration detected detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  The analyte was not detected at or above the reporting limit.  J All Sample received with headspace.  All Ascond aliquot of sample was analyzed from a container with headspace.  All Sample received with headspace.  All Conganics The relative percent difference between quantitation and confirmation columns exceeds internal quality	D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
F Inorganic Due to potential interferences for this analysis by inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.  F Organic Surrogate results outside control oriteria.  All The result is estimated because the concentration is less than the lowest calibration. The method detection limit is less than the reporting limit specified for this project.  H All Preservation, extraction or analysis performed past holding time.  This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.  All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Conganic Detection limit may be elevated due to the presence of an unrequested analyte.  Elevated detection limit use to low sample volume.  Sample privas greater than 2  Nall Spiked sample recovery not within control limits.  Organic Sample received overweight.  Organic Sample received overweight.  The analyte has been detected between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  The relative percent difference between quantitation and confirmation columns exceeds internal quality control oriteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  All Ascond aliquot of sample was analyzed from a container with headspace.  All Asecond aliquot of sample was analyzed from a container with headspace.  All Laboratory Control Spike recovery not within control limits.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceed	E	Inorganic	control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was
been confirmed by and reported from an alternate method.  Forganic Surrogate results outside control criteria.  All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method defection limit is less than the reporting limit specified for this project.  Preservation, extraction or analysis performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory developed to the washing time.  Organic Sample received overweight.  Porganic The relative percent difference between the two columns for detected concentrations within this range.  The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  All The analyte was not detected at or above the reporting limit.  All Sample received with headspace.  This compound was saparated in the CCV standard but it did not meet the resolution criteria as set forth in	E	Organic	· · · · · · · · · · · · · · · · · · ·
All The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.  H All Preservation, extraction or analysis performed past holding time.  This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.  Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Elevated detection limit due to low sample volume.  Sample pH was greater than 2  All Spiked sample recovery not within control limits.  Sample precived overweight.  The relative percent difference between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within his range.  S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All Sample received with headspace.  V All A second aliquot of sample was analyzed from a container with headspace.  V All A second aliquot of sample was analyzed from a container with headspace.  V All Laboratory Control Spike recovery not within control limits.  Finis compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  Fine result is estimated due to readylet greater than total analyte; analyses passed QC based on precision criteria.  Inorganic BoO duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct	F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
calibration. The method detection limit is less than the reporting limit specified for this project.  HF Inorganic This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.  J All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  K Organic Detection limit may be elevated due to the presence of an unrequested analyte.  L All Elevated detection limit due to low sample volume.  Sample ph was greater than 2  N All Spiked sample recovery not within control limits.  O Organic Sample precovery not within control limits.  O Organic Sample received overweight.  The relative percent difference between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the timit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  O Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  U All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  X All See Sample Narrative.  Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  Horganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  Dissolved a	F	Organic	•
This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.  J. All Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  K. Organic Detection limit may be elevated due to the presence of an unrequested analyte.  Elevated detection limit due to low sample volume.  Sample ph was greater than 2  N. All Spiked sample recovery not within control limits.  O. Organic Sample precovery not within control limits.  O. Organic Sample recovery not within control limits.  O. Organic The relative percent difference between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  S. Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is uncontrined, if has been reporting limit.  U. All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  V. All See Sample Narrative.  S. Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Precision not within control limits.  The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding t	G	All	
performed in the laboratory beyond the recommended holding time.  Concentration detected equal to or greater than the method detection limit but less than the reporting limit.  Detection limit may be elevated due to the presence of an unrequested analyte.  Elevated detection limit due to low sample volume.  Organic Sample pri was greater than 2  Spiked sample recoived overweight.  Porganic The relative percent difference between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection (LOQ) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  Organic The relative percent difference between the limit of detection (LOQ) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  The analyte was not detected at or above the reporting limit.  All Asecond aliquot of sample was analyzed from a container with headspace.  All Asecond aliquot of sample was analyzed from a container with headspace.  All Laboratory Control Spike recovery not within control limits.  The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practi	Н	All	
K Organic Detection limit may be elevated due to the presence of an unrequested analyte.  All Elevated detection limit due to low sample volume.  Sample pH was greater than 2  All Spiked sample recovery not within control limits.  Sample received overweight.  P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%.  The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  P Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All Sample received with headspace.  VI All A second aliquot of sample was analyzed from a container with headspace.  VI All A second aliquot of sample was analyzed from a container with headspace.  X All See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD deplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depleti	HF	Inorganic	performed in the laboratory beyond the recommended holding time.
L All Selevated detection limit due to low sample volume.  M Organic Sample pH was greater than 2 N All Spiked sample recovery not within control limits.  Organic The relative percent difference between the two columns for detected concentrations was greater than 40%.  The relative percent difference between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  U All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  W All A second aliquot of sample was analyzed from a container with headspace.  X All See Sample Narrative.  C Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  Horganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is e	J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
M Organic Sample pH was greater than 2 N All Spiked sample recovery not within control limits. O Organic Sample received overweight. P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All The analyte was not detected at or above the reporting limit. Sample received with headspace. X All See Sample Narrative. Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846. All Laboratory Control Spike recovery not within control limits. P Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria. BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion. BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to rean	K	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
N All Spiked sample recovery not within control limits. O Organic Sample received overweight. P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%. All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range. S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All Sample received with headspace. W All A second aliquot of sample was analyzed from a container with headspace. See Sample Narrative. All Laboratory Control Spike recovery not within control limits. All Laboratory Control Spike recovery not within control limits.  All Precision not within control limits.  Horganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated. All The analyte was not detected at or above the reporting limit. Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated due to oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency. BOD result is estimated d	L	All	Elevated detection limit due to low sample volume.
O Organic Sample received overweight.  P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%.  All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  S Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  U All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  W All Sample received with headspace.  X All See Sample Narrative.  Progranics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  Precision not within control limits.  Horganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  All The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen dep	М	Organic	Sample pH was greater than 2
P Organic The relative percent difference between the two columns for detected concentrations was greater than 40%.  All The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  All The analyte was not detected at or above the reporting limit.  Sample received with headspace.  All See Sample Narrative.  Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  All Precision not within control limits.  Precision not within control limits.  Inorganic The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic BoD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test,	N	All	
The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.  Organic The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All The analyte was not detected at or above the reporting limit.  V All Sample received with headspace.  W All A second aliquot of sample was analyzed from a container with headspace.  See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  Precision not within control limits.  Horganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  All The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the	0	Organic	
to the uncertainty of analyte concentrations within this range.  The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All The analyte was not detected at or above the reporting limit.  V All Sample received with headspace.  W All A second aliquot of sample was analyzed from a container with headspace.  X All See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  † Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  † Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding	Р	Organic	·
the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.  V All The analyte was not detected at or above the reporting limit.  V All Sample received with headspace.  W All A second aliquot of sample was analyzed from a container with headspace.  X All See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  & All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  † Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  † Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to omplete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to deficiency.  BOD result is estimated due to deficiency.  Sample was received with insufficient preservation.	Q	All	to the uncertainty of analyte concentrations within this range.
All Sample received with headspace.  All A second aliquot of sample was analyzed from a container with headspace.  All See Sample Narrative.  Corganics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  All Precision not within control limits.  Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  All The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.	S	Organic	the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
W All A second aliquot of sample was analyzed from a container with headspace.  X All See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  & All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  † Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  † All The analyte was not detected at or above the reporting limit.  I Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  I Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  I Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is	U	All	The analyte was not detected at or above the reporting limit.
X All See Sample Narrative.  Z Organics This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  & All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  † Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  † Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.	٧	All	·
This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.  All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  * Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  * All The analyte was not detected at or above the reporting limit.  I Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  I Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	W		A second aliquot of sample was analyzed from a container with headspace.
& All Laboratory Control Spike recovery not within control limits.  * All Precision not within control limits.  + Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  < All The analyte was not detected at or above the reporting limit.  1 Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  2 Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  3 Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  4 Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  5 Inorganic BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  6 Inorganic BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  7 Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  8 Inorganic Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  9 Inorganic Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	Χ	All	·
* All Precision not within control limits.  + Inorganic The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  - All The analyte was not detected at or above the reporting limit.  - Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  - Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  - Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  - Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  - BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  - BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  - Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  - Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  - Inorganic Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  - Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	Z	Organics	·
The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.  All The analyte was not detected at or above the reporting limit.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Inorganic Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	&	All	
All The analyte was not detected at or above the reporting limit.  Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	*		
Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.  Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.	+	Inorganic	
Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.  BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	<	All	
Inorganic BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.  BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	1	•	
Inorganic BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample		•	
try to correct the deficiency.  BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	3	Inorganic	·
reanalyze and try to correct the deficiency.  BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample		Inorganic	try to correct the deficiency.
and try to correct the deficiency.  Inorganic  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  Inorganic  Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	5	Inorganic	reanalyze and try to correct the deficiency.
reanalyze and try to correct the deficiency.  8 Inorganic Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.  9 Inorganic Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	6	Inorganic	and try to correct the deficiency.
9 Inorganic Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample	7	Inorganic	reanalyze and try to correct the deficiency.
	8	Inorganic	·
	9	Inorganic	

#### Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	885345-003 885345-002
BTEX	GGG
CYANIDE, TOTAL	ВВ
PAH/ PNA	ВВ

Code	WI Certification
В	405132750 / DATCP: 105-444
G	405132750

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Client Sample ID 062607001	Analytical Method: 8270C-SIM	Dren Method:	QC Batch Number: 22451	Lab Section:	Batch:
<b>Lab Sample ID</b> 885345-001	8270C-SIM	SW848 35100	22451	BNASIM	885345
MB ID					
Client Sample ID 062607002					
<b>Lab Sam</b> p 885345-002	MSD	MS	LCS	MB	QC Type
Sample ID MB ID 45-002 MB	885348-001MSD	885348-001MS	svog2114-81LCS	svog2114-81MB	Client Sample ID
	885348-001MSD	885348-001MS	svog2114-81LCS	svog2114-81MB	Lab Sample ID

		Method	<u> </u>			3			CS/	5 5 7	LCS/LCSD Control Limits	iš U		<u>.</u>		<u> </u>			<b>A</b>			MS/	ი	MS/MSD Control Limits	뺉
Test Name		Result	Spiked	LCS Recovery	covery	Spiked	LCSD Recovery		RP (2	딘	던	RPD	Sample	ر تح	Result	Spiked	MSF	MS Recovery	Spiked	MSD R	MSD Recovery	RPD	ဉ်	ر ر	RPD
		Conc	Conc	Conc	% с	Conc	Conc		$\vdash$	%		%	Number			-	Conc	% с	Conc	Conc	% C	% С	%	%	%
1-Methylnaphthalene	$\triangle$	0.011	0.20	0.12	58	1	1	1	1	41	136	28	885348-001	^	0.01	0.19	0.12	64	0.19	0.092	49 N	27.4	52	113	34
2-Methylnaphthalene	^	0.012	0.20	0.12	60	1	1	1	l	\$	138	26	885348-001	^	0.011	0.19	0.11	58	0.19	0.097	51	12.9	51	123	ಜ್ಞ
Acenaphthene	^	0.0086	0.20	0.12	61	1	1	1	1	8	126	23	885348-001	^	0.0082	0.19	0.11	57	0.19	0.1	53 N	7.1	56	113	24
Acenaphthylene	۸	0.0086	0.20	0.12	59	ı	1	ı	1	ၽွ	127	24	885348-001	^	0.0081	0.19	0.11	58	0.19	0.098	52 N	10.6	56	115	24
Anthracene	^	0.012	0.20	0.12	59	1	1	1	1	ၽွ	139	27	885348-001	^	0.012	0.19	0.12	ස	0.19	0.11	58	6.9	55	126	28
Benzo(a)anthracene	^	0.017	0.20	0.13	65	1	ı	1	1	8	146	20	885348-001	^	0.016	0.19	0.13	69	0.19	0.12	හි	4.7	45	150	29
Benzo(a)pyrene	^	0.019	0.20	0.17	84	1	1	1	1	ವ	136	20	885348-001	^	0.018	0.19	0.16	85	0.19	0.15	82	3.4	72	129	20
Benzo(b)fluoranthene	^	0.017	0.20	0.14	72	1	1	1	-	51	141	20	885348-001	^	0.016	0.19	0.15	81	0.19	0.14	73	10.3	72	134	20
Benzo(ghi)perylene	^	0.02	0.20	0.16	82	1	ı	1	1	57	136	20	885348-001	^	0.019	0.19	0.16	84	0.19	0.16	82	1.5	72	128	20
Benzo(k)fluoranthene	^	0.02	0.20	0.18	91	I	1	1	-	61	149	20	885348-001 <		0.019	0.19	0.17	90	0.19	0.17	91	1.5	75	129	20
Chrysene	^	0.02	0.20	0.15	75	ı	1	1	1	61	150	20	885348-001 <		0.019	0.19	0.15	78	0.19	0.15	80	2.4	71	136	20
Dibenz(a,h)anthracene	^	0.02	0.20	0.17	86	1	1	1	1	46	150	20	885348-001 <		0.019	0.19	0.16	86	0.19	0.16	22	1.7	43	150	20
Fluoranthene	^	0.016	0.20	0.13	66	ı	I			48	145	20	885348-001	^	0.015	0.19	0.14	75	0.19	0.12	22	16.5	58	137	20
Fluorene	^	0.0096	0.20	0.11	57	ı	1	1	ı	40	33	25	885348-001	^	0.0091	0.19	0.11	56	0.19	0.097	51 N	9.3	55	121	21
Indeno(1,2,3-cd)pyrene	^	0.02	0.20	0.17	85	I	I	1	I	42	143	20	885348-001	^	0.019	0.19	0.16	86	0.19	0.16	86	0.3	71	140	20
Naphthalene	^	0.013	0.20	0.13	ස	I	ı	1	1	55	31	မွ	885348-001		0.013	0.19	0.13	62	0.19	0.12	g	10.9	53	107	ಜ
Phenanthrene	^	0.012	0.20	0.11	56	ı	I		ı	6	<u></u>	25	885348-001	^	0.011	0.19	0.12	61	0.19	0.1	54 N	13.1	58	138	20
Pyrene	^	0.015	0.20	0.12	59	I	ı	1	1	엸	135	20	885348-001	^	0.015	0.19	0.12	61 N	0.19	0.1	54 N	11.6	71	136	20
Nitrobenzene-d5		41%	1	ı	45	I	ı	1	1	5	150	1	885348-001		45%	I	ı	48	1	1	4	1	6	150	-
2-Fluorobiphenyl		48%	1	ı	58	I	ı	1	1	20	=======================================	i	885348-001		50%	1	ı	S	1	1	47	1	20	<u>=</u>	
Terphenyl-d14		57%	1	1	62	ı	1	1	i	4	115	1	885348-001		60%	1	ı	61	ı	1	64	1	4	115	ı

Conc = ug/L unless otherwise noted C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 22451

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Client Sample ID 062607001 TRIP BLANK	Analytical Method: SVV846 80216	A representation.	Dran Mathod	QC Batch Number: 22343	Lab Section:	Batch:
<b>Lab Sample ID</b> 885345-001 885345-003	SVV846 8021B	014040 00040	SW848 5030B	22343	GAS	885345
MB ID MB MB						
Client Sample ID 062807002						
<b>Lab Samp</b> 885345-002	MSD	MS	LCSD	LCS	MB	QC Type
Lab Sample ID MB ID 885345-002 MB	062607002MSD	062607002MS	GG2214-81MBLCSD	GG2214-81MBLCS	GG2214-81MB	Client Sample ID
	885345-002MSD	885345-002MS	GG2214-81MBLCSD	GG2214-81MBLCS	GG2214-81MB	Lab Sample ID

1	Xylene, o < 0.36 20.0 21.2 106 20.0 21.5 108	Xylene, m+p < 0.74 40.0 43.3 108 40.0 43.9 110	Toluene < 0.36 20.0 21.2 106 20.0 21.4 107	Ethybenzene < 0.4 20.0 21.4 107 20.0 21.6 108	Benzene < 0.14 20.0 21 105 20.0 21.3 107	Test Name Result Spiked LCS Recovery Spiked LCSD Recovery RPD Conc Conc Conc Conc % C % C	ICS
ı	1.3	1.4	1.3	1.2	1.3	RPD % C	LCSD LCS/
80	85	85	85	85	85	% ГСГ	
124	115	115	115	115	115	% UCL	LCS/LCSD Control Limits
1	20	20	20	20	20	RPD	ਲੋਂ
885345-002	885345-002	885345-002	885345-002	885345-002	885345-002	Sample Number	Parent
100%	18.8	13.1	2.91	45.3	12.2	Result Conc	Parent
I	20.0	40.0	20.0	20.0	20.0	Spiked Conc	MS S
ı	39.4	56.9	24.5	හි	33	MS Re Conc	
8	103	109	108	98	104	MS Recovery Spiked Conc % C Conc	
١	20.0	40.0	20.0	20.0	20.0		MSD
1	39.2	56.7	24.5	64.3	32.7	MSD R Conc	
98	102	109	108	95	103	MSD Recovery Conc % C	
1	0.5	0.4	0.2	1.0	0.7	O Recovery RPD LCL	MS/
8	8	78	8	88	8		Cor
124	120	124	120	120	120	UCL RPD % %	MS/MSD Control Limits
1	20	20	20	20	20	RPD	nits

Conc = ug/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Batch Number: 22343

Report Date: 7/11/2007

## Services, Inc. Pace Analytical

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

MS/MSD Control Limits	MS/	Man	S.	Daran	D	LCS/LCSD // Control Limits	LCS/		- 2	Method
		MB	)02	885345-002		062607002	06	MB	885345-001	062607001
		MB ID	Lab Sample ID	Lab Sa		Client Sample ID	Ω	MB ID	Lab Sample ID	Client Sample ID
	885407-006MSD	885407-006MSD	885407	MSD						
	885407-009MSD	885407-009MSD	885407	MSD					EPA 335.4	Analytical Nietnod: EPA 335.4
	885407-006MS	885407-006MS	885407	MS						A - Latin - I Martin - I
	885407-009MS	885407-009MS	885407	MS					EDA 335 A	Dren Method:
	WCG2244-035MBLCS	WCG2244-035MBLCS	WCG2	CCS					22699	QC Batch Number: 22699
	WCG2244-035MB	WCG2244-035MB	WCG2	MB					WETCHEM	Lab Section:
	Lab Sample ID	Client Sample ID	l	QC Type					885345	Batch:

