FIRST FIVE-YEAR REVIEW REPORT FOR CAMILLA WOOD PRESERVING SUPERFUND SITE MITCHELL COUNTY, GEORGIA

Prepared by

U.S. Environmental Protection Agency Region 4 CAMILLA, GEORGIA

Franklin E. Hill, Director Superfund Division

9/21/17 Date

Table of Contents

LIST OF ABBREVIATIONS & ACRONYMS	2
I. INTRODUCTION	
FIVE-YEAR REVIEW SUMMARY FORM	4
II. RESPONSE ACTION SUMMARY	
Basis for Taking Action	
Response Actions	
Status of Implementation	
IC Summary Table	
Systems Operations/Operation & Maintenance	
III. PROGRESS SINCE THE LAST REVIEW	
IV. FIVE-YEAR REVIEW PROCESS	
Community Notification, Involvement & Site Interviews	
Data Review	
Site Inspection	
V. TECHNICAL ASSESSMENT	
QUESTION A: Is the remedy functioning as intended by the decision documents?	
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and RAOs u	
time of the remedy selection still valid?	
QUESTION C: Has any other information come to light that could call into question the	
protectiveness of the remedy?	
VI. ISSUES/RECOMMENDATIONS	
OTHER FINDINGS	
VII. PROTECTIVENESS STATEMENT	
VIII. NEXT REVIEW	
APPENDIX A – REFERENCE LIST	
APPENDIX B – SITE FIGURES	B-1
APPENDIX C – ROD REMEDIAL GOALS	C-1
APPENDIX D – GROUNDWATER DATA TABLES	D-1
APPENDIX E - DECEMBER 2016 QUARTERLY WATER LEVEL MEMORANDUM	E-1
APPENDIX F – SITE INSPECTION REPORT	
APPENDIX G - MEMORANDUM OF SCIENTIFIC SUPPORT SECTION REVIEW	G- 1
APPENDIX H – POND BERM MEMO	

LIST OF ABBREVIATIONS & ACRONYMS

Black & Veatch	Black & Veatch Special Projects Corp.
BaP	Benzo(a)pyrene
bgs	Below Ground Surface
BRA	Baseline Risk Assessment
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
CIC	Community Involvement Coordinator
COC	Chemicals of Concern
cPAH	Carcinogenic Polycyclic Aromatic Hydrocarbons
DNAPL	dense non-aqueous phase liquid
DPT	Direct Push Technology
EPA	United States Environmental Protection Agency
FYR	Five-Year Review
GDOT	Georgia Department of Transportation
GEPD	Georgia Environmental Protection Division
HI	Hazard Index
HRS	Hazardous Ranking System
IC	Institutional Control
ISCO	In-situ Chemical Oxidation
μg/L	microgram per liter
μg/m ³	micrograms per cubic meter
MCL	maximum concentration levels
mg/kg-day	milligrams per kilogram per day
M/T/V	mobility/toxicity/volume
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NPL	National Priorities List
O&M	Operation and Maintenance
OU	Operating Unit
OZ	ounce
PCP	Pentachlorophenol
PAH	Polycyclic Aromatic Hydrocarbons
RA	Remedial Action
RAO	Remedial Action Objectives
RCRA	Resource Conservation and Recovery Act
RD	Remedial Design
RfD	Reference Dose
RG	Remedial Goal
RGO	Remedial Goal Option
RI/FS	Remedial Investigation/Feasibility Study
ROD	Record of Decision
RPM	Remedial Project Manager
SIM	Select Ion Monitoring
Site	Camilla Wood Preserving Superfund Site
SRI	Supplementary Remedial Investigation
SVOC	Semivolatile Organic Compounds
TCDD	Tetrachlorodibenzo-p-dioxin
TEQ	Toxicity Equivalents
UU/UE	Unlimited Use/Unrestricted Exposure

I. INTRODUCTION

The purpose of a Five-Year Review (FYR) is to evaluate the implementation and performance of a remedy in order to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings, and conclusions of reviews are documented in five-year review reports such as this one. In addition, FYR reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Environmental Protection Agency (EPA) is preparing this five-year review pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Contingency Plan (NCP)(40 CFR Section 300.430(f)(4)(ii)), and considering the EPA policy.

This is the first FYR for the Camilla Wood Preserving Superfund Site. The triggering action for this statutory review is the on-Site construction start date of the remedial action (RA), which was on June 4, 2012. The FYR has been prepared because hazardous substances, pollutants, or contaminants remain at the Site above levels that allow for unlimited use and unrestricted exposure (UU/UE).

The Site was not divided into operable units (OUs). The soil and groundwater remedy for the entire Site are addressed in this FYR.

The Camilla Wood Preserving Superfund Site FYR was led by Scott Miller, the EPA Remedial Project Manager (RPM), the EPA Region 4. Participants included Ronald Tolliver, the EPA Community Involvement Coordinator (CIC). The review began on 9/7/2016.

Site Background

The Camilla Wood Preserving Superfund Site (Site) is located in the community of Camilla, Mitchell County, Georgia, approximately 0.25 miles west of U.S. Highway 19. The Superfund Site boundary encompasses the inactive Camilla Wood Preserving Company facility and the properties located east of Thomas Street between Bennett Street to the north, Powell Street to the south, and the railroad property to the east. The inactive wood treating facility is bordered by South Harney Street to the west, Thomas Street to the east, and Bennett Street to the north. A Georgia Department of Transportation (GDOT) facility and City of Camilla landfill border the facility to the south. The Site is comprised of an approximately 41-acre area. The adjacent properties located to the south of the eastern portion of the Site (including the GDOT facility and a former City Dump) comprise approximately 11 acres. Residential neighborhoods are located just north of the Site and approximately 0.25 miles to the west of the Site. Local residences have their drinking water supplied to them from the City of Camilla municipal water supply system. The City of Camilla municipal supply wells are more than 300 feet deep and withdraw water from the Ocala Limestone. Several deep sentinel wells between the Site and City of Camilla water supply well monitor the migration of COCs and confirm that Site-related contamination has not impacted the Ocala Limestone aquifer. The western portion of the Site, comprising approximately 23 acres, was remediated by the EPA in 2006 and has been successfully restored to serve as an athletic complex, including soccer fields and administrative offices for Mitchell County Recreation. The Site location and Site layouts are shown on Figures 1-1 and 1-2, provided in Appendix B.

Wood treating operations began at the Site in 1947. The facility was constructed by the Louis Wood Preserving Company on land that was previously a cypress swamp. In 1950, the Escambia Treating Company purchased the property and continued wood preserving operations. In 1985, through a series of corporate reorganizations and stock transfers, International Utility and Supply Corporation assumed control of the company and facility operations. The Escambia Treating Company retained the surface impoundments and their associated environmental liabilities. At that time, the name of the operating company was changed to Camilla Wood Preserving, Inc. On February 8, 1991, Camilla Wood Preserving, Inc., filed for bankruptcy protection, and on February 26, 1991, the facility closed.

During 44 years of wood treating operations, the facility prepared trees for treatment and treated prepared poles using either coal tar creosote or a solution of ten percent pentachlorophenol (PCP). After treatment, the poles were removed to the drip track area for drying and storage. Initially, wastewater generated throughout the process was collected in unlined impoundments located in the northeastern portion of the Site near the corner of Thomas and Bennett Streets. Later, the waste streams were treated in an onsite wastewater treatment system, before being discharged to the City of Camilla's wastewater treatment plant. In the 1960s, surface water and sometimes wastewater drained into two injection wells in the south-central portion of the property. These wells likely drained into the aquifer, and the Georgia State Water Board ordered the wells sealed in 1996.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION					
Site Name: Camilla	Camilla Wood Preserving				
EPA ID: GAD00	8212409				
Region: 4	State: GA		City/County: Camilla, Mitchell County		
		SI	FE STATUS		
NPL Status: Final	-				
Multiple OUs? No	1	Has the Yes	site achieved construction completion?		
		REV	IEW STATUS		
Lead agency: EPA [If "Other Federal Agency", enter Agency name]:					
Author name (Federal	or State Proj	ject Man	ager): Scott Miller		
Author affiliation: EPA					
Review period: 9/7/201	6 - 6/4/2017				
Date of site inspection: 1/10/2017					
Type of review: Statutory					
Review number: 1					
Triggering action date: 6/4/2012					
Due date (five years afte	er triggering o	action de	ate): 6/4/2017		

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

As described in the Record of Decision (ROD) (EPA, 2009), the Site Baseline Risk Assessment (BRA) provided the basis for taking action and identified the contaminants and exposure pathways to be addressed by the RA.

Based on the understanding of the fate and transport of contaminants and the potential for human contact, the following scenarios, exposure pathways, and exposure routes were quantitatively evaluated in the BRA and presented in the ROD:

- Future On-Site/Off-Site Recreational Users. Child and adult recreational users may participate in recreational activities at the Site. Potential routes of exposure for the On-Site child and adult recreational users include ingestion, inhalation, and dermal contact with Chemicals of Concern (COCs) in surface soil.
- Future On-Site Construction/Excavation Worker. Future construction/excavation workers may be exposed to COCs in soil while working at the Site. Potential exposure routes for the construction/excavation worker include incidental ingestion of, dermal contact with, and inhalation of particulate emissions from surface and subsurface soil. Future construction/excavation workers may also be exposed to COCs in groundwater via ingestion.
- Future On-Site Resident. Residents may be exposed to the COCs in groundwater and surface soil if the land use allowed for residential development at the Site. Potential routes of exposure for the On-Site child and adult residents include ingestion, inhalation, and dermal contact with groundwater while showering, ingestion and dermal contact with COCs in surface soil.

Since future receptors represent the greatest potential risk, the ROD presented risks and hazards for future receptors. According to the ROD, "The risks and hazards relevant to the action proposed in this ROD are presented for the future recreational users, future On-Site construction/excavation worker and future residents. These receptors represent the greatest potential risk and justify implementation of the Selected Remedy."

The contaminants listed below by media, were present above the acceptable target carcinogenic risk of 1×10^{-5} , or the acceptable target non-carcinogenic risk at a Hazard Index (HI) of 1.

- Surface soil carcinogenic polycyclic aromatic hydrocarbon (cPAH) benzo(a)pyrene (BaP) equivalents, dibenzofuran, pentachlorophenol, and 2,3,7,8-TCDD TEQ (dioxin).
- Subsurface soil cPAH BaP equivalents, 2-methylnaphthalene, and pentachlorophenol.
- Shallow groundwater (screened intervals ranging from approximately 15 to 25 feet below ground surface [bgs]) benzene, 2,4-dimethylphenol, 2-methylnaphthalene, cPAH BaP equivalents, carbazole, dibenzofuran, naphthalene, pentachlorophenol, phenanthrene, arsenic, and manganese.
- Intermediate groundwater (screened intervals ranging from 60 to 70 feet bgs to 160 to 170 feet bgs targeted just below the top of the Ocala Limestone) benzene, ethylbenzene, 2-methylnaphthalene, acenaphthene, cPAH BaP equivalents, carbazole, dibenzofuran, fluorene, naphthalene, pentachlorophenol, phenanthrene, arsenic, manganese, and nickel.

Numerical Remedial Goal Options (RGOs) were developed for individual chemicals contributing to each exposure pathway, if their contribution was more than 10^{.6} risk for carcinogens or a hazard quotient more than 0.1 for noncarcinogens. Soil and groundwater RGOs were considered in development of Site remedial goals (RGs).

The ecological risk assessment concluded that the potential for adverse risk to wildlife from contaminants at the Camilla Wood Site are low and not expected to be ecologically significant. The Site has been mostly covered with gravel and backfill following soil removal actions. Therefore, most of the area provides poor habitat conditions for wildlife. Although a few small areas may pose some risks to individuals that may reside on or adjacent to the Site, the assessment concluded that populations of local birds and small mammals are not threatened.

Response Actions

RCRA Sampling and Initial Removal Action

Between 1980 and 1991, the Georgia Environmental Protection Division (GEPD) conducted Resource Conservation and Recovery Act (RCRA) sampling and testing. Sampling found elevated concentrations of hazardous waste constituents in soil at the former creosote recovery unit, the eastern and western cooling water ponds, and from the evaporation pond.

In 1991 after facility closure, the EPA secured the Site by placing a fence along the perimeter. Between 1991 and 1995, the EPA conducted a series of removal actions to clean up contamination at the Site. During this time, the EPA:

- Treated approximately 667,000 gallons of contaminated wastewater.
- Backfilled 75 percent of the impoundment area.
- Stabilized the remaining impoundment area that contained sludge.
- Installed a protective cap over the impoundment area.
- Removed approximately nine tons of contaminated soil from a parking lot, an easement along Bennett Street, and four residential properties across Bennett Street.

Soils from residential yards north of East Bennett Street were reportedly excavated by the EPA in October 1994 and backfilled with clean fill (EPA, 2006). In 1998, during the RI, surface and subsurface soil grid samples were collected from the residences. None of the surface soil samples were above RGs, including the 1 μ g/kg RG for dioxin.

In 1998, the Site was proposed for the National Priorities List (NPL) due to the magnitude of remaining soil and groundwater contamination.

Site Investigations

The GEPD conducted numerous investigations of the Site since closure in February 1991. In May, June, and July 1997, GEPD conducted a Site Assessment to characterize soil and groundwater contamination in the extreme northeastern portion of the Site. Results indicated that elevated levels of wood treating solution compounds were present in the underlying soil and groundwater.

Between 2002 and 2009, the EPA conducted a Supplementary Remedial Investigation (SRI) in four phases.

- Phases 1 and 2 investigations in 2002 confirmed polyaromatic hydrocarbons (PAH) concentrations at most soil sampling locations, with the highest detections found in the drip track area in the northwest portion of the Site. The EPA addressed the drip track area with a removal action in 2006. PCP was found to be widespread in surface soil, and concentrations of it were found in the shallow aquifer. PCP concentrations were highest east of Thomas Street and on Singleton Street, which is north-northeast of the Site.
- Phase 3, conducted in 2004, concluded that the extent of contamination in shallow groundwater had been adequately defined; however, contamination from the shallow aquifer had reached into the deeper intermediate aquifer.
- Phase 4, conducted between 2006 and 2008, began with the installation of monitoring wells in the
 intermediate aquifer. In March 2008, a small-scale in-situ chemical oxidation (ISCO) study using
 potassium permanganate began. Investigative results showed a continuing increase in PCP concentrations
 in one well, despite the addition of increasing doses of potassium permanganate. Additionally,
 concentrations of naphthalene, PCP, and total PAHs continued to increase in monitoring well MW10I
 (located near the eastern edge of the Site along Thomas Street).

In 2008, the EPA increased the dose of potassium permanganate in a previously existing well, MWPBEI, on the west half of the Site well by ten times. Eastern pole barn well MWPBEI was closed during

remedial construction and well MW28I was installed in its place. In 2009, groundwater sampling results showed a noted absence of shallow groundwater contamination in wells on the portion of the property used by the Mitchell County Recreation Department. Free product was noted in wells near the eastern and northern edges of the Site along Thomas and Bennett Streets.

Time-Critical Removal Action

Results of Site investigations and propensity of the Site to flooding resulted in a response action. Between 2006 and 2007, the Superfund Removal Program conducted a contamination assessment for removal actions and excavated soil and sediment containing cPAHs, PCP, dioxin, and creosote contamination on the western portion of the Site through a time-critical removal action (EPA, 2008). Approximately 10,000 cubic yards of excavated soil were placed in a soil pile on the eastern portion of the Site, were compacted, and covered with a 12 mil woven polyliner. Approximately 12 inches of soil was placed over the polyliner to provide a base for vegetative cover. Other contaminated waste removed/recycled and disposed from the Site included scrap steel, tin, and railroad ties/poles. The former pole barn structures were removed, and the ditch channel was improved. Species inhabiting the ditch were captured and relocated. After contaminated soil was excavated from the recreational areas, a 4 ounce (oz) geo-filter fabric was emplaced before the areas were backfilled with clean fill, graded, and tested, and topsoil and sod were placed throughout the two soccer fields (EPA, 2007). Chain link fencing was installed to separate the east and west portions of the Site.

Remedial Investigation/Feasibility Study

In 2009, the EPA and GEPD completed a Remedial Investigation/Feasibility Study (RI/FS), which summarized the nature and extent of the contaminants (Black & Veatch, 2009). The RI/FS documented and evaluated alternatives that would address Site contamination.

Results of the RI/FS determined that cPAHs were generally detected in surface soil throughout the Site with the exception of the 2006-2007 removal action area. The highest concentrations of cPAHs and PCP were located in the former chemical area, located across Powell Street - east of the Site. Higher concentrations of cPAHs and PCPs were noted in subsurface soil (greater than 6 inches in depth) than in surface soil. Dioxins were noted in surface soil (less than 6 inches of soil depth).

PCP was noted to be fairly widespread in the intermediate groundwater wells at the Site, but limited to the area west of the railroad tracks east of the Site. Naphthalene contamination in groundwater appeared to be isolated to two plumes (one practically bisecting the eastern portion of the Site in an east-west direction and one in the former pole barn area on the western side of the Site). There was also one smaller hot spot at the northwest corner of the Site. Contaminants found in the shallow and intermediate groundwater zones exceeded protective maximum concentration levels (MCLs). Therefore, potential consumption of groundwater exceeded the EPA's range of acceptable risk for Superfund Sites. Contaminated surface soil posed risks in the unacceptable range for children to reside at the Site in the future, and for industrial workers or recreational users. Risks to wildlife were not considered ecologically significant.

Remedial Action Objectives

The Remedial Action Objectives (RAOs) developed for contaminated soil at the Site are to:

- Prevent ingestion, inhalation, or direct contact with surface soil that contain concentrations in excess of the RGs.
- Control migration and leaching of contaminants in soil to groundwater that could result in groundwater contamination in excess of MCLs or health-based levels.
- Prevent ingestion or inhalation of soil particulates in air that contain concentrations in soil in excess of the RGs.
- Permanently and/or significantly reduce the mobility/toxicity/volume (M/T/V) of characteristic hazardous waste with treatment.
- Control future releases of contaminants to ensure protection of human health and the environment.

The RAOs developed for contaminated groundwater at the Site are to:

• Prevent ingestion or direct contact with groundwater containing constituents at concentrations in excess of current federal regulatory drinking water standards (MCLs), current GEPD MCLs, total HIs greater than 1, and a cumulative excess lifetime cancer risk of greater than 1E-05.

Remedy Components

The community joined the EPA and GEPD in selecting the final remedy that was documented in the September 2009 ROD. The major components of the selected remedy included the following:

- In situ stabilization/solidification of contaminated soils in the source area.
- In situ stabilization/solidification of the top 2 feet of contaminated soils outside of the highly contaminated source area.
- Karst features, which are found to be sources of migration from the shallow to the intermediate zone, will be sealed using compression or jet grouting, if needed.
- Install a vertical barrier wall around the perimeter of the source area.
- Implement storm water improvements.
- In situ chemical oxidation with bioaugmentation within the contaminant plume to treat the dissolved phase contamination in the intermediate aquifer.
- Institutional controls (ICs) through a restrictive covenant to limit future land use to recreational uses only; prohibit potable groundwater use on the property; prohibit soil removal or digging within the boundary of the treated material; and
- Establish and implement a long-term monitoring program to assess the effectiveness of the RA.

Cleanup Levels

RGs applicable to the Site soil and groundwater were selected to be protective of human health in consideration of exposure risks for the future recreational users, future On-Site construction/excavation worker and future residents. The RGs selected in the ROD are included in Appendix C.

Status of Implementation

Since the ROD was signed in 2009, the EPA conducted additional investigations between 2009 and 2011 in support of the Remedial Design (RD), including collection of groundwater samples in 2010. In 2011, the Final RD Basis of Design Report was prepared to address the treatment of groundwater and contaminated soil at the Site (Black & Veatch, 2011).

In July 2015, a RA Report, Revision 1, was prepared to document implementation of the selected remedy identified in the 2009 ROD (Black & Veatch, 2015). The soil component of the remedy was designed to eliminate direct contact with contaminated media, eliminate onsite physical hazards, and significantly reduce contaminant migration to groundwater from the Site. The groundwater component was designed to contain the most contaminated shallow groundwater and treat the most contaminated intermediate aquifer contamination to levels where natural attenuation can occur. RA activities consisted of the following elements:

- Completion of additional investigation activities between 2011 and 2013 to refine and finalize the RA approach, scope, and design.
- Excavation of contaminated soils from the area east of Thomas Street; onsite consolidation of contaminated soils within containment cell footprint; backfilling excavated areas with clean soil; and installation of storm water improvements (i.e., construction of a lined storm water detention pond and Site drainage improvements).

- Installation of a low-permeability barrier wall to contain the greatest source of groundwater contamination in the shallow aquifer and confinement of additional excavated contaminated soils.
- Placement of a 10-acre composite cap over the containment cell to reduce rainwater infiltration and potential leaching of contaminants.
- Placement of three feet of clean soil as a protective cover over the composite cap and six more inches of topsoil with grass seeding.
- Ongoing monitoring of groundwater elevations to assess the integrity of the barrier wall and capping containment system.
- Ongoing treatment of high concentrations of contamination in the intermediate aquifer contaminant plume and in soil to the east of contained areas using ISCO.
- Quarterly groundwater monitoring to assess ISCO effectiveness.

It is noted that the following components of the remedy documented in the ROD were not implemented during the RA for reasons documented below.

- Jet grouting to seal Karst features. This feature of the remedy was initially deemed necessary as small amounts of dense non-aqueous phase liquid (DNAPL) had been observed in intermediate aquifer well MW101. During the additional pre-RA investigation, several soil borings and wells were installed near MW10I to assess the extent of DNAPL and to identify some of these transport pathways. None of the other wells in the vicinity, installed between 2012 and 2013, accumulated DNAPL since their installation. Additionally, soils collected from the interface of the overlying soils and the Karst limestone beneath indicated that while soil contamination above the interface was elevated in localized places, the soils were not leaching those contaminants in a meaningful way to the deeper aquifer. As such, this aspect of the remedy was deemed not necessary and was not conducted.
- In situ stabilization/solidification of contaminated soils and consolidation in the soil containment area. This feature of the remedy was not conducted due to overall remedy costs. In an agreement with GEPD, the EPA eliminated the *in situ* solidification portion of the remedy given that the most heavily impacted soils would be stabilized by being placed inside of a barrier wall and cap system. This minimized the potential for leaching of contaminated material. Mechanical solidification of the excavated and contaminated soils was deemed unnecessary due to the presence of the barrier wall and cap system. A value engineering study completed by an independent consultant determined that it was unnecessary to conduct both solidification/stabilization and capping to be effective.
- ICs. This remedial component was not implemented during the RA, but the EPA's legal staff is currently engaging with the City of Camilla to implement the ICs.
- Establish and implement a long-term monitoring program to assess the effectiveness of the remedial action. The long-term groundwater monitoring program has not yet been implemented. Installation of the necessary monitoring well network for this purpose has been completed.

Groundwater Monitoring Activities

Pressure transducers were installed in November 2015 to monitor groundwater elevations to assess the integrity of the barrier wall and capping containment system at the Site. The pressure transducer operation memorandum from August 23, 2016 through November 21, 2016, indicates that transducer data is downloaded approximately twice a month and data is evaluated and summarized in quarterly memorandums (Black & Veatch, 2016a). Pressure transducer operation is ongoing.

Sitewide groundwater sampling was conducted in March 2012, before commencing RA activities, and in November 2015, more than one year after the first ISCO injection event. Sampling results from 2015 showed persistent high concentrations of PCP and naphthalene in the intermediate aquifer. Therefore, the EPA conducted a second ISCO injection event in April 2016. Before the second injection, the EPA collected baseline groundwater samples from select ISCO monitoring wells in February 2016 to serve as a comparison for assessing success of a second ISCO injection. In December 2016, Addendum 1 to the RA Report, Revision 1, was prepared to document the second ISCO injection event (Black & Veatch, 2016b). The first three quarterly performance groundwater sampling events were completed in July 2016, October 2016, and January 2017. Addendum 1 to the RA Report indicates that quarterly ISCO performance groundwater sampling is in progress. An analysis of the data from these events and evaluation of the effectiveness of the injection activities is anticipated to be completed at the end of the first year of post-ISCO performance monitoring and submitted in a Data Summary Report in June 2017.

It is noted that groundwater sampling to monitor the performance of the containment cell has not been conducted. A performance monitoring plan has not been prepared but is reportedly being prepared at the time of this FYR.

IC Summary Table

Due to the presence of Site-related media that cannot support UU/UE scenarios, ICs were identified as a component of the selected remedy in the 2009 ROD. The general types of ICs identified in the ROD are summarized in Table 1 below. In addition to the generally defined ICs, the ROD also identified that permanent access to the property should be granted to the EPA, GEPD, and their agents and/or representatives. To date, a formal IC Plan has not been prepared. However, in 2008 a report was prepared documenting research on state and local laws to assist in consideration of ICs at the Site (E² Inc., 2008). In addition, at the time that this FYR was prepared, the EPA's legal staff were engaging with the City of Camilla to implement ICs. The City's execution of a tax lien on a parcel within the Site area has resulted in an implementation delay. Some of the property parcels that may be affected by ICs are provided in Table 1.

Media, engineered controls, and areas that do not support UU/UE based on current conditions	ICs Neede d	ICs Called for in the Decision Documents	Impacted Parcel(s)	IC Objective	Title of IC Instrument Implemented and Date (or planned)
Site Properties	Yes	Yes	C0230-050-000 & C0220- 024-000	Limit future land use to recreational/ nonresidential uses only.	Undetermined*
Treated soil	Yes	Yes	Treated material disposal areas on the Camilla Wood Treatment property (C0220-024-000 and a portion of C0230-050- 000)	Prohibit soil excavation or removal that penetrates the liner system within the boundary of the capped treated material disposal areas.	Undetermined*
Soil	Yes	Yes	Camilla Wood Treatment property (C0230-050-000 & C0220-024-000)	Prohibit excavation without written approval from EPA and GEPD.	Undetermined*
Groundwater	Yes	Yes	Site Properties: C0230- 050-000, C0220-024-000, C0220-103-000, C0220- 104-000, C0230-058-000, & Former Auto Repair Property at 320 Thomas St. (Parcel # unavailable)	Prohibit groundwater extraction for potable use.	Undetermined*

Table 1: Summary of Planned and/or Implemented ICs

* - Although specific IC Instruments have not been established, the types that may be appropriate for the Site were identified in the 2008 E2, Inc. report entitled "Research on State and Local Laws and Related Issues to Assist in Consideration of Institutional Controls at the Camilla Wood Preserving Company Superfund Site."

Systems Operations/Operation & Maintenance

The need for operation and maintenance (O&M) of the soil and groundwater remedy components was identified in the 2009 ROD. The Final RD Basis of Design Report identified maintenance of the surface of capped treated source area soil and groundwater performance monitoring as anticipated O&M activities. A comprehensive plan detailing all of the specified O&M activities was prepared in July 2017.

Although routine monitoring and maintenance of the cap surface has not been documented, pressure transducers are currently monitoring groundwater elevations to assess the integrity of the barrier wall and capping containment system at the Site (Black & Veatch, 2016a). Requirements for long term monitoring of these systems are included in the 2017 O&M Plan (Black & Veatch, 2017a)

In April 2016, an O&M Plan, Revision 0, was prepared for use by the EPA and the owner for the physical maintenance of the storm water detention pond and ditches located at the Site (Black & Veatch, 2016c). The plan states that post-construction care should begin immediately upon completion of the storm water detention pond and Site drainage facilities and the authorization of a Closure Certificate. The storm water detention pond and Site drainage facilities were completed in December 2014. The plan specifies that the owner will monitor, inspect, and maintain the remedial measures throughout the life of the remedy. This includes:

- Maintaining the integrity of the liner/berms, including making repairs, as necessary, to correct penetrations, subsidence, erosion, or other events.
- Maintaining the condition of storm water features and appurtenances, ensuring that conveyance ditches are clear and blockages are removed.
- Preventing run-on and runoff from eroding or otherwise damaging the constructed berms.
- Ensuring that the engineering and institutional controls are being enforced.

Storm water control structure maintenance activities, inspections, and inspection reporting requirements are detailed in the 2016 O&M Plan.

During the interviews for this FYR conducted in December 2016, it was determined that minimal maintenance activities have been conducted at the Site. City of Camilla (City) staff indicated that the City has cleared leaves clogging the pond gate. Mitchell County Parks and Recreation staff indicated that prison inmates mow around the outside of the containment cell fence and around the outside of the pond when maintaining the soccer fields. However, no records of O&M inspections or activities have been kept.

III. PROGRESS SINCE THE LAST REVIEW

This is the first FYR for the Site.

IV. FIVE-YEAR REVIEW PROCESS

Community Notification, Involvement & Site Interviews

A public notice was made available by a newspaper ad published in The *Camilla Enterprise* on 12/14/2016, stating that there was a five-year review and inviting the public to submit any comments to the EPA. The results of the review and this report will be made available at the Site information repository located at the DeSoto Trail Regional Library System, Camilla Public Library, 145 East Broad Street, Camilla, Georgia 31730.

During the FYR process, interviews were conducted in November 2016 to document any perceived problems or successes with the remedy that has been implemented to date. The results of these interviews that are relevant to remedy protectiveness are summarized below.

Six individuals closely associated with the Site, either as property owners or representatives of state (GEPD) or local government (City of Camilla and Mitchell County Parks and Recreation), were interviewed. None of the interviewees were aware of trespassing at the Site, or any complaints, violations, or incidents related to the Site. One interviewee from the City of Camilla acknowledged the positive impact on area flooding provided by the construction of the storm water pond. This interviewee indicated that since the construction of the pond, the city installed another gate in order to allow pond equalization. Interviewees from the GEPD and the City of Camilla both recognized there was no long-term O&M Plan, other than for the storm water pond at the time of interview. An interviewee with the GEPD expressed concern over the Site's long-term O&M. An interviewee from the Mitchell County Parks and Recreation Department noted that inmates typically mow around the outside of the containment cell fence and around the outside of the pond when maintaining the soccer fields, but no records are kept. There is no routine maintenance inside the fenced cell area, other than trimming vegetation around wells when the EPA contractors notify Mitchell County Parks and Recreation about upcoming sampling or monitoring. The interviewee from the City of Camilla indicated that the city provides pond maintenance and mows around the ditches. While interviewees from the City of Camilla and the Mitchell County Parks and Recreation Department were aware of informal restricted activities at the Site, they were also unaware of formal documentation ensuring follow through on long-term restrictions.

Data Review

Since completion of containment cell construction in 2013, data collection activities have included sitewide groundwater sampling, ISCO performance monitoring, and barrier wall and capping containment system water level monitoring using pressure transducers. Routine sitewide performance sampling has not been initiated.

Sitewide groundwater sampling. One sitewide groundwater sampling event (November 2015), has been conducted since completion of the soil excavation, storm water improvements, barrier wall installation, engineered cap installation, and first ISCO injection event. The samples were analyzed for semivolatile organic compounds (SVOCs), SVOCs using select ion monitoring (SIM), chlorinated herbicides (pentachlorophenol only), and total metals (select wells). Although benzene and ethylbenzene are groundwater COCs, samples were not analyzed for VOCs. Concentrations of carbazole, dibenzofuran, naphthalene, PCP, and 2-methylnaphthalene were above remedial goals in shallow groundwater monitoring wells. In intermediate groundwater monitoring wells, concentrations of carbazole, dibenzofuran, naphthalene, and manganese were above remedial goals. One exception was noted in monitoring wells outside of the ISCO treatment area, including MW14S located north of the containment cell. In November 2015, the PCP concentration (2,200 JO μ g/L) in shallow well MW14S was an order of magnitude higher than concentrations measured before remedy implementation (62 μ g/L in March 2012 and 890 μ g/L in April 2010). Tables summarizing groundwater results are provided in Appendix D.

ISCO performance monitoring. Five quarterly sampling events were conducted after the first injection of oxidant was completed in October 2014. The samples were analyzed for SVOCs, SVOCs using SIM, chlorinated herbicides (pentachlorophenol only), and total metals (at select wells during select events). Post-ISCO performance monitoring did not include sampling for VOCs. The first round of injection reduced the mass and concentrations of PCP to lower levels, an order of magnitude or more. However, there were portions of the intermediate aquifer above the 500 µg/L target treatment level (Black & Veatch, 2016d), thus, requiring a second ISCO injection. The first three quarterly performance groundwater sampling events (July 2016, October 2016, and January 2017) have been conducted since the second injection was completed in April 2016. The samples were analyzed for SVOCs, SVOCs using SIM, and total metals (at select wells during select events). Since reporting and evaluation of the data from these events is not anticipated to be completed until June 2017, ISCO performance data collected since the second injection is not reviewed in this FYR.

Water level monitoring. Pressure transducers are currently monitoring groundwater elevations to assess the integrity of the barrier wall and capping containment system at the Site. Water level monitoring post-barrier wall and capping containment system installation has indicated that water levels are higher outside than inside of the barrier wall. This was attributed to water that is intentionally shed off the cap creating a temporary potentiometric "mound" along the outer perimeter of the cap (Black & Veatch, 2016e). Results indicated that at three monitoring locations (CAP02, MW04S, and MW08S), water elevations periodically exceeded the height of the barrier wall during the monitoring period of November 22, 2015 through November 21, 2016. The quarterly memorandum from December 2016 is included in Appendix E.

Site Inspection

The FYR inspection of the Site was conducted on 1/10/2017, by Carrie McCoy of Black & Veatch Special Projects Corp. The purpose of the inspection was to assess the protectiveness of the remedy. No changes in land use were observed. The Site inspection identified the following issues:

- Access controls
 - The gates leading to the storm water pond were open and unsecured.
 - There are a few locations where the fencing has been damaged and could be used by unauthorized personnel to access the Site. The reason for the damage could not be identified.
 - Although both of these issues permit unauthorized access to the Site, it should not affect the short-term remedy protectiveness since contaminated materials are beneath a clean cover.
- Low permeability cap
 - Extensive erosion was observed across the cap at the crest of the top slopes, particularly on the southern and eastern boundaries of the cap. In some areas, the erosion has formed gullies that are nearly two feet deep. Although the geosynthetic clay liner and drainage layer have not been breached, if erosion in these gullies is not addressed and is allowed to continue, it has the potential to expose the liner and drainage layer and affect the protectiveness of the remedy in the long-term.
 - Due to the very low slopes present around the cap, ponding of surface water was observed at the toe of the slope on all four sides of the cap. Significant rains were encountered in the days leading up to the inspection, which is likely why some of the ponding was present onsite. This ponding is not deemed to be an O&M issue, but a result of area topographical constraints. Vegetation has begun to grow in the wet areas on the south side of the cap. This ponding and vegetation should not affect protectiveness if vegetation is cleared and flow of surface water over this area is not impeded.
 - Minor areas on top of the cap exhibited ponding of water, specifically, around the installed foundations. This ponding does not currently affect remedy protectiveness. However, if areas remain wet, or foundations become eroded, minor filling and grading around the foundations would encourage the flow of water away from the foundations.
 - Small amounts of water also collected on top of the light pole foundations as a result of the
 presence of the concrete form tubes used to install them. This ponding does not affect remedy
 protectiveness unless there are cracks or gaps between tubes and foundations that may allow
 water to penetrate the cap. Cutting down the tubes to remove the lip would prevent the ponding of
 rainwater on light pole foundations.
 - Many of the fence post sleeves were missing caps, allowing sleeves to fill with rainwater. Remedy protectiveness is not affected.

- Surface water collection system (lined storm water pond)
 - Heavy buildup of silt was observed in several areas of the pond, specifically at the pump outfall, in the vicinity of the gate valve that allows water into the pond at the northeast corner, and at the pond outfall in the southwest corner. Silt buildup can prevent proper flow of water through the pond and encourage growth of vegetation. Some vegetation was observed to have taken root in the silt. The accumulation of vegetation roots could compromise the liner system and affect remedy protectiveness. Routine removal of silt and liner inspection and maintenance would facilitate remedy protectiveness.
 - The pond liner was observed to be pulled taught in the southeastern corner of the pond such that it is no longer lying flat on the side slopes. The weight of the water in the other areas of the pond appeared to be pulling the liner up from the side slope. This pulling of the liner does not affect remedy protectiveness unless the integrity of the liner is compromised.

Issues are described in detail in the Site Inspection Report is included in Appendix F.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

Question A Summary:

The remedy is mostly functioning as intended by the decision document. The remedy has met the surface soil RAOs: to prevent ingestion, inhalation, or direct contact with surface soil that contain concentrations in excess of the RGs; and to prevent ingestion or inhalation of soil particulates in air that contain concentrations in excess of the RGs. Contaminated surface soil has been excavated and consolidated in the onsite containment cell and/or covered with clean soil. No contaminated surficial soils remain onsite to complete the direct exposure pathway (Appendix G). The remedy has also met the RAOs to control migration and leaching of contaminants in soil to groundwater; and to control future releases of contaminants. These RAOs have been met by placing contaminated soil in the monitored containment area. The RAO to permanently and/or significantly reduce the M/T/V of characteristic hazardous waste with treatment has been met via ISCO of high concentration areas outside of the containment cell. The RAO to prevent ingestion or direct contact with contaminated groundwater will be met upon initiation of long-term groundwater monitoring and implementation of ICs. However, the remedy is currently protective for groundwater since currently there are no complete exposure pathways.

An evaluation of specific remedial components by area is provided below.

The onsite storm water pond. The storm water pond construction was successfully implemented, and contaminated soils were appropriately segregated and handled according to design documents. Most of the remaining soils are covered by the pond liner thereby preventing direct contact. In one area along the southeast edge of the pond, contaminated soils identified during pond grid sampling were not addressed during the remedy due to the presence of existing monitoring wells that were retained for long-term monitoring. However, this entire pond area is fenced with a locking gate thereby deterring access to contaminated areas. Some additional clean soil cover was placed in the pond area, particularly the southeast corner, to assist with surface drainage around the pond. More than one foot of surface cover was placed in the southeast corner. Therefore, this action generally meets contaminated soil RAOs in the storm water pond area. While migration and leaching of contaminants into soil and groundwater should have been significantly reduced due to the soil removal and installation of pond liner preventing water infiltration, it is uncertain whether they have been controlled. Groundwater monitoring data is lacking to the west and directly east of the pond area. The RAO for contaminated groundwater may not have been met in this area. Formal controls on groundwater use and a plan for routine verification of contaminant

concentrations in groundwater have not been established. However, in spite of the lack of monitoring and ICs, there are no current exposures to contaminated groundwater.

The storm water improvements, including the lined storm water pond in the southwestern portion of the Site, continue to operate and function as intended. During the 2016 FYR interviews, proper operation of the storm water improvements during storm events was verified. However, there was no documentation that routine pond maintenance actives are being conducted.

During the 2016 FYR interviews, one potential exception to long-term effectiveness of the storm water pond was identified. A city representative indicated that the city installed another gate valve in order to allow equalization of storm water between the original drainage pond and the pond installed during the RA. However, during remedy construction, part of the pond design was revised to no longer include such a gate valve to control outflow from the original pond. During construction, storm water was allowed to saturate the berm between the original drainage pond and the slope. During inspection of the slope materials following this failure, the soils inside this berm were identified as predominantly sands with waste materials intermixed. The failed materials were extremely soft and lacking in structural properties desirable for a pond containment berm. As a result, serious concerns were expressed about the potential risk of berm failure due to the effects of hydrostatic pressure that would be exerted on this berm by allowing the original drainage pond to fill routinely. The memorandum detailing the pond design revision is provided in Appendix H.

Soil containment area. The contaminated soil consolidation and construction of containment cell components were successfully implemented. Direct contact is prevented by a cap installed over the area. A vertical barrier wall was installed around the consolidated soils and shallow groundwater source to control shallow contaminant migration. The containment area is fenced with a locking gate thereby deterring access. This action meets soil RAOs in the soil containment area. However, the RAOs for contaminated groundwater have not been met in this area. Although contact with and migration of shallow contaminated groundwater has been addressed, formal controls on groundwater use and a plan for routine verification of contaminant concentrations in groundwater have not been established. Long-term effectiveness of the containment area is dependent on proper maintenance of remedy components.

Remediation area east of Thomas Street. A substantial portion of the contaminated soils in this area were excavated and clean cover was provided for the area. Direct contact with contaminated soils has been eliminated. Post-excavation results indicate that subsurface contamination may remain above remedial goals for groundwater protection, but not above goals for dermal contact. The majority of the exceedances were observed in excavation sidewall samples, which then drove deeper excavation until confirmation soil samples at or very close to RGs could be obtained from excavation bottoms and sidewalls, where possible. The highest PCP confirmation result is noted to the east of the excavation area in sample SW23. However further excavation of this area into off-site areas on railroad property was limited due to denial of property access rights. The area to the east is a railroad easement. The EPA attempted on multiple occasions to obtain access to this property to delineate and remediate the contaminated soils, but could not reach mutually agreeable terms with the railroad. The EPA does not have access to this property for soil delineation or remediation.

It is noted that shallow permanent monitoring wells have not been installed to monitor off-site groundwater concentrations east of the excavation area. Although some subsurface soil contamination may remain above remedial goals for groundwater protection, the substantial portion of contamination was apparently removed thereby reducing the contamination available for potential migration into groundwater. Therefore, this action substantially meets contaminated soil RAOs in the remediation area east of Thomas Street. Although the RAOs for contaminated groundwater have not yet been met in this area, active remediation of contaminated groundwater by ISCO is in progress. Formal controls on groundwater use and a plan for routine verification of contaminant concentrations in groundwater have not been established. However, in spite of the lack of monitoring and ICs, there are no current exposures to contaminated groundwater.

Athletic fields. Prior to the ROD, the western portion of the Site was returned to beneficial use. It was remediated by the EPA in 2006 and continues to function as an athletic complex that includes soccer fields and administrative offices for Mitchell County Recreation. Contaminated soils in this area were removed and consolidated in the containment area on the eastern portion of the site. A 4 oz geo-filter fabric was emplaced before the area was backfilled, graded, and topsoil added. The fields are covered in sod and are maintained, reducing the potential for direct contact. The facility is also fenced and closed off from the public when not in use for recreation. The potential for contaminant leaching from subsurface soils is unknown. However, the most highly contaminated soils were removed during the 2006 removal action. This action substantially meets contaminanted soil RAOs in the athletic complex area. However, there is one exception. While migration and leaching of contaminants into soil and groundwater have been reduced, it is uncertain whether they have been controlled. Groundwater monitoring data is lacking to the west of the Site area in the possible direction of groundwater flow based on historic potentiometric surface maps. The RAOs for contaminated groundwater have not been met in this area. Formal controls on groundwater use and a plan for routine verification of contaminant concentrations in groundwater have not been established.

Former city landfill area sampled (outside of Site area). Grid surface and subsurface soil sample results presented in the ROD indicated contamination above remedial goals. The preferred remedial alternative presented in the ROD included this area within the soil containment area. However, the design revised the soil containment area to remain within the boundaries of the Site property. It was determined that these areas could not be remediated without disturbing the cover and wastes from the former landfill. The design included the possible use of excess soils from the excavation of the storm water pond to supplement the thinning soil cap on the adjacent closed city landfill. Ultimately, a soil cover was not added to the closed landfill and no remedial activities were conducted at the former landfill. The EPA and GEPD have agreed that the former landfill will be addressed as a separate site under the State's lead (Appendix G). It is noted that the area is fenced with a locking gate thereby deterring access between the Site area and the former landfill.

