SECOND FIVE-YEAR REVIEW REPORT FOR UGI COLUMBIA GAS PLANT SUPERFUND SITE LANCASTER COUNTY, PENNSYLVANIA

MAY 2021

Prepared by

U.S. Environmental Protection Agency Region 3 Philadelphia, Pennsylvania

May 5, 2021

Date

Linda Dietz, Acting Director Superfund and Emergency Management Division U.S. EPA, Region 3

Table of Contents

LIST OF ABBREVIATIONS AND ACRONYMS	2
I. INTRODUCTION	3
Site Background	3
FIVE-YEAR REVIEW SUMMARY FORM	4
II. RESPONSE ACTION SUMMARY	6
Basis for Taking Action	6
Response Actions	6
Status of Implementation	10
Institutional Control Review	
Operation and Maintenance (O&M)	177
III. PROGRESS SINCE THE PREVIOUS REVIEW	177
IV. FIVE-YEAR REVIEW PROCESS	
Community Notification, Community Involvement and Site Interviews	188
Data Review	199
Site Inspection	20
V. TECHINCAL ASSESSMENT	20
QUESTION A: Is the remedy functioning as intended by the decision documents?	20
QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels and remedial action ob	jectives
used at the time of the remedy selection still valid?	
QUESTION C: Has any other information come to light that could call into question the protective	ness of the
remedy?	221
VI. ISSUES/RECOMMENDATIONS	221
VII. PROTECTIVENESS STATEMENT	
VIII. NEXT REVIEW	
APPENDIX A – REFERENCE LIST	A-1
APPENDIX B – SITE CHRONOLOGY	B-1
APPENDIX C – PRESS NOTICE	
APPENDIX D – SITE INSPECTION CHECKLIST	
APPENDIX E – SITE INSPECTION PHOTOS	E-1
APPENDIX F – DATA REVIEW SUPPORTING MATERIAL	F-1
APPENDIX G – ARAR REVIEW	G-1

LIST OF ABBREVIATIONS AND ACRONYMS

ARAR CERCLA	Applicable or Relevant and Appropriate Requirement Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
COC	Contaminant of Concern
DNAPL	Dense Non-Aqueous Phase Liquid
EPA	United States Environmental Protection Agency
ESD	Explanation of Significant Differences
FFS	Focused Feasibility Study
FYR	Five-Year Review
IC	Institutional Control
LWA	Lancaster Water Authority
MCL	Maximum Contaminant Level
μg/L	Micrograms per Liter
mg/kg	Milligrams per Kilogram
MGP	Manufactured Gas Plant
NCP	National Oil and Hazardous Substances Pollution Contingency Plan
NPL	National Priorities List
O&M	Operation and Maintenance
PPL	PPL Electric Utilities Corp.
PRP	Potentially Responsible Party
ROD	Record of Decision
RPM	Remedial Project Manager
SVOC	Semi-Volatile Organic Compound
TI	Technical Impracticability
UGI	UGI Utilities, Inc.
UU/UE	Unlimited Use and Unrestricted Exposure
VISL	Vapor Intrusion Screening Level
VOC	Volatile Organic Compound
WWTP	Wastewater Treatment Plant

I. INTRODUCTION

The purpose of a five-year review (FYR) is to evaluate the implementation and performance of a remedy to determine if the remedy is and will continue to be protective of human health and the environment. The methods, findings and conclusions of reviews are documented in FYR Reports such as this one. In addition, FYR Reports identify issues found during the review, if any, and document recommendations to address them.

The U.S. Environmental Protection Agency (EPA) is preparing this FYR pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Section 121, consistent with the National Oil and Hazardous Substances Pollution Contingency Plan (NCP) (40 Code of Federal Regulations (CFR) Section 300.430(f)(4)(ii)), and considering EPA policy.

This is the second FYR for the UGI Columbia Gas Plant Superfund site (the Site). The triggering action for this statutory review is the completion date of the previous FYR. The FYR has been prepared because hazardous substances, pollutants or contaminants remain at the Site above levels that allow for unlimited use and unrestricted exposure (UU/UE). The Site consists of one operable unit.

Site Background

The Site is located in a light industrial and residential area of Columbia Borough in Lancaster County, Pennsylvania (Figure 1). The Site includes a 2-acre former manufactured gas plant (referred to as the former MGP facility). The borough built a maintenance garage at the Site on the former MGP facility foundation in 2011 and began using the building in 2014. The borough also operates a municipal garage at the Site, south of the former MGP facility. The Susquehanna River is about 500 feet from the former MGP facility. The Lancaster Water Authority (LWA) operates a drinking water pumping station at the Site that withdraws water from the Susquehanna River for the city of Lancaster water supply. Shawnee Creek, a tributary to the Susquehanna River, runs to the west of the former MGP facility. An active rail line runs parallel to Front Street, across from the former MGP facility. The former Columbia wastewater treatment plant (WWTP) near the Site is no longer in operation. There are residential properties along the Susquehanna River immediately west of the LWA pumping station. No land use changes are currently anticipated at or near the Site.

Starting in 1851, the Columbia Gas Company used the MGP facility to manufacture gas for the borough of Columbia using a coal gasification process. The potentially responsible parties (PRPs) have gone through several name changes and corporate restructures. They are currently identified as PPL Electric Utilities Corp. (PPL) and UGI Utilities, Inc. (UGI). The MGP Facility operated until about 1950. The primary waste streams generated during coal gasification were liquid coal tar, boiler ash and spent gas purifying materials. Coal tar is a mixture of volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene and xylene; semi-volatile organic compounds (SVOCs), including polycyclic aromatic hydrocarbons; and inorganics, including metals and cyanide.

During gas manufacturing operations at the Site, overflows from a tar separator were directed to an open ditch that led to the Susquehanna River. The Pennsylvania Department of Environmental Resources conducted preliminary investigations at the Site in August 1984. In 1985, EPA and the Pennsylvania Department of Environmental Resources conducted further investigations to determine the nature and extent of contamination. Waste from the former MGP facility contaminated soil, sediment and groundwater. The groundwater contamination includes dense non-aqueous phase liquid (DNAPL) in fractures of the bedrock. The DNAPL is a continuous source of contamination for groundwater.

Surficial groundwater flows southwest toward the Susquehanna River. In the site area, a thin layer of overburden overlies weathered bedrock. Depth to bedrock at the Site varies from 4 to 23 feet. The bedrock has significant fracturing.

According to December 2020 conversations with Columbia Borough's zoning and planning office and the Columbia Water Company, the water company serves the area surrounding the Site. One nearby property is not connected to the water system. During the Remedial Investigation private wells west of the Site, including the property not connected to the water system, were abandoned. The property is about 500 feet side-gradient of the area of groundwater contamination, so it is not expected to be affected.

Appendix A lists the documents used to prepare this FYR Report. Appendix B provides a brief site chronology.

FIVE-YEAR REVIEW SUMMARY FORM

SITE IDENTIFICATION				
Site Name: UGI Columb	via Gas Plant			
EPA ID: PAD98053912	26			
Region: 3	State: Pennsylvania	City/County: Columbia / Lancaster		
	SITE	STATUS		
NPL Status: Final				
Multiple OUs? No	Has the Sit Yes	te achieved construction completion?		
	REVIE	W STATUS		
Lead agency: EPA				
Author name: Mark Conaron, with additional support provided by Skeo				
Author affiliation: EPA Region 3				
Review period: 8/31/2020 – 5/5/2021				
Date of site inspection:	Date of site inspection: 9/22/2020			
Type of review: Statutory				
Review number: 2				
Triggering action date: 5/5/2016				
Due date (five years after triggering action date): 5/5/2021				

Figure 1: Site Vicinity Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the Site.

II. RESPONSE ACTION SUMMARY

Basis for Taking Action

EPA proposed listing the Site on the Superfund program's National Priorities List (NPL) in June 1993. EPA finalized the Site's listing on the NPL in May 1994.

The PRPs concluded in the 1998 Human Health Risk Assessment that direct contact with soil and ingestion of groundwater at the Site posed unacceptable human health risks for construction workers and future residents due to the presence of MGP-related wastes. Surface water, sediments and air did not present an unacceptable human health risk.

The PRPs did a preliminary ecological risk assessment in 1994. The assessment indicated that there was no habitat on the Site, but that polycyclic aromatic hydrocarbons in the Susquehanna River sediment posed a potential ecological risk. The PRPs later removed contaminated river sediment during a 1998 removal action. The PRPs sampled sediments in the Susquehanna River in 2003 and in Shawnee Creek in 2005. Site-related contaminant concentrations in surface water and sediments in both 2003 and 2005 were below ecological screening levels. The 2003 and 2005 sampling indicated that polycyclic aromatic hydrocarbon contamination was due to non-site-related sources. Therefore, EPA concluded that a baseline ecological risk assessment was not necessary for the Site.

Response Actions

In 1987, the PRPs removed about 100 cubic yards of coal tar and visibly contaminated soil from the pedestrian tunnel that runs beneath the railroad tracks on the northern portion of the Site. The tunnel walls were steamcleaned and an 8-inch-thick concrete floor was constructed in the tunnel to prevent potential contact with the underlying contaminated soils. The tunnel is no longer accessible to the public; its northern end has been closed, and its southern end opens into the fenced-off former MGP facility.

In April 1996, PPL entered into a Consent Order and Agreement (1996 Settlement Agreement) with the Pennsylvania Department of Environmental Resources to conduct a remedial investigation and feasibility study. One goal of the 1996 Settlement Agreement was to initiate removal actions for the Susquehanna River and the gas and relief holders (structures that were used to store gas and/or coal tar from the coal gasification process). In accordance with the 1996 Settlement Agreement, PPL used the CROWTM (Contained Recovery of Oily Wastes) process between 1996 and 1998 to remove coal tar from the relief holder as a removal action. Steam and hot water were injected into the relief holder to facilitate the removal of coal tar, which was then taken off site for thermal treatment and disposal. After the tar extraction, coal tar remained in subsurface soils below the holders. PPL injected the holders with a grout and cement mixture to stabilize and solidify them.

Also in accordance with the 1996 Settlement Agreement, the PRPs removed about 700 tons of contaminated sediments from the Susquehanna River in 1998 as a second removal action. The contaminated sediments were shipped off site for thermal treatment and disposal. The PRPs installed a sheet pile wall, about 106 feet in length, along the river bank in the area next to the sediments to prevent the sediments from being recontaminated by the coal tar remaining in site soils. The PRPs regraded and covered the area with a geosynthetic fabric and clean stone.

In November 2006, the PRPs and EPA entered into an Administrative Settlement and Order on Consent (2006 Settlement Agreement) for a third removal action. In accordance with the 2006 Settlement Agreement, the PRPs demolished on-site buildings, excavated and disposed of soil and MGP-related wastes, installed concrete caps over the gas and relief holders where MGP-related wastes remained on site, installed an asphalt cap over the rest of the former MGP facility, installed a stormwater management system, and installed downgradient groundwater

monitoring wells. As part of cap installation, a slab-on-grade building foundation with a passive sub-slab ventilation system was built to help the borough reuse the Site.

EPA selected the Site's final remedy in a September 2007 Record of Decision (ROD) and modified the remedy in a June 2018 Explanation of Significant Differences (ESD).

Soil

EPA identified the following remedial action objectives for soil:

- Protect the integrity of the caps.
- Maintain the caps and the stormwater management system.
- Implement institutional controls for all parts of the Site to prevent residential use and any other uses that would interfere with or adversely affect the integrity or protectiveness of the caps.

EPA selected the following remedy for soil:

- No further remediation of the former MGP facility soils because those areas where MGP-related waste remains in the soil have been capped.
- Long-term maintenance of the caps and stormwater management facilities.
- Implementation of institutional controls. The institutional control components of the soil remedy include deed notices, easements and/or restrictive covenants to prohibit current and future site property owners from using site property for residential use or in any manner that would interfere with or adversely affect the integrity or protectiveness of the remedial actions at the Site.

Groundwater

EPA identified the following remedial action objectives for groundwater:

- Prevent human exposures to MGP-related wastes in the groundwater via ingestion, inhalation and dermal contact.
- Prevent further migration of the dissolved phase plume.
- Implement institutional controls to prevent groundwater uses that would interfere with or adversely affect the integrity or protectiveness of the final remedy for the Site.

EPA selected the following remedy for groundwater:

- Monitored natural gradient flushing of dissolved MGP constituents to the Susquehanna River to dilute, disperse and biodegrade to non-detectable levels.
- Invocation of a technical impracticability (TI) waiver of applicable or relevant and appropriate requirements (ARARs) for contaminants found within the DNAPL Zone, pursuant to CERCLA Section 121(d)(4)(C). EPA determined that restoration of groundwater in the DNAPL Zone to drinking water quality is technically impracticable from an engineering perspective using available technologies within a reasonable or foreseeable timeframe.
- Long-term groundwater monitoring to confirm that contaminants of concern (COCs) are not present outside the DNAPL Zone at concentrations exceeding ARARs.
- Institutional controls restricting the installation and use of groundwater wells and prohibiting any use of the Site that would interfere with the protectiveness or integrity of the selected remedy.

Figure 2: Detailed Site Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the Site.

As previously indicated, LWA operates a surface water pumping station at the Site to the southwest of the former MGP facility. LWA historically operated two cooling water wells (CWW01 and CWW02) to provide cooling water to the surface water intake pumps. Figure 2 shows the wells. The 2007 ROD noted the presence of a lobe of dissolved-phase groundwater contamination (referred to as the LWA Lobe) near the LWA pumping station that extended outside the spatial extent of the DNAPL Zone. The LWA Lobe resulted from the long-term operation of LWA cooling water wells CWW01 and CWW02. Contaminated groundwater extracted by the LWA cooling water wells was treated and combined with surface water for use in the LWA public water supply. The ROD required performance of a Focused Feasibility Study (FFS) if the cooling water wells were shut down to evaluate how to address the dissolved-phase groundwater contaminant plume in the vicinity of those wells.