Cyanide, Total

^

0.10

2 0.1

102.6 102.6

8

10 10

20 20

885407-009 885407-006

0.010 0.012

0.10 0.10

0.12 | 114.7 | N | 0.10 0.12 111.1 N 0.10

8

0.006

Cyanide, Total

Test Name

Method Blank Result Conc

LCS Spiked Conc

LCS Recovery Conc % C

LCSD Spiked Conc

LCSD Recovery RPD LCL UCL RPD Conc % C % C % % % %

Parent Sample Number

Parent Result Conc

MS MS Recovery Spiked Conc Conc % C Conc

MSD Recovery
Conc % C 0.13 113.5 N 0.12 | 111.1 | N | 2.9

LCL UCL RPD %

MS/ RPD

2.0

9 9

110 110

20 20

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 22699

Report Date: 7/11/2007

Sample Condition Upon Receipt

Pace Analytical Client Name: Natural Resource Project # 885	345
Courier:  Fed Ex UPS USPS Client	
Packing Material: Bubble Wrap Bubble Bags None Other	
Thermometer Used  Type of Ice: Wet Blue None   Samples on ice, cooling process	haa hagun
Date and initials of person	
Cooler Temperature Biological Tissue is Frozen: Yes No contents: AG 6 6 6 C Comments:	26/07
Chain of Custody Present: □Yes □No □N/A 1.	2107
Chain of Custody Filled Out:	-
Chain of Custody Relinquished:	
Sampler Name & Signature on COC:	
Samples Arrived within Hold Time:	
Short Hold Time Analysis (<72hr):	
Rush Turn Around Time Requested:	
Sufficient Volume:	
Correct Containers Used:	
-Pace Containers Used:	
Containers Intact:	
Filtered volume received for Dissolved tests DYes DNA 11.	
	on
Sample Labels match COC:  Postes No DNA 12. Recid terp blank, not 11 stee  COC, added by lab A6 6	106 100
-Includes date/time/ID/Analysis Matrix:	se lo t
All containers needing preservation are found to be in compliance with EPA recommendation.	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)  □Yes □No  Initial when completed □Completed □C	
Samples checked for dechlorination:	
Headspace in VOA Vials ( >6mm): □Yes □N/A 15.	
Trip Blank Present: Yes □No □N/A 16.	
Trip Blank Custody Seals Present ' ☐Yes ☐No ☐N/A	
Pace Trip Blank Lot # (if purchased):	
Client Notification/ Resolution: Field Data Required? Y	/ N
Person Contacted: Date/Time:	
Comments/ Resolution: Rec'd Extra volume for #201 +202- No MS/MSD regrested of	n the COC
Cflo/21/07 Only rec'd lextra ner sample point not	enough
for ms/MSD 6/26/02 NOW	<del></del>
9	<del></del>
Project Manager Review: Date: 6-27	07

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

Version 6.0 06/14/06

Company Name: Nate Branch/Location: Pew Project Contact: Hea Phone: 262 Project Number: 131: Project Name: WP: Project State: Wiss Sampled By (Print): Mike Sampled By (Sign): PO#:	Please Print Clearly    Natural Resource Technology Inc.     Pewaukee, WI     Heather Simon/Jody Barbeau     262-522-1207     1312     WPSC - Oshkosh     Wisconsin     Wisconsin     Mike Mason - (WPSC)     Mike Mason - (WPSC)     Properties     Illi	A=None B=HCL C=H2 A=None B=HCL C=H2 A=None B=HCL C=H2 H=Sodium Bisulfate Solution FILTERED? (YES/NO) W=Water CODEY W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Water W= Wa	Analyses: Requested  XXX  Analyses: Requested  XXX  XX  XX  XX  XX  XX  XX  XX  XX	MN: 612-607-1700 WI: 920-469-2436    Quote #:   Mail To Contact:   Mail To Address:   Invoice To Address:   Invoice To Address:   CLIENT COMMENTS	Page 1 of 1  COC No. O34639  Jody Barbeau  Natural Resource Technology Inc. 23713 W. Paul Road Pewaukee, WI. 53072  Natural Resource Technology Inc.  Same  LAB COMMENTS (Lab Use Only)  LAB COMMENTS (Lab Use Only)  A HE AG ASO Merity 6.
PACE LAB #	CLIENT FIELD ID	SW = Surface W WW = Waste W WP = Wipe COLLECTION	< BTEX (80	CLIENT	(Lab Use Only)
3 3 3		WW 46.21.20WW	××		2 /m ms 250
003	PDX				
Rush Turn (Rush TA	Rush Turnaround Time Requested - Prelims (Rush TAT subject to approval/surcharge) Date Needed: Normal Turn	Relinquished By:	Property of Date/Time: Received By:	, Maldium DateTime:	+ 5588   4.9 to
Transmit Prelim Email #1: jbarbe	Transmit Prollim Rush Results by (complete what you want):  1: jbarbeau@naturairt.com	Relinquished By:	Date/Time: Received By:	ed By: Date/Time:	Receipt Temp =
Telephone: 262-5:	262-523-9000 262-523-9001	Relinquished By:	Date/Time: Received By:	ed By: Date/Time:	Sample Receipt ph OK / Adjusted
	Samples on HOLD are subject to	Relinquished By:	Date/Time: Received By:	ed By: Date/Time:	Present Not Present



1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

**Analytical Report Number: 888415** 

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Brian Basten

Project Name: WPSC - OSHKOSH

Project Number: 1312

Lab Sample Number	Field ID	Matrix	Collection Date	Lab Sample Number	Field ID	Matrix	Collectio Date
888415-001	091107 001	WATER	09/11/07 08:35	888415-022	091107 023	WATER	09/11/07
888415-002	091007 002	WATER	09/10/07 09:00	888415-023	091107 024	WATER	09/11/07
888415-003	091007 004	WATER	09/10/07 09:40	888415-024	TRIP BLANK	WATER	09/10/07
888415-004	091007 005	WATER	09/10/07 10:20				
888415-005	091007 006	WATER	09/10/07 10:28				
888415-006	091007 007	WATER	09/10/07 10:45				
888415-007	091007 008	WATER	09/10/07 11:00				
888415-008	091007 009	WATER	09/10/07 11:30				
888415-009	091007 010	WATER	09/10/07 11:50				
888415-010	091007 011	WATER	09/10/07 12:10				
888415-011	091007 012	WATER	09/10/07 12:30				
888415-012	091007 013	WATER	09/10/07 12:35				
888415-013	091007 014	WATER	09/10/07 13:20				
888415-014	091007 015	WATER	09/10/07 13:10				
888415-015	091007 016	WATER	09/10/07 14:40				
888415-016	091007 017	WATER	09/10/07 14:35				
888415-017	091107 018	WATER	09/11/07 08:30				
888415-018	091107 019	WATER	09/11/07 08:35				
888415-019	091107 020	WATER	09/11/07 09:45				
888415-020	091107 021	WATER	09/11/07 09:30				
888415-021	091107 022	WATER	09/11/07 10:30				

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..

9-25-07

Page 1 of 38

Approval Signature

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 001

Matrix Type: WATER

Collection Date: 09/11/07 Report Date: 09/25/07

PVOC							Prep Date/Time: 09/17/07 9:22 AM Ani By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/17/07 9:22 AM SW846 5030B SW846 8021B
Surrogate		LCL	UCL				
a,a,a-Trifluorotoluene	102	80	124		1	%	09/17/07 SW846 5030B SW846 8021B
PAH/ PNA							Prep Date/Time: 09/14/07 7:30 AM Anl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1-Methylnaphthalene	< 0.010	0.010	0.034		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
2-Methylnaphthalene	< 0.011	0.011	0.037		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Acenaphthene	< 0.0082	0.0082	0.027		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Acenaphthylene	< 0.0081	0.0081	0.027		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Anthracene	< 0.012	0.012	0.039		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Benzo(a)anthracene	< 0.016	0.016	0.052		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Benzo(a)pyrene	< 0.018	0.018	0.061		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Benzo(b)fluoranthene	< 0.016	0.016	0.052		1	ug/L	Z 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Benzo(ghi)perylene	< 0.019	0.019	0.064		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L	Z 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Chrysene	< 0.019	0.019	0.063		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Fluoranthene	0.016	0.015	0.052		1	ug/L	Q 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Fluorene	< 0.0091	0.0091	0.030		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L	09/15/07 1:50 AM SW846 3510C 8270C-SIM
Naphthalene	0.020	0.012	0.041		1	ug/L	Q 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Phenanthrene	0.011	0.011	0.038		1	ug/L	Q 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Pyrene	0.022	0.015	0.048		1	ug/L	Q 09/15/07 1:50 AM SW846 3510C 8270C-SIM
Surrogate		LCL	UCL				
Nitrobenzene-d5	47	10	150		1	%	09/15/07 SW846 3510C 8270C-SIM
2-Fluorobiphenyl	46	20	111		1	%	09/15/07 SW846 3510C 8270C-SIM
Terphenyl-d14	78	44	115		1	%	09/15/07 SW846 3510C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 002

Matrix Type: WATER
Collection Date: 09/10/07

**Report Date**: 09/25/07 **Lab Sample Number**: 888415-002

PVOC							Prep	Date/Time: 09/17/0	)7 9:47 AM <b>A</b> n	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 9:47 AM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L		09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Toluene	0.53	0.36	1.2		1	ug/L	Q	09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Xylene, m + p	0.75	0.74	2.5		1	ug/L	Q	09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Xylene, o	0.38	0.36	1.2		1	ug/L	Q	09/17/07 9:47 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	103	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/14/0	7 7:30 AM An	I By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.65	0.11	0.36		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 0.12	0.12	0.40		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Acenaphthene	2.4	0.087	0.29		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Acenaphthylene	0.13	0.087	0.29		10	ug/L	Q	09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Anthracene	0.13	0.12	0.41		10	ug/L	Q	09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.17	0.17	0.56		10	ug/L		09/17/07 4:03 PM	SW846 3510C	
Benzo(a)pyrene	< 0.20	0.20	0.65		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.17	0.17	0.56		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.21	0.21	0.69		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.21	0.21	0.69		10	ug/L		09/17/07 4:03 PM	SW846 3510C	
Chrysene	< 0.20	0.20	0.68		10	ug/L		09/17/07 4:03 PM	SW846 3510C	
Dibenz(a,h)anthracene	< 0.20	0.20	0.67		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Fluoranthene	0.18	0.17	0.55		10	ug/L	Q	09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Fluorene	0.62	0.097	0.32		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.20	0.20	0.67		10	ug/L		09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Naphthalene	0.29	0.13	0.44		10	ug/L	Q	09/17/07 4:03 PM	SW846 3510C	
Phenanthrene	< 0.12	0.12	0.41		10	ug/L		09/17/07 4:03 PM	SW846 3510C	
Pyrene	0.43	0.16	0.52		10	ug/L	Q	09/17/07 4:03 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		10	%	D	09/17/07	SW846 3510C	
2-Fluorobiphenyl	0	20	111		10	%	D	09/17/07	SW846 3510C	
Terphenyl-d14	0	44	115		10	%	D	09/17/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 004

Matrix Type: WATER
Collection Date: 09/10/07

**Report Date**: 09/25/07 **Lab Sample Number**: 888415-003

PVOC							Prep	Date/Time: 09/17/0	7 10:13 AM <b>A</b> n	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L		09/17/07 10:13 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/14/0	7 7:30 AM Ar	I By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.028	0.010	0.034		1	ug/L	Q	09/17/07 4:51 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	0.012	0.011	0.037		1	ug/L	Q	09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Acenaphthene	0.028	0.0082	0.027		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Acenaphthylene	0.056	0.0081	0.027		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Anthracene	0.048	0.012	0.039		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	0.16	0.016	0.052		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	0.17	0.018	0.061		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	0.15	0.016	0.052		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	0.12	0.019	0.064		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	0.11	0.019	0.064		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Chrysene	0.16	0.019	0.063		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	0.033	0.019	0.063		1	ug/L	Q	09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Fluoranthene	0.21	0.015	0.052		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Fluorene	0.026	0.0091	0.030		1	ug/L	Q	09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	0.096	0.019	0.063		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Naphthalene	0.037	0.012	0.041		1	ug/L	Q	09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Phenanthrene	0.099	0.011	0.038		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Pyrene	0.25	0.015	0.048		1	ug/L		09/17/07 4:51 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	90	10	150		1	%		09/17/07	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	81	20	111		1	%		09/17/07	SW846 3510C	8270C-SIM
Terphenyl-d14	109	44	115		1	%		09/17/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 005

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC							Prep	Date/Time: 09/17/0	7 6:00 PM A	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
Benzene	3.0	0.14	0.46		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L		09/17/07 6:00 PM	SW846 5030B	SW846 8021E
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030	3 SW846 8021
PAH/ PNA							Prep	Date/Time: 09/14/0	77:30 AM A	nl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.38	0.11	0.37		10	ug/L		09/17/07 3:39 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	0.31	0.12	0.40		10	ug/L	Q	09/17/07 3:39 PM	SW846 3510C	8270C-SIM
Acenaphthene	0.17	0.088	0.29		10	ug/L	Q	09/17/07 3:39 PM	SW846 3510C	8270C-SIM
Acenaphthylene	0.48	0.088	0.29		10	ug/L		09/17/07 3:39 PM	SW846 3510C	8270C-SIM
Anthracene	0.70	0.13	0.42		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Benzo(a)anthracene	1.2	0.17	0.56		10	ug/L		09/17/07 3:39 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	1.1	0.20	0.66		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Benzo(b)fluoranthene	1.1	0.17	0.56		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Benzo(ghi)perylene	0.79	0.21	0.70		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Benzo(k)fluoranthene	0.69	0.21	0.70		10	ug/L	Q	09/17/07 3:39 PM	SW846 35100	8270C-SIM
Chrysene	1.3	0.21	0.68		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Dibenz(a,h)anthracene	0.24	0.20	0.68		10	ug/L	Q	09/17/07 3:39 PM	SW846 35100	8270C-SIM
Fluoranthene	2.1	0.17	0.56		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Fluorene	0.55	0.098	0.33		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Indeno(1,2,3-cd)pyrene	0.66	0.20	0.68		10	ug/L	Q	09/17/07 3:39 PM	SW846 35100	8270C-SIM
Naphthalene	1.0	0.13	0.45		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Phenanthrene	1.6	0.12	0.41		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Pyrene	2.0	0.16	0.52		10	ug/L		09/17/07 3:39 PM	SW846 35100	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		10	%	D	09/17/07	SW846 3510	C 8270C-SIM
2-Fluorobiphenyl	0	20	111		10	%	D	09/17/07	SW846 3510	C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 006

Matrix Type: WATER

Collection Date: 09/10/07 Report Date: 09/25/07

PVOC				·			Prep	Date/Time: 09/17/0	7 6:26 PM A	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	410	7.8	26		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
1,3,5-Trimethylbenzene	50	7.9	26		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Benzene	1700	2.8	9.2		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Ethylbenzene	1900	8.0	27		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Toluene	21	7.1	24		20	ug/L	Q	09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Xylene, m + p	60	15	49		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Xylene, o	270	7.2	24		20	ug/L		09/17/07 6:26 PM	SW846 5030E	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	100	80	124		1	%		09/17/07	SW846 5030	3 SW846 8021B
PAH/ PNA				·			Prep	Date/Time: 09/14/0	7 7:30 AM A	nl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	44	41	140		4000	ug/L	QD	09/18/07 12:25 AM	SW846 35100	8270C-SIM
2-Methylnaphthalene	15	1.1	3.7		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Acenaphthene	1.4	0.82	2.7		100	ug/L	Q	09/15/07 4:12 AM	SW846 35100	8270C-SIM
Acenaphthylene	1.1	0.81	2.7		100	ug/L	Q	09/15/07 4:12 AM	SW846 35100	8270C-SIM
Anthracene	< 1.2	1.2	3.9		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Benzo(a)anthracene	< 1.6	1.6	5.2		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Benzo(a)pyrene	< 1.8	1.8	6.1		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Benzo(b)fluoranthene	< 1.6	1.6	5.2		100	ug/L	Z	09/15/07 4:12 AM	SW846 35100	8270C-SIM
Benzo(ghi)perylene	< 1.9	1.9	6.4		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Benzo(k)fluoranthene	< 1.9	1.9	6.4		100	ug/L	Z	09/15/07 4:12 AM	SW846 35100	8270C-SIM
Chrysene	< 1.9	1.9	6.3		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Dibenz(a,h)anthracene	< 1.9	1.9	6.3		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Fluoranthene	< 1.5	1.5	5.2		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Fluorene	< 0.91	0.91	3.0		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 1.9	1.9	6.3		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Naphthalene	780	50	170		4000	ug/L	D	09/18/07 12:25 AM	SW846 35100	8270C-SIM
Phenanthrene	1.5	1.1	3.8		100	ug/L	Q	09/15/07 4:12 AM	SW846 35100	8270C-SIM
Pyrene	< 1.5	1.5	4.8		100	ug/L		09/15/07 4:12 AM	SW846 35100	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0.0	10	150		100	%	D	09/15/07	SW846 3510	C 8270C-SIM
2-Fluorobiphenyl	0.0	20	111		100	%	D	09/15/07	SW846 3510	C 8270C-SIM
Terphenyl-d14	0.0	44	115		100	%	D	09/15/07	SW846 3510	C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 007

Matrix Type: WATER

Collection Date: 09/10/07 Report Date: 09/25/07

PVOC							Prep	Date/Time: 09/17/0	7 5:35 PM An	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	9.2	0.39	1.3		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	1.5	0.40	1.3		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Benzene	10	0.14	0.46		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Ethylbenzene	1.6	0.40	1.3		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Xylene, m + p	1.1	0.74	2.5		1	ug/L	Q	09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Xylene, o	2.7	0.36	1.2		1	ug/L		09/17/07 5:35 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/14/0	7 7:30 AM <b>A</b> n	IBy: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	18	1.0	3.4		100	ug/L	D	09/18/07 12:01 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	9.6	1.1	3.7		100	ug/L	D	09/18/07 12:01 AM	SW846 3510C	8270C-SIM
Acenaphthene	7.8	0.16	0.54		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Acenaphthylene	0.22	0.16	0.54		20	ug/L	Q	09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Anthracene	< 0.23	0.23	0.77		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.31	0.31	1.0		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.37	0.37	1.2		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.31	0.31	1.0		20	ug/L	Z	09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.39	0.39	1.3		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.39	0.39	1.3		20	ug/L	Z	09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Chrysene	< 0.38	0.38	1.3		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.38	0.38	1.3		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Fluoranthene	< 0.31	0.31	1.0		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Fluorene	0.99	0.18	0.60		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.38	0.38	1.3		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Naphthalene	16	1.2	4.1		100	ug/L	D	09/18/07 12:01 AM	SW846 3510C	8270C-SIM
Phenanthrene	0.41	0.23	0.76		20	ug/L	Q	09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Pyrene	< 0.29	0.29	0.97		20	ug/L		09/15/07 3:25 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0.0	10	150		20	%	D	09/15/07	SW846 3510C	
2-Fluorobiphenyl	0.0	20	111		20	%	D	09/15/07	SW846 3510C	
Terphenyl-d14	0.0	44	115		20	%	D	09/15/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 008

