UNITED STATES ENVIRONMENTAL PROTECTION AGENCY **REGION 2**

SDMS Document

DATE: APR 1 3 2006

SUBJECT: Explanation of Significant Differences for the Combe Fill South

Landfill Superfund Site

FROM: Carole Petersen, Chief

New Jersey Remediation Branch Cause Tr

TO: George Pavlou, Director Emergency and Remedial Response Division

Attached for your approval is an Explanation of Significant Differences (ESD) for the Combe Fill South Landfill Superfund Site (Site), located in Chester Township, Morris County, New Jersey. The modification identified in the ESD pertains to a change from an active landfill gas and condensate collection and treatment system to a passive landfill gas venting system during the remedial action phase of the project.

The remedy selected in the September 29, 1986 ROD consisted of installing an alternate water supply for affected residences; capping of the 65-acre landfill in accordance with Resource Conservation and Recovery Act requirements; installing an active collection and treatment system for landfill gases; pumping and on-Site treatment of shallow groundwater and leachate, with discharge to Trout Brook; implementing surface water controls to accommodate seasonal precipitation and storm runoff; installing security fencing to restrict Site access; implementing appropriate environmental monitoring to ensure the effectiveness of the remedial action; and conducting a supplemental feasibility study to evaluate the need for remediation of the deep aquifer.

In accordance with Section 117 (d) of the Comprehensive Environmental Response, Compensation, and Liability Act, a notice of the ESD will be published in the local newspaper.

I recommend that you approve this ESD. My staff and I are available to discuss this recommendation at your convenience.

Attachment

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2

DATE: APR 1 3 2006

SUBJECT: Explanation of Significant Differences for the Combe Fill South

Landfill Superfund Site

FROM: Carole Petersen, Chief

New Jersey Remediation Branch

TO: George Pavlou, Director

Emergency and Remedial Response Division

Attached for your approval is an Explanation of Significant Differences (ESD) for the Combe Fill South Landfill Superfund Site (Site), located in Chester Township, Morris County, New Jersey. The modification identified in the ESD pertains to a change from an active landfill gas and condensate collection and treatment system to a passive landfill gas venting system during the remedial action phase of the project.

The remedy selected in the September 29, 1986 ROD consisted of installing an alternate water supply for affected residences; capping of the 65-acre landfill in accordance with Resource Conservation and Recovery Act requirements; installing an active collection and treatment system for landfill gases; pumping and on-Site treatment of shallow groundwater and leachate, with discharge to Trout Brook; implementing surface water controls to accommodate seasonal precipitation and storm runoff; installing security fencing to restrict Site access; implementing appropriate environmental monitoring to ensure the effectiveness of the remedial action; and conducting a supplemental feasibility study to evaluate the need for remediation of the deep aquifer.

In accordance with Section 117 (d) of the Comprehensive Environmental Response, Compensation, and Liability Act, a notice of the ESD will be published in the local newspaper.

I recommend that you approve this ESD. My staff and I are available to discuss this recommendation at your convenience.

Attachment

CONCURRENCES							
Name: Combe Fill South Init: Date: Filename: ESD memo for LFG Del.doc							
Symbol	NNJRS	NNJRS	NJRB	ERRD	ERRO		
Surname	Baxter P.M.	McKnight	Petersen	Pavlou	piccaha		
Date	3/30/06	3/30/06	4//2	lim10	4/17/06		

EXPLANATION OF SIGNIFICANT DIFFERENCES COMBE FILL SOUTH LANDFILL SUPERFUND SITE

Site Name and Location
Combe Fill South Landfill Superfund Site
Chester Township
Morris County, New Jersey

Introduction

The United States Environmental Protection Agency (EPA) and the New Jersey Department of Environmental Protection (NJDEP) are jointly issuing this Explanation of Significant Differences (ESD) to explain a modification of EPA's selected remedy issued on September 29, 1986 as the Record of Decision (ROD) for the Combe Fill South Landfill Superfund Site (Site). This ESD pertains to a change from an active landfill gas and condensate collection and treatment system to a passive landfill gas venting system during the remedial action phase of the project. The change to a passive gas venting system was made as a result of test results obtained from studies subsequent to the 1986 ROD and contemporaneous with the change. Subsequent to the change, further testing has confirmed the appropriateness and protectiveness of that change.

This ESD is issued in accordance with Section 117(c) of the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended (CERCLA), 42 U.S.C. 9617(c), and Section 300.435(c)(2)(i) of the National Oil and Hazardous Substances Pollution Contingency Plan (NCP), 40 CFR 300.435 (c)(2)(i), which contain provisions for addressing and documenting "significant" changes that occur to a remedy after a ROD is signed. While the change described herein may not be "significant" within the meaning of 40 CFR 300.435(c)(2)(i), nevertheless NJDEP and EPA are issuing this ESD in the exercise of their discretion to provide the public with notice of the change in accordance with the public notice provisions of the NCP. This ESD and documents contemporaneous to, and which form the basis for the 1994 decision to implement the passive gas venting system, as well as subsequent test results confirming its protectiveness, will be incorporated into the Administrative Record for the Site in accordance with Section 300.825(a)(2) of the NCP. The Administrative Record is available for review during normal business hours

at EPA Region II, 290 Broadway, New York, New York 10007, and at the Chester Township Municipal Building, 1 Parker Road, Chester, New Jersey 07930.

Site History, Contamination Problems, and Selected Remedy

The Combe Fill South Landfill Superfund Site is located at 98 Parker Road in Chester Township, Morris County, New Jersey. The landfill property is about 115 acres and extends into portions of both Washington and Chester Townships. As remediated, the final cap area is over 62 acres with about another 20 acres occupied primarily by the treatment facility, drainage ditches, site roads, and detention basins.

Historically, the Site may have been operated from as early as the 1940s through 1981. Approximately five million cubic yards of refuse were estimated in the ROD to be contained within the landfill. The majority of waste disposed of at the Site was household waste and nonhazardous industrial waste. The Site was listed on the National Priorities List (NPL) in 1983. A Remedial Investigation and Feasibility Study (RI/FS) for the Site was performed during 1984 and 1985. During the RI/FS, a wide range of hazardous substances and/or chemical contaminants were found. These hazardous substances and contaminants were consistent with known past usage of the Site and the variety of wastes accepted, and they persisted in groundwater, surface water and the atmosphere. Volatile organic compounds were identified within both the unconsolidated and consolidated aquifers in and around the Site. Groundwater contamination was, and likely continues to be, migrating northeast and southwest and was predicted to possibly increase in concentration with distance from the landfill. The FS specifically identified residents living on Schoolhouse Lane, less than one-half mile from the landfill, and pupils of the day-care facility located on Parker Road as being at risk because groundwater is the primary source of potable water in the immediate area surrounding the Site.

A design contract was awarded in December 1987 and the construction documents were completed in February 1992.

¹ In Chester Township, the Combe Fill South Landfill property is listed on the tax map as Block 17, Lot 7. In Washington Township the CFSL property is listed as Block 37, Lots 15, 16, and 16.01.

The remedy selected in the September 29, 1986 ROD consisted of:

- An alternate water supply for affected residences;²
- Capping of the 65-acre landfill in accordance with Resource Conservation and Recovery Act requirements;
- An active collection and treatment³ system for landfill gases;
- Pumping and on-Site treatment of shallow groundwater and leachate, with discharge to Trout Brook;
- Surface water controls to accommodate seasonal precipitation and storm runoff;
- Security fencing to restrict Site access;
- Appropriate environmental monitoring to ensure the effectiveness of the remedial action; and
- A supplemental feasibility study to evaluate the need for remediation of the deep aquifer.⁴

Description of Difference and Basis for the Change

The difference between the remedy selected in the 1986 ROD and the action described in this ESD is the elimination of the active landfill gas and condensate collection and treatment system and its replacement with a passive landfill gas venting system.

After the installation of the gas wells in 1994, the New Jersey Department of Environmental Protection directed the design contractor to test those gas wells to ensure that the designed flare was suitable for the landfill gas. By letter dated July 11, 1994, attached hereto as Exhibit 1, the contractor recommended "that the gas flare system should be deleted from the contract and that the gas well vents at Combe Fill South should be passively vented."

Testing at that time had shown that the total worst-case landfill emissions of 0.44 pounds per hour for non-methane hydrocarbons and 0.054 pounds per hour of toxic volatile organic substances were both below state-of-the-art control guidelines. Additionally, the average incremental risk

 $^{^2}$ In February 1995, the alternate water supply component of the ROD was suspended by NJDEP and USEPA pending results of further sampling.

³ As is explained more fully herein, the active gas collection and treatment component of the ROD was suspended because testing of the landfill gas in 1994 revealed that passive venting was appropriate.

⁴ This work commenced in 2003.

posed by landfill emissions was predicted to be 8.72×10^{-7} , which was lower than the policy limit of 1.0×10^{-6} . Based on this data, NJDEP and EPA decided to accept the design contractor's recommendation that passive gas venting was appropriate.

Accordingly, on July 28, 1994, NJDEP's Division of Publicly Funded Site Remediation Remedial Planning & Design Element applied to NJDEP's Air Quality Regulation Program for a modification to its existing air permit, attached hereto as Exhibit 2, for the landfill to eliminate the direct-flow, enclosed flare and to allow passive venting of the 65 wells installed. The NJDEP Air Quality Regulation Program issued an air permit equivalency, attached hereto as Exhibit 3, for passive gas venting on August 2, 1994.

Installation of the clay and liner portions of the cap proceeded from 1994 into early 1995. Installation of the topsoil layer was completed in November 1995. Since there were major punch list and warranty items to be completed, substantial completion was not declared until September In November 1997, the contractor performed a confirmatory round of sampling on-site at the direction of NJDEP. The results of this testing, reported by letter dated March 16, 1998, attached hereto as Exhibit 4, confirmed that the worst-case emissions of non-methane hydrocarbons and toxic volatile organic substances were below NJDEP emission rate limitations. The contractor concluded that no further action regarding landfill gas venting was required. In its letter dated March 16, 1998, the remedial designer noted that there was an estimated cost savings associated with the deletion of over \$1,000,000.

By letter dated July 27, 1994, attached hereto as Exhibit 5, the design contractor advised the remedial action contractor of the deletion of the active landfill gas collection and treatment system. This deletion took the form of a modification, Modification 32. Modification 32, the text of which is attached hereto as Exhibit 6, was issued to the remedial action contractor on August 19, 1994. The design contractor estimated that the deletion would result in a credit of about \$1,500,000. A final credit calculation of \$1,578,317.30 was provided by the design contractor to the remedial action contractor by transmittal dated April 12, 1995, attached hereto as Exhibit 7.

Supporting Agency Comments

EPA supports and concurs in NJDEP's revision to the Combe Fill South Landfill remedy through the elimination of the active landfill and condensate collection and treatment system and its replacement with a passive landfill gas venting system. NJDEP supports EPA's decision to issue this ESD.

Affirmation of Statutory Determinations

Considering all of the information and data referred to herein, and the modification made to the selected remedy described herein, EPA and NJDEP concur that the remedy remains protective of human health and the environment, complies with federal and state requirements that were identified in the ROD and this ESD as applicable or relevant and appropriate to this remedial action, and remains cost effective. In addition, the remedy, modified as described herein, utilizes permanent solutions and alternative treatment technologies to the maximum extent practicable for this Site.

Public Participation Activities

NJDEP and EPA routinely meet with local officials, residents and interested parties to update them on the status of Site activities. In accordance with the public notice provisions of the NCP and CERCLA, EPA will publish a notice of this ESD in the local newspaper, The Daily Record. The ESD and supporting documentation will be placed in the Administrative Record for the Site, which is available at the information repositories for public review.

George Pavlou, Director Emergency and Remedial

Response Division

<u>4-17-06</u> Date

Exhibits

- 1. July 11, 1994 O'Brien & Gere letter
- 2. July 28, 1994 NJDEP memo
- 3. August 2, 1994 NJDEP memo
- 4. March 16, 1998 O'Brien & Gere letter
- 5. July 27, 1994 O'Brien & Gere letter
- 6. August 19, 1994 O'Brien & Gere letter

July 11, 1994

NJDEPE/DPFSR

Bureau of Construction Combe Fill South Landfill Chester, New Jersey 07930

Attn: Site Construction Managers

Combe Fill South Landfill Re:

Subject: Gas Well Air Sampling Results

File: 3013.015

Dear Sir/Madam:

This letter report summarizes the results of the gas well air sampling event performed by O'Brien & Gere Engineers (O'Brien & Gere) on June 13 and June 14, 1994 at the Combe Fill South Landfill (Combe Fill South) located in Chester, New Jersey.

The on-site gas testing program conducted at Combe Fill South by O'Brien & Gere from April 14 to May 6, 1994 indicated that the landfill gas methane concentration was significantly lower than anticipated during design. The gas generation rate is dependent on several factors, including refuse age. More dilute gas concentrations may be a result of refuse which has passed or is nearing the end of its steady state generation period. Therefore, stationary source testing was conducted at eight landfill gas wells to evaluate the concentrations of non-methane hydrocarbons, toxic volatile organic substances, total volatile chlorinated organics, and hydrogen sulfide in order to determine if changes in the landfill gas characterization have occurred such that the need for a flare could be downsized or eliminated.

The results of the gas well air testing are summarized as follows:

Table 1 - Non-methane Hydrocarbons Table 2 - Toxic Volatile Organic Substances Table 3 - Total Volatile Chlorinated Organics Table 4 - Hydrogen Sulfide

The laboratory results, including nitrogen concentrations and the chain of custody, and an instrument calibration certificate are presented in Appendix A.

GAS WELL SAMPLING LOCATIONS

Testing was performed on gas wells 11, 25, 26, 27, 28, 45, 57, and 66. As mentioned above, O'Brien & Gere performed methane testing on these same gas wells from April 14 to May 6, 1994. It is O'Brien & Gere's opinion that evaluation of these gas wells provides a representative account of the activity that is occurring at Combe Fill South. All samples were collected between the hours of 11:00 A.M. and 5:00 P.M., since the landfill is believed to be most active during this time period.

SAMPLING AND ANALYTICAL PROCEDURES

Non-Methane Hydrocarbons

Gas well testing for non-methane hydrocarbons (NMHC) was conducted in accordance with procedures outlined in South Coast Air Quality Management District (SCAQMD) 25.2 - Determination of Carbon Monoxide, Methane and Total Non-methane Organic Compounds at Low Concentrations by Total Combustion Analysis (TCA/FID).

Samples from the gas wells were collected in SUMMA® canisters supplied by ENSECO Air Toxics Laboratory (ENSECO). Canister identification tags were completed with information that included sample location, sampling time, date, pre- and post-pressure readings, and the initials of the sampling personnel. The canisters were shipped to ENSECO with a completed chain of custody for analysis. Non-methane hydrocarbons were quantified by gas chromatography/flame ionization detection (GC/FID).

Toxic Volatile Organic Substances & Total Volatile Chlorinated Organics

Gas well testing for toxic volatile organic substances (TXS) and total volatile chlorinated organics (TVCO) was conducted in accordance with procedures outlined in Toxic Organics Method 14 (TO-14) - Determination of Volatile Organic Compounds in Ambient Air Using SUMMA® Passivated Canister Sampling and Gas Chromatographic Analysis. This method is located in the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air.

Samples from the gas wells were collected in SUMMA® canisters supplied by ENSECO Air Toxics Laboratory (ENSECO). Canister identification tags were completed with information that included sample location, sampling time, date, pre- and post-pressure readings, and the initials of the sampling personnel. The canisters were shipped to ENSECO with a completed chain of custody for analysis. Concentrations of TXS and TVCO were quantified by gas chromatography/mass spectrometry (GC/MS).

Hydrogen Sulfide

Gas well testing for hydrogen sulfide was conducted using a Bacharach Sentinel 4 portable gas monitor. This unit is accurate to within 2% of the full range of 0 to 200 ppm hydrogen sulfide. An air sample was continuously collected over a five minute period which identified a peak concentration as well as a time weighted average (TWA) concentration of hydrogen sulfide.

Sample Ports and Gas Velocity

To prevent any alterations to existing gas wells, a 4"x4"x2" PVC tee and a 5' PVC extension were placed on the top of each sampled gas well head to provide a sample port and means to determine gas velocity. While this does not follow USEPA Reference Method 1 - Sample and Velocity Traverses for Stationary Sources, since it is considered a flow disturbance, approval was received by New Jersey Department of Environmental Protection & Energy (NJDEPE). Gas velocity measurements were determined using a Solomat® environmental measurement instrument.

RESULTS AND DISCUSSION

The laboratory results are reported in parts per million (ppm) and parts per billion (ppb). The following conversion formulas were used to express the compound concentrations in lb/hr:

ppm to lb/hr:

 $(C/10^6)$ x V x A x 1/359 x (492°R/537°R) x (60 minutes/1 hour) x MW

where:

C = contaminant concentration, ppm V = gas velocity, ft/min A = duct cross-sectional area, ft² 1/359 = ideal gas constant, lb-mole/ft³ MW = molecular weight of contaminant, lb/lb-mole

ppb to lb/hr:

(C/10⁹) x V x A x 1/359 x (492° R/537° R) x (60 minutes/1 hour) x MW

lb/hr of TVCO to lb/hr as Cl:

lb/hr TVCO x 35.45 x (N/MW)

where:

35.45 = molecular weight of chlorine, lb/lb-mole N = number of chlorine atoms in TVCO MW = molecular weight of TVCO, lb/lb-mole

Non-Methane Hydrocarbon Results

Gas well air sampling results for NMHC are presented in Table 1. The New Jersey regulation which governs whether "state-of-the-art" air pollution control equipment is required for NMHC (as methane) applies when emissions of NMHC are greater than 0.5 lb/hr from the entire landfill. Of the eight gas wells that were tested, Well 28 released the greatest amount of NMHC at approximately 0.00681 lb/hr. As a conservative assumption (i.e., worst case), this emission rate was assumed to occur from each of the landfill's 65 wells. This results in a total projected landfill emission rate of NMHC of 0.44 lb/hr which is below the New Jersey regulation of greater than 0.5 lb/hr.