LWA upgraded its pumping station from 2007 to 2010. As part of the upgrade, LWA was required to use finished water from the Columbia Water System as cooling water for the surface water intake pumps instead of water from the cooling water wells. The cooling water wells were subsequently taken out of service and permanently disconnected from the LWA pumping station in late 2010. In 2011, as required by the 2007 ROD, the PRPs began an FFS to evaluate whether there was dissolved-phase groundwater contamination in the vicinity of the cooling water wells once the cooling water wells were taken out of service. EPA approved the FFS Report in May 2016. The FFS Report found that after the cooling water wells were taken out of service, the concentrations of contaminants in CWW01 decreased to concentrations below the Maximum Contaminant Levels (MCLs) in EPA's National Primary Drinking Water Regulations. Therefore, EPA concluded that groundwater currently sampled in CWW01 does not originate from DNAPL-contaminated areas of the Site. This conclusion is consistent with the conceptual site model described in the Feasibility Study and ROD and is expected for a separate dissolved phase plume that dissipates over time as a result of natural gradient flushing. However, concentrations of site-related contaminants in CWW02 increased after the cooling water wells were taken out of service and DNAPL was observed in well CWW02. Therefore, EPA determined that CWW02 is located within the DNAPL Zone at the Site. Based on the findings of the FFS, EPA issued an ESD in 2018 to modify the remedy selected in the 2007 ROD. The ESD extended the boundaries of the TI Waiver Zone (also known as the DNAPL Zone) both horizontally and vertically. The ESD also updated the Site's list of COCs and cleanup levels (see Table 1). The ESD stated that the Site's groundwater cleanup levels are the federal MCLs and eliminated groundwater cleanup levels for COCs that do not have MCLs. The cleanup levels apply only to the area outside the TI Waiver Zone (see Figure 2).

Groundwater COC	Cleanup Level (µg/L) ^a
Benzene	5
Ethylbenzene	700
Toluene	1,000
Benzo(a)pyrene	0.2
Bis(2-ethylhexyl)phthalate	6
Cyanide	200
1,2,4-Trimethylbenzene	NA
1-Methylnaphthalene	NA
2-Methylnaphthalene	NA
Acenaphthene	NA
Acenaphthylene	NA
Benzo(a)anthracene	NA
Benzo(b)fluoranthene	NA
Chrysene	NA
Dibenzofuran	NA

Table 1: Groundwater COCs and Cleanup Levels

Cleanup Level (µg/L) ^a
NA
groundwater cleanup levels are undwater cleanup levels for waived the MCLs within the upracticability of restoring e to meet the MCLs.

Status of Implementation

Soil

The removal actions in 1997 and 1998 addressed soil and sediment contamination at the Site. EPA determined that no additional soil remediation was needed. Institutional controls were put in place in 2007, 2009 and 2018 to prohibit residential use or any use that could impact the remedy (see the Institutional Control Review section below).

Groundwater

Due to the presence of DNAPL in fractured bedrock, EPA determined that it is technically impracticable to achieve groundwater ARARs within the DNAPL Zone. Natural gradient flushing will continue to dilute, disperse and degrade the dissolved phase groundwater plume resulting from the DNAPL. The dissolved phase groundwater plume discharges to the Susquehanna River thereby preventing further migration or expansion.

The PRPs conduct annual groundwater monitoring to confirm that the remedy is performing consistently within expectations and that conditions in the site area have not changed significantly. Institutional controls were put in place to limit the installation of new wells and limit use of groundwater (see the Institutional Control Review section below).

Institutional Control (IC) Review

The 2007 ROD required institutional controls to prohibit residential use, installation or use of groundwater wells, and any use of the Site that would interfere with the protectiveness or integrity of the selected remedy. All institutional controls needed for the Site have been put in place. The borough's zoning restrictions and a borough ordinance augment the institutional controls. Figure 3 shows the Site's institutional controls on a map. Table 2 summarizes the Site's institutional controls. Table 3 lists the letters used in this FYR Report to refer to the Site's parcels and cross-references each parcel with its institutional control document.

2007 Restrictive Covenants

In June and September 2007, the PRPs recorded four Environmental Protection Easements and Declarations of Restrictive Covenants (2007 Restrictive Covenants). The 2007 Restrictive Covenants prevent the installation of new groundwater wells and the use of groundwater for any purpose besides required monitoring, among other

restrictions, on the Safe Harbor Power Corporation property (Parcel F, 7.6 acres, since subdivided), on the LWA pumping station property (Parcel G, 3.0 acres), and on part of the Borough WWTP property (Parcel K, 3.2 acres).

The 2007 Restrictive Covenants also included restrictions on the LWA pumping station property (Parcel G) and for Parcel K of the Borough WWTP property, including prohibiting the use of these properties for residential purposes or commercial purposes other than as its current use as a sewage treatment facility without prior written approval by EPA and PADEP.

Finally, the 2007 Restrictive Covenant for the Shawnee Run Greenway (Parcel A) established a stormwater easement. This easement allows construction and maintenance of a stormwater conveyance system across the property to Shawnee Run, specifically including installation of a subsurface stormwater pipe and riprap. In addition, the property cannot be used in any manner that interferes with the proper flow of stormwater from adjacent properties to Shawnee Run.

In 2012 and 2013, tax map number 13E12B-3-2 (Safe Harbor Power Corporation property, Parcel F), subject to a 2007 Restrictive Covenant, was divided into parcels that were sold individually to residents (Figure 3). The subdivided parcels are still subject to the restrictions because the 2007 Restrictive Covenant runs with the land and binds successive owners.

2009 Environmental Covenant

On February 20, 2009, the PRPs recorded an Environmental Covenant for the properties that comprise the MGP Facility (Parcels B and C). The 2009 Environmental Covenant implemented groundwater restrictions on Parcels B and C, including a prohibition on installing new groundwater wells and using groundwater for any purpose aside from furthering the response action. The 2009 Environmental Covenant also implemented land use restrictions, including, but not limited to, prohibiting residential use of the properties and commercial uses inconsistent with the 2006 Settlement Agreement and prohibiting excavation on the properties without a site-specific health and safety plan and a soil management plan.

2018 Environmental Covenants

On October 10, 2018, the PRPs recorded two Environmental Covenants (together, 2018 Environmental Covenants): one for the Borough garage parcel (Parcel H) two of the Borough WWP parcels (Parcels I and J) and one for Parcel K of the Borough WWTP. The 2018 Environmental Covenants implement both groundwater restrictions and land use restrictions for the properties, including, but no limited to, limiting use of the properties to non-residential use, prohibiting the installation of new groundwater wells except as required by EPA and PADEP, and prohibiting the use of groundwater at the properties except for required response actions.

2018 Informational Letter

On March 19, 2018, EPA sent a letter (2018 Informational Letter) to Norfolk Southern Railway Company (Norfolk Southern) informing it of known groundwater and likely sub-surface contamination beneath railroad right-of-way property at the Site (Parcels D and E). In the 2018 Informational Letter, EPA explained that residential use of the properties is prohibited and recommended that Norfolk Southern should contact EPA and PADEP prior to any construction at the properties to provide for appropriate worker protection.

2021 Informational Letter

On March 9, 2021, EPA sent a letter (2021 Informational Letter) to Penn DOT informing it of known groundwater and likely sub-surface contamination beneath S. Front Street, Route 441, that bisects the Site. In the 2021 Informational Letter, EPA explained, although unlikely, that residential use of road right-of-way is prohibited and that prior to any activities on the property (road maintenance, utility maintenance, construction, or excavation) notification of EPA and PA DEP in order to provide for appropriate worker protection from any

subsurface contamination present. The letter was also sent to Columbia Borough, the Lancaster Planning Commission, and Columbia Water.

Figure 3: Institutional Control Map

Disclaimer: This map and any boundary lines within the map are approximate and subject to change. The map is not a survey. The map is for informational purposes only regarding EPA's response actions at the Site.

Table 2: Summary of Institutional Controls (ICs)

Media, Engineered Controls, and Areas That Do Not Support UU/UE Based on Current Conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcels	IC Objective	Title of IC Instrument Implemented and Date
Groundwater	Yes	Yes	Former MGP facility (B and C) LWA pumping station (G) Former WWTP (I, J and K) Former Safe Harbor Power Corporation property (F) Borough garage (H)	 Prohibit interference with monitoring wells or soil around wells. Prohibit installation of new groundwater wells other than in support of the response action. Prohibit use of groundwater other than in support of the response action. 	2007 Restrictive Covenants2009 Environmental Covenant2018 Environmental Covenants
			Railroad (D and E)	• Prohibit groundwater use.	2018 Informational letter sent from EPA to Norfolk Southern

Media, Engineered Controls, and Areas That Do Not Support UU/UE Based on Current Conditions	ICs Needed	ICs Called for in the Decision Documents	Impacted Parcels	IC Objective	Title of IC Instrument Implemented and Date
		Yes Yes	LWA pumping station (G) Former WWTP (I, J and K) Borough garage (H)	 Prohibit residential use. Parcels G and K: Prohibit construction of habitable buildings other than expansion of existing facilities. Prohibit commercial use of WWTP property beyond current use, unless approved. 	2007 Restrictive Covenants 2018 Environmental Covenants
Soil	Yes		Former MGP facility (B and C)	 Prohibit excavation or removal of soils. Prohibit residential use. Prohibit commercial use inconsistent with the 2006 Settlement Agreement. Prohibit vehicles or buildings in area of holders. Prohibit construction of habitable buildings or basements unless vapor extraction system installed. Require maintenance of concrete, asphalt and drainage collection basins. 	2009 Environmental Covenant
			Railroad (D and E)	 Prohibit residential use. Recommend notifying EPA and Pennsylvania Department of Environmental Protection prior to conducting activities in order to prevent worker exposure to subsurface contamination. 	2018 Informational letter sent from EPA to Norfolk Southern
			Shawnee Run Greenway (A)	• Establish stormwater easement to protect underground stormwater pipe.	2007 Restrictive Covenant
			Front Street right-of-way	Prevent worker exposure to subsurface contamination during road and utility work	2021 Informational letter sent from EPA to Penn DOT

Description	FYR Parcel Label	County Parcel Number	Institutional Control Document	
Shawnee Run Greenway	А	1106334000000	2007 Restrictive Covenant (Instrument #5630772)	
Former MGP facility	В	1108042300000	2009 Environmental Covenant	
Tormer WOT Tacinty	С	1100228400000	(Instrument #5762141)	
Railroad	D	1101934200000	2018 Informational letter sent from	
Kalifoad	E	1106577600000	EPA to Norfolk Southern	
Residences on former Safe Harbor Power Corporation property	F	Parcels formed by subdividing tax map number 13E12B-3-2	2007 Restrictive Covenant (Instrument #5654036)	
LWA pumping station	G	1102723600000	2007 Restrictive Covenant (Instrument #5654033)	
Borough garage south of Front Street	Н	1106089400000	2018 Environmental Covenant	
	Ι	1108127900000	(Instrument #6421235)	
	J	1103430000000		
Former WWTP	К	1101908900000	2007 Restrictive Covenant (Instrument #5654034) 2018 Environmental Covenant (Instrument #6421236)	

Table 3: Parcel Summary Table

Zoning Restrictions

Although zoning restrictions were not selected as institutional controls for the Site, the location of part of the Site within the Columbia Borough Conservation zoning district further restricts use of those parcels for residential use. Parcels in the Conservation zoning district require a special exception from the Columbia Borough Zoning Hearing Board for residential use. Residential use is permitted in Riverfront Commercial and Rural Residential zoning districts. Site parcels are in the following zoning districts:

- Conservation zoning district:
 - Shawnee Run Greenway (Parcel A)
 - Former MGP facility (Parcels B and C)
 - Railroad (Parcels D and E)
 - LWA pumping station (Parcel G)
- Rural Residential zoning district:
 - Residences on former Safe Harbor Power Corporation property (Parcel F)
- Riverfront Commercial zoning district:
 - Borough garage south of Front Street (Parcel H)
 - Borough WWTP (Parcels I, J and K)

According to December 2020 conversations with Columbia Borough's zoning and planning office and the Columbia Water Company, the water company's system serves the area surrounding the Site. One nearby property is not connected to the water system. During the Remedial Investigation private wells west of the Site, including the property not connected to the water system, were abandoned. The property is about 500 feet side-gradient of the area of groundwater contamination, so it is not expected to be affected.

For new developments, the Subdivision and Land Development Ordinance of the borough of Columbia (Chapter 190, Ordinance 850, adopted November 2014) states that publicly-owned community water supply systems are preferable, but individual wells can be used when a community water supply system is not accessible (§190-45).

Although a portion of the parcel immediately east of Parcel C lies within the DNAPL TI Waiver Zone, EPA has determined that institutional controls are not necessary for the parcel immediately east of Parcel C due to it being

upgradient from the flow of groundwater. In addition, EPA has determined that institutional controls are not necessary for the contaminated soils remaining under the 8-inch-thick concrete floor constructed in the tunnel that runs beneath the railroad tracks on the northern side of the Site. The tunnel is no longer accessible to the public; its northern end has been closed and its southern end opens into the fenced-off former MGP facility.

Operation and Maintenance (O&M)

Operation and maintenance (O&M) activities are performed in accordance with the June 24, 2011, Sampling and Monitoring Work Plan. The O&M Plan for the asphalt and concrete caps is Appendix B of the Work Plan. In accordance with the O&M Plan, the PRP contractor performs annual inspections to verify the integrity of the asphalt and concrete caps and associated stormwater management system. The PRP contractor also documents any changes to the use of the Site and abutting properties Annual inspections of the caps have identified minor asphalt cracking, minor shrinkage of sealant along the foundation of the borough building, minor vegetative growth along the northern fence line, and debris in the retention pond and catch basins. Ongoing maintenance of the cap includes monitoring vegetative growth along the northern fence line and concrete cover systems and removal of debris and leaf litter in the retention pond and catch basins.

In accordance with the Work Plan, the PRP contractor performs annual groundwater monitoring. The Data Review section of this FYR Report discusses the groundwater monitoring results.