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC							Prep [	Date/Time: 09/18/0	7 11:28 AM <b>A</b> n	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	26	2.0	6.5		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	8.6	2.0	6.6		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Benzene	77	0.69	2.3		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Ethylbenzene	37	2.0	6.7		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Toluene	6.8	1.8	6.0		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Xylene, m + p	37	3.7	12		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Xylene, o	17	1.8	6.0		5	ug/L		09/18/07 11:28 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	101	80	124		1	%		09/18/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep I	Date/Time: 09/16/0	7 7:30 AM <b>A</b> n	I By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	99	27	91		2500	ug/L	D	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	43	30	100		2500	ug/L	QD	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Acenaphthene	170	22	74		2500	ug/L	D	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Acenaphthylene	10	0.88	2.9		100	ug/L		09/18/07 4:00 AM	SW846 3510C	
Anthracene	87	31	100		2500	ug/L	QD	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	30	1.7	5.6		100	ug/L		09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	21	2.0	6.6		100	ug/L		09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	15	1.7	5.6		100	ug/L	Z	09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	9.2	2.1	7.0		100	ug/L		09/18/07 4:00 AM	SW846 3510C	
Benzo(k)fluoranthene	16	2.1	7.0		100	ug/L	Z	09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Chrysene	22	2.1	6.8		100	ug/L		09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	2.7	2.0	6.8		100	ug/L	Q	09/18/07 4:00 AM	SW846 3510C	
Fluoranthene	57	42	140		2500	ug/L	QD	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Fluorene	61	24	82		2500	ug/L	QD	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	8.6	2.0	6.8		100	ug/L		09/18/07 4:00 AM	SW846 3510C	8270C-SIM
Naphthalene	680	33	110		2500	ug/L	D	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Phenanthrene	160	31	100		2500	ug/L	D	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Pyrene	47	39	130		2500	ug/L	QD	09/18/07 12:17 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		100	%	D	09/18/07	SW846 3510C	
2-Fluorobiphenyl	0	20	111		100	%	D	09/18/07	SW846 3510C	
Terphenyl-d14	0	44	115		100	%	D	09/18/07	SW846 3510C	8270C-SIM

Terphenyl-d14

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

105

44

115

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 009

Matrix Type: WATER
Collection Date: 09/10/07

**Report Date**: 09/25/07 **Lab Sample Number**: 888415-008

y: SES nI Method V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B
V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B
V846 8021B V846 8021B V846 8021B V846 8021B V846 8021B
V846 8021B V846 8021B V846 8021B V846 8021B
V846 8021B V846 8021B V846 8021B
V846 8021B V846 8021B
V846 8021B
V846 8021B
W846 8021B
y: RJN
nl Method
70C-SIM
270C-SIM
5100-011VI

5

09/18/07

SW846 3510C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Believue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 010

Matrix Type: WATER
Collection Date: 09/10/07

Report Date: 09/25/07

PVOC							Prep Date/Time: 09/17/07 2:35 PM Ani By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/17/07 2:35 PM SW846 5030B SW846 8021B
Surrogate		LCL	UCL				
a,a,a-Trifluorotoluene	102	80	124		1	%	09/17/07 SW846 5030B SW846 8021B
PAH/ PNA							Prep Date/Time: 09/16/07 7:30 AM Anl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1-Methylnaphthalene	0.011	0.010	0.034		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
2-Methylnaphthalene	< 0.011	0.011	0.037		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Acenaphthene	0.038	0.0082	0.027		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Acenaphthylene	0.013	0.0081	0.027		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Anthracene	0.022	0.012	0.039		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Benzo(a)anthracene	0.050	0.016	0.052		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Benzo(a)pyrene	0.051	0.018	0.061		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Benzo(b)fluoranthene	0.12	0.016	0.052		1	ug/L	Z 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Benzo(ghi)perylene	0.038	0.019	0.064		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Benzo(k)fluoranthene	0.072	0.019	0.064		1	ug/L	Z 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Chrysene	0.051	0.019	0.063		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Fluoranthene	0.090	0.015	0.052		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Fluorene	0.012	0.0091	0.030		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Indeno(1,2,3-cd)pyrene	0.028	0.019	0.063		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Naphthalene	0.020	0.012	0.041		1	ug/L	Q 09/18/07 8:41 AM SW846 3510C 8270C-SIM
Phenanthrene	0.053	0.011	0.038		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Pyrene	0.085	0.015	0.048		1	ug/L	09/18/07 8:41 AM SW846 3510C 8270C-SIM
Surrogate		LCL	UCL				
Nitrobenzene-d5	107	10	150		1	%	09/18/07 SW846 3510C 8270C-SIM
2-Fluorobiphenyl	84	20	111		1	%	09/18/07 SW846 3510C 8270C-SIM
Terphenyl-d14	108	44	115		1	%	09/18/07 SW846 3510C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 011

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC							Prep	Date/Time: 09/17/0	7 3:01 PM Ar	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	•	Anl Date/Time	Prep Method	•
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Benzene	6.3	0.14	0.46		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L		09/17/07 3:01 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	101	80	124		1	%		09/17/07	SW846 5030E	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM Ar	ıl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	12	0.81	2.7		80	ug/L	D	09/18/07 10:41 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	0.40	0.22	0.75		20	ug/L	Q	09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Acenaphthene	17	0.65	2.2		80	ug/L	D	09/18/07 10:41 AM	SW846 3510C	8270C-SIM
Acenaphthylene	6.0	0.16	0.54		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Anthracene	4.2	0.23	0.77		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	6.7	0.31	1.0		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	6.5	0.37	1.2		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	3.6	0.31	1.0		20	ug/L	Z	09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	2.6	0.39	1.3		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	3.1	0.39	1.3		20	ug/L	Z	09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Chrysene	5.7	0.38	1.3		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	0.73	0.38	1.3		20	ug/L	Q	09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Fluoranthene	6.8	0.31	1.0		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Fluorene	9.3	0.72	2.4		80	ug/L	D	09/18/07 10:41 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	2.1	0.38	1.3		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Naphthalene	1.8	0.25	0.83		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Phenanthrene	6.1	0.23	0.76		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Pyrene	9.3	0.29	0.97		20	ug/L		09/18/07 2:24 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		20	%	D	09/18/07	SW846 35100	8270C-SIM
2-Fluorobiphenyl	0	20	111		20	%	D	09/18/07	SW846 35100	8270C-SIM
Terphenyl-d14	0	44	115		20	%	D	09/18/07	SW846 35100	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 012

Matrix Type: WATER

Collection Date: 09/10/07 Report Date: 09/25/07

PVOC			•			····	Prep	Date/Time: 09/17/0	7 3:27 PM Ar	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	3.8	0.39	1.3		1	ug/L		09/17/07 3:27 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	1.2	0.40	1.3		1	ug/L	Q	09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Benzene	0.75	0.14	0.46		1	ug/L		09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Ethylbenzene	1.2	0.40	1.3		1	ug/L	Q	09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Xylene, o	1.6	0.36	1.2		1	ug/L		09/17/07 3:27 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM <b>A</b> r	ı <b>l By</b> : RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	49	2.0	6.8		200	ug/L	D	09/18/07 11:05 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	7.9	2.2	7.5		200	ug/L	D	09/18/07 11:05 AM	SW846 3510C	8270C-SIM
Acenaphthene	27	1.6	5.4		200	ug/L	D	09/18/07 11:05 AM	SW846 3510C	8270C-SIM
Acenaphthylene	1.0	0.16	0.54		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Anthracene	3.2	0.23	0.77		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	0.44	0.31	1.0		20	ug/L	Q	09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.37	0.37	1.2		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.31	0.31	1.0		20	ug/L	Z	09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.39	0.39	1.3		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.39	0.39	1.3		20	ug/L	Z	09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Chrysene	0.47	0.38	1.3		20	ug/L	Q	09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.38	0.38	1.3		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Fluoranthene	1.5	0.31	1.0		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Fluorene	9.3	0.18	0.60		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.38	0.38	1.3		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Naphthalene	55	2.5	8.3		200	ug/L	D	09/18/07 11:05 AM	SW846 3510C	8270C-SIM
Phenanthrene	6.5	0.23	0.76		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Pyrene	1.7	0.29	0.97		20	ug/L		09/18/07 2:48 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		20	%	D	09/18/07	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	0	20	111		20	%	D	09/18/07	SW846 3510C	8270C-SIM
Terphenyl-d14	0	44	115		20	%	D	09/18/07	SW846 3510C	8270C-SIM

#### Analytical Report Number: 888415

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 013

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC			- · · · · · · · · · · · · · · · · · · ·				Prep	Date/Time: 09/17/0	7 3:52 PM Anl By:	SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method Ani M	<b>l</b> lethod
1,2,4-Trimethylbenzene	3.5	0.39	1.3		1	ug/L		09/17/07 3:52 PM	SW846 5030B SW84	6 8021B
1,3,5-Trimethylbenzene	1.1	0.40	1.3		1	ug/L	Q	09/17/07 3:52 PM	SW846 5030B SW84	₽6 8021B
Benzene	0.70	0.14	0.46		1	ug/L		09/17/07 3:52 PM	SW846 5030B SW84	₽6 8021B
Ethylbenzene	1.1	0.40	1.3		1	ug/L	Q	09/17/07 3:52 PM	SW846 5030B SW84	₽6 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 3:52 PM	SW846 5030B SW84	₹6 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 3:52 PM	SW846 5030B SW84	₽6 8021B
Xylene, o	1.5	0.36	1.2		1	ug/L		09/17/07 3:52 PM	SW846 5030B SW84	₹6 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	101	80	124		1	%		09/17/07	SW846 5030B SW8	46 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM Anl By:	RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method Anl I	Method
1-Methylnaphthalene	26	1.0	3.4		100	ug/L	-	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
2-Methylnaphthalene	3.4	1.1	3.7		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Acenaphthene	19	0.82	2.7		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Acenaphthylene	0.93	0.81	2.7		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Anthracene	2.1	1.2	3.9		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Benzo(a)anthracene	< 1.6	1.6	5.2		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Benzo(a)pyrene	< 1.8	1.8	6.1		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Benzo(b)fluoranthene	< 1.6	1.6	5.2		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Benzo(ghi)perylene	< 1.9	1.9	6.4		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Benzo(k)fluoranthene	< 1.9	1.9	6.4		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Chrysene	< 1.9	1.9	6.3		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Dibenz(a,h)anthracene	< 1.9	1.9	6.3		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Fluoranthene	1.6	1.5	5.2		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Fluorene	5.3	0.91	3.0		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Indeno(1,2,3-cd)pyrene	< 1.9	1.9	6.3		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Naphthalene	21	1.2	4.1		100	ug/L		09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Phenanthrene	3.8	1.1	3.8		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Pyrene	1.6	1.5	4.8		100	ug/L	Q	09/18/07 4:24 AM	SW846 3510C 82700	C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		100	%	D	09/18/07	SW846 3510C 8270	
2-Fluorobiphenyl	0	20	111		100	%	D	09/18/07	SW846 3510C 8270	
Terphenyl-d14	0	44	115		100	%	D	09/18/07	SW846 3510C 8270	C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 014

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC							Prep	Date/Time: 09/17/0	7 5:09 PM An	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Benzene	1.3	0.14	0.46		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Ethylbenzene	4.0	0.40	1.3		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Xylene, o	0.40	0.36	1.2		1	ug/L	Q	09/17/07 5:09 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	103	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM <b>A</b> n	I By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.47	0.21	0.72		20	ug/L	Q	09/18/07 3:12 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 0.24	0.24	0.79		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Acenaphthene	3.3	0.17	0.58		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Acenaphthylene	18	1.7	5.7		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Anthracene	3.8	0.25	0.82		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	23	3.3	<b>1</b> 1		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	25	3.9	13		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	16	3.3	11		200	ug/L	ZD	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	13	4.1	14		200	ug/L	QD	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	21	4.1	14		200	ug/L	ZD	09/18/07 11:29 AM		
Chrysene	21	4.0	13		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	4.6	0.40	1.3		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Fluoranthene	41	3.3	11		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Fluorene	1.3	0.19	0.64		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	12	4.0	13		200	ug/L	QD	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Naphthalene	0.67	0.26	0.87		20	ug/L	Q	09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Phenanthrene	1.7	0.24	0.80		20	ug/L		09/18/07 3:12 AM	SW846 3510C	8270C-SIM
Pyrene	33	3.1	10		200	ug/L	D	09/18/07 11:29 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		20	%	D	09/18/07	SW846 35100	
2-Fluorobiphenyl	0	20	111		20	%	D	09/18/07	SW846 35100	
Terphenyl-d14	0	44	115		20	%	D	09/18/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 015

Matrix Type: WATER
Collection Date: 09/10/07

Collection Date: 09/10/07 Report Date: 09/25/07

PVOC							Prep Date/Time: 09/17/07 10:45 AM Anl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/17/07 10:45 AM SW846 5030B SW846 8021B
Surrogate		LCL	UCL				
a,a,a-Trifluorotoluene	102	80	124		1	%	09/17/07 SW846 5030B SW846 8021B
PAH/ PNA							Prep Date/Time: 09/16/07 7:30 AM Anl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1-Methylnaphthalene	< 0.010	0.010	0.034		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
2-Methylnaphthalene	< 0.011	0.011	0.037		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Acenaphthene	< 0.0082	0.0082	0.027		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Acenaphthylene	0.0087	0.0081	0.027		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Anthracene	< 0.012	0.012	0.039		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Benzo(a)anthracene	0.017	0.016	0.052		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Benzo(a)pyrene	< 0.018	0.018	0.061		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Benzo(b)fluoranthene	< 0.016	0.016	0.052		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Benzo(ghi)perylene	< 0.019	0.019	0.064		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Chrysene	0.020	0.019	0.063		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Fluoranthene	0.023	0.015	0.052		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Fluorene	< 0.0091	0.0091	0.030		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L	09/17/07 6:26 PM SW846 3510C 8270C-SIM
Naphthalene	0.014	0.012	0.041		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Phenanthrene	0.021	0.011	0.038		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Pyrene	0.020	0.015	0.048		1	ug/L	Q 09/17/07 6:26 PM SW846 3510C 8270C-SIM
Surrogate		LCL	UCL				
Nitrobenzene-d5	92	10	150		1	%	09/17/07 SW846 3510C 8270C-SIM
2-Fluorobiphenyl	82	20	111		1	%	09/17/07 SW846 3510C 8270C-SIM
Terphenyl-d14	120	44	115		1	%	F 09/17/07 SW846 3510C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 016

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

PVOC							Prep	Date/Time: 09/17/0	7 11:10 AM <b>A</b> n	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	140	3.9	13		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	28	4.0	13		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Benzene	44	1.4	4.6		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Ethylbenzene	280	4.0	13		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Toluene	6.7	3.6	12		10	ug/L	Q	09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Xylene, m + p	47	7.4	25		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Xylene, o	100	3.6	12		10	ug/L		09/17/07 11:10 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM An	I By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	470	20	68		2000	ug/L	D	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	280	22	75		2000	ug/L	D	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
Acenaphthene	180	16	54		2000	ug/L	D	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
Acenaphthylene	14	0.81	2.7		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Anthracene	28	1.2	3.9		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	9.0	1.6	5.2		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	6.1	1.8	6.1		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	3.5	1.6	5.2		100	ug/L	QZ	09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	2.5	1.9	6.4		100	ug/L	Q	09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	3.3	1.9	6.4		100	ug/L	QZ	09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Chrysene	10	1.9	6.3		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 1.9	1.9	6.3		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Fluoranthene	16	1.5	5.2		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Fluorene	48	18	60		2000	ug/L	QD	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 1.9	1.9	6.3		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Naphthalene	200	25	83		2000	ug/L	D	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
Phenanthrene	82	23	76		2000	ug/L	D	09/18/07 12:41 PM	SW846 3510C	8270C-SIM
Pyrene	23	1.5	4.8		100	ug/L		09/18/07 4:48 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		100	%	D	09/18/07	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	0	20	111		100	%	D	09/18/07	SW846 3510C	8270C-SIM
Terphenyl-d14	0	44	115		100	%	D	09/18/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091007 017

Matrix Type: WATER
Collection Date: 09/10/07
Report Date: 09/25/07

	· · · · · · · · · · · · · · · · · · ·									
PVOC							Prep	Date/Time: 09/17/0	7 11:36 AM An	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	57	0.39	1.3		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	10	0.40	1.3		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Benzene	190	0.14	0.46		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Ethylbenzene	200	0.40	1.3		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Toluene	4.2	0.36	1.2		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Xylene, m + p	27	0.74	2.5		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Xylene, o	63	0.36	1.2		1	ug/L		09/17/07 11:36 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	99	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM <b>A</b> n	ıl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	89	10	34		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 11	11	37		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Acenaphthene	47	8.2	27		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Acenaphthylene	8.6	0.16	0.54		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Anthracene	8.9	0.23	0.77		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	4.9	0.31	1.0		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	8.3	0.37	1.2		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	6.1	0.31	1.0		20	ug/L	Z	09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	5.1	0.39	1.3		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	3.8	0.39	1.3		20	ug/L	Z	09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Chrysene	4.6	0.38	1.3		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	1.4	0.38	1.3		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Fluoranthene	7.2	0.31	1.0		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Fluorene	< 9.1	9.1	30		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	4.0	0.38	1.3		20	ug/L		09/18/07 3:36 AM	SW846 3510C	8270C-SIM
Naphthalene	270	12	41		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Phenanthrene	21	11	38		1000	ug/L	QD	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Pyrene	< 15	15	48		1000	ug/L	D	09/18/07 11:53 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		20	%	D	09/18/07	SW846 3510C	8270C-SIM
2-Fluorobiphenyl	0	20	111		20	%	D	09/18/07	SW846 3510C	8270C-SIM
Terphenyl-d14	0	44	115		20	%	D	09/18/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 018