Toxic Volatile Organic Substances Results

Gas well air sampling results for TXS are presented in Table 2. A review of Table 2 indicates that of thirteen TXS sampled and analyzed for, only benzene and tetrachloroethene were present at detectable levels. The New Jersey regulation which governs whether "state-of-the-art" air pollution control equipment is required for TXS applies when emissions of TXS are greater than 0.1 lb/hr from the entire landfill. Of the eight gas wells that were tested, Well 45 released the greatest amount of TXS at approximately 0.000836 lb/hr. As a conservative assumption (i.e., worst case), this emission rate was assumed to occur from each of the 65 wells. This results in a total projected emission rate of TXS of 0.054 lb/hr which is below the New Jersey regulation of greater than 0.1 lb/hr.

Total Volatile Chlorinated Organic Results

Gas well air sampling results for TVCO are presented in Table 3. Of the eight gas wells that were tested, Well 45 released the greatest amount of TVCO at approximately 0.006706 lb/hr. As a conservative assumption (i.e., worst case) this emission rate was assumed to occur from each of the 65 wells. This results in a total projected emission rate of TVOC of 0.44 lb/hr.

Hydrogen Sulfide Results

Gas well air sampling results for hydrogen sulfide are presented in Table 4. Of the eight gas wells that were tested, Well 28 released the greatest amount of hydrogen sulfide at approximately 0.001700 lb/hr. As a conservative assumption (i.e., worst case) this emission rate was assumed to occur from each of the 65 wells. This results in a total projected emission rate of hydrogen sulfide of 0.11 lb/hr.

CONCLUSIONS AND RECOMMENDATIONS

O'Brien & Gere has presented the Combe Fill South gas well testing results as conservative assumptions (i.e. worst case), when considering total emissions rates from the entire landfill. The eight gas wells tested are believed to accurately represent activity of the landfill. While the calculated lb/hr emission rates of NMHC and TXS are below New Jersey emission rate limitations, it should be noted that total emissions are probably a fraction of those reported herein, since worst case concentrations have been applied to each of the 65 wells at the landfill. Therefore, it is O'Brien & Gere's recommendation that the gas flare system should be deleted from the contract and that the gas well vents at Combe Fill South should be passively vented.

We will begin working on a modification to the contract upon NJDEPE concurrence with this recommendation and reauthorization to proceed. If you have any questions or comments please call Robert Bowers or the undersigned.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Peter W. McMaster, P.E.

Vice President

RMN:tl/01:17

cc: Judy A. Allen, P.E. - O'Brien & Gere Engineers, Inc.

Robert R. Bowers, P.E. - O'Brien & Gere Engineers, Inc.

Robert M. Neimeier - O'Brien & Gere Engineers, Inc.

Marcy A. Newman, P.E. - O'Brien & Gere Engineers, Inc.

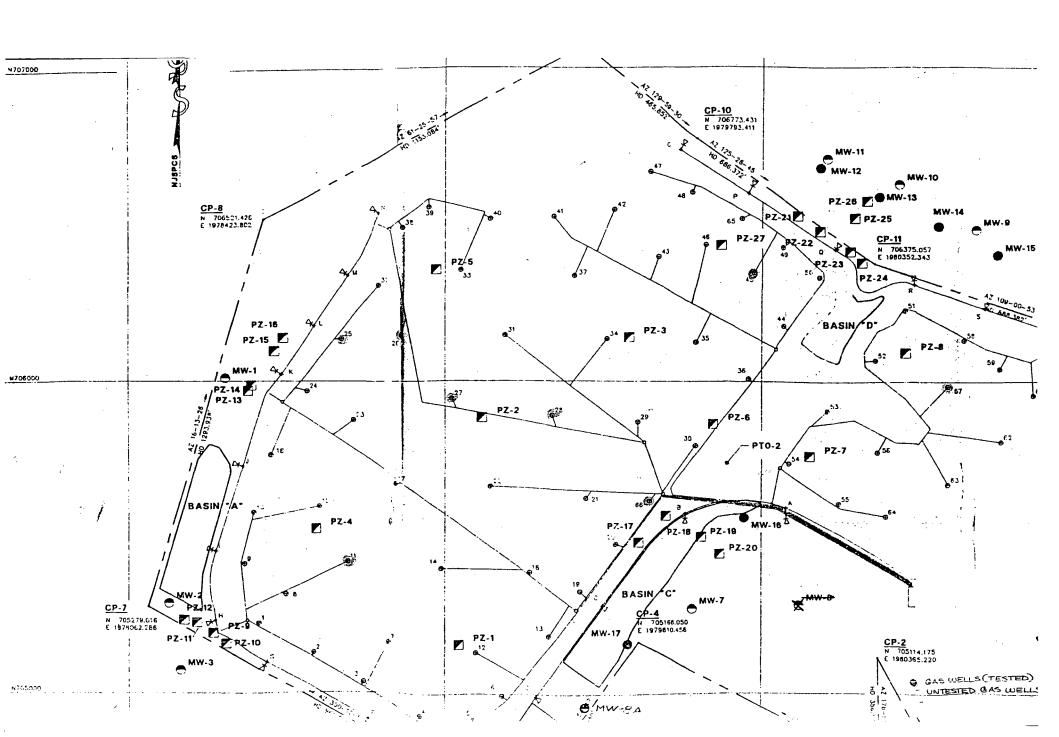


Table 1
COMBE FILL SOUTH LANDFILL
Non-Methane Hydrocarbons

COMPOUND NAME	MOLECULAR WEIGHT	CONCENTRATION (ppm)	FLOW RATE (ft/min)	RELEASES (lb/hr)
WELL 11 NMHC as Methane	16.05	30	570	0.00367
WELL 25 NMHC as Methane	16.05	15	199	0.00064
WELL 26 NMHC as Methane	16.05	24	549	0.00283
WELL 27 NMHC as Methane	16.05	32	410	0.00281
WELL 28 NMHC as Methane	16.05	68	467	0.00681
WELL 45 NMHC as Methane	16.05	50	534	0.00573
WELL 57 NMHC as Methane	16.05	21	364	0.00164
WELL 66 NMHC as Methane	16.05	21	252	0.00113
Worst Case Assumption	on:_WELL 28 0.0	00681 x 65 wells =		0.44265

Table 2
COMBE FILL SOUTH LANDFILL
Toxic Volatile Organic Substances

COMPOUND NAME	MOLECULAR WEIGHT	CONCENTRATION (ppb)	FLOW RATE (ft/min)	RELEASES (lb/hr)
WELL 11			:	
Benzene	78.12	120	570	0.000071
WELL 25	•			ļ
Benzene	· 78.12	26	199	0.000005
WELL 26			· ·	
Benzene	78.12	200	549	0.000115
WELL 27				į
Benzene	78.12	710	410	0.000304
WELL 28				
Benzene	78.12	. 830	467	0.000405
Tetrachloroethene	131.5	53		0.000043
WELL 45				
Benzene	78.12	1500	534	0.000836
WELL 57				
Benzene	78.12	21	364	0.000008
WELL 66				
Benzene	78.12	92	252	0.000024
Worst Case Assumption	on: WELL 45 0.0	$000836 \times 65 \text{ wells} =$		0.054340

Table 3
COMBE FILL SOUTH LANDFILL
Toxic Volatile Chlorinated Organic Concentrations

	MOLECULAR	CONCEN- TRATION	FLOW RATE	RELEASES	TOTAL VOLATILE CHLORINATED ORGANICS as CI
COMPOUND NAME	WEIGHT	(ppb)	(ft/min)	(lb/hr)	(lb/hr)
WELL 11			570		
1,2-Cl 1,1,2,2-F ethane	170.92	280		0.000365	0.000151
Vinyl Chloride	62.50	73		0.000035	0.000020
Chloroethane	64.52	94		0.000046	0.000025
Trichlorofluoromethane	137.36	34	• • •	0.000036	0.000028
Chlorobenzene	112.56	210		0.000180	0.000057
1,4-Dichlorobenzene	147.00	290		0.000325	0.000156
				Total	0.000437
WELL 25			199		
1,2-Cl 1,1,2,2-F ethane	170.92	16		0.000007	0.000003
Vinyl Chloride	62.50	4.4		0.000001	0.00000
Chloroethane	64.52	26		0.000004	0.000002
Trichlorofluoromethane	137.36	48		0.000018	0.000014
Chlorobenzene	112.56	47		0.000014	0.000004
1,4-Dichlorobenzene	147.00	18		0.000007	0.000003
				Total	0.000027
WELL 26			549	•	
1,2-Cl 1,1,2,2-F ethane	170.92	150		0.000188	0.000078
Vinyl Chloride	62.50	140		0.000064	0.000036
Chloroethane	64.52	200		0.000095	0.000052
Trichlorofluoromethane	137.36	24		0.000024	0.000019
Methylene Chloride	84.93	17		0.000011	0.000009
c-1,2-Dichloroethene	96.94	22		0.000016	0.000011
Chlorobenzene	112.56	210		0.000173	0.000055
1,4-Dichlorobenzene	147.00	160		0.000173	0.000083
				Total	0.000343

Table 3
COMBE FILL SOUTH LANDFILL
Toxic Volatile Chlorinated Organic Concentrations

COMPOUND NAME	MOLECULAR WEIGHT	CONCENTRATION (ppb)	FLOW RATE (ft/min)	RELEASES (lb/hr)	TOTAL VOLATILE CHLORINATED ORGANICS as CI (lb/hr)
WELL 27			410		
1,2-Cl 1,1,2,2-F ethane	170.92	1200	410	0.001124	0.000465
Vinyl Chloride	62.50	120		0.0001124	0.000483
Chloroethane	64.52	150		0.000041	0.000023
Trichlorofluoromethane	137.36	30		0.000033	0.000029
1	112.56	290		0.000023	0.000017
Chlorobenzene		290 88		0.000179	
1,4-Dichlorobenzene	147.00	00		0.000071	0.000034
				Total	0.000626
WELL 28			467		,
1,2-Cl 1,1,2,2-F ethane	170.92	560		0.000597	0.000247
Vinyl Chloride	62.50	. 340		0.000133	0.000075
Chloroethane	64.52	170		0.000068	0.000038
Trichlorofluoromethane	137.36	2900		0.002486	0.001922
c-1,2-Dichloroethene	96.94	70		0.000042	0.000031
Tetrachloroethene	165.82	53		0.000055	0.000047
Chlorobenzene	112.56	590		0.000414	0.000130
1,4-Dichlorobenzene	147.00	190		0.000174	0.000084
1,2-Dichlorobenzene	147.00	64		0.000059	0.000028
				Total	0.002602
WELL 45			534		
Dichlorodifluoromethane	120.91	7900		0.006816	0.003991
1,2-Cl 1,1,2,2-F ethane	170.92	2700		0.003293	0.001364
Vinyl Chloride	62.50	, 42		0.000019	0.000011
Chloroethane	64.52	72		0.000033	0.000018
Trichlorofluoromethane	137.36	1700		0.001666	0.001288
Chlorobenzene	112.56	60		0.000048	0.000015
1,4-Dichlorobenzene	147.00	37 .		0.000039	0.000019
·.				Total	0.006706

Table 3
COMBE FILL SOUTH LANDFILL
Toxic Volatile Chlorinated Organic Concentrations

COMPOUND NÁME	MOLECULAR WEIGHT	CONCEN- TRATION (ppb)	FLOW RATE (ft/min)	RELEASES (lb/hr)	TOTAL VOLATILE CHLORINATED ORGANICS as CI (lb/hr)
WELL 57		· · · · · ·	364		
Dichlorodifluoromethane	120.91	4000	304	0.002352	0.001377
1,2-Cl 1,1,2,2-F ethane	170.92	84		0.002032	0.000377
	62.50	9.8		0.000070	0.000029
Vinyl Chloride Chloroethane	64.52	9.8	, ,	0.000003	0.000002
Trichlorofluoromethane	137.36	810		0.000541	0.000418
	112.56	22		0.000341	0.000418
Chlorobenzene 1,4-Dichlorobenzene	147.00	. 14		0.000012	0.000004
,				Total	0.001838
WELL 66			252		
Dichlorodifluoromethane	120.91	770		0.000314	0.000184
1,2-Cl 1,1,2,2-F ethane	170.92	760		0.000437	0.000181
Vinyl Chloride	62.50	40		0.000008	0.000005
Chloroethane	64.52	36		0.000008	0.000004
Chlorobenzene	112.56	65		0.000025	0.000008
1,4-Dichlorobenzene	147.00	38		0.000019	0.000009
	•			Total	0.000391
Worst Case Assumption:	Well 45 0.006706	6 x 65 =			0.435890

Table 4
COMBE FILL SOUTH LANDFILL
Hydrogen Sulfide Concentrations

	MOLECULAR	CONCENTRATION	FLOW RATE	RELEASES
COMPOUND NAME	WEIGHT	PEAK (ppm)	(ft/min)	(lb/hr)
WELL 11 Hydrogen Sulfide	34.06	5	570	0.001297
WELL 25 Hydrogen Sulfide	34.06	1	199	0.000091
WELL 26 Hydrogen Sulfide	34.06	2	549	0.000500
WELL 27 Hydrogen Sulfide	34.06	5	410	0.000933
WELL 28 Hydrogen Sulfide	34.06	8	467	0.001700
WELL 45 Hydrogen Sulfide	34.06	3	534	0.000729
WELL 57 Hydrogen Sulfide	34.06	1	364	0.000166
WELL 66 Hydrogen Sulfide	34.06	1	252	0.000115
Worst Case Assumption	on: WELL 28 0.0	001700 x 65 wells =		0.110500

Time Weight Average (TWA)

WELL $11 = 3 \text{ ppm}$	WELL $28 = 4 \text{ ppm}$
WELL 25 = 0 ppm	WELL $45 = 0$ ppm
WELL 26 = 1 ppm	WELL $57 = 0 \text{ ppm}$
WELL 27 = 1 ppm	WELL $66 = 0 \text{ ppm}$

OF ENVIRONMENTAL PROTECTION

BUREAU OF NEW SOURCE REVIEW

APPLICATION FOR PERMIT TO CONSTRUCT, INSTALL OR ALTER CONTROL APPARATUS OR EQUIPMENT AND CERTIFICATE TO OPERATE CONTROL APPARATUS OR EQUIPMENT

Source Emissions and Source Data Form

(Complete this form for each source and submit with application Form VEM-003)

SECTION E	1. Source Description Passive venting of site located in Washington & Ches	ter Townships, Mori	ris County		
	2. Operating Schedule 24 Hours/Day	8,760 Hours/Year			
	3. % Annual Production Throughput By Quarter 4. Volume Of Gas Discharged From This Source (ACFM) 1,890	25 2	Operation Starting Dat 25 25 7-Sept. OctDec.	e	
SECTION F	CONTROL APPARATUS ON SOURCE Primary None Secondary None Tertiary None	Capital Cost (Dollars)	Annual Operating Cost (Dollars)	No. of Sources Connected	
	AIR CONTAMINANTS FROM SOURCE CONTAMINANT NAME	Maximum Emissions w/o Control (lbs./hr.) 0.11	Maximum Emissions with Control (lbs./hr.)	How Determined	
	Hydrogen Sulfide Total TXS *	0.054			
Ċ	Total Chlorides	0.44			
SECTION	NMHC as Methane	0.44			
					
	* No individual toxic volatile organizations substance present at 0.01 lb/hr				

TO INSURE PROPER COORDINATION BETWEEN VEM-003 and VEM-004 FORMS, INSERT IDENTICAL COMPANY NAME AND DESIGNATION OF STACK FROM VEM-003, SIDE 1.

Full Business Name	

Appendix A

Enseco - Air Toxics Laboratory

18501 East Gale Avenue, Suite 130 City of Industry, CA 91748-1321 818) 965-1006 • FAX (818) 965-1003

June 24, 1994

O'BRIEN & GERE ENGINEERS, INC. 5000 Brittonfield Parkway Syracuse, NY 13221 ATTN: MR. ROB NEIMEIER ANALYSIS NO.: 105994-0001/0008-SA ANALYSES: Volatile Organics by GCMS - EPA TO14, Fixed Gases (ASTM D1946), SCAQMD 25.2 (Methane, Total Non-methane Hydrocarbons as Methane) DATE SAMPLED: 06/13/94, 06/14/94 DATE SAMPLE REC'D: 06/16/94

PROJECT: COMBE FILL SOUTH LANDFILL - GAS WELL TESTING

Enclosed with this letter is the report on the chemical and physical analyses for the samples from ANALYSIS NO.: 105994-0001/0008-SA as shown above.

The samples waere received by Enseco-Air Toxics Laboratory, intact and with the chain-of-custody record attached.

Please note that ND means not detected at the reporting limits expressed.

The preliminary results were faxed to Mr. Rob Neimeier on June 20, 1994.

APPROVED

(0-29-94

חמתם

SAMPLE DESCRIPTION INFORMATION for O'Brien & Gere Engineers, Inc.