III. PROGRESS SINCE THE PREVIOUS REVIEW

This section includes the protectiveness determinations and statements from the previous FYR Report as well as the recommendations from the previous FYR Report and the status of those recommendations.

OU #	Protectiveness Determination	Protectiveness Statement	
Sitewide	Short-term Protective	The remedy is protective of human health and the environment in the short-term because concrete and asphalt caps prevent unacceptable exposure to remaining contaminated soil and no exposure to contaminated groundwater is currently occurring. However, in order for the remedy to be protective in the long-term, the following actions need to be taken: • Evaluate institutional controls for the Site and modify or add controls, as necessary, for the affected properties: Railroad, WWTP, and Borough garage parcels. • Evaluate groundwater data and DNAPL extent to determine whether an alternate remedial method for groundwater is necessary. • Continue monitoring manganese and cyanide concentrations near the Susquehanna River to determine whether unacceptable ecological risk is present and evaluate if additional investigation and/or mitigation are necessary.	

Table 4: Protectiveness Determinations/Statements from the 2016 FYR Report

OU#	Issue Recommendation Current Current Implementation		Completion		
			Status	Status Description	Date
1	Institutional controls for some affected properties are not implemented as required in the 2007 ROD and as necessary for long- term remedy protectiveness.	Evaluate institutional controls for the Site and modify or add controls, as necessary, for the affected properties: Railroad, WWTP, and Borough garage parcels.	Completed	The borough of Columbia recorded Environmental Covenants for the former WWTP and the borough garage south of Front Street in October 2018. EPA sent an informational letter to the Norfolk Southern railroad in March 2018 describing groundwater and land use restrictions. EPA sent an informational letter for the portion of Front Street that crosses the DNAPL Zone to prevent workers from being exposed to subsurface contamination during road and utility work.	3/6/21
1	The LWA cooling water wells are no longer pumping, but alternate remedial methods to address the remaining LWA Lobe are not in place.	Evaluate groundwater data and DNAPL extent to determine whether an alternate remedial method for groundwater is necessary and if the existing boundary of the DNAPL Zone is appropriate for the current Site conditions.	Completed	The PRPs conducted an FFS from 2011 to 2016. Based on its findings, EPA issued an ESD in 2018 to expand the boundaries of the DNAPL Zone.	6/4/2018
1	Two monitoring wells within the DNAPL Zone adjacent to the Susquehanna River indicate that manganese and cyanide may be discharging to the river at concentrations that may present an ecological risk.	Continue monitoring manganese and cyanide concentrations near the Susquehanna River to determine whether there is an unacceptable ecological risk due to the groundwater discharge and evaluate if additional investigation and/or mitigation are necessary.	Ongoing	Over the past five years, the three wells closest to the Susquehanna River have had contaminants at levels above ecological screening levels for surface water. EPA will assess the monitoring data to determine whether there is an unacceptable ecological risk and evaluate if additional investigation or mitigation are necessary.	NA

Table 5: Status of Recommendations from the 2016 FYR Report

IV. FIVE-YEAR REVIEW PROCESS

Community Notification, Community Involvement and Site Interviews

A public notice was made available on Lancaster Online on February 1, 2021 (Appendix C). It stated that the FYR was underway and invited the public to submit any comments to EPA. The results of the review and the report will be made available at the Site's information repository, Mountville Public Library, located at 120 College Avenue in Mountville, Pennsylvania 17554, and online at www.epa.gov/superfund/ugicolumbia.

During the FYR process, no public comments were received. EPA updated the new Columbia Borough Manager, Mark E. Stivers on February 25, 2021 on the Site status.

Data Review

This FYR reviewed groundwater sampling data collected during the past five years to determine whether groundwater outside of the DNAPL Zone exceeds the Site's cleanup goals. Groundwater monitoring is conducted in accordance with the EPA-approved 2011 Sampling and Monitoring Work Plan. Monitoring has been done annually since 2011 at the following wells:

- Bedrock wells: LTMW-1, LTMW-2, LTMW-3, MW-6D, MW-07DR, MW-08S, MW-08D
- Overburden well: MW-07S
- Overburden/bedrock interface wells: MW-5, MW-6S
- Former LWA cooling water wells (bedrock): CWW01, CWW02

Figure 2 shows the locations of these wells. Groundwater samples are analyzed for VOCs, SVOCs, cyanide, iron and manganese.¹ The subsections below summarize groundwater monitoring results, separated into two geographic areas: wells in the DNAPL Zone and wells outside the DNAPL Zone. Table F-1 in Appendix F presents the groundwater sampling results from the past five years.

Monitoring Wells in the DNAPL Zone

As expected, monitoring wells in the DNAPL Zone continue to have COC concentrations exceeding MCLs. EPA waived the requirement to meet MCLs within the DNAPL Zone. The highest concentrations were detected in bedrock wells LTMW-1, CWW02, MW-08D and MW-6D. Figure F-1 in Appendix F shows the benzene concentrations in these wells over the past five years. LTMW-1 has the highest benzene concentrations at the Site, with concentrations around 8,000 micrograms per liter (μ g/L) over the past five years. Benzene concentrations at CWW02 and MW-08D increased significantly over the past five years, rising from below 1,000 μ g/L to over 4,000 μ g/L. The Site's 2019 annual report states that "the increased concentration of VOCs detected in groundwater collected from MW-08D may be related to pressure pulse testing completed in November 2014, as potable water injected at cooling water well CWW02 has flushed downgradient towards the Susquehanna River and away from the study area. The COCs detected at MW-08D appear to be returning to pre-pressure pulse test concentrations." Annual groundwater monitoring will continue to be done to evaluate contaminant concentration trends in the DNAPL Zone.

Over the past five years, the three wells closest to the Susquehanna River (MW-5, MW-6S and MW-07S) have had inorganic contaminants at levels above Region 3's ecological screening levels for surface water. For example, barium was detected at up to 130 μ g/L (screening level = 4 μ g/L), iron up to 9,800 μ g/L (screening level = 300 μ g/L), manganese up to 2,600 μ g/L (screening level = 120 μ g/L) and cyanide up to 17 μ g/L (screening level = 5 μ g/L). As stated in the 2016 FYR Report, this suggests the possibility that contaminants may be discharging to the river at levels that present an ecological risk. The PRPs will continue monitoring groundwater concentrations to establish trends for these contaminants.

Monitoring Wells Outside the DNAPL Zone

Over the past five years, there has been only one occurrence of a COC exceeding its MCL outside the DNAPL Zone. In 2015, benzene was detected at 15.2 μ g/L in LTMW-2. Since then, benzene has been well below its MCL (5 μ g/L) in that well.

For the COCs without cleanup levels, nearly all of these COCs, except for napthalene in 2015, have been consistently below regional screening levels for drinking water over the past five years in wells outside of the

¹ During 2016-2019, LTMW-2 was analyzed for VOCs only because of the sampling method used for that well.

DNAPL Zone. Groundwater is not used at or near the Site. EPA will consider cumulative risk levels before deleting the Site from the NPL.

Site Inspection

The site inspection took place on September 22, 2020. Participants included the EPA RPM, the EPA hydrogeologist, the PRP contractor and Skeo (EPA's FYR support contractor). The purpose of the inspection was to assess the protectiveness of the remedy. Appendix D provides the site inspection checklist. Appendix E provides photographs from the site inspection.

Site inspection participants observed the former MGP facility, the area of sediment remediation in the Susquehanna River, the former Columbia WWTP, the borough municipal garage southwest of Front Street and the LWA drinking water pumping station. At the former MGP facility, the concrete and asphalt covers are in good condition with no significant cracks; they appear to have been sealed recently. The two concrete-capped former MGP holders are surrounded by bollards for protection. A locked fence surrounds the former MGP facility. Monitoring well CWW01 was locked but the lid was not secured to the well casing. The PRPs have since fixed the locking cap and the well is secured. Other monitoring wells appeared to be in good condition but were not labeled.

V. TECHNICAL ASSESSMENT

QUESTION A: Is the remedy functioning as intended by the decision documents?

Yes. The remedy is functioning as intended by the decision documents. All remaining soil contamination is covered by concrete or asphalt caps, which are regularly inspected and maintained to ensure protectiveness. Sediment contamination in the Susquehanna River was removed. All necessary institutional controls have been implemented to provide groundwater and land use controls at the Site.

As expected, groundwater in the DNAPL Zone continues to exceed MCLs. Outside the DNAPL Zone, there was only one occurrence of a COC (benzene in 2015) exceeding its MCL over the past five years. For the COCs without cleanup levels, nearly all, except napthalene in 2015, of these COCs, have been consistently below EPA screening levels for drinking water over the past five years in wells outside the DNAPL Zone. Groundwater is not used at or near the Site. EPA will consider cumulative risk levels before deleting the Site from the NPL.

Elevated concentrations of inorganic contaminants in three wells next to the Susquehanna River may indicate that contaminants are discharging to the river at levels that may present an ecological risk. Monitoring will continue in these wells to determine whether there is an unacceptable ecological risk and EPA will evaluate if additional investigation and/or mitigation are necessary.

QUESTION B: Are the exposure assumptions, toxicity data, cleanup levels and remedial action objectives used at the time of the remedy selection still valid?

Yes. The former MGP facility has been capped, eliminating the risk associated with exposure to soils at that portion of the Site. The 2007 ROD determined that the levels of soil contamination present between the former MGP facility and the Susquehanna River were protective for industrial use but not for residential use. Institutional controls prohibiting residential use are in place. To determine whether these areas are still safe for industrial use based on current toxicity values, this FYR conducted a screening-level evaluation comparing the soil concentrations against EPA's current screening levels (Table G-4). The screening-level evaluation shows that soil contamination in the area between the former MGP facility and the Susquehanna River is within EPA's acceptable risk range for industrial use.

The remedial action objectives in the 2007 ROD are still valid. EPA has achieved the remedial action objectives of preventing exposure to contaminated soil and groundwater and preventing migration of dissolved groundwater contamination.

EPA's 2018 ESD updated the Site's groundwater cleanup levels and ARARs. None of the ARARs' numerical values have changed since the 2018 ESD (see Appendix G). Groundwater is not used at or near the Site.

Vapor intrusion sampling has not been done at the Site. Residences are located near the DNAPL Zone. The borough building built on the former MGP facility in 2011 is located above the DNAPL Zone. The borough building was constructed with a passive venting system to prevent vapor intrusion into the building. This FYR conducted a screening-level vapor intrusion evaluation using groundwater data to identify if further vapor intrusion evaluation is needed for the residences or the borough building (Appendix F). The results of the screening-level evaluation show that vapor intrusion is not currently a concern. There are other occupied buildings above the area of groundwater contamination, but these buildings are used primarily for storage and are not routinely occupied. Therefore, EPA does not believe they are at risk from vapor intrusion and that vapor intrusion air sampling is necessary at this time at the Site.

QUESTION C: Has any other information come to light that could call into question the protectiveness of the remedy?

No other information has come to light that could call into question the protectiveness of the remedy.

VI. ISSUES/RECOMMENDATIONS

Issues/Recommendations
OU(s) without Issues/Recommendations Identified in the FYR:
All

Issues and Recommendations Identified in the FYR:

None

Other Findings:

One additional finding was identified during the FYR. This finding does not affect current and/or future protectiveness.

• Elevated concentrations of inorganic contaminants in three wells next to the Susquehanna River may indicate contaminants are discharging to the River. Monitoring should continue of the wells next to the river and an evaluation of the results conducted to determine whether additional ecological risk assessment is required.

VII. PROTECTIVENESS STATEMENT

Sitewide Protectiveness Statement

Protectiveness Determination:

Protective

Protectiveness Statement:

The remedy is protective of human health and the environment because concrete and asphalt caps prevent unacceptable exposure to remaining contaminated soil, there is no exposure to contaminated groundwater, and institutional controls are in place to restrict groundwater and land use.

VIII. NEXT REVIEW

The next FYR Report for the UGI Columbia Gas Plant Superfund site is required five years from the completion date of this review.

APPENDIX A – REFERENCE LIST

2015 through 2019 Annual Sampling and Monitoring Reports. Prepared by Haley & Aldrich, Inc. for PPL Electric Utilities Corporation and UGI Utilities, Inc. December 2015 – January 2020.

Baseline Human Health Risk Assessment: Former UGI Columbia Manufactured Gas Plant. Prepared by Menzie-Cura & Associates, Inc. for Clean Sites, Inc. Dated April 1998, updated June 1998.

Environmental Covenant. Instrument #6421235. Grantor: Borough of Columbia. Grantees: PPL and UGI. Recorded October 1, 2018.

Environmental Covenant. Instrument #6421236. Grantor: Borough of Columbia. Grantees: PPL and UGI. Recorded October 1, 2018.

Environmental Covenant for UGI Columbia Gas Plant Superfund Site. Instrument #5762141. Grantor: Borough of Columbia. Grantees: PPL, UGI and Pennsylvania Department of Environmental Protection. Recorded February 20, 2009.

Environmental Protection Easement and Declaration of Restrictive Covenants. Instrument #5630772. Grantor: Shawnee Run Greenway, Inc. Grantees: PPL and UGI. Recorded June 27, 2007.

Environmental Protection Easement and Declaration of Restrictive Covenants. Instrument #5654033. Grantor: City of Lancaster. Grantees: PPL and UGI. Recorded September 25, 2007.

Environmental Protection Easement and Declaration of Restrictive Covenants. Instrument #5654034. Grantor: Columbia Municipal Authority. Grantees: PPL and UGI. Recorded September 25, 2007.

Environmental Protection Easement and Declaration of Restrictive Covenants. Instrument #5654036. Grantor: Safe Harbor Power Corporation. Grantees: PPL and UGI. Recorded September 25, 2007.

Explanation of Significant Differences: UGI Columbia Gas Plant Superfund Site. U.S. EPA Region III. June 2018.

First Five-Year Review Report for UGI Columbia Gas Plant Superfund Site. U.S. EPA Region 3. May 2016. https://semspub.epa.gov/src/document/03/2228409.