Other areas outside of the remediation area. Based on a review of grid sample results for areas outside of the Site, there is uncertainty whether subsurface soil contamination is present above remedial goals for protection of groundwater. Detection limits were elevated above remedial goals. This applies to the residences north of E. Bennett Street, the wooded area west of the Site, and the original drainage pond/ditch south of the Site. There is one exception for grid location 104 in the original drainage pond/ditch where concentrations of cPAH and PCP in subsurface soil were above remedial goals. Post-ROD RAs were not conducted in these areas. There is no immediate exposure pathway to contaminants in shallow groundwater, and downgradient compliance monitoring wells have been installed to monitor intermediate groundwater. Sample results indicate that there are no contaminated surficial soils in these areas, and therefore no direct contact risk.

O&M and ICs. While the remedy has been substantially functioning as intended, with the exceptions noted above, remedy protectiveness in the long-term is dependent on implementation of ICs and on proper O&M of remedy components (including COC monitoring in groundwater). Without established routine groundwater performance sampling to monitor COC concentrations in Site groundwater, it is uncertain whether the remedy is functioning as intended. A comprehensive plan for sitewide O&M has been established and annual groundwater sampling will resume in October 2017. As part of the long-term monitoring program, an O&M Plan and Quality Assurance Project Plan (QAPP) (Black & Veatch, 2017b) have been prepared. An instrument for implementing ICs and the parties responsible for implementing ICs have not been established. These components are expected to function as intended by the decision documents once implemented.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels, and RAOs used at the time of the remedy selection still valid?

Question B Summary:

While the exposure assumptions and RAOs used at the time of remedy selection remain valid, some of the toxicity data has changed. Since remedy construction, there have been no changes in the physical conditions of the Site that affect the protectiveness of the remedy. However, some of the toxicity data used in the human health risk assessment are no longer consistent with values currently recommended by the EPA. Since the original risk assessment in 2009, the following toxicity values for some Site COCs were revised by the EPA:

- Dibenzofuran (COC in surface soil and groundwater) non-cancer oral reference dose (RfD) changed from 2.00 E⁻³ to 1.00E⁻³ milligrams per kilogram per day (mg/kg-day). In generating the RGOs for dibenzofuran, the risk assessment used a sub-chronic reference dose in the calculation for a child resident. Therefore, the cleanup level is protective (Appendix G).
- PCP (COC in surface soil and groundwater) non-cancer oral RfD changed from 3.00E⁻² to 5.00E⁻³ mg/kg-day; cancer SFO changed from 1.20E⁻¹ to 4.00E⁻¹ (mg/kg-day)⁻¹; cancer IUR changed from 4.60E⁻⁶ to 5.10E⁻⁶ inverse micrograms per cubic meter (μg/m3)⁻¹
- 2,3,7,8-TCDD (dioxin a COC in surface soil) non-cancer oral RfD was established at 7.00E⁻¹⁰ mg/kgday.

None of the recent toxicity factor changes would affect the retention of COCs as primary Site-related risk drivers. In addition, there are no contaminated surficial soils left onsite to complete the direct exposure pathway. Due to the lack of contaminated surficial soils present, dioxins do not need to be reevaluated (Appendix G).

At sites that have been previously investigated or cleaned up under Superfund and RCRA, the EPA Regions will consult with the EPA Headquarters and will coordinate with state partners to identify, prioritize and evaluate sites to determine if additional response action is needed. The EPA does not expect the dioxin reassessment or the changes in dibenzofuran and PCP toxicity values to affect the cleanup levels at this Site, and does not anticipate any further actions to confirm that the remedy remains protective. Additionally, the pond liner, clean soil cover, and containment cell cap are designed to prevent direct exposure to soil contaminants through ingestion and dermal contact.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

There is no other information to call into question the protectiveness of the remedy.

VI. ISSUES/RECOMMENDATIONS

Issues and Recommendations Identified in the Five-Year Review:					
OU(s):	Issue Category: Institutional Controls				
Sitewide	Issue: Institutional controls are not in place for the Site				
	Recommendation: Responsible party should develop and implement institutional controls. The ROD identified institutional controls to: limit future land use to recreational/ nonresidential uses only; prohibit groundwater extraction for potable use; prohibit soil excavation or removal that penetrates the liner system within the boundary of the capped treated material disposal areas; and prohibit excavation without written approval from EPA and GEPD. This includes identification of areas of the property for which each institutional control should apply.				
Affect Current Protectiveness	Affect Future Party Oversight Party Milestone Date Protectiveness Responsible				
No	Yes	State	EPA/State	9/1/2018	

Issues and Recommendations Identified in the Five-Year Review:						
OU(s):	Issue Category: Monitoring					
Sitewide	Issue: Laboratory detection limits exceed RGs					
	Recommendation: A performance monitoring work plan for long-term monitoring of COCs in groundwater has been prepared. Monitoring COCs in groundwater with detection limits set below the RGs is necessary for assessing remedy effectiveness and continued remedy protectiveness. However, as outlined in the QAPP prepared for this facility, detection limits may be elevated in samples where at least one of the COCs exceeds RGs. Where few or no COCs exceed RGs, SIM analysis for COCs with low concentration should be performed.					
Affect Current Protectiveness	Affect Future Protectiveness					
No	Yes	State	EPA/State	9/1/2018		

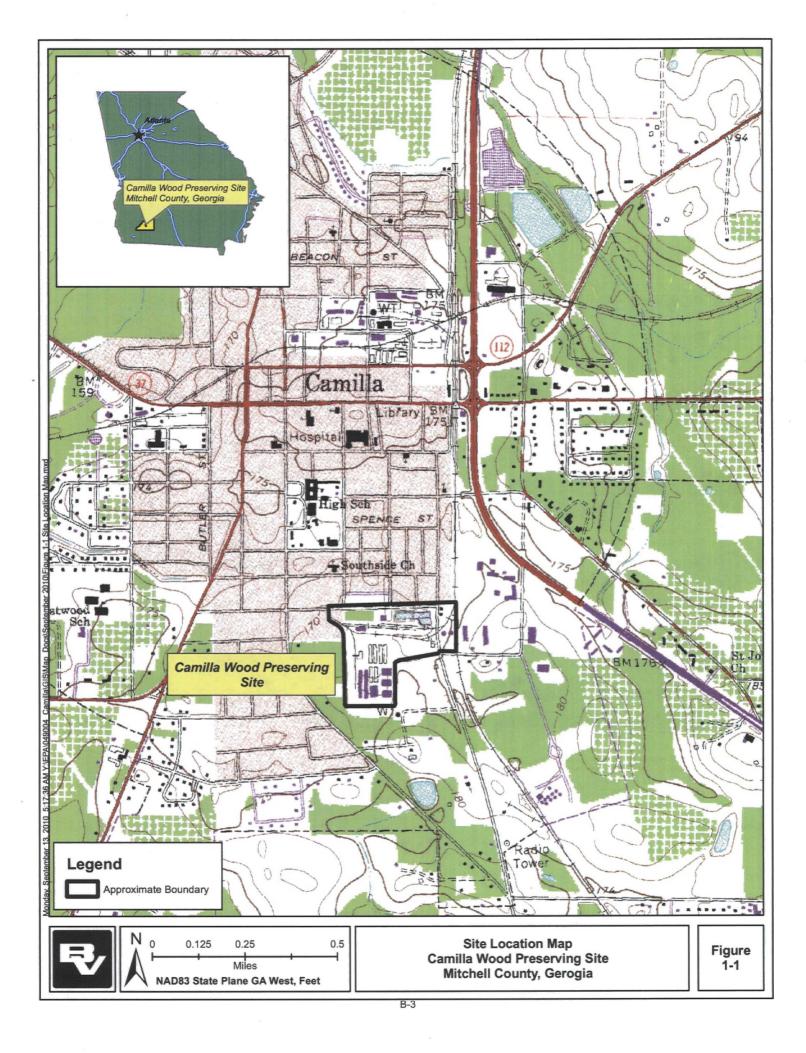
Issues and Recommendations Identified in the Five-Year Review:						
OU(s):	Issue Category: Op	Issue Category: Operations and Maintenance				
Sitewide	Issue: Site upkeep needed (damage to fencing, open and unsecured gates leading to storm water pond, cap erosion, vegetation growth at toe of cap, ponding on light pole foundations, missing fence post caps, silt buildup and vegetation growth in storm water detention pond)					
	Recommendation: As outlined in the O&M Plan prepared for the Site, complete necessary upkeep activities including repair fencing, secure Site gates, routine mowing and maintenance of the vegetation on the cap, partial removal of concrete form tubes from light pole foundations, adding caps to the fence post foundations and clearing the silt and vegetation from the storm water pond.					
Affect Current Protectiveness	Affect Future Protectiveness					
No	Yes	State	EPA/State	9/1/2018		

Issues and Recommendations Identified in the Five-Year Review:						
OU(s):	Issue Category: Cl	Issue Category: Changed Site Conditions				
Sitewide	Issue: City has insta detention pond.	Issue: City has installed a gate valve between old drainage pond and storm water detention pond.				
	Recommendation: The stability of the berm between these two ponds has proven to be unstable in the past. If the City intends to continue using the gate valve to fill the old drainage pond during rainfall events, a stability analysis of the berm separating the old drainage pond and new storm water detention pond should be completed.					
Affect Current Protectiveness	Affect Future Protectiveness	Affect Future Party Oversight Party Milestone Date				
No	Yes	State	EPA/State	9/1/2018		

OTHER FINDINGS

The following are other findings identified during the FYR that will likely need to be addressed after the parties responsible for long-term Site O&M have been coordinated.

• Implementation of ICs is in progress. The EPA's legal staff are engaging with the City of Camilla to implement ICs. The City's execution of a tax lien on a parcel within the Site area has resulted in an implementation delay.


VII. PROTECTIVENESS STATEMENT

Sitewide Protectiveness Statement					
Protectiveness Determination: Protective	Planned Addendum Completion Date: NA				
Protectiveness Statement: The soil excavation, soil containing components of the remedy for the Site have been completed. Ex unacceptable risks onsite are being controlled. Exposure pathwa direct contact risks are being controlled. The groundwater treats	posure pathways that could result in us that could result in unacceptable				

institutional controls to maintain the protective restrictive use and activity assumptions are in progress. In addition, there are other issues that may affect long-term remedy protectiveness that should be reevaluated after the parties responsible for long-term Site O&M have been coordinated. The remedy as implemented is short-term protective of human health and the environment because contaminated soils were excavated and capped and the groundwater is being treated and monitored annually until cleanup goals are attained. The remedy will be long-term protective with completion of the recommendations identified in Section VI, of this Review.

VIII. NEXT REVIEW

The next five-year review report for the Site is required five years from the completion date of this review.

APPENDIX C – ROD REMEDIAL GOALS

C-1

Human He	alth Risk-Base Camilla Wo	Table 18 d Cleanup Goals for Sur ood Preserving Site chell County, Georgia	face Soil	
Chemical of Concern	Cleanun Level Pick at Cle			
cPAHs	1,310	Human Health Risk-Based Level - Lifetime Recreational User	10 ⁻⁵ Excess Cancer Risk	
Dibenzofuran	438,702	Human Health Risk-Based Level - Child Recreational User	Hi = 1	
Pentachlorophenol	46,378	Human Health Risk- Based Level – Lifetime Recreational User	10 ⁻⁵ Excess Cancer Risk	
2,3,7,8-TCDD TEQ (Dioxin)	1	Residential – EPA 1998 OSWER Directive	10-4	

Abbreviations

Environmental Protection Agency hazard index EPA

HI

OSWER Office of Solid Waste and Emergency Response

ug/kg milligram per kilogram

Notes

¹ Cleanup levels and residual risk information presented in this table are based on the risk associated with exposure to contamination through incidental ingestion and dermal contact by the child and adult recreational user.

Human Heal	th Risk-Based Cl Camilla Wood	ble 19 eanup Goals for Subsi I Preserving Site Il County, Georgia	urface Soil
Chemical of Concern	Cleanup Level (ug/kg)	Basis for Cleanup Level	Risk at Cleanup Level ¹
CPAHS	300	Ground Water Protection Standard	10 ^{-e} Excess Cancer Risk
2-Methylnaphthalene	1,034,937	Human Health Risk-Based Level – Construction/Excavation Worker	HI = 1
Pentachlorophenol	7	Ground Water Protection Standard	10 ⁻⁶ Excess Cancer Risk

Abbreviations

ug/kg milligram per kilogram нĭ hazard index

Notes

¹ Cleanup levels and residual risk information presented in this table are based on the risk associated with exposure to contamination through incidental ingestion, demail contact, and inhalation by a construction/excavation worker.

		ble 20			
Human Health Risk-Based Cleanup Goals for Ground Water					
,	Camilla Wood	d Preserving Site			
	Camilla, Mitche	Il County, Georgia			
Chemical of Concern	Cleanup Level (ug/L)	Basis for Cleanup Level	Risk at Cleanup Level ¹		
Benzene	5	MCL	10 ⁻⁶ Excess Cancer Risk		
Ethylbenzene	700	MCL .	10 ⁴ Excess Cancer Risk		
2,4-Dimethylphenol	313	Human Health Risk-Based Level - Child Resident	Hi =1		
2-Methylnapthalene	31	Human Health Risk-Based Level - Child Resident	Hi =1		
Acenaphtene	469	Human Health Risk-Based Level - Child Resident	HI =1		
cPAHs	0.2	MCL			
Carbazole .	48	Human Health Risk-Based Level – Lifetime Resident	10 ⁻⁵ Excess Cancer Risk		
Dibenzofuran	31	Human Health Risk-Based Level – Child Resident	HI =1		
Fluorene	313	Human Health Risk-Based Level Child Resident	✓ HI =1		
Naphthalene	156	Human Health Risk-Based Level - Child Resident	HI =1 .		
Pentachlorophenol	1	MCL	10 [®] Excess Cancer Risk		
Phenanthrene	469	Human Health Risk-Based Level - Child Resident	Hł =1		
Heptachlor Epoxide	0.2	MCL	10 ⁻⁸ Excess Cancer Risk		
Arsenic	10	MCL	10 ⁻⁸ Excess Cancer Risk		
Manganese	300	Lifetime Health Advisory	10 ⁻⁶ Excess Cancer Risk		
Nickel	313	Human Health Risk-Based Level – Child Resident	HI =1		

Abbreviations

ug/kL milligram per liter HI hazard index

MCL maximum contaminant level

Notes

¹ Cleanup levels and residual risk information presented in this table are based on the risk associated with exposure to contamination through incidental ingestion, dermal contact, and inhelation while showering by child and adult residents.

APPENDIX D – GROUNDWATER DATA TABLES

		Sample Location	AFM	W01)	AFM	W01I	AFM	WOII	AFM	W011	AFM	W021	AFM	W021	AFM			1W031		IW03I		1W031
		Sample Date	3/6/	2012	3/6/	2012	1/14	/2015	1/14	/2015	3/6/	2012	2/5/	2014		2015		/2012		2014		/2015
	Sampl	e Identification No.	AFMW	0110312	AFMWO	1ID0312	AFM	W-011	AFM	N-901I	AFMW	0210312	AFM	W 021		W-021	AFMW	0310312		W 031		W-03I
Chemical Name	Units	Remedial Goal	Result	Qualifier																		
Semi-volatile Organic Compound	4									1						-						
2-Methylnaphthalene	ug/L	31	5.0	U	5.0	U	0.5	U	0.5	U	5.0	U	0.5		0.5	U	5.0	U	10		0.5	U
Acenaphthene	ug/L	469	5.0	U	5.0	U	0.5	υ	0.5	U	5.0		0.5		0.5	U	5.0	-	10		0.5	U
Benzo(a)anthracene	ug/L		5.0	U	5.0			U	0.05	U	5.0		0.05		0.05	U	5.0	U	10		0.05	U
Benzo(a)pyrene	ug/L	-	5.0	U	5.0	U	0.05	U	0.05	U	5.0		0.05		0.05	U	5.0	U	10		0.05	U
Benzo(b)fluoranthene	ug/L	-	5.0	U	5.0	U	0.1		0.1	U	5.0		0.013		0.1	U	5.0	-	10		0.1	U
Benzo(k)fluoranthene	ug/L	-	5.0	U	5.0	U	0.05	U	0.05	U	5.0		0.05		0.05	U	5.0	U	10		0.05	U
Chrysene	ug/L		5.0	U	5.0	U	0.05	U	0.05	U	5.0		0.015		0.05	U	5.0	U	10		0.05	U
Dibenzo(a,h)anthracene	ug/L	-	5.0	U	5.0	U	0.1		0.1	U	5.0		0.013		0.1		5.0	U	10		0.1	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	5.0	U	0.05	U	0.05	U	5.0		0.05		0.11		5.0	U	10		0.05	U
B(a)P TEQ	ug/L	0.2	5.55	-	5.55	-	0.08		0.08	-	5.55	HIGH	0.04	-	0.14	-	5.55		11.11	-	0.08	-
Carbazole	ug/L	48	5.0	U	5.0	U	10	U	10	U	5.0	U	10	U	10	U	5.0	U	10	U	10	U
Dibenzofuran	ug/L	31	5.0	U	5.0	U	10	U	10	U	5.0	U	10	-	10	U	5.0	U	10	U	10	U
Fluorene	ug/L	313	5.0	U	5.0	U	0.1		0.1		5.0	U	0.035		0.1	U	5.0	U	10		0.1	U
Naphthalene	ug/L	156	5.0	U	5.0	U	0.5	U	0.5	U	5.0	U	0.5	U	0.5	U	5.0	U	10	U	0.5	U
Pentachlorophenol	ug/L	1	10	U	10	U	1	U	1	U	10	U	1	U	1	U	10	U	1	U	1.6	Alter State
Phenanthrene	ug/L	469	5.0	U	5.0	U	0.05	U	0.05	U	5.0	U	0.075		0.05	U	5.0	U	10	U	0.05	U
Metals												1										1
Arsenic	ug/L	10	10	U	10	U	-	-		-	10	U	-	-	-	-	10	U			**	-
Manganese	ug/L	300	15	U		-			-		-		-				**	-	-		7	-
Nickel	ug/L	313	40	U	13	1,0	**		-		40	U	-	-			40	U	~	-	-	-
Volatile Organic Compounds			Land 1									-					-	1				
Benzene	ug/L	5	5.0	U	5.0	U			-		5.0	U			-	-	5.0	U	-	-		-
Ethyl Benzene	ug/L	700	5.0	U	5.0	U		-	-	-	5.0	U	-		-	-	5.0	U	-	-	-	-

Notes: Remedial grant exceedance Sample dopth given is feet below ground surface – Not sampled or no value B(a)P - Benoto/pyrvene B(a)P - CQ value hown is World Health Organisation Toxic Equivalence Factors for PAHs as per NEPM Schedule B1, Table 1A J - Etimated valuence quotient TCQ - toxicity equivalence quotient U - compound analyzed for but not detected ug/L - micrograms per liter

		Sample Location	AFM	W04D	AFM	W05I	AFN	W051	AFM	W06I	AFM	W06I		W07I	AFM			W01I		WOII		W01I
		Sample Date	1/12	/2015	2/6/	2014		/2015		2014		/2015		/2015		/2015		/2012		2014		3/2015
	Sampl	e Identification No.	AFM	N-04D	AFM	W 051		W-051		W06l		W-061		W-071	AFM			0110312		W011		W-01
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compounds							1	1										-		-		
2-Methylnaphthalene	ug/L	31	0.5	U	0.5		0.5		0.50		0.5	U	0.5		0.5	U	0.73		0.5	υ	10	U
Acenaphthene	ug/L		0.5	U	0.5		0.5	U	0.50		0.5	U	0.5	U	0.5	U.	5.0		0.5	U	10	U
Benzo(a)anthracene	ug/L		0.05		0.05		0.05	U	0.050		0.05	U	0.05		0.05	U	5.0		0.019	J	10	U
Benzo(a)pyrene	ug/L	**	0.05	U	0.05	-	0.05	U	0.050		0.05	U	0.05		0.05	U	5.0		0.05	U	10	U
Benzo(b)fluoranthene	ug/L		0.1	U	0.1		0.1		0.10		0.1	υ	0.1	υ		U	5.0	U	0.37	-	10	U
Benzo(k)fluoranthene	ug/L	-	0.05		0.05		0.05		0.050		0.05	U	0.05	U	0.05	U	5.0	U	0.05	U	10	U
Chrysene	ug/L	-	0.05	υ	0.05		0.05		0.050		0.05	U	0.05	U	0.05	υ	5.0		0.016	l	10	U
Dibenzo(a,h)anthracene	ug/L		0.1		0.1		0.1		0.10		0.1	U	0.1	U	0.1	U	5.0	U	0.015	1	10	U
Indeno (1,2,3-cd) pyrene	ug/L		0.05		0.05		0.05		0.050		0.05	U	0.05	U	0.05	U	5.0	U	0.0093	J	10	U
B(a)P TEQ	ug/L	0.2	0.08	-	0.08		0.08	-	0.08	-	0.08	-	0.08		0.08	-	5.55	-	0.05	-	11.11	-
Carbazole	ug/L	48	10	U	10	U	10	U	10	υ	10	U	10	U	10	U	5.0	U	10	U	10	U
Dibenzofuran	ug/L	31	10	U	10	U	10	U	10	U	10	U	10	U	**	U	0.88	1,0	10	U	10	U
Fluorene	ug/L		0.1	U	0.1	υ	0.1		0.10	U	0.1	U	0.1	U	0.1	U	5.0	U	0.1	-	10	U
Naphthalene	ug/L	156	0.5		0.5	U	0.5	U	0.11	ı	0.5	U	0.5	U	0.5	U	8.4		0.5	U	10	U
Pentachlorophenol	ug/L	1	1		0.54	J	1	U	1.0	U	1	1	1	U	1	U	190	1,0	120		98	
Phenanthrene	ug/L	469	0.05	U	0.027	J	0.05	Ų	0.032	1	0.05	U	0.05	U	0.05	U	5.0	U	0.05	U	10	U
Metals													-		-		-		i	-		-
Arsenic	ug/L	10	100	-	-	-	50	U	-		50	U		**		-	10	U		~	-	-
Manganese	ug/L	300	÷.	-			1.5	U	-		1.5	U			-	-	~	-		-		-
Nickel	ug/L	313	-	-3			20	U	-	-	20	U	-	-			40	U	-			-
Volatile Organic Compounds						200 10 10 10			-			-					-	-		1		
Benzene	ug/L	5		-	-			-	**	-		-	++	-	-	~	5.0	U	**			
Ethyl Benzene	ug/L	700	-	-	-	**	-	+		-	**	**	-	-			5.0	U		-	-	**

Notas: Kennediai goal exceedance Sampia depth given is feet balow ground surface - Not sampide on or value B(g)= TE3 value shown is World Health Organisation Toxic Equivalence Factors for PAts as per NEPM Schedule B1, Table 1A J - Stimmated value TEQ - toxicly equivalence quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

D-3

•

		Sample Location	CM	W015	F15	MWI	LMI	NI-1	MASI	MW01I	MAS	MW021	M	W01I	MV	V015		W02		W021		W02S
1		Sample Date	3/7	/2012	3/7/	2012	3/7/	2012	3/6	2012		/2012		/2012		2012		/2012		8/2012		5/2012
		le Identification No.	CMW	0150312	F15M	WI0312		110312	MASM	V01I0312	MASM	V02I0312	MW	110312	MW0	150312	MWO	020312	MWC	0210312	_	0250312
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compour	nds										and the second						Service of the				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Contra Star
2-Methylnaphthalene	ug/L	31	37	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0		5.0	U	5.0	U	14	-	5.0	U
Acenaphthene	ug/L	469	57	-	5.0	u	5.0	U	5.0	U	5.0	υ	5.0	U	5.0	U	5.0	U	61	-	5.0	U
Benzo(a)anthracene	ug/L	I	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Benzo(a)pyrene	ug/L	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.59	J,O	5.0	U	5.0	U
Benzo(b)fluoranthene	ug/L	1	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0		5.0	U	0.50	J,O	5.0	U	5.0	U
Benzo(k)fluoranthene	ug/L	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Chrysene	ug/L	-	0.64		5.0	υ	5.0		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Dibenzo(a,h)anthracene	ug/L		5.0	U	5.0	Ŭ	5.0	Ŭ	5.0		5.0	Ŭ	5.0		5.0	U	5.0	U	5.0	U	5.0	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	0.53	J,O	5.0	U	5.0	U
B(a)P TEQ	ug/L	0.2	5.55	-	5.55	-	5.55		5.55	-	5.55	-	5.55	-	5.55	-	3.43	-	5.55	-	5.55	-
Carbazole	ug/L	48	65	-	5.0	Ü	5.0		5.0	U	5.0	U	5.0		5.0	U	5.0	U	8.4	-	5.0	U
Dibenzofuran	ug/L	31	26	I	5.0	U	5.0	U	5.0	U	5.0	U	5.0		5.0	U	5.0	U	29	-	5.0	U
Fluorene	ug/L	313	22	-	5.0	U	5.0		5.0		5.0	U	5.0		5.0		5.0	U	23	-	5.0	U
Naphthalene	ug/L	156	550	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0		5.0	U	5.0	U	120	-	5.0	U
Pentachlorophenol	ug/L	1	64	1,0	10	0,1,0	10		10	U	10	U	10	0,1,0	10	U	10	U	10	0,1,0	10	0,1,0
Phenanthrene	ug/L	469	6.8		5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	12		5.0	U
Metals	(C) (C)	Prove Contraction	and the second			No.	D. C. AND			ENG- MARK		and the second	NAME OF		Contraction of the						The states	
Arsenic	ug/L	10	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U
Manganese	ug/L	300	-			10	-	T.	-	-	-	-	-	-	-	-	-		-			-
Nickel	ug/L	313	40	U	40	U	40	U	100		71		40	U	40	U	40	U	40	U	40	U .
Volatile Organic Compounds	1	and the second	100.00	100000	and a second	1112		1. 1. 1.	100-			1				-	1000	10000		a beneficial and	1000	a second
Benzene	ug/L	5	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U
Ethyl Benzene	ug/L	700	4.9	J,O	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	u	5.0	U

Notes: Desmolial goal escendance > Motas: - Not sampled of no value B(µ)? - Dencolapyrene B(µ)? EQ value shown is World Health Organisation Toxic Equivalence Factors for PAVs as per NDPM Schedule B1, Table 1A - Estimated valuence quotient TEQ: toxicity equivalence quotient U - compound analyzed for but not detected ug/L - micrograms per liter

D-4

		Sample Location	MW	/03A	MW	/03B	MW	/031	MV	V035	MM	V04A	MW	V045	MW		MV			V065		W071
1		Sample Date	3/9/	2012	3/9/	2012	3/8/	2012	3/8,	2012	3/8/	2012		2012	3/8/			2012		2012		/2012
	Sample	e Identification No.	MW03	BA0312	MW03	B0312	MW0	310312	MW0	350312		4A0312		450312	MW0			610312		6S0312		0710312
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compounds																		-				-
2-Methylnaphthalene	ug/L	31	5.0	U	5.0		5.0	U	2.4	J,O	18	-		J,O	5.0			υ	73	-	5.0	U
Acenaphthene	ug/L	469	3.8	J,O	5.0		0.71	J,O	35	-	16	-		J,O	5.0			U	69		5.0	U
Benzo(a)anthracene	ug/L	-	5.0	U	5.0		5.0		5.0	U	5.0	U	5.0	U	5.0			U	5.0		5.0	U
Benzo(a)pyrene	ug/L	**	5.0	U	5.0	U	5.0		5.0	U	5.0	U	010	U				U	5.0		5.0	U
Benzo(b)fluoranthene	ug/L	-	5.0	U	5.0	U	5.0		5.0	U	5.0	U			010			U	5.0		5.0	U
	ug/L	-	5.0	U	5.0	U	5.0		5.0	U	5.0	U	5.0	U	10.10				5.0		5.0	U
	ug/L	-	5.0	U	5.0	U	5.0		5.0		5.0	U	5.0	U	10110			U	5.0		5.0	U
Dibenzo(a,h)anthracene	ug/L	-	5.0	U	5.0		5.0		5.0		5.0	U	10100	U	510	U		U	5.0		5.0	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	5.0	U	101100	U	5.0	U	5.0	U
B(a)P TEQ	ug/L	0.2	5.55		5.55	-	5.55	-	5.55	-	5.55	-	5.55	-	5.55		5.55	-	5.55	-	5.55	-
Carbazole	ug/L	48	5.0		5.0	U	5.0	U	12		0.56	J,O	2.0					U	67	-	5.0	U
Dibenzofuran	ug/L	31	1.7	J,O	5.0	U	5.0	U	20	-	11		1.6	J,O				U	50	-	5.0	U
Fluorene	ug/L	313	1.8		5.0	U	5.0	U	27	-	7.2	**	1.8	1,0	5.0		5.0	U	54		5.0	U
	- 6/ -	156	5.0		5.0	U	5.0	U	210	-	120	-	17					U	490		5.0	U
Pentachlorophenol	ug/L			and the second	10	U	10	U	10	0,4,0	10	U	22	1,0	6.6	1,0	-	U	18	1,0	10	0,1,0
Phenanthrene	ug/L	469	6.6		5.0	U	5.0	U	5.0	U	7.2		5.0	U								
Metals					varia -				-			-		-							-	-
	ug/L		10	U	22	U,O	10	U	10	U	11	U,0	10	U								
	ug/L	300	-	-	-		-			-	-		**		-		15	U	-	-	-	-
Nickel	ug/L	313	40	U	40	U	40	U	40	U	40	U	40	U	40	U	40	U	40	U	40	0
Volatile Organic Compounds												-			-			-		-	-	
Benzene	ug/L	5	5.0	U	5.0	U	5.0	U	1.9		4.1	J,O	2.0	1,0	5.0	U	5.0	U	1.9	1,0	5.0	U
Ethyl Benzene	ug/L	700	5.0	U	5.0	U	5.0	U	1.5	1,0	5.0	U	5.0	10	5.0	U	5.0	U	16	-	5.0	lu l

.

Notes: Remedial goal exceedance Sample depth given is feet below ground surface - Not sampled or to value B(g)P-TE oute shown is World Health Organisation Toxic Equivalence Factors for PAHs as per NEPM Schedule B3, Table 3A J - Listimated value TEG - toxicity equivalence quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

		Sample Location	M	W08S	M	N091	M	W10I	M	W11I	M	W11I	M	W111	M	W11		W115		W125		1W13S
		Sample Date	3/6	/2012	3/8	/2012	3/9	/2012		/2012		/2012		/2014		2/2015		/2012		5/2012		7/2012
	Samp	le Identification No.	MWO	8S0312	MWC	910312	MW:	1010312	MW	11/0312	MW1	1ID0312	M	W111	M	N-111	MW:	1150312	MW	12S0312		1350312
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compoun	ds	A second second second	Service and	and the second		the later		- And		1.	111111	A Carlot A	- Andrews	1 2	Carta de Se	a second	Long	a second	1. 22. 14	A CONTRACTOR	1000	and the second
2-Methylnaphthalene	ug/L	31	77	-	5.0	Ü	540	-	100	-	64	-	270	-	230	-	150	1,0	53	-	110	1,0
Acenaphthene	ug/L	469	93	-	5.0	U	390	-	33	-	17	-	64	-	45		70		39	-	120	1,0
Benzo(a)anthracene	ug/L	-	5.0	U	5.0	U	50	U	5.0	U	5.0	U	0.05	υ	10	U	0.60	J,O	5.0	U	1.1	J,O
Benzo(a)pyrene	ug/L	-	5.0	U	5.0	U	50	U	5.0	U	5.0	U	0.05	U	10	U	5.0	U	5.0	U	5.0	U
Benzo(b)fluoranthene	ug/L		5.0	U	5.0	U	50		5.0	U	5.0	U	0.1	U	10	U	5.0	U	5.0	U	5.0	U
Benzo(k)fluoranthene	ug/L		5.0	U	5.0	U	50	U	5.0	U	5.0	U	0.05	U	10	U	5.0	U	5.0	U	5.0	U
Chrysene	ug/L	-	5.0	υ	5.0	U	50	U	5.0	U	5.0	U	0.05	U	10	U	0.63	1,0	5.0	U	1.1	1,0
Dibenzo(a,h)anthracene	ug/L	-	5.0	U	5.0	U	50	U	5.0	U	5.0	U	0.1	U	10	U	5.0	U	5.0	U	5.0	U
Indeno (1,2,3-cd) pyrene	ug/L	- 6	5.0	U	5.0	U	50	U	5.0	U	5.0	U	0.05	U	10	U	5.0	U	5.0	U	5.0	U
B(a)P TEQ	ug/L	0.2	5.55	-	5.55	-	55.53	-	5.55		5.55	-	0.08	-	11.11	-	5.36	-	5.55	-	5.41	-
Carbazole	ug/L	48	11		5.0	U	180	-	110	1,0	51	-	100	-	120	-	64	-	9.1	-	48	-
Dibenzofuran	ug/L	31	55	-	5.0	U	210	- Conservation	33	-	16		51	-	58	-	51	-	23	-	99	1,0
Fluorene	ug/L	313	62	-	5.0	U	190	me fri.	20		10		40	me	26	-	58		26	-	100	1,0
Naphthalene	ug/L	156	240	-	5.0	U	3000	-	570	-	630	- 200	1200	-	1000	-	660	-	96	J,O	560	-
Pentachlorophenol	ug/L	1	7.0	J,O	10	U	690		520	1,0	390	1,0	240		4900		1400		3000	1,0	2100	1,0
Phenanthrene	ug/L	469	65		5.0	U	170		34		5.0	U	76	1. Y	55	1	73		16		140	1,0
Metals		The second second second		C SING ON		100000000000000000000000000000000000000	-						2.1.1	1 1	1.1.1.1		A. S. S. S.			1	1	A CONTRACTOR
Arsenic	ug/L	10	10	U	10	U	10	U	10	U	10	U		-		-	10	U	10	U	10	U
Manganese	ug/L	300	-		-		-	-	-	-				-	-		-		-		-	
Nickel	ug/L	313	23	J,O	40	U.	40	U	11	1,O	40	U		-	-	-	40	U	40	U	40	U
Volatile Organic Compounds			and the state				1-12-1				1.19		100.000	1.1.1.1	1.4. 18.		2.2.4	1	and the second	-	1. B. O.	about the
Benzene	ug/L	5	5.0	U	5.0	U	11	-	1.9	1,O	1.6	J,O	-		-	-	2.0	J,O	5.0	U	1.0	1,0
Ethyi Benzene	ug/L	700	2.1	1.0	5.0	U	19	-	20		13	-		-	-	-	6.0	-	1.2	J,O	5.2	

Notes: Demonstrating and encoderance Sample depth given is feet below ground surface Piot sampled or no value B(a)P = Democipyrene B(a)P = Equivalence fractions for PAH's as per NEPM Schedule B1, Table 1A J = Edimated valuence quotient TEQ - toxicity equivalence quotient U - compound analyzed for but not detected ug/L - micrograms per liter

		Sample Location	MV	N145		V16I		V171	MV			V18I		N18I	MV			V19I		N191		W201
		Sample Date	3/7/	/2012	3/9/	2012	3/8/	2012	3/7/	2012	2/7,	2014		/2015		2015		2012		/2014		7/2012
	Samp	le Identification No.	MW1	450312	MW1	610312	MW1	710312	MW1	810312	M	V18I	MV	V-18I	MW			910312		W191		2010312
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compound	ts												2 Q.	-				1		-		
2-Methylnaphthalene	ug/L	31	5.0	U	5.0	U	5.0	U	5.0	U	0.074	J	10	U	10		5.0		0.50		5.0	U
Acenaphthene	ug/L	469	5.0	U	21	-	10	-	5.0	U	0.50	U	10	U	10	U	5.0		0.50		5.0	U
Benzo(a)anthracene	ug/L		5.0		5.0	U	5.0		5.0	U	0.050	U	10	U	10		5.0		0.050		5.0	U
Benzo(a)pyrene	ug/L		5.0		5.0	U	5.0	U	5.0	U	0.050	U	10	U	10		5.0		0.050		5.0	U
Benzo(b)fluoranthene	ug/L		5.0		5.0	U	5.0		5.0	U	0.10	U	10	U	10		5.0		0.10		5.0	U
Benzo(k)fluoranthene	ug/L		5.0		5.0	U	5.0		5.0	U	0.050	U	10	U	10	U	5.0		0.050		5.0	U
Chrysene	ug/L	-	5.0		5.0	U	5.0		5.0	U	0.050	U	10	U	10		5.0		0.050		5.0	U
Dibenzo(a,h)anthracene	ug/L		5.0		5.0	U	5.0		5.0	U	0.10	U	10	U	10	U	5.0		0.10		5.0	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	5.0	U	5.0		5.0	U	0.050	U	10	U	10		5.0		0.050		5.0	U
B(a)P TEQ	ug/L	0.2	5.55	-	5.55	-	5.55		5.55	-	0.08		11.11	-	11.11		5.55		0.08		5.55	-
Carbazole	ug/L	48	5.0	U	5.0	U	12	-	2.6	J,O	10	U	10	U	10	U	5.0	U	10		5.0	U
Dibenzofuran	ug/L	31	5.0	U	13	-	15	-	17	-	12	-	11	-	12	-	5.0	U	10		5.0	U
Fluorene	ug/L	313	5.0	U	9.6		6.8	-	18	-	12	-	10	U	10		5.0		0.10		5.0	U
Naphthalene	ug/L	156	1.2	1,0	5.0	U	20	-	5.0	U	0.27	J	10	U	10	U	5.0		0.50	U	0.99	1,0
Pentachlorophenol	ug/L	1	62	REGITION AND	10	U	1.6	J,O	960	J,O	1000	and the set	930	Carling Con	1000	Sec. 1	10		1.0	U	10	U
Phenanthrene	ug/L	469	5.0	U	3.9	J,O	11		18		17		10	U	10		5.0	U	0.050	U	5.0	U
Metals	1	1													8				i			
Arsenic	ug/L	10	10	U	10	U	10	U	10	U		-	**	***		-	10	U	-	-	10	U
Manganese	ug/L	300	-	-	-		-		÷.		-	-	-	**		-	-	-	-	-	~	-
Nickel	ug/L	313	11	J,O	40	U	40	U	13	J,O			-	-			40	U	-	-	22	1,0
Volatile Organic Compounds					-								1						1			-
Benzene	ug/L	5	5.0	U	7.8	-	5.0	U	5.0	U	-			-	-		5.0	U	-	-	5.0	U
Ethyl Benzene	ug/L	700	5.0	U	1.2	J,O	1.0	J,O	5.0	U		**	-	-		-	5.0	U	-	-	5.0	U

Notes: Remedial goal exceedance Sample dept given is feet below ground surface - Not sampled or no value (g)19 - Berudgypmene (g)19 - Etimated value) - Stimmated values - Listimated values - Listimated values - Consciput adjuatemene quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

D-7

		Sample Location	M	V21I	MV	V225	MV	V23I	MV	V26A	MV	V26A	MV	N268	MV	V26B	MV	V26C	M	N26C	MV	N26D
		Sample Date	3/7	2012	3/8/	/2012	3/8/	2012	2/8,	2014	1/15	/2015	2/8	/2014	1/15	/2015	2/8	/2014	1/1!	5/2015		/2014
	Samp	le Identification No.	MW2	110312	MW2	250312	MW2	310312	MV	V26A	MW	/-26A	MV	N26B	MW	/-268	MV	V26C	MV	V-26C	MV	N26D
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compound	ds													1					1		-	
2-Methylnaphthalene	ug/L	31	5.0	U	510	-	5.0	υ	270	-	180	-	330	-	200	-	280	-	140	-	95	-
Acenaphthene	ug/L	469	5.0	U	320		5.0	U	110		69	-	89	-	57		37		10	U	0.31	J
Benzo(a)anthracene	ug/L	-	5.0	U	50	U	5.0	U	0.05	U	10	U	0.03	J	10	U	0.05	U	10	U	0.05	U
Benzo(a)pyrene	ug/L	-	5.0	U	50	U	5.0	U	0.05	U	10	U	0.05	U	10	U	0.05	U	10	U	0.05	U
Benzo(b)fluoranthene	ug/L	-	5.0	U	50	υ	5.0	U	0.1	U	10	U	0.1	U	10	U	0.1	U	10	U	0.1	U
Benzo(k)fluoranthene	ug/L	-	5.0	U	50	υ	5.0	U	0.05	U	10	U	0.05	U	10	U	0.05	U	10	U	0.05	U
Chrysene	ug/L	-	5.0	U	50	U	5.0	U	0.05	U	10	U	0.029	J	10	U	0.05	U	10	U	0.05	U
Dibenzo(a,h)anthracene	ug/L	-	5.0	U	50	U	5.0	U	0.1	U	10	U	0.1	U	10	U	0.1	U	10	U	0.1	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	50	U	5.0	U	0.05	U	10	U	0.05	U	10	U	0.05	U	10	U	0.05	U
B(a)P TEQ	ug/L	0.2	5.55	-	55.53	-	5.55	-	0.08	-	11.11		0.08		11.11	-	0.08		11.11	-	0.08	-
Carbazole	ug/L	48	5.0	U	390	- 2.5	5.0	U	58	-	96	-	62	-	120	-	42	-	73		66	-
Dibenzofuran	ug/L	31	5.0	U	220	-	5.0	U	58	-	55		60	-	60	-	61	-	42	-	25	-
Fluorene	ug/L	313	5.0	U	160	-	5.0	U	74	-	53	-	60	-	35	-	26	-	10	U	0.32	-
Naphthalene	ug/L	156	5.0	U	5900	-	5.0	U	1200	-	670	-4124	1200	-	910	-	1300	-	650	-	490	-
Pentachlorophenol	ug/L	1	10	0,1,0	100	U	10	U	680	and the second second	670	Maria I.	860	1.0.0	580		6700	COLUMN TO A	3700	The second	34000	
Phenanthrene	ug/L	469	5.0	U	170		5.0	U	81		62		110		64		75		26		8.8	
Metals														1								
Arsenic	ug/L	10	10	U	10	U	10	U		-	-				-					-		-
Manganese	ug/L	300		**		-		**	**	-	-	**			-			-		-	-	-
Nickel	ug/L	313	40	U	40	U	75	-	-	-	-		-		-	-					-	
Volatile Organic Compounds	1				5. A.														1			
Benzene	ug/L	5	5.0	U	310	-	5.0	U				-+			-	**	-	-			-	-
Ethyl Benzene	ug/L	700	5.0	U	130	-	5.0	U	**	-	-		**				-	-			-	-

Notes: Remedial pail exceedance Sample depth given is feet below ground surface - Not sampled or no value (g)-P terc) dynamic and the sampled or no value (g)-P terc) dynamic and the sampled or paints as per NEPM Schedule 81, Table 1A J - Estimated values and an analyzed for but not detected ug/L - micrograms per liter