			Sampl	ed	Received
Lab ID	Client ID	Matrix	Date	Time	Date
105994-0001-SA	A-172-WELL 28	AIR 1	3 JUN 94	12:25	16 JUN 94
105994-0002-SA	A-274-WELL 27	AIR 1	3 JUN 94	16:15	16 JUN 94
105994-0003-SA	A-289-WELL 66	AIR 1	4 JUN 94	11:25	16 JUN 94
105994-0004-SA	A-134-WELL 26	AIR 1	4 JUN 94	12:01	16 JUN 94
105994-0005-SA	A-306-WELL 25	AIR 1	4 JUN 94	13:05	16 JUN 94
105994-0006-SA	A-291-WELL 11	AIR 1	4 JUN 94	13:45	16 JUN 94
105994-0007-SA	A-310-WELL 45	AIR 1	4 JUN 94	14:30	16 JUN 94
105994-0008-SA	9361B-WELL 57	AIR 1	4 JUN 94	15:15	16 JUN 94

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-172-WELL 28

Lab ID: Matrix:

AIR

105994-0001-SA

Authorized: 16 JUN 94

Sampled: 13 JUN 94

Prepared: NA

Received: 16 JUN 94

Analyzed: 16 JUN 94

Reporting

Parameter

Result

Units

Limit

Nitrogen

21

% (v/v)

0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-274-WELL 27 Lab ID:

Matrix:

105994-0002-SA

Authorized: 16 JUN 94

AIR

Sampled: 13 JUN 94

Received: 16 JUN 94

Prepared: NA

Analyzed: 16 JUN 94

Reporting

Parameter

Result

Units

Limit

Nitrogen

32

\$ (v/v)

0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-289-WELL 66
Lab ID: 105994-0003-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Analyzed: 16 JUN 94

Parameter Result Units Limit

Nitrogen 61 % (v/v) 0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-134-WELL 26 Lab ID:

Matrix:

AIR

105994-0004-SA

Authorized: 16 JUN 94

Sampled: 14 JUN 94

Prepared: NA

Received: 16 JUN 94 Analyzed: 16 JUN 94

Parameter

Result

Units

Reporting Limit

Nitrogen

39

% (V/V)

0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-306-WELL 25

Parameter

105994-0005-SA Lab ID:

Sampled: 14 JUN 94 Matrix: AIR Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 16 JUN 94

Reporting Units Result Limit

63 % (V/V) 0.19 Nitrogen

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-291-WELL 11

Lab ID:

105994-0006-SA

Matrix:

AIR

Sampled: 14 JUN 94

Received: 16 JUN 94

Authorized: 16 JUN 94

Prepared: NA

Analyzed: 16 JUN 94

Parameter

Result

Reporting

Limit

Nitrogen

38

% (v/v)

Units

0.17

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-310-WELL 45

Lab ID:

105994-0007-SA

Matrix:

AIR

Sampled: 14 JUN 94

Received: 16 JUN 94

Authorized: 16 JUN 94

Prepared: NA

Analyzed: 17 JUN 94

Reporting Limit Parameter Result Units

Nitrogen

58

% (v/v)

0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: 9361B-WELL 57

Lab ID:

105994-0008-SA

Matrix: Authorized: 16 JUN 94

AIR

Sampled: 14 JUN 94

Prepared: NA

Received: 16 JUN 94

Analyzed: 17 JUN 94

Reporting

Parameter

Result

Units

Limit

Nitrogen

60

% (v/v)

0.18

ND = Not detected NA = Not applicable

Reported By: Maria Jones

SCAQMD

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-172-WELL 28 Lab ID:

105994-0001-SA

Matrix: AIR Sampled: 13 JUN 94

Received: 16 JUN 94

Authorized: 16 JUN 94

Prepared: NA

Analyzed: 16 JUN 94

Reporting

Parameter

Result

Limit

Methane

350000

ppm (v/v) 1800

Total Non-Methane Hydrocarbons

as Methane

68

ppm (v/v)

Units

5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

SCAQMD

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-274-WELL 27 105994-0002-SA Lab ID:

Sampled: 13 JUN 94 AIR Matrix: Authorized: 16 JUN 94 Prepared: NA

Received: 16 JUN 94 Analyzed: 16 JUN 94

Reporting Limit Parameter Result Units Methane 260000 ppm (v/v) 1800 Total Non-Methane Hydrocarbons 32 as Methane ppm (v/v) 5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Enseco A Coming Company

SCAQMD

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-289-WELL 66 Lab ID: 105994-0003-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 16 JUN 94

Reporting Result Units Limit

Methane 56000 ppm (v/v) 1800

Total Non-Methane Hydrocarbons as Methane 21 ppm (v/v) 5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Enseco A Corning Company

SCAQMD

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-134-WELL 26
Lab ID: 105994-0004-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94

Authorized: 16 JUN 94 Prepared: NA Analyzed: 16 JUN 94

Parameter Result Units Limit

Methane 200000 ppm (v/v) 1800

Total Non-Methane Hydrocarbons as Methane 24 ppm (v/v) 5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-306-WELL 25 Lab ID: 105994-0005-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 16 JUN 94

Reporting Result Units Limit

Methane 31000 ppm (v/v) 1900

Total Non-Methane Hydrocarbons as Methane 15 ppm (v/v) 5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-291-WELL 11

Lab ID:

105994-0006-SA

Matrix:

AIR

Sampled: 14 JUN 94

Received: 16 JUN 94

Authorized: 16 JUN 94

Prepared: NA

Analyzed: 16 JUN 94

Reporting

Parameter

Methane

Result

Limit

170000

ppm (v/v) 1700

Total Non-Methane Hydrocarbons

as Methane

30

ppm (v/v)

Units

5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-310-WELL 45 Lab ID: 105994-0007-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94

Authorized: 16 JUN 94 Prepared: NA Analyzed: 17 JUN 94

Parameter Result Units Limit

Methane 81000 ppm (v/v) 1800

Total Non-Methane Hydrocarbons as Methane 50 ppm (v/v) 5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Method 25.2

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: 9361B-WELL 57 Lab ID:

105994-0008-SA

Matrix: Authorized: 16 JUN 94

AIR

Sampled: 14 JUN 94

Received: 16 JUN 94

Prepared: NA

Analyzed: 17 JUN 94

Reporting Parameter Result Units Limit Methane 54000 ppm (v/v) 1800

Total Non-Methane Hydrocarbons

as Methane

21

ppm (v/v)

5.0

ND = Not detected NA = Not applicable

Reported By: Maria Jones

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-172-WELL 28
Lab ID: 105994-0001-SA

Matrix: AIR Sampled: 13 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

	•	В	eporting	
Parameter	Result	Units	Limit	
Dichlorodifluoromethane	NA	ppb (v/v)		1
Chloromethane	ND	ppb (v/v)	72	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	560	ppb (v/v)	36	
Vinyl chloride	340	ppb (v/v)	36	
Bromomethane	ND	ppb (v/v)	36	
Chloroethane	170	ppb(v/v)	72	
Trichlorofluoromethane	2900	ppb (v/v)	36	
1,1-Dichloroethene	ND	ppb (v/v)	36	
Carbon disulfide	ND	ppb (v/v)	180	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	36	
Acetone	ND	ppb (v/v)	180	
Methylene chloride	ND	ppb (v/v)	36	
trans-1,2-Dichloroethene	ИD	ppb (v/v)	36	
1,1-Dichloroethane	ND	ppb (v/v)	36	
Vinyl acetate	ИD	ppb (v/v)	180	
cis-1,2-Dichloroethene	. 70	ppb (v/v)	36	
2-Butanone	ND	ppb (v/v)	180	
Chloroform	ND	ppb (v/v)	36	
1,1,1-Trichloroethane	ND	ppb (v/v)	36	
Carbon tetrachloride	ND	ppb (v/v)	36	
Benzene	830	ppb (v/v)	36	
1,2-Dichloroethane	ND	ppb (v/v)	36	
Trichloroethene	ND	ppb (v/v)	36	
1,2-Dichloropropane	ND	ppb (v/v)	36	
Bromodichloromethane	ND	ppb (v/v)	36	
cis-1,3-Dichloropropene	ND	ppb (v/v)	36	
4-Methyl-2-pentanone	ND	ppb (v/v)	72	
Toluene	940	ppb (v/v)	36	
trans-1,3-Dichloropropene	ND	ppb (v/v)	36	
1,1,2-Trichloroethane	ND	ppb (v/v)	36	
Tetrachloroethene	53	ppb (v/v)	36	
2-Hexanone	ND	ppb (v/v)	72	
Dibromochloromethane	ND	ppb (v/v)	36	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	36	
Chlorobenzene	590	ppb (v/v)	36	
Ethylbenzene	2100	ppb (v/v)	36	
Xylenes (total)	5800	ppb (v/v)	36	
Styrene	ND	ppb (v/v)	36	
Bromoform	ND	ppb (v/v)	36	
	***	PF~ (*/*)	23	

(continued on following page)

ND = Not detected
NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-172-WELL 28
Lab ID: 105994-0001-SA

Matrix: AIR Sampled: 13 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v) 36
Benzyl chloride	ND	ppb (v/v) 36
4-Ethyl toluene	560	ppb (v/v) 36
1,3,5-Trimethylbenzene	320	ppb (v/v) 36
1,2,4-Trimethylbenzene	870	ppb (v/v) 36
1,3-Dichlorobenzene	ND	ppb (v/v) 36
1,4-Dichlorobenzene	190	ppb (v/v) 36
1,2-Dichlorobenzene	64	ppb (v/v) 36
1,2,4-Trichlorobenzene	ND	ppb (v/v) 72
Hexachlorobutadiene	ND	ppb (v/v) 72
1,4-Dioxane	ND	ppb (v/v) 180
1,3-Butadiene	ND	ppb (v/v) 180

Note 1 : Compound not analyzed due to high level of carbon dioxide.

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-274-WELL 27 Lab ID: 105994-0002-SA

Matrix: AIR Sampled: 13 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

	•	R	eporting	
Parameter	Result	Units	Limit	
Dichlorodifluoromethane	NA	ppb (v/v)		1
Chloromethane	ND	ppb(v/v)	18	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	1200	ppb (v/v)	9.0	
Vinyl chloride	120	ppb (v/v)	9.0	
Bromomethane	ND	ppb (v/v)	9.0	
Chloroethane	150	ppb (v/v)	18	
Trichlorofluoromethane	∜ 30	ppb (v/v)	9.0	
1,1-Dichloroethene	ND	ppb (v/v)	9.0	
Carbon disulfide	ND	ppb (v/v)	45	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	9.0	
Acetone	ND	ppb (v/v)	45	
Methylene chloride	ND	ppb (v/v)	9.0	
trans-1,2-Dichloroethene	ND	ppb (v/v)	9.0	
1,1-Dichloroethane	ОИ	ppb (v/v)	9.0	
Vinyl acetate	ND	ppb (v/v)	45	
cis-1,2-Dichloroethene	. ND	ppb (v/v)	9.0	
2-Butanone	ND .	ppb (v/v)	45	
Chloroform	' ND	ppb (v/v)	9.0	
·1,1,1-Trichloroethane	ND	ppb (v/v)	9.0	
Carbon tetrachloride	ND	ppb (v/v)	9.0	
Benzene	710	ppb (v/v)	9.0	
1,2-Dichloroethane	ND	ppb (v/v)	9.0	
Trichloroethene	ND	ppb (v/v)	9.0	
1,2-Dichloropropane	ND	ppb (v/v)	9.0	
Bromodichloromethane	ND	ppb (v/v)	9.0	
cis-1,3-Dichloropropene	ND	ppb (v/v)	9.0	
4-Methyl-2-pentanone	ND	ppb (v/v)	18	
Toluene	110	ppb (v/v)	9.0	
trans-1,3-Dichloropropene	ND	ppb (v/v)	9.0	
1,1,2-Trichloroethane	ND	ppb(v/v)	9.0	
Tetrachloroethene	ИД	ppb (v/v)	9.0	
2-Hexanone	ND	ppb (v/v)	31	G
Dibromochloromethane	ND	ppb (v/v)	9.0	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	9.0	
Chlorobenzene	290	ppb (v/v)	9.0	
Ethylbenzene	[,] 360	ppb (v/v)	9.0	
Xylenes (total)	560	ppb (v/v)	9.0	
Styrene	ND	ppb (v/v)	9.0	
Bromoform	ND	ppb (v/v)	9.0	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-274-WELL 27 Lab ID: 105994-0002-SA

Matrix: AIR Sampled: 13 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v	9.0
Benzyl chloride	ND	ppb (v/v)	9.0
4-Ethyl toluene	76	ppb (v/v	9.0
1,3,5-Trimethylbenzene	53	ppb (v/v	9.0
1,2,4-Trimethylbenzene	180	ppb (v/v	9.0
1,3-Dichlorobenzene	ND	ppb (v/v)	9.0
1,4-Dichlorobenzene	88	ppb (v/v	9.0
1,2-Dichlorobenzene	ND	ppb (v/v)	9.0
1,2,4-Trichlorobenzene	ND	ppb (v/v)) 18
Hexachlorobutadiene	ND	ppb (v/v	18
1,4-Dioxane	ND	ppb (v/v)	32
1,3-Butadiene	ND	ppb (v/v	45

Note 1 : Compound not analyzed due to high level of carbon dioxide.

Note G : Reporting Limit elevated due to sample matrix interference.

ND = Not detected NA = Not applicable

Reported By: Dave Olson Approved By: Val Mallari

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-289-WELL 66
Lab ID: 105994-0003-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

Parameter	Result	Units	Reporting Limit	
				
Dichlorodifluoromethane	770	ppb (v/v)	9.0	D
Chloromethane	ND	ppb (v/v)	5.5	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	760	ppb (v/v)		D
Vinyl chloride	40	ppb (v/v)		
Bromomethane	ND	ppb (v/v)	2.7	
Chloroethane	36	ppb (v/v)	5.5	
Trichlorofluoromethane	ND	ppb (v/v)	2.7	
1,1-Dichloroethene	ИД	ppb (v/v)	2.7	
Carbon disulfide	ND	ppb (v/v)	14	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	2.7	
Acetone	ND	ppb (v/v)	14	
Methylene chloride	ND	ppb (v/v)	2.7	
trans-1,2-Dichloroethene	ND	ppb (v/v)	2.7	
1,1-Dichloroethane	ND	ppb (v/v)	2.7	
Vinyl acetate	ND	ppb (v/v)		
cis-1,2-Dichloroethene	ND	ppb (v/v)	2.7	
2-Butanone	ND	ppb (v/v)	14	
Chloroform	ND	ppb (v/v)		
1,1,1-Trichloroethane	ND	ppb (v/v)		
Carbon tetrachloride	ND	ppb (v/v)		
Benzene	92	ppb (v/v)		
1,2-Dichloroethane	ND	ppb (v/v)		
Trichloroethene	ND	ppb (v/v)	2.7	
1,2-Dichloropropane	ND	ppb (v/v)	2.7	
Bromodichloromethane	ND	ppb (v/v)		
cis-1,3-Dichloropropene	ND	ppb (v/v)		
4-Methyl-2-pentanone	ИД	ppb (v/v)	5.5	
Toluene	22	ppb (v/v)	2.7	
trans-1,3-Dichloropropene	ND	ppb (v/v)	2.7	
1,1,2-Trichloroethane	ИD	ppb (v/v)	2.7	
Tetrachloroethene	ND	ppb (v/v)	2.7	
2-Hexanone	ND	ppb (v/v)	5.5	
Dibromochloromethane	ИD	ppb (v/v)	2.7	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	2.7	
Chlorobenzene	65	ppb (v/v)		
Ethylbenzene	130	ppb (v/v)		
Xylenes (total)	310	ppb (v/v)		
Styrene	ND	ppb (v/v)		
Bromoform	ND	ppb (v/v)		

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-289-WELL 66
Lab ID: 105994-0003-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

	_		Reporting
Parameter	Result	Units	Limit
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	2.7
Benzyl chloride	ND	ppb(v/v)	2.7
4-Ethyl toluene	39	ppb (v/v)	2.7
1,3,5-Trimethylbenzene	36	ppb (v/v)	2.7
1,2,4-Trimethylbenzene	67	ppb (v/v)	2.7
1,3-Dichlorobenzene	ND	ppb (v/v)	2.7
1,4-Dichlorobenzene	38	ppb (v/v)	2.7
1,2-Dichlorobenzene	ND	ppb (v/v)	2.7
1,2,4-Trichlorobenzene	ND	ppb (v/v)	5.5
Hexachlorobutadiene	ND	ppb(v/v)	5.5
1,4-Dioxane	ND	ppb (v/v)	9.6
1,3-Butadiene	ND	ppb (v/v)	14

Note D : Compound quantitated at a secondary dilution.

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-134-WELL 26 Lab ID: 105994-0004-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

		Ro	eporting	
Parameter	Result	Units	Limit	
Dichlorodifluoromethane	NA	ppb (v/v)		1
Chloromethane	ND	ppb (v/v)	29	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	150	ppb (v/v)	14	
Vinyl chloride	140	ppb (v/v)	14	
Bromomethane	ND	ppb (v/v)	14	
Chloroethane	, 200	ppb(v/v)	29	
Trichlorofluoromethane	24	ppb (v/v)	14	
1,1-Dichloroethene	ND	ppb(v/v)	14	
Carbon disulfide	ND	ppb (v/v)	72	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	14	
Acetone	ND	ppb (v/v)	72	
Methylene chloride	17	ppb (v/v)	14	
trans-1,2-Dichloroethene	ND	ppb (v/v)	14	
1,1-Dichloroethane	ND	ppb (v/v)	14	
Vinyl acetate	ND	ppb (v/v)	72	
cis-1,2-Dichloroethene	. 22	ppb (v/v)	14	
2-Butanone	ND	ppb (v/v)	72	
Chloroform	ND	ppb (v/v)	14	
1,1,1-Trichloroethane	ND	ppb (v/v)	14	
Carbon tetrachloride	ND	ppb (v/v)	14	
Benzene	200	ppb (v/v)	14	
1,2-Dichloroethane	ND	ppb(v/v)	14	
Trichloroethene	ND	ppb (v/v)	14	
1,2-Dichloropropane	ND	ppb (v/v)	14	
Bromodichloromethane	ND	ppb (v/v)	14	
cis-1,3-Dichloropropene	ND	ppb (v/v)	14	
4-Methyl-2-pentanone	ND	ppb (v/v)	54	G
Toluene	330	ppb (v/v)	14	
trans-1,3-Dichloropropene	ND	ppb (v/v)	14	
1,1,2-Trichloroethane	ND	ppb (v/v)	14	
Tetrachloroethene	ND	ppb (v/v)	14	
2-Hexanone	ND	ppb (v/v)	29	
Dibromochloromethane	ИD	ppb (v/v)	14	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	14	
Chlorobenzene	ຸ210	ppb (v/v)	14	
Ethylbenzene	í300	ppb (v/v)	14	
Xylenes (total)	2900	ppb (v/v)	14	
Styrene	ИД	ppb (v/v)	14	
Bromoform	ND	ppb (v/v)	14	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-134-WELL 26 Lab ID: 105994-0004-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Analyzed: 20 JUN 94

Parameter	Result	Units T	eporting Limit	
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	14	
Benzyl chloride	ND	ppb (v/v)	14	G
4-Ethyl toluene	500	ppb (v/v)	14	
1,3,5-Trimethylbenzene	280	ppb (v/v)	14	
1,2,4-Trimethylbenzene	680	ppb (v/v)	14	
1,3-Dichlorobenzene	ND	ppb (v/v)	14	
1,4-Dichlorobenzene	160	ppb (v/v)	14	
1,2-Dichlorobenzene	≺ ND	ppb (v/v)	14	
1,2,4-Trichlorobenzene	ND	ppb (v/v)	29	
Hexachlorobutadiene	ND	ppb (v/v)	29	
1,4-Dioxane	ND	ppb (v/v)	50	
1,3-Butadiene	ND	ppb (v/v)	72	

Note 1 : Compound not analyzed due to high level of carbon dioxide.