Letter from EPA to Norfolk Southern Corporation Re: UGI Columbia Gas Plant Superfund Site, Columbia Borough, Lancaster County, Pennsylvania – Important Information Regarding Environmental Conditions and Use of the Railroad Right-of-Way Owned by Norfolk Southern Railway Company. March 2018.

Record of Decision: UGI Columbia Gas Plant. U.S. EPA. September 2007. https://semspub.epa.gov/src/document/03/2084262.

Superfund Preliminary Close Out Report: UGI Columbia Gas Plant Superfund Site. U.S. EPA Region III. September 2007. <u>https://semspub.epa.gov/src/document/03/2085017</u>.

APPENDIX B – SITE CHRONOLOGY

Table B-1: Site Chronology

Event	Date
Columbia Gas Company used the on-site manufactured gas plant to make gas for the	1851-1950
borough of Columbia	
EPA discovered contamination	June 1, 1981
EPA and the state completed the Preliminary Assessment	February 1, 1985
PRPs cleaned pedestrian tunnel walls and installed concrete flooring	1987
EPA completed the Site Inspection	October 17, 1989
EPA proposed listing the Site on the NPL	June 23, 1993
EPA listed the Site on the NPL	May 31, 1994
PRPs conducted the remedial investigation/feasibility study	April 4, 1996 to
	May 7, 2002
PRPs conducted first removal action	July 26, 1996 to
	December 23, 1998
PRPs conducted second removal action	December 17, 1997 to
	September 29, 1998
PRPs conducted second feasibility study	May 17, 2006 to
	September 24, 2007
EPA and PRP agreed to Administrative Settlement and Order on Consent	November 29, 2006
PRPs conducted third removal action	March 19, 2007 to
	May 7, 2008
EPA signed ROD	September 24, 2007
EPA prepared Preliminary Close-Out Report	
PRPs and landowners recorded four Environmental Protection Easements and Declarations	June and September 2007
of Restrictive Covenants for the LWA pumping station, part of the former WWTP,	
residences on the former Safe Harbor Power Corporation property and the Shawnee Run	
Greenway	
PRPs recorded an Environmental Covenant for the former MGP facility	February 20, 2009
PRPs conducted the remedial design	May 28, 2010 to
	May 31, 2011
EPA and PRPs agreed to Consent Decree	September 15, 2010
Lancaster Water Authority stopped using the two cooling water wells	2010
PRPs conducted FFS to evaluate the effect of shutting down the cooling water wells	2011-2016
PRPs started the remedial action	May 31, 2011
The borough constructed a maintenance garage on the former MGP facility foundation	2011
The borough began using the on-site maintenance garage	2014
EPA issued an ESD	June 4, 2018
EPA sent informational letter to Norfolk Southern railroad describing groundwater and	March 2018
land use restrictions	
Borough of Columbia recorded Environmental Covenants for the former WWTP and the	October 2018
borough garage south of Front Street	
EPA sent informational letter to Penn DOT describing groundwater and land use	March 2021
restrictions	

APPENDIX C – PRESS NOTICE

EPA PUBLIC NOTICE EPA REVIEWS CLEANUP UGI COLUMBIA GAS PLANT SUPERFUND SITE

The U.S. Environmental Protection Agency (EPA) is reviewing the cleanup that was conducted at the UGI Columbia Gas Plant Superfund Site located in Columbia, Pennsylvania. EPA conducts five-year reviews to ensure that cleanups continue to protect public health and the environment. EPA conducted the previous five-year review in 2016 and concluded that the remedy was working as designed and is protective in the shortterm. Findings from the current review will be available in May 2021.

To access site information, including the five-year review report once finalized, visit: www.epa.gov/superfund/ugicolumbia

For questions or to provide site-related information for the review, contact: Gina Soscia, EPA Community Involvement Coordinator 215-814-5538 or soscia.gina@epa.gov

APPENDIX D – SITE INSPECTION CHECKLIST

FIVE-YEAR REVIEW SITE	INSPECTION CHECKLIST				
I. SITE INF	I. SITE INFORMATION				
Site Name: UGI Columbia	Date of Inspection: <u>09/22/2020</u>				
Location and Region: Columbia, PA; Region 3	EPA ID: <u>PAD980539126</u>				
Agency, Office or Company Leading the Five-Year Review: <u>EPA</u>	Weather/Temperature: <u>clear</u> , about 50°F				
Remedy Includes: (Check all that apply) Image: Access controls Monitored natural attenuation Access controls Groundwater containment Institutional controls Vertical barrier walls Groundwater pump and treatment Surface water collection and treatment Other: DNAPL and sediment removal; TI waiver					
Attachments: Inspection team roster attached	Site map attached				
	(check all that apply)				
1. O&M Site Manager					
2. O&M Staff Name Interviewed at site at office by phone _ F Problems/suggestions Report attached: F	Title Date Phone:				
	le Date Phone No.				
Agency ContactName Tit Problems/suggestions					
Agency Contact Name Tit Problems/suggestions					
Agency Contact Name Tit Problems/suggestions [] Report attached:					
Agency Contact					

	Name Problems/suggestions 🗌 Re	Title Title	Date	Phone No.	
4.	Other Interviews (optional)				
	III. ON-SITE DOCU	MENTS AND RECO	RDS VERIFIED (chec	k all that apply)	
1.	O&M Documents				
	🔀 O&M manual	Readily available	Up to date		J/A
	As-built drawings	Readily available	Up to date	\boxtimes M	J/A
	Maintenance logs	Readily available	Up to date	\boxtimes M	J/A
	Remarks:				
2.	Site-Specific Health and S	Safety Plan	Readily available	Up to date	N/A
	Contingency plan/emerg	gency response plan	Readily available	Up to date	N/A
	Domontos				
3.	Remarks: O&M and OSHA Trainin	a Records	Readily available	Up to date	N/A
5.	Remarks:	ig Actorus			
4.	Permits and Service Agre	ements			
	Air discharge permit		Readily available	Up to date	N/A
	Effluent discharge		Readily available	Up to date	N/A
	Waste disposal, POTW		Readily available	Up to date	N/A
	Other permits:		Readily available	Up to date	N/A
	Remarks:				
5.	Gas Generation Records		Readily available	Up to date	N/A
	Remarks:				
6.	Settlement Monument Re	ecords	Readily available	Up to date	N/A
	Remarks:				
7.	Groundwater Monitoring	g Records	Readily available	Up to date	N/A
	Remarks:				
8.	Leachate Extraction Reco	ords	Readily available	Up to date	N/A
	Remarks:				
9.	Discharge Compliance Re	ecords			
	Air	Readily available	Up to date	\boxtimes N	J/A
	Water (effluent)	Readily available	Up to date	\boxtimes N	J/A
	Remarks:				

10.	Daily Access/Secu	urity Logs	Readily av	ailable 🗌 Up to date 🛛 N/A	
	Remarks:				
		IV. 0&	M COSTS		
1.	O&M Organizati	ion			
	State in-house		Contractor fo	r state	
	PRP in-house		Contractor for PRP		
	Federal facility	in-house	Contractor fo	r Federal facility	
2.	O&M Cost Reco	rds			
	Readily availat	ole	Up to date		
	Funding mecha	anism/agreement in place	Unavailable		
	Original O&M cos	st estimate: Brea	kdown attached		
		Total annual cost by y	ear for review perio	d if available	
	From:	То:		Breakdown attached	
	Date	Date	Total cost		
	From:	То:		Breakdown attached	
	Date	Date	Total cost		
	From:	То:		Breakdown attached	
	Date	Date	Total cost		
	From:	То:		Breakdown attached	
	Date	Date	Total cost		
	From:	То:		Breakdown attached	
	Date	Date	Total cost		
3.	Unanticipated or U	Unusually High O&M Cos	sts during Review	Period	
	Describe costs and	reasons:			
	V. ACCES	SS AND INSTITUTIONAL	L CONTROLS	Applicable N/A	
A. Fei	ncing				
1.	Fencing Damaged	Location shown	on site map 🛛 🖂	Gates secured N/A	
	Remarks:				
B. Oth	her Access Restrictio	ons			
1.	Signs and Other S	ecurity Measures		shown on site map 🛛 N/A	
	Remarks:				

C. Institutional Controls (ICs)			
1. Implementation and Enforcement			
Site conditions imply ICs not proper	ly implemented	Yes	No 🗌 N/A
Site conditions imply ICs not being	fully enforced	Yes	No N/A
Type of monitoring (e.g., self-report	ting, drive by):		
Frequency:			
Responsible party/agency:			
Contact			
Name	Title	Date	Phone no.
Reporting is up to date		Yes	No N/A
Reports are verified by the lead agen	ncy	Yes	🗌 No 🛛 N/A
Specific requirements in deed or dee	cision documents have been met	Yes	No N/A
Violations have been reported		Yes	No N/A
Other problems or suggestions:	Report attached		
2. Adequacy ICs are adequ	ate ICs are in	adequate	N/A
Remarks: EPA will evaluate whether			
Front Street that crosses the DNAPI contamination during road and utilit	*	being exposed	1 to subsurface
D. General	<u>y work.</u>		
		Na son dallar	
1. Vandalism/Trespassing Loca Remarks:	ation shown on site map [X]	No vandalisn	1 evident
2. Land Use Changes On Site	N/A		
Remarks: wastewater treatment plan			
3. Land Use Changes Off Site	X/A		
Remarks:		~	
	ENERAL SITE CONDITIONS	8	
A. Roads Applicable N/A			
· _	ation shown on site map \square F	Roads adequa	te 🗌 N/A
Remarks:			
B. Other Site Conditions			
Remarks:			
VII. LANDFILI	COVERS Applicab	le 🗌 N/A	
A. Landfill Surface			
1. Settlement (low spots)	location shown on site map	Settlen	nent not evident
Area extent:		Depth:	
Remarks:			

2.	Cracks	Location shown on site map	Cracking not evident
	Lengths:	Widths:	Depths:
	Remarks:		
3.	Erosion	Location shown on site map	Erosion not evident
	Area extent:		Depth:
	Remarks:		
4.	Holes	Location shown on site map	Holes not evident
	Area extent:		Depth:
	Remarks:		
5.	Vegetative Cover	Grass	Cover properly established
	No signs of stress	Trees/shrubs (indicate size and lo	ocations on a diagram)
	Remarks: cover is asphalt	and concrete, not vegetated	
6.	Alternative Cover (e.g.,	armored rock, concrete)	N /A
	Remarks: Concrete and as	sphalt are in good condition (recently sea	led) at manufactured gas plant area.
7.	Bulges	Location shown on site map	Bulges not evident
	Area extent:		Height:
	Remarks:		
8.	Wet Areas/Water Dama	age \square Wet areas/water damage not e	evident
	Wet areas	Location shown on site map	Area extent:
	Ponding	Location shown on site map	Area extent:
	Seeps	Location shown on site map	Area extent:
	Soft subgrade	Location shown on site map	Area extent:
	Remarks:		
9.	Slope Instability	Slides	Location shown on site map
	🔀 No evidence of slope i	nstability	
	Area extent:		
	Remarks:		
B. Ber	nches Appl	icable 🛛 N/A	
		ounds of earth placed across a steep land city of surface runoff and intercept and c	
1.	Flows Bypass Bench	Location shown on site map	N/A or okay
	Remarks:		
2.	Bench Breached	Location shown on site map	N/A or okay
	Remarks:		
3.	Bench Overtopped	Location shown on site map	N/A or okay
	Remarks:	L. L	-

C. Let	down Channels	🗌 Applicable 🛛 🕅	N/A		
	(Channel lined with erosion slope of the cover and will a cover without creating erosion	llow the runoff water of			
1.	Settlement (Low spots)	Location shown	n on site map	🗌 No	evidence of settlement
	Area extent:			Depth:	
	Remarks:				
2.	Material Degradation	Location shown	n on site map	🗌 No	evidence of degradation
	Material type:			Area e	xtent:
	Remarks:				
3.	Erosion	Location shown	n on site map	🗌 No	evidence of erosion
	Area extent:			Depth:	
	Remarks:				
4.	Undercutting	Location shown	n on site map	🗌 No	evidence of undercutting
	Area extent:			Depth:	
	Remarks:				
5.	Obstructions	Type:		🗌 No	obstructions
	Location shown on site	e map A	rea extent:		
	Size:				
	Remarks:				
6.	Excessive Vegetative Gr	owth T	ype:		
	No evidence of excess	ive growth			
	Vegetation in channels	does not obstruct flow	V		
	Location shown on site	e map A	rea extent:		
	Remarks:				
D. Co	ver Penetrations	🗌 Applicable 🛛 🕅	N/A		
1.	Gas Vents	Active		Pass	ive
	Properly secured/locke	d 🗌 Functioning	Routinely sa	mpled	Good condition
	Evidence of leakage at	penetration	Needs maint	tenance	N/A
	Remarks:				
2.	Gas Monitoring Probes				
	Properly secured/locke	d 🗌 Functioning	Routinely sa	mpled	Good condition
	Evidence of leakage at	penetration	Needs maint	tenance	N/A
	Remarks:				

3.	Monitoring Wells (within su	rface area of landfill)	
	Properly secured/locked	Functioning	Routinely sampled	Good condition
	Evidence of leakage at pe	enetration	Needs maintenance	N/A
	Remarks:			
4.	Extraction Wells Leachate			
	Properly secured/locked	Functioning	Routinely sampled	Good condition
	Evidence of leakage at pe	enetration	Needs maintenance	N/A
	Remarks:			
5.	Settlement Monuments	Located	Routinely surveyed	N /A
	Remarks:			
E. Ga	as Collection and Treatment	Applicable	X/A	
1.	Gas Treatment Facilities			
	☐ Flaring	Thermal destru	iction	Collection for reuse
	Good condition	Needs mainten	ance	
	Remarks:			
2.	Gas Collection Wells, Mani	folds and Piping		
	Good condition	Needs mainten	ance	
	Remarks:			
3.	Gas Monitoring Facilities (e	e.g., gas monitoring o	of adjacent homes or buildi	ngs)
	Good condition	Needs mainten	ance 🗌 N/A	
	Remarks:			
F. Co	over Drainage Layer		e 🛛 N/A	
1.	Outlet Pipes Inspected	Functioning	N/A	
	Remarks:			
2.	Outlet Rock Inspected	Functioning	N/A	
	Remarks:			
G. D	etention/Sedimentation Ponds	Applicable	e 🗌 N/A	
1.	Siltation Area ext	ent:]	Depth:	□ N/A
	Siltation not evident			
	Remarks:			
2.			Depth:	
	Erosion not evident			
	Remarks:			
3.	Outlet Works X Func	tioning		□ N/A
	Remarks:			