Matrix Type: WATER
Collection Date: 09/11/07

Report Date : 09/25/07
Lab Sample Number : 888415-017

						Prep Date/Time: 09/17/07 12:02 PM Ani By: SES
Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
< 0.39	0.39	1.3		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.40	0.40	1.3		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.14	0.14	0.46		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.40	0.40	1.3		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.36	0.36	1.2		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.74	0.74	2.5		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
< 0.36	0.36	1.2		1	ug/L	09/17/07 12:02 PM SW846 5030B SW846 8021B
	LCL	UCL				
102	80	124		1	%	09/17/07 SW846 5030B SW846 8021B
						Prep Date/Time: 09/16/07 7:30 AM Anl By: RJN
Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
< 0.010	0.010	0.034		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.011	0.011	0.037		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.0082	0.0082	0.027		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.0081	0.0081	0.027		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.012	0.012	0.039		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.016	0.016	0.052		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.018	0.018	0.061		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.016	0.016	0.052		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.019	0.019	0.064		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.019	0.019	0.064		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.019	0.019	0.063		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.019	0.019	0.063		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.015	0.015	0.052		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.0091	0.0091	0.030		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.019	0.019	0.063		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
0.013	0.012	0.041		1	ug/L	Q 09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.011	0.011	0.038		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
< 0.015	0.015	0.048		1	ug/L	09/17/07 6:50 PM SW846 3510C 8270C-SIM
	LCL	ŲCL				
95	10	150		1	%	09/17/07 SW846 3510C 8270C-SIM
98	20	111		1	%	09/17/07 SW846 3510C 8270C-SIM
116	44	115		1	%	F 09/17/07 SW846 3510C 8270C-SIM
	< 0.39 < 0.40 < 0.14 < 0.40 < 0.36 < 0.74 < 0.36  102  Result < 0.010 < 0.011 < 0.0082 < 0.0081 < 0.012 < 0.016 < 0.019 < 0.019 < 0.019 < 0.019 < 0.019 < 0.019 < 0.019 < 0.011 < 0.0011 < 0.0015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015 < 0.0091 < 0.015	<ul> <li>&lt; 0.39</li> <li>&lt; 0.40</li> <li>&lt; 0.40</li> <li>&lt; 0.14</li> <li>&lt; 0.40</li> <li>&lt; 0.36</li> <li>&lt; 0.36</li> <li>&lt; 0.74</li> <li>&lt; 0.36</li> <li>&lt; 0.36</li> <li>LCL</li> <li>102</li> <li>80</li> <li>Result LOD</li> <li>&lt; 0.010</li> <li>&lt; 0.011</li> <li>&lt; 0.0082</li> <li>&lt; 0.0082</li> <li>&lt; 0.0081</li> <li>&lt; 0.012</li> <li>&lt; 0.016</li> <li>&lt; 0.018</li> <li>&lt; 0.018</li> <li>&lt; 0.019</li> <li>&lt; 0.019</li> <li>&lt; 0.019</li> <li>&lt; 0.019</li> <li>&lt; 0.019</li> <li>&lt; 0.019</li> <li>&lt; 0.015</li> <li>&lt; 0.0091</li> <li>&lt; 0.019</li> <li>&lt; 0.015</li> <li>&lt; 0.0091</li> <li>&lt; 0.019</li> <li>&lt; 0.011</li> <li>&lt; 0.015</li> <li>&lt; 0.011</li> <li>&lt; 0.015</li> <li>&lt; 0.011</li> <li>&lt; 0.015</li> <li>&lt; 0.015</li> <li>&lt; 0.011</li> <li>&lt; 0.015</li> <li>&lt; 0.016</li> /ul>	< 0.39	< 0.39	< 0.39	< 0.39

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 019

Matrix Type: WATER
Collection Date: 09/11/07
Report Date: 09/25/07

									<del></del>	
PVOC							Prep	Date/Time: 09/17/0	7 12:27 PM An	IBy: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date/Time	Prep Method	Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L		09/17/07 12:27 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM An	IBy: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Ani Date/Time	Prep Method	Ani Method
1-Methylnaphthalene	0.010	0.010	0.034		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 0.011	0.011	0.037		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Acenaphthene	< 0.0082	0.0082	0.027		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Acenaphthylene	0.0086	0.0081	0.027		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Anthracene	< 0.012	0.012	0.039		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.016	0.016	0.052		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.018	0.018	0.061		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.016	0.016	0.052		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.019	0.019	0.064		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Chrysene	< 0.019	0.019	0.063		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Fluoranthene	0.022	0.015	0.052		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	
Fluorene	< 0.0091	0.0091	0.030		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L		09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Naphthalene	0.020	0.012	0.041		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	
Phenanthrene	0.024	0.011	0.038		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Pyrene	0.024	0.015	0.048		1	ug/L	Q	09/17/07 7:14 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	96	10	150		1	%		09/17/07	SW846 3510C	
2-Fluorobiphenyl	88	20	111		1	%		09/17/07	SW846 3510C	
Terphenyl-d14	120	44	115		1	%	F	09/17/07	SW846 3510C	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 020

Matrix Type: WATER

Collection Date: 09/11/07 Report Date: 09/25/07

PVOC							Prep Date/Time: 09/18/07 3:44 PM Anl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Benzene	< 0.14	0.14	0.46		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/18/07 3:44 PM SW846 5030B SW846 8021B
Surrogate		LCL	UCL				
a,a,a-Trifluorotoluene	101	80	124		1	%	09/18/07 SW846 5030B SW846 8021E
PAH/ PNA							Prep Date/Time: 09/16/07 7:30 AM Anl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Method
1-Methylnaphthalene	0.022	0.010	0.034		1	ug/L	Q 09/17/07 7:38 PM SW846 3510C 8270C-SIM
2-Methylnaphthalene	0.034	0.011	0.037		1	ug/L	Q 09/17/07 7:38 PM SW846 3510C 8270C-SIM
Acenaphthene	0.075	0.0082	0.027		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Acenaphthylene	0.10	0.0081	0.027		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Anthracene	0.14	0.012	0.039		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Benzo(a)anthracene	0.52	0.062	0.21		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Benzo(a)pyrene	0.63	0.073	0.24		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Benzo(b)fluoranthene	0.64	0.063	0.21		4	ug/L	ZD 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Benzo(ghi)perylene	0.49	0.077	0.26		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Benzo(k)fluoranthene	0.46	0.019	0.064		1	ug/L	Z 09/17/07 7:38 PM SW846 3510C 8270C-SIM
Chrysene	0.55	0.076	0.25		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Dibenz(a,h)anthracene	0.12	0.019	0.063		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Fluoranthene	1.2	0.062	0.21		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Fluorene	0.041	0.0091	0.030		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Indeno(1,2,3-cd)pyrene	0.41	0.019	0.063		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Naphthalene	0.14	0.012	0.041		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Phenanthrene	0.33	0.011	0.038		1	ug/L	09/17/07 7:38 PM SW846 3510C 8270C-SIM
Pyrene	0.98	0.058	0.19		4	ug/L	D 09/18/07 9:53 AM SW846 3510C 8270C-SIM
Surrogate		LCL	UCL				
Nitrobenzene-d5	107	10	150		1	%	09/17/07 SW846 3510C 8270C-SIM
2-Fluorobiphenyl	93	20	111		1	%	09/17/07 SW846 3510C 8270C-SIM
Terphenyl-d14	120	44	115		1	%	F 09/17/07 SW846 3510C 8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 021

Matrix Type: WATER
Collection Date: 09/11/07
Report Date: 09/25/07

PVOC	•						Prep	Date/Time: 09/18/0	7 4:10 PM Ar	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
1,2,4-Trimethylbenzene	11	0.39	1.3		1	ug/L		09/18/07 4:10 PM	SW846 5030B	SW846 8021B
1,3,5-Trimethylbenzene	0.96	0.40	1.3		1	ug/L	Q	09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Benzene	1.6	0.14	0.46		1	ug/L		09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L		09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L		09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Xylene, m + p	0.92	0.74	2.5		1	ug/L	Q	09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Xylene, o	1.5	0.36	1.2		1	ug/L		09/18/07 4:10 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	101	80	124		1	%		09/18/07	SW846 5030E	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM Ar	n <b>i By</b> : RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
1-Methylnaphthalene	17	0.81	2.7		80	ug/L	D	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	1.7	0.90	3.0		80	ug/L	QD	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
Acenaphthene	5.4	0.65	2.2		80	ug/L	D	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
Acenaphthylene	0.18	0.0081	0.027		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Anthracene	0.13	0.012	0.039		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.016	0.016	0.052		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.018	0.018	0.061		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.016	0.016	0.052		1	ug/L	Z	09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.019	0.019	0.064		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L	Z	09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Chrysene	< 0.019	0.019	0.063		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Fluoranthene	< 0.015	0.015	0.052		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Fluorene	0.94	0.72	2.4		80	ug/L	QD	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Naphthalene	1.4	0.99	3.3		80	ug/L	QD	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
Phenanthrene	< 0.91	0.91	3.0		80	ug/L	D	09/18/07 10:17 AM	SW846 3510C	8270C-SIM
Pyrene	< 0.015	0.015	0.048		1	ug/L		09/17/07 10:49 PM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	97	10	150		1	%		09/17/07	SW846 35100	
2-Fluorobiphenyl	91	20	111		1	%		09/17/07	SW846 35100	8270C-SIM
Terphenyl-d14	116	44	115		1	%	F	09/17/07	SW846 35100	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 022

Matrix Type: WATER

Collection Date: 09/11/07

**Report Date**: 09/25/07 **Lab Sample Number**: 888415-021

PVOC							Prep Date/Time: 09/18/07 4:35 PM Anl By: SES	
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Metho	od
1,2,4-Trimethylbenzene	< 0.39	0.39	1.3		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
1,3,5-Trimethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Benzene	< 0.14	0.14	0.46		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Toluene	< 0.36	0.36	1.2		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/18/07 4:35 PM SW846 5030B SW846 802	21B
Surrogate		LCL	UCL					
a,a,a-Trifluorotoluene	102	80	124		1	%	09/18/07 SW846 5030B SW846 80	21B
PAH/ PNA							Prep Date/Time: 09/16/07 7:30 AM Ani By: RJN	
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time Prep Method Anl Metho	)d
1-Methylnaphthalene	< 0.010	0.010	0.034		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	1
2-Methylnaphthalene	< 0.011	0.011	0.037		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	Ė
Acenaphthene	< 0.0082	0.0082	0.027		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	t
Acenaphthylene	< 0.0081	0.0081	0.027		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Anthracene	< 0.012	0.012	0.039		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Benzo(a)anthracene	< 0.016	0.016	0.052		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Benzo(a)pyrene	0.021	0.018	0.061		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Benzo(b)fluoranthene	0.032	0.016	0.052		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	l
Benzo(ghi)perylene	0.026	0.019	0.064		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	J
Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	l
Chrysene	0.031	0.019	0.063		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	l
Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	l
Fluoranthene	0.042	0.015	0.052		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Fluorene	< 0.0091	0.0091	0.030		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	J
Naphthalene	< 0.012	0.012	0.041		1	ug/L	09/17/07 11:13 PM SW846 3510C 8270C-SIM	1
Phenanthrene	0.032	0.011	0.038		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	l
Pyrene	0.039	0.015	0.048		1	ug/L	Q 09/17/07 11:13 PM SW846 3510C 8270C-SIM	I
Surrogate		LCL	UCL					
Nitrobenzene-d5	99	10	150		1	%	09/17/07 SW846 3510C 8270C-SIN	1
2-Fluorobiphenyl	99	20	111		1	%	09/17/07 SW846 3510C 8270C-SIN	Л
Terphenyl-d14	113	44	115		1	%	09/17/07 SW846 3510C 8270C-SIN	Λ

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 023

Matrix Type: WATER

Collection Date: 09/11/07

**Report Date**: 09/25/07 **Lab Sample Number**: 888415-022

INORGANICS		-								
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Cyanide, Total	0.47	0.030	0.09		5	mg/L		09/20/07 02:13 PM	EPA 335.4	EPA 335.4
							Prep	Date/Time: 09/20/0	7 08:08 AM <b>A</b> r	I By: DAW
BTEX							Prep	Date/Time: 09/18/0	07 5:01 PM Ar	I By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Benzene	85	0.69	2.3		5	ug/L		09/18/07 5:01 PM	SW846 5030B	SW846 8021B
Ethylbenzene	380	2.0	6.7		5	ug/L		09/18/07 5:01 PM	SW846 5030B	SW846 8021B
Toluene	15	1.8	6.0		5	ug/L		09/18/07 5:01 PM	SW846 5030B	SW846 8021B
Xylene, m + p	51	3.7	12		5	ug/L		09/18/07 5:01 PM	SW846 5030B	SW846 8021B
Xylene, o	94	1.8	6.0		5	ug/L		09/18/07 5:01 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	100	80	124		1	%		09/18/07	SW846 5030B	SW846 8021B
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM <b>A</b> r	ıl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	90	10	34		1000	ug/L	D	09/18/07 1:05 PM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	2.3	1.1	3.7		100	ug/L	Q	09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Acenaphthene	29	0.82	2.7		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Acenaphthylene	13	0.81	2.7		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Anthracene	10	1.2	3.9		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	2.0	1.6	5.2		100	ug/L	Q	09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 1.8	1.8	6.1		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 1.6	1.6	5.2		100	ug/L	Z	09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 1.9	1.9	6.4		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 1.9	1.9	6.4		100	ug/L	Z	09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Chrysene	2.0	1.9	6.3		100	ug/L	Q	09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 1.9	1.9	6.3		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Fluoranthene	7.4	1.5	5.2		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Fluorene	17	0.91	3.0		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 1.9	1.9	6.3		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Naphthalene	300	12	41		1000	ug/L	D	09/18/07 1:05 PM	SW846 3510C	8270C-SIM
Phenanthrene	17	1.1	3.8		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Pyrene	9.2	1.5	4.8		100	ug/L		09/18/07 5:11 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	0	10	150		100	%	D	09/18/07	SW846 35100	8270C-SIM
2-Fluorobiphenyl	0	20	111		100	%	D	09/18/07	SW846 35100	8270C-SIM
Terphenyl-d14	0	44	115		100	%	D	09/18/07	SW846 35100	8270C-SIM

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: 091107 024

Matrix Type: WATER

Collection Date: 09/11/07 Report Date: 09/25/07

INORGANICS										
Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
Cyanide, Total	0.24	0.0060	0.020		1	mg/L		09/20/07 01:39 PM	EPA 335.4	EPA 335.4
							Prep	Date/Time: 09/20/0	7 08:08 AM A	nl By: DAW
Total Suspended Solids	35	0.77	2.6		1	mg/L		09/18/07	SM 2540D	SM 2540D
							Prep	Date/Time: 09/17/0	7 At	ıl By: DEY
ВТЕХ							Prep	Date/Time: 09/17/0	7 12:53 PM A	nl By: SES
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Benzene	6.5	0.14	0.46		1	ug/L		09/17/07 12:53 PM	SW846 5030B	SW846 8021B
Ethylbenzene	11	0.40	1.3		1	ug/L		09/17/07 12:53 PM	SW846 5030B	SW846 8021B
Toluene	1.2	0.36	1.2		1	ug/L	Q	09/17/07 12:53 PM	SW846 5030B	SW846 8021B
Xylene, m + p	5.6	0.74	2.5		1	ug/L		09/17/07 12:53 PM	SW846 5030B	SW846 8021B
Xylene, o	16	0.36	1.2		1	ug/L		09/17/07 12:53 PM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL							
a,a,a-Trifluorotoluene	102	80	124		1	%		09/17/07	SW846 5030E	SW846 8021E
PAH/ PNA							Prep	Date/Time: 09/16/0	7 7:30 AM A	nl By: RJN
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
1-Methylnaphthalene	0.030	0.026	0.085		2.5	ug/L	Q	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
2-Methylnaphthalene	< 0.028	0.028	0.094		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Acenaphthene	< 0.021	0.021	0.069		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Acenaphthylene	0.074	0.020	0.068		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Anthracene	0.052	0.029	0.097		2.5	ug/L	Q	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Benzo(a)anthracene	< 0.039	0.039	0.13		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	< 0.046	0.046	0.15		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	< 0.039	0.039	0.13		2.5	ug/L	Z	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	< 0.049	0.049	0.16		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene	< 0.049	0.049	0.16		2.5	ug/L	Z	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Chrysene	0.050	0.048	0.16		2.5	ug/L	Q	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	< 0.048	0.048	0.16		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Fluoranthene	0.35	0.039	0.13		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Fluorene	< 0.023	0.023	0.076		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	< 0.047	0.047	0.16		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Naphthalene	0.039	0.031	0.10		2.5	ug/L	Q	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Phenanthrene	0.034	0.029	0.095		2.5	ug/L	Q	09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Pyrene	0.96	0.037	0.12		2.5	ug/L		09/18/07 9:29 AM	SW846 3510C	8270C-SIM
Surrogate		LCL	UCL							
Nitrobenzene-d5	133	10	150		2.5	%		09/18/07	SW846 35100	C 8270C-SIM
2-Fluorobiphenyl	97	20	111		2.5	%		09/18/07	SW846 35100	8270C-SIM
Terphenyl-d14	117	44	115		2.5	%	F	09/18/07	SW846 35100	00700 0184

#### **Analytical Report Number: 888415**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC - OSHKOSH

Project Number: 1312

Field ID: TRIP BLANK

Matrix Type: WATER

Collection Date: 09/10/07 Report Date: 09/25/07

BTEX							Prep Date/Time: 09/17/07 1:19 PM Anl By: SES				
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time	Prep Method	Anl Method		
Benzene	< 0.14	0.14	0.46	· ,.·	1	ug/L	09/17/07 1:19 PM	SW846 5030B	SW846 8021B		
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	09/17/07 1:19 PM	SW846 5030B	SW846 8021B		
Toluene	< 0.36	0.36	1.2		1	ug/L	09/17/07 1:19 PM	SW846 5030B	SW846 8021B		
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	09/17/07 1:19 PM	SW846 5030B	SW846 8021B		
Xylene, o	< 0.36	0.36	1.2		1	ug/L	09/17/07 1:19 PM	SW846 5030B	SW846 8021B		
Surrogate		LCL	UCL								
a,a,a-Trifluorotoluene	102	80	124		1	%	09/17/07	SW846 5030B	SW846 8021B		

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
888415-	PAH+-W	All Samples	Inadequate sample volume received to perform the method required MS/MSD.
888415-	PVOC-W	All Samples	19-22 Inadequate sample volume received to perform the method required MS/MSD.
888415-009	PAH+-W	091007 010	Completely unable to resolve detects of Benzo(b)Flouranthene and Benzo(k)Flouranthene, therefore total area is reported for both compounds.
888415-014	PAH+-W	091007 015	F -Surrogate failed high, no additional sample available for re-extraction.
888415-017	PAH+-W	091107 018	F -Surrogate failed high, no additional sample available for re-extraction.
888415-018	PAH+-W	091107 019	F -Surrogate failed high, no additional sample available for re-extraction.
888415-019	PAH+-W	091107 020	${\sf F}$ - Surrogate was above control criteria. There was no sample volume available for reextraction and reanalysis.
888415-020	PAH+-W	091107 021	F - Surrogate was above control criteria. There was no sample volume available for reextraction and reanalysis.
888415-023	PAH+-W	091107 024	F - Surrogate was above control criteria. There was no sample volume available for reextraction and reanalysis.

#### **Qualifier Codes**

#### Flag Applies To Explanation

Flag	Applies To	Explanation
Ā	Inorganic	Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
E	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
K	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
M	Organic	Sample pH was greater than 2
N	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
Х	All	See Sample Narrative.
Z	Organics	This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
+	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5	Inorganic	BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
7	Inorganic	BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
8	Inorganic	Sample was received unpreserved. Sample was preserved either at the time of receipt or at the time of sample preparation.
9	Inorganic	Sample was received with insufficient preservation. Acid was added either at the time of receipt or at the time of sample preparation.