Note G : Reporting Limit elevated due to sample matrix interference.

ND = Not detected NA = Not applicable

Reported By: Dave Olson Approved By: Val Mallari

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-306-WELL 25
Lab ID: 105994-0005-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

	ŧ		Reporting	
Parameter	Result	Units	Limit	
T UZ UM G G Z	RODUIO	011200	1110	
Dichlorodifluoromethane	NA	ppb (v/v)		1
Chloromethane	ND	ppb (v/v)	5.2	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	16	ppb(v/v)	2.6	
Vinyl chloride	4.4	ppb (v/v)	2.6	
Bromomethane	ND	ppb (v/v)	2.6	
Chloroethane	26	ppb (v/v)	5.2	
Trichlorofluoromethane	48	ppb (v/v)	2.6	
1,1-Dichloroethene	ND	ppb (v/v)	2.6	
Carbon disulfide	ND	ppb (v/v)		
1,1,2-Trichloro-1,2,2-		,		
trifluoroethane	ND	ppb (v/v)	2.6	
Acetone	ND	ppb (v/v)	13	
Methylene chloride	ND	ppb (v/v)	2.6	
trans-1,2-Dichloroethene	ND	ppb (v/v)	2.6	
1,1-Dichloroethane	ND	ppb (v/v)	2.6	
Vinyl acetate	ИД	(v/v) dqq	13	
cis-1,2-Dichloroethene	ND	ppb (v/v)	2.6	
2-Butanone	ND .	ppb (v/v)	13	
Chloroform	ND	ppb (v/v)	2.6	
1,1,1-Trichloroethane	ND	ppb (v/v)	2.6	
Carbon tetrachloride	ND	ppb (v/v)	2.6	
Benzene	26	ppb (v/v)	2.6	
1,2-Dichloroethane	ND	ppb (v/v)	2.6	
Trichloroethene	ND	ppb (v/v)	2.6	
1,2-Dichloropropane	ND	ppb (v/v)	2.6	
Bromodichloromethane	ND	ppb (v/v)	2.6	
cis-1,3-Dichloropropene	ND	ppb (v/v)	2.6	
4-Methyl-2-pentanone	ND	ppb (v/v)	5.2	
Toluene	9.7	ppb (v/v)	2.6	
trans-1,3-Dichloropropene	ND	ppb (v/v)	2.6	
1,1,2-Trichloroethane	ND	ppb (v/v)	2.6	
Tetrachloroethene	ND	ppb (v/v)	2.6	
2-Hexanone	ND	ppb (v/v)	5.2	
Dibromochloromethane	ND	ppb (v/v)	2.6	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	2.6	
Chlorobenzene	47	ppb (v/v)	2.6	
Ethylbenzene	′ 39	ppb (v/v)	2.6	
Xylenes (total)	140	ppb (v/v)	2.6	
Styrene	ND	ppb (v/v)	2.6	
Bromoform	ND	ppb (v/v)	2.6	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-306-WELL 25 Lab ID: 105994-0005-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

Parameter	Result	F Units	Reporting Limit	
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	2.6	
Benzyl chloride 4-Ethyl toluene	ND 22	ppb (v/v)	25 2.6	G
1,3,5-Trimethylbenzene	13	ppb (v/v)	2.6	
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	23 ND	ppb (v/v) ppb (v/v)	2.6 2.6	
1,4-Dichlorobenzene 1,2-Dichlorobenzene	18 ND	ppb (v/v) dqq	2.6 2.6	
1,2,4-Trichlorobenzene	ND	ppb (v/v)	5.2	
Hexachlorobutadiene 1,4-Dioxane	ND ND	<pre>ppb (v/v) ppb (v/v)</pre>	5.2 9.1	
1,3-Butadiene	ND	ppb (v/v)	13	

Note 1 : Compound not analyzed due to high level of carbon dioxide.

Note G: Reporting Limit elevated due to sample matrix interference.

ND = Not detected NA = Not applicable

Reported By: Dave Olson Approved By: Val Mallari

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-291-WELL 11 Lab ID: 105994-0006-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Analyzed: 20 JUN 94

		. F	Reporting	
Parameter	Result	Units	Limit	
Dichlorodifluoromethane	NA	ppb (v/v)		1
Chloromethane	ND	ppb (v/v)	34	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	280	ppb (v/v)	17	
Vinyl chloride	73	ppb (v/v)	17	
Bromomethane	ND	ppb(v/v)	17	
Chloroethane	94	ppb (v/v)	34	
Trichlorofluoromethane	34	ppb (v/v)	17	
1,1-Dichloroethene	ND	ppb (v/v)	17	
Carbon disulfide	ND	ppb (v/v)	84	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	17	
Acetone	ND	ppb (v/v)	84	
Methylene chloride	ND	ppb (v/v)	17	
trans-1,2-Dichloroethene	ND	ppb (v/v)	17	
1,1-Dichloroethane	ИD	ppb(v/v)	17	
Vinyl acetate	ND	ppb (v/v)	84	
cis-1,2-Dichloroethene	ND	ppb (v/v)	17	
2-Butanone	ND	ppb (v/v)	84	
Chloroform	ND	ppb (v/v)	17	
1,1,1-Trichloroethane	ND	ppb (v/v)	17	
Carbon tetrachloride	ND	ppb (v/v)	17	
Benzene	120	ppb (v/v)	17	
1,2-Dichloroethane	ND	ppb (v/v)	17	
Trichloroethene	ND	ppb (v/v)	17	
1,2-Dichloropropane	ND	ppb (v/v)	17	
Bromodichloromethane	ND	ppb (v/v)	17	
cis-1,3-Dichloropropene	ND	ppb (v/v)	17	
4-Methyl-2-pentanone	39	ppb (v/v)	34	
Toluene	410	ppb (v/v)	17	
trans-1,3-Dichloropropene	ND	ppb (v/v)	17	
1,1,2-Trichloroethane	ND	ppb (v/v)	17	
Tetrachloroethene	ND	ppb (v/v)	17	
2-Hexanone	ND	ppb (v/v)	34	
Dibromochloromethane	ND	ppb (v/v)	17	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	17	
Chlorobenzene	210	ppb (v/v)	17	
Ethylbenzene	2300	ppb (v/v)	17	
Xylenes (total)	4400	ppb (v/v)	17	
Styrene	ND	ppb (v/v)	17	
Bromoform	ND	ppb (v/v)	17	
	-· -	FF~ ('/')	~ ·	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-291-WELL 11 Lab ID: 105994-0006-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

			Reporting	
Parameter	Result	Units	Limit	
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	17	
Benzyl chloride	ND	ppb (v/v)	410	G
4-Ethyl toluene	630	ppb (v/v)	17	
1,3,5-Trimethylbenzene	360	ppb (v/v)	17	
1,2,4-Trimethylbenzene	820	ppb (v/v)	17	
1,3-Dichlorobenzene	ND	ppb (v/v)	17	
1,4-Dichlorobenzene	, 290	ppb (v/v)	17	
1,2-Dichlorobenzene	ND	ppb (v/v)	17	
1,2,4-Trichlorobenzene	ND	ppb (v/v)	34	
Hexachlorobutadiene	ИD	ppb(v/v)	34	
1,4-Dioxane	ND	ppb (v/v)	59	
1,3-Butadiene	ND	ppb (v/v)	84	

Note 1 : Compound not analyzed due to high level of carbon dioxide.

Note G : Reporting Limit elevated due to sample matrix interference.

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-310-WELL 45 Lab ID: 105994-0007-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Analyzed: 20 JUN 94

		I	Reporting	
Parameter	Result	Units	Limit	
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	18	
Benzyl chloride	ND	ppb (v/v)	110	G
4-Ethyl toluene	140	ppb (v/v)	18	
1,3,5-Trimethylbenzene	77	ppb (v/v)	18	
1,2,4-Trimethylbenzene	130	ppb (v/v)	18	
1,3-Dichlorobenzene	ND	ppb (v/v)	18	
1,4-Dichlorobenzene	_. 37	ppb (v/v)	18	
1,2-Dichlorobenzene	ND	ppb (v/v)	18	
1,2,4-Trichlorobenzene	ND	ppb (v/v)	36	
Hexachlorobutadiene	ND	ppb (v/v)	36	
1,4-Dioxane	ND	ppb (v/v)	63	
1,3-Butadiene	ND	ppb (v/v)	90	

Note D : Compound quantitated at a secondary dilution.

Note G : Reporting Limit elevated due to sample matrix interference.

ND = Not detected NA = Not applicable

Reported By: Dave Olson Approved By: Val Mallari

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: A-310-WELL 45 Lab ID: 105994-0007-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

		R	eporting	
Parameter	Result	Units	Limit	
		0.1200		
Dichlorodifluoromethane	7900	ppb (v/v)	90	D
Chloromethane	ND	ppb (v/v)	36	
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	2700	ppb (v/v)	90	D
Vinyl chloride	42	ppb (v/v)	18	
Bromomethane	ND	ppb (v/v)	18	
Chloroethane	72	ppb (v/v)	36	
Trichlorofluoromethane	1700	ppb (v/v)	18	
1,1-Dichloroethene	ND	ppb (v/v)	18	
Carbon disulfide	ИD	ppb (v/v)	90	
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND	ppb (v/v)	18	
Acetone	ND	ppb (v/v)	90	
Methylene chloride	ND	ppb (v/v)	18	
trans-1,2-Dichloroethene	ND	ppb (v/v)	18	
1,1-Dichloroethane	ND	ppb (v/v)	18	
Vinyl acetate	ND	ppb (v/v)	90	
cis-1,2-Dichloroethene	ND	ppb (v/v)	18	
2-Butanone	ND	ppb (v/v)	90	
Chloroform	ND	ppb (v/v)	18	
1,1,1-Trichloroethane	ND	ppb (v/v)	18	
Carbon tetrachloride	ND	ppb (v/v)	18	
Benzene	1500	ppb (v/v)	18	
1,2-Dichloroethane	ND	ppb (v/v)	18	
Trichloroethene	ND	ppb (v/v)	18	
1,2-Dichloropropane	ND	ppb (v/v)	18	
Bromodichloromethane	ND	ppb (v/v)	18	
cis-1,3-Dichloropropene	ND	ppb (v/v)	18	
4-Methyl-2-pentanone	ND	ppb(v/v)	36	
Toluene	990	ppb (v/v)	18	
trans-1,3-Dichloropropene	ND	ppb (v/v)	18	
1,1,2-Trichloroethane	ND	ppb(v/v)	18	
Tetrachloroethene	ND	ppb(v/v)	18	
2-Hexanone	ND	ppb (v/v)	36	
Dibromochloromethane	ND	ppb (v/v)	18	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	18	
Chlorobenzene	60	ppb (v/v)	18	
Ethylbenzene	1100	ppb (v/v)	18	
Xylenes (total)	2300	ppb (v/v)	18	
Styrene	ND	ppb (v/v)	18	
Bromoform	ND	ppb (v/v)	18	

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: 9361B-WELL 57 Lab ID: 105994-0008-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Analyzed: 20 JUN 94

		· T	Reporting
Parameter	Result	Units	Limit
I al alliecci	1/00410	011100	DIMIE
Dichlorodifluoromethane	4000	ppb (v/v)	18 D
Chloromethane	ND	ppb(v/v)	4.0
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	84	ppb (v/v)	2.0
Vinyl chloride	9.8	ppb (v/v)	2.0
Bromomethane	ND	ppb (v/v)	2.0
Chloroethane	14	ppb (v/v)	4.0
Trichlorofluoromethane	810	ppb (v/v)	18 D
1,1-Dichloroethene	ND	ppb(v/v)	2.0
Carbon disulfide	ND	ppb(v/v)	10
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	ppb (v/v)	2.0
Acetone	ND .	ppb (v/v)	10
Methylene chloride	ND	ppb (v/v)	2.0
trans-1,2-Dichloroethene	ND	ppb (v/v)	2.0
1,1-Dichloroethane	ND	ppb(v/v)	2.0
Vinyl acetate	ND	ppb (v/v)	10
cis-1,2-Dichloroethene	. ND	ppb (v/v)	2.0
2-Butanone	ND ·	ppb(v/v)	10
Chloroform	ND	ppb (v/v)	2.0
1,1,1-Trichloroethane	ND	ppb (v/v)	2.0
Carbon tetrachloride	ND	ppb(v/v)	2.0
Benzene	21	ppb (v/v)	2.0
1,2-Dichloroethane	ND	ppb (v/v)	2.0
Trichloroethene	ND	ppb(v/v)	2.0
1,2-Dichloropropane	ND	ppb (v/v)	2.0
Bromodichloromethane	ND	ppb (v/v)	2.0
cis-1,3-Dichloropropene	ND	ppb (v/v)	2.0
4-Methyl-2-pentanone	ND	ppb (v/v)	4.0
Toluene	44	ppb (v/v)	2.0
trans-1,3-Dichloropropene	ND	ppb (v/v)	2.0
1,1,2-Trichloroethane	ND	ppb (v/v)	2.0
Tetrachloroethene	ND	ppb (v/v)	2.0
2-Hexanone	ND	ppb (v/v)	4.0
Dibromochloromethane	ND	ppb (v/v)	2.0
1,2-Dibromoethane (EDB)	ND	ppb (v/v·)	2.0
Chlorobenzene	22	ppb (v/v)	2.0
Ethylbenzene	' 32	ppb (v/v)	2.0
Xylenes (total)	68	ppb (v/v)	2.0
Styrene	ND	ppb (v/v)	2.0
Bromoform	ND	ppb (v/v)	2.0

(continued on following page)

ND = Not detected NA = Not applicable

Reported By: Dave Olson

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: 9361B-WELL 57 Lab ID: 105994-0008-SA

Matrix: AIR Sampled: 14 JUN 94 Received: 16 JUN 94 Authorized: 16 JUN 94 Prepared: NA Analyzed: 20 JUN 94

Parameter	Result	Units	Reporting Limit
1,1,2,2-Tetrachloroethane Benzyl chloride	ND ND	ppb (v/v	,
4-Ethyl toluene	7.8	ppb (v/v	2.0
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene	7.1 6.8	ppb (v/v	•
1,3-Dichlorobenzene	ND	ppb (v/v	2.0
1,4-Dichlorobenzene 1,2-Dichlorobenzene	14 ND	v\v) dqq	•
1,2,4-Trichlorobenzene	ND	ppb (v/v	4.0
Hexachlorobutadiene 1,4-Dioxane	ND ND	v\v) dqq	
1,3-Butadiene	ND	ppb (v/v	·

Note D : Compound quantitated at a secondary dilution.

ND = Not detected NA = Not applicable

Reported By: Dave Olson

QC LOT ASSIGNMENT REPORT - MS QC Air Toxics

Laboratory			QC Lot Number	QC Run Number MS QC Run Number
Sample Number	QC Matrix	QC Category	(DCS)	(SCS/BLANK/LCS) (SA,MS,SD,DU)
105994-0001-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0001-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0001-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
105994-0002-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0002-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0002-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
105994-0003-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0003-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0003-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
105994-0004-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0004-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0004-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
105994-0005-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0005-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0005-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
105994-0006-SA	AIR	SCAQMD-252	16 JUN 94-B1	16 JUN 94-C1
105994-0006-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0006-SA	AIR	ASTM-D1946	16 JUN 94-B1	16 JUN 94-C1
1.05994-0007-SA	AIR	SCAQMD-252	17 JUN 94-A1	17 JUN 94-A1
1.05994-0007-SA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0007-SA	AIR	ASTM-D1946	17 JUN 94-A1	17 JUN 94-A1
105994-0008-sA	AIR	SCAQMD-252	17 JUN 94-A1	17 JUN 94-A1
105994-0008-sA	AIR	TO-14	20 JUN 94-B1	20 JUN 94-B1
105994-0008-sA	AIR	ASTM-D1946	17 JUN 94-A1	17 JUN 94-A1

Date Analyzed: 16 JUN 94

Date Analyzed: 17 JUN 94

Date Analyzed: 20 JUN 94

Date Analyzed: 17 JUN 94

DUPLICATE CONTROL SAMPLE REPORT

Air Toxics

Project: 105994

Category: SCAQMD-252 South Coast AQMD Method 25.2

Matrix: AIR

QC Lot: 16 JUN 94-B1

ppm (v/v)Concentration Units:

Concentration Accuracy Precision Average(%) Analyte Spiked Measured (RPD) DCS2 DCS Limits DCS1 AVG DCS Limit 100 98.1 99.2 98.6 99 80-120 1.1 20 Methane TNMHCs as Methane 1160 1160 1160 103 80-120 0.0 20 1130

Category: SCAQMD-252 South Coast AQMD Method 25.2

Matrix: AIR

QC Lot: 17 JUN 94-A1

Concentration Units: ppm (v/v)

Concentration Precision Accuracy Analyte Spiked Measured Average(%) (RPD) DCS2 DCS1 AVG DCS Limits DCS Limit 99.1 99.2 99.2 99 80-120 0.10 20 Methane 100 TNMHCs as Methane 1130 1110 1160 1140 101 80-120 4.7 20

Category: TO-14 Method TO-14 - Volatile Organics

Matrix: AIR

QC Lot: 20 JUN 94-B1

Concentration Units: ppb (v/v)

Concentration Accuracy Precision Analyte Spiked Measured Average(%) (RPD) DCS2 DCS1 AVG DCS Limits DCS Limit Methylene chloride 48.4 50.2 49.9 50.0 103 86-116 0.60 10 1,1-Dichloroethene 48.4 48.5 48.1 48.3 100 90-115 0.83 10 Trichloroethene 36.7 37.8 36.2 37.0 101 85-114 4.3 10 48.6 Toluene 48.4 48.7 48.6 101 92-114 0.21 10 1,1,2,2-Tetrachloroethane 62.9 55.5 64.7 63.8 76-124 115 2.8 10

Category: ASTM-D1946 Fixed Gases (ASTM-D1946)

Matrix: AIR

QC Lot: 16 JUN 94-B1

Concentration Units: % (v/v)

	Cor	ncentration	n		Acc	uracy	Prec	ision
Analyte	Spiked		Measured		Ave	rage(%)	(R	(PD)
	,	DCS1	DCS2	AVG	DCS	Limits	DCS	Limit
Methane	0.0100	0.00981	0.00992	0.00986	99	80-120	1.1	20
Carbon dioxide	10.0	10.0	10.0	10.0	100	80-120	0.0	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

DUPLICATE CONTROL SAMPLE REPORT

Air Toxics

Project: 105994

Category: ASTM-D1946 Fixed Gases (ASTM-D1946)

Matrix: AIR

QC Lot: 17 JUN 94-A1

Concentration Units: % (v/v)

Date Analyzed: 17 JUN 94

	Co	ncentratio:	n.		Acc	uracy	Prec	ision
Analyte	Spiked		Measured		Ave	rage(%)	(R	PD)
	· •	DCS1	DCS2	AVG	DCS	Limits	DCS 1	Limit
Methane	0.0100	0.00991	0.00992	0.00992	99	80-120	0.10	20
Carbon dioxide	10.0	10.0	10.0	10.0	100	80-120	0.0	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

Air Toxics

Project: 105994

(cont.)