		Sample Location	MW	/26D	MW	V29I	MW	V30D	MW	/30D	MV	V31I		V311		/32D		/33D		V33D		W33D
		Sample Date	1/14	/2015	2/9/	2014	2/8/	2014	1/14	/2015	2/5/	2014	1/13	/2015		2014		2014		/2014		2/2015
_	Sampl	e Identification No.	MW	-26D	MM	V29I	MM	V30D	MW	-30D	MV	V31I	MV	/-31!	MV	/32D	MW	/33D		1933D		V-33D
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compounds										2.2												-
2-Methyinaphthalene	ug/L	31	10		0.06	J	0.032	J	12	-	4.6		10		3.8		0.50	U	0.018	1	10	U
Acenaphthene	ug/L	469	10		0.97		0.18	J	13		0.5	U	10		6.5		0.075	J	0.067	1	10	U
Benzo(a)anthracene	ug/L		10		0.02		0.05	U	10	U	0.18		10	U	0.079	-	0.050	U	0.050	U	10	U
Benzo(a)pyrene	ug/L	-	10		0.05	U	0.05	U	10		0.18	**	10		0.05		0.050	U	0.050	U	10	U
Benzo(b)fluoranthene	ug/L	-	10		0.1	U	0.1	U	10		0.24		10		0.1		0.10		0.10	U	10	U
Benzo(k)fluoranthene	ug/L		10		0.05		0.05	U	10		0.094		10		0.05	U	0.050		0.050	U	10	U
Chrysene	ug/L	-	10		0.015		0.05		10		0.14		10		0.054		0.050		0.050	U	10	U
Dibenzo(a,h)anthracene	ug/L		10		0.1		0.1	U	10		0.02	J	10		0.1	-	0.10	U	0.10	U	10	U
Indeno (1,2,3-cd) pyrene	ug/L		10		0.05		0.05	U	10		0.053	-	10	U -	0.05	U	0.050	U	0.050	U	10	U
B(a)P TEQ	ug/L		11.11		0.08		0.08	-	11.11	-	0.23	-	11.11	-	0.09	-	0.08	-	0.08	**	11.11	-
Carbazole	ug/L	48	10	U	10	U	10	U	16		24	-	10	U								
Dibenzofuran	ug/L	31	10	U	10	U	10	U	10	U	13		10	U	3.6	p	10		10	U	10	U
Fluorene	ug/L		10		0.33		0.085		10	U	23	-	10	U	6.5	-	0.074		0.070	3	10	U
Naphthalene	ug/L		10		0.26	J	0.5		35	-	35	-	10	U	2.8		0.032		0.50	U	10	U
Pentachlorophenol	ug/L		10	U	1.5	1	14	-	240	and the second	180	Constant of	1	U	1		6.9		5.8	1.000	1	U
Phenanthrene	ug/L	469	10	U	0.28	-	0.066		10	U	18		10	U	13		0.23		0.20		10	U
Metals											1	1	1	-	-				-	-		
Arsenic	ug/L	10	-	**		-	-	~		~~.	-	-	**	-		-	-		-		-	-
Manganese	ug/L	300	T	100 C	-			-	**	**	-	-	-	**		-	-	-		-	**	
Nickel	ug/L	313		-	**			**	-	-		**		-	-	-		-	-	-	-	-
Volatile Organic Compounds										L										-		
Benzene	ug/L	5		-					**	-	-	**	**	-	-	-		**	**			-
Ethyl Benzene	ug/L	700	-		-		**		-	**			-	**	***	-	-	-		**		

Notes: Tennediali goal excendance Sample doph given is feet below ground surface - Not sampled or no value B(p) - Benuxid pyrane B(p) - Benuxid pyrane Equivalence factors for PAH's as per NEPM Soedule B1, Table 1A J - Estimated valuence quotient TEQ - touistly equivalence quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

D-9

		Sample Location Sample Date	2/7	W34D 1/2014	1/14	W35D ¥/2015	1/1	W36D 3/2015	1/1	1W37 3/2015	1/1	W38A 3/2015	1/1	W38B 3/2015	1/1	W39A 4/2015	1/1	₩39B 4/2015	1/14	N40 /2015	1/14	W41 4/2015
Chamber Lating		le Identification No.	-	N34D		V-35D		V-36D	Result	W-37 Qualifier	Result	V-38A Qualifier	Result	W-38B Qualifier	Result	V-39A Oualifier	Result	V-39B Oualifier	Result	V-40 Qualifier	Result	W-41 Qualifier
Chemical Name		Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Quaimer	Result	Qualmer	Result	Quaimer	Result	Quaimer	Result	Quaimer	Result	Quaimer	Result	Quaimer
Semi-volatile Organic Compoun		a harden and a second	Constant and		and the second						-	Contraction of the	COLUMN ST	1000000000	100000		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		LAND REAL	Aler Street		
2-Methylnaphthalene	ug/L	31	0.50	U	49		10	U	10	υ	79	-	260	- march - 10	150	-	10	U	100	U	10	U
Acenaphthene	ug/L	469	0.50	U	10	U	10	U	10	U	14		67	-	38		10	U	100	U	10	U
Benzo(a)anthracene	ug/L		0.050	U	10	U	10	υ.	10	υ	10	U	10	U	10	U	10	U	100	U	10	U
Benzo(a)pyrene	ug/L		0.050	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	100	U	10	U
Benzo(b)fluoranthene	ug/L	-	0.10	U	10	U	10	υ	10	U	10	U	10	U	10	U	10	U	100	U	10	U
Benzo(k)fluoranthene	ug/L	-	0.050	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	100	U	10	U
Chrysene	ug/L	-	0.050	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	100	U	10	U
Dibenzo(a,h)anthracene	ug/L	-	0.10	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	100	U	10	U
Indeno (1,2,3-cd) pyrene	ug/L		0.050	U	10	U	10	U	10	U	10	U	10	U	10	U	10	U	100	U	10	U
B(a)P TEQ	ug/L	0.2	0.08		11.11	-	11.11	-	11.11	-	11.11	-	11.11	-	11.11	-	11.11	-	111.05	-	11.11	-
Carbazole	ug/L	48	10	U	10	U	10	U .	10	U	57	-	150	-	10	U	10	U	100	U	10	U
Dibenzofuran	ug/L	31	10	U	19	-	10	U	10	U	34	-	59		42	- mailen	10	U	100	U	10	U
Fluorene	ug/L	313	0.030	J	10	U	10	U	10	U	28	-	42	-	28	-	10	U	100	u	10	U
Naphthalene	ug/L	156	0.018	J	320		10	U	10	U	660	-	1300	-	590	-	10	U	100	U	10	U
Pentachlorophenol	ug/L	1	1.0	U	1400		1	U	1	U	44	1	7300	N DISCOURT	4000	J	1	U	10	U	68	RECENTER
Phenanthrene	ug/L	469	0.094		10	U	10	U	10	U	27	-	57	1	46	1	10	U	100	U	10	U
Metals		Contractor In 199	1	and the second		10000		and the second second			10000			- 10X					L PARID A	Concession in the	10 A	mer gehalt.
Arsenic	ug/L	10			à.		-	-	50	U	-		-	-	-	-	-	-	50	U		-
Manganese	ug/L	300	-	-		+ 11	-	-	1480	-	-	-	-	-	-	-	-		1430000	-		
Nickel	ug/L	313		14		-	-	-	20	U	-	-	-		-	-			21.1			
Volatile Organic Compounds			Distanting the second				COLUMN ST	1		Contraction of	NISTING IN		1000	Carton Service	1215	The second	and the second second	1. 2 5 6	1	and the second	10.000	1.0.00
Benzene	ug/L	5	in		-	-	-	-	-		-		-			-	-				-	
Ethyi Benzene	ug/L	700				-	-	-	-	-		-				-	-	-	-		-	

Notes: Temedial pol exceedance Sample depth given is feet below ground surface – Not sampled of no value 8(a)P - Benzo(a)pyrenie 8(a)P - Benzo(a)pyrenie 8(a)P - Benzo(a)pyrenie 5(a)VIEQ value shown is World Health Organisation Toxic Equivalence Factors for PAIs as per NEPM Schedule B1, Table 1A J - Estimated value shown is World Health Organisation Toxic TCQ - toxicity equivalence quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

		Sample Location	MW	PBWI	PM	W01I	PM	W01I	SM	W01I	SM	W011	SMI		SMN		TM			W021
		Sample Date	3/5/	2012	3/6/	2012		/2014		2012		2012		2012		2012		2012		/2012
		e Identification No.	MWPB	WI0312	PMW	0110312	PM	W01I		0110312		1ID0312		210312	SMW0		TMWC			0210312
Chemical Name	Units	Remedial Goal	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Semi-volatile Organic Compounds										1 A						-		-		-
2-Methylnaphthalene	ug/L	31	5.0		5.0	U	0.61	-	44	-	46		5.0		5.0	U	5.0		5.0	U
Acenaphthene	ug/L	469	5.0		5.0	U	0.50	U	45		49	-	61		5.0	U	5.0		5.0	U
Benzo(a)anthracene	ug/L	-	5.0		5.0	U	0.050	U	5.0	U	5.0	U	5.0		5.0	U	5.0		5.0	U
Benzo(a)pyrene	ug/L	-	5.0		5.0	U	0.050	Ų	5.0		5.0		5.0		5.0	U	5.0		5.0	U
Benzo(b)fluoranthene	ug/L	-	5.0		5.0	U	0.10	U	5.0		5.0	U	5.0	U	5.0	U	5.0		5.0	U
Benzo(k)fluoranthene	ug/L		5.0	U	5.0	U	0.050	U	5.0		5.0	U	5.0		5.0	U	5.0		5.0	U
Chrysene	ug/L	-	5.0	U	5.0	U	0.050	U	5.0	U	5.0	U	5.0		5.0	U	5.0		5.0	U
Dibenzo(a,h)anthracene	ug/L	-	5.0		5.0	U	0.020	J	5.0		5.0		5.0	U	5.0	U	5.0		5.0	U
Indeno (1,2,3-cd) pyrene	ug/L	-	5.0	U	5.0	U	0.023	J	5.0	U	5.0	U	5.0	U	5.0	U	5.0		5.0	U
B(a)P TEQ	ug/L	0.2	5.55		5.55	-	0.05	-	5.55	-	5.55	-0.11-1.00	5.55	-	5.55	-	5.55		5.55	-
Carbazole	ug/L	48	5.0		5.0	U	10	U	17	-	21	-	51	-	5.0	U	5.0		5.0	U
Dibenzofuran	ug/L	31	5.0		5.0	U	10	U	70	-	76	-	56	+	5.0	U	5.0		5.0	U
Fluorene	ug/L	313	5.0		5.0	U	0.048	1	53		59	-	45	-	5.0	U	5.0		5.0	U
Naphthalene	ug/L	156	5.0	U	5.0	U	5.8		320	-	290	-	5.0	U	5.0	U	5.0		5.0	U
Pentachlorophenol	ug/L	1	10	U	720		320	ALC: NOT THE	6.8	J,O	8.7	1,0	10	0,1,0	10	0,LU			10	U
Phenanthrene	ug/L	469	5.0	U	5.0	U	0.12	_	53		63	-	36		5.0	U	5.0	U	5.0	U
Metals									-			-							-	-
Arsenic	ug/L	10	10	U	10	U			10	U	10	U	10	U	10	U	10	U	10	U
Manganese	ug/L	300	**	-		-		~	-	**	-	-				-		-		
Nickel	ug/L	313	40	U	40	J,O		-	21	J,O	24	1,0	40	U	260		30	J,O	40	U
Volatile Organic Compounds				-			1			-		-		-	-				-	-
Benzene	ug/L	5	5.0	U	5.0	U		-	5.0	U	5.0	U	12		5.0	U	5.0		5.0	U
Ethyl Benzene	ug/L	700	5.0	U	5.0	U		-	5.0	U	5.0	U	7.7		5.0	U	5.0	U	5.0	U

Notes: Sample depth given is feet below ground surface - Not sampled or no value B(µ) = TEQ value shown is World Health Organisation Toxic Equivalence Factors for PAHs as per NEPM Schedule B1, Table 1A J - Estimated valuence quotient TEQ - toxicity equivalence quotient U - Compound analyzed for but not detected ug/L - micrograms per liter

Re	emedial Goal		CM	W01S				MV	V01S		
	(ppb)	4/21/1998	2/24/2003	2/10/2009	4/11/2010	4/21/1998	2/24/2003	2/24/2003	2/7/2009	2/7/2009	4/7/2010
Semi Volatile Organic Compounds											
2.4-Dimethylphenol	313	10 U	50 U	5 U	5 U,J	10 U	10 U	10 U	5 U	5 U	5 U_
2-Methylnaphthalene	31	170 J	73 J	41	20	10 U	10 U	10 U	.1 U	.066 J	5 U
Carbazole	48	150 J	99 J	47	44	10 U	10 UJ	10 UJ	5 U	5 U	5 U
Dibenzofuran	31	110 J	120 J	81	69	10 U	10 U	10 U	5 U	5 U	5 U
Naphthalene	156	1100 J	350 J	350	41	10 UJ	10 U	10 U	.092 J	.44	5 U
Pentachlorophenol	1	4300 J	17 J	24 J	14 J	25 U	25 UJ	25 UJ	.091 J	L 80.	10 U
Phenanthrene	469	120 J	380 J	71	72	10 U	10 U	10 U	.1 U	.12	5 U
Total SVOCs1	NA	6,383	2,707	884	484	ND	380	58	0.28	0.89	ND
cPAH Compounds ²											
Benzo(a)anthracene		10 U	23 J	.9 J	5 U	10 U	10 U	10 U	.1 U	.1 U	5 U
Benzo(a)pyrene		10 U	8 J	.14 J	5 U	10 U	10 U	10 U	.1 U	.I U	5 U
Benzo(b)fluoranthene		10 U	10 J	.15 J	5 U	10 U	10 U	10 U	.1 UJ	.1 U	5 U
Benzo(k)fluoranthene	NA	10 U	91	.14 J	5 U	10 U	10 U	10 U	.1 U	.1 U	5 U
Chrysene		10 U	26 J	1.3 J	5 U	10 U	10 U	10 U	.1 U	.1 U	5 U
Dibenzo(a,h)anthracene		10 U	50 UJ	.I U	5 Ü	10 U	10 U	10 U	.1 UJ	.1 U	5 U
Indeno(1,2,3-cd)pyrene		10 U	50 UJ	I U	5 U	10 U	10 U	10 U	.10	.1 U	5 U
B(a)P Equivalent ³	0.20	11.6	52.4	1.0	5.8	11.6	11.6	11.6	0.12	0.12	5.8
Volatile Organic Compounds											
Benzene	5	20 U	NS	5 U	5 U	1 U	NS	NS	5 U	5 U	5 U
Notes											

.

Notes:

Region of the second and the second second

Page 1 of 10

	Remedial Goal		MW02S			MW03S	
	(ppb)	4/21/1998	2/7/2009	4/7/2010	4/21/1998	2/10/2009	4/11/2010
Semi Volatile Organic Compounds							
2,4-Dimethylphenol	313	10 U	5 U	5 U	12	5 U	5 U,J
2-Methylnaphthalene	31	10 Ú	.1 U	5 U	82 J	16	8.10
Carbazole	48	10 U	5 U	5 U	39	28	24
Dibenzofuran	31	10 U	5 U	5 U	43	43	24
Naphthalene	156	10 UJ	.17	5 U	880 J	1000	390
Pentachlorophenol	1	25 U	.085 J	10 U	20 J	3.6 J	10 U,.
henanthrene	469	10 Ü	.1 U	5 U	50	44	23
Total SVOCs1	NA	ND	1.03	ND	1,301	1,296	561
PAH Compounds ²							
Benzo(a)anthracene		10 U	.1 U	5 U	10 U	.44	5 1
Benzo(a)pyrene		10 U	.1 U	5 U	10 U	.1 U	5 1
Benzo(b)fluoranthene		10 U	.1 UJ	5 U	10 U	.1 U	5
Benzo(k)fluoranthene	NA	10 U	.10	5 U	10 U	.1 U	5
Chrysene		10 U	.1 U	5 U	10 U	.38	5 1
Dibenzo(a,h)anthracene		10 U	.1 UJ	5 U	10 U	.1 UJ	5 1
Indeno(1,2,3-cd)pyrene		10 U	.1 U	5 U	10 U	.1 U	5 1
B(a)P Equivalent	0.20	11.6	0.12	5.8	11.6	0.51	5.8
Volatile Organic Compounds							
Benzene	5	ιU	5 U	5 U	20 U	3.4 J	2.60 J
Blue Shading indicates an analyte exce B(g)P exceedance due to inclution of N 1 - Total SVCC - Total Semi volatile organic oompount 2 - g/AIT Compounde - Carcinogene Polycyclie Arvens 3 - BaP equivalents - Benzofa/pyrene equivalents valeul pph - parts per hillion NA - SWA Applicable ND - Not Detected	ID values shown with blue dot patterr ds atie Hydrocarbons						
NS - Not Sampled							
NS - Not Sampled NC - Not Calculated							

No. - No data wainable - No data wainable J - The identification of the analyte is acceptable; the reported value is an estimate. R - The data are rejected and considered unusable. U - The analyte was not detected at or above the reporting limit.

Page 2 of 10

4-Dimethylphanal 313 200 U 10 UR 10 UR 10 U 100 UJ 5 U 140.0 Methylhaphthalene 31 110 J 10 U 10 U 100 UJ 100 UJ 188 25 280.0 Methylhaphthalene 31 49 J 10 U 10 U 100 UJ 6.4 7 750.1 behavalitan 31 49 J 10 U 10 U 100 UJ 6.4 7 750.1 behavalitan 31 49 J 10 U 10 U 10 U 33.1 58 77		Remedial Goal				MW04S				MW05S
4-Dimethylphanal 313 200 U 10 UR 10 UR 10 U 100 UJ 5 U 140.0 Methylhaphthalene 31 110 J 10 U 10 U 100 UJ 100 UJ 188 25 280.0 Methylhaphthalene 31 49 J 10 U 10 U 100 UJ 6.4 7 750.1 behavalitan 31 49 J 10 U 10 U 100 UJ 6.4 7 750.1 behavalitan 31 49 J 10 U 10 U 10 U 33.1 58 77		(ppb)	4/22/1998	10/31/2002	10/3 1/2002	2/24/2003	2/27/2003	2/9/2009	4/8/2010	4/22/1998
Production D30 D30 <thd30< th=""> D30 <thd30< th=""> <thd30< td=""><td>Semi Volatile Organic Compounds</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thd30<></thd30<></thd30<>	Semi Volatile Organic Compounds									
Analysis 48 48.1 1.1 10.U 10.U.1	2.4-Dimethylphenol	313	200 U	10 UR	10 UR	10 U	100 UJ	5 U		
Normal 31 40 10 10 10 100	-Methy Inaphthalene	31	110 J	10 U	10 U	10 U				
aphthalene 156 390 J 10 U 10 U 10 U 33 J 58 77 3700 J entachforphenol 1 2600 25 U 25 U 160 J 600 J 300 J 320 220 J hemathrene 469 71 J 10 U 10 U 10 U 10 0 UJ 6.6 12 200 J otal SVOCs ¹ NA 3,391 101 6 207 658 454.6 539 7,754 PAH Compounds ²	Carbazole	48	48 J	1 J	10 U	10 UJ	100 UJ		· · · · · · · · · · · · · · · · · · ·	
Induction Inductory Inductory <thinductory< th=""> <thinductory< th=""> <thi< td=""><td>Dibenzofuran</td><td>31</td><td>49 J</td><td>10 U</td><td>10 U</td><td>10 U</td><td></td><td></td><td></td><td></td></thi<></thinductory<></thinductory<>	Dibenzofuran	31	49 J	10 U	10 U	10 U				
International constraints 469 71 J 10 U 1	laphthalene	156	390 J	10 U						
Buck Mark Buck NA 3,391 100 6 207 658 454.6 539 7,754 PAH Compound ⁶	entachlorophenol	1	2600	25 U	25 U	160 J				
Number 2003	henanthrene	469	71 J	10 U	10 U	10 U	100 UJ	6.6	12	200 J
encode numberse 200 U 10 U 10 U 10 U 10 U 10 U encode human theme 200 U 10 U <	otal SVOCs1	NA	3,391	101	6	207	658	454.6	539	7,754
Look of humanization Look Look <thlook< th=""> Look Look<!--</td--><td>PAH Compounds²</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></thlook<>	PAH Compounds ²									
Name 200 10	Benzo(a)anthracene		200 U	10 U	10 U	10 U	100 UJ		-	
Child of indication Los O Ho Ho Los O Los O <thles o<="" th=""></thles>	Benzo(a)pyrene		200 U	10 U	10 U	10 U	100 UJ	.I U		
Constraint Constra	Benzo(b)fluoranthene		200 U	10 U	10 U	10 U	100 UJ	.I U		
Internota, hanthracene 200 U 10	Senzo(k)fluoranthene	NA	200 U	10 U	10 U	10 U	100 UJ	.1 U	5 U	10 U
Index (L3):=Calpyreine 2000 U 100	hrysene		200 U	10 U	10 U	10 U	100 UJ			
Carling Carly	Dibenzo(a,h)anthracene		200 U	10 U	10 U	10 U	100 UJ	.1 U	5 U	
If it is a registered in the second secon	ndeno(1,2,3-cd)pyrene		200 U	10 U	10 U	10 U	100 UJ	.10	5 U	10 U
S 10 U NS NS NS S 5 U 80 U eter: Blue Shading indicates an analyte exceeds remedial goal Slue Shading indicates and slue slue slue slue slue slue slue slue	B(a)P Equivalent ³	0.20	231.1	11.6	11.6	11.6	115.6	0.12	5.8	11.6
ethodation of SD values and analytic exceedance the to inclusion of SD values shown with hile dot patter * Total SWC - Total Semi volatile organic compounds * Oral SWC - Total SWC	/olatile Organic Compounds									
Buc Shadagi micrates an analyte cocoeds memedial goal Ba/P eccoedsance due to incluion of ND values whom with hlue dot pattern Total SVC - Total Semi volatile ergemic compounds - aPAH Compounds - Cancingenic Polycyclic Aromatic Hydrosarbons - aPAH Compounds - Cancingenic Polycyclic Aromatic Hydrosarbons - Bale cipitalines - Searco Apyrene equivalents calculated per EPA Region 4 gualence ab - parts per billion - A Not Applicable - Not Detected - Not Detected - Not Acadulated - Not data valible	Benzene	5	10 U	NS	NS	NS	NS	5 U	5 U	80 U
	Blue Shading indicates an analyte exceeds B(a)P exceedance due to inclusion of ND v - Total SVOC - Total Semi volatile organic compounds - ePAH Compounds - Caroinogenic Polycyclic Aromatic	values shown with blue dot pattern								
	J - The identification of the analyte is acceptable; the report	ted colors is an estimate								

 \sim - No data available). Jo The identification of the analyte is acceptable; the reported value is an estimate R - The data are rejected and considered unusable. U - The analyte was not detected at or above the reporting limit.

Page 3 of 10

	Remedial Goal			MW	/06S			MW07S
	(ppb)	4/21/1998	4/22/1998	10/31/2002	10/31/2002	2/9/2009	4/8/2010	
Semi Volatile Organic Compounds								
2,4-Dimethylphenol	313	NS	2 J	50 UR	. 10 UR	4.3 J	4 J	NS
2-Methylnaphthalene	31	NS	210	38 J	47	50	79	NS
Carbazole	48	NS	120 J	60	67	81	84	NS
Dibenzofuran	31	NS	120	56	59	58	77	NS
Naphthalene	156	NS	600 J	340	300	450	650	NS
Pentachlorophenol	1	NS	140 J	130 U	7 J	38 J	16	NS
Phenanthrene	469	NS	160	95	62 J	38	93	NS
Total SVOCs ¹	NA	NS	1,853	1,205	1,490	1,082	1,366	NS
PAH Compounds ²			100-100 FO 10 FOR					
Benzo(a)anthracene		NS	10 U	50 U	10 U	.15 J	5 U	NS
Benzo(a)pyrene		NS	10 U	50 U	10 U	.1 U	5 U	NS
Benzo(b)fluoranthene		NS	10 U	50 U	10 U	.1 UJ	5 U	NS
Benzo(k)fluoranthene	NA	NS	10 U	50 U	10 U	.1 U	5 U	NS
Chrysene		NS	10 U	50 U	10 U	.18 J	5 U	NS
Dibenzo(a,h)anthracene		NS	10 U	50 U	10 U	1 U J	5 U	NS
ndeno(1,2,3-cd)pyrene		NS	10 U	50 U	1 10 U	.1 U	5 U	NS
B(a)P Equivalent ³	0.20	NS	11.6	57.8	11.6	0.22	5.8	NS
olatile Organic Compounds								
Benzene	5	10 U	NS	NS	NS	5 U	5 U	NS

Nete:
Bite Shading indicates an analyte exceeds remedial goal
B(g) exceeding concerned to inclusion of ND values shown with blue dot pattern
1 - Total SVCC - Total Semi volatile organic compounds
2 - aPAH Compounds - Carcinogenic Polycyclic Aromatic Hydrosarhors
3 - BaP equivalents - Benzo(a)pyrene equivalents calculated per EPA Region 4 guadance
pbp - parts per Holicon
NA - Not Applicable
ND - Not Detected
NS - Not Galewlated
- - Not Calculated

Page 4 of 10

	Remedial Goal			MW	/08S			MW11S	MW12S	MW13S	MW14S
	(ppb)	4/21/1998	10/31/2002	10/31/2002	2/24/2003	2/8/2009	4/9/2010	4/19/2010	4/19/2010	4/19/2010	4/28/2010
Semi Volatile Organic Compounds		2 P.1 9 19990									
2.4-Dimethylphenol	313	120	49 J	44 J	69	16	5.20	53 U.J	5 U.J	3.80 J	5 U
2-Methylnaphthalene	31	470	50 U	50 U	14 J	210	5 U	220 J	84 J	110 J	5 U
Carbazole	48	250 J	50 U	50 U	50 UJ	41	5 U	68 J	17 J	79 J	5 U
Dibenzofuran	31	200	50 U	50 U	15 J	71	5 U ~	77 J	38 J	81 J	5 U
Naphthalene	156	3700 J	110	50 U	400 J	1300	6.70	560 J	130 J	950 J	5 U.J
Pentachlorophenol	1	60 J	130 U	130 U	37 J	13 J	3.20 J	2200 J	3400 J	3000 J	890
Phenanthrene	469	150	50 U	50 U	50 UJ	51	5 U	110 J	56 J	120 J	5 U
Total SVOCs ¹	NA	5,836	790	436	1,400	2,093	37	3,692	3,996	4,713	909
PAH Compounds ²			• • • •		A						
Benzo(a)anthracene	T	100 U	50 U	50 U	50 UJ	.2 J	5 U	53 U,J	5 U,J	2.30 J	5 U
Benzo(a)pyrene	1 1	100 U	50 U	50 U	50 UJ	.1 U	5 U	53 U.J	5 U.J	5.30 U.J	5 U.
Benzo(b)fluoranthene	1 1	100 U	50 U	50 U	50 UJ	.1 UJ	5 U	53 U.J	5 U.J	5.30 U.J	5 U.
Benzo(k)fluoranthene	NA	100 U	50 U	50 U	50 UJ	.1 U	5 U	53 U,J	5 U.J	5.30 U,J	5 U.
Chrysene	1 1	100 U	50 U	50 U	50 UJ	.23 J	5 U	53 U,J	5 U.J	2.70 J	5 U.
Dibenzo(a,h)anthracene	1 1	100 U	50 U	50 U	50 UJ	.1 UJ	5 U	53 U.J	5 U.J	5.30 U.J	5 U.
ndeno(1,2,3-ed)pyrene	1 1	100 U	50 U	50 U	50 UJ	.1 U	5 U	53 U.J	5 U.J	5.30 U,J	5 U.
B(a)P Equivalent ³	0.20	115.6	57.8	57.8	57.8	0.27	5.8	61.2	5.8	5.8	5.8
Volatile Organic Compounds											
Benzene	5	50 U	NS	NS	NS	5 U	5 U	0.52 J	5 U	5 U	5 U
Ruers: Blue Shuding indicates an analyte exceeds rem Blup exceedance due to inclusion of ND value 1 - Total SVCC - Total Semi volatile organic compounds 2 - oPAH Compounds - Carennogenic Polycyclic Arcenatic Hyd 3 - Ball ^e equivalents - Renzofelpyrene equivalents calculated per pph - parts per hillion NA - Not Applicable ND - Not Detected	a shown with blue dot pattern										

Page 5 of 10

	Remedial Goal	MW22S	MWPBC!		SMW01S			TW-C5		TW	/-C6
	(ppb)	4/29/2010	2/5/2009	3/2/2003	2/4/2009	4/12/2010	10/30/2002	10/30/2002	2/24/2003	10/30/2002	10/30/2002
Semi Volatile Organic Compounds											
2,4-Dimethylphenol	313	3400 J	5 U	10 UJ	5 U	5 U,J	17 J	10 UR	10 U	1100 J	790 J
2-Methylnaphthalene	31	890	50	10 UJ	.23	5 U	32 J	7 J	10 U	40 J	25 J
Carbazole	48	640	71	10 UJ	5 U	5 U	13 J	18 J	10 UJ	23 J	16 J
Dibenzofuran	31	330	44	10 UJ	5 U	5 U .	35 J	21 J	10 U	17 J	11 J
Naphthalene	156	9500 J	430	2 J	1.1	5 U	7 50 UJ	10 UJ	10 U	570 J	350 J
Pentachlorophenol	1	280 U	.2 J	26 UJ	2.2	10 U,J	190 J	140 J	110 J	18 J	10 J
Phenanthrene	469	310	29	10 UJ	1.2	5 U	21 J	10 J	10 U	11 J	6]
Total SVOCs1	NA	20,994	764	2	6.49	ND	465	300	113	3,144	2,180
cPAH Compounds ²											
Benzo(a)anthracene		140 U	.1 U	10 UJ	.10	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Benzo(a)pyrene		140 U	.1 U	10 UJ	.1 U	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Benzo(b)fluoranthene		140 U	.1 U	10 UJ	.1 U	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Benzo(k)fluoranthene	NA	140 U.J	.1 U	10 UJ	.1 U	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Chrysene		140 U.J	.074 J	10 UJ	.055 J	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Dibenzo(a,h)anthracene		140 U	.1 U	10 UJ	.1U_	5 U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
Indeno(1,2,3-cd)pyrene		140 U	.055 J	10 UJ	.1U	5U	50 UJ	10 UJ	10 U	10 UJ	10 UJ
B(a)P Equivalent'	0.20	161.8	0.17	11.6	0.12	5.8	57.8	11.6	11.6	11,6	11.6
Volatile Organic Compounds											
Benzene	5	530	5 U	NS	5 U	5 U	NS	NS	NS	NS	NS

 Netrex

 Ellue Shading indicates an analyte exceeds runnelial goal

 R(4)* exceedance due to inclusion of ND values thown with blue dot pattern

 1 - Total SVOC - Total Sem volatile organic compounds

 2 - aPAH Compounds - Carcinogenic Polycyclic Aromatic Hydrosarbans

 3 - BaF oquivations - Beroto (apyrene equivalents calculated per EPA Region 4 guidance ppb - parts per billion

 ND - Not Detected

 ND - Not Detected

 NS - Not Calculated

 - - No data available

(c) - Not A substance - No data rowaliable J. The identification of the analyte is acceptable; the reported value is an estimate. R. The data are registed and considered unsusable. U - The analyte was not detected at or above the reporting limit.

Page 6 of 10

	Remedial Goal	TW	1-C9	TW-D2	TW-D5	TWI	E1-1	TWE2	TWE4	TWE13	TWE15
	(ppb)	2/28/2003	3/8/2004	3/9/2004	3/8/2004	2/24/2003	3/9/2004	2/27/2003	2/27/2003	2/24/2003	3/9/2004
Semi Volatile Organic Compounds											
2.4-Dimethylphenol	313	10 UJ	10 U	11 U	10 U	50 U	10 U	93 J	1000 UJ	10 U	10 U
2-Methylnaphthalene	31	10 UJ	10 U	11 U	5 J	50 UJ	10 U	370 J	1000 UJ	10 UJ	10 U
Carbazole	48	10 UJ	10 U	11 U	6.9 J	50 UJ	10 U	340 J	1000 UJ	10 UJ	10 U
Dibenzofuran	31	10 UJ	10 U	11 U	3.2 J	50 UJ	10 U	160 J	140 J	10 UJ	10 U
Naphthalene	156	10 UJ	10 U	11 U	35	50 UJ	10 U	2900 J	580 J	10 UJ	10 U
Pentachlorophenol	1	13 J	IU	3.6 J	8.5 J	130 UJ	1 U	310 J	12000 J	25 UJ	10
Phenanthrene	469	1 J	10 U	11 U	3.9 J	50 UJ	10 U	160 J	370 J	10 UJ	10 U
Total SVOCs ¹	NA	17	ND	3.6	73.2	280	ND	4,833	14,510	310	ND
cPAH Compounds ²											
Benzo(a)anthracene		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
Benzo(a)pyrenc		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
Benzo(b)fluoranthene		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
Benzo(k)fluoranthene	NA	10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
Chrysene		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
Dibenzo(a.h)anthracene		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 U	10 U
Indeno(1,2,3-ed)pyrene		10 UJ	10 U	11 U	10 U	50 UJ	10 U	100 UJ	1000 UJ	10 UJ	10 U
B(a)P Equivalent	0.20	11.6	11.6	12.7	11.6	57.8	11.6	115.6	1,155.5	11.6	11.6
Volatile Organic Compounds											
Benzene	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Notes:											

Netter:
Huse Shading indicates an analytic exceeds remedial goal
Bigs Pesseedance due to inclusion of ND values shown with blue dot patter
1 - Total SVOC - Total Semi volatile organic compounds
2 - dPAH Compounds - Carcinogenic Polysyclic Aromatic Hydroarbons
3 - BaP oquivalents - Bernzol jpyreme equivalents calculated per EPA Region 4 guidance
pph - parts per hilino
NA - Not Applicable
ND - Not Detected
NS - Not Calculated
NC - Not Calculated
I - The identification of the analyte is acceptable; the reported value is an estimate.
R - The data are injected and considered unsuable.
U - The analyte was not detected at or above the reporting limit.

Page 7 of 10

	Remedial Goal	TW-F2	TV	/F3	TWF8	TWF15	TW-F16		TW	/G1	
	(ppb)	3/8/2004	10/30/2002	10/30/2002	10/30/2002	3/8/2004	3/9/2004	10/30/2002	10/30/2002	2/24/2003	2/27/2003
Semi Volatile Organic Compounds			34 A. A. A.								
2,4-Dimethylphenol	313	47	110 J	110 J	10 UR	10 U	1.5 J	10 UR	10 UR	10 U	10 UJ
2-MethyInaphthalenc	31	10 U	420 J	1200 J	10 UJ	10 U	10 U	36 J	76 J	10 U	11 J
Carbazole	48	11 J	270 J	320 J	10 UJ	10 U	10 U	8 J	6 J	10 UJ	2 J
Dibenzofuran	31	8.2 J	210 J	670 J	10 UJ	10 U	10 U	23 J	42 J	10 U	8 J
Naphthalene	156	19	2700 J	4200 J	10 UJ	10 U	23	79 J	77 J	10 U	14 J
Pentachlorophenol	1	10 J	650 J	780 J	25 UJ	1 U	3.1 J	1200 J	1100 J	25 UJ	670 J
Phenanthrene	469	6.4 J	600 J	3200 J	2 J	10 U	10 U	72 J	77 J	10 U	19 J
Total SVOCs ¹	NA	171.4	6,826	16,054	6	1.2	59.8	2,013	1,874	560	782
cPAH Compounds ²											
Benzo(a)anthracene		10 U	43 J	280 J	10 UJ	10 U	10 U	2 J	10 UJ	10 U	10 UJ
Benzo(a)pyrene		10 U	16 J	89 J	10 UJ	10 U	10 U	10 UJ	10 UJ	10 U	10 U J
Benzo(b)fluoranthene		10 U	19 J	120 J	10 UJ	10 U	1.2 J	10 UJ	10 UJ	10 U	10 UJ
Benzo(k)fluoranthene	NA	10 U	16 J	100 J	10 UJ	10 U	10 U	10 UJ	10 UJ	10 U	10 UJ
Chrysene		10 U	40 J	270 J	10 UJ	10 U	10 U	2 J	10 UJ	10 U	10 U J
Dibenzo(a,h)anthracene		10 U	50 UJ	100 UJ	10 UJ	10 U	10 U	10 UJ	10 UJ	10 U	10 UJ
Indeno(1,2,3-cd)pyrene		10 U	6 J	35 J	10 UJ	10 U	1.7 J	10 UJ	10 UJ	10 U	10 UJ
B(a)P Equivalent'	0.20	11.6	72.3	355.7	11.6	11.6	10.8	8.6	11.6	11.6	11.6
Volatile Organic Compounds											
Benzene	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Notes:											

 State:
 Blue Shading indicates an analyte exceeds remedial goal

 B(s)P exceedance due to inclusion of ND values shown with blue dot patterr

 1. Total SVOC: Total Semi volatile organic compounds

 2. - PAH Compands - Carcinogene Tolycycick Aromatic Hydroserbons

 3. BaP equivalents - Benzof shyrotec Aromatic Elderoserbons

Lab equivalents - Benzicit pyrene equivalents calculated per EPA Region 4 guid ppb - parts per billion
 NA - Not Applicable
 ND - Not Detected
 NS - Not Sampled
 NC - Not Calculated
 - No data available
 J - The identification of the analyte is asseptable; the reported value is an estimate.
 W - The analyte was not detected at or above the reporting lunit.

Page 8 of 10

ar 1	Remedial Goal	TWG11	TWG13	TW	G2-2	TW-G2-2	TWG2-3	TW-H15	TW-H3-1A	TW-111	TW-I3-1A
	(ppb)	3/9/2004	2/24/2003	2/24/2003	2/27/2003	3/9/2004	2/27/2003	3/9/2004	3/9/2004	3/9/2004	3/8/2004
Semi Volatile Organic Compounds											
2,4-Dimethylphenol	313	10 U	57	10 U	200 UJ	10 U	1000 UJ	10 U	5.7 J	10 U	2.4 J
2-Methylnaphthalene	31	10 U	60 J	10 UJ	200 UJ	10 U	1000 UJ	10 U	280	10 U	33
Carbazole	48	10 U	25 J	10 UJ	200 UJ	10 U	1000 UJ	10 U	48	10 U	59 J
Dibenzofuran	31	10 U	66 J	10 UJ	200 UJ	10 U	1000 UJ	10 U	70	10 U	8.1 J
Naphthalene	156	10 U	45 J	10 UJ	200 UJ	10 U	1000 UJ	10 U	6 J	10 U	270
Pentachlorophenol	1	1 U	420 J	44 J	1600 J	1300	100000 J	2.3 J	6500	1 U	2200
Phenanthrene	469	10 U	42 J	10 UJ	200 UJ	10 U	1000 UJ	10 U	91	10 U	7.9 J
Total SVOCs1	NA	ND	1,257	594	1,600	1,304	100,260	2.3	7,759	ND	2,827
PAH Compounds ²											
Benzo(a)anthracene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
Benzo(a)pyrene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	NA	10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
Chrysene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
ndeno(1,2,3-cd)pyrene		10 U	50 UJ	10 UJ	200 UJ	10 U	1000 UJ	10 U	10 U	10 U	10 U
B(a)P Equivalent ³	0.20	11.6	57.8	11.6	231.1	11.6	1155.5	11.6	11.6	11.6	11.6
/olatile Organic Compounds											
Benzene	5	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
Blue Shading indicates an analyte exceeds remed B(a)P exceedance due to inclusion of ND values is Total SVOC - Total Semi visuliti organic compound. PAHC Compounde - Caramognic hybryclic Aromanizii Flydros HaP equivalents - Benzo(a)pyrene equivalents calculated per E ph - parts per billion VA - Not Applicable SD - Not Detected SC - Not Calculated	hown with blue dot pattern	r									

--- vo data avaiante
 --- 1) - The identification of the analyte is noceptable; the reported value is an estimate.
 R - The data are rejected and considered unusable.
 U - The analyte was not detected at or above the reporting limit.

Page 9 of 10

	Remedial Goal	TWJ5-1	PLW19	TW-	K4-1	TW-K5-1
	(ppb)	3/8/2004	2/25/2003	3/8/2004	3/8/2004	3/9/2004
Semi Volatile Organic Compounds						
2,4-Dimethylphenol	313	10 U	10 U	10 U	10 U	10 U
2-Methylnaphthalene	31	10 U	10 U	10 U	10 U	10 U
Carbazole	48	10 U	10 UJ	10 U	10 U	10 U
Dibenzofuran	31	10 U	10 U	10 U	10 U	10 U
Naphthalene	156	10 U	10 U	10 U	10 U	10 U
Pentachlorophenol	1	3 J	25 UJ	32	41	1 U
Phenanthrene	469	10 U	10 U	10 U	10 U	10 U
Total SVOCs1	NA	3	2,500	34.3	45.1	ND
CPAH Compounds ²						
Benzo(a)anthracene		10 U	10 U	10 U	10 U	10 U
Benzo(a)pyrene		10 U	10 U	10 U	10 U	10 U
Benzo(b)fluoranthene		10 U	10 U	10 U	10 U	10 U
Benzo(k)fluoranthene	NA	10 U	10 U	10 U	10 U	10 U
Chrysene		10 U	10 U	10 U	10 U	10 U
Dibenzo(a,h)anthracene		10 U	10 U	10 U	10 U	10 U
Indeno(1,2,3-cd)pyrene		10 U	10 U	10 U	10 U	10 U
B(a)P Equivalent ³	0.20	11.6	11.6	11.6	11.6	11.6
Volatile Organic Compounds						
Benzene	5	NS	NS	NS	NS	NS

 Nete:
 Blue Shading indicates an analyte exceeds remedial goal

 B(p)P exceedance due to inclusion of ND values shown with blue dot patter

 1 - Total SVOC - Total Semi volatile organic compounds

 2 - aPAI Compounds - Carainogenic Polycyclic Aromatic Hydrosarbens

 3 - Tabé quivalents - Benzole Apyrene equivalents calculated per EPA Region 4 guidance

 pol- part per billion

 NA - Not Applicable

 NS - Not Sampled

 NC - Not Calculated

 - Not Calculated

NC - Not Calustated - No data available J. The identification of the analyte is acceptable; the reported value is an estimate. R - The data are rejected and considered unstable; U - The analyte was not detected at or above the reporting limit.