Pace	Ana	lytical
Servi	ces,	Inc.

#### Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	888415-001	888415-002	888415-003	888415-004	888415-005	888415-006	888415-007	888415-008	888415-009	888415-010	888415-011	888415-012	888415-013	888415-014	888415-015	888415-016	888415-017	888415-018	888415-019	888415-020	888415-021	888415-022	888415-023	888415-024	
BTEX																	-					G	G	G	
CYANIDE, TOTAL																						В	В		
PAH/ PNA	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В	В		
PVOC	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G	G				
SOLIDS, TOTAL SUSPENDED																							В		

Code	WI Certification
В	405132750 / DATCP: 105-444

G 405132750

## Services, Inc. Pace Analytical

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

SDG: QC Batch Number: 24760 Prep Method: Lab Section: SM 2540D WETCHEM 888415 QC Type MB DUP **LCS** 888354-002DUP Client Sample ID 888507-001DUP WCG2259-060MBLCS WCG2259-060MB 888354-002DUP 888507-001DUP WCG2259-060MBLCS WCG2259-060MB Lab Sample ID

091107 024 Client Sample ID Analytical Method: SM 2540D Lab Sample ID Client Sample ID

Total Suspended Solids Test Name ^ Method Blank Result Conc 0.31 888415-023 LCS Spiked Conc 159.0 Conc 160 LCS Recovery ₽ 100.6 LCSD Spiked Conc LCSD Recovery
Conc % LCSD % C LCS/ LCL UCL RPD % 8 Control Limits LCS/LCSD % Lab Sample ID 120 888354-002 Number Parent Sample Parent Result Conc 186.0 Dup Conc 12.4 172 1.6 Lab Dup RPD 7.8 Lab Dup RPD Limit

Total Suspended Solids

0.31

159.0

66

100.6

I

1

١

8

120

6

888507-001

12.60

6

Conc = mg/L unless otherwise noted

C = QC Code, see Qualifer Sheet Parent Result is reported down to MDL in order to allow Validation of this worksheet

QC Batch Number: 24760

Report Date: 9/25/2007

## Services, Inc. **Pace Analytical**

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

091007 004 091007 006	Client Sample ID	Analytical Method: 8270C-SIM	Prep Method:	QC Batch Number: 24694	Lab Section:	Batch:
888415-003 888415-005	Lab Sample ID	8270C-SIM	SW846 3510C	24694	BNASIM	888415
MB 8	MB ID					
091007 005 091007 007	Client Sample ID					
888415-006 888415-006	Lab Sam		LCSD	CS	MB	QC Type
	Sample ID MB ID		SVG2282-021MBLCSD	SVG2282-021MBLCS	SVG2282-021MB	Client Sample ID
	ö		ZIMBLCSD	21MBLCS	21MB	ple ID
			SVGZZ8Z-UZTMBLCSD	SVG2282-021MBLCS	SVG2282-021MB	Lab Sample ID

D   Parent   Parent   MS   RRPD   Sample   Result   Spiked   MS Recovery   Conc   Conc   % C      % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % C   Conc   % Conc   Conc   Conc   Conc   % C   Conc   Conc   % Conc   Conc   % Conc   % Conc   Conc   % Conc   % Conc   Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   % Conc   %

Conc = ug/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 24694

### Services, Inc. Pace Analytical

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch:	888415	QC Type	Client Sample ID	Lab Sample ID
Lab Section:	BNASIM	MB	SVG2282-023MB	SVG2282-023MB
QC Batch Number: 24725	24725	LCS	SVG2282-023MBLCS	SVG2282-023MBLCS
Prep Method:	SW846 3510C	LCSD	SVG2282-023MBLCSD	SVG2282-023MBLCSD
Analytical Method: 8270C-SIM	8270C-SIM			

Client Sample ID

888415-009 888415-007 Lab Sample ID

888415-008 Lab Sample ID

MB ID

Client Sample ID

MB ID

7010 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	091007 008			888415-007	77 -	MB				091	091007 009	ა			888415-00	χ.	MB								
7 07 12 2 8884 15-011 MB 8884 15-17 MB 8884 15-17 MB 8884 15-17 MB 8884 15-012 MB 8884 15-014 MB 8884 15-015 MB 8884 15-017 MB 8884 15-017 MB 8884 15-017 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB 8884 15-018 MB	091007 010			388415-00	99	MB				091	007 0	==			888415-01	0	MB								
7-014 B88415-013 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017 MB B89415-017	091007 012			388415-0		MB				091	007 0	ಪ			888415-01	N	MB								
70 70 16 1 888415-017 MB 888415-017 MB 888415-018 MB 888415-018 MB 888415-018 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 888415-019 MB 88841	091007 014			388415-0	3	MB				091	007 0	5			888415-01	4	MB								
701018   SISSA145-017   MB   SISSA145-017   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB   SISSA145-018   MB	091007 016			388415-0	5	MB				091	007 0	17			888415-01	6	MB								
70220	091107 018			388415-0	17	MB				091	1070	19			888415-01	8	MB								
Total   Part   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total   Total	091107 020			388415-0	19	MB				091	107 0	2			888415-02	ö	MB								
Machtool   LCSD   Mask   Machtool   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask   Mask	091107 022			388415-02	12	MΒ				091	107 0	23			888415-02	ĸ	MB								
Method   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palarik   Palar	091107 024			888415-02	23	MB																			
Blank   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LCS   LC		7	/lethod							LCS/		_CS/LC	SD										MS/	_	MS/MSD Control Limits
Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc   Conc	Test Name		Result	Spiked	LCS R	ecovery	Spiked	LCSDF	Recoven			- 1	- 1	Sample			MS R	ecovery	Spike		D Reco			<u></u>	
Inaphtheisene ( ) 0.011   0.02   0.19   9.5   0.20   0.16   80   0.15   0.16   80   0.15   0.16   80   0.15   0.16   80   0.15   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16   80   0.16			Conc	Conc	Conc	% с	Conc	Conc	%					Number			Conc	%	Conc		° %		ဂ	%	%
Inephthelene C 0.072 0.072 0.072 0.18 0.18 0.00 0.16 0.1 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.10 0.15 0.15	1-Methyinaphthalene	^	0.011	0.20	0.19	95	0.20	0.16	80	16.3	41	136		1	l l	ı	ı	1	ı	1				1	ļ
hthere de 0.0086 0.20 0.18 91 0.20 0.15 76 172 40 126 23 0.1 24 0.10 0.1 24 0.1 25 0.1 24 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1 25 0.1	2-Methylnaphthalene	^	0.012	0.20	0.18	88	0.20	0.16	81	8.2	40	138		ı	ł	ı	ı	1	1	1	1		1	1	
Inthylene C 0,0086 0,20 0,18 08 0,20 0,18 0,18 0,20 0,18 0,19 0,19 0,19 0,19 0,19 0,19 0,19 0,19	Acenaphthene	^	0.0086	0.20	0.18	91	0.20	0.15	76	17.2	40	126			ı	1	1	ŀ	1				1	i	
erie         C         0.012         0.02         0.18         91         0.20         0.17         83         85         39         139         120         0.01         0.01         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02         0.02	Acenaphthylene	^	0.0086	0.20	0.18	88	0.20	0.15	76	14.6	39	127		ı	1	-	-	1	-	1	-		1	1	
ajanthraceme         4         0.017         0.20         0.22         108         0.20         0.02         108         0.02         102         108         0.02         102         102         102         102         103         0.02         102         103         0.02         103         0.02         103         0.02         103         0.02         111         0.02         0.02         111         0.02         111         0.02         111         0.02         0.02         111         0.02         0.02         111         0.02         0.02         111         0.02         0.02         111         0.02         0.02         111         0.02         0.02         111         0.02         0.02         112         0.02         0.02         113         4.4         57         136         20         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0         0.0	Anthracene	^	0.012	0.20	0.18	91	0.20	0.17	æ	8.5	39	139		I	ı		ı	1	ı	-	-			1	
alpyrene         4         0.019         0.20         0.22         108         0.20         0.22         111         2.5         61         136         20                                                                                               <	Benzo(a)anthracene	^	0.017	0.20	0.22	108	0.20	0.2	102	5.3	48	146		l	1	1	ł	1	ŀ	-			I	1	-
Spituoranthene          0.017         0.20         0.22         111         0.20         0.24         119         0.9         51         141         20	Benzo(a)pyrene	^	0.019	0.20	0.22	108	0.20	0.22	111	2.5	61	136	_	1		ı	. 1	1	ı	1	1		1	1	
jth/perylene 6 0.02 0.20 0.24 118 0.20 0.23 113 4.4 57 136 20	Benzo(b)fluoranthene	^	0.017	0.20	0.22	111	0.20	0.24	119	6.9	51	141	20	ı	1	!	ı	ı	ı	1		•	1	ı	
Optionarnitherie         C         0.02         0.22         0.24         119         0.23         114         4.3         61         149         20	Benzo(ghi)perylene	^	0.02	0.20	0.24	118	0.20	0.23	113	4.4	57	136		ı	ı	ı	ı	l	i	ı	-		1	1	-
ne de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de dout de	Benzo(k)fluoranthene	^	0.02	0.20	0.24	119	0.20	0.23	114	4.3	61	149	-	1	ı		1	1	ı	-			1	1	-
Alphanthrasene         4         0.02         0.20         0.25         123         0.20         0.24         121         2.2         46         150         20 <t< td=""><td>Chrysene</td><td>^</td><td>0.02</td><td>0.20</td><td>0.22</td><td>112</td><td>0.20</td><td>0.22</td><td>110</td><td>1.2</td><td>61</td><td>150</td><td></td><td>ı</td><td>ı</td><td>I</td><td>ı</td><td>1</td><td>1</td><td>1</td><td>1</td><td></td><td>1</td><td>1</td><td></td></t<>	Chrysene	^	0.02	0.20	0.22	112	0.20	0.22	110	1.2	61	150		ı	ı	I	ı	1	1	1	1		1	1	
there de 0.016 0.20 0.2 101 0.20 0.19 94 8.0 48 145 20	Dibenz(a,h)anthracene	^	0.02	0.20	0.25	123	0.20	0.24	121	2.2	46	150		ı	1	ļ	ı	ı	1	ı	1		1	1	
e   0.0096   0.20   0.19   94   0.20   0.16   81   15.5   40   131   25	Fluoranthene	^	0.016	0.20	0.2	101	0.20	0.19	94	8.0	48	145		ı	1	I	ı	1	ı	ı	1		1	1	
1,2,3-cd)pyrene < 0,022 0,20 0,24 121 0,20 0,24 119 1,7 54 143 20	Fluorene	^	0.0096	0.20	0.19	94	0.20	0.16	81	15.5	40	131	25	l	1	1	ı	1	ı	ı	1		1	ı	
alene < 0.013 0.20 0.18 89 0.20 0.17 83 6.8 45 131 30	ndeno(1,2,3-cd)pyrene	^	0.02	0.20	0.24	121	0.20	0.24	119	1.7	54	143		!	1	-	1	1	ı	ı	1		1	1	
threne < 0.012 0.20 0.19 96 0.20 0.17 83 13.5 40 131 25	Naphthalene	^	0.013	0.20	0.18	89	0.20	0.17	83	6.8	45	131	30	ı	1	1	ı	1	1	1			1	1	
< 0.015 0.20 0.2 102 0.20 0.19 95 7.9 55 135 20 — — — — — — — — — — — — — — — — — —	Phenanthrene	^	0.012	0.20	0.19	96	0.20	0.17	83	13.5	40	131	25	ı	1	ŀ	I	i	1	1	1		1	1	
	Pyrene	^	0.015	0.20	0.2	102	0.20	0.19	95	7.9	55	135		1	1	1	1	1	1				1	1	<b>—</b> —

Conc = ug/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Terphenyl-d14	2-Fluorobiphenyl	Nitrobenzene-d5	Test Name
109%	90%	99%	Method Blank Result Conc
-	-	-	LCS Spiked Conc
1	ı	i	LCS F
111	87	86	tecovery
1	1	_	LCS LCSD LCSD LCSD LCSD LCSD LCSD LCSD Control Limits Parent Spiked LCS Recovery Conc Conc Conc Conc Conc Conc Conc Conc
ı	1	ı	LCSD Conc
104	75	89	Recover
1	1	1	LCS/ LCSD y RPD C % C
4	20	10	Con Con
115	111	10 150	LCS/LCSE Control Limi L UCL F
1	ı		D nits RPD
1	1	1	Parent Sample Number
	1	-	Parent Result Conc
ı	1	ı	MS Spiked Conc
1	1	1	MS R
	1	1	ecovery
ı	1	ı	MSD Spiked
	1	1	MSD Conc
	1	ı	Recoven
ı	1	1	MS
	1	1	% [C] C
1	1	1	MS/MSD Control Lim
1	ı	1	ISD Limits . RPD

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

a,a,a-Trifluorotoluene	Xylene, o	Xylene, m + p	Toluene	Ethylbenzene	Benzene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	Test Name		091107 024	091107 018	091007 016	091007 014	091007 012	091007 010	091007 008	091007 006	091007 004	091107 001	Client Sample ID	Analytical Method:	1 00 1814	Dran Mathod:	QC Batch Number: 24759	Lab Section:	Batch:
oluene						Ibenzene	benzene													nple ID	al Me	מנוסמ.	ythod.	라 Nu	tion:	
-	٨	٨	^	^	^	^	^														tho			嚴		
102%	0.36	0.74	0.36	0.4	0.14	0.4	0.39	Result Conc	Method Blank													(	2	er: 24	GAS	88
	20.0	40.0	20.0	20.0	20.0	20.0	20.0	Spiked Conc	LCS	888415-023	888415-017	888415-015	888415-013	888415-011	888415-009	888415-007	888415-005	888415-003	888415-001	Lab Sa	SW846 8021B	10	SW848 5030B	759	Ś	888415
ı	20.5	41.1	20.9	20.5	20.9	20.4	20			023	017	015	013	011	900	007	005	003	001	Lab Sample ID	3021B	Č	30R			
101	103	103	104	103	104	102	100	LCS Recovery		MB	MB	MB	MB	МB	MB	MB	MB	MB	MB	MB						
	20.0	40.0	20.0	20.0	20.0	20.0	20.0	C	LCSD											ō						
	20.5	41	20.8	20.4	20.7	20.4	20.1																			
101	103	103	104	102	104	102	100	LCSD Recovery Conc % C																		
	0.0	0.2	0.5	0.4	0.8	0.2	0.2		LCS/			0	0	0	0	0	0	0	0	^						
80	85	<b>8</b>	85	85	85	83	82	C %		TRIP BLANK	091107 019	091007 017	091007 015	091007 013	091007 011	091007 009	091007 007	091007 005	091007 002	Client Sample ID						
124	115	115	115	115	115	115	115	L UCL	LCS/LCSD Control Limits	ANK	)19	)17	)15	)13	11	900	07	05	02	sampl						
-	20	20	20	20	20	20	20	L RPD	CSD Limits											Ö						
888415-012	888415-012	888415-012	888415-012	888415-012	888415-012	888415-012	888415-012		Parent																	
12	12	2   <	12 <	12	12	12	2			88	88	88	88	88	88	88	œ	88	88	<u></u>	MSD	SN	LCSD	LCS	MB	ရ
101%	1.52	0.74	0.36	1.10	0.703	1.14	3.53	Result Conc	arent	888415-024	8415-01	38415-016	8415-01	38415-012	888415-010	8415-00	888415-006	888415-004	888415-002	Lab Sam	0		ö	0,		<b>QC</b> Туре
	20.0	40.0	20.0	20.0	20.0	20.0	20.0	ν Δ.	MS	1	ω	O,	+>	10	J	ω	0,	+-	10	ample ID	091107 013MSD	091107 013MS	GG2292-49MBLCSD	GG2292-49MBLCS	GG2292-49MB	Client Sample ID
1	22.5	43.2	21.5	22.7	21.9	22.6	24.6	MS Re Conc		MB	MB	MB	MB	MB	MB	MΒ	MΒ	MΒ	MΒ	MB ID	7 013N	7 013N	32-49N	)2-49N	)2-49N	Samp
101	105	108	107	108	106	107	105	MS Recovery Conc % C												0	SD	S	<b>IBLCSI</b>	BLCS	<del>65</del>	<u>Б</u>
	20.0	40.0	20.0	20.0	20.0	20.0	20.0		MSD														U			
ı	22.5	43.1	21.5	22.7	22	22.5	24.5	_													8884	8884	GG2	GG2	GG2:	Lab :
99	105	108	108	108	106	107	105	MSD Recovery Conc % C													888415-012MSD	888415-012MS	GG2292-49MBLCSD	GG2292-49MBLCS	GG2292-49MB	Lab Sample ID
1	0.3	0.4	0.2	0.2	0.5	0.4	0.6	RPD	MS/												ISD	S	BLCSD	BLCS	œ	ō
88	80	78	8	8	8	71	72	C "CT	0																	
124	120	124	120	120	120	124	123	%t Ct	MS/MSD Control Limits																	
11	20	20	20	20	20	29		RPD	SD _imits																	

QC Batch Number: 24759

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Analytical Method: SW846 8021B	Prep Method:	QC Batch Number: 24785	Lab Section:	Batch:
SW846 8021B	SW846 5030B	24785	GAS	888415
	LCSD	LCS	MB	QC Type
	GG2292-54MBLCSD	GG2292-54MBLCS	GG2292-54MB	Client Sample ID
	GG2292-54MBLCSD	GG2292-54MBLCS	GG2292-54MB	Lab Sample ID

Client Sample ID 091107 020 091107 022

Lab Sample ID 888415-019 888415-021

MB ID

**Lab Sample ID** 888415-020 888415-022

MB ID

Client Sample ID

a,a,a-Trifluorotoluene	Xylene, o	Xylene, m + p	Toluene	Ethylbenzene	Benzene	1,3,5-Trimethylbenzene	1,2,4-Trimethylbenzene	Test Name
	^	^		^		^		
101%	0.36	0.74	0.36	0.4	0.14	0.4	0.39	Method Blank Result Conc
-	20.0	40.0	20.0	20.0	20.0	20.0	20.0	LCS Spiked Conc
ı	20.3	41.1	20.6	20.7	20.4	20.5	20.3	LCS F
100	102	103	103	104	102	102	101	LCS Recovery
1	20.0	40.0	20.0	20.0	20.0	20.0	20.0	LCSD tecovery Spiked % C Conc
ı	20.2	40.9	20.5	20.7	20.3	20.4	20.2	
<u>1</u>	101	102	102	103	101	102	101	70
	0.4	0.5	0.3	0.3	0.7	0.6	9.0	LCS/ LCSD tecovery RPD % C % C
8	85	85	85	85	85	83	82	5
124	115	115	115	115	115	115	115	Control Limits CL UCL RF
1	20	20	20	20	20	20	20	SD Imits RPD
ı	1	1	ı	l	i	1	l	Parent Sample Number
1	1	ı	1		ı	ı	-	Parent Result Conc
1		1	1	1	ı	1	1	MS Spiked Conc
ı	ı	ı	1	ı	1	ı	1	MS I
1	ı	1	1	I	ı	ı	1	Recovery
1	1		1	ı	1	1	1	MSD Spiked Conc
1	1	ı	ı	ı	1		ı	MSD F
1	1	1			1	1	1	lecovery
ı	ı	1	ı	ı	ı	I	ı	MS         MSD         MSD         MSD         MSD         Control Limits           Spiked         MS Recovery         Spiked         MSD Recovery         RPD         LCL UCL RPD           Conc         Conc         Conc         %         %         %
1	1	1				1	1	% [C] C
	1	1	ı	ı	ı	ı	ı	MS/MSD control Lim
ı	ı	ı	ı	ı	I	ı	1	imits RPD