2.0

2.0

ppb (v/v)

ppb (v/v)

TO-14-G Volatile Organics by GCMS - EPA TO-14 Test:

Matrix:

AIR QC Run: 20 JUN 94-B1 Date Analyzed: 20 JUN 94 Reporting Units Limit Analyte Result Dichlorodifluoromethane ND ppb (v/v)2.0 Chloromethane ND ppb (v/v)4.0 1,2-Dichloro-1,1,2,2-tetrafluoroethane ND ppb (v/v)2.0 Vinyl chloride ND ppb (v/v)2.0 Bromomethane ND ppb (v/v)2.0 Chloroethane ND ppb(v/v)4.0 Trichlorofluoromethane ppb (v/v)ND 2.0 1,1-Dichloroethene 2.0 ND ppb(v/v)Carbon disulfide ND ppb (v/v)10 1,1,2-Trichloro-1,2,2-trifluoroethane ppb (v/v)ND 2.0 10 Acetone ND ppb (v/v)Methylene chloride ND ppb (v/v)2.0 trans-1,2-Dichloroethene ND 2.0 ppb (v/v)2.0 1,1-Dichloroethane ND ppb (v/v)Vinyl acetate ND ppb (v/v)10 cis-1,2-Dichloroethene ND 2.0 ppb (v/v)2-Butanone ppb (v/v)ND 10 Chloroform ND 2.0 ppb(v/v)1,1,1-Trichloroethane ND 2.0 ppb (v/v)Carbon tetrachloride ppb (v/v)ND 2.0 Benzene ND ppb (v/v)1,2-Dichloroethane ppb (v/v)ND 2.0 Trichloroethene ND ppb (v/v)2.0 1,2-Dichloropropane 2.0 ND ppb (v/v)Bromodichloromethane ND ppb(v/v)2.0 ppb (v/v)cis-1,3-Dichloropropene ND 2.0 4-Methyl-2-pentanone ND 4.0 ppb (v/v) Toluene ND ppb (v/v)2.0 trans-1,3-Dichloropropene ND ppb (v/v)2.0 1,1,2-Trichloroethane ND ppb(v/v)2.0 Tetrachloroethene ND ppb(v/v)2.0 2-Hexanone ND ppb (v/v)4.0 Dibromochloromethane ND ppb (v/v)2.0 1,2-Dibromoethane (EDB) ND 2.0 ppb (v/v)Chlorobenzene ND ppb(v/v)2.0 Ethylbenzene ND ppb(v/v)2.0 Xylenes (total) ND ppb (v/v)2.0 ppb (v/v)Styrene ND 2.0 Bromoform ND ppb (v/v)2.0 1,1,2,2-Tetrachloroethane ND ppb(v/v)2.0 Benzyl chloride ND ppb (v/v)2.0 4--Ethyl toluene ND ppb (v/v)2.0

ND

ND

ND = Not Detected

1,3,5-Trimethylbenzene

1,2,4-Trimethylbenzene

METHOD BLANK REPORT

Air Toxics

Project: 105994

(cont.)

Test: Matrix: QC Run:	TO-14-G AIR 20 JUN 94-B1	Volatile	Organics by GCMS	- EPA TO-	Date Analyzed: Reporting	20	JUN	94
Analyte			Result	Units	Limit			
1,4-Dichl 1,2-Dichl 1,2,4-Tri			ND ND ND ND ND ND ND	ppb (v/v) ppb (v/v) ppb (v/v) ppb (v/v) ppb (v/v) ppb (v/v)	2.0 2.0 4.0 4.0			
	ASTM-D1946 AIR 16 JUN 94-C1	ASTM-D194	6		Date Analyzed:	16	JUN	94
Analyte			Result	Units	Reporting Limit			
Nitrogen			· ND	% (v/v)	0.10			
QC Run:	17 JUN 94-A1		Result	Units	Date Analyzed: Reporting Limit	17	JUN	94
Nitrogen			ND	% (v/v)	0.10			

METHOD BLANK REPORT Air Toxics Project: 105994

Test: Matrix:	SCAQMD-25-2-G AIR	SCAQMD 25.2	•		
QC Run:	16 JUN 94-C1		• •	Date Analyzed: Reporting	16 JUN 94
Analyte		Result	Units	Limit	
Methane Total No	n-Methane Hydrocarbon	ND	ppm (v/v)	2.0	
as Met		ДИ	ppm (v/v)	5.0	
QC Run:	17 JUN 94-A1			Date Analyzed: Reporting	17 JUN 94
Analyte		Result	Units	Limit	
Methane Total No	n-Methane Hydrocarbon	ND	ppm (v/v)	2.0	
as Met	-	ND	ppm (v/v)	5.0	

CLIENT: OBCI.	ea 4 Gere				
CANISTER SERIAL #:	A-134 6/8/94			•	
DATE CLEANED:	6/8/94	,	٠.		
	· · · · · · · · · · · · · · · · · · ·		-		
		·			
			7AC. (inches rig)	DATE	INITIALS
		<u>-</u>	, r 4433, 10310	JATE	MITTALS
INITIAL VACUUM CHECK			30	6/9/94	10
				1	
INITIAL FIELD VACUUM			30-	6/14/94	RMN
		i		[
FINAL FIELD READING			<u>2</u>	6/14/94	RMMI
_ABORATORY READING		-	2	6-16	7W
	<u></u>		<u>ر</u>	0 10	1 w
COMMENTS:					
					•
					
	,				

CLIENT: OBrie	.a 4 Ger	<u> </u>			
CANISTER SERIAL #:	A-172				
DATE CLEANED:	6/8/94		* *		
			i		
			TAG. (inches rig) or PRESS. (osid)	DATE	INITIALS
INITIAL VACUUM CHECK			30	6/9/94	20
					
INITIAL FIELD VACUUM			30 +	6/13/94	RMW
FINAL FIELD READING			82	6/13/94	RMN
		<u>-</u>		· · · · · · · · · · · · · · · · · · ·	
LABORATORY READING			2	6-16	1 W
COMMENTS:					

			· ···························· ········		
				<u>.</u>	
		,			
					
	,				
	· · · · · · · · · · · · · · · · · · ·		•		

CLIENT: OBCI	ea 4 Gere	- ·			
CANISTER SERIAL #:	A-7-74				
DATE CLEANED:	6/5/94				
		•			
		1	inches rigi	DATE	INITIALS
					MALTIACS
INITIAL VACUUM CHECK		30) , .	6/9/94	20
INITIAL FIELD VACUUM		30	+	6/3/90	Rmv
FINAL FIELD READING		0		6/13/94	RmN
		1			
ABORATORY READING		7		6-16	JW
COMMENTS:					
					· · · · · · · · · · · · · · · · · · ·
	<u> </u>		-		
				···	
	,			· · · · · ·	
					

CLIENT: 08	riea	\$ G	ere			
CANISTER SERIAL #:	A	-287				
DATE CLEANED:		4/8/94				
_	· · · · · · · · · · · · · · · · · · ·					
				or PRESS. losice	DATE	INITIALS
INITIAL VACUUM CHEC	K			30	6/9/94	20
INITIAL FIELD VACUUM				30+	6/14/94	RMN
FINAL FIELD READING				0	6/14/94	Rmn
ABORATORY READING			i,	2	6-16	JW
	<u>-i</u>		,			
COMMENTS:						
		·				
		,				
		 				

CLIENT: OBCI	ea 4	Gere		•	
CANISTER SERIAL #:	A-29			*	
DATE CLEANED:	4/8	194			
					
	•		7AC. (inches rig)	DATE	INITIALS
				·	
INITIAL VACUUM CHECK		<u>.</u>	30	6/9/94	20
			·	1	1
INITIAL FIELD VACUUM			30+	6/14/94	RMN
FINAL FIELD READING			12	6/14/94	RMN
				,	
LABORATORY READING	<u>:</u>	``````\\	0	6-16	2 W
					·—
COMMENTS:				·	
·					
			· · · · · · · · · · · · · · · · ·		
					
		· .			
			·		
		, , ,			
		,			

CLIENT: OBCIE	ea 4 Ger	e-			
CANISTER SERIAL #:	A-306			•	
DATE CLEANED:	6/8/94				
			VAC. linches Hg)		
	· · · · · · · · · · · · · · · · · · ·		or PRESS. losses	DATE	INITIALS
INITIAL VACUUM CHECK		٠	30	6/9/94	20
				1	
INITIAL FIELD VACUUM			30'+	6/14/94	RNN
FINAL FIELD READING			3 t	6/14/91	RMN
		1	<u> </u>		
ABORATORY READING	1		Ч	6-16	1W
COMMENTS:					
	·	· · · · · · · · · · · · · · · · · · ·			
				<u> </u>	·
		ı			
					
					-

CLIENT: OBCO	ea 4 Ger				
CANISTER SERIAL #:	A-310			•	
DATE CLEANED:	6/8/94				
			:		
			7AC. (incres rig) or PRESS. (psid)	DATE	INITIALS
					
INITIAL VACUUM CHECK		¥	30	6/9/94	100
				1	
INITIAL FIELD VACUUM			30+	6/14/44	Rmx
				· •	
FINAL FIELD READING		·	2	6/14/94	BMN
					
ABORATORY READING			2	6-16	2m
COMMENTS:					 _
	 				
			· · · · · · · · · · · · · · · · · · ·		
				·	
			•		
	· · · · · · · · · · · · · · · · · · ·				

CLIENT: OBrien	_ \$ Gere			•	
CANISTER SERIAL #:	9361B			•	
DATE CLEANED:	6/8/94				
		i	7AC. (inches rig) or PRESS. (asia)	DATE	INITIALS
			:r r=e33. 103/e0	02.6	INITIALS
INITIAL VACUUM CHECK			30	6/9/94	00
		-			
NITIAL FIELD VACUUM		-	. 30	6/11/94	Rm N'
TINAL FIELD READING			3	6/14/04.	RMA
					
ABORATORY READING			2	6-16	JW
COMMENTS:					
					·
		1			
	. •				
	,				

	CHAIN	OF C	USTODY RE	COR	D e	ENS-1145-A				ſſ	DATE			CHAIN OF CUSTODY NUMBER
L INSECO	2544 Industrial	Ave., West	Sacramento, CA. 95691-343	5 (916) 372	-1393						6	-14	-9U	18455
A Corning Company			n Grove, CA. 92641-1432 (714 y of Industry, CA. 91748-1321	•						ļļ	LAB NUME	ER	1.0-100	
	Mobile Labs, 1		ECO-8	(010) 503-	1006]	10	59	94	Page
CLIENT COLOR	8	<u> </u>	PROJECT MANAGER		,	-				تنع	(2)		AN	IALYSES
ADDRESS TELEPHONE NUMBER (AREA CODE)										- Cui	<u>~</u>		/	/ / / / / / / / / / / / / / / / / / /
5000 Bittenheld Pa	rkwiy		(315) 43	37-61	oc) x	23 x	1	/	/ 50 × 5/	/]/	/		
CITY	STATE ZIP GODE		SITE CONTACT							, v.,	/ آرن		/.	
PROJECT NAME	NY 132		WA TELEPHONE NUMBER (AREA COL	·E)				/ i.	3/	14)	√'	/ · /	/ / /
Combe Fill South L	11 / 2 / 1	us We Teghi	• • •	(ANEA COL	(E)			/	/ j		$\langle \zeta \rangle$			/ · /
CONTRACT/PURCHASE ORDER/QUOTE NO.		· C3///	3					\neq $_{I}$	(,)	,/	ر کرد			
3013 - 015 - 975	1994						/		$\langle \cdot \rangle$	XIOU	8	/ · /	/ /	′ /
SAMPLE NO./IDENTIFICATION	DATE T	ME	LAB/SAMPLE	SAMP	LET	YPE NO. OF	\ <i>/</i> ,	′۲	10/	X				Sample Condition/
SAMI EL NOMBENT			NUMBER	LIQ.	AIR S	SOLID TAINERS		<u> </u>		∇				REMARKS
H-172 - Well 28	6-13 /	75			X	1	×	X	×					
9-274 - Well 27	6-13/6	15			X		х	*	×					
7-289 - Well 66	6-14 11				х		入	ير	\ \ \					
134 - Well 26	13-14 12	0/			X-	1	×	<i>y</i> .	×			_	1	
A-306 - Well 25	—	305			义)	火	×	×					
A - 291 - Well 11		345			X)	L	×	×					
A-310 - Well 45	T	130			X	1	``\	Х.	×					
9361B - Well 57	6-14/	1			X		X	X	×			1		
									1/-		1	1		
				+				<u> </u>	-	 	-			
DO THE SAMPLE (S) POSE ANY POTENTIAL HAZ.	ARD(S)? IF YES, PLEA	SE EXPLAI	N		1		<u> </u>	L		ـــــــ	1			
SAMPLERS (SIGNATURE)	LINQUISHED BY (SIG	IATUREL	RELINQUISHED BY	(SIGNATU	RE)	DATI	· E	TIME		The de	livon, c	of campl	os and t	the signature on this chain
Vict m D. m	Versil					6	-15-9		530	custody	y form (constitut	es autho	orization to perform the ana
RECEIVED BY (SIGNATURE)	DATE	TIME	RECEIVED BY (SIG	NATURE)		DATI		TIME		ses spe	ecified a	ibove un	der the E	Enseco Terms and Condition order has been executed as
TODY DV		DATE	n TIME			DATE		_			above		uiciiase i	order has been executed at
RECEIVED ABORATORY BY	RECEIVED	Volice	94 930	ACC	EPTI		=	TIME				POSITI		
METHOD OF SHIPMENT		ω _{II} α										e reques		da ty (30) days without addition
FED EX										charge	; therea			rges will be billed at the pu
SPECIAL INSTRUCTIONS	1	, ,				/	1			lished in 2. Sam		oe returr	ned to clic	ient: ☐ Yes ☐ No (Enseco)
72 hour tu		unla	ess otherwi.	5° 2 1	7	forme	L,			dispose	of uni	eturned	samples	s for a charge of \$15.00. Di
TIC. ALLEGE	m	. 1	Dil la		′	6.21	. /			posal v	vill be b	y inciner	ation wh	erever possible; otherwise,

CHAIN OF CUSTODY RECORD ENS-1145-A

	CHAIN	N OF	COSTODY REC	UF	{D €	NS-11	145-A				(D)	ATE			CHAIN OF CUSTODY NUMBER	
EISECO	2544 Industrial Ave., West Sacramento, CA. 95691-3435 (916) 372-1393											Ġ	14-	94	CHAIN OF CUSTODY NUMBER 18455	
A Corning Company			arden Grove, CA. 92641-1432 (714) 8 , City of Industry, CA. 91748-1321 (8								L.A		59			
	Mobile Lat		ENSECO-8									10	57	74	Page of	
CLIENT O'Brien and Geve	Engineers Rob Neimer											رن		AN	ALYSES	
5000 B. Htenheld Par	1.		TELEPHONE NUMBER (AF			_			ì		رنزد کو 🖍		/	/		
CITY DOOR OF HEATERS TEN	STATE ZIP (C	ODE	(315) 43	1-6	100)		J 3 Y		//	(3° 3° /	5//				
Syracuse	NY 13	2a/								/,-	5 5	/گون مر	\nearrow	<i>/</i> :		
PROJECT NAME		Gas	TELEPHONE NUMBER (AF	REA CO	ODE)				/	/ .\$j	/ \c./	(4)	/			
Combe Fill South La	ndK]	Tes	sting NA					·	_/ _	\sim	43/	~//				
3013 - C15 - 975	199	∠						,	\ ^c £		1/ 3		/.	/ /		
5013 - 015 773	///	, 		SAM	PLE TY	/PE	NO. OF		.\\\\		(X1000					
SAMPLE NO./IDENTIFICATION	DATE	TIME	LAB/SAMPLE NUMBER	LIQ.			CON- TAINERS	1/6		(O) .	7.				Sample Condition/ REMARKS	
11-172 1/11 28	112	1226			X			<u> </u>	<u> </u>	(<u>Y</u>	/	£	<u> </u>		
A-172 - Well 28		1225			<u> </u> -			X	×	×						
A-274 - Well 27	6-13			 	X		1	_ 🌣_	メ	×			<u> </u>			
A-289 - Well 66	6-14	1125			X			上	×	X			ļ			
+-134 - Well 26	6-14	1061			X		_l	×	<i>y</i> .	×					· ·	
A . 306 - Well 25	6-14	1305			义)	×	×	×						
A - 291 - Well 11	6-14	1345			X)	人	×	X				:		
A-310 - Well 45	6-14				X		1	<u>ک</u>	X	×						
9361B - Well 57		1515	756		x		1	人	火	X						_
				1			_ _									
				-									<u> </u>			
DO THE SAMPLE (S) POSE ANY POTENTIAL HAZA	RD(S)? IF YES, P	LEASE EX	PLAIN	<u> </u>	LL	1		l			<u> </u>		<u> </u>			
DO THE SAMPLEIS) POSE ANY POTENTIAL HAZA And 4// 9a5 Ven SAMPLERS (SIGNATURE)	H JAN	SIGNATUR	E) RELINQUISHED BY (S	SIGNAT	UBE)		DATE	<u> </u>	TIME		Th - 4-13					
Trans of	Current	~~ ~			· · · · · ·		1	-15-9		530	custody	form c	onstitut	es and ii es authoi	ne signature on this chain rization to perform the ana	10 -vl
RECEIVED BY (SIGNATURE)	DATE	TIME	RECEIVED BY (SIGN)	ATURE)		DATE		TIME		ses spec	cified at	oove un	der the E	nseco Terms and Condition	าร,
											is sited			urchase o	order has been executed a	nd
RECEIVED FOR LABORATORY BY	RECEIV	ED DAT	II day TIME 2	AC	CEPTE	Đ	DATE		TIME		SAMPL	E DESI	POSITI			
METHOD OF SHIPMENT		<u> </u>									1. Storag				da y (30) days without additior	ys ıal
FED EX											charge;	thereaf			ges will be billed at the pu	
SPECIAL INSTRUCTIONS		1	lace A.	_	10	/		1			lished ra 2. Samp		e return	ed to clie	ent: ☐ Yes ☐ No (Enseco	wil
12 100 - 40	790446	, un	1 (43) OT KEVWIS	<u>e_</u>	24	0	rme	w)_			dispose	of unre	eturned	samples	for a charge of \$15.00. Di	is-
TIC ANALYSIS	may be	per	former if desir	ا رائ ع	/ !	/ 24	che	int							erever possible; otherwise, requirements.)	as
		/				7)								=====		

Reply To:

Response Rentals Calibration Certificate

Instrument: BACHARACH

Model: SENT, 4

Serial Number: WG0575

Calibration Standard:

		, •
Con	centra	ition
~ ~ ~ ~		

30% LEL CAY

35,00 CO

23 pm H25

Response

30% 1EL CHY

35ppm CO

23 ppn HzS

Technician: RN

Date: 6-3-94

This instrument has been calibrated according to the calibration procedure as described in the operation manual.