Page 10 of 10

	Remedial Goal			AFMW01I				AFM	IW03I	
	(ppb)	3/5/2003	12/19/2006	2/7/2009	2/7/2009	4/20/2010	12/19/2006	5/13/2008	2/8/2009	4/20/2010
Semi Volatile Organic Compounds										
2-Methylnaphthalene	31	10 U	.1 U	.1 U	.059 J	5 U.J	.1 U	.1 U	.1 U	5 U,J
Acenaphthene	469	10 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Carbazole	48	10 U	5 U	5 U	5 U	5 U.J	5 U	5 U	5 U	5 U.J
Dibenzofuran	31	10 U	5 U	5 U	5 U	5 U.J	5 U	5 U	5 U	5 U.J
Fluorene	313	10 U	.1 U	1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U,J
Naphthalene	156	10 U	.1 U	.1	.31	5 U.J	.1 U	.I U	.28	5 U.J
Pentachlorophenol	1	25 U	.2 UR	.06 J	.2 U	10 U,J	.2 UR	10 U	.094 J	10 U.J
Phenanthrene	469	10 U	.1 U	.1 U	.08 J	5 U,J	.1 U	.i U	.07 J	5 U.J
Total SVOCs1	NA	79	ND	0.60	0.45	ND	ND	ND	0.52	ND
cPAH Compounds ²										
Benzo(a)anthracene		10 U	.1 U	.1 U	.10	5 U.J	. I U	.1 U	.1 U	5 U,J
Benzo(a)pyrene		10 U	.1U	.1 U	.I U	5 U.J	.1 U	.1 U	.1 U	5 U,J
Benzo(b)fluoranthene		10 U	.1 U	.I UJ	.1U	5 U,J	.1 U	.1 U	.1 U	5 U,J
Benzo(k)fluoranthene	NA	10 U	.1 U	.1 U	.10	5 U.J	.1 U	.1 U	.I U	5 <u>U</u> ,J
Chrysene		10 U	.1 U	.I U	.10	5 U,J	.1 U	.1 U	.1 U	5 U.J
Dibenzo(a,h)anthracene		10 U	.1 U	.1 UJ	.1U	5 U.J	.1 U	.1 U	.1U	5 U.J
Indeno(1,2,3-cd)pyrene		10 U	.1 U	.1U	.1U	5 U.J	.1 U	.1 U	.10	5 U,J
B(a)P Equivalent ³	0.20	11.6	0.12	0.12	0.12	5.8	0.12	0.12	0.12	5.8
Volatile Organic Compounds					A					
Benzene	5	NS	NS	5 U	5 U	NS	NS	NS	5 U	NS
Ethylbenzene	700	NS	NS	5 U	5 U	NS	NS	NS	5 U	NS
Pesticides and PCB Compounds										
Heptachlor epoxide	0.2	NS	NS	.05 U	.05 U	NS	NS	NS	.05 U	NS

Notes:
 Blue Shading indicates an analyte exceeds remedial goal
 Rg/IP exceedance due to inclusion of ND values shown with blue dot pattern.
 1 - Total SVOC - Total Semi volatile organic compounds.
 2 - d'AII Compounds - Carcinogene Polycyclic Aromatic Hydrocarbons
 3. Ba' equivalents - Benzo(apyrene equivalents calculated per EPA Region 4 guidance
 reh, and no e-billion

BaP equivalents - Benzo(apyrene equivalents calculated per EPA Region 4 guid prb - parts per billion
 Not Applicable
 Not Astronov (Applicable)
 Not Calculated
 Not data available
 The dentification of the analyte sy acceptable; the reported value is an estimate:
 R - The data are rejected and considered unusable.
 U - The analyte was not detected at or above the reporting limit.

Page 1 of 13

			/W02I			CMW01I					
	(ppb)	2/8/2009	4/20/2010	4/22/1998	2/24/2003	12/13/2006	2/10/2009	4/11/2010	3/4/2003	2/6/2009	4/14/2010
emi Volatile Organic Compounds											
Methylnaphthalene	31	.1 U	5 U,J	- 10 U	10 U	7.1	8.1	4.20 J	10 U	.1 U	5 U
cenaphthene	469	.10	5 U,J	10 U	10 U	.33	.1 U	5 U	10 U	.1 U	5 U
arbazole	48	5 U	5 U.J	10 U	10 UJ	5 U	2.3 J	2.60 J	10 U	5 U	5 U
ibenzofuran	31	5 U	5 U,J	10 U	10 U	3.4 J	5.1	5.70	10 U	5 U	5 U
uorene	313	.1 U	5 U,J	10 U	10 U	.10	.6	5 U	10 U	.1 U	5 U
aphthalene	156	.15	5 U,J	10 UJ	10 U	65	89	60	10 U	.13	3.10 J
entachlorophenol	1	.2 U	10 U.J	25 U	25 UJ	550	420 J	310 J	25 U	.2 U	10 U.J
henanthrene	469	.08 J	5 U.J	10 U	10 U	2.3 J	2.9	5 U	10 U	.055 J	5 U
otal SVOCs ¹	NA	0.23	ND	ND	ND	19.29	540	398	ND	0.411	3.10
PAH Compounds ²											
enzo(a)anthracene		.1 U	5 U.J	10 U	10 U	.1 U	.1.U	5 U	10 U	.1 U	5 U
enzo(a)pyrene		.10	5 U,J	10 U	10 U	.1 U	.1 U	5 U	10 U	.1 U	5 U
enzo(b)fluoranthene		.1 U	5 U.J	10 U	10 U	.1 U	.10	5 U	10 U	.1 UJ	5 U
enzo(k)fluoranthene	NA	.1 U	5 U.J	10 U	10 U	.1 U	.1U	5 U	10 U	.1 U	5 U
hrysene		.10	5 U.J	10 U	10 U	.I U	.1 U	5 U	10 U	.1.U	5 L
ibenzo(a,h)anthracene		.1 U	5 U.J	10 U	10 UJ	.1 U	10	5 U	10 U	.1 UJ	5 L
deno(1,2,3-cd)pyrene		.1 U	5 U,J	10 U	10 U	.1U	1 U	5 U	10 U	.1 U	5 U
(a)P Equivalent ³	0.20	0.12	5.8	11.6	11.6	0.12	0.12	5.8	11.6	0.12	5.8
olatile Organic Compounds											
enzene	5	5 U	NS	1 U	NS	NS	5 U	5 U	NS	5 U	5 U
thylbenzene	700	5 U	NS	10	NS	NS	5 U	5 U	NS	5 U	5 U
esticides and PCB Compounds											
eptachlor epoxide	0.2	.05 U	NS	.05 U	NS	NS	.05 U	NS	NS	.05 U	NS
Blue Shading indicates an analyte exceeds re B(a,P exceedance due to inclusion of ND vali- Total SVOC - Total Semi volatile organic compounds e/AIC compounds - carcinogure Polycyclic Aronatic BF B-aP equivalents - Benzotajpyrene equivalents calculated p b- parts per billion b- parts per billion S - Not Detected S - Not Detected S - Not Campileable C - Not Calculated - No data available The identification of the analyte is acceptable, the reported	aes shown with blue dot pattern. vdrocarbons er EPA Region 4 guidance										

Page 2 of 13

	Remedial Goal	. LN	IWI-1		MAS	MW01I			MASI	MW021	
	(ppb)	3/2/2003	4/12/2010	12/7/2006	5/14/2008	2/9/2009	4/20/2010	12/13/2006	5/14/2008	2/9/2009	4/20/2010
Semi Volatile Organic Compounds		1	1.5								
2-Methylnaphthalene	31	10 UJ	5 U	.025 J	.1 U	.1U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Acenaphthene	469	10 UJ	5 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Carbazole	48	10 UJ	5 U	5 U	5 U	5 U	5 U,J	5 U	5 Ü	5 U	5 U.J
Dibenzofuran	31	10 UJ	5 U	5 U	5 U	5 U	5 U,J	5 U	5 U	5 U	5 U.J
Fluorene	313	10 UJ	5 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Naphthalene	156	10 UJ	5 U	.32 J	.1 U	.32	5 U.J	.1 U	.022 J	.27	5 U.J
Pentachlorophenol	1	25 UJ	5 U	.2 UJ	10 U	.2 U	10 U.J	.2 UR	10 U	.2 U	10 U.J
Phenanthrene	469	10 UJ	5 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U,J
Total SVOCs1	NA	ND	ND	1.16	ND	0,38	ND	ND	0.022	0.27	ND
cPAH Compounds ²											
Benzo(a)anthracene		10 UJ	5 U	.1 U	.1 U	.1 U	5 U,J	.1 U	.1 U	.1 U	5 U.J
Benzo(a)pyrene		10 UJ	5 U	.1 U	.1 U	.1 U	5 U,J	.1 U	.1 U	.1 U	5 U.J
Benzo(b)fluoranthene		10 UJ	5 U	.1 Ŭ	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Benzo(k)fluoranthene	NA	10 UJ	5 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Chrysene		10 UJ	5 U	.1 U	.1U	.1 Ŭ	5 U.J	. I U	1 U	.1 U	5 U.J
Dibenzo(a,h)anthracene		10 UJ	5 U	.1 U	.1 U	.1 U	5 U.J	.1 U	.1 U	.1 U	5 U.J
Indeno(1.2.3-cd)pyrene		10 UJ	5 U	10	10	.1U	5 U.J	.1 U	.1 U	.1 U	5 U,J
B(a)P Equivalent ³	0.20	11.6	5.8	0.12	0.12	0.12	5.8	0.12	0.12	0.12	5.8
Volatile Organic Compounds											
Benzene	5	NS	5 U	NS	NS	5 U	NS	NS	NS	5 Ü	NS
Ethylbenzene	700	NS	5 U	NS	NS	5 U	NS	NS	NS	5 U	NS
Pesticides and PCB Compounds										10. C. 11	
Heptachlor epoxide	0.2	NS	NS	NS	NS	.05 U	NS	NS	NS	.05 U	NS

 Note:
 Description

 Protect
 Blue Shading indicates an analyte exceeds remedial goal

 Ref Recordence due to inclusion of ND values shown with blue dot pattern.
 1. Total SVOC - Total Semi volatile organic compounds

 2. - PAH Compounds - Carcinogenic Polycyclic Aromatic Hydrocarbons
 3. BaP equivalents - Berzor(a)pyrene equivalents calculated per EPA Region 4 guidance

 pip - parts per billion
 NA - Not Applicable

 DD - Not Disected
 NS - Not Carculated

 - No data arxiable
 J. The identification of the analyte is acceptable; the reported value is an estimate.

 R - To data are rejected and considered unsuble.
 U. The analyte was not detected at or above the reporting limit.

Page 3 of 13

.

	Remedial Goal	MW01A		MW01I	1		M	W02	
	(ppb)	4/22/1998	4/21/1998	2/6/2009	4/9/2010	4/22/1998	12/8/2006	2/11/2009	4/13/2010
Semi Volatile Organic Compounds		1							
2-Methylnaphthalene	31	10 U	10 U	.1 U	5 U	10 U	11	.61	5 U
Acenaphthene	469	10 U	10 U	.1 U	5 U	10 U	.056 J	.1 U	5 U
Carbazole	-48	10 U	10 U	5 U	5 U	10 U	5 U	5 U	5 U
Dibenzofuran	31	10 U	10 U	5 U	5 U	10 U	8.4	6.6	5 U
Fluorenc	313	10 U	10 U	.1 U	5 U	10 U	1.5 J	.76	5_U
Naphthalenc	156	10 UJ	10 UJ	.11	5 U	10 UJ	48	6.6	7.30
Pentachlorophenol	1	25 U	25 U	.2 U	10 U	60	96	83 J	10 U.J
Phenanthrene	469	10 U	10 U	.1 U	5 U	10 U	9.5	3.4	5 U
Total SVOCs ¹	NA	3	ND	0.11	ND	62	177.98	103.62	7.30
cPAH Compounds ²									
Benzo(a)anthracene		10 U	10 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
Benzo(a)pyrene		10 U	10 U	.I U	5 U	10 U	.10	.1 U	5 U
Benzo(b)fluoranthene	7	10 U	10 U	.1 UJ	5 U	10 U	.1U	.1 UJ	5 U
Benzo(k)fluoranthene	NA	10 U	10 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
Chrysene	1	10 U	10 U	.1 U	5 U	10 U	10	.10	5 U
Dibenzo(a,h)anthracene	7	10 U	10 U	.1 UJ	5 U	10 U	.1 U	.1 UJ	5 U
Indeno(1,2,3-cd)pyrene		10 U	10 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
B(a)P Equivalent ³	0.20	11.6	11.6	0.12	5.8	11.6	0.12	0.12	5.8
Volatile Organic Compounds		1							
Benzene	5	10	10	5 U	5 U	IU	NS	5 U	5 U
Ethylbenzene	700	IU	1 U	5 U	5 U	1 U	NS	5 U	5 U
Pesticides and PCB Compounds		1							
Heptachlor epoxide	0.2	.17 N	.05 U	.05 U	NS	.05 U	NS	.05 U	NS
Note: Blue Shading indicates an analyte exceet Bio Blue Shading indicates an analyte exceet Bio Blue Shading indicates an analyte exceet Bio Blue Shading indicates an analyte is accentable: the Shading indicates and analyte is accentable: the repre- tion of the analyte is accentable: the repre- tion representable is accentable: the repre- tion representable is accentable: the repre- tion representable is accentable: the repre- sentable is accentable: the repre- Bio Blue Shading in the analyte is accentable: the analyte is accentable: the analyte is accen	values shown with blue dot pattern c Hydrocarbons								

 \sim - roo out a avalate U

Page 4 of 13

	Remedial Goal		MW021			MW03A		M	V03B
	(ppb)	4/22/1998	2/5/2009	4/7/2010	4/22/1998	2/11/2009	4/14/2010	2/6/2009	4/14/2010
Semi Volatile Organic Compounds				·					
2-Methylnaphthalene	31	120 J	47	5 U	6 J	.54	5 U	.6	5 U
Acenaphthene	469	10 U	.52	100 J	10 U	.075 J	4.60 J	.1 U	5 U
Carbazole	48	52 J	35	28	10 U	5 U	5 U	5 U	5 U
Dibenzofuran	31	89 J	67	55	12	2.8 J	2.50 J	4.3 J	5 U
Fluorene	313	92 J	56	49	10	2.6	2.20 J	3.4	5 U
Naphthalene	156	570 J	200	5 U	210 J	7.3	3.30 J	15	5 U
Pentachlorophenol	1	25 U	.26 J	10 U	25 U	10 UJ	10 U.J	.086 J	10 U.J
Phenanthrene	469	79	28	26	22	8.5	6.50	3.2	5 U
Total SVOCs ¹	NA	1059	585.5	277	295	49.32	28	34.02	ND
cPAH Compounds ²									
Benzo(a)anthracene		10 U	.1 U	5 U	10 U	.38	5 U	.1 U	5 U
Benzo(a)pyrene		10 U	.1U	5 U	10 U	.1 U	5 U	.1 U	5 U
Benzo(b)fluoranthene	7	10 U	.1 U	5 U	10 U	.08 J	5 U	.1 UJ	5 U
Benzo(k)fluoranthene	NA	10 U	.1 U	5 U	10 U	.063 J	5 U	.1 U	5 Ú
Chrysene		10 U	.06 J	5 U	10 U	.72	5 U	.1 U	5 U
Dibenzo(a,h)anthracene	-	10 U	.1 U	5 U	10 U	.1 UJ	5 U	.1 UJ	5 U
Indeno(1.2,3-cd)pyrene		10 U	.093 J	5 U	10 U	.1 U	5 U	.I U	5 U
B(a)P Equivalent	0.20	11.6	0.12	5.8	11.6	0.45	5.8	0.12	5.8
Volatile Organic Compounds									
Benzene	5	20 U	3.4 J	3.20 J	4 U	5 UJ	5 U	5 U	5 U
Ethylbenzene	700	20 U	5 U	5 U	4 U	5 U	5 U	5 U	5 U
Pesticides and PCB Compounds									
Heptachlor epoxide	0.2	.05 U	.05 U	NS	.05 U	.05 U	NS	.05 U	NS

 Arter:
 Blue Shading indicates an analyte exceeds remedial goal B(a)P exceedance due to indicator of XD values shown with blue dot pattern.

 1 - Total SVOC - Total Semi volatile organic compounds
 2 - eXAH Compounds - Carcinogenic Polycyclic Aromatic Hydrocarbons

 3 - Bale equivalents - Benzo(a)pyrene equivalents calculated per EPA Region 4 guidance
 2 uidance

Bař equivalenti - Benzo(a)pyrene equivalents calculated per EPA Region 4 guis pph - parts per billion
 Not Avot Applicable
 Nor Detected
 Nor C- Not Calculated
 No data available
 J. The identification of the analyte is acceptable; the reported value is an estimate.
 The data are metod and considered unusable.

R - The data are rejected and considered unusable. U - The analyte was not detected at or above the reporting limit.

Page 5 of 13

	Remedial Goal		MW03I			MW04A			M	V05I	
	(ppb)	4/22/1998	2/10/2009	4/11/2010	4/21/1998	2/7/2009	4/15/2010	4/22/1998	12/13/2006	2/11/2009	4/11/2010
Semi Volatile Organic Compounds			anna anar ta							3	
2-Methylnaphthalene	31	11	.16	5 U	10 U	52	46	7 J	5.9	.17	5 U
Acenaphthene	469	10 U	.086 J	2.40 J	10 U	.33	33	10 U	7.1	.13	5 U
Carbazole	48	10 U	5 U	5 U	3 J	5 U	5 U	3 J	9.1	2.7 J	5 U
Dibenzofuran	31	3 J	.81 J	5 U	18	35	33	18	12	3.7 J	2 J
Fluorene	313	11	.2	5 U	20	25	23	11	4.7 J	1.3	5 U
Naphthalene	156	1 J	2.8	5 U	5 J	250	680	17 J	23	.25	5 U
Pentachlorophenol	1	25 U	.65 J	10 U.J	25 U	.2 U	10 U.J	28 J	230	71 J	47 J
Phenanthrene	469	3 J	.46	5 U	23	37	34	60	6	.2	5 U
Total SVOCs ¹	NA	23	19.056	11	98	445.4	853	184	335.5	95.3	59
cPAH Compounds ²											
Benzo(a)anthracene		10 U	.22 J	5 U	10 U	.1 U	5 U	10 U	.25	.39	5 L
Benzo(a)pyrene	_	10 U	.1 U	5 U	10 U	.I U	5 U	10 U	.1 U	.1 U	5 L
Benzo(b)fluoranthene		10 U	.1 U	5 U	10 U	.1U	5 U	10 U	.1 U	.1 UJ	5 U
Benzo(k)fluoranthene	NA	10 U	U I.	5 U	10 U	.I U	5 U	10 U	.1 U	.1 U	5 L
Chrysene		10 U	.33	5 U	10 U	.053 J	5 U_	10 U	.11	.34	5 L
Dibenzo(a,h)anthracene		10 U	.1 U	5 U	10 U	10	5 U	10 U	.1 U	.1 UJ	5 U
Indeno(1,2,3-cd)pyrene		10 U	.1U	5 U	10 U	.1 U	5 U	10 U	.1 U	.1 U	5 L
B(a)P Equivalent ³	0.20	11.6	0.29	5.8	11.6	0,12	5.8	11.6	0.32	0.46	5.8
Volatile Organic Compounds											
Benzene	5	1 U	5 U	5 U	5.5 J	3.7 J	3.50 J	1 U	NS	5 U	5 U
Ethylbenzene	700	1 U	5 U	5 U	5 U	5U	5 U	1 U	NS	5 U	5 U
Pesticides and PCB Compounds											
Heptachlor epoxide	. 0.2	.05 U	.05 U	NS	.05 U	.05 U	NS	.05 U	NS	.05 U	NS

 Note:
 Blue Shading indicates an analyte exceeds remedial goal Bays)P exceedance due to inclusion of ND values shown with blue dot pattern.

 1 - Tetal SVOC - Total Semi volatile organic compounds
 2 - ePAH Compounds - Carcinogenic Polycyclic Arematic Hydrosarbons

 3 - BaP equivalents - Benzol apyrene equivalents calculated per EPA Region 4 guidance ppb - parts per billion
 NA - Not Applicable

 ND - Not Detected
 NS - Not Sampled

 NC - Not Calculated
 - - No data available

--- No data available

Page 6 of 13

	Remedial Goal			MW061				MV	V07I	
	(ppb)	4/22/1998	2/24/2003	2/11/2009	2/11/2009	4/13/2010	4/22/1998	12/13/2006	2/11/2009	4/12/2010
Semi Volatile Organic Compounds										
2-Methylnaphthalene	31	10 U	10 U	.077 J	.067 J	5 U	10 U	.1 U	.078 J	5 U
Acenaphthene	469	10 U	10 U	.1 U	10	5 U	10 U	.1 U	.1 U	14
Carbazole	-48	10 U	10 UJ	10 U	5 U	2.20 J	10 U	5 U	5 U	9.10
Dibenzofuran	31	10 U	10 U	10 U	5 U	5 U	10 U	5 U	5 U	11
Fluorene	313	10 U	10 U	.1 U	.10	5 U	10 U	.1 U	.1 U	23
Naphthalene	156	10 UJ	10 U	.16	.15	13	10 UJ	.1 U	.16	5 U
Pentachlorophenol	1	25 U	25 UJ	2.8 J	.3 J	10 U	25 U	.075 J	.48 J	4.20 J
Phenanthrene	469	10 U	10 U	.062 J	.058 J	5 U	10 U	.1 U	.059 J	19
Total SVOCs ¹	NA	ND	4004	3.26	0.58	15	ND	0,08	1.01	91
cPAH Compounds ²		1								
Benzo(a)anthracene	1	10 U	10 U	.1 U	.1 U	5 U	10 U	.1 U	.10	5 U
Benzo(a)pyrene		10 U	10 U	.1 U	.1 U	5 U	10 U	.1 U	.10	5 U
Benzo(b)fluoranthene		10 U	10 U	.069 J	.1 ŪJ	5 U	10 U	UI.	.1 UJ	5 U
Benzo(k)fluoranthene	NA	10 U	10 U	.1 U	.1 U	5 U	10 U	.1U	.1 U	5 U
Chrysene		10 U	10 U	.1U	.1 U	5 U	10 U	.1U	.1 U	5 U
Dibenzo(a.h)anthracene		10 U	10 U	.1 UJ	.1 UJ	5 U	10 U	.1 U	.1 UJ	5 U
Indeno(1,2,3-cd)pyrene		10 U	10 U	.1 U	.10	5 U	10 U	.I U	.1 U	5 U
B(a)P Equivalent	0.20	11.6	11.6	0.01	0.12	5.8	11.6	0.12	0.12	5.8
Volatile Organic Compounds										
Benzene	5	10	NS	5 UJ	5 U	5 U	10	NS	5 U	5 U
Ethylbenzene	700	1 U	NS	5 U	5 U	5 U	IU	NS	5 U	5 U
Pesticides and PCB Compounds										
Heptachlor epoxide	0.2	.05 U	NS	.05 U	.05 U	NS	.05 U	NS	.05 U	NS

Notes:

Blue Shading indicates an analyte exceeds remedial goal
R(a)P exceedance due to inclusion of ND values shown with blue dot pattern.

1 - Total SVCC - Total Semi volatile organic compounds
2 - PAH Compounds - Carcinogene Polycyclic Arrenatic Hydrocarbons
3 - BaP equivalents - Benzo(a byrene equivalents calculated per EPA Region 4 guidance
the aneme of the Marce Statement of the Statemen

Ba' equivalents - Benzo(apyrene equivalents calculated per EPA Region 4 guia ppb - parts per billion
 NA - Not Applicable
 ND - Noto Detected
 NN - Noto Detected
 NO calculated
 - No data available
 - The data are rejected and considered unusable.
 U - The analyte was not detected at or above the reporting limit.

	Remedial Goal		M	160.0			MV	V10I		MW11I	MW15I
	(ppb)	12/19/2006	5/14/2008	2/11/2009	4/13/2010	12/19/2006	5/13/2008	2/9/2009	4/13/2010	4/19/2010	4/19/2010
Semi Volatile Organic Compounds											
-Methylnaphthalene	31	.1U	5 U	.092 J	5 U	200	680	950	800 J	130 J	5 U,J
Acenaphthene	469	.1 U	5 U	.1 U	5 U	2.7 J	15	25	540	47 J	5 U.J
Carbazole	48	5 U	5 U	5 U	5 U	73	410	360	420	200 U,J	5 U.J
Dibenzofuran	31	5 U	5 U	5 U	3.10 J	100	260	340	370	200 U,J	5 U,J
luorene	313	.064 J	5 U	.053 J	5 U	79	210	290	300	200 U,J	5 U,J
Naphthalene	156	.1 <u>U</u>	5 U	.22	5 U	2200	8200	13000	13000	180 J	5 U.J
entachlorophenol	1	.95 J	10 U	6.1 J	80 J	18 J	510	690 J	80	3500 J	10 U.J
Phenanthrene	469	.1 U	5 U	.14	5 U	87	160	240	260	61 J	5 U,J
Fotal SVOCs1	NA	0.32	ND	7.08	91	2,923	11,126	16,711	16,061	4,288	ND
PAH Compounds ²											
Benzo(a)anthracene		.1 U	5 U	.1 U	5 U	.16	5 U	1.2 J	5 U.J	200 U.J	5 U,
Benzo(a)pyrene		.1 U	5 U	.1 U	5 U	.1 U	5 U	.34 J	5 U	200 U,J	5 U.
Benzo(b)fluoranthene		.1 U	5 U	.1 UJ	5 U	.I U	5 U	.3 J	5 U	200 U.J	5 U.
Benzo(k)fluoranthene	NA	.1 U	5 U	.1 U	5 U	.1 U	5 U	.29 J	5 U	200 U.J	5 U.
Chrysene		10	5 U	.062 J	5 U	.14	5 U	.94 J	5 U.J	200 U,J	5 U
Dibenzo(a,h)anthracene		.1 U	5 U	.1 UJ	5 U	.1 U	5 U	.082 J	5 U	200 U.J	5 U
ndeno(1,2,3-cd)pyrene		.1 U	5 U	.1 U	5 U	.1 U	5 U	.12 J	5 U	200 U,J	5 U
3(a)P Equivalent	0.20	0.12	5.8	0,12	5.8	0.23	5.8	1.4	5.8	231.1	5.8
/olatile Organic Compounds						2		3			
Benzenc	5	NS	NS	5 U	5 U	NS	NS	49	57	2.20 J	1.10 J
Ethylbenzenc	700	NS	NS	5 U	5 U	NS	NS	40	44	15	5 U
Pesticides and PCB Compounds											
Heptachlor epoxide	0.2	NS	NS	.05 U	NS	NS	NS	.05 U	NS	NS	NS
Blue Shading indicates an analyte exceeds re B(a)P exceedance due to inclusion of ND val - Total SVOC - Total Servi voltatic organic compounda - ePAH Compounds - Carcinogenic Polycyclic Aromatic H; - BaP equivalents - Henzo(a)pyrene equivalents calculated p pb - parts por billion - A Not Applicable DD - Not Detected SC - Not Calculated - No data available - The identification of the analyte us acceptable; the reported: - The data regreted and considered unusable.	ues shown with blue dot pattern. ydrocarbona per EPA Region 4 guidance										

.

	Remedial Goal	MW16I	MW17I	MW18I	MW19I	MW201	MW211	MWPBCI
	(ppb)	4/19/2010	4/19/2010	4/19/2010	4/29/2010	4/19/2010	4/29/2010	2/5/2009
Semi Volatile Organic Compounds								
2-Methylnaphthalene	31	39 J	4.90 J	2.10 J	5 U	5 U.J	5 U	50
Acenaphthene	469	36 J	23 J	5.10 U.J	5 U	5 U.J	5 U	1.4
Carbazole	48	22 J	37 J	5.10 U,J	5 U	5 U.J	5 U	71
Dibenzofuran	31	10 J	46 J	16 J	5 U	5 U.J	5 U	44
Fluorene	313	13 J	9.20 J	2.90 J	5 U	5 U.J	5 U	51
Naphthalene	156	720 J	5 U,J	5.10 U.J	5 U,J	0.92 J	5 U.J	430
Pentachlorophenol	1	13 J	20 J	2200 J	10 U	10 U,J	10 U	.2 J
Phenanthrene	469	3,90 J	27 J	10 J	5 U	5 U.J	5 U	29
Total SVOCs ¹	NA	860	177	2,253	ND	0.92	ND	764
cPAH Compounds ²								
Benzo(a)anthracene		5 U,J	5 U.J	5.10 U,J	5 Ü	5 U,J	5 U	.1 U
Benzo(a)pyrene		5 U,J	5 U,J	5.10 U,J	5 U	5 U,J	5 U	.1 U
Benzo(b)fluoranthene		5 U,J	5 U.J	5.10 U.J	5 U	5 U.J	5 U	.1 U
Benzo(k)fluoranthene	NA	5 U,J	5 U,J	5.10 U.J	5 U	5 U.J	5 U.J	.1 U
Chrysene		5 U,J	5 U,J	5.10 U.J	5U.J	5 U.J	5 U.J	.074 J
Dibenzo(a,h)anthracene		5 U,J	5 U,J	5.10 U.J	5 U	5 U.J	5 U	.1 U
Indeno(1,2,3-cd)pyrene		5 U,J	5 U,J	5.10 U,J	5 U	5 U.J	5 U	.055 J
B(a)P Equivalent ³	0.20	5.8	5.8	5.9	5.8	5.8	5.8	0.12
Volatile Organic Compounds								
Benzene	5	6.40	3.60 J	5 U	5 U	5 U	5 U	5 U
Ethylbenzene	700	1.50 J	6.90	5 U	5 U	5 U	5 U	5 U
Pesticides and PCB Compounds								
Heptachlor epoxide	0.2	NS	NS	NS	NS	NS	NS	.05 U

More:
 Buse Shading indicates an analyte exceeds remedial goal
 B(a)P exceedance due to inclusion of ND values shown with blue dot pattern.
 1 - Total SVOC - Total Semi volatile organic compounds
 2 - cPAH Compounds - Carrinogenic Polycyclic Aromatic Hydrocarbons
 3 - BaP equivalents - Eenzo(a)pyrene equivalents calculated per EPA Region 4 guidance
 ppb - parts per billion
 NA - Not Applicable
 NS - Not Sampled
 NC - Not Calculated
 - No data aroitable

NC - No (claculated --- No data available 3 - The definitication of the analyte is acceptable; the reported value is an estimate. R - The data are rejected and considered unusable. U - The analyte was not detected at or above the reporting limit.

Page 9 of 13

12/11/2006 89 3.6 J 50 78 69 700 59 57 1,243 	5/15/2008 330 5.9 250 280 230.J 3.U 5.U 5.U 5.U 5.U 5.U 5.U 5.U	2/5/2009 250 3.7 130 220 140 1900 130 J 120 3.201 2.8 J 1 U 055 J 056 J	4/14/2010 31 92 90 120 93 360 10 J 54 900 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U	12/11/2006 .1 U .1 U	2/5/2009 .12 .1 U 5 U .16 .6 .6 .62 J .51 8.97 .1 U .1 U .1 U	4/14/2010 5 U 5 U 5 U 5 U 5 U 5 U 10 U 5 U ND 5 U 5 U 5 U 5 U 5 U 5 U 5 U 5 U
3.6 J 50 78 69 700 59 57 1.243 	5.9 280 280 230 J 2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U	3.7 130 220 140 1900 130 J 120 3,201 28 J .1 U .055 J .056 J	92 90 120 93 360 10 54 900 \$ 5 5 5 U 5 U 5 U	.1 U 5 U 5 U .1 U .1 U .1 U 2.11 .1 U .1 U .1 U	.1 U 5 U 5 U .16 .6 .62 J .51 8.97	5 U 5 U 5 U 5 U 5 U 10 U, 5 U ND 5 U 5 U 5 U
3.6 J 50 78 69 700 59 57 1.243 	5.9 280 280 230 J 2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U	3.7 130 220 140 1900 130 J 120 3,201 28 J .1 U .055 J .056 J	92 90 120 93 360 10 54 900 \$ 5 5 5 U 5 U 5 U	.1 U 5 U 5 U .1 U .1 U .1 U 2.11 .1 U .1 U .1 U	.1 U 5 U 5 U .16 .6 .62 J .51 8.97	5 U 5 U 5 U 5 U 5 U 10 U, 5 U ND 5 U 5 U 5 U
50 78 69 700 59 57 1,243 071 J .1 U .1 U .1 U .1 U .1 U .1 U .1 U	250 280 230 J 2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U	130 220 140 1900 130 J 120 3,201 28 J .1 U 055 J 056 J	90 120 93 360 10 J 54 900 5 U 5 U 5 U 5 U	5 U 5 U .1 U .1 U .1 8 R .1 U 2.11 .1 U .1 U .1 U	5 U 5 U .16 .6 .62 J .51 8.97 .1 U .1 U	5 U 5 U 5 U 10 U, 5 U ND 5 U 5 U 5 U
78 69 700 59 57 1.243 	280 230 J 2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U 5 U	220 140 1900 130 J 120 3,201 28 J .1 U .055 J .056 J	120 93 360 10 J 54 900 5 U 5 U 5 U	5 U .1 U .1 U .1 8 R .1 U 2.11 .1 U .1 U	5 U .16 .6 .51 8.97	5 U 5 U 5 U 10 U, 5 U ND
69 700 59 57 1,243 	230 J 2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U	140 1900 130 J 120 3,201 .28 J .1 U .055 J .056 J	93 360 10 J 54 900 5 U 5 U 5 U 5 U	.1 U .1 U .18 R .1 U 2.11 .1 U .1 U	.16 .62 J .51 8.97 .1 U .1 U	5 U 5 U 10 U, 5 U ND 5 U 5 U
700 59 57 1.243 	2300 78 210 J 4,160 5 U 5 U 5 U 5 U 5 U 5 U	1900 130 J 120 3,201 .28 J .1 U .055 J .056 J	360 10 J 54 900 5 U 5 U 5 U 5 U	.1 U .18 R .1 U 2.11 .1 U .1 U	.6 .62 J .51 8.97	5 U 10 U, 5 U ND
59 57 1,243 	78 210 J 4,160 5 U 5 U 5 U 5 U 5 U	130 J 120 3,201 .1 U .055 J .056 J	10 J 54 900 5 U 5 U 5 U 5 U	.18 R .1 U 2.11 .1 U .1 U	.62 J .51 8.97 .1 U .1 U	10 U 5 U ND 5 t 5 t
57 1,243 .071 J .1 U .1 U .1 U .1 U .068 J .1 U	210 J 4,160 5 U 5 U 5 U 5 U 5 U	120 3,201 .28 J .1 U .055 J .056 J	54 900 5 U 5 U 5 U	.1 U 2.11 .1 U .1 U	.51 8.97 .1 U .1 U	5 U ND 5 U 5 U
1,243 .071 J .1 U .1 U .1 U .068 J .1 U	4,160 5 U 5 U 5 U 5 U 5 U	3,201 .28 J .1 U .055 J .056 J	900 5 U 5 U 5 U	2.11 .1 U .1 U	8.97 .1 U .1 U	ND 5 U 5 U
	5 U 5 U 5 U 5 U 5 U	28 J 1 U 055 J 056 J	5 U 5 U 5 U	.I U .I U	.1 U .1 U	5 t 5 t
.1 U .1 U .1 U .068 J .1 U	5 U 5 U 5 U 5 U	.1 U .055 J .056 J	5 U 5 U	.I U	.1 U	5 U
.1 U .1 U .1 U .068 J .1 U	5 U 5 U 5 U 5 U	.1 U .055 J .056 J	5 U 5 U	.I U	.1 U	5 U
.IU .IU .068 J .IU	5 U 5 U 5 U	.055 J .056 J	5 U			
.1 U .068 J .1 U	5 U 5 U	.056 J		.1 U		
.068 J .1 U	5 U		5 II		.1 U	5 L
.I U			5 0	.1 U	.1 U	5 U
	5 U	.36 J	5 U	.1 U	.055 J	5 U
1.12		.I U	5 U	.1 U	.1 U	5 L
.10	5 U	.057 J	5 U	.1 U	.1 U	5 1
0.14	5.8	0.35	5.8	0.12	0.12	5.8
NS	NS	5 U	5 U	NS	5 U	5 U
NS	NS	4.8 J	2.60 J	NS	5 U	5 U
NS	NS	.05 U	NS	NS	.05 U	NS

Page 10 of 13

	Remedial Goal		PM	WO1I				SMW01I		
	(ppb)	12/8/2006	2/9/2009	2/9/2009	4/14/2010	3/2/2003	3/2/2003	12/12/2006	2/4/2009	4/12/2010
Semi Volatile Organic Compounds										
2-Methylnaphthalene	31	.83 J	.15	.088 J	5 U	10 UJ	10 UJ	7.8	.14	5 U,J
Acenaphthene	469	.73 J	.1 U	.077 J	5 U	2 J	1 J	1.6 J	.1 U	31 J
Carbazole	48	2.4 J	1.6 J	5 U	5 U	10 U J	10 UJ	20	28	19
Dibenzofuran	31	6.1	5 U	5 U	5 U	1 J	2 J	59	15	22
Fluorene	313	.78 J	.54	.76	5 U	2 J	2 J	51	52	50
Naphthalene	156	6.4	1.1	.57	5 U	10 UJ	10 UJ	130	1	5 U,J
Pentachlorophenol	1	3500	38 J	26 J	64 J	75 J	65 J	29	37 J	9 J
Phenanthrene	469	15	.12	.27	5 U	10 UJ	10 UJ	66	50	41
Total SVOCs ¹	NA	3645	45.2	31.5	69	144	123	438.8	255.1	166
cPAH Compounds ²										
Benzo(a)anthracene	1	.1 U	.1 U	.1 U	5 U	10 UJ	10 UJ	.25	.082 J	5 U.
Benzo(a)pyrene	1	.I UJ	.1 U	.1U	5 U	10 UJ	10 UJ	.057 J	.1 U	5 U
Benzo(b)fluoranthene	1	.1 UJ	.1 UJ	.1 UJ	5 U	10 UJ	10 UJ	.13	.I U	5 U
Benzo(k)fluoranthene	NA	.1 UJ	.1 U	.I U	5 U	10 UJ	10 UJ	.13	.1 U	5 L
Chrysene	1	.1 U	.1 U	.1 U	5 U	10 UJ	10 UJ	.2	.099 J	5 U.
Dibenzo(a,h)anthracene	1	.1 UJ	.1 UJ	.1 UJ	5 U	10 UJ	10 UJ	.1 U	.1 U	5 L
Indeno(1,2,3-cd)pyrene	1	.1 UJ	.1 U	.1 U	5 U	10 UJ	10 UJ	.1 U	.1 U	5 L
B(a)P Equivalent ³	0.20	0.12	0.12	0.12	5.8	11.6	11.6	0.33	0.15	5.8
Volatile Organic Compounds			1.2							
Benzene	5	NS	5 U	5 U	5 U	NS	NS	NS	5 U	5 U
Ethylbenzene	700	NŚ	5 U	5 U	5 U	NS	NS	NS	5 U	5 U
Pesticides and PCB Compounds										
Heptachlor epoxide	0.2	NS	.05 U	.05 U	NS	NS	NS	NS	.05 U	NS
Vote: Blue Shading indicates an analyte exceeds Blue Shading indicates an analyte exceeds Blue Shading indicates an analyte exceeds 1 - Total SVCC - Total Semi volatile organic compounds 2 - aPAH Compounds - Carcinogenic Polycyclic Aromatic 3 - BaP equivalents - Benzo(apyrene equivalents calculated php - parts per billion NA - Not Applicable NS - Not Sampled NC - Not Calculated 3 - Not damarible in The identification of the analyte is acceptable; the report R - The data are rejected and considered unsuable. 3 - The identification of the analyte is acceptable; the report R - The data are not detected at or above the reporturp.	alues shown with blue dot pattern. Hydrocarbons I per EPA Region 4 guidance ed value is an estimate.									

Page 11 of 13

	Remedial Goal		SMW02I		SM	W03I		TM	V01I	
	(ppb)	12/6/2006	2/10/2009	4/12/2010	2/10/2009	4/12/2010	3/4/2003	12/18/2006	2/7/2009	4/12/2010
Semi Volatile Organic Compounds										1997 (A. 1997)
2-Methylnaphthalene	31	.1 U	200	5 U.J	1.1	5 U	10 U	.1 U	.13	5 U
Acenaphthene	469	.I U	.87	20 J	.11	5 U	10 U	.1 U	.1 U	5 U
Carbazole	48	5 U	9.6	4.10 J	5 U	5 U	10 U	5 U	5 U	5 U
Dibenzofuran	31	5 U	78	16	5 U	5 U	10 U	5 U	5 U	5 U
Fluorene	313	.1 U	59	26	.96	5 U	10 U	.1 U	.085 J	5 U
Naphthalene	156	.1 U	2300	5 U,J	6.8	5 U	1 J	.1 U	.77	5 U
Pentachlorophenol	1	.2 U	2.5 J	10 U,J	.92 J	10 U,J	4J	.2 UR	.2 U	10 U,J
Phenanthrene	469	.10	53	23	2.9 J	5 U	10 U	.1 U	.3	5 U
Total SVOCs ¹	NA		2825	104	15.7	11	8	ND	1.47	ND
cPAH Compounds ²			A	20						
Benzo(a)anthracene		.1 U	.1 J	5 U	.22 J	5 U	10 U	.1 U	.ī U	5 U
Benzo(a)pyrene		.1 U	.1 U	5 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
Benzo(b)fluoranthene		.1 U	.1 U	5 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
Benzo(k)fluoranthene	NA	.1 U	.1 U	5 U	.1 U	5 U	10 U	.1 U	.1 U	5 U
Chrysene		.1 U	.14	5 U	.21 J	5 U	10 U	.1 U	.1 U	5 U
Dibenzo(a,h)anthracene		.1 U	.1 U	5 U	.1 U	5 U	10 U	.10	.1 U	5 U
Indeno(1,2,3-cd)pyrene		.1 UJ	.1U	5 U	.1 U	5 U	10 U	.1 U	.I U	5 U
B(a)P Equivalent ³	0.20	0.12	0.12	5.8	0.29	5.8	11.6	0.12	0.12	5.8
Volatile Organic Compounds										
Benzene	5	NS	5 U	3.40 J	4.1 J	5 U	NS	NS	5 U	5 U
Ethylbenzene	700	NS	5 U	5 U	5 Ü	5 U	NS	NS	5 U	5 U
Pesticides and PCB Compounds										
Heptachlor epoxide	0.2	NS	.05 U	NS	.05 U	NS	NS	NS	.05 U	NS

Note:
 Section of the structure of the structure

Page 12 of 13

	Remedial Goal		TM	W021		
	(ppb)	12/9/2006	5/13/2008	2/8/2009	4/12/	2010
Semi Volatile Organic Compounds	·····					
2-Methylnaphthalene	31	.10	.043 J	.1 U	5	U
Acenaphthene	469	.1 U	.1 U	.1 U	5	U
Carbazole	48	5 U	5 U	5 U	5	U
Dibenzofuran	31	5 U	5 U	5 U	5	U
Fluorene	313	.1 U	.1 U	.1 U	5	U
Naphthalene	156	.1 U	.45	.15	5	U
Pentachlorophenol	1	.2 UR	.12 J	.2 U	66	J
Phenanthrene	469	.1 U	.1 U	.1 U	5	U
Total SVOCs ¹	NA	ND	0.61	.15	7	1
cPAH Compounds ²						
Benzo(a)anthracene		1 U	.1 U	.1 U	5	U
Benzo(a)pyrene		.1 U	.1 U	.1 U	5	U
Benzo(b)fluoranthenc		.1 U	.1 U	.1 U	5	U
Benzo(k)fluoranthene	NA	.1 U	.1 U	.1 U	5	Ų
Chrysene		.1 U	.1 U	.1 U	5	U
Dibenzo(a,h)anthracene		.1 U	.1 U	.1 U	5	U
Indeno(1.2,3-cd)pyrene		.10	.1 U	.I U	5	U
B(a)P Equivalent	0.20	0.12	0.12	0.12	5.	8
Volatile Organic Compounds					2028 A.	
Benzene	5	NS	NS	5 U	5	U
Ethylbenzene	700	NS	NS	5 U	5	U
Pesticides and PCB Compounds						
Heptachlor epoxide	0.2	NS	NS	.05 U	N	S

 Note:
 Blue Shading indicates an analyte exceeds remedial goal

 B(a)P exceedance due to inclinition of ND values shown with blue dot pattern.