QC Batch Number: 24785

## Services, Inc. **Pace Analytical**

# QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Batch:	888415			QC Type	Client Sample ID	Lab Sample ID
Lab Section:	WETCHEM			MB	WCG2284-085MB	WCG2284-085MB
OC Batch Number: 24890	24890			LCS	WCG2284-085MBLCS	WCG2284-085MBLCS
Don Mothod:	ED > 33E A			MS	888652-001MS	888652-001MS
rrep Wethod.	EFA 000.4			SM	091107 023MS	888415-022MS
Analytical Method: EPA 335.4	EPA 335.4			MSD	888652-001MSD	888652-001MSD
				MSD	091107 023MSD	888415-022MSD
Client Sample ID	Lab Sample ID	MB ID	Client Sample ID	Lab Sample ID	ple ID MB ID	
091107 023	888415-022	MB	091107 024	888415-023	MB	

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 24890

#### Sample Condition Upon Receipt



Pace Analytical Client Name	ə:	Δ	RI			Pro	ject#_	888415
Courier: Fed Ex UPS USPS Clie	ent 🔲	Comm	nercial	∐ Pa	ce Other	·	- 12/0	leineil G Dictor Later
Custody Seal on Cooler/Box Present: yes		no	Seal	s intact:	□ yes	☐ no		
Packing Material: Bubble Wrap	e Bags		None	☐ Oth				
Thermometer Used —		of Ice	: (We		None	Sam	nples on ice	, cooling process has begun
Cooler Temperature 705 Temp should be above freezing to 6°C	Biolo	gical	Tissue	is Froze	en: Yes No ents:	_	Date and In	itials of person examining
Chain of Custody Present:	⊠Yes	□No	□N/A	1.				
Chain of Custody Filled Out:	⊡Yes	□No	□n/A	2.				
Chain of Custody Relinquished:	⊡Yes	□No	□N/A	3.				
Sampler Name & Signature on COC:	∃Yes	□No	□n/a	4.		···		
Samples Arrived within Hold Time:	⊒Yes	□No	□N/A	5.				
Short Hold Time Analysis (<72hr):	□Yes	Ø№	□n/a	6.			*	
Rush Turn Around Time Requested:	□Yes	⊠‰	□n/a	7.				
Sufficient Volume:	□Yes	⊡No	□N/A	8.				
Correct Containers Used:	□Yes	ØN₀	□n/a	Ø				
-Pace Containers Used:	⊠Yes	□No	□N/A		`			
Containers Intact:	Ø Yes	□No	□n/a	10.		· · · · · · · · · · · · · · · · · · ·	<del></del>	
Filtered volume received for Dissolved tests	□Yes	□No	ØN/A	11.				
Sample Labels match COC:	ÈYes	□No	□n/a	12.				
-Includes date/time/ID/Analysis Matrix:	<u>ew</u>							
All containers needing preservation have been checked.	<b>Z</b> Yes	□No	□N/A	13.			-	
All containers needing preservation are found to be in compliance with EPA recommendation.	Yes	□No	□n/a					
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes	□No		Initial whe			of added	
Samples checked for dechlorination:	□Yes	□No	[∄N/A	14.	· · · · · · · · · ·	<b>I'</b>		
Headspace in VOA Vials ( >6mm):	□Yes	<b>⊡</b> ₩₀	□n/a	15.			7.4	
Trip Blank Present:	⊠Yes	□No	□n/a	16. <i>j</i> -	40 ml.	HCC H	120	Added by lab.
Trip Blank Custody Seals Present	⊠Yes	□No	□n/a		recid t	not c	n coc.	Haded by lab.
Pace Trip Blank Lot # (if purchased):								97-1307
Client Notification/ Resolution:	<u></u>					Field	Data Requir	red? Y / N
Person Contacted:			Date/T	ime:		7 1010	Data Noqui	cu: / / /v
Comments/ Resolution: Only 2-the	Tag	A re	ćd	Q #	012,18	25 Ins	- D 1200	wested. New 3
Liter ag. CG 9-13-07		10-	400	vil re	ed for	#010	<del>(</del> 2)	
<u>(9) 755@</u>	# 00	23_	rect	d in	liter ag	10		
					0			
			• • • • • • • • • • • • • • • • • • • •			<del></del>	····	
	00		1					
Project Manager Review:	2//						Date:	9-14-07

Note: Whenever there is a discrepancy affecting North Parolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e. out of hold, incorrect preservative, out of temp, incorrect containers)

special pricing and release of liability

ersion 6.0 06/14/06

ORIGINA

Company Name:

(Please Print Clearly)

MN: 612-607-1700 WI: 920-469-2436

UPPER MIDWEST REGION

Page

of 7 36

029644

)

ORIGINAL

Company Name:

(Please Print Clearly)

MN: 612-607-1700 WI: 920-469-2436

UPPER MIDWEST REGION

Page

25 P 37

029645

Profile #

(Please Print Clearly)

JPPER MIDWEST REGION

Page

# Sample Control Log

Notes (turnaround time, handling notes 24960 029645 449460 D37674 COC Number Pare Analytical Laboratory: · Field Staff ID: Geotechnical Laboratory: Sample Depth QC Sample Information (feet) (duplicate, blank, etc...) M5/M50 X  $\rightarrow$ **₹** MYW 108 R Unique Sample ID Sample Media Sample Location 50·M-5) - 3 P.105 OW. 382 ナロ・し 430 MW. 103 F01.9. 1-07-5 Mw. 104 P.109 901.0 MW-103 J-3-5 3 ξ, (<u>)</u> 0910 0 7013 210070160 041007002 0910 CO 014 210600160 09/10/11/0 400/00140 5001001160 0911007008 P11007007 02100160 110000010 200500110 091007010 091107001 Project ID: 1312 / CERCLIS ID - WIN000509947 Project Name: WPSC Oshkosh Former MGP Site **な**らの 00 T 00 8 Sample Number (3-digit) 003 005 607 00 006 600 210 013 10 015 000 0 10 170 6 0 20 70 10 70 Year (2-digit) 0 70 6 67 07  $\langle 0 \rangle$ 5 Task ID: Date (2-digit) <u>م</u> 0) 0 0) 9 9) 9 9 0 2 9 9 0) E Month (2-digit) 09 09 80 9 0 É <u>2</u> 0  $\mathcal{Z}$ 50 8 8 0 0,7



Page 1 of 24

# Sample Control Log

		Notes (turnaround time,	handling notes												Ų	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	RSG		COC Number	029645						029645	029646	224646				
Analytical Laboratory:	Geotechnical Laboratory: Field Staff ID:	OC cample Information	(duplicate, blank, etc)				and									
		1 1	Sample Deptin (feet)	NA	}						$\rightarrow$	2				
		•	Sample Location	p.107p	MW. 18912	Pell	))).d	Mr. Ma	P-108	011 · d	けった	# Exgrand				
		r	Sample Media	N.F.	35	CM	(J)	3-5	3F)	B	35	35				
Site	2509947		Inlowe Sample ID S		041007017	8101011160	941107014	041167020	0411011401	5911070A	550 TO 11PO	MOTOLLA		•		
Project Name: WPSC Oshkosh Former MGP Site	Project ID: 1312 / CERCLIS ID - WIN000509947	Sample	Number		<del> </del>	1			7	(40	500	+				
WPSC Oshko	1312 / CERCI	9	Year	<b></b>	<del> </del>		<del> </del>	8	07	7	+	<del></del>				
ect Name: 1	oroject ID:	Task ID:	Date	(z-aigil)	2 6					=	=					1
Proje	<u>.</u>		Month	(z-digit)	3 3	0	06	2 5	\$ 5	\$	\$ 8	00				



Page 2 of 24

1312-SCL-001 SCL



1241 Bellevue Street, Suite 9 Green Bay, WI 54302 920-469-2436, Fax: 920-469-8827

#### **Analytical Report Number: 891396**

Client: NATURAL RESOURCE TECHNOLOGY

Lab Contact: Brian Basten

Project Name: WPSC-OSHKOSH

Project Number: 1312

Lab Sample Number	Field ID	Matrix	Collection Date
891396-001	113007001	WATER	11/30/07 12:30
891396-002	TRIP BLANK	WATER	11/30/07

I certify that the data contained in this Final Report has been generated and reviewed in accordance with approved methods and Laboratory Standard Operating Procedure. Exceptions, if any, are discussed in the accompanying sample comments. Release of this final report is authorized by Laboratory management, as is verified by the following signature. This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc. The sample results relate only to the analytes of interest tested.

Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report.

#### REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Date

12-14-07

Page 1 of

Approval Signature

#### **Analytical Report Number: 891396**

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC-OSHKOSH

Project Number: 1312

Field ID: 113007001

Matrix Type: WATER

Collection Date: 11/30/07 Report Date: 12/14/07

Lab Sample Number: 891396-001

Test	INORGANICS										
BTEX	Test	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
BTEX	Cyanide, Total	0.79	0.030	0.09		5	mg/L		12/13/07 02:45 PM	EPA 335.4	EPA 335.4
Analyte         Result         LOD         LOQ         EQL         DII         Units         Code         AnI Date/Time         Prep Method         AnI Method           Benzene         5.9         0.14         0.46         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Ethylbenzene         1         0.40         1.3         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Xylene, m + p         4.1         0.74         2.5         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Xylene, m + p         4.1         0.74         2.5         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Xylene, m + p         4.1         0.74         2.5         1         ug/L         12/05/07         227 AM         SW846 5030B         SW846 8021B           Xylene, m + p         4.1         0.74         2.5         1         ug/L         12/05/07         27 AM         SW846 5030B         SW846 8021B           Xylene, m + p         4.1         4.1         1         1         1         1         1         2/05/07         1         2/05/07								Prep l	Date/Time: 12/13/0	7 08:36 AM Ar	ıl By: DAW
Benzene   5.9   0.14   0.46   1   ug/L   12/05/07 2:27 AM   SW946 5030B SW846 8021B	BTEX							Prep I	Date/Time: 12/05/0	7 2:27 AM <b>A</b> r	nl By: PMS
Ethylbenzene 21 0.40 1.3 1 ug/L 2105/07 2:27 AM SW846 50308 SW846 8021B Yolene 1.0 0.36 1.2 1 ug/L Q 12/05/07 2:27 AM SW846 50308 SW846 8021B Xylene, m + p 4.1 0.74 2.5 1 ug/L 12/05/07 2:27 AM SW846 50308 SW846 8021B Xylene, o 8.3 0.36 1.2 1 ug/L 12/05/07 2:27 AM SW846 50308 SW846 8021B Xylene, o 8.3 0.36 1.2 1 ug/L 12/05/07 2:27 AM SW846 50308 SW846 8021B Xylene, o 8.3 0.36 1.2 UGL  Surrogate LCL UCL  BAH/ PNA  Result LOD LOQ EQL DII. Units Code Anl Date/Time: 12/05/07 SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 50308 SW846 8021B CODE TO SW846 SW846 50308 SW846 8021B CODE TO SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846 SW846	Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Ani Method
Toluene 1.0 0.36 1.2 1 ug/L Q 12/05/07 2:27 AM SW846 5030B SW846 8021B Xylene, m + p 4.1 0.74 2.5 1 ug/L 12/05/07 2:27 AM SW846 5030B SW846 8021B Xylene, o 8.3 0.36 1.2 1 ug/L 12/05/07 2:27 AM SW846 5030B SW846 8021B Xylene, o 8.3 0.36 1.2 1 ug/L 12/05/07 2:27 AM SW846 5030B SW846 8021B Surrogate LCL UGL  a.a.a.Trifluorotoluene 103 80 124 1 % 12/05/07 SW846 5030B SW846 8021B PAH/PNA  Analyte Result LOD LOQ EQL DII. Units Code Ani Date/Time: 12/05/07 9:00 AM Ani By: RJN  Analyte Result LOD LOQ EQL DII. Units Code Ani Date/Time: Prep Method Ani Method 1-Methylnaphthalene 8.8 0.51 1.7 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Acenaphthene 11 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Acenaphthylene 2.6 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Anitracene 1.7 0.58 1.9 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Senzo(a)anthracene 0.085 0.016 0.052 1 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Benzo(a)anthracene 0.085 0.016 0.052 1 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Senzo(a)pyrene < 0.018 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(a)pyrene < 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene 0.081 0.016 0.052 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.016 0.016 0.052 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Senzo(b)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW84	Benzene	5.9	0.14	0.46		1	ug/L		12/05/07 2:27 AM	SW846 5030B	SW846 8021B
Xylene, m + p         4.1         0.74         2.5         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Xylene, o         8.3         0.36         1.2         1         ug/L         12/05/07 2:27 AM         SW846 5030B         SW846 8021B           Surrogate         LCL         UCL	Ethylbenzene	21	0.40	1.3		1	ug/L		12/05/07 2:27 AM	SW846 5030B	SW846 8021B
Xylene, o   8.3   0.36   1.2   1   ug/L   12/05/07 2:27 AM   SW846 5030B   SW846 8021B	Toluene	1.0	0.36	1.2		1	ug/L	Q	12/05/07 2:27 AM	SW846 5030B	SW846 8021B
Surrogate         LCL         UCL           a,a,a-Trifluorotoluene         103         80         124         1         %         12/05/07         SW846 50308         SW846 80218           PAH/ PNA         Frephate/Time: 12/05/07 9:00 AM         Analyte         Result         LOD         LOQ         EQL         Dil.         Units         Code         An I Date/Time: 12/05/07 9:00 AM         An I By: RJN           Analyte         Result         LOD         LOQ         EQL         Dil.         Units         Code         An I Date/Time: 12/05/07 9:00 AM         An I By: RJN           Analyte         Result         LOD         LOQ         EQL         Dil.         Units         Code         An I Date/Time: 12/05/07 4:58 PM         SW846 3510C         8270C-SIM           2-Methylnaphthalene         8.8         0.51         1.7         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Accenaphthylene         2.6         0.41         1.4         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Benzo(a)phyrene         0.085         0.016         0.052<	Xylene, m + p	4.1	0.74	2.5		1	ug/L		12/05/07 2:27 AM	SW846 5030B	SW846 8021B
Aga,a-Trifluorotoluene   103   80   124   1	Xylene, o	8.3	0.36	1.2		1	ug/L		12/05/07 2:27 AM	SW846 5030B	SW846 8021B
PAH/ PNA         Result         LOD         LOQ         EQL         Dil.         Units         Code         Anl Date/Time: 12/05/07 9:00 AM         Anl By: RJN           Analyte         Result         LOD         LOQ         EQL         Dil.         Units         Code         Anl Date/Time: 12/05/07 9:00 AM         Anl Method           1-Methylnaphthalene         8.8         0.51         1.7         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Acenaphthene         11         0.41         1.4         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Acenaphthylene         2.6         0.41         1.4         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Anthracene         1.7         0.58         1.9         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Benzo(a)pyrene         0.085         0.016         0.052         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Benzo(b)fluoranthene         < 0.016	Surrogate		LCL	UCL							
Analyte         Result         LOD         LOQ         EQL         Dil.         Units         Code         Anl Date/Time         Prep Method         Anl Method           1-Methylnaphthalene         8.8         0.51         1.7         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           2-Methylnaphthalene         0.063         0.011         0.037         1         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Acenaphthylene         2.6         0.41         1.4         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Anthracene         1.7         0.58         1.9         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Benzo(a)pyrene         0.085         0.016         0.052         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Benzo(a)pyrene         0.018         0.016         0.052         1         ug/L         2         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Benzo(b)fluoranthene         0.019         0.019         0.064         1         ug/L	a,a,a-Trifluorotoluene	103	80	124		1	%		12/05/07	SW846 5030B	SW846 8021B
1-Methylnaphthalene 8.8 0.51 1.7 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM 2-Methylnaphthalene 0.063 0.011 0.037 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Acenaphthene 11 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Acenaphthylene 2.6 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Anthracene 1.7 0.58 1.9 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Benzo(a)anthracene 0.085 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(a)pyrene < 0.018 0.018 0.061 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.016 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Fluoranthene 1.5 0.77 2.6 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene 1.5 0.77 2.6 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510	PAH/ PNA							Prep I	Date/Time: 12/05/0	7 9:00 AM Ar	nl By: RJN
2-Methylnaphthalene         0.063         0.011         0.037         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Acenaphthene         11         0.41         1.4         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Acenaphthylene         2.6         0.41         1.4         50         ug/L         D         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Anthracene         1.7         0.58         1.9         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Benzo(a)anthracene         0.085         0.016         0.052         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Benzo(a)pyrene         < 0.018	Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code	Anl Date/Time	Prep Method	Anl Method
Acenaphthene 11 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Acenaphthylene 2.6 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Anthracene 1.7 0.58 1.9 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Benzo(a)anthracene 0.085 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(a)pyrene < 0.018 0.018 0.061 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.016 0.016 0.052 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L 2 12/05/07 8:14 PM SW846 3510C 8270C-SIM Chrysene 0.081 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Fluoranthene 1.5 0.77 2.6 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Pyrene 1.5 0.73 2.4 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Pyrene 1.5 0.73 2.4 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C	1-Methylnaphthalene	8.8	0.51	1.7		50	ug/L	D	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Acenaphthylene 2.6 0.41 1.4 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Anthracene 1.7 0.58 1.9 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Benzo(a)anthracene 0.085 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(a)pyrene < 0.018 0.018 0.061 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.016 0.016 0.052 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.019 0.019 0.064 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Fluoranthene	2-Methylnaphthalene	0.063	0.011	0.037		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Anthracene 1.7 0.58 1.9 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Benzo(a)anthracene 0.085 0.016 0.052 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(a)pyrene < 0.018 0.018 0.061 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(b)fluoranthene < 0.016 0.016 0.052 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(ghi)perylene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Benzo(k)fluoranthene < 0.019 0.019 0.064 1 ug/L Z 12/05/07 8:14 PM SW846 3510C 8270C-SIM Dibenz(a,h)anthracene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Fluoranthene 1.5 0.77 2.6 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Fluorene 5.8 0.45 1.5 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Naphthalene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.31 0.011 0.038 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Pyrene 1.5 0.73 2.4 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW846 3510C 8270C-SIM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM SW140 PM	Acenaphthene	11	0.41	1.4		50	ug/L	D	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Benzo(a)anthracene         0.085         0.016         0.052         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Benzo(a)pyrene         < 0.018	Acenaphthylene	2.6	0.41	1.4		50	ug/L	D	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Benzo(a)pyrene	Anthracene	1.7	0.58	1.9		50	ug/L	QD	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Benzo(b)fluoranthene	Benzo(a)anthracene	0.085	0.016	0.052		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Benzo(ghi)perylene	Benzo(a)pyrene	< 0.018	0.018	0.061		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Benzo(k)fluoranthene         < 0.019         0.019         0.064         1         ug/L         Z         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Chrysene         0.081         0.019         0.063         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Dibenz(a,h)anthracene         < 0.019	Benzo(b)fluoranthene	< 0.016	0.016	0.052		1	ug/L	Z	12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Chrysene         0.081         0.019         0.063         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Dibenz(a,h)anthracene         < 0.019	Benzo(ghi)perylene	< 0.019	0.019	0.064		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Dibenz(a,h)anthracene	Benzo(k)fluoranthene	< 0.019	0.019	0.064		1	ug/L	Z	12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Fluoranthene 1.5 0.77 2.6 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Fluorene 5.8 0.45 1.5 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM SW846	Chrysene	0.081	0.019	0.063		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Fluorene 5.8 0.45 1.5 50 ug/L D 12/06/07 4:58 PM SW846 3510C 8270C-SIM Indeno(1,2,3-cd)pyrene < 0.019 0.019 0.063 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM Naphthalene 0.054 0.012 0.041 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Phenanthrene 0.31 0.011 0.038 1 ug/L 12/05/07 8:14 PM SW846 3510C 8270C-SIM Pyrene 1.5 0.73 2.4 50 ug/L QD 12/06/07 4:58 PM SW846 3510C 8270C-SIM Surrogate LCL UCL  Nitrobenzene-d5 96 10 150 1 % 12/05/07 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 82 20 111 1 % 12/05/07 SW846 3510C 8270C-SIM SW846 3510C 8270C-SIM	Dibenz(a,h)anthracene	< 0.019	0.019	0.063		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Indeno(1,2,3-cd)pyrene	Fluoranthene	1.5	0.77	2.6		50	ug/L	QD	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Naphthalene         0.054         0.012         0.041         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Phenanthrene         0.31         0.011         0.038         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Pyrene         1.5         0.73         2.4         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Surrogate         LCL         UCL         UCL         V         12/05/07         SW846 3510C         8270C-SIM           Nitrobenzene-d5         96         10         150         1         %         12/05/07         SW846 3510C         8270C-SIM           2-Fluorobiphenyl         82         20         111         1         %         12/05/07         SW846 3510C         8270C-SIM	Fluorene	5.8	0.45	1.5		50	ug/L	D	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
Naphthalene         0.054         0.012         0.041         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Phenanthrene         0.31         0.011         0.038         1         ug/L         12/05/07 8:14 PM         SW846 3510C         8270C-SIM           Pyrene         1.5         0.73         2.4         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Surrogate         LCL         UCL         UCL         V         12/05/07         SW846 3510C         8270C-SIM           Nitrobenzene-d5         96         10         150         1         %         12/05/07         SW846 3510C         8270C-SIM           2-Fluorobiphenyl         82         20         111         1         %         12/05/07         SW846 3510C         8270C-SIM	Indeno(1,2,3-cd)pyrene	< 0.019	0.019	0.063		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Pyrene         1.5         0.73         2.4         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Surrogate         LCL         UCL         UCL         V         12/05/07         SW846 3510C         8270C-SIM           Nitrobenzene-d5         96         10         150         1         %         12/05/07         SW846 3510C         8270C-SIM           2-Fluorobiphenyl         82         20         111         1         %         12/05/07         SW846 3510C         8270C-SIM	Naphthalene	0.054	0.012	0.041		1	ug/L		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Pyrene         1.5         0.73         2.4         50         ug/L         QD         12/06/07 4:58 PM         SW846 3510C         8270C-SIM           Surrogate         LCL         UCL         UCL         V         12/05/07         SW846 3510C         8270C-SIM           Nitrobenzene-d5         96         10         150         1         %         12/05/07         SW846 3510C         8270C-SIM           2-Fluorobiphenyl         82         20         111         1         %         12/05/07         SW846 3510C         8270C-SIM	Phenanthrene	0.31	0.011	0.038		1	-		12/05/07 8:14 PM	SW846 3510C	8270C-SIM
Nitrobenzene-d5 96 10 150 1 % 12/05/07 SW846 3510C 8270C-SIM 2-Fluorobiphenyl 82 20 111 1 % 12/05/07 SW846 3510C 8270C-SIM	Pyrene	1.5	0.73	2.4		50	ug/L	QD	12/06/07 4:58 PM	SW846 3510C	8270C-SIM
2-Fluorobiphenyl 82 20 111 1 % 12/05/07 SW846 3510C 8270C-SIM	Surrogate		LCL	UCL							
	Nitrobenzene-d5	96	10	150		1	%		12/05/07	SW846 3510C	8270C-SIM
Terphenyl-d14 112 44 115 1 % 12/05/07 SW846 3510C 8270C-SIM	2-Fluorobiphenyl	82	20	111		1	%		12/05/07	SW846 35100	8270C-SIM
	Terphenyl-d14	112	44	115		1	%		12/05/07	SW846 35100	8270C-SIM