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION

CHRISTINE TODD WHITMAN

GODETHOT

INIL 28 1994

ROBERT C. SHINN, JR. Commissioner

MEMORANDUM

TO:

DR. ICLAL ATAY, CHIEF, BUREAU OF AIR QUALITY ENGINEERING

AIR QUALITY REGULATION PROGRAM

FROM:

EDWARD PUTNAM, ASSISTANT DIRECTOR

REMEDIAL PLANNING & DESIGN

SUBJECT:

REQUEST FOR MODIFICATION OF AIR PERMIT EQUIVALENT

(LOG NO. 01-90-4341) FOR COMBE FILL SOUTH LANDFILL

Enclosed is a revised air permit equivalent application for the Combe Fill South Landfill Superfund site located in Washington and Chester Townships, Morris County. The original air permit equivalent for the site, Log No. 01-90-4341, is based on a direct flow enclosed flare. The Division of Publicly Funded Site Remediation is petitioning for a modification of the original permit because recent landfill gas testing has proven that state-of-the-art air pollution control is no longer required for the site. Specifically, recent testing has demonstrated that the total worst case landfill emissions are 0.44 pounds per hour for non-methane hydrocarbons and 0.054 pounds per hour for toxic volatile organic substances, both of which are below state-of-the-art control guidelines. In addition, the average incremental risk posed by the landfill emissions is predicted to be 8.72E-07, which is lower than the policy limit of 1.0E-06. On the basis of this data, it is requested that the Combe Fill South Landfill air permit equivalent be modified to allow passive venting of the sixty-five wells that have been installed on the property.

In order to avoid delays to construction at the Combe Fill South Landfill, it is requested that the enclosed permit equivalent application be processed by August 5, 1994. If you have any questions regarding the application, please contact Paula Walshe of the Bureau of Construction at (908)879-8740. Your assistance is greatly appreciated.

PMW:LTMAP.CFS Enclosures

c. A 1

A. Farro, DPFSR

D. Prince, BC

P. Walshe, BC

C. Wallace, BSM

BUREAU OF NEW SOURCE REVIEW

APPLICATION FOR PERMIT TO CONSTRUCT, INSTALL OR ALTER CONTROL APPARATUS OR EQUIPMENT AND CERTIFICATE TO OPERATE CONTROL APPARATUS OR EQUIPMENT

TO: New Jersey Department of Environmental Protection Bureau of New Source Review CN 027, Trenton, N.J. 08625-0027

Read Instructions Before Completing Application

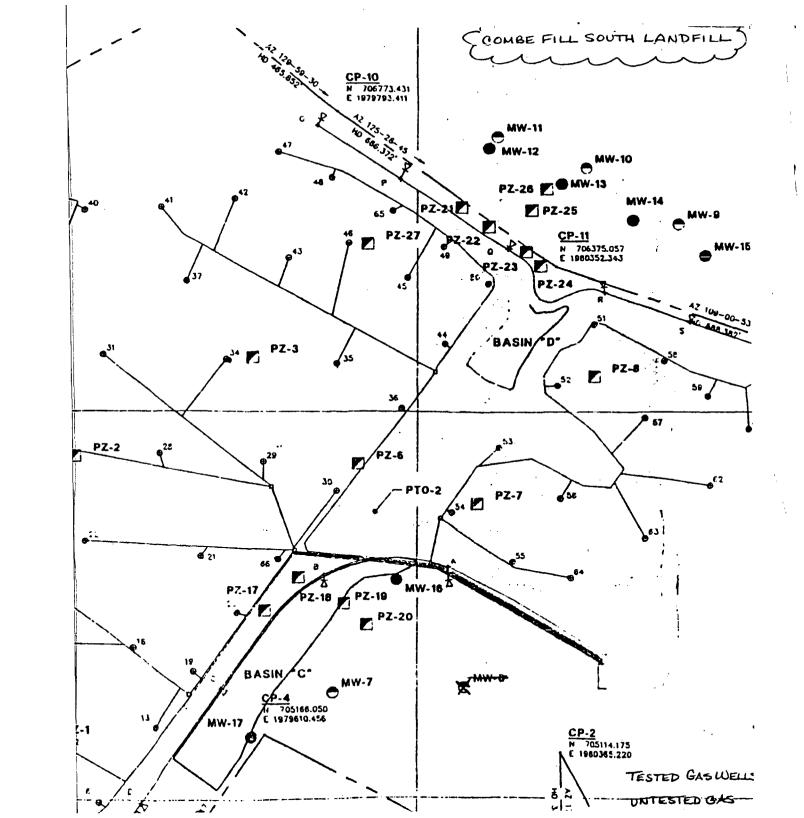
7	
	1. Full Business Name NJDEP/Division of Publicly Funded Site Remediation
	2. Mailing Address 401 East State Street Trenton Mercer NJ 08625-0413
1	No. Street City County (if NJ) State Zip Code
SECTION	3. Division and/or Plant Name Combe Fill South Landfill Superfund Site
S	4. Plant Location Parker Road Chester & Washington Townships Morris No. Street City County
	5. Location of Equipment on Premises (bldg., dept., area, etc.) on landfill
 	REASON FOR APPLICATION (Check One)
	New Equipment without Control Apparatus
	New Equipment with Control Apparatus
1	New Control Apparatus on Existing Equipment
100	X Other (Explain) Request for Modification of Log No. 01-90-4341
SECTION	1. Nature of Business Former Municipal Landfill - Superfund Site
SE	2. Estimated Starting Date of Construction March 1994
	3. Date Equipment to be put in use March 1994
	4. Plant Contact Paula M. Walshe NJDEP Construction Manager (908) 879-8740
L	Name (print or type) Title Telephone No. 5. APC Plant ID
	STACK INFORMATION (EQUIVALENT SPACK INFORMATION)
l	1. Company Designation of Stack(s) GV #1 - #59, #61 - #66
	2. Previous Certificate Numbers (if any for this stack) 01-90-4341
O K	3. a. Number of Sources Venting to this Stack1 (Complete a separate VEM-004 for each source)
SECTION	b. Number of Stacks Venting Source Operation(s) 65 (Complete a separate VEM-003 for each stack)
N N	4. Distance to the nearest Property Line (ft.) 125 - 800 7. Exit Temperature of Stack Gases avg. 70F
	5. Stack Diameter (inches) 4 8. Vol. of Gas Discharged at Stack Conditions (ACFM) 2,132
	6. Discharge Height Above Ground (ft.) 4 9. Discharge Directions: Horizontal Down
are info	ortify under penalty of law that the information provided in this document is true, accurate and complete. I am aware that there is significant civil and criminal penalties, including fines or imprisonment or both, for submitting false, inaccurate or incomplete formation. Assistant Director Name (print or type) Title Signature FOR ASSISTANCE CALL 1-800-441-0065
Ē	OR DEPARTMENT USE ONLY Log No Fee Eval

OF ENVIRONMENTAL PROTECTION

BUREAU OF NEW SOURCE REVIEW

APPLICATION FOR PERMIT TO CONSTRUCT, INSTALL OR ALTER CONTROL APPARATUS OR EQUIPMENT AND CERTIFICATE TO OPERATE CONTROL APPARATUS OR EQUIPMENT

Source Emissions and Source Data Form


(Complete this form for each source and submit with application Form VEM-003)

ION E	SOURCE INFORMATION 1. Source Description Passive venting of gas f site located in Washington & Chester T 2. Operating Schedule 24 8,7 Hours/Day Hours	ownships, Morri	111 South Landf s County 1994 Operation Starting Date	
SECTION	3. % Annual Production Throughput By Quarter 25 JanMar. 4. Volume Of Gas Discharged From This Source (ACFM) 2,132	25 25 AprJune July-Source Discharge Temperature (°F)		
SECTION F	CONTROL APPARATUS ON SOURCE Primary None Secondary None Tertiary None	Capital Cost (Dollars)	Annual Operating Cost (Dollars)	No. of Sources Connected
SECTION G	AIR CONTAMINANTS FROM SOURCE CONTAMINANT NAME Hydrogen Sulfide Total TXS Total Chlorides NMHC as Methane	Maximum Emissions w/o Control (lbs./hr.) 0.11 0.054 0.44	Maximum Emissions with Control (lbs./hr.)	How Determined
	* No individual toxic volatile organic substance present at 0.01 lb/hr * Use VEM-004 Supplement if additional space if required.			

TO INSURE PROPER COORDINATION BETWEEN VEM-003 and VEM-004 FORMS, INSERT IDENTICAL COMPANY NAME AND DESIGNATION OF STACK FROM VEM-003, SIDE 1.

Full Business Name NJDEP/Division of Publicly Funded Site Remediation

Company Designation of Stack(s) GV #1 - #59, #61 - #66

SCREENING RISK ASSESSMENT WORKSHEET FOR CARCINOGENIC EFFECTS

PAGE 1 OF 2

Date:

7/27/94

Evaluator:

P. Walshe

PART A: Source Information

WORST CASE EMISSIONS

1.	NSR Log No.:	01-90-4341
2.	Stack Height (ft.):	4
3.	Discharge Direction:	<u>down</u>
4.	Stack Diameter (in.):	4
5.	Temperature (Deg. F):	<u>70</u>
6.	ACFM:	<u>2132</u>
7 .	Distance to Nearest	
	Property Line (ft.):	<u>125</u>
8.	Oper. Hrs Per Day:	24 Per Yr. <u>8760</u>
9.	Nature of Business:	closed sankary landfill
10.	Source Category:	••
11.	Dilution Factor, D:	3.37E-04 sec/m**3 (from chart)
12.	Type of Control	
	Apparatus on Source:	<u>N/A</u>
13.	% of Control Efficiency:	<u>N/A</u>

PART B: Contaminant Information - Carcinogens

			Emissions	Concentration	Unit Risk	Incremental
		Emissions	α.	c	Factor	Flisk
		Q	= 126000 x Q	= D x Q.	URF	B
Substance	CAS No.	(lth/ha)	(ug/sec)	(US/m==3)	(ug/**3)E-01	=CxURF
Acetaldehyde	75-07-0	0.00E+00	0.00E+00	0.00E+00	2.2E-06	0.00E+00
Acrylamide *	79-06-1	0.00E+00	0.00E+00	0.00E+00	1.3E-03	0.00E+00
Acrylonitrile	107-13-1	0.00E+00	0.00E+00	0.00E+00	6.8E-05	0.00E+00
Allyl Chloride	107-05-1	0.00E+00	0.00E+00	0.00E+00	5.5E-08	0.00E+00
Arsenic	-	0.00E+00	0.00E+00	0.00E+00	4.3E-03	0.00E+00
Asbestos	1332-21-4	0.00E+00	0.00E+00	0.00E+00	6.9E+00	0.00E+00
Benzene	71-43-2	5.43E-02	6.85E+03	2.31E+00	8.3E-06	1.92E-05
Benzidine	92-87-5	0.00E+00	0.00E+00	0.00E+00	6.7E-02	. 0.00E+00
Benzo(a)Pyrene	50-32-8	0.00E+00	0.00E+00	0.00E+00	1.7E-03	0.00E+00
Benzyl Chloride	100-44-7	0.00E+00	0.00E+00	0.00E+00	1.2E-05	0.00E+00
Beryllium	-	0.00E+00	0.00E+00	0.00E+00	2.4E-03	0.00E+00
Bis(2-Chloroethyl)Ether	111-44-4	0.00E+00	0.00E+00	0.00E+00	3.3E-04	0.00E+00
Bis(2-Chloromethyl)Ether	542-88-1	0.00E+00	0.00É+00	0.00E+00	6.2E-02	0.00E+00
1,3-Butadiene	106-99-0	0.00E+00	0.00E+00	0.00E+00	2.8E-04	0.00E+00
Cadmium	_	0.00E+00	0.00E+00	0.00E+00	3.5E-03	0.00E+00
Carbon Tetrachloride	56-23-5	0.00E+00	0.00E+00	0.00E+00	1.5E-05	0.00E+00
Chlordane	57-74-9	0.00E+00	0.00E+00	0.00E+00	3.7E-04	0.00E+00
Chloroform	67-66-3	0.00E+00	0.00E+00	0.00E+00	2.3E-05	0.00E+00
Chromium (VI)	_	0.00E+00	0.00E+00	0.00E+00	1.2E-02	0.00E+00
1,2-Dichloropropane	78-87-5	0.00E+00	0.00E+00	0.00E+00	7.2E-07	0.00E+00
1,4-Dioxane	123-91-1	0.00E+00	0.00E+00	0.00E+00	3.1E-06	0.00E+00

Worst Case Emissions

			Emissions	Concentration	Unit Flisk	Incremental
		Emissions	· α	C	Factor	Flisk
		Q	= 128000 x Q	= DxQ'	URF	IR
Substance	CAS No.	(lth/hr)	(ug/sec)	(ug/m**3)	(ug/**3)E-01	=C x URF
1,2-Diphenylhydrazine	122-66-7	0.00E+00	0.00E+00	0.00E+00	2.2E-04	0.00E+00
Epichlorohydrin	106-89-8	0.00E+00	0.00E+00	0.00E+00	1.2E-06	0.00E+00
Ethyl Acrylate	140-88-5	0.00E+00	0.00E+00	0.00E+00	5.0E-07	0.00E+00
Ethylene Dibromide	106-93-4	0.00E+00	0.00E+00	0.00E+00	2.2E-04	0.00E+00
Ethylene Dichloride	106-06-2	0.00E+00	0.00E+00	0.00E+00	2.6E-05	0.00E+00
Ethylene Oxide	75-21-8	0.00E+00	0.00E+00	0.00E+00	1.0E-04	0.00E+00
Formaldehyde	50-00-0	0.00E+00	0.00E+00	0.00E+00	1.3E-05	0.00E+00
Heptachlor	76-44- 8	0.00E+00	0.00E+00	0.00E+00	1.3E-03	0.00E+00
Hexachlorobenzene	118-74-1	0.00E+00	0.00E+00	0.00E+00	4.6E-04	0.00E+00
Hexachloroethane	67-72-1	0.00E+00	0.00E+00	0.00E+00	4.0E-06	0.00E+00
Hydr azin e	302-01-2	0.00E+00	0.00E+00	0.00E+00	4.9E-03	··· 0.00E+00
Lindane	58-89-9	0.00E+00	0.00E+00	0.00E+00	3.8E-04	0.00E+00
Methyl Chloride	74-87-3	0.00E+00	0.00E+00	0.00E+00	1.8E-06	0.00E+00
Methylene Chloride	75-09-2	6.89E-04	8.68E+01	2.93E-02	4.7E-07	1.38E-08
4,4-Methylenedianiline	101-77-9	0.00E+00	0.00E+00	0.00E+00	2.1E-05	0.00E+00
Nickel	-	0.00E+00	0.00E+00	0.00E+00	2.4E-04	0.00E+00
Nickel Subsulfide	-	0.00E+00	0.00E+00	0.00E+00	4.8E-04	0.00E+00
Nitrobenzene	98-95-3	0.00E+00	0.00E+00	0.00E+00	1.2E-07	0.00E+00
2-Nitropropane	79-46-9	0.00E+00	0.00E+00	0.00E+00	2.7E-03	0.00E+00
N-Nitrosodimethylamine	62-75-9	0.00E+00	0.00E+00	0.00E+00	1.4E-02	0.00E+00
N-Nitroso-n-methylurea	684-93-5	0.00E+00	0.00E+00	0.00E+00	8.6E-02	0.00E+00
N-Nitrosomorpholine	59-89-2	0.00E+00	0.00E+00	0.00E+00	2.5E-05	0.00E+00
Pentachlorophenol	87-86-5	0.00E+00	0.00E+00	0.00E+00	3.9E-07	0.00E+00
Polychlorinated Biphenyls	1336-36-3	0.00E+00	0.00E+00	0.00E+00	1.2E-03	0.00E+00
Propylene Oxide	75-56-9	0.00E+00	0.00E+00	0.00E+00	3.7E-06	0.00E+00
Styrene	100-42-5	0.00E+00	0.00E+00	0.00E+00	5.7E-07	0.00E+00
2,3,7,8-TCDD (Dioxin)	1746-01-6	0.00E+00	0.00E+00	0.00E+00	3.3E+01	0.00E+00
1,1,2,2-Tetrachloroethane	79-34-5	0.00E+00	0.00E+00	0.00E+00	5.8E-05	0.00E+00
Tetrachloroethylene	127-18-4	3.57E-03	4.50E+02	1.52E-01	1.4E-05	2.12E-06
Toxaphene	8001-35-2	0.00E+00	0.00E+00	0.00E+00	3.2E-03	0.00E+00
1,1,2-Trichloroethane	79-00-5	0.00E+00	0.00E+00	0.00E+00	1.6E-05	0.00E+00
Trichloroethylene	79-01-6	0.00E+00	0.00E+00	0.00E+00	1.0E-05	0.00E+00
2,4,6-Trichlorophenol	88-06-02	0.00E+00	0.00E+00	0.00E+00	3.1E-06	0.00E+00
Vinyl Chloride	75-01-4	7.35E-03	9.25E+02	3.12E-01	8.4E-05	2.62E-05
Vinylidene Chloride	75-35-4	0.00E+00	0.00E+00	0.00E+00	5.0E-05	0.00E+00_