4.	Dam	⊠ Functioning	N/A
	Remarks:		
H. R	Retaining Walls	Applicable N/A	
1.	Deformations	Location shown on site map	Deformation not evident
	Horizontal displacement:	Vertical dis	splacement:
	Rotational displacement:		
	Remarks:		
2.	Degradation	Location shown on site map	Degradation not evident
	Remarks:		
I. Pe	rimeter Ditches/Off-Site Dis	charge Applicable	N/A
1.	Siltation	Location shown on site map	Siltation not evident
	Area extent:		Depth:
	Remarks:		
2.	Vegetative Growth	Location shown on site map	N/A
	Vegetation does not imp	bede flow	
	Area extent:		Туре:
	Remarks:		
3.	Erosion	Location shown on site map	Erosion not evident
	Area extent:		Depth:
	Remarks:		
4.	Discharge Structure	Functioning	N/A
	Remarks:		
VIII.	VERTICAL BARRIER WA	ALLS Applicable	N/A
1.	Settlement	Location shown on site map	Settlement not evident
	Area extent:		Depth:
	Remarks:		
2.	Performance Monitoring	Type of monitoring:	
	Performance not monito	red	
	Frequency:		Evidence of breaching
	Head differential:		
	Remarks: <u>Sheetpile wall ins</u> recontaminated by coal tar r	stalled along Susquehanna River to p remaining in site soils.	revent sediments from being

IX. G	GROUNDWATER/SURFACE WATER REMEDIES 🖂 Applicable 🗌 N/A
A. G	roundwater Extraction Wells, Pumps and Pipelines
1.	Pumps, Wellhead Plumbing and Electrical
	Good condition All required wells properly operating Needs maintenance N/A
	Remarks:
2.	Extraction System Pipelines, Valves, Valve Boxes and Other Appurtenances
	Good condition Needs maintenance
	Remarks:
3.	Spare Parts and Equipment
	Readily available Good condition Requires upgrade Needs to be provided
	Remarks:
B. Su	urface Water Collection Structures, Pumps and Pipelines
1.	Collection Structures, Pumps and Electrical
	Good condition Needs maintenance
	Remarks:
2.	Surface Water Collection System Pipelines, Valves, Valve Boxes and Other Appurtenances
	Good condition Needs maintenance
	Remarks:
3.	Spare Parts and Equipment
	Readily available Good condition Requires upgrade Needs to be provided
	Remarks:
C. Tı	reatment System Applicable N/A
1.	Treatment Train (check components that apply)
	Metals removal Oil/water separation Bioremediation
	Air stripping Carbon adsorbers
	Filters:
	Additive (e.g., chelation agent, flocculent):
	Others:
	Good condition
	Sampling ports properly marked and functional
	Sampling/maintenance log displayed and up to date
	Equipment properly identified
	Quantity of groundwater treated annually:
	Quantity of surface water treated annually:
	Remarks:

-									
2.	Electrical Enclosures and Panels (properly rated and functional)								
	□ N/A □ Good condition □ Needs maintenance								
	Remarks:								
3.	Tanks, Vaults, Storage Vessels								
	□ N/A □ Good condition □ Proper secondary containment □ Needs maintenance								
	Remarks:								
4.	Discharge Structure and Appurtenances								
	□ N/A □ Good condition □ Needs maintenance								
	Remarks:								
5.	Treatment Building(s)								
	□ N/A □ Good condition (esp. roof and doorways) □ Needs repair								
	Chemicals and equipment properly stored								
	Remarks:								
6.	Monitoring Wells (pump and treatment remedy)								
	Properly secured/locked Functioning Routinely sampled Good condition								
	All required wells located Needs maintenance N/A								
	Remarks:								
D. Me	onitoring Data								
1.	Monitoring Data								
	\boxtimes Is routinely submitted on time \boxtimes Is of acceptable quality								
2.	Monitoring Data Suggests:								
	Groundwater plume is effectively contained Contaminant concentrations are declining								
E. M	onitored Natural Attenuation								
1.	Monitoring Wells (natural attenuation remedy)								
	\square Properly secured/locked \boxtimes Functioning \boxtimes Routinely sampled \boxtimes Good condition								
	All required wells located Needs maintenance N/A								
	Remarks: Monitoring well CWW01 was locked but the lid was not attached to the casing.								
	X. OTHER REMEDIES								
If the	re are remedies applied at the site and not covered above, attach an inspection sheet describing the physical								
	and condition of any facility associated with the remedy. An example would be soil vapor extraction.								
	XI. OVERALL OBSERVATIONS								
----	--	--	--	--	--	--	--	--	--
A.	Implementation of the Remedy								
	Describe issues and observations relating to whether the remedy is effective and functioning as designed.								
	Begin with a brief statement of what the remedy is designed to accomplish (e.g., to contain contaminant								
	plume, minimize infiltration and gas emissions).								
	The remedy is designed to prevent exposure to remaining soil contamination through capping and								
	institutional controls. The groundwater remedy includes institutional controls, natural gradient flushing,								
	and a TI waiver. The remedy is functioning as intended by the decision documents. All remaining soil								
	contamination is covered by concrete or asphalt caps, which are regularly inspected and maintained								
	ensure protectiveness. Sediment contamination in the Susquehanna River was removed. All necessary								
	institutional controls have been put in place to provide groundwater and land use controls at the Site, with								
	the possible exception of the Front Street right-of-way. As expected, groundwater in the DNAPL Zone continues to exceed MCLs. Outside the DNAPL Zone, there was only one occurrence of a COC								
	exceeding its MCL over the past five years.								
B.	Adequacy of O&M								
	Describe issues and observations related to the implementation and scope of O&M procedures. In								
	particular, discuss their relationship to the current and long-term protectiveness of the remedy.								
	O&M is adequate. In accordance with the O&M Plan, the PRP contractor performs annual inspections to								
	verify the integrity of the asphalt and concrete caps and associated stormwater management system.								
C.	Early Indicators of Potential Remedy Problems								
	Describe issues and observations such as unexpected changes in the cost or scope of O&M or a high								
	frequency of unscheduled repairs that suggest that the protectiveness of the remedy may be compromised								
	in the future.								
	None identified.								
D.	Opportunities for Optimization								
	Describe possible opportunities for optimization in monitoring tasks or the operation of the remedy.								
	None identified.								
L									

Site inspection participants: EPA RPM

EPA RPM EPA hydrogeologist Clean Sites (PRP contractor) Skeo (EPA FYR support contractor)

APPENDIX E – SITE INSPECTION PHOTOS

MGP area

Western concrete cap at MGP area

Eastern concrete cap at MGP area

Borough municipal garage southwest of Front Street

Former WWTP

LWA drinking water pumping station

Monitoring well MW-4

Railroad tracks next to borough municipal garage (southwest of Front Street)

Residential area west of LWA pumping station

Monitoring well CWW01 (lid locked but not attached to casing)

New collar and lockable lid installed on CWW01 after FYR site inspection

APPENDIX F – DATA REVIEW SUPPORTING MATERIAL

Table F-1: Groundwater Sampling Results, 2015 to 2019²

TI Waiver Zone						0	utside TI Waiver Zo	ne				
Location Sample Date	EPA MCL	CWW01 09/16/2015	CWW01 09/14/2016	CWW01 09/13/2017	CWW01 09/18/2018	CWW01 10/02/2019	LTMW-2 09/16/2015	LTMW-2 12/15/2015	LTMW-2 09/14/2016	LTMW-2 09/13/2017	LTMW-2 09/19/2018	LTMW-2 10/02/2019
Sample Type	MOL	N	N	N	N	N	N	N	N	N	N	N
Sample Depth (bgs)		75 (ft)		121.5 - 131.5 (ft)								
Volatile Organic Compounds (ug/L)												
1.2.4 Trimethylbenzene		< 1	< 1	< 1	< 1	< 1	1.2	< 1	<1	< 1	< 1	< 1
Benzene	5	<1	< 1	<1	< 1	<1	15.2 [4]	<1	<1	<1	<1	0.47 J
Ethylbenzene	700	<1	<1	<1	<1	<1	15.3	<1	<1	<1	<1	< 1
Tetrachloroethene	5	<1	< 1	<1	< 1	<1	<1	<1	<1	<1	<1	<1
Toluene	1000	<1	< 1	<1	< 1	< 1	0.32 J	<1	<1	<1	<1	< 1
Trichloroethene	5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1
Xylene (total)	10000	< 3	< 3	< 3	< 3	< 3	6	< 3	< 3	<3	< 3	< 3
Ayrene (total)	10000	~ 5	- 5	-3	~ 3	- 3	0	- 3	- 3	- 3	- 3	
Semi-Volatile Organic Compounds (ug/L)												
1-Methylnaphthalene	-	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-			
2-Methylnaphthalene	-	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	÷-	-	-
Acenaphthene	()	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	÷-	=	÷.
Acenaphthylene	27 - 3		< 1.4	-	-	-	-	-	-	10	7	55
Benzo(a)anthracene	-	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	-	-	12
Benzo(a)pyrene	0.2	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	5 4	¥0	14 A
Benzo(b)fluoranthene	-	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	0 .	-	÷
bis(2-Ethylhexyl)phthalate	6	< 2.8 J	< 2.8	< 2.7	< 2.8	< 2.9	< 2.8	< 2.8	-	-	-	-
Chrysene	2 S	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	-	-	2
Dibenzofuran	3 4 3	< 2.8 J	< 2.8	< 2.7	< 2.8	< 2.9	< 2.8	< 2.8	2	24	20	12
Fluoranthene	10-0	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	3 -	-	-
Naphthalene	-	< 1.4 J	0.25 J	< 1.4	< 1.4	< 1.4	0.49 J	< 1.4	-		2	-
Phenanthrene	-	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	2	2	2	2
Pyrene	37433	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	-	24	2	-
Semi-Volatile Organic Compounds (SIM) (ug/L)												
	1220	0.015 J	0.029 J	0.022 J	< 0.093	< 0.096	0.026 J	< 0.093				
1-Methylnaphthalene									-			-
2-Methylnaphthalene	-	< 0.093	< 0.094	< 0.091	< 0.093	< 0.096	< 0.093	< 0.093	-		-	-
Acenaphthene	-	0.013 J	< 0.094	< 0.091	< 0.093	0.015 J	< 0.093	< 0.093	-	-	-	-
Acenaphthylene	5	-	< 0.094	-	-	-	-	-	-	-	-	5
Benzo(a)anthracene	-	< 0.093	< 0.094	< 0.091	< 0.093	< 0.096	< 0.093	< 0.093	-	-	5	-
Benzo(a)pyrene	0.2	< 0.093	< 0.094	< 0.091	< 0.093	< 0.096	< 0.093	< 0.093	-	8 4	2 0	-
Benzo(b)fluoranthene	-		< 0.094	< 0.091	< 0.093	< 0.096	-	< 0.093	-	-	**	
Chrysene		< 0.093	< 0.094	< 0.091	< 0.093	< 0.096	< 0.093	< 0.093	-	-	-	
Fluoranthene	121	< 0.093	< 0.094	< 0.091	< 0.093	< 0.096	< 0.093	< 0.093	-	-	÷	19
Naphthalene	3 <u>8</u> 3	0.019 J	0.23	< 0.091	< 0.093	< 0.096	0.21	< 0.093	-	19 4	¥3	-
Phenanthrene	1.00	0.012 J	< 0.094	0.022 J	< 0.093	< 0.096	< 0.093	0.021 J	-	5 .	-	-
Pyrene	-	0.027 J	0.027 J	0.031 J	0.024 J	0.034 J	< 0.093	< 0.093	5		•	-
Inorganic Compounds (ug/L)		10000										
Aluminum, Dissolved		< 80	< 80	< 89	< 89	< 89	< 80	< 80			*	
Barium, Dissolved	2000	34	33	35	37	35	220	240 J	-			-
Iron, Dissolved	-	17 J	26 J	< 56	< 56	< 56	720	760	-	-	2	-
Lead. Dissolved	15	< 2	< 2	< 2.2	< 2.2	< 2.2	< 2	< 2		14	2	1
Manganese, Dissolved		< 5	1.7 J	6	< 5.6	< 5.6	4.7 J	4.6 J				
Cyanide	200	< 5	1 J	< 5	< 5	1.9 J	< 5	< 5 J	-	-	-	-
Other (ug/L)												
Alkalinity, Total (as CaCO3)		278000					430000					-
Ferrous Iron	050	40 J	-				430000					-
Methane	-	40 J 1.2 J	1.0				490		-			5
	10000	1.2 J 2900 J			1	-		-				-
Nitrite/Nitrate Nitrogen			6 8 .	-			< 200	-	-		-	-
Sulfate	22 7 6	37600	2 7	-	17	-	132000	670		11		3
Sulfide	0.72	< 1000		-	1	-	< 1000		5	92 7	34	