**Analytical Report Number: 891396** 

1241 Bellevue Street Green Bay, WI 54302 920-469-2436

Client: NATURAL RESOURCE TECHNOLOGY

Project Name: WPSC-OSHKOSH

Project Number: 1312

Field ID: TRIP BLANK

Matrix Type: WATER

Collection Date: 11/30/07

Report Date: 12/14/07

Lab Sample Number: 891396-002

BTEX							Prep Date/Time: 12/05/0	07 2:52 AM An	I By: PMS
Analyte	Result	LOD	LOQ	EQL	Dil.	Units	Code Anl Date/Time	Prep Method	Anl Method
Benzene	< 0.14	0.14	0.46		1	ug/L	12/05/07 2:52 AM	SW846 5030B	SW846 8021B
Ethylbenzene	< 0.40	0.40	1.3		1	ug/L	12/05/07 2:52 AM	SW846 5030B	SW846 8021B
Toluene	< 0.36	0.36	1.2		1	ug/L	12/05/07 2:52 AM	SW846 5030B	SW846 8021B
Xylene, m + p	< 0.74	0.74	2.5		1	ug/L	12/05/07 2:52 AM	SW846 5030B	SW846 8021B
Xylene, o	< 0.36	0.36	1.2		1	ug/L	12/05/07 2:52 AM	SW846 5030B	SW846 8021B
Surrogate		LCL	UCL						
a,a,a-Trifluorotoluene	104	80	124		1	%	12/05/07	SW846 5030B	SW846 8021B

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

Lab Number	TestGroupID	Field ID	Comment
891396-	BTEX-W	All Samples	1-2 Inadequate sample volume received to perform the method required MS/MSD.
891396-	PAH+-W	All Samples	Inadequate sample volume received to perform the method required MS/MSD.

#### **Qualifier Codes**

Α	Inorganic	Explanation  Analyte is detected in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally,
	-	method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
В	Inorganic	The analyte has been detected between the method detection limit and the reporting limit.
В	Organic	Analyte is present in the method blank. Method blank criteria is evaluated to the laboratory method detection limit. Additionally, method blank acceptance may be based on project specific criteria or determined from analyte concentrations in the sample and are evaluated on a sample by sample basis.
С	All	Elevated detection limit.
D	All	Analyte value from diluted analysis or surrogate result not applicable due to sample dilution.
E	Inorganic	Estimated concentration due to matrix interferences. During the metals analysis the serial dilution failed to meet the established control limits of 0-10%. The sample concentration is greater than 50 times the IDL for analysis done on the ICP or 100 times the IDL for analysis done on the ICP-MS. The result was flagged with the E qualifier to indicate that a physical interference was observed.
Ε	Organic	Analyte concentration exceeds calibration range.
F	Inorganic	Due to potential interferences for this analysis by Inductively Coupled Plasma techniques (SW-846 Method 6010), this analyte has been confirmed by and reported from an alternate method.
F	Organic	Surrogate results outside control criteria.
G	All	The result is estimated because the concentration is less than the lowest calibration standard concentration utilized in the initial calibration. The method detection limit is less than the reporting limit specified for this project.
Н	All	Preservation, extraction or analysis performed past holding time.
HF	Inorganic	This test is considered a field parameter, and the recommended holding time is 15 minutes from collection. The analysis was performed in the laboratory beyond the recommended holding time.
J	All	Concentration detected equal to or greater than the method detection limit but less than the reporting limit.
K	Organic	Detection limit may be elevated due to the presence of an unrequested analyte.
L	All	Elevated detection limit due to low sample volume.
М	Organic	Sample pH was greater than 2
N	All	Spiked sample recovery not within control limits.
0	Organic	Sample received overweight.
Р	Organic	The relative percent difference between the two columns for detected concentrations was greater than 40%.
Q	All	The analyte has been detected between the limit of detection (LOD) and limit of quantitation (LOQ). The results are qualified due to the uncertainty of analyte concentrations within this range.
S	Organic	The relative percent difference between quantitation and confirmation columns exceeds internal quality control criteria. Because the result is unconfirmed, it has been reported as a non-detect with an elevated detection limit.
U	All	The analyte was not detected at or above the reporting limit.
V	All	Sample received with headspace.
W	All	A second aliquot of sample was analyzed from a container with headspace.
Χ	All	See Sample Narrative.
Z	Organics	This compound was separated in the CCV standard but it did not meet the resolution criteria as set forth in SW846.
&	All	Laboratory Control Spike recovery not within control limits.
*	All	Precision not within control limits.
+	Inorganic	The sample result is greater than four times the spike level: therefore, the percent recovery is not evaluated.
<	All	The analyte was not detected at or above the reporting limit.
1	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses passed QC based on precision criteria.
2	Inorganic	Dissolved analyte or filtered analyte greater than total analyte; analyses failed QC based on precision criteria.
3	Inorganic	BOD result is estimated due to the BOD blank exceeding the allowable oxygen depletion.
4	Inorganic	BOD duplicate precision not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
		BOD result is estimated due to insufficient oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to
5	Inorganic	reanalyze and try to correct the deficiency.
	Inorganic Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
6	•	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.
5 6 7 8	Inorganic	BOD laboratory control sample not within control limits. Due to the 48 hour holding time for this test, it is not practical to reanalyze and try to correct the deficiency.  BOD result is estimated due to complete oxygen depletion. Due to the 48 hour holding time for this test, it is not practical to

#### Analysis Summary by Laboratory

1241 Bellevue Street Green Bay, WI 54302

Test Group Name	891396-002 891396-001	
BTEX	G G	
CYANIDE, TOTAL	В	
PAH/ PNA	В	

Code	WI Certification
В	405132750 / DATCP: 105-444
G	405132750

## Services, Inc. **Pace Analytical**

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

113007001 891396-001	Client Sample ID Lab Sample ID	Analytical Method: 8270C-SIM	Prep Method: SW846 3510C	QC Batch Number: 27150	Lab Section: BNASIM	Dalcii. oblobo
MB	MB ID					
	Client Sample ID Lab Sam		LCSD	LCS	MB	QC Type
	Lab Sample ID MB ID		SVG2282-068MBLCSD	SVG2282-068MBLCS	SVG2282-068MB	Client Sample ID
			SVG2282-068MBLCSD	SVG2282-068MBLCS	SVG2282-068MB	Lab Sample ID

	Method Blank	LCS		į	LCSD			LCS)	LCS	LCS/LCSD Control Limits	Parent	Parent	MS.			MSD			MS/	MS/MSD Control Limits	1 \$ \overline{G}\$
Test Name	Result	Spiked	LCS R	LCS Recovery	Spiked	LCSD R	LCSD Recovery	9 0	רכד ר		RPD Sample	Result	Spiked		ecovery	Spiked	MSD Recovery	covery	RP 8	'	UCL
1-Wethylnaohthalene	< 0.011	0.20	Conc 0.14	8 %		0.14	Z %	4.0 °C	41 %	136	% Number	Conc	Conc	- Conc	%		i Conc	%	%	8	1 8
2-Methylnaphthalene	< 0.012	0.20	0.14	72	0.20	0.13	67	6.6	-		26		!	1	1	1	1	1	1	ı	
Acenaphthene	< 0.0086	0.20	0.15	73	0.20	0.14	69	5.4	4	126	23 -	!	1	1	ı	1	1	1	1	ı	
Acenaphthylene	< 0.0086	0.20	0.14	70	0.20	0.13	66	6.0	39	127	24	1	ı	ı	ı	ı	1	1	1	1	
Anthracene	< 0.012	0.20	0.17	22	0.20	0.15	77	8.7	39	139	27 —	1	1	ı	1	1	1	1	1	I	
Benzo(a)anthracene	< 0.017	0.20	0.19	96	0.20	0.2	100	4.1	<del>48</del>	146	20 —	1	ı	1	ı	1	1	1	1	ı	1
Benzo(a)pyrene	< 0.019	0.20	0.2	100	0.20	0.19	97	2.4	61	136	20	!	1	1	1	1		1	1	I	-
Benzo(b)fluoranthene	< 0.017	0.20	0.19	96	0.20	0.17	8	11.7	51	141	20	!	ı	ı	1	1	I		1	1	1
Benzo(ghi)perylene	< 0.02	0.20	0.2	100	0.20	0.19	96	3.8	57	136	20 -	1	1	ı	1	ı	1	ì	I	1	1
Benzo(k)fluoranthene	< 0.02	0.20	0.23	113	0.20	0.24	119	5.0	<u>6</u>	149	20		-		-	-	-	-	-	l	ı
Chrysene	< 0.02	0.20	0.23	117	0.20	0.24	119	1	<u>e</u>	150	20	1	ı	ı	1	1	1	_	1	+	1
Dibenz(a,h)anthracene	< 0.02	0.20	0.2	99	0.20	0.19	97	2.2	46	150	20 —	!	1	1	-	ı	I	1	1	1	- 1
Fluoranthene	< 0.016	0.20	0.16	80	0.20	0.17	87	8.2	48	145	20 —		1	ı	1	ı	1	1	1	1	1
Fluorene	< 0.0096	0.20	0.15	74	0.20	0.14	70	5.2	45	33	25 —	1	ı	ı	1	1	1	1	1	I	1
Indeno(1,2,3-cd)pyrene	< 0.02	0.20	0.2	101	0.20	0.19	97	4.7	<b>2</b> 2	143	20 —	-	!	ı	1	-	-	-	1		1
Naphthalene	< 0.013	0.20	0.14	70	0.20	0.14	69	1.9	5	131	30		ļ	ı	ı	1	1	1	1	1	
Phenanthrene	< 0.012	0.20	0.15	777	0.20	0.15	75	ယ	6	33	25	!	1	1	1	1	I		!	I	- 1
Pyrene	< 0.015	0.20	0.16	79	0.20	0.17	85	7.4	뚌	135	20	1	1	ı				1		-	
Nitrobenzene-d5	88%	-		67			64	-	10	150		-		1		-	[	1	-	1	1
2-Fluorobiphenyl	85%	ı	ı	67	1	ı	66	1	20	3	-		ſ	ı	I	ı	ı	1	I	1	1
Terphenyl-d14	102%	i	1	88	1	1	110	1	4	115		1	1	ı	ı	ı	ı	1	ı	ı	ı

Conc = ug/L unless otherwise noted

C = QC Code, see Qualifer Sheet

Parent Result is reported down to MDL in order to allow Validation of this worksheet

The %R and RPD results are calculated from raw data values with more significant figures than are reported on this form.

QC Batch Number: 27150

Report Date: 12/14/2007

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

	ple ID MB ID 2 MB	Lab Sample ID 891396-002	Client Sample ID TRIP BLANK	MB ID	<b>Lab Sample ID</b> 891396-001	Client Sample ID 113007001
					SW846 8021B	Analytical Method: SW846 8021B
GG2359-7MBLCSD	GG2359-7MBLCSD	LCSD			SW846 5030B	Prep Method:
GG2359-7MBLCS	GG2359-7MBLCS	LCS			27109	QC Batch Number: 27109
GG2359-7MB	GG2359-7MB	MB			GAS	Lab Section:
Lab Sample ID	Client Sample ID	QC Type			891396	Batch:

Xylene, o	Xylene, m + p	Toluene	Ethylbenzene	Benzene	Test Name
^	^	^	^	^	
0.36	0.74	0.36	0.4	0.14	Method Blank Result Conc
20.0	40.0	20.0	20.0	20.0	LCS Spiked Conc
21.2	42.2	21.3	21.4	21.1	LCS F
106	106	106	107	106	Recovery
20.0	40.0	20.0	20.0	20.0	LCSD LCS Recovery Spiked Conc % C Conc
21.1	42.1	21.2	21.3	21	LCSD Conc
106	105	106	106	105	LCS/LCSD LCSS Control Limi LCSD Recovery RPD LCL UCL F Conc % C % C % %
0.4	0.3	0.6	0.5	0.7	LCS/ LCSD / RPD C % C
8	85	85	85	85	% CC CC
115	115	115	115	115	LCS/LCSD Control Limits .CL UCL RP
20	20	20	20	20	SD Imits RPD
ı	ı	ļ		1	Parent Sample Number
!	!	-	-	-	Parent Result Conc
1	1	ı	1	1	MS Spiked Conc
1	1	1	ı	1	MS F
1	1	1	1	1	Recovery
1	ı	1	1	-	MSD Spiked
1	ı	1	1	-	MSD I
 	1	1	1	1	₹ecovery
1	1	ı	1	1	MS MSD MSD MSD Control Limits  MSD MSD MSD MSD Recovery Spiked MSD Recovery Conc % C Conc % C % C % % % %
	1	1	-	1	% C C
1	1		1	1	MS/MSD Control Limi L UCL F
 I		1	1	1	Limit L
	<	+p     <     0.74     40.0     42.2     106     40.0     42.1     105     0.3     85     115     20	+p     0.36     20.0     21.2     106     20.0     21.2     106     0.6     85     115     20 <td< td=""><td>sine     4     0.4     20.0     21.4     107     20.0     21.3     106     0.5     85     115     20                                                                                                                      <th< td=""><td>e       0.14       20.0       21.1       106       20.0       21       105       0.7       85       115       20                                                                                                         </td></th<></td></td<>	sine     4     0.4     20.0     21.4     107     20.0     21.3     106     0.5     85     115     20 <th< td=""><td>e       0.14       20.0       21.1       106       20.0       21       105       0.7       85       115       20                                                                                                         </td></th<>	e       0.14       20.0       21.1       106       20.0       21       105       0.7       85       115       20