TOTAL INCREMENTAL RISK PAGE 2 =

2.83E-05

TOTAL INCREMENTAL RISK BOTH PAGES =

4.75E-05

SCREENING RISK ASSESSMENT WORKSHEET FOR CARCINOGENIC EFFECTS

PAGÉ 1 OF 2

Date:

7/27/94

Evaluator:

P. Walshe

PART A: Source Information

AVERAGE EMISSIONS

1.	NSR Log No.:	<u>01-90-4341</u>
2.	Stack Height (ft.):	<u>4</u> .
3.	Discharge Direction:	down
4.	Stack Diameter (in.):	<u>4</u>
5 .	Temperature (Deg. F):	<u>70</u>
6.	ACFM:	<u>2132</u>
7 .	Distance to Nearest	
	Property Line (ft.):	<u>400</u>
8.	Oper. Hrs Per Day:	24 Per Yr. <u>8760</u>
9.	Nature of Business:	closed sanitary landfill
10.	Source Category:	••
11.	Dilution Factor, D:	3.47E-05 sec/m**3 (from chart)
12.	Type of Control	
	Apparatus on Source:	<u>N/A</u>
13.	% of Control Efficiency:	<u>N/A</u>

PART B: Contaminant Information - Carcinogens

·			Emissions	Concentration	Unit Risk	incremental
		Emissions	œ	C	Factor	Flisk
		Q	= 126000 x Q	= DxQ'	URF	IR.
Substance	CAS No.	(lb/hr)	(ug/sec)	(ug/m**3)	(ug/**3)E-01	=CxURF
Acetaldehyde	75-07-0	0.00E+00	0.00E+00	0.00E+00	2.2E-06	0.00E+00
Acrylamide	79-06-1	0.00E+00	0.00E+00	0.00E+00	1.3E-03	0.00E+00
Acrylonitrile	107-13-1	0.00E+00	0.00E+00	0.00E+00	6.8E-05	0.00E+00
Allyl Chloride	107-05-1	0.00E+00	0.00E+00	0.00E+00	5.5E-08	0.00E+00
Arsenic		0.00E+00	0.00E+00	0.00E+00	4.3E-03	0.00E+00
Asbestos	1332-21-4	0.00E+00	0.00E+00	0.00E+00	6.9E+00	0.00E+00
Benzene	71-43-2	8.39E-03	1.06E+03	3.67E-02	8.3E-06	3.05E-07
Benzidine	92-87-5	0.00E+00	0.00E+00	0.00E+00	6.7E-02	0.00E+00
Benzo(a)Pyrene	50-32-8	0.00E+00	0.00E+00	0.00E+00	1.7E-03	0.00E+00
Benzyl Chloride	100-44-7	0.00E+00	0.00E+00	0.00E+00	1.2E-05	0.00E+00
Beryllium	- '	0.00E+00	0.00E+00	0.00E+00	2.4E-03	0.00E+00
Bis(2-Chloroethyl)Ether	111-44-4	0.00E+00	0.00E+00	0.00E+00	3.3E-04	0.00E+00
Bis(2-Chloromethyl)Ether	542-88-1	0.00E+00	0.00E+00	0.00E+00	6.2E-02	0.00E+00
1,3-Butadiene	106-99-0	0.00E+00	0.00E+00	0.00E+00	2.8E-04	0.00E+00
Cadmium .	-	0.00E+00	0.00E+00	0.00E+00	3.5E-03	0.00E+00
Carbon Tetrachloride	56-23-5	0.00E+00	0.00E+00	0.00E+00	1.5E-05	0.00E+00
Chlordane	57-74-9	0.00E+00	0.00E+00	0.00E+00	3.7E-04	0.00E+00
Chloroform	67-66-3	0.00E+00	0.00E+00	0.00E+00	2.3E-05	0.00E+00
Chromium (VI)	-	0.00E+00	0.00E+00	0.00E+00	1.2E-02	0.00E+00
1,2-Dichloropropane	78-87-5	0.00E+00	0.00E+00	0.00E+00	7.2E-07	0.00E+00
1,4-Dioxane	123-91-1	0.00E+00	0.00E+00	0.00E+00	3.1E-06	0.00E+00

Average Emissions

			Emissions	Concentration	Unit Risk	Incremental
		Emissions	a	c ·	Fector	Flisk
		. •	= 129000 x Q	= D x Q'	URF	I R
Substance	CAS No.	(tb/hr)	(ug/sec)	(ug/m**3)	(ug/**3)E-01	=CxURF
1,2-Diphenylhydrazine	122-66-7	0.00E+00	0.00E+00	0.00E+00	2.2E-04	0.00E+00
Epichlorohydrin	106-89-8	0.00E+00	0.00E+00	0.00E+00	1.2E-06	0.00E+00
Ethyl Acrylate	140-88-5	0.00E+00	0.00E+00	0.00E+00	5.0E-07	0.00E+00
Ethylene Dibromide	106-93-4	0.00E+00	0.00E+00	0.00E+00	2.2E-04	0.00E+00
Ethylene Dichloride	106-06-2	0.00E+00	0.00E+00	0.00E+00	2.6E-05	0.00E+00
Ethylene Oxide	75-21-8	0.00E+00	0.00E+00	0.00E+00	1.0E-04	0.00E+00
Formaldehyde	50-00-0	0.00E+00	0.00E+00	0.00E+00	1.3E-05	0.00E+00
Heptachlor	76 -44- 8	0.00E+00	0.00E+00	0.00E+00	1.3E-03	0.00E+00
Hexachlorobenzene	118-74-1	0.00E+00	0.00E+00	0.00E+00	4.6E-04	0.00E+00
Hexachloroethane	67-72-1	0.00E+00	0.00E+00	0.00E+00	4.0E-06	0.00E+00
Hydrazine	302-01-2	0.00E+00	0.00E+00	0.00E+00	4.9E-03	0.00E+00
Lindane	58-89-9	0.00E+00	0.00E+00	0.00E+00	3.8E-04	0.00E+00
Methyl Chloride	74-87-3	0.00E+00	0.00E+00	0.00E+00	1.8E-06	0.00E+00
Methylene Chloride	75-09-2	3.18E-05	4.01E+00	1.39E-04	4.7E-07	6.53E-11
4,4-Methylenedianiline	101-77-9	0.00E+00	0.00E+00	0.00E+00	2.1E-05	0.00E+00
Nickel	-	0.00E+00	0.00E+00	0.00E+00	2.4E-04	0.00E+00
Nickel Subsulfide	<u> </u>	0.00E+00	0.00E+00	0.00E+00	4.8E-04	0.00E+00
Nitrobenzene	98-95-3	0.00E+00	0.00E+00	0.00E+00	1.2E-07	0.00E+00
2-Nitropropane	79-46-9	0.00E+00	0.00E+00	0.00E+00	2.7E-03	0.00E+00
N-Nitrosodimethylamine	62-75-9	0.00E+00	0.00E+00	0.00E+00	1.4E-02	0.00E+00
N-Nitroso-n-methylurea	684-93-5	0.00E+00	0.00E+00	0.00E+00	8.6E-02	0.00E+00
N-Nitrosomorpholine	59-89-2	0.00E+00	0.00E+00	0.00E+00	2.5E-05	0.00E+00
Pentachlorophenol	87-86-5	0.00E+00	0.00E+00	0.00E+00	3.9E-07	0.00E+00
Polychlorinated Biphenyls	1336-36-3	0.00E+00	0.00E+00	0.00E+00	1.2E-03	0.00E+00
Propylene Oxide	75-56-9	0.00E+00	0.00E+00	0.00E+00	3.7E-06	0.00E+00
Styrene	100-42-5	0.00E+00	0.00E+00	0.00E+00	5.7E-07	0.00E+00
2,3,7,8-TCDD (Dioxin)	1746-01-6	0.00E+00	0.00E+00	0.00E+00	3.3E+01	0.00E+00
1,1,2,2-Tetrachloroethane	79-34-5	0.00E+00	0.00E+00	0.00E+00	5.8E-05	0.00E+00
Tetrachloroethylene	127-18 -4	2.75E-04	3.46E+01	1.20E-03	1.4E-05	1.68E-08
Toxaphene	8001-35-2	0.00E+00	0.00E+00	0.00E+00	3.2E-03	0.00E+00
1,1,2-Trichloroethane	79-00-5	0.00E+00	0.00E+00	0.00E+00	1.6E-05	0.00E+00
Trichloroethylene	79-01-6	0.00E+00	0.00E+00	0.00E+00	1.0E-05	0.00E+00
2,4,6-Trichiorophenol	88-06-02	0.00E+00	0.00E+00	0.00E+00	3.1E-06	0.00E+00
Vinyl Chloride	75-01-4	1.50E-03	1.89E+02	6.56E-03	8.4E-05	5.51E-07
Vinylidene Chloride	75-35-4	0.00E+00	0.00E+00	0.00E+00	5.0E-05	0.00E+.00

TOTAL INCREMENTAL RISK PAGE 2 =

5.68E-07

8.72E-07

TOTAL INCREMENTAL RISK BOTH PAGES =

Purpose of Application:

On February 10, 1993 an air permit equivalent was issued for the construction and operation of a direct flow flare at the Combe Fill South Landfill Superfund site located in Washington and Chester Townships in Morris County. Since that time, the Division of Publicly Funded Site Remediation (DPFSR) has determined through landfill gas testing that state-of-the-art air pollution control is no longer required for the site. As a result, the DPFSR is requesting to modify the existing air permit equivalent to allow passive venting of the landfill through the sixty-five wells that have been installed on the property.

Source Description (Existing Venting System):

The Combe Fill South Landfill is a sixty-five acre sanitary landfill. The DPFSR is presently implementing a remedial action at the site pursuant to CERCLA. The remedial action includes the installation of a six foot cap, as well as sixty-five single methane vents throughout the capped surface of the landfill. A nine foot high fence surrounds the entire property.

Emissions Tests:

Eight vents were selected for testing on the basis of their proportionate distribution throughout the landfill. The following parameters and methods were included in the testing program that occurred in June 1994:

Parameter	<u>Method</u>
Non-methane Hydrocarbons	SCAQMD Method 25.2
TXS	EPA Method TO-14
Total Volatile Chlorinated Organics	EPA Method TO-14
Hydrogen Sulfide	direct reading

The emission rates that are identified in the air permit equivalent application are proposed based on these tests.

Existing Operational Problems: None.

Control Technologies: None.

Applicable Regulations:

1. NJAC 7:27-8 (Permits and Certificates)

Note that NJAC 7:27-17 (Toxic Volatile Organic Substances or TXS) is not applicable because the worst case TXS emission from the entire landfill is estimated to be 0.054 pounds per hour. This value is less that the exemption criteria of 0.1 pounds per hour that is specified in NJAC 7:27-17.9.

State-of-the-art (SOTA) control is not required because the worst case emissions for non-methane hydrocarbons and TXS are estimated to be 0.44 and 0.054 pounds per hour, respectively. The SOTA guideline requires SOTA control if the non-methane hydrocarbons and TXS emissions exceed 0.5 and 0.1 pounds per hour, respectively.

Emission Basis:

In June 1994 O'Brien & Gere Engineers, Inc. collected gas samples from eight vents, six of which are located on the interior portion of the landfill and two of which are located on the perimeter. The average flow rate for the interior landfill vents was measured to be 42.1 cubic feet per minute (CFM), whereas the average perimeter vent flow rate was 19.7 CFM. The estimated emission rates of air contaminants were determined as follows:

- 1. Non-methane hydrocarbons: The maximum concentration of non-methane hydrocarbons was detected at Well 28, which had a measured gas flow rate of 40.8 CFM. To simulate the worst case emission of non-methane hydrocarbons from the entire landfill, the concentration that was detected at Well 28 was multiplied by 65, the total number of vents.
- 2. TXS: The maximum concentration of TXS was detected at Well 45, which had a measured gas flow rate of 46.6 CFM. To simulate the worst case emission of TXS from the entire landfill, the concentration that was detected at Well 45 was multiplied by 65, the total number of vents.

- 3. <u>Total Chlorides</u>: The maximum concentration of chlorides was detected at Well 45, which had a measured gas flow rate of 46.6 CFM. To simulate the worst case emission of chlorides from the entire landfill, the concentration that was detected at Well 45 was multiplied by 65, the total number of vents.
- 4. Hydrogen Sulfide: The maximum concentration of hydrogen sulfide was detected at Well 28, which had a measured gas flow rate of 40.8 CFM. To simulate the worst case emission of hydrogen sulfide from the entire landfill, the concentration that was detected at Well 28 was multiplied by 65, the total number of vents.

Emission Calculations:

Calculations are included in Attachment A. A sample calculation for TXS emissions is presented below, based on the maximum concentration from the eight wells that were sampled.

The maximum TXS concentration was measured at Well 45, where benzene was detected at 1,500 ppb. To convert parts per billion to pounds per hour, the following equation was used:

(C/10°) x V x A x 1/359 x (492°R/537°R) x (60 min/1 hr) x MW

where:

C	=	contaminant concentration in ppb
V	=	gas velocity, ft/min
Α	=	duct cross sectional area of 0.0837 ft ²
1/359	=	ideal gas constant, lb-mole/ft ³
MW	=	molecular wt. of contaminant, lb/lb-mole

Calculation of benzene emission from Well 45:

(1500E-09)(534 CFM)(0.0837 ft²)(1 lb-mole/359 ft³)(492°R/537°R)(60 min/hr)(78 lb/lb-mole)

 $= 8.36 \times 10^{-4} \text{ lb/hr}$

The worst case TXS emission rate from the landfill was modeled by multiplying the above rate by 65, the total number of wells. The resulting value was 0.054 pounds per hour.

The above calculations were repeated for non-methane hydrocarbons, total chlorides, and hydrogen sulfide, as discussed in the section entitled "Emission Basis". The emission rates that were estimated in this manner accurately represent the worst case emissions from the landfill for the following reasons: (1) The contaminant concentrations that were used were the highest measured concentrations from any one well during the sampling event; and (2) The gas flow rates from the wells that were employed in the model are among the higher limit flow rates that were measured during the sampling event.

Emission Rates:

For the entire landfill, the respective maximum concentrations for non-methane hydrocarbons (NMHC), TXS, total chlorides, and hydrogen sulfide are predicted to be 0.44 pounds per hour, 0.054 pounds per hour, 0.44 pounds per hour, and 0.11 pounds per hour. These rates were estimated as follows:

	Max. Emission		Total No.		Max. Landfill
	One Vent (lb/hr)	x	of Vents	=	Emission
NMHC	0.00681		65		0.44 lb/hr
TXS	0.000836		65		0.054 lb/hr
Tot. Chloride:	s 0.00671		65		0.44 lb/hr
H ² S	0.00170		65		0.11 lb/hr

Attachment A Emission Calculations

Calculation of Volumetric Flow Rate of Landfill Gas:

The cross section area, A, of the well was determined as follows:

$$A = 0.25 \times Pi \times D^{2}$$
where:
$$Pi = 3.14$$

$$D = diameter, ft$$

For a four inch diameter well riser, the area is 0.0837 ft².

The volumetric flow rate, R, from each well is calculated as follows:

$$R = V \times A$$
where:
 $V = \text{velocity, ft/min}$
 $A = \text{area, ft}^2$

The flow rates are listed below.

<u>Vent</u>	Velocity	Area	Flow Rate	Location on
	(ft/min)	(ft²)	(ft³/min)	Landfill
11	570	0.0837	49.8	interior
25	199	0.0837	17.4	perimeter
26	549	0.0837	47.9	interior
27	410	0.0837	35.8	interior
28	467	0.0837	40.8	interior
45	534	0.0837	46.6	interior
57	364	0.0837	31.8	interior
6 6	252	0.0837	22.0	perimeter

Thirty-eight vents have been installed in the interior portion of the landfill, and twenty-seven vents have been installed along the perimeter.

The amount of gas that is discharged from the landfill is estimated as follows:

Average Interior Vent Flow Rate:

$$(49.8 + 47.9 + 35.8 + 40.8 + 46.6 + 31.8)/6 = 42.1 \text{ CFM}$$

Average Perimeter Vent Flow Rate:

(17.4 + 22.0)/2 = 19.7 CFM

Estimated Landfill Gas Flow Rate:

$$(42.1 \text{ CFM x } 38) + (19.7 \text{ CFM x } 27) = 2,131.7 \text{ CFM or } 2,132 \text{ CFM}$$

<u>Identification of the Distances of Vents from the Property Line:</u>

<u>Vent</u>	Distance (ft)
11	450
25	400
26	475
27	800
28	800
45	250
57	300
66	450

The minimum distance to the property line from any vent is 125 feet, whereas the maximum distance is 800 ft. On average, the vents producing the greatest volume of gas and the greatest concentration of contaminants are 400 feet or more from the nearest property line.