 1 - Total SVCC - Total Semu volatile organic compounds

 2 - ePAH Compounds - Carernogene Polycyclic Aromatic Hydrocarbons

 3 - Bate equivalents - Benzo(a pyrene equivalents calculated per EPA Region 4 guidance embanetics and the set of the

3 - Ba? equivalents - Benzo(apyrene equivalents calculated per EPA Region 4 guid prb - parts per billion NA - NA Applicibile ND - Not Detected NS - Not Sampled NC - Not Calculated -- No data available J - The identification of the analyte is acceptable; the reported value is an estimate. R - The data are research and considered unmable.

R . The data are rejected and considered unusable. U . The analyte was not detected at or above the reporting limit.

Page 13 of 13

	Remedial Goal			CMW01S			1S		
	(ppb)		4/21/1998	2/10/2009	4/11/2010	4/21/1998	2/7/2009	2/7/2009	4/7/2010
107		RSL Tapwater ³	GW407C1S_042198	CMW01S_021009		GW402W1S_042198	MW015_020709	MW901S_020709	
Total Metal Compounds									
Arsenic	10	0.045	6 U	10 U	3.80	4 U	12	6.7 J	0.42 J
Manganese	300	88	390	380	410	110	120	94	120

Notes

Blue Shading indicates an analyte exceeds remedial goal

ppb - parts per billion J - The identification of the analyte is acceptable; the reported value is an estimate U - The analyte was not detected at or above the reporting limit.

Page 1 of 5

	Remedial Goal			MW02S			MW03S	
	(ppb)		4/21/1998	2/7/2009	4/7/2010	4/21/1998	2/10/2009	4/11/2010
		RSL Tapwater ³	GW404W2S_042198	MW02S_020709		GW403W3S_042198	MW03S_021009	
Total Metal Compounds		Texas Constitution and the						
Arsenic	10	0.045	6 J	10 U	2.10	6 U	10 U	1.70
Manganese	300	88	80	83	100	280	270	220

Notes: Blue Shading indicates an analyte exceeds remedial goal

by b - parts problim pb - parts possibilition
J - The identification of the analyte is acceptable; the reported value is an estimate.
U - The analyte was not detected at or above the reporting limit.

Page 2 of 5

	Remedial Goal			MW04S		MW05S		MW06S	
	(ppb)		4/22/1998	2/9/2009	4/8/2010	4/22/1998	4/22/1998	2/9/2009	4/8/2010
		RSL Tapwater ³	GW418W4S_042298	MW04S_020909		GW413W5S_042298	GW410W6S_042298	MW06S_020909	
Total Metal Compounds	N manager a								
Arsenic	10	0.045	4 U	10 U	1.30	4 U	8 U	10 U	3.40
Manganese	300	88	23	18	52	1300	3800	1300	1300

Notes:

Blue Shading indicates an analyte exceeds remedial goal

ppb - parts per billion J - The identification of the analyte is acceptable, the reported value is an estimate U - The analyte was not detected at or above the reporting limit.

Page 3 of 5

	Remedial Goal		2	MW08S	_	MW11S	MW12S	MW13S	MW14S
	(ppb)		4/21/1998	2/8/2009	4/9/2010	4/19/2010	4/19/2010	4/19/2010	4/28/2010
		RSL Tapwater ³	GW408W8S_042198	MW08S_020809					
Total Metal Compounds	S. C. Barry S. State State								
Arsenic	10	0.045	4 U	13	0.87 J	0.87 J	1 U	0.46 J	0.17 J
Manganese	300	88	210	360	2000	160	13 J	360	76 J

Notes: Blue Shading indicates an analyte exceeds remedial goal

physical section (and the section of the secti

Page 4 of 5

	Remedial Goal (ppb)	RSL Tapwater ³	MW22S 4/29/2010	MWPBCI 2/5/2009 MWPBCI_020509	SMW 2/4/2009 SMWS01_020409	01S 4/12/2	010
Total Metal Compounds	10. carr-						
Arsenic	10	0.045	2.60	12	13	1	U
Manganese	300	88	240 J	210	4.6 J	2.60	U,J

Notes: Blue Shading indicates an analyte exceeds remedial goal

pb - parts per billion J - The identification of the analyte is acceptable, the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 5 of 5

	Remedial Goal	AFM	W01I	AFMW03I	AFMW02I		CMW01I		
	(ddd)	2/7/2009	2/7/2009	2/8/2009	2/8/2009	4/22/1998	2/10/2009	4/11/2	2010
Total Metal Compounds									
Arsenic	10	8.6 J	7.5 J	10 U	10 U	4 U	10 U	1	U
Manganese	300	2.6 J	2.2 J	31	4.8 J	4 U	65	79	
Nickel	313	3.1 J	2.4 J	14 J	1.9 J	NA	40 U	40	U

Notes: Blue Shading indicates an analyte exceeds remedial goal

Jue Snasing indicates an analyte exceeds remedial goal
 NA - Not analyzed
 pob- parts per billion
 J - The identification of the analyte is acceptable; the reported value is an estimate.
 U - The analyte was not detected at or above the reporting limit.

Page 1 of 9

	Remedial Goal	F1	5MWI	LMWI-1	MASMW01I	MASMW02I	MW01A		MW011	-
	(ppb)	2/6/2009	4/14/2010	4/12/2010	2/9/2009	2/9/2009	4/22/1998	4/21/1998	2/6/2009	4/9/2010
Total Metal Compounds										
Arsenic	10	5.3 J	0.22 J	1 U	10 U	10 U	12 J	6 U	10 U	0.59 J
Manganese	300	43	170	100	2.8 J	4.6 J	870	4 U	15 U	15 U
Nickel	313	1.6 J	2.60 U,J	3.50 U,J	2.6 J	19 J	NA	NA	1.1 J	40 U

Notes: Blue Shading indicates an analyte exceeds remedial goal

Bue Shading indicates an analyte exceeds remedial goal NA - Not analyzed ppb - parts per billion J - The identification of the analyte is acceptable; the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 2 of 9

D-41

2

	Remedial Goal		MW02			MW021			MW03A	
	(ppb)	4/22/1998	2/11/2009	4/13/2010	4/22/1998	2/5/2009	4/7/2010	4/22/1998	2/11/2009	4/14/2010
Total Metal Compounds										
Arsenic	10	4 U	10 U	1 U	4 U	4.5 J	3	4 J	10 U	3.50
Manganese	300	110	62	11 J	110	110	230	65	16	10 J
Nickel	313	NA	40 U	40 U	NA	4.3 J	3.20 U,J	NA	40 U	40 U

Blue Shading indicates an analyte exceeds remedial goal

Notes: Blue NA - Not analyzed

Dr. parks per billion
 J - The identification of the analyte is acceptable; the reported value is an estimate.
 U - The analyte was not detected at or above the reporting limit.

Page 3 of 9

	Remedial Goal	MW03B			MW03I		MW04A			
	(ppb)	2/6/2009	4/14/2010	4/22/1998	2/10/2009	4/11/2010	4/21/1998	2/7/2009	4/15/2010	
Total Metal Compounds										
Arsenic	10	10	20	4 U	10 U	4.70	12	23	15	
Manganese	300	230	280	80	140	170	290	410	490	
Nickel	313	40 U	40 U	NA	40 U	40 U		.96 J	0.61 U,J	

Notes: Blue Shading indicates an analyte exceeds remedial goal NA - Not analyzed ppb - parts per billion J - The identification of the analyte is acceptable, the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 4 of 9

	Remedial Goal		MVV051			MV	V06I		
	(ppb)	4/22/1998	2/11/2009	4/11/2010	4/22/1998	2/11/2009	2/11/2009	4/13/2	2010
Total Metal Compounds								-	
Arsenic	10	5 U	6 J	0.37 J	4 U	2.2 J	5.9 J	1	U
Manganese	300	100	140	150	3 U	1.6 J	1.4 J	0.43	U,J
Nickel	313	NA	40 U	40 U	NA	40 U	1.5 J	40	U

Notes: Blue Shading indicates an analyte exceeds remedial goal NA - Not analyzed

The identification of the analyte is acceptable; the reported value is an estimate.
 U - The analyte was not detected at or above the reporting limit.

Page 5 of 9

 Table 1-9b

 Intermediate Ground Water Sample Results: Inorganic Contaminants of Concern Summary

 Camilla Wood Preserving Site

 Camilla, Mitchell County, Georgia

	Remedial Goal		MVV071		M	W09I	MV	V10I	MW11I	MW15I
	(ppb)	4/22/1998	2/11/2009	4/12/2010	2/11/2009	4/13/2010	2/9/2009	4/13/2010	4/19/2010	4/19/2010
Total Metal Compounds										
Arsenic	10	6 J	3.5 J	3.70	6.2 J	0.15 J	10 U	2.50	0.72 J	0.62 J
Manganese	300	74	150	150	33	140	1500	1100	190	17
Nickel	313	NA	2 J	0.92 U,J	2.1 J	1.50 U,J	40 U	40 U	7.20 J	6.30 J
Notes										

Blue Shading indicates an analyte exceeds remedial goal

NA - Not analyzed

ppb - parts per billion J - The identification of the analyte is acceptable; the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 6 of 9

	Remedial Goal	MW16I	MW17I	MW181	MW19I	MW201	MW211	MWPBCI	MV	PBEI
	(ppb)	4/19/2010	4/19/2010	4/19/2010	4/29/2010	4/19/2010	4/29/2010	2/5/2009	2/5/2009	4/14/2010
Total Metal Compounds	•							A 100 1000		
Arsenic	10	8	2.30	0.53 J	0.53 J	0.67 J	1	12	10 U	0.81 J
Manganese	300	88	89	65	42 J	40	39 J	210	2700	6100
Nickel	313	14 J	8.40 J	4.30 J	2.10 J	5.90 J	4.70 J	120	1.3 J	40 U

Notes: Blue NA - Not analyzed Blue Shading indicates an analyte exceeds remedial goal

ppb - parts per hillion J - The identification of the analyte is acceptable, the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 7 of 9

Table 1-9b Intermediate Ground Water Sample Results: Inorganic Contaminants of Concern Summary Camilla Wood Preserving Site Camilla, Mitchell County, Georgia

	Remedial Goal	MW	PBWI		PMW01I		SM	WI01	SM	W02I
	(ppb)	2/5/2009	4/14/2010	2/9/2009	2/9/2009	4/14/2010	2/4/2009	4/12/2010	2/10/2009	4/12/2010
Total Metal Compounds								N 8		
Arsenic	10	10 U	1.60	10 U	4.7 J	0.59 J	10 U	0.99 J	10 U	4.70
Manganese	300	100	110	310	320	280	300	500	61	520
Nickel	313	2.1 J	40 U	20 J	21 J	39 J	29 J	1.70 U,J	360	9.20 J

Blue Shading indicates an analyte exceeds remedial goal NA - Not analyzed

ppb - parts per billion J - The identification of the analyte is acceptable, the reported value is an estimate. U - The analyte was not detected at or above the reporting limit.

Page 8 of 9

D-47

Table 1-9b Intermediate Ground Water Sample Results: Inorganic Contaminants of Concern Summary Camilla Wood Preserving Site Camilla, Mitchell County, Georgia

	Remedial Goal	SM	W03I	TN	W011	тм	W021
	(ppb)	2/10/2009	4/12/2010	2/7/2009	4/12/2010	2/8/2009	4/12/2010
Total Metal Compounds							
Arsenic	10	10 U	0.22 J	4.6 J	0.22 J	10 U	0.11 J
Manganese	300	570	46	4.2 J	1.20 U,J	1.6 J	15 U
Nickel	313	40 U	340	2.8 J	40 U	40 U	1 U,J

Notes: Blue Shading indicates an analyte exceeds remedial goal NA - Not analyzed

The identification of the analyte is acceptable; the reported value is an estimate.
 U - The analyte was not detected at or above the reporting limit.

Page 9 of 9

D-48

nallow Groundwater Sample Results 2015 Camilla Wood Preserving Company Camilla, Mitchell, GA

-			Sample Location	CMW015	MW015	MW025	MW035	MW045	MW045	MW065	MW085	MW115	MW125
			Sample Date	11/17/2015	11/13/2015	11/14/2015	11/18/2015	31/16/2015	11/16/2015	11/16/2015	11/17/2015	11/18/2015	11/14/2015
			Sample Identification No.	CMW015	MW015	MW02S	MWQ35	MW045	MW9045	MW065	MW08S	MW11S	MW125
Analysis	Analyte	Units	Camilla REMEDIAL GOALS-GW	Result Qualifier									
ierbicides	Pentachlorophenol	ug/L		NA									
iemi Volatile Organics	2.4-Dimethylphenol	ug/L	313	5.0 U	5.0 U	5.0 U	5.0 U,J,O	5.0 U	5.0 U	5.0 U	7.5	5.0 U,J,O	5.0 U
emi Volatile Organics	2-Methylnaphthalene	ug/L	31	19	NA	NA	NA	5.0 U	5.0 U	1.3 J,O	NA	55	74
emi Volatile Organics	Benzo(a)anthracene	ug/L		4.21,0	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
emi Volatile Organics	Benzo(a)pyrene	ug/L		1.61.0	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
emi Volatile Organics	Benzo(b)fluoranthene	UE/L	1	3.2 1,0	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L	1	1.5 1,0	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
emi Volatile Organics	Chrysene	Ug/L		4.7 1,0	NA	NA	NA	5.0 U	5.0 U	5,0 U	NA	5.0 U	5.0 U
iemi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		5.0 U	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
emi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		5.0 U	NA	NA	NA	5.0 U	5.0 U	5.0 U	NA	5.0 U	5.0 U
	BaP Equivalent	ug/L	0.2	Detected	NA	NA	NA	ND	ND	ND	NA	ND	ND
emi Volatile Organics	Carbazole	UR/L	48	57	10 U	10 U	13	10 U	10 U	6.5 1,0	19	38	15
emi Volatile Organics	Dibenzofuran	ug/L	31	40	5.0 U	5.0 U	20	5.0 U	5.0 U	38	6.4	29	31
emi Volatile Organics	Naphthalene	ug/L	156	330	NA	NA	200	5,0 U	5.0 U	12	45	170	130 J,O
emi Volatile Organics	Pentachlorophenol	ug/L	1	10 0	NA	100	10 U	10 0	10 U	10 U	18	171,0	5700
emi Volatile Organics	Phenanthrene	UR/L	469	45	NA	NA	11	5.0 U	5.0 U	69	NA	49	40
Jerni Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA	0.10 U	0.10 U	1.4	NA	NA	NA	0.66	NA	NA
emi Volatile Organics SIM	Benzolalanthracene	ug/L		NA	0.10 U	0.10 U	0.14	NA	NA	NA	0.37	NA	NA
iemi Volatile Organics SIM	Benzo(a)pyrene	ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	0.33	NA	NA
iemi Volatile Organics SIM	Benzo(b)fluoranthene	ug/L		NA	U01.0	0.10 U	0.10 U	NA	NA	NA.	D.10 U	NA	NA
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA	0,LU 01.0	0.10 U,J,O	0.10 U,J,O	NA	NA	NA	0.10 U,J,O	NA	NA
iemi Volatile Organics SIM	Chrysene	ug/L		NA	0.10 U	0.10 U	0,093 J,O	NA	NA	NA	0.35	NA	NA
iemi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA.	0.10 U	NA	NA
emi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	0.31	NA	NA
	BaP Equivalent	ug/L	0.2	NA	ND	ND	NC	NA	NA	NA	Detected	NA	NA
emi Volatile Organics SIM	Naphthalene	ug/L	156	NA	0.10 U	0.10 U	NA						
emi Volatile Organics SIM	Pentachlorophenol	ug/L	1	NA	0.20 U	NA							
emi Volatile Organics SIM	Phenanthrene	ug/L	469	NA	0.10 U	0.10 U	NA	NA	NA	NA	1.1 J,O	NA	NA
otal Metals	Arsenic	mg/L	0.01	NA									
otal Metals	Arsenic	ug/L	10	NA									
Total Metals	Manganese	mg/L	Contraction in 0.3 feedball and	NA									
Total Metals	Manganese	ug/L	300	NA									

 Manage schemer as wahre serverin remaint gamt
 manage schemer as wahre serverin remaint gamt
 manage schemer as schemer as chaining führ Stagners
 mal, wahren server
 mail, wahren s tions have not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

1 of 2 D-49

DRAFT

hallow Groundwater Sample Results 2015 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MWI	35	MW	145	MW	225	SMI	W015
			Sample Date	11/17/	2015	11/13	/2015	11/17	/2015	11/11	/2015
			Sample Identification No.	MW	135	MW	145	MW	225	SMI	N015
Analysis	Analyte	Units	Camilia REMEDIAL GOALS-GW	Result	Qualifier	Result	Qualifier	Result	Qualifier	Result	Qualifier
Herbicides	Pentachlorophenol	ug/L	1	NA		NA		NA		NA	
Semi Volatile Organics	2,4-Dimethylphenol	ug/L	313	5.0 6	1	NA		5.0	U	5.0	U
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	83 1	,0	1.3	1,0	380	1,0	NA	
Semi Volatile Organics	Benzo(a)anthracene	ug/L		3.5 J		NA		1.3	J,O	NA	
Semi Volatile Organics	Benzo(a)pyrene	ug/L		5.0 1	J	NA		5.0	U	NA	
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		2.2 1	,0	NA		5.0	U	NA	
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		1.1 J	,0	NA		5.0	U	NA	
Semi Volatile Organics	Chrysene	ug/L		3.7 J	,0	NA		1.0	J,O	NA	
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		5.0 L	J	NA		5.0		NA	
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		5.0 L	J	NA		5.0	U	NA	
	BaP Equivalent	ug/L	0.2	Detected		NA		Detected		NA	
Semi Volatile Organics	Carbazole	ug/L	48	46		NA		500	J,O	10	U
Semi Volatile Organics	Dibenzofuran	ug/L	31	83 1	,0	NA		170	1,0	5.0	U
Semi Volatile Organics	Naphthalene	ug/L	156	410 1	,0	22	1,0	7200	(Internet)	NA	
Semi Volatile Organics	Pentachiorophenol	ug/L	Sector Construction (1990) and the sector of the	3800	distant of a	2200	3,0	47	1,0	NA	
Semi Volatile Organics	Phenanthrene	ug/L	469	160 /	,0	1.1	J,O	120	1,0	NA	
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA		NA		NA		0.10	U
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		NA		NA		NA		0.10	υ
Semi Volatile Organics SIM	Benzo(a)pyrene	ug/L		NA		NA		NA		0.10	U
Semi Volatile Organics SIM	Benzo(b)fluoranthene	ug/L		NA		NA		NA		0.10	
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA		NA		NA		0.10	U,J,O
Semi Volatile Organics SIM	Chrysene	ug/L		NA		NA		NA		0.10	υ
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA		NA		NA		0.10	U
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA		NA		NA		0.10	υ
	BaP Equivalent	ug/L	0.2	NA		NA		NA		ND	-
Semi Volatile Organics SIM	Naphthalene	ug/L	156	NA		NA		NA		0.10	U
Semi Volatile Organics SIM	Pentachlorophenol	ug/L	1	NA		NA		NA		0.20	U
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA		NA		NA		0.10	U
Total Metals	Arsenic	mg/L	0.01	NA		NA		NA		NA	
Total Metals	Arsenic	ug/L	10	NA		NA		NA		NA	
Total Metals	Manganese	mg/L	0.3	NA		NA		NA		NA	
Total Metals	Manganese	ug/L	300	NA	-	NA		NA		NA	

DRAFT

 State
 Before reductions on multiple or results input if the second an have not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

,

ediate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitcheli, GA

			Sample Location	AFMW01I	AFMW01I	AFMW01I	AFMW011	AFMW01I	AFMW01I	AFMW01	AFMW011	AFMIW021	AFMW0ZI
			Sample Date	8/10/2014	1/14/2015	1/14/2015	4/14/2015	4/14/2015	7/22/2015	11/11/2015	2/20/2016	8/10/2014	1/13/2015
		Se	ample Identification No.	AFMW01I	AFMW-01	AFMW-9011	AFMW-01	AFMW-901	AFMW01	AFMW01I	AFMW011	AFMW021	AFMW-021
			Camilia REMEDIAL										
Analysis Ana	alyte	Units	GOALS-GW	Result Qualifier									
Herbicides Pen	ntachlorophenol	ug/L	State of the Local Street of the	NA	10	10	10	20	NA	NA	NA	NA	10
Semi Voiatile Organics 2-M	Methylnaphthalene	ug/L	31	10 U	NA	NA	NA	NA	NA	NA	S U	10 U	NA
Semi Volatile Organics Ace	enaphthene	ug/L	469	10 U	NA	NA	NA	NA	NA	NA	5 U	10 U	NA
Semi Volatile Organics Ben	nzo(a)anthracene	ug/L		10 U	NA	NA	NA	NA	NA	NA	5 U	10 U	
Semi Volatile Organics Ben	nzo(a)pyrene	ug/L		10 U	NA	NA	NA	NA	NA	NA	50	10 U	NA
Semi Voiatile Organics Ben	nzo(b)fluoranthene	ug/L		10 U	NA	NA	NA	NA	NA	NA	5 U	10 U	NA
Semi Volatile Organics Ben	nzo(k)fluoranthene	ug/t		10 U	NA	NA	NA	NA	NA	NA	รบ	10 U	NA
Semi Volatile Organics Chr	rysene	ug/L		10 U	NA	NA	NA	NA	NA	NA	5 U	10 U	NA
Semi Volatile Organics Dibi	benzo(a,h)anthracene	ug/L		10 U	NA	NA	NA	NA	NA	NA	รบ	10 U	
Semi Volatile Organics Inde	teno (1,2,3-cd) pyrene	ug/L		10 U	NA	NA	NA	NA	NA	NA	SU	10 U	NA
BaP	P Equivalent	ug/L	0.2	ND	NA	NA	NA	NA	NA	NA	ND	ND	NA
Semi Volatile Organics Carl	rbazole	ug/L	48	10 U									
Semi Volatile Organics Dib	benzofuran	ug/L	31	10 U	5.0 U	5.0 U	5 U	10 U	10 U				
Semi Volatile Organics Fluc	prene	ug/L	313	10 U	NA	NA	NA	NA	NA	NA	5 U	10 U	NA
	phthalene	ug/L	156	10 U	NA	NA	NA	NA	NA	NA	0.84 J	10 U	NA
Semi Volatile Organics Pen	ntachlorophenol	ug/L	Statistics Statistics	25 U	NA	NA	NA	NA	NA	NA	1010	25 U	NA
Semi Volatile Organics Phe	enanthrene	ug/L	469	10 U	NA	NA	NA	NA	NA	NA	50	10 U	NA
Semi Volatile Organics SIM 2-M	Methylnaphthalene	ug/L	31	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.10 U	0.10 U	0.11	NA	0.5 U
Semi Volatile Organics SIM Ace	enaphthene	ug/L	469	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.16	0.10 U	0.011 J	NA	0.5 U
Semi Volatile Organics SIM Ben	nzo(a)anthracene	ug/L		NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U
Semi Volatile Organics SIM Ben	nzo(a)pyrene	ug/L		NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U
Semi Volatile Organics SIM Ben	nzo(b)fluoranthene	ug/L		NA	0.1 U	0.1 U	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U
Semi Volatile Organics SIM Ben	nzo(k)fluoranthene	ug/L		NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U,J,O	0.1 U	NA	0.05 U
Semi Volatile Organics SIM Chr		ug/L		NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U
Semi Volatile Organics SIM Dib	benzo(a,h)anthracene	ug/L		NA	0.1 U	0.1 U	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1
Semi Volatile Organics SIM Ind		ug/t		NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.11
BaF	P Equivalent	ug/L	0.2		ND	NA	Detected						
Semi Volatile Organics SIM Flue	Iprene	ug/L	313	NA	0.1 U	0.1 U	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U
Semi Volatile Organics SIM Nap	phthalene	ug/L	156	NA	0.5 U	0.5 U	0.5 U	0.5 U	0.026 J,O	0.19 J,O	0.72	NA	0.5 U
Semi Volatile Organics SIM Pen	ntachlorophenol	ug/L	1	NA	NA	NA	NA	NA	0.11 J,O	0.20 U	0.17 J	NA	NA
Semi Volatile Organics SIM Phe	enanthrene	ug/L	469	NA	0.05 U	0.05 U	0.05 U	0.05 U	0.10 U	0.10	0.1 U	NA	0.05 U
	senic	mg/L	0.01	NA									
	senic	ug/L	10	NA									
	anganese	mg/L	0.3	NA									
	anganese	ug/L	300	NA									
	ckel	mg/L	0.313	NA									
	ckel	USE/L	313	NA									

Eluding todostes an walyte econtsi renabili pol. Eluding solicates a PAI used is calculating Ela²¹ apdrolata atrobat - Bancolypyrme espiralata calculated per EPA Region 4 gastance sciengens per lote

Delayted, PAHs used in calculating Dal² equivalents were not detected PAHs used in calculating Dal² equivalents were detected, but calculated or softleation of the moders is a sceparabilit; the respectively value is an estimate, abjes was not detected at or above the reporting limit. we not been reported yet

DRAFT

1 of 23 D-51

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

-

ediate Groundwater Sample Results 2014-2016 Camilia Wood Preserving Company Camilia, Mitchell, GA

			Sample Location	AFMW021	AFMW02I	AFMW02I	AFMW02I	AFMW03I	AFMW03I	AFMW03I	AFMW03I	AFMWOBI	AFMW03I
			Sample Date	4/14/2015	7/23/2015	11/11/2015	2/18/2016	8/9/2014	1/14/2015	4/14/2015	7/22/2015	11/13/2015	2/18/2016
		5	mple Identification No.	AFMW-021	AFMW021	AFMW021	AFMW02I	AFMW03I	AFMW-03I	AFMW-03I	AFMW031	AFMW03I	AFMW03I
Analysis	Analyte	Units	Camilia REMEDIAL GOALS-GW	Result Qualifier									
Herbicides	Pentachiorophenol	ug/L	And an owner of the owner of the	1U Della	NA	NA	NA	NA	1.6	10	NA	NA	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	81	NA	NA	NA	5 U	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Acenaphthene	Ug/L	469	NA	NA	NA	su	10 U	NA	NA	NA	NA	SU
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	NA	NA	5 U	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	NA	NA	5 U	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	NA	NA	5 U	100	NA	NA	NA	NA	5 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	NA	NA	5 U	10 U	NA	NA.	NA	NA	5 U
Semi Volatile Organics	Chrysene	ug/L		NA	NA	NA	5 U	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	NA	NA	50	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	UR/L		NA	NA	NA	S U	10 U	NA	NA	NA	NA	50
	BaP Equivalent	UR/L	0.2	NA	NA	NA	ND	ND	NA	NA	NA	NA	ND
Semi Volatile Organics	Carbazole	ug/L	48	10 U									
Semi Volatile Organics	Dibenzofuran	UR/L	31	10 U	5.0 U	5.0 U	SU	10 U	10 U	10 U	5.0 U	5.0 U	SU
Semi Volatile Organics	Fluorene	ug/L	313	NA	NA	NA	SU	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Naphthalene	ug/L	156	NA	NA	NA	SU	10 U	NA	NA	NA	NA	5 U
Semi Volatile Organics	Pentachlorophenol	UE/L	ALTER ALTER ADDRESS	NA	NA	NA	10 U	25 U	NA	NA	NA	10 U	10 1
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	NA	NA	SU	10 U	NA	NA	NA	NA	S U
Semi Volatile Organics SIN	2-Methvinaphthalene	UR/L	31	0.5 U	0.10 U	0.10 U	0.10	NA	0.5 U	0.5 U	0,039 1,0	0.10 U	0.1 U
Semi Volatile Organics SIN	Acenaphthene	ug/L	469	0.5 U	0.10 U	0.10 U	0.1U	NA	0.5 U	0.5 U	0.10 U	0.10 0,0	0.1 U
Semi Volatile Organics SIN	Benzo(a)anthracene	UE/L		0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U.J.O	0.1 U
Semi Volatile Organics SIN	Benzo(a)pyrene	ug/L		0.05 U	0.10 U	0.10 U	0.10	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U
Semi Volatile Organics SIN	Benzo(b)fluoranthene	ug/L		0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U
Semi Volatile Organics SIN	Benzo(k)fluoranthene	ug/L		0.05 U	0.10 U	0.10 U.J.O	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U,J,O	0.1 U
Semi Volatile Organics SIN	Chrysene	ug/L		0.05 U	0.10 U	0.10 U	0.1U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U
Semi Volatile Organics SIN	Dibenzo(a,h)anthracene	ug/L		0.10	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1U	0.10 U	0.10 U	0.1 U
Semi Volatile Organics SIN	Indeno (1,2,3-cd) pyrene	ug/L		0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U
	BaP Equivalent	ug/L	0.2	ND	ND	ND	ND	NA	ND	ND	ND	ND	ND
Semi Volatile Organics Silv	Fluorene	Ug/L	313	0.1U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U
Semi Volatile Organics SIN	Naphthalene	ug/L	156	0.5 U	0.032 1.0	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.046 1,0	0.10 U	0.1 U
Semi Volatile Organics SIN	Pentachlorophenol	ug/L	1	NA	0.20 0,1,0	0.20 U	0.11	NA	NA	NA	0.20 U,J,O	NA	0.081 J
Semi Volatile Organics SIN	Phenanthrene	ug/L	459	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U
Total Metals	Arsenic	mg/L	0.01	NA									
Total Metals	Anienic	Ug/L	10	NA									
Total Metals	Manganese	mg/L	0.3	NA									
Total Metals	Manganese	ug/L	300	NA									
Total Metals	Nickel	mg/L	0.313	NA									
Total Metals	Nickel	ug/L	313	NA									

DRAFT

 Baching reduction on models recently manufal guint
 Baching reductions and the origin of the oris of the origin of the origin of the origin of the oris of the ori ione here not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

diate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	AFMW04D	AFMW04D	AFMW04D	AFMW04D	AFMW04D	AFMW04D	AFMW05I	AFMW05I	AFMW05I	AFMW05	AFMW05I
			Sample Date	8/10/2014	1/12/2015	4/14/2015	7/22/2015	11/12/2015	2/19/2016	8/9/2014	1/13/2015	4/14/2015	7/22/2015	11/13/2015
		s	ample Identification No.	AFMW04	AFMW-04D	AFMW-04D	AFMW04D	AFMW04D	AFMW04D	AFMW051	AFMW-05	AFMW-051	AFMWOSI	AFMW05I
			Camilia REMEDIAL					and the second second						-
Analysis	Analyte	Units	GOALS-GW	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier				
Herbicides P	Pentachlorophenol	ug/L	1	NA	10	10	NA	NA	NA	NA	IU	10	NA	NA
Semi Volatile Organics 2	2-Methylnaphthalene	ug/L	31	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA.	NA	NA
Semi Volatile Organics	Acenaphthene	ug/L	469	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Benzo(a)anthracene	ug/L		10 U	NA	NA	NA	NA	S U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Benzo(a)pyrene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Senzo(b)fluoranthene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 U	NA	NA	NA	NA	SU	10 U	NA	NA	NA	NA
Semi Volatile Organics	Chrysene	ug/L		10 U	NA	NA	NA	NA	S U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	NA	NA	NA	NA	S U	10 U	NA	NA	NA	NA:
Semi Volatile Organics	ndeno (1,2,3-cd) pyrene	ug/L		10 U	NA	NA	NA	NA	SU	10 U	NA	NA	NA	NA
1	BaP Equivalent	UR/L	0.2	ND	NA	NA	NA	NA	ND	ND	NA	NA	NA	NA
Semi Volatile Organics	Carbazole	ug/L	48	10 U	10 U	10 U	10 U	10 U	10 U	10 U				
	Dibenzofuran	ug/L	31	10 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U	10 U	5.0 U	5.0 U
Semi Volatile Organics	Fluprene	Ug/L	313	10 U	NA	NA	NĄ	NA	5 U	10 U	NA	NA	NA	NA
Semi Volatile Organics	Naphthalene	Ug/L	156	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA	NA
	Pentachiorophenol	ug/L	CONTRACTOR OF STREET, S	25 U	NA	NA	NA	NA	U 0.t	25 U	NA	NA	NA	10 U
	Phenanthrene	ug/L	469	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA	NA
Semi Volatile Organics SIM	2-Methylpaphthalene	ug/L	31	NA	0.5 U	0.5 U	0.10 U	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.048 J,O	0.10 U
Semi Volatile Organics SIMIA		ug/L	459	NA	0.5 U	0.5 U	0.10 U	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.035 J,O	0.10 0,1,0
Semi Volatile Organics SIM		Ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 0,1,0
Semi Volatile Organics SIM		ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U
Semi Volatile Organics SIM		ug/L		NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U
Semi Volatile Organics SIM		ug/L	-	NA	0.05 U	0.05 U	0.10 U	0.10 U,J,O	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 0,1,0
Semi Volatile Organics SIM		ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U
Semi Volatile Organics SIM		ug/L		NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U
Semi Volatile Organics SIMI		ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U
	BaP Equivalent	Ug/L	0.2	NA	ND	ND	ND	ND	ND	NA	ND	ND	ND	ND
Semi Volatile Organics SIM F		ug/L	313	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U
Semi Volatile Organics SIM		ug/L	156	NA	0.5 U	0.5 U	0.025 1,0	0.10 J,O	0.1 U	NA	0.5 U	0.5 U	0.077 J,O	0.28 J,O
Semi Volatile Organics SIM		ug/L	1	NA	NA	NA	0.034 J,O	0.20 U	0.2 U	NA	NA	NA	0.088 J,O	NA
Semi Volatile Organics SIM		ug/L	469	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.022 0,0	0.10 U
	Arsenic	mg/L	0.01	NA	NA	NA	NA	NA	NA	NA	0.05 U	0.05 U	NA	NA
	Arsenic	ug/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.0 U	0.15 J,O
	Manganese	mg/L	0.3	NA	NA	NA	NA	NA	NA	NA	0.015 U	0.0194	NA	NA
	Manganese	ug/L	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	9.3	1.8
	Nickel	mg/L	0,313	NA	NA	NA	NA	NA	NA	NA	0.02 U	0.0273	NA	NA
	Nickel	ug/L	313	NA	NA	NA	NA	NA	NA	NA	NA	NA	100	1.9
Total Metals	NICKEN	1 18/0	313	1975					1	1 000 L	1			

Shaling indicates an analyte occessls remoted post Shaling indicates # PAH and is calculating BaP equivalents anders - Ibstechtypress equivalents calculated per IDA Regim 4 galaxies integram per Hor miligens per Hor

a management of the second second

DRAFT

3 of 23 D-53

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

nediate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	AFMW051	AFMW05I	AFMW06I	AFMW06I	AFMWOGI	AFMW06I	AFMW061	AFMW06I	AFMW06I	AFMW06I
			Sample Date	11/13/2015	2/19/2016	B/9/2014	1/14/2015	4/14/2015	7/21/2015	7/21/2015	11/13/2015	2/19/2016	2/19/2016
		5	ample Identification No.	AFMW9051	AFMW05I	AFMW06I	AFMW-06I	AFMW-061	AFMW06i	AFMW9061	AFMW06I	AFMW06I	AFMW9061
		1	Camilla REMEDIAL										
Analysis	Analyte	Units	GOALS-GW	Result Qualifier									
Herbicides	Pentachlorophenol	ug/L	And the second s	NA	NA	NA	Statement I	10	NA	NA	NA	NA	NA
Semi Volatile Organics	2-Methyinaphthalene	ug/L	31	NA	5 U	10 U	NA	NA	NA	NA	NA	5 U	5 U
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	SU	10 U	NA	NA	NA	NA	NA	5 U	50
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	S U	10 U	NA	NA	NA	NA	NA	SU	5 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	5 U	10 U	NA	NA	NA	NA	NA	SU	S U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	5 U	10 U	NA	NA	NA	NA	NA	s u	5 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	S U	10 U	NA	NA	NA	NA	NA	S U	5 U
Semi Volatile Organics	Chrysene	ug/L		NA	5 U	10 U	NA	NA	NA	NA	NA	5 U	5 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	5 U	10 U	NA	NA	NA	NA	NA	5 U	5 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	Ug/L		NA	SU	10 U	NA	NA	NA	NA	NA	5 U	5 U
	BaP Equivalent	ug/L	0.2	NA	ND	ND	NA	NA	NA	NA	NA	ND	ND
Semi Volatile Organics	Carbazole	ug/L	45	10 U									
Semi Volatile Organics	Dibenzofuran	ug/L	31	5.0 U	5 U	10 U	10 U	10 U	5.0 U	5.0 U	5.0 U	SU	5 U
Semi Volatile Organics	Fluorene	ug/L	313	NA	5 U	10 U	NA	NA	NA	NA	NA	5 U	5 U
Semi Volatile Organics	Naphthalene	ug/L	156	NA	5 U	10 U	NA	NA	NA	NA	NA	SU	s u
Semi Volatile Organics	Pentachlorophenol	ug/L	Section 1 Section 1	10 U	10 U	25 U	NA	NA	NA	NA	10 U	10 U	10 11
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	5 U	10 U	NA	NA	NA	NA	NA	5 U	5 U
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.10 U	0.077 J,O	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Acenaphthene	ug/L	459	0.10 U,J,O	0.1 U	NA	0.5 U	0.5 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		0.10 U,J,O	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Benzo(a)pyrene	ug/L		0.10 U	0.1 U	NA	0.05 U	0.05 U	0.075 1,0	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Benzo(b)fluoranthene	ug/L		0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		0.10 U,J,O	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U,J,O	0.1 U	0.1 U
Semi Volatile Organics SIM	Chrysene	ug/L		0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	indena (1,2,3-cd) pyrene	ug/L		0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
	BaP Equivalent	ug/L	0.2	ND	ND	NA	ND	ND	Detected	ND	ND	ND	ND
Semi Volatile Organics SIM	Fluorene	ug/L	313	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Naphthalene	UR/L	156	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.024 J,O	0.055 J,O	0.10 U	0.1 U	0.1 U
Semi Volatile Organics SIM	Pentachiorophenol	ug/L	1	NA	0.047 J	NA	NA	NA	0.0210,0	0.021 J,O	NA	0.2 U	0.2 U
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U	0.046 J,O	0.10 U	0.1 U	0.1 U
Total Metals	Arsenic	mg/L	0.01	NA	NA	NA	0.05 U	0.05 U	NA	NA	NA	NA	NA:
Total Metals	Arsenic	ug/L	10	0.14 J,O	1 U	NA	NA	NA	1.0 U	1.0 U	0.080 J,O	10	1 U
Total Metals	Manganese	mg/L	0,3	NA	NA	NA	0.015 U	0.015 U	NA	NA	NA	NA	NA
Total Metals	Manganese	ug/L	300	1.9	1.2 J	NA	NA	NA	5.0 U	5.0 U	0.72 1,0	s u	5 U
Total Metals	Nickel	mg/L	0.313	NA	NA	NA	0.02 U	0.02 U	NA	NA	NA	NA	NA
Total Metals	Nickel	ug/L	313	2.2	1.8 J	NA	NA	NA	16	16	6.0 J,O	3.6 J	3.5 J

DRAFT

The second secon na have not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

ediate Groundwater Sample Results 2014-2015 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	AFMW071	AFMW071	AFMW071	AFMW071	AFMW071	AFMW07I	AFMWOBI	AFMWOBI	AFMW08	AFMWOBI
			Sample Date	8/9/2014	1/14/2015	4/14/2015	7/21/2015	11/12/2015	2/19/2016	8/10/2014	1/13/2015	4/14/2015	7/22/2015
		1	Sample Identification No.	AFMW071	AFMW-071	AFMW-071	AFMW071	AFMW071	AFMW071	AFMW081	AFMW-OBI	AFMW-081	AFMWOSI
			Camilla REMEDIAL										
Analysis	Analyte	Units	GOALS-GW	Result Qualifier	Result Qualifier								
Herbicides	Pentachiorophenol	ug/L	1	NA	1 U	10	NA	NA	NA.	NA	10	Instantin 1 U Millionad	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Acenaphthene	ug/L	469	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Benzo(a)anthracene	Ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Benzo(a)pyrene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA.
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Benzo(k)fluoranthene	un/L		10 U	NA.	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Chrysene	Ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Indeno (1.2.3-cd) pyrene	ug/L		10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
	BaP Equivalent	ug/L	0.2	ND	NA	NA	NA	NA	ND	ND	NA	NA	NA
Semi Volatile Organics	Carbazole	ug/L	48	10 U	10 U								
Semi Volatile Organics	Dibenzofuran	ug/L	31	10 U	10 U	10 U	5.0 U	5.0 U	S U	10 U	10 U	10 U	5.0 U
	Fluorene	ug/L	313	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Naphthalene	UR/L	156	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics	Pentachlorophenol	ug/L	In the second second second	25 U	NA	NA	NA	10 U	10 U	25 U	NA	NA	NA
Semi Volatile Organics	Phenanthrene	UR/L	469	10 U	NA	NA	NA	NA	5 U	10 U	NA	NA	NA
Semi Volatile Organics SIM		Ug/L	31	NA	0.5 U	0.5 U	0.037 J,O	0.10 U	0.1 U	NA	0.5 U	0.5 U	0.10 U
Semi Volatile Organics SIM		ug/L	469	NA	0.5 U	0.5 U	0.10 U	0.10 U,J,O	0.1 U	NA	0.5 U	0.5 U	0.087 1,0
Semi Volatile Organics SIM		ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U,J,O	0.1 U	NA	0.05 U	0.05 U	0.10 U
Semi Volatile Organics SIM		ug/L		NA	0.05 U	0.05 U	0.080 J,O	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U
Semi Volatile Organics SIM		UE/L	1	NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U
Semi Volatile Organics SIM		ug/L	1	NA	0.05 U	0.05 U	0.10 U	0.10 U.J.O	0.1 U	NA	0.05 U	0.05 U	0.10 U
Semi Volatile Organics SIM		ug/L	-	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U
Semi Volatile Organics SIM		ug/L		NA	0.1 U	0.1 U	0.10 U	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U
Semi Volatile Organics SIM		ug/L		NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U
Serie volutie organics sine	BaP Equivalent	ug/L	0.2	NA	ND	ND	Detected	ND	ND	NA	ND	ND	ND
Semi Volatile Organics SIM		ug/L	313	NA	0.1 U	0.1 U	0.100	0.10 U	0.1 U	NA	0.1 U	0.1 U	0.10 U
Semi Volatile Organics SIM		ug/L	156	NA	0.5 U	0.5 0	0.054 J.O	0.10 U	0.1 U	NA	0.5 U	0.5 U	0,033 1,0
Semi Volatile Organics SIM		ug/L	1	NA	NA	NA	0.0210.0	NA	0.2 U	NA	NA	NA	0.096 J,O
Semi Volatile Organics SIM		ug/L	469	NA	0.05 U	0.05 U	0.10 U	0.10 U	0.1 U	NA	0.05 U	0.05 U	0.10 U
Total Metals	Arsenic	mg/L	0.01	NA	NA								
Total Metals	Arsenic	ug/L	10	NA	NA								
Total Metals	Manganese	mg/L	0.3	NA	NA								
Total Metals	Manganese	ug/L	300	NA	NA								
Total Metals	Manganese	mg/L	0.313	NA	NA								
							NA	NA	NA	NA	NA	NA	NA