² Source: 2019 Annual Sampling and Monitoring Report

TI Waiver Zone			Outside TI Waiver Zone								
Location	EPA	LTMW-3	LTMW-3	LTMW-3	LTMW-3	LTMW-3	MVV-5	MW-5	MW-5	MW-5	MW-5
Sample Date	MCL	09/17/2015	09/14/2016	09/13/2017	09/18/2018	10/03/2019	09/14/2015	09/12/2016	09/11/2017	09/18/2018	09/30/2019
Sample Type		N	N	N	N	N	N	N	N	N	N
Sample Depth (bgs)		100 - 110 (ft)	100 - 110 (ft)	100 - 110 (ft)	100 - 110 (ft)	100 - 110 (ft)	20 - 35 (ft)	20 - 35 (ft)	20 - 35 (ft)	20 - 35 (ft)	20 - 35 (ft)
Valatila Organia Companyala (varila)											
Volatile Organic Compounds (ug/L)	-		< 1	<1	<1	< 1	<1	< 1	< 1	<1	< 1
1,2,4-Trimethylbenzene		< 1				2.5					
Benzene	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	1.4
Ethylbenzene	700	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Tetrachloroethene	5	< 1	< 1	<1	< 1	< 1	<1	< 1	< 1	< 1	< 1
Toluene	1000	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Trichloroethene	5	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Xylene (total)	10000	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
Semi-Volatile Organic Compounds (ug/L)											
1-Methylnaphthalene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
2-Methylnaphthalene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Acenaphthene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Acenaphthylene	-	-	< 1.4	-	-	-	-	< 1.4	120	-	-
Benzo(a)anthracene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(a)pyrene	0.2	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(b)fluoranthene		< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
bis(2-Ethylhexyl)phthalate	6	< 2.8	< 2.8	< 2.9	< 2.8	0.25 J	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8
Chrysene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Dibenzofuran	-	< 2.8	< 2.8	< 2.9	< 2.8	< 2.9	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8
Fluoranthene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Naphthalene	-	< 1.4	< 1.4	0.45 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	0.3 J
Phenanthrene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Pyrene	-	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	0.81 J	0.72 J	1.1 J	1.1 J	< 1.4
Semi-Volatile Organic Compounds (SIM) (ug/L)											
1-Methylnaphthalene		< 0.093	< 0.093	0.079 J	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	< 0.094 J
2-Methylnaphthalene		< 0.093	< 0.093	0.026 J	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	< 0.094 J
Acenaphthene	-	< 0.093	< 0.093	0.03 J	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	0.012 J
Acenaphthylene	-	-	< 0.093	-	-	-	-	0.014 J	-	-	-
Benzo(a)anthracene	-	< 0.093	< 0.093	< 0.098	< 0.093	< 0.097	< 0.093	< 0.093	0.02 J	< 0.094	< 0.094 J
Benzo(a)pyrene	0.2	< 0.093	< 0.093	< 0.098	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	< 0.094 J
Benzo(b)fluoranthene	-	- 0.000	< 0.093	0.024 J	0.023 J	0.033 J	- 0.000	< 0.093	< 0.093	< 0.094	< 0.094 J
Chrysene	-	< 0.093	< 0.093	< 0.098	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	< 0.094 J
Fluoranthene		0.017 J	< 0.093	0.049 J	0.063 J	0.068 J	0.013 J	< 0.093	< 0.093	< 0.094	< 0.094 J
Naphthalene		0.029 J	< 0.093	0.72	< 0.093	< 0.097	0.036 J	< 0.093	< 0.093	< 0.094	0.22 J
Phenanthrene	-	< 0.093	< 0.093	< 0.098	< 0.093	< 0.097	< 0.093	< 0.093	< 0.093	< 0.094	< 0.094 J
Pyrene	-	0.027 J	< 0.093	0.074 J	0.098	0.11	0.61	0.7	1.3	0.92	0.077 J
Inorganic Compounds (ug/L)											
Aluminum, Dissolved	-	< 80	< 80	< 89	< 89	< 89	< 80	< 80	< 89	< 89	< 89
Barium, Dissolved	2000	46	48	47	47	45	96	130	99	80	83
Iron, Dissolved	-	38 J	190	< 56	260	200	1400	2500 J	4400	390	33 J
Lead, Dissolved	15	< 2	< 2	< 2.2	< 2.2	< 2.2	< 2	< 2	< 2.2	< 2.2	< 2.2
Manganese, Dissolved	-	17	17	17	17	16	980	790	540	440	110
Cyanide	200	< 5	< 5	< 5	< 5	< 2	< 5	1 J	3 J	8	17
Other (ug/L)											
Alkalinity, Total (as CaCO3)	-	507000	-	-	-	-	-	. .	. 	÷	E
Ferrous Iron	-	290	-	-	-	-	-		100	14	14
Methane	-	4.2	-	-	-	-	-	-	-	-	-
Nitrite/Nitrate Nitrogen	10000	< 200	-	-	-	-	-	-	240	14	12
Sulfate	-	169000	-	-	-	-	-	 :	-	-	-
Sulfide	4	< 1000	-	-	-	-	-	-	- L0	L	<u>u</u>

TI Waiver Zone							W	/ithin TI Waiver Zor	ne					
Location	EPA	CWW02	CWW02	CWW02	CWW02	CWW02	CWW02	CWW02	LTMW-1	LTMW-1	LTMW-1	LTMW-1	LTMW-1	LTMW-1
Sample Date	MCL	09/17/2015	09/18/2015	09/18/2015	09/14/2016	09/13/2017	09/20/2018	10/01/2019	09/16/2015	09/14/2016	09/14/2016	09/13/2017	09/20/2018	10/01/2019
Sample Type	2000	N	N	N	N	N	N	N	N	N	FD	N	N	N
Sample Depth (bgs)		145 (ft)	45 (ft)	185 (ft)	145 (ft)	145 (ft)	145 (ft)	145 (ft)	103 - 113 (ft)	103 - 113 (ft)	103 - 113 (ft)	103 - 113 (ft)	103 - 113 (ft)	103 - 113 (ft)
Volatile Organic Compounds (ug/L)			22.2											
1,2,4-Trimethylbenzene		0.25 J	< 1	< 1	1	< 10	4.3	13.7	361	329	341	274	222	296
Benzene	5	94.2	6.9	63	307	862	3340	6430	7330	8500	8420	8910	8890	8210
Ethylbenzene	700	16.4	0.81 J	1.8	8.3	15.5	57.3	144	2650	2900	2990	3280	2980	3150
Tetrachloroethene	5	< 1	< 1	< 1	< 1	< 10	< 1	< 10	< 5	< 50	< 50	< 50	< 50	< 50
Toluene	1000	< 1	< 1	0.25 J	0.25 J	< 10	1.3	3.5 J	82.6	168	175	133	102	29.4 J
Trichloroethene	5	< 1	< 1	< 1	< 1	< 10	<1	< 10	< 5	< 50	< 50	< 50	< 50	< 50
Xylene (total)	10000	< 3	< 3	< 3	8.5	9.4 J	61.2	153	1360	1450	1520	1510	1300	1070
Semi-Volatile Organic Compounds (ug/L)														
1-Methylnaphthalene		7.4 J	0.56 J	0.46 J	5.9	25.6	14.9	65.1	655	383	436	555	516	420
2-Methylnaphthalene		< 1.4 J	< 1.4	< 1.4	< 1.5	0.23 J	0.49 J	4.5	54.1	46.8	49.1	146	62.9	55.9
Acenaphthene	2	16.8 J	7.5	2.6	11.1	21.4	21	37.6	261	161	194	245	228	179
Acenaphthylene		-	-	-	< 1.5	21.4	-	-	-	< 1.4	< 1.4		-	
Benzo(a)anthracene		< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(a)pyrene	0.2	< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(b)fluoranthene	0.2	< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
bis(2-Ethylhexyl)phthalate	6	< 2.8 J	< 2.8	0.36 J	< 2.9	< 2.8	< 2.9	< 2.9	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8
Chrysene	0	< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Dibenzofuran	-	0.36 J	< 2.8	< 2.8	0.27 J	0.48 J	0.48 J	0.87 J	14.4	11.7	11.6	13.1	10.9	14.2
Fluoranthene		< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	0.44 J	0.63 J	0.65 J	0.69 J	0.57 J	0.81 J
Naphthalene	-	< 1.4 J 3.5 J	< 1.4	< 1.4	7.9	38.7	159	621	5810	3450	3950	5230	4930	3770
Phenanthrene	-	< 1.4 J	< 1.4	< 1.4	< 1.5	0.26 J	0.4 J	1J	32.6	31.7	30.9	34.1	28.2	34.8
	-	< 1.4 J < 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	0.44 J	0.43 J	0.54 J	28.2 0.49 J	0.71 J
Pyrene		< 1.4 J	< 1.4	< 1.4	< 1.5	< 1.4	< 1.4	< 1.4	< 1.4	0.44 J	0.43 J	0.54 J	0.49 J	0.715
Semi-Volatile Organic Compounds (SIM) (ug/L)														
1-Methylnaphthalene	-	6.9 J	0.54	0.86	6.3 J	23.6 J	13.2 J	68 J	24.6 J	74.2 J	-	-	169 J	149 J
2-Methylnaphthalene	-	0.022 J	0.0092 J	0.015 J	0.051 J	0.24	0.59	5.8 J	5.6 J	19.3 J	-	-	47.4 J	25.6 J
Acenaphthene	-	15.8 J	7.6 J	5	11.3 J	18.7 J	14 J	29.9 J	72.2 J	97.1 J	82.7 J	110 J	55.6 J	87.5 J
Acenaphthylene		-	-	-	0.1	-	-	-	-	5 J	4.8 J		-	-
Benzo(a)anthracene	-	< 0.093	< 0.093	< 0.093	< 0.097	< 0.093	< 0.095	< 0.095 J	< 0.093 J	< 0.093	0.093 R	< 0.093 J	< 0.093	< 0.093 J
Benzo(a)pyrene	0.2	< 0.093	< 0.093	< 0.093	< 0.097	< 0.093	< 0.095	< 0.095 J	< 0.093 J	< 0.093	0.093 R	< 0.093 J	< 0.093	< 0.093 J
Benzo(b)fluoranthene	-	-	-	-	< 0.097	< 0.093	< 0.095	< 0.095 J	-	< 0.093	0.093 R	< 0.093 J	< 0.093	< 0.093 J
Chrysene	-	< 0.093	< 0.093	< 0.093	< 0.097	< 0.093	< 0.095	< 0.095 J	< 0.093 J	< 0.093	0.093 R	< 0.093 J	< 0.093	< 0.093 J
Fluoranthene		< 0.093	< 0.093	0.0099 J	< 0.097	< 0.093	0.018 J	0.027 J	0.32 J	0.47	0.51 J	0.59 J	0.46 J	0.66 J
Naphthalene	-	3.2 J	< 0.19	0.57	8 J	33.8 J	66.7 J	272 J	37.1 J	103 J		-	411 J	316 J
Phenanthrene	-	0.11	0.024 J	0.027 J	0.13	0.28	0.3	0.93 J	23.8 J	26.1 J	25.9 J	25.2 J	15.4 J	26.7 J
Pyrene	-	< 0.093	< 0.093	0.013 J	< 0.097	0.016 J	0.022 J	0.028 J	0.21 J	0.34	0.38 J	0.48 J	0.4	0.55 J
learning Comments (and)														
Inorganic Compounds (ug/L)		. 00	- 00	. 00	- 00		- 00	- 00		- 00	- 00	- 00	- 00	- 00
Aluminum, Dissolved	-	< 80	< 80	< 80	< 80	34 J	< 89	< 89	< 80	< 80	< 80	< 89	< 89	< 89
Barium, Dissolved	2000	220	200	220	150	170	130	140	120	98	99	100	100	100
Iron, Dissolved		9000	590	10200	620	3700	280	1500	1900	1800	1800	2600	2500	2200
Lead, Dissolved	15	< 2	< 2	< 2	< 2	< 2.2	< 2.2	< 2.2	< 2	< 2	< 2	< 2.2	< 2.2	< 2.2
Manganese, Dissolved	-	870	1500	840	470	300	190	190	42	49	49	51	42	45
Cyanide	200	< 5 J	1 J	< 5 J	2 J	< 5	< 5	< 2	33	39	44	48 J	36	35
Other (ug/L)														
Alkalinity, Total (as CaCO3)	-	385000	348000	-	-	-	-	-	352000	-		-	-	-
Ferrous Iron		10700	870	-	-	-	-	-	-	-	-	-	(m)	-
Methane	-	1810	1190		-		-	-	2390	-	-	-	-	-
Nitrite/Nitrate Nitrogen	10000	< 200	< 200	2	-	-	-	-	< 200		-	-	-	-
Sulfate	-	17300	36800	4	-	-	-		< 2000					-
Sulfide	512	< 1000	< 1000						< 1000			120		222