QC Batch Number: 27109

Report Date: 12/14/2007

## QC Summary

1241 Bellevue Street Green Bay, WI 54302 920-469-2436 Fax: 920-469-8827

	ple ID MB ID	Lab Sample ID	Client Sample ID	MB ID	<b>Lab Sample ID</b> 891396-001	Client Sample ID 113007001
891536-002MSD	891536-002MSD	MSD				
891553-005MSD	891553-005MSD	MSD			EPA 335.4	Analytical Method: EPA 335.4
891536-002MS	891536-002MS	MS			100001	A representation.
891553-005MS	891553-005MS	MS			EDA 335 A	Dren Method
WCG2368-011MBLCS	WCG2368-011MBLCS	LCS			27401	QC Batch Number: 27401
WCG2368-011MB	WCG2368-011MB	MB			WETCHEM	Lab Section:
Lab Sample ID	Client Sample ID	QC Туре			891396	Batch:

Cyanide, Total	Cyanide, Total	Test Name
^	^	_ 2
0.006	< 0.006	Method Blank Result Conc
0.10	0.10	LCS Spiked Conc
0.11 109.4	0.11 109.4	LCS R
109.4	109.4	ecovery
i	-	LCSD LCSD LCSD LCSD LCSD LCSD LCSD LCSD
1	1	LCSD F
!	-	Recovery
1	ı	LCS/ LCSD RPD % C
90	90	% LCL Co
110	90 110 20	LCS/LCSE Control Limi
20	20	D nits RPD
891553-005 < 0.072 1.2 1.2 101.9	891536-002 < 0.006	Parent Sample Number
^	^	Pa Re
0.072	0.006	Parent Result Conc
1.2	0.10	MS Spiked Conc
1.2	0.12	MS R Conc
101.9	117.2	ecovery
1.2	0.10 0.12 117.2 N 0.10	MS
1.3 111.0 N 8.5	0.087	MSD F
111.0	86.6	Recove
z	z	င္ဘ
8.5	86.6 N 30.0 * 90 110	MS/ MSD RPD % C
90	90	% CCI C
110	110	MS/MSD Control Limit L UCL R
90 110 20	20	MS/MSD Control Limits LCL UCL RPD % % %

QC Batch Number: 27401

Report Date: 12/14/2007

#### Sample Condition Upon Receipt



Project Manager Review:	B	Date: /2-3-07
	-	
Person Contacted:  Comments/ Resolution:	Date/Title	· · · · · · · · · · · · · · · · · · ·
Client Notification/ Resolution:	Date/Time:	Field Data Required? Y / N
Trip Blank Custody Seals Present  Pace Trip Blank Lot # (if purchased):	E 162 CINO CINA	·
Trip Blank Present:	EYes DNo DN/A	cg 1-30-07
Headspace in VOA Vials ( >6mm):	□Yes         ☑No         □N/A         15.           ☑Yes         □No         □N/A         16.         €	eciel + not on COC. Added by lab.
Samples checked for dechlorination:		
exceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	□Yes □No □N/A 14.	preservative
compliance with EPA recommendation.	Initial whe	1 CP 1
All containers needing preservation are found to be in	ØYes □No □N/A 13.	
-Includes date/time/ID/Analysis Matrix:	WW	
Sample Labels match COC:	ØYes □No □N/A 12.	
Filtered volume received for Dissolved tests	☐Yes ☑No ☐N/A 11.	
Containers Intact:	ØYes □No □N/A 10.	
-Pace Containers Used:	⊠Yes □No □N/A	
Correct Containers Used:	ØYes □No □N/A 9.	
Sufficient Volume:	ØYes □No □N/A 8.	
Rush Turn Around Time Requested:	□Yes ☑No □N/A 7.	
Short Hold Time Analysis (<72hr):	□Yes ☑No □N/A 6.	
Samples Arrived within Hold Time:	ØYes □No □N/A 5.	
Sampler Name & Signature on COC:	ØYes □No □N/A 4.	
Chain of Custody Relinquished:	ØYes □No □N/A 3.	
Chain of Custody Filled Out:	ØYes □No □N/A 2.	
Chain of Custody Present:	ØYes □No □N/A 1.	
Cooler Temperature  Temp should be above freezing to 6°C	Biological Tissue is Frozer Commer	contents: (1-50-07 eq
Thermometer Used	Type of Ice: (Wet) Blue	
Packing Material: Bubble Wrap	Bags 🗌 None 🔲 Other	
Custody Seal on Cooler/Box Present:  yes	no Seals intact:	yes no Propins
Courier: Fed Ex UPS USPS Client Tracking #:	t Commercial Pace	Prop. Diverballed
	MCI IIICI	
Aace Analytical Client Name:	NRT, Inc.	Project # 391396

Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)

_		<del></del> 7		er T	<del></del> _	<del></del>		_	_	_	_	· ·	,	-	 	_			1	_				-	1 4-				<del></del>		-		_
вресі		Fax: 262-5	•		Email #1: ibarbe	Transmit Prelim	(Rush TA	Rush Turn									,	\$2 -	00)	PACE LAB #	EPA Level IV	☐ EPA Level III	Data Package Options	PO #:	Sampled By (Sign):	Sampled By (Print):	Project State:	Project Name:	Project Number:	Phone:	Project Contact:	Branch/Location:	1
special pricing and release of liability	Samples on HOLD are subject to	262-523-9001	262-523-9000		ibarbeau@naturalrt.com	(complete	(Rush TAT subject to approval/surcharge)  Date Needed: Normal Turn	Rush Turnaround Time Requested - Prelims									* Rec'd + not on cac	Top Blank	13007001 /	CLIENT FIELD ID	sample	On your sample (billable)	MS/MSD	<u> </u>	Mille Mason	Mike Mason - (WPSC)	Wisconsin	WPSC - Oshkosh	1312	262-522-1207	Heather Simon/Jody Barbeau	Pewaukee, WI	
	Relinquished By:		Relinquished By:		Relinquished By:		17 CL	Indiana American									on coc Added		1/34/57/0:30	DATE TIME		B = Biota DW = Drink C = Charcoal GW = Grou	Matr	Regulatory Program:		PRE	ALTER						
	,		,	, 1	`   	7	Welle									/	S by lab.		36 WW	MATROX	te Water	ing Water ind Water				PRESERVATION (CODE)*	FILTERED? (YES/NO)	H=Sodium Bisulfate Solution	A=None B≃HCL	C	2280 2007	A A CO	
							18	\ <u></u>									C. J.		×			/ses I 021B		ieste	id	B B	ž	dution	#Preservation Code B=HCL C=H2SO4 D=HNO3 E=DI Water	HAI	į	Face Analytical	j J
	0					,											13007		×	-		70C -		 I)		Α	z	=Sodium Thiosuffate	Preser	<u>N</u>		<b>Haynca</b>	
	Date/Time:		Date/Time:		Date/Time:		10/6										7		×	Tota	al Cy	anide	(90 ⁻	12A)		G	z	1		FCL		ğ	
							183														<u>., </u>							J=Other	E=Methanol G=NaOH	CHAIN OF CUSTOD			
	Recei		Recei		Dayse.	T (OVG	223	0													·								G≕NaOH	ODY			
	Received By:	,	Received By:	ļ	Perceived By:	o o	2/																							·			
							Willia																										
							M													<u>0</u>		Invoid		Invoice	Invoice	Invoice		Mail .	Mail T	Mail	Ð		
	Date/Time:		Date/Time:		DatoTimo	Dago IIIIo.	(1301A	/										,	1-250m0=6	COMMENTS	CLIENT	Invoice To Phone:		Invoice To Address:	Invoice To Company:	Invoice To Contact:		Mail To Address:	Mail To Company:	Mail To Contact:	Quote #:		
				_			14:35											2-40MB	6 Fit	(Lab U	LAB CO				Natural Resource Technology Inc.		Pewaukee, Wl. 53072	23713 W. Paul Road	Natural Resource Technology Inc.	Jody Barbeau		COC No.	
Inta	Prese	C00	_	Sar	Receipt Temp =		29	B											ray A	(Lab Use Only)	LAB COMMENTS		Same	6	urce Tech		VI. 53072	aul Road	urce Tech	-			
Intact / Not Intact	Present / Not Present	er Custody Seal	OK / Adjusted	Sample Receipt pH	°c //// = 0	Ш	291396	PACE Project No.											3-40 MB		S Profile#		- C		ınology Inc.			Unit D	nology Inc.			_	•
_		_	_		_						_				 									_				_	_	_		•	

of 1

<u>UPPER MIDWEST REGION</u>

MN: 612-607-1700 WI: 920-469-2436

Company Name:

Natural Resource Technology Inc.

Please Print Clearly)

## APPENDIX F3 EARTHEN CAP MAINTENANCE INSPECTION LOG

#### Earthen Cap Maintenance Inspection Log Former Oshkosh Manufactured Gas Plant Site

Former Oshkosh Manufactured Gas Plant Site BRRTS# 02-71-000256 USEPA# WIN000509947

Inspections to be performed Annually in Spring/Summer.

·	Visual			
	Inspection/General			
Date of	Comments of Ground	Type of Defect (erosion, bare spots, etc.) and Location of Defect	Necessary Maintenance Actions (grading, backfill,	Photographs
Inspection		Noted	plant grass, etc.) and Date City of Oshkosh Notified	taken (Y/N)
	Cap was inspected for			
	damage and erosion.			
	The cap appears to be in			
	good condition with no			
9/21/2005	apparent defects.	none	none	yes
	Cap was inspected for			
	damage and erosion.			
	The cap appears to be in	Grass around SW corner of property (around P-103 and P-105) is		
6/19/2006	good condition	patchy, soil is exposed between clumps of grass and weeds	Plant Grass	No
	Cap was inspected for			
	damage and erosion.			
	The cap appears to be in			
	good condition. Grass is			
	in good condition around			
	site except for a section	Grass around SW corner of property (around P-103 and P-105) is		
6/20/2007	near P-103.	patchy, soil is exposed between clumps of grass and weeds	Plant Grass	No
	Visual			
	Inspection/General			
Date of	Comments of Dock	Type of Defect (weld separation, damage to wooden fender, etc.)	Necessary Maintenance Actions (welding, etc.) and	Photographs
Inspection	Wall	and Location of Defect Noted	Date Performed	taken (Y/N)
	The dock wall appears to			
9/21/2005	be in good condition	none	none	yes
	The dock wall appears to			
6/19/2006	be in good condition	none	none	no
	The dock wall is in good			
	condition, wood bumper			
	shows no damage from			
6/20/2007	land.	none	none	no

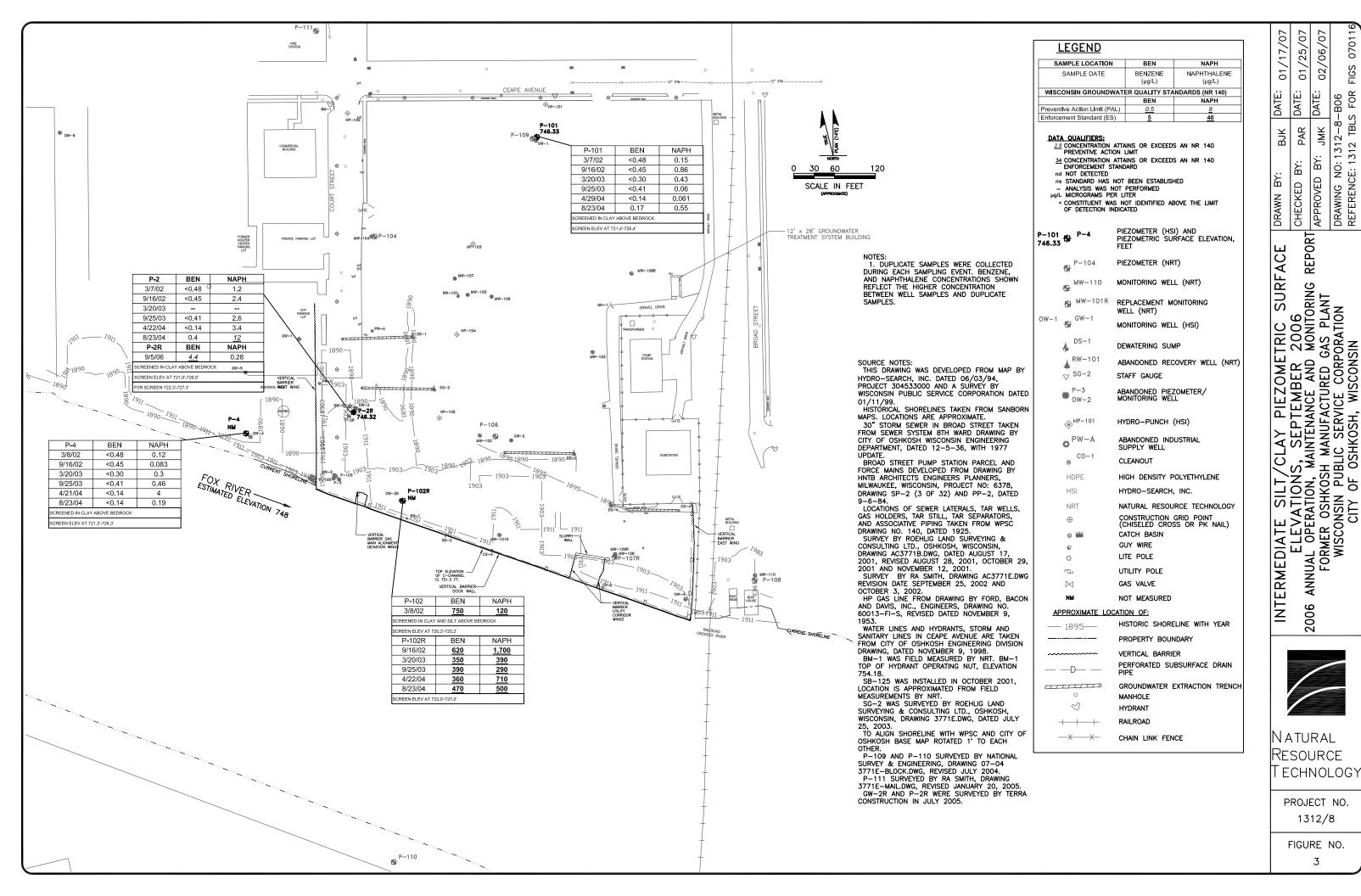


#### Earthen Cap Maintenance Inspection Log Former Oshkosh Manufactured Gas Plant Site

Former Oshkosh Manufactured Gas Plant Site BRRTS# 02-71-000256 USEPA# WIN000509947

Date of	Visual Inspection/General Comments of Monitoring Wells/Dewatering Sumps/Cleanouts	Type of Defect and Location of Defect Noted	Necessary Maintenance Actions and Date Performed	Photographs taken (Y/N)
6/8/2005		Damaged scheduled to be replaced	6/30/05 Well replaced with P2R and in good condition	no
6/8/2005		Damaged casing, well is scheduled to be replaced	6/30/05 Well replaced with GW2R and in good condition	no
6/8/2005		Sleeve damaged (female threads)  Well is burried, could not locate	8/9/05 New concrete poured around damaged well box, well box cover will not close properly. An attempt will be made to field modify the box/box cover.  8/9/05 Well was uncovered and in good condition but remains 4" below surface grade	yes
6/8/2005	D106	Cover is sitting on top of casing, a new well box needs to be installed.	9/0/05 Wall renaized and in good condition	V00
6/8/2005		Uneven @ surface and does not bolt down, appears cover was paved over and chipped out.	Well box needs to be replaced	yes yes
6/8/2005	OW1	Uneven @ surface and does not bolt down, appears cover was paved over and chipped out.	Well box needs to be replaced	yes
6/8/2005	P101	Uneven @ surface and does not bolt down, appears cover was paved over and chipped out.	Well box needs to be replaced	yes
6/8/2005		Well is burried, could not locate	8/9/05 Well was uncovered and in good condition but remains 4" below surface grade	no
6/8/2005	MW103	Well is burried, could not locate  Cover is sitting on top of conductor casing, a new well box needs to	8/9/05 Well was uncovered and in good condition	no
6/8/2005	MW102	be installed with concrete.	9/21/05 Well repair looks acceptable	yes
6/8/2005	MW104	Sleeve damaged (female threads)	8/9/05 New concrete poured around damaged well box, well box cover will not close properly. An attempt will be made to field modify the box/box cover.	ves
6/8/2005		Well is burried, could not locate	8/9/05 Well in good condition but remains 4" below surface grade	no
6/8/2005	DS-1 and DS-2 cleanouts	Buried beneath asphalt and concrete, respectively	Needs to be uncovered, inspected and extended to current grade.	no
9/21/2005	P101	Uneven @ surface, does not bolt down	Well box needs to be replaced	yes




#### Earthen Cap Maintenance Inspection Log Former Oshkosh Manufactured Gas Plant Site

Former Oshkosh Manufactured Gas Plant Site BRRTS# 02-71-000256 USEPA# WIN000509947

	Visual Inspection/General Comments of Monitoring			
Date of Inspection	Wells/Dewatering Sumps/Cleanouts	Type of Defect and Location of Defect Noted	Necessary Maintenance Actions and Date Performed	Photographs taken (Y/N)
9/21/2005	OW1	Uneven @ surface, does not bolt down	Well box needs to be replaced	yes
9/21/2005	P109	Uneven @ surface, does not bolt down	Well box needs to be replaced	yes
9/21/2005	P104	Sleeve damaged (female threads)	Needs to be replaced, or field modified	yes
9/21/2005	MW104	Sleeve damaged (female threads)	Needs to be replaced, or field modified	yes
9/21/2005	REMAINING WELLS	GOOD CONDITION	NONE	yes
		Buried beneath asphalt and concrete, respectively	Needs to be uncovered, inspected and extended to current grade.	no
6/19/2006		missing 3/4 inch bolt	new bolt	no
6/19/2006		missing 9/16 bolt, water and sand collected inside of flushmount	new bolt	no
6/19/2006		covered by oversized flushmount cover (3/4 bolt size) doesn't bolt	new flushmount cover, or field modified	no
6/19/2006		both bolt anchors are missing, doesn't bolt down	new flushmount cover, or field modified	no
6/19/2006		broken inner cap	new inner cap	no
6/19/2006		missing 3/4 inch bolt	new bolt	no
6/19/2006		water collected inside of flushmount	new flushmount gasket, or field modify	no
6/20/2007		Flushmounts were replaced today.	none	no
	OW-1, MW-101R, MW- 103, MW-108R, P-103,			
	and P108	replaced missing bolts	none	no
	OW-1, OW-4, GW-3, P- 109, and MW-109R	replaced caps	none	no
6/20/2007	all wells	all wells need locks	replace locks next visit	no



## APPENDIX F4 INTERMEDIATE SILT/CLAY PIEZOMETRIC FIGURE