The dispection of the second s liona have not been reported yet

5 of 23 D-55

nediate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company

Comillo	Mitchell, GA

		Sample Location	AFMW08I	AFMWOBI	CMW01I	CMW01I	CMW01I	CMW01I	CMW01I	CMW01I	CMW01	EW01
		Sample Date	11/11/2015	2/19/2016	1/13/2015	4/14/2015	7/25/2015	7/25/2015	11/15/2015	11/15/2015	2/20/2015	7/29/2014
		Sample Identification No.	AFMW08I	AFMW08I	CMW-011	CMW-011	CMW011	CIMW9013	CMW01I	CMW901J	CMW01I	EW01
		Camilla REMEDIAL										
Analysis Analyte	Units	GOALS-GW	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Herbicides Pentachlorop			NA	NA	98	Sector 66 Income (NA	NA	NA	NA	NA	NA
Semi Volatile Organics 2-Methylnaph	thalene ug/L	States and SI and a second	NA	5 U	10 U	10 U	5.0 U	5.0 U	5.0 U,J,O	5.0 U,J,O	S U	26
Semi Volatile Organics Acenaphthen	e ug/L	469	NA	5 U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	5 U
Semi Volatile Organics Benzo(a)anth	racene ug/L		NA	5 U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	S U	5 U
Semi Volatile Organics Benzo(a)pyre			NA	su	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	S U	5 U
Semi Volatile Organics Benzo(b)fluor	anthene ug/L		NA	SU	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	S U	5 U
Semi Volatile Organics Benzo(k)fluor			NA	S U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	S U	50
Semi Volatile Organics Chrysene	ug/L		NA	S U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	SU	5 U
Semi Volatile Organics Dibenzo(a,h)a			NA	5 U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	S U	10 U
Semi Volatile Organics Indeno (1,2,3			NA	S U	10 U	10 U	5.0 U	5.0 U	5.0 U	5.0 U	5 U	10 U
BaP Equivaler	nt ug/L	0.2	NA	ND	ND	ND	ND	ND	ND	ND	ND	ND
Semi Volatile Organics Carbazole	ug/L	48	10 U	10 U	10 U	10 U	5.1,0	4.7 J.O	2.0 1,0	3.3 1,0	1.6)	21
Semi Volatile Organics Dibenzofuran	ug/L		5.0 U	SU	10 U	10 U	3.8 1,0	3.6 J,O	5.0 U	5.0 U	1.2 J	9.8
Semi Volatile Organics Fluorene	ug/L	313	NA	SU	10 U	100	0.73 1,0	0.67 1,0	5.0 U	5.0 U	5 U	5 U
Semi Volatile Organics Naphthalene	ug/L	156	NA	5 U	10 U	10 U	2.4 1,0	0.961,0	1.5 1,0	1.7 0,0	0.64 J	140
Semi Voiatile Organics Pentachiorop	henol ug/L	International Second Second	10 U	10 U	NA	NA	95 1,0	90 1,0	Sectors 98 Contractor	97	54	4000
Semi Volatile Organics Phenanthren	e ug/L	469	NA	5 U	10 U	10 U	1.40,0	1.31,0	1.3 1,0	1.3 1,0	0.42 J	8.9
Semi Volatile Organics SIM 2-Methylnaph	thalene ug/L	31	0.10 U	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Acenaphthen	e ug/L	469	0.15 J,O	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Benzo(a)anth	racene ug/L		0.10 0,1,0	0.1 U	NA	NA.	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Benzo(a)pyre	ne ug/L		0.10 U	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Benzo(b)fluor	anthene ug/L		0.10 U	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Benzo(k)fluor	anthene ug/L		0.10 U,J,O	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Chrysene	ug/L		0.10 U	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Dibenzo(a,h)a	inthracene ug/L		0.10 U	0.1 U	NA.	NA.	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Indeno (1,2,3	-cd) pyrene ug/L		0.10 U	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
BaP Equivaler	nt ug/l	0.2	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SiM Fluorene	URA	313	0.11 U.O	0.1 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Naphthalene	ug/L	156	0.411,0	0.1 U	NA	NA.	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM Pentachlorop	henol ug/L	1	NA	0.2 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Voiatile Organics SIM Phenanthren	e ug/L	469	0.140.0	0.110	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Arsenic	mg/l		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Arsenic	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Manganese	mg/l	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Manganese	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Nickel	mg/l		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals Nickel	ug/t		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Inte

Burge locks on an only a source source of an an an analysis of the source of the sourc a have not least reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

6 of 23 D-56

DRAFT

diate Groundwater Sample Results 2014-2016 Camilia Wood Preserving Company Camilia, Mitchell, GA

		Sample Location	EW-02	F15MWI	F15MWI	IW01A	IW02A	IW038	IW04A	IW04B	IW05A	IW06A	IWD6A	10/068
		Sample Date	8/7/2014	11/12/2015	11/12/2015	7/27/2014	7/27/2014	7/28/2014	7/28/2014	7/28/2014	8/8/2014	7/30/2014	7/26/2015	7/30/2014
		Sample Identification No.	EWDZ	F15MWI	F915MWI	IW01A	IW02A	IW03B	IWO4A	1W048	IW05A	ABOWI	IW06A	1W068
		Camilla REMEDIAL	and an end of the		200 mm 20 mm	1000 - 200 - 200 - 200 - 200								
Analyte	Unit		Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Pentachlorophe			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics 2-Methylnaphti			130	NA	NA	10	10	S U	67	97	S U	24	NA	45
le Organics Acenaphthene	ug/		12	NA	NA	10	10	5 U	49	66	5 U	8.2	NA	S U
le Organics Benzo(a)anthra			5 U	NA	NA	10	10	S U	su	5 U	5 U	50	NA	5 U
le Organics Benzo(a)pyrene	UB/		5 U	NA	NA	10	10	5 U	S U	5 U	SU	5 U	NA	SU
ie Organics Benzo(b)fluoran	thene ug/	L	5 U	NA	NA	10	10	sυ	5 U	5 U	5 U	S U	NA	5 U
le Organics Benzo(k)fluorar	thene ug/	L	5 U	NA	NA	10	10	5 U	5 U	5 U	5 U	5 U	NA	5 U
le Organics Chrysene	ug/		5 U	NA	NA	10	10	5 U	5 U	5 U	5 U	50	NA	5 U
le Organics Dibenzo(a,h)an	hracene ug/	L	10 U	NA	NA	2 U	2 U	10 U	10 U	10 U	10 U	10 U	NA	10 U
le Organics Indeno (1,2,3-ci			10 U	NA	NA	2 U	20	10 U	10 U	10 U	10 U	10 U	NA	10 U
BaP Equivalent	ug/	L 0.2	ND	NA	NA	ND	ND	ND	ND	ND	ND	ND	NA	ND
le Organics Carbazole	ug/	48	70	10 U	10 U	2 U	2 U	10 U	54	42	24	10 U	NA	41
le Organics Dibenzofuran	ug/	In manual 31 works and	25	5.0 U	5.0 U	2 U	1.5	10 U	18	27	14	14	NA	15
le Organics Fluorene	Ug/	313	16	NA	NA	10	10	5 U	16	26	23	11	NA	10
le Organics Naphthalene	ug/	156	460	NA	NA	10	1U	5 U	390	350	s u	140	NA	310
le Organics Pentachiorophe	noi ug/	International Transmission	9900	NA	10 U	7.6	200	25 U	1700	220	450	27	NA	260
le Organics Phenanthrene	UE/	469	22	NA	NA	1 U	1.1	5 U	27	34	9.5	9.8	NA	12
ie Organics SIM 2-Methylnaphti	alene ug/	L 31	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Acenaphthene	ug/	L 469	NA	0.10 U	0.10 U,J,O	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Benzo(a)anthra	ug/	L	NA	0.10 U	0.10 0,1,0	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Benzo(a)pyrene	ug	L	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Benzo(b)fluorat	thene ug/	L	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
ie Organics SIM Benzo(k)fluoran			NA	0.10 U.J.O	0.10 U,J,O	NA	NA	NA	NA	NA	NA	NA	NA	NA
ie Organics SIM Chrysene	UR		NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Dibenzo(a,h)an	hracene ug/	L	NA.	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA.	NA	NA
le Organics SiM Indeno (1,2,3-o			NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
BaP Equivalent	ug/		NA	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Fluorene	ug/	L 313	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA.	NA
le Organics SIM Naphthalene	ug/		NA	0.19 J,O	0.12 J,O	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Pentachlorophi			NA	0.20 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
le Organics SIM Phenanthrene	ug/		NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA	NA
ls Arsenic	ma		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
a Arsenic	ug/		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
ls Manganese	ma		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		ug/ mg/	ug/L 300 mg/L 0.313	ug/L 300 NA mg/L 0.313 NA	ug/L 300 NA NA mg/L 0.313 NA NA	ир/L 300 NA NA NA mg/L 0.313 NA NA NA	mg/L 300 NA NA NA NA mg/L 0.313 NA NA NA NA	mg/L 300 NA NA NA NA mg/L 0.313 NA NA NA NA	mg/L 0.013 NA NA NA NA NA mg/L 0.313 NA NA NA NA NA	mg/L 0.03 no. no. </td <td>Impl MM MM MA M</td> <td>Impl Use Impl Use Impl I</td> <td>mg/L 000 NA NA</td> <td>Impl MM MA MA NA N</td>	Impl MM MM MA M	Impl Use Impl Use Impl I	mg/L 000 NA NA	Impl MM MA MA NA N

theory endocrean analyse scenario recording and
 theories produces as analyse scenario recording to the operators
 theory exploration of the operators
 theory exploration of the operators
 theory exploration of the operators
 web, residences with
 theory exploration of the operators
 theory exploration of the operators

Viet Analyzed Viet Dietech, PAH's used in calculating BaP equivalents were not detected and - PAH's used in reduniting BaP equivalents were detected, bat calculated installication of the weathyn is acceptible; the reported value in us related as analyte was not detacted at or shows the reporting limit. a have our boos reported ye

DRAFT

7 of 23 D-57

014-2016 ediate Groundwater Sample Results 20 Camilia Wood Preserving Company Camilia, Mitchell, GA

			Sample Location	IWOGB	IW07A	IW07A	IW07B	IW078	IWOBA	IWOBA	IWOSE	IWOSB	AROWI	IW09A	SW09B
			Sample Date	7/26/2015	7/30/2014	7/26/2015	7/30/2014	7/26/2015	7/28/2014	7/26/2015	7/28/2014	7/26/2015	7/29/2014	7/29/2014	7/29/2014
		5	iample Identification No.	IW06B	IW07A	IW07A	IW078	IW078	IWOBA	IWOBA	IW088	IWOSS	AROWI	IW909A	IW09B
Analysis	Analyte	Units	Camilia REMEDIAL GOALS-GW	Result Qualifie	Result Qualifier										
Herbicides	Pentachlorophenol	ug/L	and the second second	NA	NA	NA.	NA .	NA							
Semi Volatile Organics	2-Methylnaphthalene	UR/L	31	NA	50	NA	S U	NA	43	NA	55	NA	10	11	6.5
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	5 U	NA	5.3	NA	5 U	NA	10	NA	SU	5 U	SU
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	5 U	NA	su	NA	5 U	NA	10	NA	5 U	5 U	5 U
Semi Volatile Organics	Benzo(a)pyrene	Ug/L		NA	S U	NA	5 U	NA	sυ	NA	1.1	NA	S U	5 U	s u
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	5 U	NA	S U	NA	5 U	NA	10	NA	5 U	5 U	SU
Semi Volatile Organics	Benzo(k)fluoranthene	uer		NA	50	NA	S U	NA	5 U	NA	10	NA	5 U	50	5 U
Semi Volatile Organics	Chrysene	ug/L		NA	5 U	NA	5 U	NA	S U	NA	10	NA	5 U	_5 U	5 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	10 U	NA	10 U	NA	10 U	NA	20	NA	10 U	10 U	10 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA	10 U	NA	10 U	NA	10 U	NA	2 U	NA.	10 U	10 U	10 U
	BaP Equivalent	ug/L	0.2	NA	ND	NA	ND	NA	ND	NA.	Detected	NA	ND	ND	ND
Semi Volatile Organics	Carbazole	UR/L	1	NA	10 U	NA	12	NA	16	NA	39	NA	10 U	10 U	10 U
Semi Volatile Organics	Dibenzofuran	ug/L	31	NA	10 U	NA	16	NA	10 U	NA	16	NA	13	14	10 U
Semi Volatile Organics	Fluorene	ug/L	313	NA	SU	NA	6.3	NA	5 U	NA	1.5	NA	5 U	5 ប	5 U
Semi Volatile Organics	Naphthalene	ug/L	156	NA	SU	NA	33	NA	170	NA	130	NA	41	45	38
Semi Volatile Organics	Pentachlorophenol	ug/L	1	NA	250	NA	3200	NA	5500	NA	7100	NA	880	1000	290
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	5 U	NA	6.7	NA	19	NA	11	NA	15	16	5 U
Semi Volatile Organics SIN	2-Methylnaphthalene	ug/L	31	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Semi Volatile Organics SIN	Acenaphthene	ugh	469	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA
Semi Volatile Organics SIN	Benzo(a)anthracene	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA:	NA	NA
Semi Volatile Organics SIN	Benzo(a)pyrene	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(b)fluoranthene	URA		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(k)fluoranthene	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Chrysene	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	Jug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA
Semi Volatile Organics SIN	Indeno (1,2,3-cd) pyrene	ug/L		NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	BaP Equivalent	ug/L	0.2	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics Silv	Fluorene	ug/L	313	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Naphthalene	ug/L	156	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Semi Volatile Organics SIN	Pentachlorophenol	ug/L	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Total Metals	Arsenic	mg/L	0.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Arsenic	ug/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Manganese	mg/L	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Manganese	ug/L	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Nickel	mg/L	0.313	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Nickel	ug/L	313	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Souling auticates an analyte acceeds remedial goal Standary indicates a PAH cord in calculating. BaP equivalence opairelates - Bencologyrous expiratence calculated per EDA Region 4 gastance

agil. - microgram per liter mgil. - milligram per liter

DRAFT

suivalents were not detected were detected, but calculated have not been reported yet

table; the reported

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

diate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	IW10A	ALLWI	IW11A	IWILA	IW118	IW118	IW12A	IW12A	IW128	IW12B	IW12C	IW12C
			Sample Date	8/8/2014	8/5/2014	8/5/2014	7/26/2015	8/5/2014	7/26/2015	8/8/2014	7/26/2015	8/5/2014	7/26/2015	8/5/2014	7/26/2015
		5	ample Identification No.	IW10A	IW11A	IW911A	IW11A	IW118	(W118	IW1ZA	IW12A	IW128	IW128	1W12C	IW12C
	1	1	Camilla REMEDIAL												
Analysis	Analyte	Units	GDALS-GW	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier						
Herbicides	Pentachlorophenol	ug/L	and the second s	NA	NA	NA	NA	NA	NA						
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	5 U	120	319	NA	6.6	NA	150	NA	95	NA	6.4	NA
Semi Volatile Organics	Acenaphthene	ug/L	469	su	48	S U	NA	6.8	NA	54	NA	21	NA	5 U	NA
Semi Volatile Organics	Benzo(a)anthracene	ug/L		su	5 U	5 U	NA	5 U	NA	S U	NA	24	NA	5 U	NA
Semi Volatile Organics	Benzo(a)pyrene	ug/L		รบ	5 U	S U	NA	5 U	NA	S U	NA	18	NA	S U	NA
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		su	5 U	S U	NA	5 U	NA	5 U	NA	27	NA	5 U	NA
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		5 U	5 U	5 U	NA	5 U	NA	5 U	NA	26	NA	5 U	NA
Semi Volatile Organics	Chrysene	ug/L		5 U	5 U	5 U	NA	5 U	NA	5 U	NA	26	NA	5 U	NA
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	10 U	10 U	NA	10 U	NA	10 U	NA	23	NA	10 U	NA
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	10 U	10 U	NA	10 U	NA	10 U	NA	22	NA	10 U	NA
	BaP Equivalent	ug/L	0.2	ND	ND	ND	NA	ND	NA	ND		Detected	NA	ND	NA
Semi Volatile Organics	Carbazole	ug/L	48	10 U	130	62 J	NA	10 U	NA	87	NA	48	NA	8.9	NA
Semi Volatile Organics	Dibenzofuran	ug/L	CHARLES AND	7.1	42	30 1	NA	9	NA	Subline 38 All South State	NA	44	NA	10	NA
Semi Volatile Organics	Fluorene	ug/L	313	5 U	5 U	6.2	NA	13	NA	27	NA	33	NA	SU	NA
Semi Volatile Organics	Naphthalene	ug/L	156	8.8	580	470	NA	69	NA	430	NA	310	NA	35	NA
Semi Volatile Organics	Pentachiorophenol	ug/L	CONCEPTION FOR THE PARTY OF	1200	5000 1	3500	NA	57	NA	3000	NA	1800	NA	4900	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	5.9	39	27 1	NA	6.6	NA	24	NA	35	NA	5 U	NA
Semi Volatile Organics SIN	/ 2-Methylnaphthalene	ug/L	31	NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN	Acenaphthene	ug/L	469	NA	NA	NA.	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	A Benzo(a)anthracene	ug/L		NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN	A Benzo(a)pyrene	ug/L		NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN	A Benzo(b)fluoranthene	UR/L		NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN		ug/L		NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Chrysene	ug/L		NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN		ug/L		NA	NA	NA	NA	NA	NA						
	Indeno (1,2,3-cd) pyrene	Ug/L		NA	NA	NA	NA	NA	NA						
	BaP Equivalent	ug/L	0.2	NA	NA	NA	NA	NA	NA						
Semi Volatile Organics SIN	Huorene	Ug/L	313	NA	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L	156	NA	NA	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	// Pentachloropheno!	ug/L	1	NA.	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Phenanthrene	Ug/L	469	NA	NA	NA	NA	NA	NA						
Total Metals	Arsenic	mg/L	0.01	NA	NA	NA	NA	NA	NA						
Total Metals	Arsenic	ug/L	10	NA	NA	NA	NA	NA	NA						
Total Metals	Manganese	mg/L	0,3	NA	NA	NA	NA	NA	NA						
Total Metals	Manganese	ug/L	300	NA	NA	NA	NA	NA	NA						
Total Metals	Nickel	mg/L	0.313	NA	NA	NA	NA	NA	NA						
Total Metals	Nickel	UNK/L	313	NA	NA	NA	NA	NA	NA						

DRAFT

b_

have not been reported yet

The second secon

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

ediate Groundwater Sample Results Zi Camilia Wood Preserving Company Camilia, Mitchell, GA

1			Sample Location	IW12C	IW13A	IW13A	IW138	IW138	IW13C	IW13C	IW15A	IW158	IW16A	IW17A	IW17B
i			Sample Date	7/26/2015	8/8/2014	7/26/2015	7/29/2014	7/26/2015	7/29/2014	7/26/2015	7/29/2014	7/29/2014	8/12/2014	7/26/2015	8/8/2014
í		5	iample Identification No.	IW912C	IW13A	IW13A	IW138	IW138	IW13C	IW13C	IW1SA	IW158	IW16A	IW17A	IW17B
			Camilia REMEDIAL												
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachiorophenol	ug/L	No. of Concession, Name of Street, or other	NA											
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	NA	130	NA	180	NA	43	NA	5 U	S U	17	NA	24
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	25	NA	5 U	NA	19	NA	5 U	SU	5 U	NA	5 U
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	5 U	NA	sυ	NA	S U	NA	S U	su	S U	NA	5 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	5 U	NA	50	NA	su	NA	S U	5 U	5 U	NA	su
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	5 U	NA	su	NA	5 U	NA	S U	5 U	5 U	NA	su
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	5 U	5 U	s u	NA	5 U						
Semi Volatile Organics	Chrysene	ug/L		NA	5 U	5 U	5 U	NA	su						
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	10 U	10 U	10 U	NA	10 U						
Semi Volatile Organics	indeno (1,2,3-cd) pyrene	ug/L		NA	10 U	10 U	10 U	NA	10 U						
	BaP Equivalent	ug/L	0.2	NA	ND	NA	ND	NA	ND	NA	ND	ND	ND	NA	ND
Semi Volatile Organics	Carbazole	ug/L	48	NA	67	NA	110	NA	42	NA	10 U	10 U	10 U	NA	33
Semi Volatile Organics	Dibenzofuran	ug/L	31	NA	33	NA	39	NA	12	NA.	10 U	10 U	17	NA	10
Semi Volatile Organics	Fluorene	ug/L	313	NA	16	NA	8.6	NA	5 U	NA	SU	SU	SU	NA	16
Semi Volatile Organics	Naphthalene	ug/L	156	NA	410	NA	890	NA	240	NA	5 U	s u	94	NA	130
Semi Volatile Organics	Pentachlorophenol	ug/L	Internet in the second	NA	3500	NA	15000	NA	12000	NA	25 U	300	1100	NA	300
Semi Volatile Organics	Phenanthrane	ug/L	469	NA	36	NA	34	NA	9.5	NA	5 U	S U	18	NA	5.8
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA											
Semi Volatile Organics SIM	Acenaphthene	ug/L	469	NA											
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		NA	NA	NA.	NA								
Semi Volatile Organics SIM	Benzo(a)pyrene	ug/L		NA	NA	NA	NA	NA.	NA						
Semi Volatile Organics SIM	Benzo(b)fluoranthene	ug/L		NA											
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA											
Semi Volatile Organics SIM	Chrysene	ug/L		NA											
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA											
Semi Voiatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA	NA.	NA	NA	NA	NA						
	BaP Equivalent	UE/L	0.2	NA											
Semi Volatile Organics SIM	Fluorene	ug/L	313	NA	NA	NA.	NA	NA.	NA						
Semi Volatile Organics SIM	Naphthalene	ug/L	155	NA											
Semi Volatile Organics SIM	Pentachiorophenol	ug/L	1	NA.	NA										
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA											
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA	NA:	NA									
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

Sheding indicates an analyte escends remodual gosi Shading indicates a PAJI used in culculating BaP squitesients et - Benzolýpyrma equivalents calculated per ISPA Ragion 4 gedence

s were not detected sected, but calculated value is an estimate.

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

DRAFT

ediate Groundwater Semple Results 2014-2016 Camilia Wood Preserving Company Camilia, Mitchell, GA

			Sample Location	IW178	IWIBA	IW188	IW188	IW19A	IW198	TW20A	IW20-8	IW21-A	IWZZ-A	LMWII	MASMWOII
			Sample Date	7/26/2015	8/12/2014	8/12/2014	8/12/2014	8/12/2014	8/12/2014	7/29/2014	7/29/2014	8/12/2014	8/12/2014	11/12/2015	11/14/2015
		Se	mple Identification No.	IW178	IW918A	IW18A	IW188	IW19A	IW198	IW20A	IW208	IWZ1A	IW22A	LMWI1	MASMW01
			Camilla REMEDIAL	1											
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
	Pentachlorophenol	ug/L	Statement of the statement of	NA											
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	NA	34 1	65 1	14	61	500 U	45	21	50	12	NA	NA
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	25 U	5 U	5 U	5 U	500 U	31	8.6	SU	su	NA	NA
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	25 U	5 U	5 U	5 U	500 U	50	su	5 U	S U	NA	NA
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	25 U	5 U	S U	5 U	500 U	S U	5 U	SU	รม	NA	NA
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	25 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U	S U	NA	NA
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	25 U	5 U	5 U	5 U	500 U	5 U	5 U	5 U	s u	NA	NA
Semi Volatile Organics	Chrysene	ug/L		NA	25 U	5 U	50	5 U	500 U	5 U	5 U	5 U	5 U	NA	NA
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	50 U	10 U	10 U	10 U	1000 U	10 U	10 U	10 U	10 U	NA	NA
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA	50 U	10 U	10 U	10 U	1000 U	10 U	10 U	10 U	10 U	NA	NA
1	BaP Equivalent	ug/L	0.2	NA	ND	NA	NA								
Semi Volatile Organics	Carbazole	ug/L	43	NA	50 U	37	41	34	1000 U	9.1	10 U	25	11	10 U	10 U
Semi Volatile Organics	Dibenzofuran	ug/L	31	NA	50 U	26	9.4	19	1000 U	24	8.2	17	9.2	5.0 U	5.0 U
Semi Volatile Organics	Fluorene	ug/L	313	NA	25 U	8.1	26	11	500 U	34	6.3	SU	s u	NA	NA
Semi Volatile Organics	Naphthalene	ug/L	156	NA	3101	490	91	330	500 U	110	45	250	73	NA	NA
Semi Volatile Organics	Pentachlorophenol	ug/L	1	NA	580 1	R70 J	2800	7200 1	12000	1300	1200	2700	880	NA	10 U
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	25 U	33	7.8	28	500 U	38	13	17	11	NA	NA
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA	0.18	0.10 U									
Semi Volatile Organics SIM	Acenaphthene	ug/L	469	NA	0.10 U	0.10 U									
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		NA	0.10 U	0.10 U									
Semi Volatile Organics SIM	Benzo(a)pyrene	ug/L		NA	0.10 U	0.10 U									
Semi Volatile Organics SIM	Benzo(b)fluoranthene	ug/L		NA	0.10 U	0.10 U									
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA	0.10 U,J,O	0.10 U,J,O									
Semi Volatile Organics SIM	Chrysene	ug/L		NA	NA.	0.10 U	0.10 U								
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA	NA	NA.	NA	0.10 U	0.10 U						
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA	0.10 U	0.10 U									
	BaP Equivalent	ug/L	0.2	NA	NA	NA.	NA	ND	ND						
Semi Volatile Organics SIM	Fluorene	ug/L	313	NA	0.10 U	0.10 U									
Semi Volatile Organics SIM	Naphthalene	ug/L	156	NA	0.080 J,O	0.10 U									
Semi Volatile Organics SIM	Pentachlorophenol	ug/L	1	NA	0.20 U	NA									
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA	0.10 U	0.10 Ú									
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

ione have not been reported yet

 Vision
 Baseling solutions on works on works on works on the special solution of the sp

DRAFT

11 of 23 D-61

014-2016 ediate Groundwater Sample Results 20 Camilia Wood Preserving Company Camilia, Mitcheli, GA

			Sample Location	MASMW021	MW01I	MW02I	MW03A	MW03B	MW03i	MW04A	MWOSI	MW061	MW071	MW091	MW11I
			Sample Date	11/14/2015	11/13/2015	11/13/2015	11/16/2015	11/18/2015	11/17/2015	11/17/2015	11/15/2015	11/16/2015	11/15/2015	11/15/2015	1/12/2015
			ample Identification No.	MASMW02I	MW01I	MW02I	MW03A	MW03B	MW03I	MW04A	MW05I	MW06I	MW071	MW09I	MW-111
			Camilla REMEDIAL							Result Qualifier					
Analysis	Analyte	Units	GOALS-GW	Result Qualifier	NA	NA NA	NA	NA	NA	4900					
Herbicides	Pentachlorophenol	ug/L	1	NA	NA	NA	NA	NA	NA		5.0 U.J.O	NA	NA	5.0 U.J.O	230
Semi Volatile Organics	2-Methylnaphthalene	ug/L	II	NA	NA	26	NA	NA		NĄ		NA	NA	5.0 U	45
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	NA	150	NA	NA	NA	NA	5.0 U			5.00	45 10 U
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	5.0 U	NA	NA	5.0 U	100						
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	5.0 U		NA	5.00	100						
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	5.0 U	NA	NA	5.00							
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	5.0 U	NA	NA	5.00	10 U 10 U						
Semi Volatile Organics	Chrysene	ugh		NA	5.0 U	NA	NA								
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	5.0 U	NA	NA	5.0 U	10 U						
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA	5.0 U	NA	NA	5.0 U	10 U						
	BaP Equivalent	ug/L	0.2	NA	ND	NA	NA	ND	ND						
Semi Volatile Organics	Carbazole	Ug/L	48	10 U	10 U	25	10 U	120							
Semi Volatile Organics	Dibenzofuran	ug/L	31	5.0 U	5.0 U	26	5.0 U	5.0 U	5.0 U	27	5.0 U	5.0 U	5.0 U	5.0 U	58
Semi Volatile Organics	Fluorene	ug/L	313	NA	NA	23	NA	NA	NA	15	5.0 U	NA	NA	5.0 U	26
Semi Volatile Organics	Naphthalene	ug/L	156	NA	NA	160	42	NA	NA	470 0,0	5.0 U	NA	NA	5.0 U	1000
Semi Volatile Organics	Pentachiorophenol	ug/L	International Sectors	10 U	10 U	NA	NA	NA	10 U	UOI	10 U	10 10	10 U	10 U	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	NA	8.4	NA	NA	NA	201,0	5.0 U	NA	NA	5.0 U	55
Semi Volatile Organics SIN	VI 2-Methylnaphthaiene	ug/L	31	0.10 U	0.10 U	NA	0.71	0.10 U	0.10 U	190,0	NA	0.10 U	0.10 U	NA	NA
Semi Volatile Organics Sil	Acenaphthene	ugA	469	0.10 U	0.10 U	NA	3.1 J,O	0.10 U	1.2	19,0	NA	0.10 U	0.10 U	NA	NA
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		0.10 U	0.10 U	0.12 J,O	0.15	0.10 U	0.14	0.10 U	NA	0.10 U	0.10 U	NA	NA
Semi Volatile Organics SIM	M Benzo(a)pyrene	ug/L		0.10 U	NA	0.10 U	0.10 U	NA	NA						
Semi Volatile Organics SIM	M Benzo(b)fluoranthene	ug/L		0.10 U	NA	0.10 U	0.10 U	NA	NA						
Semi Volatile Organics SIN	M Benzo(k)fluoranthene	ug/L		0.10 0.10	0.10 U.J.O	0.10 U,J,O	0.10 U,J,O	0.10 U.J,O	0.10 U,J,O	0.10 U,J,O	NA	0.10 U,J,O	0.10 U,J,O	NA	NA
Semi Voiatile Organics Sil	Chrysene	ug/L		0.10 U	0.10 U	0.10 U	0.16	0.10 U	0.13	0.10 U	NA	0.10 U	0.10 U	NA	NA
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ugA		0.10 U	0.10 U	0.10 U	0.100	0.10 U	0.10 U	0.10 U,J,O	NA	0.10 U	0.10 U	NA	NA
Semi Volatile Organics SIM	Mindeno (1,2,3-cd) pyrene	UR/L		0.10 U	0.10 U,J,O	NA	0.10 U	0.10 U	NA	NA					
	BaP Equivalent	ug/L	0.2	ND	ND	Detected	Detected	ND	Detected	ND		ND	ND	NA	NA
Semi Volatile Organics Sil	M Fluorene	Ug/L	313	0.10 U	0.10 U	NA	1.4	0.10 U	0.12 U,O	NA	NA	0.13 U,O	0.10 U	NA	NA
Semi Volatile Organics SI	Naphthalene	ugh	156	0.10 U	0.10 U	NA	NA	0.16 J.O	0.10 U	NA	NA	0.10 U	0.10 U	NA.	NA
Semi Volatile Organics SI	M Pentachioropheno!	ug/L	1	NA	NA	0.20 U	0.561,0	0.17 J,0	NA						
Semi Volatile Organics Sið	M Phenanthrene	ug/L	459	0.10 U	0.10 U	NA	2.4 J.O	0.10 U	0.10 U	NA	NA	0.21 J.O	0.10 U	NA	NA
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	100	NA	NA.	NA	NA								
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

State Stategy odnostne se svaljsk noroch reveskal god Stategy odnostne sy ANJ sank in otoholteng (biť vejovalens spl.) - ikonjempe po liter mgl. - nikojempe po liter mgl. - Nikojempe po liter

---s a-metrind, PAMs used in colorating DaP equivalents wave not detected ed - PAMs used in calculating DaP equivalents wave detected, but calculated o intestification of the analyse is acceptable, the reported value is an estimate, a analytic sum cut detected at or above the reporting limit.

have not been reported yet

- The i

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

12 of 23 D-62

DRAFT

ediate Groundwater Sample Results 2014-2016 Cansilla Wood Preserving Company Camilla, Mitcheil, GA

			Sample Location	MW11I	MW11	MW11	MW11I	MW151	MW161	MW18I	MW181	MW18I	MW18I	MW18I	MW18I
			Sample Date	4/15/2015	7/24/2015	11/15/2015	2/20/2016	11/15/2015	11/17/2015	1/15/2015	1/15/2015	4/15/2015	7/25/2015	11/14/2015	2/20/2016
		S	ample identification No.	MW-111	MW111	MW111	MW11!	MW15I	MW16ł	MW-18I	MW-9181	MW-18	MW181	MW18i	MW18I
	1		Camilia REMEDIAL					a	and the same						
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachlorophenol	ug/L	Contraction 1 International	6600	NA	NA	NA	NA	NA	930	1000	870	NA	NA	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	1	170	180	150 1,0	130	NA	93 J,O	10 U	10 U	10 U	5.0 U	5.0 U	S U
Semi Volatile Organics	Acenaphthene	ug/L	469	49	23	49	35	NA	68	10 U	10 U	10 U	5.0 U	5.0 U	S U
Semi Volatile Organics	Benzo(a)anthracene	UE/L		10 U	5.0 U	5.0 U	su	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	s u
Semi Volatile Organics	Benzo(a)pyrene	Ug/L		10 U	5.0 U	5.0 U	5 U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	5.0 U	5.0 U	5 U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	SU
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 U	5.0 U	5.0 U	S U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U
Semi Volatile Organics	Chrysene	ug/L	1997 A.C.S.	10 U	5.0 U	5.0 U	5 U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	5.0 U	5.0 U	S U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	5.0 U	5.0 U	S U	NA	5.0 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U
	BaP Equivalent	ug/L	0.2	ND	ND	ND	ND	NA	ND						
Semi Volatile Organics	Carbazole	ug/L	48	120	76	170 J,O	92	10 U	56	10 U	10 U	10 U	1.91,0	2.0 1,0	1.4 J
Semi Volatile Organics	Dibenzofuran	ug/L	Statement 31	60	30	65	39	5.0 U	66	11	12	14	9.2	10 U	5.5
Semi Volatile Organics	Fluorene	ug/L	313	27	17	29	50	NA	42	10 U	10 U	10 U	5.9	6.2	41
Semi Volatile Organics	Naphthalene	ug/L	156	850	880	1200	800	NA	2300	10 U	10 U	10 U	5.0 U	5.0 U	0.46 J
Semi Volatile Organics	Pentachiorophenol	Ug/L	1	NA	4800	5400 J,O	3900	10 U	10 0	NA	NA	NA	800	2300	780
Semi Volatile Organics	Phenanthrene	ug/L	469	49	26	58	50	NA	25	10 U	10	12	9.0	8.5	6.7
Semi Volatile Organics Silv	2-Methylnaphthalene	ug/L	31	NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN	Acenaphthene	ug/L	469	NA	NA	NA	NA	0.31	NA						
Semi Volatile Organics SIN	A Benzo(a)anthracene	ug/L		NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN	A Benzo(a)pyrene	ug/L		NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN	Benzo(b)fluoranthene	ug/L	2.2	NA	NA	NA	NA	0.10 U	NA.	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(k)fluoranthene	ug/L		NA	NA	NA	NA	0.10 0,1,0	NA						
Semi Voiatile Organics SIN	Chrysene	ug/1.		NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN		ug/L		NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN	Indeno (1,2,3-cd) pyrene	ug/L		NA	NA	NA	NA	0.10 U	NA						
	BaP Equivalent	ug/t.	0.2	NA	NA	NA	NA	ND	NA						
Semi Volatile Organics Silv	A Fluorene	ug/L	313	NA	NA	NA	NA	0.10 U	NA						
Semi Volatile Organics SIN	/ Naphthalene	ug/L	156	NA	NA	NA	NA	0.15 1,0	NA						
Semi Volatile Organics SIN	Pentachlorophenol	ug/L	1	NA											
Semi Volatile Organics SIN	A Phenanthrene	ug/L	469	NA	NA	NA	NA.	0.33 J,O	NA						
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

as have not been reported yet

The second secon

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

ediate Groundwater Sample Results 20 Camila Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MWIB	MW191	MW20I	MW211	MW231	MW26A	MW26A	MW26A	MW26A	MW26A	MW268	MW268
			Sample Date	2/20/2016	11/14/2015	11/13/2015	11/15/2015	11/16/2015	1/15/2015	4/16/2015	7/24/2015	11/19/2015	2/22/2016	1/15/2015	4/16/2015
			sample Identification No.	MW918I	MW19i	MW20I	MW211	MW231	MW-26A	MW-26A	MW26A	MW25A	MW26A	MW-268	MW-268
	T	1	Camilla REMEDIAL		I			1							
Analysis	Analyte	Units	GOALS-GW	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier
Herbicides	Pentachiorophenol	ug/L	1	NA	NA	NA	NA	NA	670	890	NA	NA	NA	580	1800
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	10 U	NA	NA	NA	5.0 U	180	240	140	250	160	200	200
Semi Volatile Organics	Acenaphthene	ug/L	469	10 U	NA.	31	NA	5.0 U	69	82	40	68	40	57	66
Semi Volatile Organics	Benzo(a)anthracene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Sem) Volatile Organics	Benzo(a)pyrene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Chrysene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	NA	NA	NA	5.0 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
	BaP Equivalent	Ug/L	0.2	ND	NA	NA	NA	ND	ND	ND	ND	ND	ND	ND	ND
Semi Volatile Organics	Carbazole	ug/L	48	1.4 J	10 U	10 U	10 U	10 U	96	130	92	130	85	120	140
Semi Volatile Organics	Dibenzofuran	UR/L	31	8.2 J	5.0 U	5.0 U	5.0 U	5.0 U	Contractor State Accounty on the	63	35	99	40	60	65
Semi Volatile Organics	Fluorene	· ug/L	313	5.41	NA	NA	NA	5.0 U	53	61	36	52	11	35	42
Semi Voiatile Organics	Naphthalene	ug/L	156	10 U	NA	NA	NA	5.0 U	670	1000	570	1200	690	910	870
Semi Volatile Organics	Pentachlorophenol	Ug/L	Company of the second second	950	100	350,0	Contract 10 U carried	10 U	NA	NA	590	870	520	NA	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	7.4 J	NA	NA	NA	5.0 U	62	73	39	69	56	64	71
Semi Volatile Organics SIN	2-Methyinaphthalene	ug/L	31	NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Acenaphthene	ug/L	459	NA	0.10 U	NA	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(a)anthracene	ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		UR/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L		NA	0.10 U.J.O	0.10 U.J.O	0.10 U.J.O	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L		NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics 5IN		ug/L		NA	0.10/U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	findeno (1.2.3-cd) pyrene	ug/L		NA	0.10/U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
	BaP Equivalent	UE/L	0.2	NA	ND	ND	ND	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	AlFluorene	ug/L	313	NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L	155	NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA.	NA
Semi Volatile Organics SIN		ug/L	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA
Semi Volatile Organics SIN		ug/L	469	NA	0.10 U	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Arsenic	mg/L	0.01	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Arsenic	ug/L	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Manganese	mg/L	0.3	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Manganese	ug/L	300	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Nickel	mg/L	0.313	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Nickel	ug/L	313	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Mandrag soficians an analyte nationalise method good Mandrag soficiants a PAH and its calculating BaP equivalents approximate - Somorophyteme equivalents calculated per UPA Ragios 4 guidances - mailigeness per liter Na Analyzed

DRAFT

.... - on Loncode, PAHs used in calculating TuP equivilence were not detected. National - PAHs used in calculating TuP equivilence were detected, but calculated e - The identification of the analyte is acceptable; the reported value is an estimate. '- The analyte was not detected at or above the reporting limit. as have not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

×.