TI Waiver Zone							Within TI W	/aiver Zone					
Location	EPA	MW-07DR	MW-07DR	MW-07DR	MW-07DR	MW-07DR	MW-07DR	MW-07DR	MW-07S	MW-07S	MW-07S	MW-07S	MW-07S
Sample Date	MCL	09/14/2015	09/12/2016	09/11/2017	09/17/2018	09/17/2018	09/30/2019	09/30/2019	09/14/2015	09/12/2016	09/11/2017	09/17/2018	09/30/2019
Sample Type		N	N	N	N	FD	N	FD	N	N	N	N	N
Sample Depth (bgs)		50 - 60 (ft)	50 - 60 (ft)	50 - 60 (ft)	50 - 60 (ft)	50 - 60 (ft)	50 - 60 (ft)	50 - 60 (ft)	10 - 20 (ft)	10 - 20 (ft)	10 - 20 (ft)	10 - 20 (ft)	10 - 20 (ft)
Volatile Organic Compounds (ug/L)													
1.2,4-Trimethylbenzene		< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1
Benzene	5	< 1	< 1	<1	< 1	< 1	0.58 J	0.6 J	< 1	<1	< 1	< 1	<1
Ethylbenzene	700	<1	< 1	<1	< 1	<1	< 1	< 1	< 1	<1	< 1	< 1	<1
Tetrachloroethene	5	< 1	< 1	<1	<1	< 1	<1	<1	< 1	<1	< 1	< 1	<1
Toluene	1000	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	< 1	<1
Trichloroethene	5	< 1	< 1	<1	< 1	< 1	<1	< 1	< 1	< 1	< 1	< 1	<1
Xylene (total)	10000	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3	< 3
Semi-Volatile Organic Compounds (ug/L)													
1-Methylnaphthalene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
2-Methylnaphthalene	141	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Acenaphthene	1.0	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	0.37 J	0.24 J	0.51 J	< 1.4	< 1.4	< 1.4	< 1.6
Acenaphthylene	-	-	< 1.4		-	1073	1.7500 000 000 10 7 0		1-1	< 1.4	1.00		5
Benzo(a)anthracene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Benzo(a)pyrene	0.2	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Benzo(b)fluoranthene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
bis(2-Ethylhexyl)phthalate	6	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	< 3.2	< 2.8	< 2.8	< 2.9	< 2.8	< 2.8	< 3.3
Chrysene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Dibenzofuran	121	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	< 3.2	< 2.8	< 2.8	< 2.9	< 2.8	< 2.8	< 3.3
Fluoranthene	0.70	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Naphthalene		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Phenanthrene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6
Pyrene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.6	< 1.4	0.43 J	0.16 J	< 1.4	< 1.4	0.35 J
Semi-Volatile Organic Compounds (SIM) (ug/L)													
1-Methylnaphthalene	-	< 0.093	< 0.093	0.02 J	< 0.093	< 0.093	0.03 J	0.032 J	0.015 J	< 0.096	< 0.093	< 0.093	< 0.11 J
2-Methylnaphthalene	-	0.01 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	0.016 J	< 0.093	< 0.096	< 0.093	< 0.093	< 0.11 J
Acenaphthene	1.00	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	0.22	0.22	0.47	0.021 J	< 0.093	< 0.093	0.021 J
Acenaphthylene	(H)	-	< 0.093	-	-	-	-	-	-	0.056 J	-	-	-
Benzo(a)anthracene	-	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	< 0.093	< 0.093	< 0.096	< 0.093	< 0.093	< 0.11 J
Benzo(a)pyrene	0.2	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	< 0.093	< 0.093	< 0.096	< 0.093	< 0.093	< 0.11 J
Benzo(b)fluoranthene	-	< 0.093	< 0.093 < 0.093	< 0.093 < 0.093	< 0.093 < 0.093	< 0.093 < 0.093	< 0.11 < 0.11	< 0.093 < 0.093	< 0.093	< 0.096 < 0.096	< 0.093 < 0.093	< 0.093 < 0.093	< 0.11 J < 0.11 J
Chrysene Fluoranthene	-	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	< 0.093	< 0.093	< 0.096	< 0.093	< 0.093	< 0.11 J
Naphthalene	-	0.019 J	< 0.093	0.039 J	< 0.093	< 0.093	0.042 J	0.046 J	0.017 J	< 0.096	< 0.093	< 0.093	< 0.11 J
Phenanthrene		< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	< 0.093	< 0.093	< 0.096	< 0.093	< 0.093	< 0.11 J
Pyrene	121	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.11	< 0.093	0.33	0.11	0.11	0.11	0.25 J
		1. 2010 012 500 Bes											
Inorganic Compounds (ug/L)			100							122			
Aluminum, Dissolved	-	< 80	< 80	< 89	< 89	< 89	< 89	< 89	< 80	< 80	< 89	< 89	< 89
Barium, Dissolved	2000	48	51	47	49	49	48	47	85	85	85	77	73
Iron, Dissolved Lead, Dissolved	15	< 50	< 50 J	< 56	22 J < 2.2	35 J < 2.2	43 J 0.76 J	< 56	53 < 2	< 50 J < 2	< 56 < 2.2	22 J < 2.2	51 J < 2.2
Lead, Dissolved Manganese, Dissolved	15	< 2	< 2 < 5	< 2.2 < 5.6	< 2.2 7.8	< 2.2	0.76 J 11	< 2.2 10	< 2 1600	< 2 1100	< 2.2 880	< 2.2	< 2.2 2600
Cyanide	200	1 J	5 J	< 5.6 8 J	11	< 5.6 9	20	10	4.9 J	8J	11 J	17	2800
Other (ug/L)													
Alkalinity, Total (as CaCO3)	-	-	5	-	-	-	-	-	-	-	-	-	-
Ferrous Iron		-		-	-	87	-	-	(7)	-		27.0	
Methane	-	-		-	-	-	-	-	-	-	-	-	-
Nitrite/Nitrate Nitrogen	10000	<u> </u>	-	-	-	2.	-	-	240	-	-	-	-
Sulfate	-	-	-		-	155	-	-	-	-	1	0500	-
Sulfide	-	-		-		-	-	-	-	-	-	-	

TI Waiver Zone						Within TI V	Vaiver Zone				
Location	EPA	MW-08D	MW-08D	MW-08D	MW-08D	MW-08D	MW-08S	MW-08S	MW-08S	MW-08S	MW-08S
Sample Date	MCL	09/16/2015	09/13/2016	09/12/2017	09/19/2018	10/02/2019	09/15/2015	09/13/2016	09/12/2017	09/19/2018	10/01/2019
Sample Type		N	N	N	N	N	N	N	N	N	N
Sample Depth (bgs)		56 - 66 (ft)	56 - 66 (ft)	56 - 66 (ft)	56 - 66 (ft)	56 - 66 (ft)	21.5 - 31.5 (ft)	21.5 - 31.5 (ft)	21.5 - 31.5 (ft)	21.5 - 31.5 (ft)	21.5 - 31.5 (ft)
Volatile Organic Compounds (ug/L)											
1,2,4-Trimethylbenzene	-	< 5	< 1	<1	< 1	104	<1	< 1	< 1	< 1	<1
Benzene	5	672	48.4	<1	<1	4610	<1	<1	<1	<1	<1
Ethylbenzene	700	58.2	0.45 J	<1	<1	775	<1	<1	<1	<1	<1
Tetrachloroethene	5	< 5	< 1	<1	<1	< 1	<1	<1	<1	<1	<1
Toluene	1000	1.5 J	0.53 J	<1	<1	7.4	<1	<1	<1	<1	<1
Trichloroethene	5	< 5	< 1	<1	< 1	< 1	<1	< 1	<1	<1	< 1
Xylene (total)	10000	11.9 J	< 3	< 3	< 3	271	< 3	< 3	< 3	< 3	< 3
Constitute for a second constant (constitute)											
Semi-Volatile Organic Compounds (ug/L) 1-Methylnaphthalene		68.3	3	0.28 J	< 1.4	197	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
2-Methylnaphthalene	-	< 1.4	3 < 1.4	0.28 J < 1.4	< 1.4	6.7	< 1.4	< 1.4	< 1.4 < 1.4	< 1.4	< 1.4 < 1.4
Acenaphthene	_	53.9	32.8	23.6	7.6	80.8	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Acenaphthylene	÷		< 1.4	-	-	-		< 1.4	~ 1.4	- 1.4	- 1.4
Benzo(a)anthracene	-	< 1.4	< 1.4	- < 1.4	< 1.4	< 1.4	< 1.4	< 1.4	- < 1.4	< 1.4	< 1.4
Benzo(a)pyrene	0.2	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(b)fluoranthene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
bis(2-Ethylhexyl)phthalate	6	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8	7.1	< 2.8	< 2.8	< 2.8
Chrysene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Dibenzofuran	-	1.5 J	0.83 J	0.44 J	< 2.8	3	< 2.8	< 2.8	< 2.8	< 2.8	< 2.8
Fluoranthene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Naphthalene	-	15.1	< 1.4	< 1.4	< 1.4	788	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Phenanthrene	-	< 1.4	< 1.4	< 1.4	< 1.4	2.6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Pyrene	<u></u>	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Semi-Volatile Organic Compounds (SIM) (ug/L)											
1-Methylnaphthalene	-	48.9 J	3.4 J	0.3	0.089 J	184 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
2-Methylnaphthalene	-	0.043 J	0.025 J	0.019 J	< 0.093	10.5 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Acenaphthene	-	47.2 J	33.6 J	21.1 J	5.7 J	61.6 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Acenaphthylene	-	-	0.38	200	-			< 0.093			-
Benzo(a)anthracene	-	< 0.093	< 0.093	< 0.092	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Benzo(a)pyrene	0.2	< 0.093	< 0.093	< 0.092	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Benzo(b)fluoranthene	-		< 0.093	< 0.092	< 0.093	< 0.093	2 	< 0.093	< 0.093	< 0.093	< 0.094 J
Chrysene		< 0.093	< 0.093	< 0.092	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Fluoranthene	-	0.013 J	0.018 J	0.019 J	< 0.093	0.032 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Naphthalene	-	12.2 J	0.18	0.12	0.038 J	353 J	0.023 J	0.14	0.036 J	< 0.093	0.06 J
Phenanthrene	-	0.056 J	0.039 J	0.056 J	< 0.093	2.4 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Pyrene	-	0.011 J	< 0.093	0.016 J	< 0.093	0.018 J	< 0.093	< 0.093	< 0.093	< 0.093	< 0.094 J
Inorganic Compounds (ug/L)											
Aluminum, Dissolved	-	< 80	< 80	< 89	770	< 89	< 80	< 80	< 89	< 89	< 89
Barium, Dissolved	2000	110	110	110	1000	110	64	74	83	74	87
Iron, Dissolved	-	280	170 J	450	1500	390	90	< 50 J	< 56	23 J	130
Lead, Dissolved	15	< 2	< 10	< 2.2	1.6 J	< 2.2	< 2	< 2	< 2.2	< 2.2	< 2.2
Manganese, Dissolved	-	240	250	230	370	260	440	440	440	56	600
Cyanide	200	70	94 J	110 J	27	67	220	170 J	210 J	36	270
Other (ug/L)											
Alkalinity, Total (as CaCO3)	-	401000		-	-	2 0 0	-	-		=	-
Ferrous Iron	-	-			-	120		-	1 1 10	<u></u>	-
Methane	-	1510	10 C	-	-	(-)		-	-	-	-
Nitrite/Nitrate Nitrogen	10000	< 200		-	-	121		~		-	-
Sulfate	-	8400	-	-	-	-	-	-	-	-	-
Sulfide	<u>1</u> 2	< 1000		12	12	020	121	-	2 2 0	27	<u>u</u>

TI Waiver Zone		Within TI Waiver Zone											
Location	EPA	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D	MW-6D	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S	MW-6S
Sample Date	MCL	09/16/2015	09/16/2015	09/13/2016	09/12/2017	09/19/2018	10/01/2019	09/17/2015	09/13/2016	09/12/2017	09/12/2017	09/19/2018	10/02/2019
Sample Type		N	FD	N	N	N	N	N	N	N	FD	N	N
Sample Depth (bgs)		47 - 65 (ft)	47 - 65 (ft)	47 - 65 (ft)	47 - 65 (ft)	47 - 65 (ft)	47 - 65 (ft)	7 - 22 (ft)	7 - 22 (ft)	7 - 22 (ft)	7 - 22 (ft)	7 - 22 (ft)	7 - 22 (ft)
Volatile Organic Compounds (ug/L)													
1,2,4-Trimethylbenzene		5.6	5.5	10.4	10.3 J	1.2	0.59 J	< 1	< 1	<1	< 1	< 1	<1
Benzene	5	316	308	685	1110 J	31.8	17.8	1.6	7.6	<1	< 1	< 1	25.1
Ethylbenzene	700	16.1	16.6	80.2	122 J	6.2	2.8	< 1	< 1	<1	<1	< 1	<1
Tetrachloroethene	5	< 1	< 1	< 1	< 20	<1	<1	<1	<1	<1	<1	<1	<1
Toluene	1000	0.66 J	0.65 J	0.79 J	< 20	0.26 J	0.44 J	< 1	< 1	<1	< 1	< 1	<1
Trichloroethene	5	< 1	< 1	< 1	< 20	< 1	<1	<1	<1	<1	<1	< 1	<1
Xylene (total)	10000	14.4	14.5	26.2	38.6 J	2.5 J	1.7 J	< 3	< 3	< 3	< 3	< 3	< 3
Semi-Volatile Organic Compounds (ug/L)								000000					200
1-Methylnaphthalene	-	11.2	10.6	11.1	23.7	2.1	1.5	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
2-Methylnaphthalene		9.7	9.4	11.9	28.1	< 1.4	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Acenaphthene	1.0	4.8	4.7	4.4	8.2	1.3 J	0.88 J	3.7 J	3.3 J	0.41 J	0.31 J	< 1.4	1.3 J
Acenaphthylene	-	-	-	< 1.4	-	-			< 1.4				-
Benzo(a)anthracene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(a)pyrene	0.2	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Benzo(b)fluoranthene	- 6	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4 < 2.9	< 1.4 J	< 1.4	< 1.4 0.22 J	< 1.4	< 1.4	< 1.4
bis(2-Ethylhexyl)phthalate	6	< 2.8	< 2.8 < 1.4	< 2.9	< 2.8	< 2.8 < 1.4		< 2.8 J	< 2.8 < 1.4		< 2.8	< 2.8 < 1.4	< 2.9
Chrysene	-	< 1.4 < 2.8	< 2.8	< 1.4 < 2.9	< 1.4 < 2.8	< 2.8	< 1.4 < 2.9	< 1.4 J < 2.8 J	< 2.8	< 1.4 < 2.8	< 1.4 < 2.8	< 2.8	< 1.4 < 2.9
Dibenzofuran Fluoranthene	-	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Naphthalene	-	34	32	97.1	312	< 1.4	5.6	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Phenanthrene		0.72 J	0.67 J	0.59 J	1 J	0.23 J	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
Pyrene		< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4 J	< 1.4	< 1.4	< 1.4	< 1.4	< 1.4
- yiene		5 1.4	51.4	51.4	5 1.4	5 1.4	51.4	1.40	5 1.4	51.4	51.4	51.4	5 1.4
Semi-Volatile Organic Compounds (SIM) (ug/L)													
1-Methylnaphthalene		10 J	10 J	12 J	24.2 J	2	0.76 J	< 0.093	0.11	0.021 J	0.09 J	< 0.093	0.033 J
2-Methylnaphthalene	-	8.9 J	8.9 J	12.7 J	31.3 J	< 0.094	0.092 J	< 0.093	< 0.095	< 0.092	0.015 J	< 0.093	< 0.095
Acenaphthene	-	4.4 J	4.4 J	4.4 J	7.2 J	1.1	0.56 J	3.5 J	3.3 J	0.38	0.29	< 0.093	1.1
Acenaphthylene	-	-	-	0.22	-	-	-	-	0.05 J		-	-	-
Benzo(a)anthracene	-	< 0.093	< 0.093	< 0.096	< 0.094	< 0.094	< 0.096 J	< 0.093	< 0.095	< 0.092	< 0.093	< 0.093	< 0.095
Benzo(a)pyrene	0.2	< 0.093	< 0.093	< 0.096	< 0.094	< 0.094	< 0.096 J	< 0.093	< 0.095	< 0.092	< 0.093	< 0.093	< 0.095
Benzo(b)fluoranthene	-	-	-	< 0.096	< 0.094	< 0.094	< 0.096 J		< 0.095	< 0.092	< 0.093	< 0.093	< 0.095
Chrysene	-	< 0.093	< 0.093	< 0.096	< 0.094	< 0.094	< 0.096 J	< 0.093	< 0.095	< 0.092	< 0.093	< 0.093	< 0.095
Fluoranthene		0.01 J	0.01 J	< 0.096	0.024 J	< 0.094	< 0.096 J	< 0.093	< 0.095	< 0.092	< 0.093	< 0.093	< 0.095
Naphthalene	-	25.5 J	26.7 J	47.8 J	177 J	< 0.094	0.27 J	0.084 J	0.11	0.037 J	0.15	< 0.093	0.098
Phenanthrene	. . .	0.52	0.53	0.6	0.99	0.19	0.11 J	0.013 J	< 0.095	< 0.092	0.021 J	< 0.093	< 0.095
Pyrene	-	0.014 J	0.014 J	< 0.096	0.03 J	< 0.094	< 0.096 J	0.08 J	0.064 J	0.074 J	0.076 J	0.02 J	0.042 J
Incompanie Company de (confl.)													
Inorganic Compounds (ug/L) Aluminum, Dissolved		< 80	< 80	< 80	< 89	< 89	< 89	< 80	< 80	< 89	< 89	< 89	< 89
Barium, Dissolved	2000	< 80 44	< 80 46	< 80 55	< 89 55	< 89 45	< 89 13	120	< 80 110	< 89 110	< 89 110	< 89 120	< 89
Iron, Dissolved	2000	6000	46 5900	55 4700 J	3000	45	670	5600	3200 J	7600	7700	6000	9800
Lead, Dissolved	15	< 2	< 2	<2	< 2.2	< 2.2	< 2.2	< 2	< 2	< 2.2	< 2.2	< 2.2	< 2.2
Manganese, Dissolved	15	65	69	45	28	57	36	2500	1900	2300	2300	2200	2100
Cyanide	200	< 5	< 5	2 J	4 J	< 5	<2	130	160 J	150 J	140 J	48	100
-,	200			- *		- 0							
Other (ug/L)													
Alkalinity, Total (as CaCO3)	-	131000	125000	-		-	-	-	-		-	-	
Ferrous Iron	-	6620	6570				-					-	-
Methane	-	3300	3330			-	-				-		-
Nitrite/Nitrate Nitrogen	10000	< 200	< 200	-	-	-	-	-	-	-	-	-	-
Sulfate	-	< 2000	< 2000		-		-	-	-		-	-	-
Sulfide		< 1000	< 1000	-	-			-			-	-	-