14 of 23 D-64

A.

diate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MW268	MW268	MW268	MW26C	MW26C	MW26C	MW26C	MW26C	MW26C	MW26D	MW26D	MW26D
1			Sample Date	7/24/2015	11/15/2015	2/22/2015	1/15/2015	4/16/2015	4/16/2015	7/24/2015	11/19/2015	2/21/2016	1/14/2015	4/16/2015	7/24/2015
		5	ample Identification No.	MW268	MW268	MW268	MW-26C	MW-26C	MW-926C	MW26C	MW26C	MW25C	MW-26D	MW-26D	MW26D
Analysis	Analyte	Units	Camilla REMEDIAL GOALS-GW	ResultiQualifier	Result Qualifier										
	Pentachiorophenol	ug/L	1	NA	NA	NA	3700	1000	1100	NA	NA	NA	10 U	1	NA
	2-Methyloaphthalene	UE/L	31	150	1801.0	120	140	130	120	66	72	32	10 U	10 U	5.0 U
	Acenaphthene	ug/L	469	24	47	36	1010	10 U	10 U	6.8	5.0 U	3.5 J	10 U	10 U	5.0 U
Semi Volatile Organics	Benzolalanthracene	use/L	and the second se	5.0 U	5.0 U	SU	10 U	10 U	10 U	5.0 U	5.0 U,J,O	5 U	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		5.00	5.0 U	50	10 U	10 U	10 U	5.0 U	NA	5 U	10 U	10 U	5.0 U
Semi Volatile Organics	Benzolb)fluoranthene	ug/L		5.0 U	5.0 U	SU	10 U	10 U	10 U	5.0 U	NA	5 U	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		5.00	5.0 U	5 U	10 U	10IU	10 U	5.0 V	NA	5 U	10 U	10 U	5.0 U
	Chrysene	ug/L		5.0 U	5.0 U	50	10 U	10 U	10 U	5.010	5.0 U.J.O	5 U	100	10 U	5.0 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		5.010	5.0 U	50	100	100	10 U	5.0 U	NA	5 U	10 U	10 U	5.0 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		5.00	5.0 U	50	100	10 U	10 U	5.0 U	NA	S U	100	10 U	5.0 U
	BaP Equivalent	ug/L	0.2	ND	NA	ND	ND	ND	NO						
	Carbazole	ug/L	48	NU	150	87	73	150	211	50	5.5 J.0	35	10 U	2010	1010
	Dibenzofuran	ug/L	31	26	45	67	47	29	35	22	26	12	10 U	10 U	2.91.0
Semi Volatile Organics			313	26	32	13	1010	13	12	9.0	5.5	3.71	10 U	100	5.0LU
Semi-Volatile Organics	Fluorene	ug/L	156	680	750	260	650	500	580	300	430	95	100	10 U	5.00
Semi Volatile Organics	Naphthalene	ug/L		2400	5200	5000	NA	NA	NA	4304.0	NA	1800	NA	NA	3.70.0
Semi Volatile Organics	Pentachiorophenol	ug/L	1	2400	51	48	26	37	35	21	281.0	22	10 U	100	5.010
Semi Volatile Organics	Phenanthrene	ug/L	469		NA	48 NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIM		ug/L	31	NA		NA									
Semi Volatile Organics SIM		ug/L	459	NA	NA			NA							
Semi Volatile Organics SIM		ug/L		NA	NA	NA	NA								
Semi Volatile Organics SIM		ug/L		NA											
Semi Volatile Organics SIM		ug/L		NA											
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA											
Semi Volatile Organics SIM	Chrysene	ug/L		NA		NA	NA								
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA											
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA											
	BaP Equivalent	ug/L	0.2	NA											
Semi Volatile Organics SIM	Fluorene	ug/L	313	NA											
Semi Volatile Organics SIM	Naphthalene	ug/L	156	NA											
Semi Volatile Organics SIM		UR/L	1	NA											
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA											
Total Metals	Arsenic	ma/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ue/L	300	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

The second secon

eve not been reported yet

DRAFT

15 of 23 D-65

diate Groundwater Sample Result Camilla Wood Preserving Comp Camilla, Mitchell, GA

			Sample Location	MW26D	MW26D	MW271	MW28I	MW291	MW30D	MW30D	MW30D	MW30D	DOEWM	MW311	MW311
			Sample Date	11/19/2015	2/21/2016	11/13/2015	11/13/2015	11/17/2015	1/14/2015	4/16/2015	7/24/2015	11/18/2015	2/20/2016	1/13/2015	4/15/2015
		s	ample Identification No.	MW26D	MW26D	MW271	MW28I	MW291	MW-30D	MW-30D	MW30D	MW30D	MW30D	MW-31	MW-31I
			Camilia REMEDIAL												
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachlorophenol	ug/L	1	NA	NA	NA	NA.	NA	240	210	NA	NA	NA	10	21
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	NA	5 U	90 1,0	NA	NA	12	69	62	42	6.4	10 U	10 U
Semi Volatile Organics	Acenaphthene	ug/L	469	NA	S U	180	NA	NA	13	33	26	30	6.7	10 U	10 U
Semi Volatile Organics	Benzo(a)anthracene	ug/L		NA	5 U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA	5 U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	5 บ	10 U	10 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA	S U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA	SU	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Chrysene	ug/L		NA	5 U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	5 U	10 U	10 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA	5 U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	SU	10 U	10 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA	5 U	NA	NA	NA	10 U	10 U	5.0 U	5.0 U	รบ	10 U	10 U
	BaP Equivalent	ug/L	0.2	NA	ND	NA	NA	NA	ND						
Semi Volatile Organics	Carbazole	ug/L	48	10 U	10 U	130	2.7 1,0	10 U	16	44	39	37	8.11	10 U	10 U
Semi Volatile Organics	Dibenzofuran	ug/L	31	6.5	5.3	78	1000,0	5.0 U	10 U	17	16	13	2.51	10 U	10 U
Semi Volatile Organics	Fluorene	Ug/L	313	NA	50	76	46	NA	10 U	20	21	22	SU	10 U	10 U
Semi Volatile Organics	Naphthalene	ug/L	156	NA	S U	1500	NA	NA	35	380	290	270	25	10 U	10 U
Semi Volatile Organics	Pentachiorophenol	UR/L	1	4.90,0	1.6.1	NA	10 U	1010	NA	NA	0,1 EP	59	9.3	NA	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	NA	5 U	12	NA	NA	10 U	12	12	12	2.9 J	10 U	10 U
Semi Volatile Organics SIN	2-Methylnaphthalene	ug/L	31	0.10U	NA	NA	0.27	0.10 U	NA						
Semi Volatile Organics SIN	Acenaphthene	ug/L	459	0.10 U	NA	NA	14 1,0	0.37	NA						
Semi Voiatile Organics SIN	Benzo(a)anthracene	ug/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
Semi Volatile Organics SIN		Ug/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
Semi Volatile Organics SIN	Benzo(b)fluoranthene	UR/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
Semi Volatile Organics SIN	Benzo(k)fluoranthene	UR/L		0.10 0.10	NA	0.10 0.10	0.10 U.J.O	0.10 U.J.O	NA						
Semi Volatile Organics SIM	Chrysene	Ug/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
Semi Volatile Organics SIN	Dibenzo(a,h)anthracene	ug/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	Ug/L		0.10 U	NA	0.10 U	0.10 U	0.10 U	NA						
	BaP Equivalent	ug/L	0.2	ND	NA	ND	ND	ND	NA						
Semi Volatile Organics SIN	AFluorene	UE/L	313	0.11U.D	NA	NA	NA	0.38	NA						
Semi Volatile Organics SIN	Naphthalene	ug/L	156	0.10 U	NA	NA	3.01,0	0.13 1,0	NA						
Semi Volatile Organics SIN	Pentachlorophenol	ug/L	1	NA	NA	0.20 U	NA								
Semi Volatile Organics SIN	Phenanthrene	ug/L	469	0.10 U	NA	NA	0.73 J,O	0.15 J,O	NA	NA	NA	NA	NA	NA	NA.
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

ideting DaP equivalents i per HPA Region 4 guidanc

DRAFT

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

ediate Groundwater Sample Results 2014-2015 Camilla Wood Preserving Company Camilla, Mitcheil, GA

			Sample Location	MW311	MW31	MW311	MW32D	MW33D	MW34D	MW34D	MW35D	MW3SD	MW35D	MW35D	MW35D
			Sample Date	7/25/2015	11/18/2015	2/21/2016	11/16/2015	1/12/2015	4/15/2015	11/15/2015	7/28/2014	7/28/2014	1/14/2015	4/15/2015	7/25/2015
		5	ample Identification No.	MW31	MW31I	MW31I	MW32D	MW-33D	MW-34D	MW34D	MW 35D	MW35D	MW-35D	MW-35D	MW35D
	1	T	Camilla REMEDIAL												a contractor of
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachiorophenol	ug/L		NA	NA	NA	NA	10	10	NA	NA	NA	1400	21000	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	2.6 J,O	1.1 1,0	1.90	5.0 U	10 U	10 U	NA	1000 U	70	49	110	0,1,68
Semi Volatile Organics	Acenaphthene	ug/L	469	5.0 U	2.1 1,0	2.81	5.0 U	10 U	10 U	NA	10 U	10	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(a)anthracene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	1.6	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	1.8	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	1.4	10 U	10 U	5.0 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	1.4	10 U	10 U	5.0 U
Semi Volatile Organics	Chrysene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	1.5	10 U	10 U	5.0 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		5.0 U	5.0 U	5 U	5.0 U	10 U	10 U	NA	10 U	2 U	10 U	10 U	5.0 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		5.0 U	5.0 U	5 U	5.0 Ú	10 U	10 U	NA	10 U	2.0	10 U	10 U	5.0 U
	BaP Equivalent	ug/L	0.2	ND	ND	ND	ND	ND	ND	NA	ND	Detected	ND	ND	ND
Semi Volatile Organics	Carbazole	ug/L	48	1.51,0	6.4 J,O	4.8 J	10 U	10 U	10 U	10 U	10 M	65	10 U	44	42 U
Semi Volatile Organics	Dibenzofuran	ug/L	31	6.9	12	9.2	5.0 U	10 U	10 U	5.0 U	.42	23	19	30	26
Semi Volatile Organics	Fluorene	ug/L	313	3.4 J,O	8.4	7.2	1.3 1,0	10 U	10 U	NA	10 U	2.4	10 U	10 U	5.0 U
Semi Volatile Organics	Naphthalene	ug/L	156	1.5 J.O	9.4	10	5.0 U	10 U	10 U	NA	1100	140	320	580	520
Semi Volatile Organics	Pentachlorophenol	ug/L	Contraction of the second second	121.0	15	77	100	NA	NA	100	19000 3	6000	NA	NA	16000
Semi Volatile Organics	Phenanthrene	ug/L	459	1.11,0	2.9 1,0	1.6J	4.0 J,O	10 U	10 U	NA	30	17	10 U	13	11
Semi Voiatile Organics SIN	2-Methylnaphthaiene	ug/L	31	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Acenaphthene	ug/l.	469	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	A Benzo(a)anthracene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	M Benzo(a)pyrene	ug/L	5 m 2	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(b)fluoranthene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(k)fluoranthene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U,J,O	NA	NA	NA	NA	NA
Semi Volatile Organics SIM	M Chrysene	ug/L	100	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Dibenzo(a,h)anthracene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
	BaP Equivalent	ug/L	0.2	NA	NA	NA	NA	NA	NA	ND	NA	NA	NA	NA	NA
Semi Volatile Organics SIM	vt Fluorene	ug/L	313	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Semi Volatile Organics SIM		ug/L	156	NA	NA	NA	NA	NA	NA	0.24 J,O	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Pentachiorophenol	ug/L	1	NA											
Semi Volatile Organics SIN	Phenanthrene	ug/L	469	NA	NA	NA	NA	NA	NA	0.10 U	NA	NA	NA	NA	NA
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	ug/L	313	NA											

have not been reported yet

The second secon

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

14-2015 diate Groundwater Sample Results 20 Camilia Wood Preserving Company Camilia, Mitchell, GA

			Sample Location	MW350	D	MW3SD	MW36D	MW36D	MW36D	MW36D	MW36D	MW360	MW36D	MW37	MW37	MW37
			Sample Date	11/18/20	315	2/21/2015	7/28/2014	7/28/2014	1/13/2015	4/15/2015	7/25/2015	11/19/2015	2/21/2016	7/28/2014	7/28/2014	1/13/2015
		s	ample Identification No.	MW35	D	MW35D	MW 36D	MW36D	MW-35D	MW-36D	MW36D	MW36D	MW36D	MW 37	MW37	MW-37
			Camilia REMEDIAL													
Analysis	Analyte	Units	GOALS-GW	Result Qu	alifier	Result Qualifier										
Herbicides	Pentachiorophenol	ug/L	1	NA		NA	NA	NA	10	19	NA	NA	NA	NA	NA	1U
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	100 1,0		92	10 U	SU	10 U	10 U	0.77 J,O	5.0 U	25 U	10 U	5 U	10 U
Semi Volatile Organics	Acenaphthene	ug/L	469	5.0 U		5 U	10 U	SU	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U
Semi Volatile Organics	Benzo(a)anthracene	ug/t,		5.0 U		5 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA		5 U	10 U	5 U	10 U	10 U	5.0 U	5.D U	25 U	10 U	5 U	10 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA		5 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	S U	10 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA		5 U	10 U	SU	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U
Semi Volatile Organics	Chrysene	ug/L		5.0 U		5 U	10 U	S U	10 U	10 U	5.0 U	5.D U	25 U	10 U	5.0	10 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA		s u	10 U	10 U	10 U	10 U	5.0 U	5.D U	25 U	10 U	10 U	10 U
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA		5 U	10 U	10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	10 U	10 U
	BaP Equivalent	ug/L	0.2	ND	1	ND										
Semi Volatile Organics	Carbazole	ug/L	48	10 U		37	10 U	10 U	10 U	10 U	0.621,0	2.2 1,0	50 1	10 U	10 U	10 U
Semi Volatile Organics	Dibenzofuran	ug/L	31	35		23	10 U	10 U	10 U	10 U	1.8 1,0	\$.0 U	25 U	10 U	10 U	10 U
Semi Volatile Organics	Fluorene	ug/L	313	5.0 U		SU	10 U	SU	10 U	10 U	5.0 U	1.1 1,0	25 U	10 U	SU	10 U
Semi Volatile Organics	Naphthalene	ug/L	156	490 1,0		230	10 U	5 U	10 U	10 U	5.3	5.0 U	2.5 /	10 U	5 U	10 U
Semi Volatile Organics	Pentachlorophenol	ug/L	1	16000 0,0	2	19000	1501	280	NA	NA	120 1,0	650	150	25 U,J	100	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	5.0 U		15	10 U	5 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA		NA										
Semi Volatile Organics SIM	Acenaphthene	ug/L	469	NA		NA										
Semi Volatile Organics SIM	Benzo(a)anthracene	ug/L		NA		NA										
Semi Volatile Organics SIM		Ug/L		NA		NA										
Semi Volatile Organics SIM		ug/L		NA		NA										
Semi Volatile Organics SIM	Benzo(k)fluoranthene	ug/L		NA		NA										
Semi Volatile Organics SIM	Chrysene	ug/L		NA		NA										
Semi Volatile Organics SIM	Dibenzo(a,h)anthracene	ug/L		NA		NA										
Semi Voiatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		NA		NA										
	BaP Equivalent	ug/L	0.2	NA		NA										
Semi Volatile Organics SIM	Fluorene	ug/L	313	NA		NA										
Semi Volatile Organics SIM	Naphthalene	ug/L	156	NA		NA										
Semi Volatile Organics SIM		ug/L	1	NA		NA										
Semi Volatile Organics SIM	Phenanthrene	ug/L	469	NA		NA										
Total Metals	Arsenic	mg/L	0.01	NA		NA	0.05 U									
Total Metals	Arsenic	ug/L	10	NA		NA										
Total Metals	Manganese	mg/L	0.3	NA		NA	1.48									
Total Metals	Manganese	ug/L	300	NA		NA										
Total Metals	Nickel	mg/L	0.313	NA		NA	0.02 U									
Total Metals	Nickel	ug/L	313	NA		NA										

Shadayg indicates an analyte exceeds remedial goal Shadayg unlikates a PAH used in calculating BaP equivalents et - Beaucologyreese equivalents calculated per EPA Region 4 goid

DRAFT

led ye

were not detected sted, but calculate have not been report ng BaP oq

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

ediate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MW37	MW37	MW37	MW37	MW38A	ABEWIM	ABEWIN	MW38A	MW38A	MW38A	MW38A	MW38B
			Sample Date	4/15/2015	7/23/2015	11/15/2015	2/20/2016	7/30/2014	7/30/2014	1/13/2015	4/15/2015	7/25/2015	11/17/2015	2/19/2016	8/7/2014
		5	ample Identification No.	MW-37	MW37	MW37	MW37	MW 38A	MW38A	MW-38A	MW-38A	MW38A	MW38A	ABEWM	MW 388
	Г	1	Camilla REMEDIAL	1	1										
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachlorophenol	ug/L	Construction of the second second	10	NA	NA	NA	NA	NA	44	23	NA	NA	NA	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	11	10 U	5.0 U	NA	5 U	50	27	29	48	37	70	54	120
Semi Volatile Organics	Acenaphthene	ug/L	469	10 U	5.0 U	NA	5 U	10 U	10	14	10 U	6.3	10	5 U	28
Semi Volatile Organics	Benzo(a)anthracene	ug/L		10 U	5.0 U	NA	SU	10 U	SU	10 U	10 U	5.0 U	5.0 U	SU	5 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		10 U	5.0 U	NA	รบ	10 U	s u	10 U	10 U	5.0 U	5.0 U	s u	5 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	5.0 U	NA	su	10 U	S U	10 U	10 U	5.0 U	5.0 U	SU	SU
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 0	5.0 U	NA	5 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U	5 U	5 U
Semi Volatile Organics	Chrysene	Ug/L		10 U	5.0 U	NA	50	10 U	SU	10 U	10 U	5.0 U	5.0 U	5 U	su
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	5.0 U	NA	5 U	10 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U	10.0
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	5.0 U	NA	5 U	10 U	10 U	10 U	10 U	5.0 U	5.0 U	5 U	10 U
	BaP Equivalent	ug/L	0.2	ND	ND	NA	ND								
Semi Volatile Organics	Carbazole	ug/L	48	10 U	10 U	10 U	100	27	15	57	40	36 J,O	74	48	86
Semi Volatile Organics	Dibenzofuran	ug/L	31	10 U	5.0 U	5.0 U	5 U	30	15	34	11	20	42	24	28
Semi Volatile Organics	Fluorene	ug/L	313	10 U	5.0 U	NA	SU	24	13	28	28	16	5.0 U	18	16
Semi Volatile Organics	Naphthalene	ug/L	156	10 U	0.92),0	NA	su	410	240	660	390	330	560	420	490
Semi Volatile Organics	Pentachlorophenol	ug/L	COLUMN OF 1 STREET	NA	0.57 1,0	10 10	0.351	100	290	NA	NA	59U,O	91	55	5200
Semi Voiatile Organics	Phenanthrene	ug/L	469	10 U	5.0 U	NA	su	23	12	27	24	18	38	27	24
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		ug/L	469	NA	NA	0.10 U	NA								
Semi Volutile Organics SIM	Benzo(a)anthracene	ug/L		NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		ug/L		NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		UR/L		NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		ug/L		NA	NA	0.10 U,J,O	NA								
Semi Volatile Organics SiM		Ug/L		NA	NA	0.10 U	NA	NA	NA	NA	NA.	NA	NA	NA	NA
Semi Volatile Organics SIM		ug/L		NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		ug/L		NA	NA	0.10 U	NA								
	BaP Equivalent	ug/L	0.2	NA	NA	ND	NA	NA	NA	NA	NA .	NA	NA	NA	NA
Semi Volatile Organics SiM	Fluorene	Ug/L	313	NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		UR/L	156	NA	NA	0.10 U	NA								
Semi Volatile Organics SIM		ug/L	1	NA											
Semi Volatile Organics SIM		ug/L	469	NA	NA	0.10 U	NA								
Total Metals	Arsenic	mg/L	0.01	0.05 U	NA										
	Arsenic	ug/L	10	NA	1.0 U	0.34 J,O	1 U	NA							
	Manganese	mg/L	0.3	1.06	NA										
	Manganese	ug/L	300	NA	720	770	670	NA							
	Nickel	mg/L	0.313	0.02 U	NA										
Total Metals	Nickel	ug/L	313	NA	10 U	14	41	NA							

The second secon ana have not been reported yet

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

19 of 23 D-69

DRAFT

ediate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MW388	MW388	MW388	MW388	MW388	MW388	ARW39A	AREWM	MW39A	MW39A	MW39A	AREWM
			Sample Date	8/7/2014	1/13/2015	4/14/2015	7/25/2015	11/17/2015	2/20/2016	7/28/2014	7/28/2014	1/14/2015	4/15/2015	7/23/2015	11/18/2015
		5	Sample Identification No.	MW388	MW-388	MW-388	MW388	MW388	MW388	MW 39A	AREWM	MW-39A	MW-39A	AREWM	MW39A
		1	Camilia REMEDIAL												
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachiorophenol	UE/L	1	NA	7300	3800	NA	NA	NA	NA	NA	4000	5300	NA	NA
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	200	260	270	190	310	220	1000 U	100	150	130	130 1,0	33
Semi Volatile Organics	Acenaphthene	ug/L	469	42	67	79	35	79 J,O	71	40	29	38	42	37	7.8
Semi Volatile Organics	Benzo(a)anthracene	ug/L		20 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U	10 U	5.0 U	\$.0 U,J,O
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	10 U	10 U	5.0 U	- 5.0 U	25 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U,J,O
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	5 U	10 U	10 U	5.0 U	5.0 U,J,O
Semi Volatile Organics	Chrysene	ug/L		10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	SU	10 U	10 U	5.0 U	5.0 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	10 U	10 U	10 U	5.0 U	5.0 U,J,O
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	10 U	10 U	5.0 U	5.0 U	25 U	10 U	10 U	10 U	10 U	5.0 U	5.0 U,1,0
	BaP Equivalent	ug/L	0.2	ND											
Semi Volatile Organics	Carbazole	ug/L	48	110	150	180	130 1,0	130	92	22	19	10 U	23	27	6.6.1,0
Semi Volatile Organics	Dibenzofuran	ug/L	31	48	59	60	64	62 1,0	66	51	29	42	46	46	10
Semi Volatile Organics	Fluorene	ug/L	313	26	42	50	43	53	25 U	27	21	28	30	34	5.8
Semi Volatile Organics	Naphthalene	ug/L	156	1000	1300	1400	1000	1700	1200	1000 U	320	590	530	520	2001,0
Semi Volatile Organics	Pentachiorophenol	ug/L	State of the second second	5300	NA	NA	2600	10 U	2600	3600 1	\$100	NA	NA	5000	1500
Semi Volatile Organics	Phenanthrene	ug/L	469	41	57	70	43	77	75	46	31	46	53	5.0 U	11
Semi Volatile Organics SIN	2-Methyinaphthalene	ug/L	31	NA											
Semi Volatile Organics SIN		ug/L	459	NA	NA	NA	NA	NA.	NA	NA:	NA	NA	NA	NA	NA
Semi Volatile Organics SIN	Benzo(a)anthracene	ug/L		NA											
Semi Volatile Organics SIN		ug/L		NA	NA	NA	NA	NA	NA	NA.	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L		NA	NA	NA	NA	NA	NA .	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SIN		ug/L		NA.	NA										
Semi Volatile Organics SIN		ug/L		NA											
Semi Volatile Organics SIN		ug/L		NA	NA.	NA	NA	NA	NA						
Semi Volatile Organics SIN	Indeno (1,2,3-cd) pyrene	ug/L		NA											
	BaP Equivalent	ug/L	0.2	NA											
Semi Volatile Organics SIN		ug/L	313	NA	NA.	NA	NA	NA	NA						
Semi Volatile Organics SIN		ug/L	156	NA											
Semi Volatile Organics SIN		ug/L	1	NA											
Semi Volatile Organics SIN		ug/L	469	NA											
Total Metals	Arsenic	mg/L	0.01	NA											
Total Metals	Arsenic	ug/L	10	NA											
Total Metals	Manganese	mg/L	0.3	NA											
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA											
Total Metals	Nickel	Ug/L	313	NA											

arve not been reported yet

The state of the s

Created by: Suzy Prouty 1/23/2017 Updated by: Courtney Collins 2/13/2017 Checked by:

20 of 23 D-70

DRAFT

ndiate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MW39A	MW398	MW398	MW398	MW398	MW398	MW39B	MW39B	MW398	MW40	MW40	MW40
			Sample Date	2/20/2016	7/28/2014	7/28/2014	1/14/2015	4/16/2015	7/23/2015	11/18/2015	11/18/2015	2/21/2016	7/29/2014	7/29/2014	1/14/2015
		s	ample Identification No.	MW39A	MW 398	MW398	MW-398	MW-398	MW398	MW398	MW9398	MW398	MW 40	MW40	MW-40
			Camilia REMEDIAL												
Analysis	Analyte	Units	GOALS-GW	Result Qualifier											
Herbicides	Pentachlorophenol	ug/L	1	NA	NA	NA	10	20	NA	NA	NA	NA	NA 10 U	NA	100
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	120	10 U	8.3	10 U	10 U	4.1 1,0	8.1	7.7	4.3 J	10 U	5 U	100 U
Semi Volatile Organics	Acenaphthene	ug/L	469	50 U	10 U	_5 U	10 U	10 U	5.0 U	NA	NA	10 U	100	5 U S U	100 U
Semi Volatile Organics	Benzo(a)anthracene	ug/L		50 U	10 U	5 U	10 U	10 U	5.0 U	NA		10 U 10 U	100	50	100 U
Semi Volatile Organics	Benzo(a)pyrene	ug/L		50 U	10 U	S U	10 U	10 U	5.0 U	NA	NA	10 U	100	50	100 U
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		50 U	10 U	5 U	10 U	10 U	5.0 U 5.0 U		NA	10 U 10 U	100	50	100 U
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		50 U	10 U	su	10 U	10 U		NA		10 U	100	50	100 U
Semi Volatile Organics	Chrysene	ug/L		50 U	10 U	su	10 U	10 U	5.0 U	NA	NA	10 U	100	100	100 U
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		50 U	10 U	10 U	10 U	10 U	5.0 U	NA		10 U	100	100	1000
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		50 U	10 U	10 U	10 U	10 U	5.0 U ND	NA	NA	10 U ND	10U ND	100	100 U
	BaP Equivalent	ug/L	0.2	ND	ND	ND	ND	ND	10 U		10 U	20 U	1010	10 U	10010
Semi Volatile Organics	Carbazole	ug/L	48	100 U	10 U	10 U	10 U	10 U		10 U 6.8	6.0	4.12	100	100	10010
Semi Volatile Organics	Dibenzofuran	ug/L	31	31 J	10 U	10 U	10 U	10 U	5.0				100	50	100 U
Semi Volatile Organics	Fluorene	ug/L	313	50 U	10 U	su	10 U	10 U	5.0 U	NA	NA	10 U		SU	100 U
Semi Volatile Organics	Naphthalene	ug/L	156	490	10 U	28	10 U	18	19	35		18	10 U		
Semi Volatile Organics	Pentachlorophenol	ug/L	1	\$700	S00 J	570	NA	NA	5.1 1,0	360	320	110	1500	170	100 U
Semi Volatile Organics	Phenanthrene	ug/L	465	38.1	10 U	5 U	10 U	10 U	5.0 U	NA	NA	1.8 J	10 U	5 U	100 U
Semi Volatile Organics SIN	A 2-Methylnaphthalene	ug/L	31	NA											
Semi Volatile Organics SIN	A Acenaphthene	ug/L	469	NA	NA	NA	NA	NA	NA	0.58	0.58	NA		NA	NA
Semi Volatile Organics SIN	A Benzo(a)anthracene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA
Semi Volatile Organics SIN	A Benzo(a)pyrene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA		NA
Semi Volatile Organics SIN	A Benzo(b)fluoranthene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA	NA	
Semi Volatile Organics SIN	Benzo(k)fluoranthene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U,J,O	0.10 U,J,O	NA		NA	NA
Semi Volatile Organics SIN	Chrysene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA NA	NA	NA NA
Semi Volatile Organics SIN		ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA
Semi Volatile Organics SIN	Indeno (1,7,3-cd) pyrene	ug/L		NA	NA	NA	NA	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA
	BaP Equivalent	ug/L	0.2	NA	NA	NA	NA	NA	NA	ND	ND			NA	NA
Semi Volatile Organics SIN		ug/L	313	NA	NA	NA	NA	NA	NA	0.73 U,O	0.63 U,O	NA	NA NA	NA	NA
Semi Volatile Organics SIN		ug/L	156	NA											
Semi Volatile Organics SIN		ug/L	1	NA											
Semi Volatile Organics SIN	A Phenanthrene	ug/L	469	NA	NA	NA	NA	NA	NA	2.3 1,0	2.1 J,O	NA	NA	NA	0.05/U
Total Metals	Arsenic	mg/L	0.01	NA		NA									
Total Metals	Arsenic	ug/L	10	NA		NA	NA		NA						
Total Metals	Manganese	mg/L	0.3	NA	1430										
Total Metals	Manganese	ug/L	300	NA											
Total Metals	Nickel	mg/L	0.313	NA	0.0211										
Total Metals	Nickel	Ug/L	313	NA											

DRAFT

The second secon ions have not been reported yet

D-71

ediate Groundwater Sample Results 2014-2018 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location	MW40	MW40	MW40	MW40	MW40	MW41	MW41	MW41	MW41	PMW01	SMW01I	SMW021
			Sample Date	4/15/2015	7/23/2015	11/18/2015	11/18/2015	2/21/2016	8/7/2014	8/7/2014	1/14/2015	4/14/2015	11/14/2015	11/12/2015	11/12/2015
		5	emple Identification No.	MW-40	MW40	MW40	MW940	MW40	MW 41	MW41	MW-41	MW-41	PMW01I	SMW01I	SMW021
			Camilla REMEDIAL												
Analysis	Analyte	Units	GOALS-GW	Result Qualifier	Result Qualifier	Result Qualifier	Result Qualifier								
Herbicides	Pentachiorophenol	ug/L	CONTRACTOR DE LA CONTRACTOR DE	IU	NA	NA	NA	NA	NA	NA	66	Subjects 6 Millionshi	NA	NA	NA
Semi Volatile Organics	2-Methyinaphthalene	ug/L	31	10 U	5.0 U	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	14	61
Semi Volatile Organics	Acenaphthene	ug/L	469	10 U	5.0 U	NA	NA	50	SU	10 U	10 U	10 U	5.0 U	37 1,0	260
Semi Volatile Organics	Benzo(a)anthracene	ug/L		10 U	5.0 U	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Benzo(a)pyrene	ug/L		10 U	5.0 U	NA	NA	5 U	SU	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		10 U	5.0 U	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		10 U	5.0 U	NA	NA	5 U	S U	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Chrysene	ug/L		10 U	5.0 U	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		10 U	5.0 U	NA	NA	5 U	10 U	10 U	10 U	10 U	5.0 U	NA	NA
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		10 U	5.0 U	NA	NA	5 U	10 U	10 U	10 U	10 U	5.0 U	NA	NA
	BaP Equivalent	ug/L	0.2	ND	ND	NA	NA	ND	ND	ND	ND	ND	ND	NA	NA
Semi Volatile Organics	Carbazole	UR/L	48	10 U	10 U	100	10 U	10 U	19	130					
Semi Volatile Organics	Dibenzofuran	ug/L	31	100	5.0 U	5.0 U	5.0 U	50	10 U .	10 U	10 U	10 U	5.0 U	160	51 1,0
Semi Volatile Organics	Fluorene	ug/L	313	100	5.0 U	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	73	83 J,O
Semi Volatile Organics	Naphthalene	ug/L	156	10 U	0.72 1,0	NA	NA	5 U	5 U	10 U	10 U	10 U	5.0 U	290	3800
Semi Volatile Organics	Pentachiorophenol	ug/L	Contractory of Contra	NA	10 U	NA	3.60.0	100	420	220	NA	NA	230	9.91,0	NA
Semi Volatile Organics	Phenanthrene	ug/L	469	10 U	5.0 U	NA	NA	5 U	S U	10 U	10 U	10 U	5.0 U	70	83 J,O
Semi Volatile Organics SI	VI 2-Methylnaphthalene	ug/L	31	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SI	MAcenaphthene	Ug/L	469	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SI		ug/L		NA	NA	0.10 U	0.100	NA	NA	NA	NA	NA	NA	0.10 U	0,141.0
Semi Volatile Organics SI		ug/L		NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	0.10 U	0.10 U
Semi Volatile Organics SI		ug/L		NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	0.10 U	0.10 U
Semi Volatile Organics SI		ug/L		NA	NA	0.10 0.10	0.10 U.J.O	NA	NA	NA	NA	NA	NA	0.10 0.10	0.10 0.10
Semi Volatile Organics SI		Ug/L		NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	D.10U	0.0911.0
	M Dibenzo(a,h)anthracene	ug/L		NA	NA	0.10	0.10 U	NA	NA	NA	NA	NA	NA	0.10	0.10 U
	Mindeno (1.2.3-cd) pyrene	ug/L		NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	0.1010	0.10 U
and the second second second	BaP Equivalent	ug/L	0.2	NA	NA	ND	ND	NA	NA	NA	NA	NA	NA	ND	Detected
Semi Volatile Organics SI	M Eluorene	ug/L	313	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SI		ug/L	156	NA	NA	0.10 U	0.100	NA	NA	NA	NA	NA	NA	NA	NA
Semi Volatile Organics SI		ug/L	1	NA	NA	0.361.0	NA	NA	NA	NA	NA	NA	NA	NA	0.81
Semi Volatile Organics SI		ug/L	469	NA	NA	0.10 U	0.10 U	NA	NA	NA	NA	NA	NA	NA	NA
Total Metals	Arsenic	mg/L	0.01	0.05.0	NA	NA	NA	NA							
Total Metals	Arsenic	ug/L	10	NA	NA	NA	NA								
Total Metals	Manganese	mg/L	0.3	445	NA	NA	NA	NA							
Total Metals	Manganese	ug/L	300	NA	NA	NA	NA								
Total Metals	Nickel	mg/L	0.313	0.02 U	NA	NA	NA	NA							
															NA
Total Metals	Nickel	ug/L	313	NA	NA	NA	1								

Stanling scholars on welfyle excesh resultid guilt Barlang scholars on Hollowick in Scholars, Birk seynotes: Bergenders : Honoropyson seperiteter ciclosted per EPA Ragins & gardenes scholars and Scholars Angulat Distantis - Tablement for the scholars guilt space fragment scholars Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt space/scholars was and Amanta Distantis - Tablement scholars guilt scholars guilt scholars guilt scholars Distantis - Tablement scholars guilt scholars guilt scholars guilt scholars Distantis - Tablement scholars guilt scholars guilt scholars guilt scholars guilt scholars guilt scholars Distantis - Tablement scholars guilt scholars guilt scholars guilt scholars guilt scholars guilt scholars Distantis - Tablement scholars guilt scholars guilt scholars guilt scholars guilt scholars guilt scholars guilt scholars Distantis - Tablement scholars guilt scholars gu

DRAFT

have not been reprted yet

diate Groundwater Sample Results 2014-2016 Camilla Wood Preserving Company Camilla, Mitchell, GA

			Sample Location		V03I	TMV			W02I
			Sample Date	11/12	/2015	11/11 TMN		TMW021	
		Si	ample Identification No.	SMN	VOSI	100	1204	1995	VUZI
Analysis	Analyte	Units	Camilia REMEDIAL GOALS-GW	Result	Qualifier		Qualifier		Qualifie
terbicides	Pentachiorophenol	ug/L	Contraction a sector in the sector	NA		NA		NA	
Semi Volatile Organics	2-Methylnaphthalene	ug/L	31	NA		NA		5.0	
Semi Volatile Organics	Acenaphthene	Ug/L	469	NA		NA		5.0	
iemi Volatile Organics	Benzo(a)anthracene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Benzo(a)pyrene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Benzo(b)fluoranthene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Benzo(k)fluoranthene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Chrysene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Dibenzo(a,h)anthracene	ug/L		NA		NA		5.0	
Semi Volatile Organics	Indeno (1,2,3-cd) pyrene	ug/L		NA		NA		5.0	υ
	BaP Equivalent	ug/L	0.2	NA	-	NA		ND	
Semi Volatile Organics	Carbazole	ug/L	48	10		10		10	
Semi Volatile Organics	Dibenzofuran	ug/L	31	5.0	U	5.0	U	5.0	
Semi Volatile Organics	Fluorene	ug/L	313	NA		NA		5.0	
Semi Volatile Organics	Naphthalene	ug/L	156	NA		NA		5.0	υ
Semi Volatile Organics	Pentachlorophenol	ug/L	State of the state	NA		NA		10	
Semi Volatile Organics	Phenanthrene	ug/L	469	NA		NA		5.0	υ
Semi Volatile Organics SIM	2-Methylnaphthalene	ug/L	31	0.10	U	0.10	U	NA	
Semi Volatile Organics SIM	Acenaphthene	ug/L	469	0.10	U	0.10		NA	
Semi Volatile Organics SIM		ug/L		0.10	υ	0.10	U	NA	
Semi Volatile Organics SIM		ug/L		0.10	U	0.10		NA	
Semi Volatile Organics SIM		ug/L		0.10	U	0.10	υ	NA	
Semi Volatile Organics SIM		ug/L			0,1,0		0,1,0	NA	
Semi Volatile Organics SIM		ug/L		0.10	U	0.10	U	NA	
Semi Volatile Organics SIM		ug/L		0.10		0.10		NA	
Semi Volatile Organics SIM	Indeno (1,2,3-cd) pyrene	ug/L		0.10	U	0.10	U	NA	
	BaP Equivalent	ug/L	0.2	ND		ND		NA	
Semi Volatile Organics SIM	Fluorene	ug/L	313	0.10		0.10		NA	
Semi Volatile Organics SIM	Naphthalene	ug/L	156	0.10	U	0.10	U	NA	
Semi Volatile Organics SIM		ug/L	1	0.20		0.20		NA	
Semi Volatile Organics SIM		ug/L	469	0.10	υ	0.10	U	NA	
Total Metals	Arsenic	mg/L	0.01	NA		NA		NA	
Total Metals	Arsenic	ug/L	10	NA		NA		NA	
Total Metals	Manganese	mg/L	0.3	NA		NA		NA	
Total Metals	Manganese	ug/L	300	NA		NA		NA	
Total Metals	Nickel	mg/L	0.313	NA		NA		NA	
Total Metals	Nickel	ug/L	313	NA		NA		NA	

Bading indicates as analyte exceeds remedial goal Shading indicates a PAH used in calculating BaP equivalents instant - Benzolapyrous equivalents calculated per EPA Region 4 gaidmore

- reces rund in calculating BaP equivalents ware not detected and in calculating BaP equivalents ware detected, but calculated o no of the marging in acceptable; the reported value is an estimate a cal datacated at or shore the reporting limit; a have not been rep stad yet

APPENDIX E – DECEMBER 2016 QUARTERLY WATER LEVEL MEMORANDUM

BLACK & VEATCH SPECIAL PROJECTS CORP. 1120 SANCTUARY PARKWAY, STE 200 ALPHARETTA GA 30009 770-521-8127 | MCCOYCE2@bv.com

MEMORANDUM

United States Environmental Protection Agency
Camilla Wood Preserving Site
Pressure Transducer Technical Memo #4

B&V Project 049062 B&V File 49062-0144-03-M-02471R0 December 30, 2016

To:	Scott Miller, Remedial Project Manager, USEPA Region 4
From:	Carrie McCoy, Task Order Manager, Black & Veatch
cc'd:	Luis Flores, USEPA Region 4
	Ben Bentkowski, USEPA
	Jim McNamara, GA EPD
	Ed Hicks, Project Manager, Black & Veatch
	Phillip Cole, Black & Veatch
Subject:	Pressure Transducer Operation from August 23, 2016 through November 21, 2016
	at the Camilla Wood Preserving Site

Black & Veatch Special Projects Corp. (Black & Veatch) was tasked by United States Environmental Protection Agency (EPA) to install, maintain, and monitor pressure transducers at the Camilla Wood Preserving Site (Site) in Camilla, Mitchell County, Georgia. The purpose of the pressure transducer investigation is to monitor groundwater elevations, which can be used to help assess the integrity of the barrier wall and capping containment system at the Site. Ten (10) pressure transducers were installed on November 20, 2015 into existing monitoring wells (Figure 1). The first Pressure Transducer Memo was submitted by Black & Veatch in March 2016 and described transducer station installation, locations, rationale, and a discussion of first 3 months of transducer operation (November 22, 2015 through February 22, 2016). The second and third Pressure Transducer Memos were submitted by Black & Veatch in June 2016 and September 2016, respectively, and described transducer operation between February 23, 2016 and August 22, 2016. This fourth quarterly Pressure Transducer Memo describes the fourth quarter of transducer operations between August 23, 2016 and November 21, 2016. Anomalies in the transducer data are discussed along with recommendations. A summary of Transducer Station Locations and Rationale, which has been provided in the text of previous Pressure Transducer Memo.

Data Evaluation

To assess groundwater elevations inside and outside the barrier wall and capping containment system at the Site, the transducer data is downloaded on regular basis (at least twice per month). The data has been evaluated through November 21, 2016 to document and interpret the trend of water elevations at the Site, as illustrated on Figures 2, 3, and 4. Figure 5 presents groundwater elevations for Transducer Stations 1 through 5 at the Site, which were measured manually on October 14, 2016. These water level measurements are also indicated on Figures 2 and 3 for comparison of water level

elevations measured by the transducers in Transducer Stations 1 through 5. Table 1 presents the groundwater level elevations obtained by manual groundwater level measurements by Black & Veatch on February 22, 2016, April 4, 2016, July 23, 2016, and October 14, 2016. Also, of note, when the manual water level measurement was collected at CAP04 on October 14, 2016, field personnel noted a slight LNAPL staining to the water level meter tape. In the future, a water level interface probe will be used for these manual measurements in order to measure any thickness of LNAPL that is present.

Table 1:

Summary of Groundwater Elevations Collected Manually at Transducer Station Locations

Well ID	Location	Transducer Station	Water Level Elevation on 02/22/16 (ft amsl)	Water Levei Elevation on 04/04/16 (ft amsl)	Water Level Elevation on 07/23/16 (ft amsl)	Water Level Elevation on 10/14/16 (ft amsl)
CAP08		1	157.82	157.25	157.86	157.55
CAP04	Inside Barrier Wall	2	162.88	163.48	160.89	159.02
CAP05		3	159.5	160.2	160.07	157.47
CAP06		4	155.82	155.55	155.54	155.3
MW08S		1	168.96	169.97	167.17	164.7
CAP02	Outside Barrier Wall	2	169.56	170.14	168.15	166.62
MW04S		3	169.97	170.92	168.48	166.2
CAP03		4	166.85	167.14	167.07	165.31
MW01I	Background Well	5	125.47	129.84	123.33	120.34
MW01S	Outside Barrier Wall	5	165.43	166.04	163.59	162.86

Note:

ft ams! – feet above mean sea level

Based on pre-cap construction groundwater elevation data, the Site-wide water table along the top of the surficial aquifer is nearly flat. However, the installation of any containment system will modify the local groundwater flow system, particularly after rainfall events. In particular, water is intentionally shed off the cap, creating a temporary mound along the outer perimeter of the cap. During rainfall events, any local drainage system will also locally elevate the water table. For example, increased surface water drainage along the right of way of Thomas Street to the east and East Bennett Street to the north could influence the water table adjacent to the cap in these regions. In addition, any natural flow direction in the surficial aquifer will be disrupted and re-routed where groundwater meets the barrier wall.

Regarding the background monitoring well, MW01S continues to react to rainfall events similarly to MW08S, CAP02, and MW04S, which are also outside the barrier wall containment system (Figures 1

and 2). The general groundwater elevation in MW01S was approximately 6-7 feet lower than the average of MW08S, CAP02, and MW04S in November 2016. The lower groundwater elevation at MW01S is most likely attributed to its distance from the containment system (minimally influenced by the shedding of rain water from the cap) and the well is located on the western side of the containment cell where water level elevations are slightly lower. On October 10, 2016, during quarterly groundwater sampling at the Site, Black & Veatch field personnel manually measured water levels at MW02S, MW11S, and MW13S to further investigate this phenomenon. MW02S, which is on the western side of the containment cell, had a lower groundwater elevation (163.32 feet amsl) than MW11S (165.92 feet amsl) and MW13S (166.52 feet amsl), which are on the eastern side of the containment cell. The water level elevations measured on October 10, 2016 are included in the following Table 2.

Table 2:

Summary of Groundwater Elevations Collected Manually on October 10, 2016 at Non-Transducer Station Locations

Well ID	Water Level Elevation on 10/10/16 (ft amsl)
MW02S	163.32
MW11S	165.92
MW13S	166.52

Note:

ft amsl – feet above mean sea level

The groundwater elevation in background shallow well MW01S (from November 2015 to November 2016) has fluctuated from a low of approximately 155.5 feet above mean sea level (amsl) to a high of 166.5 feet amsl. The overall trend in MW01S has very similarly mimicked the trends in MW04S, MW08S, and CAP02, which show rapid response to rainfall events. The groundwater elevation of MW01S is approximately 4 to 6 feet lower than the averaged elevation of MW04S, MW08S, and CAP02 from November 2015 through November 2016 (as shown in Figure 4). The groundwater elevation in background intermediate well MW01I (from November 2015 to November 2016) has fluctuated from a low of approximately 118 feet amsl to a high of 132 feet amsl, with an overall rising trend from November 2015 through early April 2016 followed by a generally decreasing trend through November 2016. In general, both MW01S and MW01I have both shown a steady, decreasing trend in groundwater elevation from early September 2016 through mid-November 2016 in response to drought conditions persisting in southwest Georgia. In addition, the variation in the groundwater elevation in the groundwater elevation st background monitoring wells MW01I and MW01S reveal a significant downward vertical

hydraulic gradient, calculated at approximately -0.91 foot/foot by the manual measurements collected by Black & Veatch on October 14, 2016. To further investigate the downward vertical hydraulic gradient at the Site, Black and Veatch manually measured groundwater level measurements during quarterly groundwater sampling activities at the Site in October 2016. Water level measurements were collected at MW02S, MW02I, MW11S, and MW11I on October 10, 2016. Both the MW02S/02I and MW11S/11I clusters show similar downward hydraulic gradients that are evident in the MW01S/01I cluster. The hydraulic gradients are presented in the following Table 3.

Table 3:

Summary of Vertical Hydraulic Gradients at Non-Transducer Station Monitoring Wells

Well ID	Well Total Depth	Water Level Measured on 10/10/16 (feet BTOC)	Vertical Hydraulic Gradient
MW025	20	5.83	-0.90
MW021	65	46.35	-0.90
MW115	25	5.72	-0.86
MW11I	75	48.89	-0.80

Note:

BTOC – below top of casing

Similar to background well MW01S, groundwater elevations surrounding the outside of the barrier wall and capping containment system continue to show a rapid response to rainfall events (Figure 3). Transducer Stations 1, 2, and 3 (MW08S, CAP02, and MW04S, respectively) continue to demonstrate an almost immediate response to rainfall events. Specifically, the spikes in groundwater elevation on Figure 3 are just slightly after the spikes representing rainfall events. However, CAP03 (at Transducer Station #4) only shows an overall general trend that mimics the responses by MW08S, CAP02, and MW04S to rainfall events (e.g., a somewhat muted response compared to MW08S, CAP02, and MW04S). The muted response to rainfall events at CAP03 is discussed further in the "Groundwater Elevation Anomalies" section below.

Regarding the inside of the cap, groundwater elevations at CAP04 and CAP05 (Figures 2 and 3) appear to continue to trend similarly to intermediate background monitoring well MW011. Since early Summer 2016, CAP04 and CAP05 have shown an overall downward trend in groundwater elevation, which corresponds with drought conditions encountered during this time period in southwest Georgia. The last rainfall of greater than 1 inch at the weather station at C.M. Stripling Irrigation Research Park in Camilla was on September 18, 2016. There were only a few minor rainfall events (0.20 inches of rainfall or less) on 5 days from September 19, 2016 through November 21, 2016. CAP04 and CAP05 are located along the east and southeast border of the barrier system, inside the barrier system adjacent to Thomas Street (Figure 1). Also, groundwater elevations at the other two wells inside the cap (CAP06 and CAP08) displayed a relatively steady groundwater elevation since August 2016. MEMORANDUM

As labelled on Figure 3, groundwater levels at CAP05 have fallen below the level of the pressure transducer senor from December 21, 2015 to January 22, 2016 and again from October 22, 2016 through November 21, 2016. The groundwater level at MW08S fell below the transducer sensor on November 14, 2016 and remained below the sensor through November 21, 2016, which is noted on Figure 3. Sometime between the previous, manual water level reading in July 2016 and the current, manual reading in October 2016, the water level at CAP06 has fallen below the transducer sensor. This is indicated by the orange dot on Figure 3, which is shown approximately 0.4 feet below the sensor elevation. Figure 5 shows groundwater elevations for Transducer Stations 1 through 5 at the Site, which were measured on October 14, 2016.

Also of note is what appears to be an incorrect manual water level measurement by field staff at MW01S on October 14, 2016. The orange dot (representing the manual water level measurement) on Figure 3 is approximately 3 feet higher in elevation than the water level measured by the transducer on October 14, 2016. Care will be exercised in the next field event to ensure correct water level measurement at MW01S and all wells measured.

Groundwater Elevation Anomalies

Based on experience at other sites, Black & Veatch considers some of the observed groundwater elevation trends normal, whereas other, more complex trends deserve explanation to assess groundwater movement in relation to the containment system. For example, the response to rainfall events and the 'jagged shark fin' response in the outer surficial aquifer wells is an ordinary pattern for the rising and falling water table in an unconfined surficial aquifer (Figure 4). However, outside well CAP03 behaves differently than the all other wells outside the barrier wall, in that it did not display the 'jagged shark fin' response to rainfall events, except for a 'jagged shark fin' after a very large rainfall event in early August 2016, and is discussed further in this section.

The reliability of the data generated from each transducer is very important. Except for periodic occasions where the water level has fallen below the pressure transducers at CAP05, CAP06, and MW08S (Figure 3), there are no indications that the data was disrupted (per the remote telemetry examinations). As a quality control measure for transducer operation, water levels have been manually obtained on February 22, 2016, April 4, 2016, July 23, 2016, and October 14, 2016 at the Transducer Stations (which are shown in Figures 2 and 3). The water levels were approximately identical to the transducer data, with a deviation of all the wells ranging from 0.03 to 0.14 foot in the February 22, 2016 measurements, from 0.02 to 0.21 foot in the April 4, 2016 measurements, and from 0.04 to 0.15 foot in the July 23, 2016 measurements. The manual measurements made on October 14, 2016 had a deviation (of all wells except MW015, MW085, CAP06) of 0.03 to 0.10 foot. The deviation at MW01S (3.01 foot deviation) is presumably due to the measurement error mentioned earlier. CAP06, which was also mentioned previously, has a deviation of 0.40 foot due to the water level falling below the transducer sensor. The water level at MW08S also fell below the transducer sensor, which lead to a deviation of 0.08 foot. The manual water levels compared to the transducer data are illustrated

graphically by the green dots (generated on February 22, 2016), yellow dots (generated on April 4, 2016), red dots (generated on July 23, 2016) and orange dots (generated on October 14, 2016) on Figures 2 and 3.

The muted response to rainfall events at CAP03 can possibly be explained by its location near a significant drainage feature (drainage swale along western side of containment system); thereby, rain water shedding off the containment system has less of an influence at CAP03. This drainage swale (shown on the western side of the containment cell in Figure 1) connects directly to the nearby storm water drop inlet and the surface water is directed to the storm water pond on the southwest portion of the Site. This process sheds surface water away from CAP03 much more quickly than at the MW04S, MW08S, and CAP02; thereby, potentially explaining the muted response to rainfall events at CAP03 during moderate rainfall events. However, during early August 2016, there were several days of repeated, large rainfall events. These large rainfall events likely overwhelmed the usually-more-rapid drainage capabilities of the area surrounding CAP03. This likely lead to the unusual 'jagged shark fin' response to rainfall in early August 2016 at CAP03. CAP03 began behaving as the other wells (MM04S, MW08S, and CAP02) outside of the capping and containment system in response to the drought conditions from mid-September 2016 through mid-November 2016. Black & Veatch will continue to monitor the behavior of groundwater within CAP03 and evaluate anomalous behavior. As was discussed in Pressure Transducer Technical Memo #2, on March 20, 2016, Black & Veatch personnel investigated the area immediately around CAP03 (by hand augering) to ensure that no capping/containment material were located in the vicinity of CAP03, which was confirmed.

The fluctuations in groundwater elevation observed in CAP04 and CAP05 appear to generally mimic groundwater elevations at MW01I (Figure 2), which is the background intermediate well outside of the barrier wall and capping containment system at the Site. The groundwater elevation at CAP02, outside the barrier wall, is approximately 5 feet higher than the groundwater elevation at CAP04 in November 2016, which is inside the barrier wall (Figure 3). Also, the groundwater elevation at MW04S, outside the barrier wall, is approximately 5-6 feet higher than the groundwater elevation at CAP05 in November 2016, which is inside the barrier wall (Figure 3). As was mentioned in Pressure Transducer Technical Memo #2, on March 20, 2016, Black & Veatch personnel walked the entire the rock ring around the base of the containment cell in an attempt to identify any areas where the containment cell could be damaged or possibly leaking. This was recommended to investigate rising groundwater elevation trends at CAP04 and CAP05 along the eastern side of the containment cell. Black & Veatch looked for stressed vegetation, wet areas, and sedimentation around the rock ring, but saw no evidence of damage or leakage around the rock ring. Also during the March 2016 event, Black & Veatch investigated the foundations of the light posts near CAP04 and CAP05. No leakage or damage was noted around the foundations of the light posts near CAP04 or CAP05. Since groundwater elevations at CAP04 and CAP05 leveled-off and have begun to decrease, and no damage to the containment cell around CAP04 or CAP05 have been noted, no further investigation is recommended at this time, but Black & Veatch will closely monitor groundwater elevations at Transducer Stations 2 and 3 in subsequent events. If groundwater hydraulic head inside the containment cell comes within 2 feet

MEMORANDUM

of the hydraulic head of their corresponding monitoring well outside of the containment cell, further investigation will be recommended. Black & Veatch will discuss any future recommendations with EPA prior to completing any additional investigation. These phenomena will continue to be closely monitored by Black & Veatch (all transducer station data reviewed on a monthly basis and continued close monitoring of water levels at CAP04 and CAP05 on a semimonthly basis).

Also of note, the water elevations at CAP02, MW04S, and MW08S have periodically exceeded the height of the barrier wall (approximately 169 feet amsl) during the monitoring period of November 22, 2015 through November 21, 2016 (the approximate elevation of the barrier wall is indicated as a horizontal red line in Figures 2, 3, and 4). This may also help to account for the lower hydraulic head difference between the wells inside and outside the capped area along Thomas Street, as groundwater could be flowing over the barrier wall and back into the containment cell. Rising water along the east side of the containment system could be exacerbated through insufficient surface water drainage along the Thomas Street right of way during rain events. However, since mid-September 2016, all Transducer Stations have reported water level elevations below the elevation of the barrier wall, which is in response to drought conditions in southwestern Georgia during the timeframe. Black & Veatch will continue to monitor the water level elevations in relation to the barrier wall elevation.

Recommendations

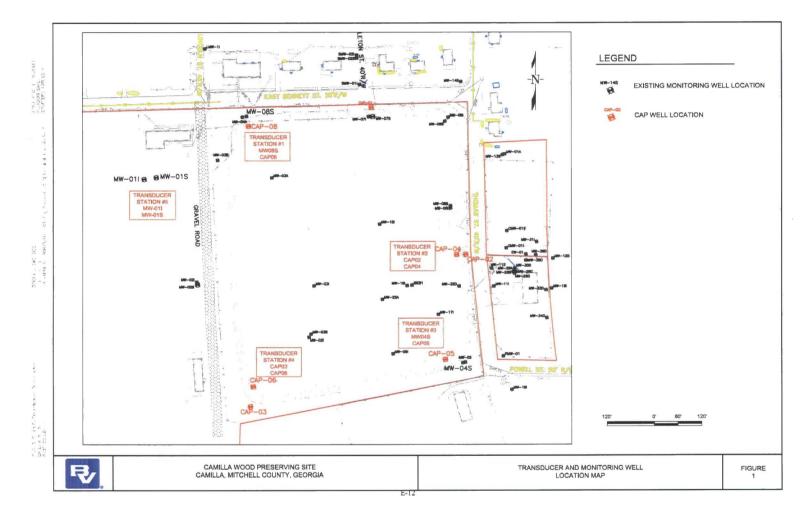
The following recommendations are intended to refine insight into groundwater elevations inside and around the capping containment system at the Site.

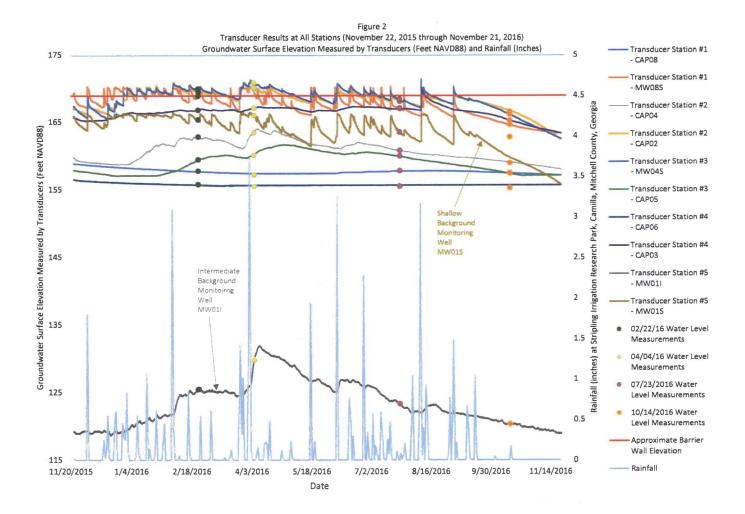
- Continue monitoring transducers (all transducer station data reviewed on a monthly basis and continued close monitoring of water levels at CAP04 and CAP05 on a semimonthly basis). Results shall be included with the next quarterly transducer memo with updated charts, tables and figures.
- During a subsequent field visit, collect a synoptic (same day/no rain) round of water levels from all transducer station monitoring wells. Results shall be included with the next quarterly transducer memo.
- 3) A heavy rainfall event was not observed during times when Black & Veatch was onsite during the August 2016 to November 2016 timeframe covered by this memorandum; therefore, during a subsequent field visit, pay particular attention to the weather (day and night). If heavy rain occurs, document surface water flow around CAP03 to confirm the quick drainage of the area surrounding CAP03 during heavy rainfall events.
- 4) During the next quarterly groundwater sampling (scheduled for January 2017), manually measure water levels in monitoring wells MW02S, MW11S, and MW13S to confirm mounding of groundwater around the border of the containment cell and confirm slightly lower groundwater elevations west of the containment cell.
- 5) During the next quarterly groundwater sampling (scheduled for January 2017), manually measure water levels in monitoring wells MW02S, MW02I, MW11S, and MW11I to be able to calculate vertical hydraulic gradients at non-Transducer Station location wells.

MEMORANDUM

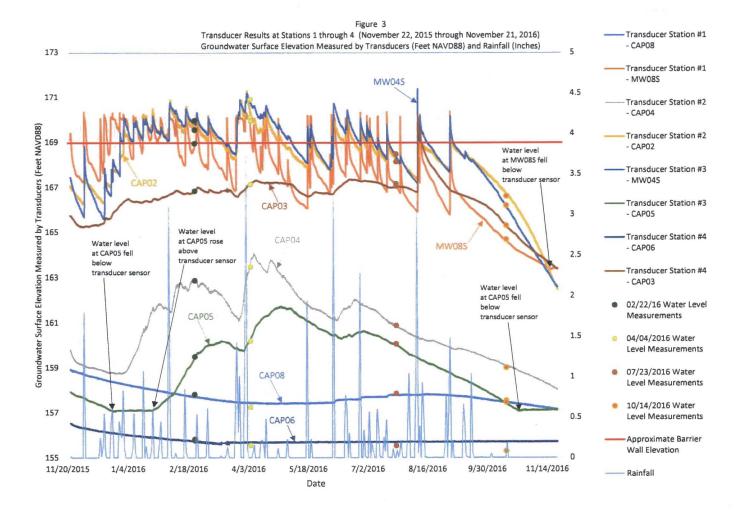
6) Finally, as mentioned in the Pressure Transducer Installation Memorandum (dated September 21, 2015), maintenance of the transducers is anticipated approximately every six months; however, more frequent maintenance visits might be required if anomalous data is identified. Black & Veatch will assess the transducer station locations (integrity of the stations, integrity burial of cables between stations, etc.) at the next quarterly groundwater sampling at the Site in January 2017, but will not remove the transducers from the wells for inspection unless there is anomalous data at a particular transducer station.

Please contact us if you have any questions or if you would like to schedule a conference call or meeting to discuss the results and proposed work efforts.


FIGURES:


Figure 1	Transducer and Monitoring Well Location Map
Figure 2	Transducer Results at All Stations (November 22, 2015 through November 21, 2016)
Figure 3	Transducer Results at Stations 1 through 4 (November 22, 2015 through
	November 21, 2016)
Figure 4	Groundwater Elevation at Background Well (MW01S) Compared to Average
	Groundwater Elevations in Wells (MW08S, MW04S, and CAP02) Outside Barrier Wall
	and Capping Containment System (November 22, 2015 through November 21, 2016)
Figure 5	Groundwater Elevations as Measured Manually on October 10, 2016 and
	October 14, 2016

ATTACHMENTS:


Attachment 1 Transducer Installation Information

E-9

E-14

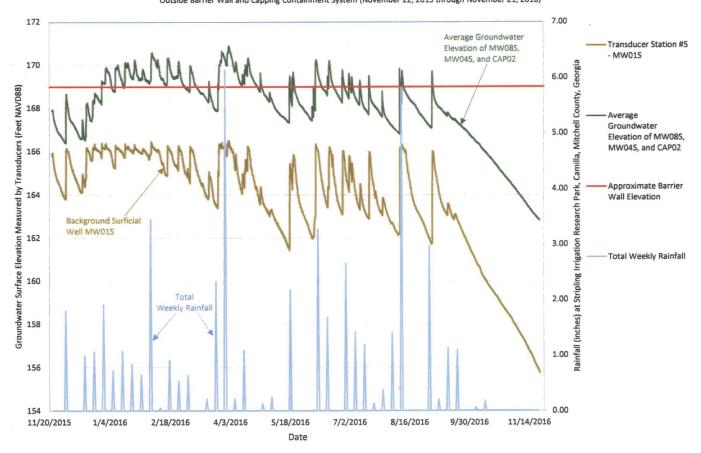
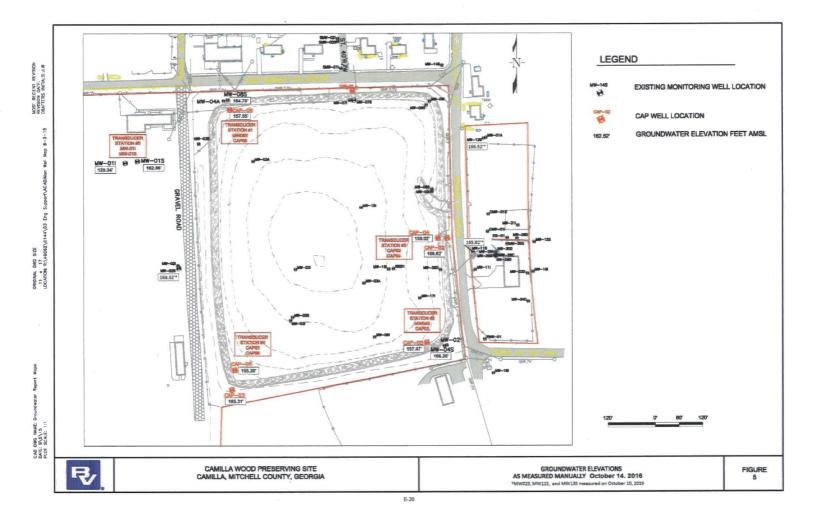



Figure 4 Groundwater Elevation at Background Well (MW01S) Compared to Average Groundwater Elevations in Wells (MW08S, MW04S, and CAP02) Outside Barrier Wall and Capping Containment System (November 22, 2015 through November 21, 2016)

E-18

ATTACHMENT 1 TRANSDUCER INSTALLATION INFORMATION

ATTACHMENT 1 TRANSDUCER INSTALLATION INFORMATION

Transducer Station Locations and Rationale

A network of ten (10) existing monitoring wells was selected for transducer deployment, and transducers were installed into each monitoring well on November 20, 2015. Tables 1 through 3 were included in *Pressure Transducer Technical Memo #1* and *Pressure Transducer Technical Memo #2*, but have been included in this Attachment 1 for ease of reference. Table 1 describes the rationale for the deployment of each transducer into each selected well. Monitoring of groundwater elevations in eight of the wells is associated with the existing barrier wall and capping containment system. These eight wells are represented by Transducer Stations #1 through #4, with each station consisting of two wells. Transducer Station #5 consists of the two remaining monitoring wells (MW011 and MW015), where the transducers were installed to monitor background groundwater elevations in the intermediate and shallow groundwater aquifers. The transducer station. Monitoring well details for wells associated with Transducer Stations are presented in Table 2. Transducer deployment is summarized on Table 3. Field records associated with the transducer installations on November 20, 2015 are included as Attachment 1 in *Pressure Transducer Technical Memo #1*.

Transducer Station Location	Monitoring Wells Involved	Location Rationale		
Transducer Station #1	Tandem of MW08S (outside barrier wall) and CAP08 (inside barrier wall)	Monitoring groundwater levels inside/outside barrier wall along northwestern boundary.		
Transducer Station #2	Tandem of CAP02 (outside barrier wall) and CAP04 (inside barrier wall)	Monitoring of groundwater levels inside/outside barrier wall along eastern boundary.		
Transducer Station #3	Tandem of MW04S (outside barrier wall) and CAP05 (inside barrier wall)	Monitoring groundwater levels inside/outside barrier wall along southeastern boundary.		
Transducer Station #4	Tandem of CAP03 (outside barrier wall) and CAP06 (inside barrier wall)	Monitoring groundwater levels inside/outside barrier wall along southwestern boundary.		
Transducer Station #5	Tandem of MW01I (intermediate) and MW01S (shallow).	Background monitoring of intermediate and shallow aquifer groundwater levels.		

Table A1: Transducer Station Location Summary

Well ID	Total Depth (ft BTOC)	Approximate Screen Length (ft)	Aquifer	Northing	Easting	Notes	
CAP02	19.40	10	Shallow	444439.610	2285610.200	Flush mount outside eastern barrier wall.	
САРОЗ	18.93	10	Shallow	444050.190	2285057.280	Flush mount outside southwestern barrier wall.	
CAP04	25.80	10	Shallow	444440.200	2285585.950	Flush mount inside eastern barrier wall.	
CAP05	25.38	10	Shallow	444169.900	2285557.320	Flush mount inside southeastern barrier wall.	
CAP06	24.34	10	Shallow	444100.130	2285064.410	Flush mount inside southwestern barrier wall.	
CAP08	25.53	10	Shallow	444768.340	2285052.420	Flush mount inside northwestern barrier wall.	
MW04S	14.75	10	Shallow	444160.997	2285602.486	Flush mount outside southeastern barrier wall.	
MW08S	14.48	10	Shallow	444794.061	2285047.342	Flush mount outside northwestern barrier wall.	
MW-011	67	12	Intermediate	444631.566	444631.566	Monument (stickup) west of containment cell; south of recreation center.	
MW-015	20	11	Shallow	444636.045	444636.045	Monument (stickup) west of containment cell; south of recreation center.	

Table A2: **Monitoring Well Details**

Notes: BTOC = below top of casing

ft. = feet

Table A3: Transducer Deployment Summary (November 20, 2015)

Monitoring Well	Serial Number of Transducer	Transducer Station Location	Water Level at time of transducer installation (feet BTOC)	Depth of Transducer Sensor (feet BTOC)	Sensor Elevation (NAVD88)	Cube Transmitter Assigned
CAP08	424025	1	16.25	18.83	156.57	15112138
MW085	431040	1	0.23	6.67	163.35	19112130
CAP04	428512	2	15.85	19.67	156.48	15081907
CAP02	431207		4.61	13.81	157.88	15061907
MW045	430855	3	2.21	8.81	161.32	15112140
CAP05	427063	5	18.82	19.71	157.11	15112140
CAP06	427177	4	18.69	19.77	155.63	15112120
CAP03	431168	4	2.72	12.71	155.94	15112139
MW01i	423854	F	49.87	60.00	108.90	15081000
MW01S	431265	5	2.72	15.00	153.82	15081906

Notes: BTOC = below top of casing

ft. = feet

Transducer Equipment, Installation, and Programming

A summary of the transducer equipment, installation of transducers, and programming are described in detail in the *Pressure Transducer Technical Memo #1*. Each pressure transducer consists of an In Situ[®] Rugged TROLL 200 in each of the ten monitoring wells, along with a Cube 300R Telemetry Transmitter at each station. Manufacturer's information sheets for the transducers and telemetry units are included in Attachment 2 of *Pressure Transducer Technical Memo #1*. The Cube 300R Telemetry Transmitters also contain barometers and correct all transducer data for barometric pressure prior to transmittal (via cellular).

The pressure transducers are programmed to collect water pressure readings every 30 minutes, which has remained the same since installation of the pressure transducers in November 2015. The transducer data is transmitted (via cellular) every 72 hours, and is subsequently downloaded by Black & Veatch.

The weather station at C.M. Stripling Irrigation Research Park in Camilla has been utilized to track precipitation in the region, and to compare to the transducer data. The precipitation data from the weather station can be found at: <u>http://weather.uga.edu/index.php?variable=HI&site=CAMILLA</u>. The weather station is located approximately 6.5-miles northwest of the Site. Rainfall data has been provided on Figures 2, 3, and 4. In previous Pressure Transducer Memos, the rainfall data for December 31, 2015 was not available. The rainfall data (0.83 inches of rainfall) for December 31, 2015 is now available, and this data is included in this Pressure Transducer Technical Memo.

This page intentionally left blank

12

.

APPENDIX F – SITE INSPECTION REPORT

Camilla Wood Preserving Site Five-Year Review Site Inspection Report January 17, 2017 049082.08.45.00

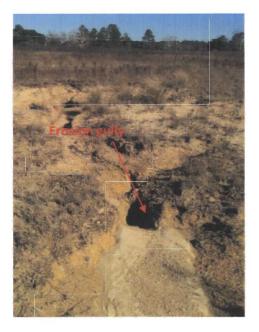
Carrie McCoy of Black & Veatch visited the Camilla Wood Preserving Site (site) in Camilla, Mitchell County, Georgia on January 10, 2017 to complete the inspection of the installed remedial components. The visit was conducted between 10:00am and 12:00pm. The weather at the time of the inspection was clear, sunny and 50 degrees F. Personnel interviews were conducted separately in December 2016 and no interviews were completed as part of this inspection. There is no full-time presence onsite performing O&M activities and, as such, all project documentation is stored at the Black & Veatch office in Alpharetta, Georgia. Relevant documentation includes an O&M manual for the pond, as-built drawings of the pond, barrier wall, cap and wells, a CHASP and relevant personnel training records. The City of Camilla and Mitchell County have been maintaining the vegetation on the cap and pond areas and have been operating the storm water pond since 2014. No O&M cost records are available.

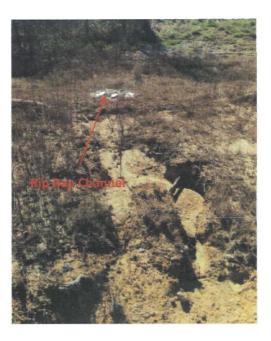
The remedy at this site includes access controls, institutional controls, a low-permeability cap, surface water collection and vertical barrier walls. A site map and photographs are attached that show relevant findings and locations.

General: No evidence of vandalism was observed. Potential trespassing was observed (discussed under Access controls below). No land use changes were observed. Driveways on the site appeared to be in good condition and are adequate for the site.

Access controls: The site is enclosed by a 6 foot chain link fence. In general, the fence is in good condition. It was observed that the gates leading to the storm water pond were open and unsecured. These gates should be secured at all times. There are a few locations where the fencing has been damaged.

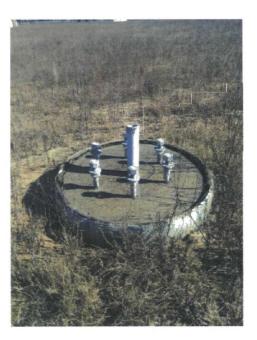
In one area along Bennett Street, the fence fabric has been wrenched so that someone could get under the fence and gain access to the site. This fencing should be repaired and secured to the extent possible.


One of the secondary gates along Thomas Street has been damaged and could be used by nonauthorized personnel to access the site. This gate should be repaired to prevent entry of non-authorized personnel.

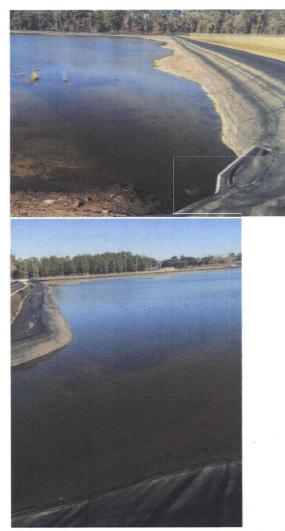


Institutional controls: Institutional controls have not yet been implemented for this facility, so no review of their effectiveness was performed.

Low permeability cap: The surface and sides of the low permeability cap were observed. In general, there were no areas of settlement or cracks observed and the cap appeared to be in good condition with stable side slopes, established vegetative cover and no holes or bulges observed. Cap penetrations, including groundwater monitoring wells and deep foundations, were observed and no evidence of leakage around the penetration was observed. The rock ring around the cap that provides an exit point for infiltrated water to shed off of the geosynthetic clay liner (GCL) was inspected and found to be functioning properly, as evidenced by seepage from the rock ring around the cap. The following issues were identified:


- Erosion: Extensive erosion was observed across the cap at the crest of the top slopes, particularly on the southern and eastern boundaries of the cap. The approximate locations of major erosion are shown on the attached map. Precipitation running off of the cap has caused the fine-grained materials to wash out of the placed fill, leaving sandier materials in its place. In some areas, the erosion has formed gullies that are nearly two feet deep. With approximately 3.5 feet of clean cover on the cap, the erosion is not in immediate danger of breaching the GCL and drainage layer, but the eroded areas should be filled in, recompacted and continue to be observed. If erosion in these gullies is not addressed and is allowed to continue, it has the
- potential to expose the GCL and drainage layer. It should be noted that in an effort to improve the flow of water off of the cap and minimize erosion, previously observed gullies were filled in and rip rap lined drainage channels were installed on the cap slopes in 2014. These efforts appear to have been largely successful as the severity and frequency with which erosion gullies were observed has been reduced.

Ponding: Due to the very low slopes present around the cap, ponding of surface water was observed at the toe of the slope on all four sides of the cap. Additionally, significant rains were encountered in the days leading up to the inspection, which is likely why some of the ponding was present onsite. This ponding was most significant on the southern edge of the cap as the southwest corner is the lowest elevation of the capped area. This ponding is not deemed to be an O&M issue, but a result of area topographical constraints, so no action is recommended to address this. Vegetation has begun to grow in the wet areas on the south side of the cap. Due to the soft and wet soils, this area is difficult for maintenance crews to access with equipment. If this area cannot be cleared safely and adequately during a dry period, hand equipment should be used to occasionally clear overgrown vegetation from this area so that the flow of surface water over this area is not impeded. Additionally, minor areas on top of the cap exhibited ponding of water, specifically, around the installed foundations. Ponding was observed around the backstop foundations, which is a result of the foundations impeding the shedding of precipitation. This ponding should be monitored and if the areas either stay wet or the areas surrounding the foundations become eroded, minor filling and grading around the foundations should be done to encourage the flow of water away from the foundations. Small amounts of water also collected on top of the light pole foundations as a result of the presence of the Sonotubes used to install them. The Sonotubes leave a small lip above the edge of the foundation that allow rain water to collect. The tops of these Sonotubes should be cut down to remove the lip and prevent the ponding of rainwater. Finally, all of the sleeves that were installed for the fence posts should have caps on them to prevent the sleeve from filling with water. Many of the sleeves were missing caps.



Surface Water Collection System: A 24 MG lined storm water pond, related appurtenances, piping and ditches are installed onsite. At the time of the inspection, the pond was approximately half full of storm water. The pond liner appeared to be in good and working condition at the time of the inspection. Headwalls, valves, check dams and drop inlets all appear to be in good working order. Issues observed with the collection system include siltation, vegetation growth and pulling of the liner.

• Siltation: Heavy buildup of silt was observed in several areas of the pond, specifically at the pump outfall, in the vicinity of the gate valve that allows water into the pond at the northeast corner and at the pond outfall in the southwest corner. Silt buildup can prevent proper flow of water through the pond and encourage growth of vegetation, whose roots could compromise the liner system. When the pond is empty, the silt should be carefully removed with hand tools, taking care not to damage the liner. Additionally, in the areas where vegetation has taken root in the silt, the vegetation should be removed and the liner beneath inspected to ensure that the

liner was not compromised by the roots. Patching of the liner should be performed if it is found to have been compromised.

• **Pulling of the liner:** The liner was observed to be pulled taught in the southeastern corner of the pond such that it is no longer lying flat on the side slopes. This occurrence has been

observed previously and in 2014, additional liner was added around the pond to allow for slack in the liner. It appears that the liner was pulled taught at the time of inspection as a result of the partial filling of the pond. The southeastern corner of the pond did not contain water though the rest of the pond did contain water. The weight of the water in the other areas of the pond appears to be pulling the liner up from the side slope. Once the pond is empty, the tension should be relieved from the liner and it should once again lie flat against the side slopes. The anchor trenches in the southwestern corner of the pond did not show signs of stress or indication that the liner was slipping.

Vertical barrier walls: No evidence of settlement of the vertical barrier wall was observed. The performance of the wall and cap system is monitored using an array of pressure transducers which track the hydraulic head inside and outside the barrier wall. The transducers are inspected and maintained on a quarterly basis and are in good working order. The data is downloaded from the transducers on a biweekly basis and summary reports are submitted to the EPA on a quarterly basis, the last of which was submitted in December 2016. In December 2016, the hydraulic head differential around the cap varied from 5 to 7 feet with the greatest head difference being observed in the southwest corner. No evidence collected suggests that the groundwater inside the barrier wall is building up or that it is in danger of overtopping the wall. The groundwater elevations outside the wall have occasionally risen above the top elevation of the barrier wall, though there is no evidence that groundwater has flowed into the containment cell from the outside. There is a 24 inch layer of augmented clay (with soil cement at entrances) on top of the barrier wall that also acts to prevent flow into the containment cell from the outside.

Monitoring wells: Monitoring wells inspected were in good working order, properly secured and are routinely sampled. Wells in the ISCO treatment area are sampled on a quarterly basis and site-wide groundwater is generally monitored on an annual basis. The last quarterly ISCO event was conducted in January 2017 and the last annual event was completed in November 2015. Annual sampling should be resumed. Groundwater trends in the ISCO treatment area are generally declining or stable, but as the last application of oxidant was applied in April 2016, longer-term monitoring is needed to confirm this trend.

APPENDIX G – MEMORANDUM OF SCIENTIFIC SUPPORT SECTION REVIEW

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 4 61 Forsyth Street, SW Atlanta, GA 30303-8960

June 20, 2017

	<u>MEMORANDUM</u>				
SUBJECT:	First Five-Year Review Report,				
	Camilla Wood Preserving				
	Camilla, Mitchell County, Georgia				
FROM:	Sydney Chan, Life Scientist AFC Scientific Support Section				
TO:	Scott Miller, RPM				
101	Restoration and Construction Section				
THRU:	Glenn Adams, Chief HAU				

Scientific Support Section

Per your request, Scientific Support Section (SSS) has reviewed the *First Five-Year Review for Camilla Wood Preserving Superfund Site, Mitchell County, Georgia.* Based on review of the First Five-Year Review (FYR), the following observations are provided for your consideration.

General Comments

After speaking with the Remedial Project Manager (RPM) and contractors, it is understood that there are no contaminated surficial soils available for direct contact at Camilla Wood Preserving site. It is recommended to add verbiage within the FYR to state that no contaminated surficial soils remain on site to avoid continual reevaluation of COCs in future FYRs. Pertaining to the adjacent landfill under GA EPD purview, a clarifying statement within the FYR is recommended stating that there is an agreement between EPA and GA EPD that the landfill is being addressed as a separate site under the State's lead.

Please note it is recommended to state how the risk assessment process was conducted for dibenzofuran to derive its cleanup goal. For example, the risk assessment used a sub-chronic reference dose in the calculation for a child resident. I was able to recreate cleanup levels, but with no direction, it was not clear how they were originally derived. The cleanup level is protective.

Pertaining to dioxins detected pre-remedial/removal work, new toxicity information has been released since the ROD goal was set. After talking to the RPM and contractor, along with data presented to SSS, there are no contaminated surficial soils left on-site to complete the direct contact exposure pathway. Due to the lack of contaminated surficial soils present, dioxins do not need to be reevaluated.

Data Review

The FYR states that 2-Methylnaphthalene, carbazole, dibenzofuran, B(a)P equivalent, naphthalene, manganese, arsenic, and benzene were detected above remedial goals in shallow

groundwater sampling conducted in 2015. Pentachlorophenol was not detected in shallow and intermediate groundwater; however, the method detection limit was above the remedial goal. Additional sampling with detection limits set below the remedial goal is recommended to confirm the presence/absence of pentachlorophenol in groundwater. 2-Methylnaphthalene, carbazole, B(a)P equivalent, pentachlorophenol, dibenzofuran, naphthalene, acenaphthene, manganese, and arsenic were detected above remedial goals in intermediate groundwater sampling most recently conducted in 2015. Continued monitoring of all of these contaminants with detection limits lower than the remedial goals is recommended.

Please contact me at 404-562-8907 or if you have any comments or questions regarding this review.

.

APPENDIX H – POND BERM MEMO

MEMORANDUM

U.S. Environmental Protection Agency Camilla Wood Preserving Site Changes to the Storm Water System Design B&V Project 049062 B&V File 49062-0145-01-I-01230R0 July 2, 2012

To: Scott Miller, EPA Remedial Project Manager

From: Carrie McCoy, Black & Veatch Task Order Manager

On June 26, 2012, Garrett Consulting, Inc. (GCI), the subcontractor completing the storm water improvements and soil excavation activities at the Camilla Wood Preserving Site, was attempting to remove standing storm water from the southern portion of Ditchline 2 using a pump. GCI was pumping water from the ditch and into the existing storm water pond in order to prepare the ditch for grading. During these pumping activities, a hose coupling came loose and the water being pumped ran over the northern side of the existing pond berm. This flow saturated the berm and caused a failure of the slope (picture attached). During inspection of the slope materials following this failure, the soils inside this berm were identified as predominantly sands with waste materials intermixed. The failed materials were extremely soft and lacking in structural properties desirable for a pond containment berm. As a result, Black & Veatch and GCI identified concerns regarding the stability of the materials in both the landfill (known buried waste) and existing pond berm and the risk of failure associated with installing both the flow pipe and overflow spillway between proposed Ditchline 2 and the existing pond.

Black & Veatch and GCI agree that it would be in the best interest of all parties that disturbance to the existing landfill slopes and existing pond as part of the planned storm water improvements be minimized and eliminated, where possible. As such, Black & Veatch recommends that the proposed new 7-acre pond serve as the primary storm water containment structure for the site. Proposed specific changes to the current construction plans are as follows (figure attached):

- 1. Ditchline 1 This Ditchline will now connect to the northwest corner of the new 7-acre storm water pond instead of connecting directly into the existing pond outfall at the southwest corner of the property.
 - a. Construct a parallel ditch adjacent to existing Ditchline 1 that will handle flow from the City pump in the future (once the new pond system is operational).
 - b. Once the new Ditchline 1 alignment has been installed and lined, completely backfill the current alignment of Ditchline 1.
 - c. Eliminate the 24" high density polyethylene (HDPE) overflow relief pipe (with headwalls and man bars) between the northwest corner of the new pond and existing Ditchline 1.
 - d. Eliminate the spillway between the new pond and existing Ditchline 1.
 - e. Eliminate the outflow pipe (with headwalls and man bars) at the southwest corner of the new pond that connects the new pond and existing Ditchline 1.

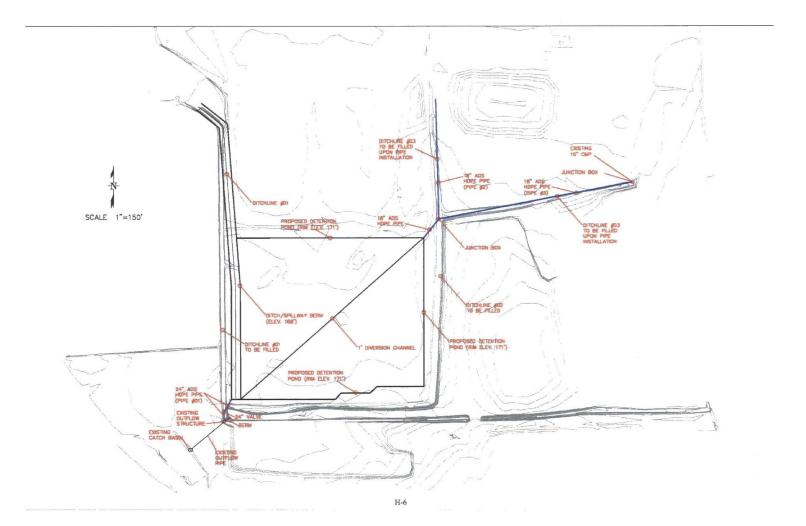
B&V Project 049062 B&V File 49062-0145-01-I-01230R0 July 2, 2012

- 2. Ditchline 2
 - a. North of intersection with Ditchline 3 Instead of lining this ditch as planned, backfill the ditch and install an 18" HDPE pipe (with headwall and man bars).
 - b. South of intersection with Ditchline 3 Instead of lining this ditch as planned, backfill the ditch and grade up to the bank of the landfill.
 - i. Reconfigure the proposed 6" polyvinyl chloride (PVC) drain pipe and drain grate near the northeast corner of the new pond so that it drains into the new pond.
 - ii. Eliminate the proposed 24" HDPE relief pipe (with headwalls and man bars) between Ditchline 2 and the NE corner of the new storm water pond.
 - iii. Eliminate the 24" HDPE outfall pipe (with headwalls and man bars) between Ditchline 2 (outside south end of new pond)and the existing storm water pond.
 - c. Install junction box at confluence of Ditchline 2 and Ditchline 3. Connect above 18" HDPE pipe into junction box.
 - d. Install an 18" HDPE pipe into the proposed junction box at the confluence of Ditchline 2 and Ditchline 3 which will route water into the northeast corner of the new storm water pond.
- 3. Ditchline 3
 - a. Install a junction box at the end of the existing 15" corrugated metal pipe (CMP) pipe that enters the site beneath Thomas Street. Install new 18" HDPE pipe from this junction box all along Ditchline 3 and connect into the proposed junction box at the confluence of Ditchline#2 and Ditchline 3. Ditchline 3 will then be backfilled completely and graded to match the existing grade along the north side of the ditchline and the landfill bank or edge of fence along the south side of the ditchline.
- 4. New Pond
 - a. Install a 24" outlet pipe that will connect the southwest corner of the new pond to the existing catch basin/outlet structure in the northwest corner of the existing pond.
 - b. Install the 24" manual gate value on the outlet pipe between the southwest corner of the new pond and the existing catch basin/outlet structure in the northwest corner of the existing pond.
 - c. Install a bermed channel along the interior western floor of the pond to channel pumped ditchline #1 storm water towards the new pond outlet pipe.
 - d. Realign the footprint of the new pond to account for the additional space created by backfilling the southern portion of Ditchline 1 and all of Ditchline 2.
- 5. Existing Pond
 - a. The outflow pipe will no longer be connected to or controlled by the 24" manual gate valve.

B&V Project 049062 B&V File 49062-0145-01-I-01230R0 July 2, 2012

- b. The opening in the bottom of the exiting catch basin/outlet structure will no longer be permanently closed off.
- c. Install a berm at the northwestern corner of the existing pond to separate flows into this pond from the flow from the new pond.
- d. Eliminate the spillway between the existing pond and new pond.

Of particular note in the above plan is that the existing pond will be allowed to function as it currently does and will no longer have a gate valve installed to control the outflow. The gate valve will instead be installed between the new pond and the outfall catch basin such that only the flows into the new pond will be controlled by the valve. As a result of the slope failure of the existing pond berm, Black & Veatch has grave concerns about potential effects of hydrostatic pressure that would be exerted on this berm by allowing the existing pond to fill routinely. Further, the potential for additional slope failures resulting from installation of the flow pipe and spillway is high.


It is Black & Veatch's recommendation that the design changes outlined herein be implemented. These changes present the best alternative while mitigating the inherent risk associated with manipulating the existing pond and landfill for all parties.

Page 4

B&V Project 049062 B&V File 49062-0145-01-I-01230R0 July 2, 2012

Photo #1: Repaired failure of the existing pond berm between the southern end of Ditchline 2 and the existing pond.