Figure F-1: Benzene Concentrations in Selected Wells, 2015 to 2019

Vapor Intrusion

Due to the presence of subsurface vapor sources at the Site, including VOCs dissolved in groundwater and DNAPL, the potential exists for VOCs to migrate from the subsurface into the indoor air of nearby structures.

Due to the proximity of several residences near the DNAPL Zone, this FYR conducted a screening-level vapor intrusion evaluation using EPA's Vapor Intrusion Screening Level (VISL) calculator to identify if further vapor intrusion evaluation is needed for the residences west of the DNAPL Zone. EPA's VISL calculator allows the user to enter contaminant concentrations in groundwater and then calculates screening-level vapor intrusion cancer risks and non-cancer hazard indices using conservative default residential exposure assumptions and current toxicity information. The VISL calculator was run using a residential use exposure scenario. Ideally, when groundwater concentrations are used as the input for the VISL calculator, data from the uppermost zone of groundwater should be used. However, there are no shallow wells sampled near the residences, so this FYR's screening-level analysis used the maximum groundwater concentrations detected in the past five years in the two bedrock wells closest to the residences (CWW01 and LTMW-2). Both of these wells were sampled annually from 2015 through 2019. As shown in Table G-2, the total screening-level cancer risk is within EPA's risk management range of 1 x 10^{-6} to 1 x 10^{-4} and the total non-cancer hazard is below EPA's threshold value of 1, indicating that groundwater concentrations do not pose a vapor intrusion exposure concern near the residential structures. In addition, the vapor intrusion risks calculated in Table G-2 are mostly due to anomalously high concentrations detected in LTMW-2 in 2015; concentrations of VOCs and SVOCs in that well were consistently much lower from 2016 through 2019.

СОС	Concentratio	Groundwater n Detected Near , 2015 to 2019	Screening-Level Risk Calculated by 2020 VISL Calculator ^a			
	Concentration (µg/L)	Well	Cancer Risk	Non-Cancer Hazard Quotient		
1,2,4-Trimethylbenzene	1.2	LTMW-2	NA	0.0048		
Benzene	15.2	LTMW-2	9.6 x 10 ⁻⁶	0.11		
Ethylbenzene	15.3	LTMW-2	4.4 x 10 ⁻⁶	0.0047		
Toluene	0.32 J	LTMW-2	NA	0.000017		
Xylene (total)	6	LTMW-2	NA	0.016		
1-Methylnaphthalene	0.029 J	CWW01	NA	NA		
Acenaphthene	0.015 J	CWW01	NA	NA		
Naphthalene	0.49 J ^b	LTMW-2	1.1 x 10 ⁻⁷	0.0028		
Phenanthrene	0.022 J	CWW01	NA	NA		
Pyrene	0.034 J	CWW01	NA	NA		
		Totals:	1.4 x 10 ⁻⁵	0.14		

Table F-2: Screening-Level Vapor Intrusion Risk Evaluation for Residences

Notes:

a. Risk calculated for residential exposure scenario with average groundwater temperature 25°C using EPA's VISL calculator (accessed 11/30/2020 at <u>https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator</u>).

b. The more sensitive analytical method determined that the concentration of this sample was 0.21 $\mu\text{g/L}.$

J = estimated value

NA = VISL cannot calculate a value for this type of risk or hazard for this COC

Buildings located above the DNAPL Zone are used primarily for storage and are not routinely occupied. A building was constructed on the former MGP facility within the DNAPL Zone in 2011 and is now being used; a passive vapor intrusion mitigation system was constructed to mitigate vapor intrusion. This FYR conducted a screening-level vapor intrusion evaluation using EPA's VISL calculator to identify if further vapor intrusion evaluation using EPA's VISL calculator to identify if further vapor intrusion evaluation using a commercial use exposure scenario. Because there are no shallow wells sampled near the former MGP facility, this FYR's screening-level analysis used the maximum groundwater concentrations detected in the past five years in the bedrock well closest to the former MGP facility (LTMW-3). This well was sampled annually from 2015 through 2019. As shown in Table F-3, the total screening-level cancer risk is below EPA's risk management range of 1 x 10⁻⁶ to 1 x 10⁻⁴ and the total non-cancer hazard is below EPA's threshold value of 1, indicating that groundwater concentrations do not pose a vapor intrusion exposure concern for the borough building on the former MGP facility. If any other buildings are planned for future routine occupancy by commercial/industrial workers, a vapor intrusion evaluation using multiple lines of evidence should be conducted. Alternatively, vapor mitigation systems could be installed in the future to address the vapor intrusion exposure pathway.

Table F-3: Screening-Level Vapor Intrusion Risk Evaluation for Borough Building at Former MGP
Facility

COC	Concentration Det	Groundwater ected Near Former 7, 2015 to 2019	Screening-Level Risk Calculated by 2020 VISL Calculator ^a			
coc	Concentration (µg/L)	Well	Cancer Risk	Non-Cancer Hazard Quotient		
bis(2-Ethylhexyl)phthalate	0.25 J	LTMW-3	NA	NA		
1-Methylnaphthalene	0.079 J	LTMW-3	NA	NA		
2-Methylnaphthalene	0.026 J	LTMW-3	NA	NA		
Acenaphthene	0.03 J	LTMW-3	NA	NA		
Benzo(b)fluoranthene	0.033 J	LTMW-3	NA	NA		
Fluoranthene	0.068 J	LTMW-3	NA	NA		
Naphthalene	0.72	LTMW-3	3.6 x 10 ⁻⁸	0.00099		
Pyrene	0.11	LTMW-3	NA	NA		
	<u> </u>	Totals:	3.6 x 10 ⁻⁸	0.00099		
Notes:				1		

Risk calculated for commercial exposure scenario with average groundwater temperature 25°C using EPA's VISL calculator (accessed 11/30/2020 at <u>https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator</u>).

J = estimated value

NA = VISL cannot calculate a value for this type of risk or hazard for this COC

Screening-Level Evaluation of Risk Associated with Soil at Areas Off the Former MGP Facility

The 2007 ROD determined that the levels of soil contamination present between the former MGP facility and the Susquehanna River were protective for industrial use but not for residential use. Institutional controls prohibiting residential use are in place. To determine whether these areas are still safe for industrial use based on current toxicity values, this FYR conducted a screening-level evaluation comparing the reasonable maximum concentrations of contaminants in the soil against EPA's current screening levels for those contaminants. As shown in Table F-4, the screening-level evaluation shows that soil contamination in the area between the former MGP facility and the Susquehanna River is within EPA's acceptable risk range for industrial use.

Table F-4: Screening-Level Evaluation of Risk Associated with Soil at Areas Off the Former MGP Facility

Contaminant	Reasonable Maximum Soil Concentration at Areas Off the Former	Screenin	t EPA Soil g Levels for rs (mg/kg) ^b	Screening-Level Risk/Hazard Levels Corresponding to Soil Concentration ^c			
	MGP Facility (mg/kg) ^a	Cancer- Based	Noncancer- Based	Cancer Risk	Noncancer Hazard		
Benzo(a)anthracene	47	21	NA	2.2 x 10 ⁻⁶	NA		
Benzo(a)pyrene	24	2.1	220	1.1 x 10 ⁻⁵	0.1		
Benzo(b)fluoranthene	21	21	NA	1.0 x 10 ⁻⁶	NA		
Benzo(k)fluoranthene	6.6	210	NA	3.1 x 10 ⁻⁸	NA		
Dibenzo(a,h)anthracene	8.4	2.1	NA	4.0 x 10 ⁻⁶	NA		
Indeno(1,2,3- c,d)pyrene	6.00	21	NA	2.9 x 10 ⁻⁷	NA		
Aluminum	16,000	NA	1,100,000	NA	0.01		

Contaminant	Reasonable Maximum Soil Concentration at Areas Off the Former	Screenin	t EPA Soil g Levels for rs (mg/kg) ^b	Screening-Level Risk/Hazard Levels Corresponding to Soil Concentration ^c			
	MGP Facility (mg/kg) ^a	Cancer- Based	Noncancer- Based	Cancer Risk	Noncancer Hazard		
Arsenic	7.0	3.0	480	2.3 x 10 ⁻⁶	0.01		
Beryllium	1.6	6,900	2,300	2.3 x 10 ⁻¹⁰	0.001		
Iron	26,000	NA	820,000	NA	0.03		
Manganese	850	NA	26,000	NA	0.03		
Thallium	1.1	NA	12	NA	0.09		
			Totals:	2.1 x 10 ⁻⁵	0.3		

Notes:

a. Reasonable maximum subsurface soil concentrations from 1998 Baseline Human Health Risk Assessment, Tables 16D through 16F. Tables do not include surface soil.

b. Current soil screening levels for non-residential use obtained from <u>https://www.epa.gov/risk/regional-screening-levels-rsls-generic-tables</u> (accessed December 17, 2020).

c. Screening level risk and hazard were calculated using these equations: Cancer risk = (Soil concentration \div Cancer-based screening level) $\times 10^{-6}$ Non-cancer hazard = Soil concentration \div Noncancer-based screening level

mg/kg = milligrams per kilogram

APPENDIX G – ARAR REVIEW

EPA's 2018 ESD stated that federal MCLs are "applicable or relevant and appropriate requirements" (ARARs) for the Site's groundwater cleanup. The 2007 ROD also selected EPA's risk-based concentrations as ARARs, but the 2018 ESD stated that the risk-based concentrations cannot be considered ARARs because they are not promulgated standards.

The 2007 ROD waived the groundwater ARARs within the DNAPL Zone due to the presence of DNAPL and the technical impracticability of achieving the ARARs from an engineering perspective. The 2007 ROD required monitoring to confirm that groundwater ARARs are achieved outside of the DNAPL Zone.

This FYR compares the numerical values of the MCLs as presented in the 2018 ESD against the current values of the MCLs to determine whether any of the MCL values have changed. As shown in Table G-1, none of the ARAR values have changed since the 2018 ESD.

Groundwater COC	2018 ESD MCL Value (µg/L)	Current MCL Value (µg/L) ^a	ARAR Change
Benzene	5	5	No change
Ethylbenzene	700	700	No change
Toluene	1,000	1,000	No change
Benzo(a)pyrene	0.2	0.2	No change
Bis(2-ethylhexyl)phthalate	6	6	No change
Cyanide	200	200	No change
Note: a. Current MCL values were obtain primary-drinking-water-regulation	· · · · ·		drinking-water/national-

Table G-1: ARAR Review for Groundwater COCs