Calculation of Emission Rates for Contaminants:

The following formula was used to convert contaminant concentrations in parts per million or billion to emission rates in pounds per hour:

 $(C/10^{\circ}) \times R \times 1/359 \times (492^{\circ}R/537^{\circ}R) \times (60 \text{ min/hr}) \times MW$

where:

C = contaminant concentration in ppm or ppb

e = 6 if C is in ppm or 9 if C is in ppb

R = volumetric flow rate, CFM 1/359 = ideal gas constant, lb-mole/ft³

MW = molecular weight of contaminant, lb/lb-mole

Emission Rates for Non-methane Hydrocarbons:

Vent 11

C = 30 ppm

e = 6

R = 49.8

MW = 16.05

 $(30 \times 10^{-6}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 16.05 = 3.67 \times 10^{-3}$ lbs/hr

Vent 25

C = 15 ppm

e = 6

R = 17.4

MW = 16.05

 $(15 \times 10^{-6}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 16.05 = 6.41 \times 10^{-4} \text{ lbs/hr}$

Vent 26

C = 24 ppm

e = 6

R = 47.9

MW = 16.05

 $(24 \times 10^{-6}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 16.05 = 2.83 \times 10^{-3}$ lbs/hr

Vent 27

C = 32 ppm

e = 6

R = 35.8

MW = 16.05

 $(32 \times 10^{-6}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 16.05 = 2.81 \times 10^{-3} \text{ lbs/hr}$

Combe Fill South Landfill Application for Air Permit Equivalent for Passive Venting

Vent 28

C = 68 ppm

e = 6

R = 40.8

MW = 16.05

 $(68 \times 10^{-6}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 16.05 = 6.81 \times 10^{-3}$ lbs/hr

<u>Vent 45</u>

C = 50 ppm

e = 6

R = 46.6

MW = 16.05

 $(50 \times 10^{-6}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 16.05 = 5.73 \times 10^{-3} \text{ lbs/hr}$

Vent <u>57</u>

C = 21 ppm

e = 6

R = 31.8

MW = 16.05

 $(21 \times 10^{-6}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 16.05 = 1.64 \times 10^{-3}$ lbs/hr

<u>Vent_66</u>

C = 21 ppm

e = 6

R = 22.0

MW = 16.05

 $(21 \times 10^{-6}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 16.05 = 1.13 \times 10^{-3} \text{ lbs/hr}$

The highest non-methane hydrocarbon concentration was measured at Vent 28 (6.81 x 10^3 lbs/hr). The worst case emission from the landfill is estimated by multiplying 6.81 x 10^3 by 65, the total number of vents. The resulting emission rate is 0.44 lbs/hr.

Emission Rates for TXS:

Vent 11

C = 120 ppb of benzene

e = 9

R = 49.8

MW = 78.12

 $(120 \times 10^{-9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 78.12 = 7.15 \times 10^{-5}$ lbs/hr

Vent 25

C = 26 ppb of benzene

e = 9

R = 17.4

MW = 78.12

 $(26 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 78.12 = 5.41 \times 10^{-6}$ lbs/hr

Vent 26

C = 200 ppb of benzene

e = 9

R = 47.9

MW = 78.12

 $(200 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 78.12 = 1.15 \times 10^{-4} \text{ lbs/hr}$

Vent 27

C = 710 ppb of benzene

e = 9

R = 35.8

MW = 78.12

 $(710 \times 10^9) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 78.12 = 3.04 \times 10^4 \text{ lbs/hr}$

Vent 28

C = 830 ppb of benzene and 53 ppb of tetrachloroethene

e = 9 R = 40.8

MW = 78.12 (benzene) and 131.5 (tetrachloroethene)

Benzene:

 $(830 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 78.12 = 4.05 \times 10^{-4}$ lbs/hr

Tetrachloroethene:

 $(53 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 131.5 = 4.35 \times 10^{-5}$ lbs/hr

 $TOTAL = 4.49 \times 10^{-4} \text{ lbs/hr}$

Vent 45

C = 1500 ppb of benzene

e = 9

R = 46.6

MW = 78.12

 $(1500 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 78.12 = 8.36 \times 10^{-4} \text{ lbs/hr}$

Vent 57

C = 21 ppb of benzene

e = 9

R = 31.8

MW = 78.12

 $(21 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 78.12 = 7.99 \times 10^{-6} \text{ lbs/hr}$

Vent 66

C = 92 ppb of benzene e = 9 R = 22.0

MW = 78.12

 $(92 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 78.12 = 2.42 \times 10^{-5}$ lbs/hr

The highest TXS concentration was measured at Vent 45 (8.36 x 10^4 lbs/hr). The worst case emission from the landfill is estimated by multiplying 8.36 x 10^4 by 65, the total number of vents. The resulting emission rate is 0.054 lbs/hr.

Emission Rates for Total Chlorides:

Note that the emission rates for each of the identified contaminants is presented in pounds per hour of contaminant and pounds per hour of contaminant as chlorine. The emission rate of the contaminant is derived by using the formula that is identified above. The emission rate of the contaminant as chlorine is calculated according to the following formula:

Emission Rate x MW_{Cl}/MW x No. of Cl Molecules in Contaminant

where:

 MW_{Cl} = molecular weight of chlorine, 35.45 lb/lb-mole MW = molecular weight of contaminant, lb/lb-mole

Vent 11

No, of Cl
<u>Molecules</u>
2
1
1
3
.1
. 2

e = 9 R = 49.8

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(280 \times 10^9) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 170.92 = 3.65 \times 10^4 \text{ lbs/hr}$ As Chlorine: $3.65 \times 10^4 \times 35.45/170.92 \times 2 = 1.51 \times 10^4 \text{ lbs/hr}$

Vinyl Chloride:

 $(73 \times 10^{9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 62.5 = 3.48 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $3.48 \times 10^{-5} \times 35.45/62.5 \times 1 = 1.97 \times 10^{-5} \text{ lbs/hr}$

Chloroethane:

 $(94 \times 10^{-9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 64.52 = 4.62 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $4.62 \times 10^{-5} \times 35.45/64.52 \times 1 = 2.54 \times 10^{-5} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(34 \times 10^{-9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 137.36 = 3.56 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $3.56 \times 10^{-5} \times 35.45/137.36 \times 3 = 2.78 \times 10^{-5} \text{ lbs/hr}$

Chlorobenzene:

 $(210 \times 10^{-9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 112.56 = 1.80 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.80 \times 10^{-4} \times 35.45/112.56 \times 1 = 5.67 \times 10^{-5} \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(290 \times 10^{-9}) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 147.00 = 3.25 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $3.25 \times 10^{-4} \times 35.45/147.00 \times 2 = 1.56 \times 10^{-4} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $(1.51 + 1.56) \times 10^4 + (1.97 + 2.54 + 2.78 + 5.67) \times 10^{-5} = 4.37 \times 10^4$

Vent 25

		*	No. of Cl
Contaminant	C (ppb)	$\underline{\mathbf{M}}\underline{\mathbf{W}}$	<u>Molecules</u>
1,2-dichloro-1,1,2,2-tetrafluoroethane	16	170.92	2
vinyl chloride	4.4	62.5	1
chloroethane	26	64.52	1
trichlorofluoromethane	48	137.36	3
chlorobenzene	47	112.56	1 .
1,4-dichlorobenzene	18	147.0	2

e = 9 R = 17.4

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(16 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 170.92 = 7.29 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $7.29 \times 10^{-6} \times 35.45/170.92 \times 2 = 3.02 \times 10^{-6} \text{ lbs/hr}$

Vinyl Chloride:

 $(4.4 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 62.5 = 7.32 \times 10^{-7} \text{ lbs/hr}$ As Chlorine: $7.32 \times 10^{-7} \times 35.45/62.5 \times 1 = 4.15 \times 10^{-7} \text{ lbs/hr}$

Chloroethane:

 $(26 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 64.52 = 4.47 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $4.47 \times 10^{-6} \times 35.45/64.52 \times 1 = 2.46 \times 10^{-6} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(48 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 137.36 = 1.76 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.76 \times 10^{-5} \times 35.45/137.36 \times 3 = 1.36 \times 10^{-5} \text{ lbs/hr}$

Chlorobenzene:

 $(47 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 112.56 = 1.41 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.41 \times 10^{-5} \times 35.45/112.56 \times 1 = 4.44 \times 10^{-6} \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(18 \times 10^{-9}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 147.00 = 7.05 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $7.05 \times 10^{-6} \times 35.45/147.00 \times 2 = 3.40 \times 10^{-6} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $1.36 \times 10^{-5} + (3.02 + 2.46 + 4.44 + 3.40) \times 10^{-6} + 4.15 \times 10^{-7} = 2.73 \times 10^{-5}$

Vent 26

			No. of Cl
Contaminant	C (ppb)	<u>MW</u>	Molecules
1,2-dichloro-1,1,2,2-tetrafluoroethane	. 150	170.92	2
vinyl chloride	140	62.5	1
chloroethane	200	64.52	1
trichlorofluoromethane	24	137.36	3
methylene chloride	17	84.93	2
c-1,2-Dichloroethene	22	96.94	2
chlorobenzene	210	112.56	1
1,4-dichlorobenzene	160	147.0	2

e = 9 R = 47.9

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(150 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 170.92 = 1.88 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.88 \times 10^{-4} \times 35.45/170.92 \times 2 = 7.80 \times 10^{-5} \text{ lbs/hr}$

Vinyl Chloride:

 $(140 \times 10^{9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 62.5 = 6.42 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $6.42 \times 10^{-5} \times 35.45/62.5 \times 1 = 3.64 \times 10^{-5} \text{ lbs/hr}$

Chloroethane:

 $(200 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 64.52 = 9.46 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $9.46 \times 10^{-5} \times 35.45/64.52 \times 1 = 5.20 \times 10^{-5} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(24 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 137.36 = 2.42 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $2.42 \times 10^{-5} \times 35.45/137.36 \times 3 = 1.87 \times 10^{-5} \text{ lbs/hr}$

Methylene Chloride:

 $(17 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 84.93 = 1.06 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.06 \times 10^{-5} \times 35.45/84.93 \times 2 = 8.84 \times 10^{-6} \text{ lbs/hr}$

c-1,2-Dichloroethene:

 $(22 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 96.94 = 1.56 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.56 \times 10^{-5} \times 35.45/96.94 \times 2 = 1.14 \times 10^{-5} \text{ lbs/hr}$

Chlorobenzene:

 $(210 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 112.56 = 1.73 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.73 \times 10^{-4} \times 35.45/112.56 \times 1 = 5.45 \times 10^{-5} \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(160 \times 10^{-9}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 147.00 = 1.73 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.73 \times 10^{-4} \times 35.45/147.00 \times 2 = 8.34 \times 10^{-5} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $(7.80+3.64+5.20+1.87+1.14+5.45+8.34) \times 10^{-5} + 8.84 \times 10^{-6} = 3.43 \times 10^{-4}$

Vent 27

			No. of Cl
Contaminant `	<u>C (ppb)</u>	<u>MW</u>	Molecules
1,2-dichloro-1,1,2,2-tetrafluoroethane	1200	170.92	2
vinyl chloride	120	62.5	1
chloroethane	150	64.52	1
trichlorofluoromethane	30	137.36	3
chlorobenzene	290	112.56	1
1,4-dichlorobenzene	88	147.0	2

e = 9 R = 35.8

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(1200 \times 10^{-9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 170.92 = 1.12 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $1.12 \times 10^{-3} \times 35.45/170.92 \times 2 = 4.65 \times 10^{-4} \text{ lbs/hr}$

Vinvl Chloride:

 $(120 \times 10^{-9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 62.5 = 4.11 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $4.11 \times 10^{-5} \times 35.45/62.5 \times 1 = 2.33 \times 10^{-5} \text{ lbs/hr}$

Chloroethane:

 $(150 \times 10^{9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 64.52 = 5.31 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $5.31 \times 10^{-5} \times 35.45/64.52 \times 1 = 2.91 \times 10^{-5} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(30 \times 10^{-9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 137.36 = 2.26 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $2.26 \times 10^{-5} \times 35.45/137.36 \times 3 = 1.75 \times 10^{-5} \text{ lbs/hr}$

Chlorobenzene:

 $(290 \times 10^{9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 112.56 = 1.79 \times 10^{4} \text{ lbs/hr}$ As Chlorine: $1.79 \times 10^{4} \times 35.45/112.56 \times 1 = 5.64 \times 10^{-5} \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(88 \times 10^{-9}) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 147.00 = 7.09 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $7.09 \times 10^{-5} \times 35.45/147.00 \times 2 = 3.42 \times 10^{-5} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $4.65 \times 10^4 + (2.33 + 2.91 + 1.75 + 5.64 + 3.42) \times 10^{-5} = 6.26 \times 10^{-4}$

Vent 28

			No. of Cl
<u>Contaminant</u>	<u>C (ppb)</u>	MW	Molecules
1,2-dichloro-1,1,2,2-tetrafluoroethane	560	170.92	2
vinyl chloride	340	62.5	1
chloroethane	170	64.52	1
trichlorofluoromethane	2900	137.36	3
c-1,2-dichloroethene	7 0	96.94	2
tetrachloroethene	53	165.82	4
chlorobenzene	590	112.56	1
1,4-dichlorobenzene	190	147.0	2
1,2-dichlorobenzene	64	147.0	2

e = 9 R = 40.8

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(560 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 170.92 = 5.97 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $5.97 \times 10^{-4} \times 35.45/170.92 \times 2 = 2.47 \times 10^{-4} \text{ lbs/hr}$

Vinyl Chloride:

 $(340 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 62.5 = 1.33 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.33 \times 10^{-4} \times 35.45/62.5 \times 1 = 7.54 \times 10^{-5} \text{ lbs/hr}$

Chloroethane:

 $(170 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 64.52 = 6.85 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $6.85 \times 10^{-5} \times 35.45/64.52 \times 1 = 3.77 \times 10^{-5} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(2900 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 137.36 = 2.49 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $2.49 \times 10^{-3} \times 35.45/137.36 \times 3 = 1.92 \times 10^{-3} \text{ lbs/hr}$

c-1,2-Dichloroethene:

 $(70 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 96.94 = 4.24 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $4.24 \times 10^{-5} \times 35.45/96.94 \times 2 = 3.10 \times 10^{-5} \text{ lbs/hr}$

Tetrachloroethene:

 $(53 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 165.82 = 5.49 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $5.49 \times 10^{-5} \times 35.45/165.82 \times 4 = 4.70 \times 10^{-5} \text{ lbs/hr}$

Chlorobenzene:

 $(590 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 112.56 = 4.14 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $4.14 \times 10^{-4} \times 35.45/112.56 \times 1 = 1.30 \times 10^{-4} \text{ lbs/hr}$

1,4-Dichlorobenzene

 $(190 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 147.00 = 1.74 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $1.74 \times 10^{-4} \times 35.45/147.00 \times 2 = 8.39 \times 10^{-5} \text{ lbs/hr}$

1.2-Dichlorobenzene

 $(64 \times 10^{-9}) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 147.00 = 5.88 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $5.88 \times 10^{-5} \times 35.45/147.00 \times 2 = 2.83 \times 10^{-5} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $1.92 \times 10^{-3} + (2.47 + 1.30) \times 10^{-4} + (7.54 + 3.77 + 3.10 + 4.70 + 8.39 + 2.83) \times 10^{-5} = 2.60 \times 10^{-3}$

Vent 45

			No. of Cl
Contaminant	<u>C (ppb)</u>	<u>MW</u>	Molecules
dichlorodifluoromethane	7900	120.91	2
1,2-dichloro-1,1,2,2-tetrafluoroethane	2700	170.92	2
vinyl chloride	42	62.5	1
chloroethane	72	64.52	1
trichlorofluoromethane	1700	137.36	3
chlorobenzene	60	112.56	1
1,4-dichlorobenzene	37	147.0	2

e = 9 R = 46.6

Dichlorodifluoromethane:

 $(7900 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 120.91 = 6.82 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $6.82 \times 10^{-3} \times 35.45/120.91 \times 2 = 4.00 \times 10^{-3} \text{ lbs/hr}$

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(2700 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 170.92 = 3.29 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $3.29 \times 10^{-3} \times 35.45/170.92 \times 2 = 1.36 \times 10^{-3} \text{ lbs/hr}$

Vinyl Chloride:

 $(42 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 62.5 = 1.87 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.87 \times 10^{-5} \times 35.45/62.5 \times 1 = 1.06 \times 10^{-5} \text{ lbs/hr}$

Chloroethane:

 $(72 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 64.52 = 3.31 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $3.31 \times 10^{-5} \times 35.45/64.52 \times 1 = 1.82 \times 10^{-5} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(1700 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 137.36 = 1.67 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $1.67 \times 10^{-3} \times 35.45/137.36 \times 3 = 1.29 \times 10^{-3} \text{ lbs/hr}$

Chlorobenzene:

 $(60 \times 10^9) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 112.56 = 4.82 \times 10^5 \text{ lbs/hr}$ As Chlorine: $4.82 \times 10^5 \times 35.45/112.56 \times 1 = 1.52 \times 10^5 \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(37 \times 10^{-9}) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 147.00 = 3.88 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $3.88 \times 10^{-5} \times 35.45/147.00 \times 2 = 1.87 \times 10^{-5} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $(4.00+1.36+1.29) \times 10^{-3} + (1.06+1.82+1.52+1.87) \times 10^{-5} = 6.71 \times 10^{-3}$

Vent 57

		No. of Cl
<u>C (ppb)</u>	<u>MW</u>	Molecules
4000	120.91	2
84	170.92	2
9.8	62.5	1
14	64.52	1
810	137.36	3
22	112.56	1
14	147.0	2
	4000 84 9.8 14 810 22	4000 120.91 84 170.92 9.8 62.5 14 64.52 810 137.36 22 112.56

e = 9 R = 31.8

Dichlorodifluoromethane:

 $(4000 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 120.91 = 2.35 \times 10^{-3} \text{ lbs/hr}$ As Chlorine: $2.35 \times 10^{-3} \times 35.45/120.91 \times 2 = 1.38 \times 10^{-3} \text{ lbs/hr}$

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(84 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 170.92 = 6.99 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $6.99 \times 10^{-5} \times 35.45/170.92 \times 2 = 2.90 \times 10^{-5} \text{ lbs/hr}$

Vinyl Chloride:

 $(9.8 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 62.5 = 2.98 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $2.98 \times 10^{-6} \times 35.45/62.5 \times 1 = 1.69 \times 10^{-6} \text{ lbs/hr}$

Chloroethane:

 $(14 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 64.52 = 4.40 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $4.40 \times 10^{-6} \times 35.45/64.52 \times 1 = 2.42 \times 10^{-6} \text{ lbs/hr}$

Trichlorofluoromethane:

 $(810 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 137.36 = 5.41 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $5.41 \times 10^{-4} \times 35.45/137.36 \times 3 = 4.18 \times 10^{-4} \text{ lbs/hr}$

Chlorobenzene:

 $(22 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 112.56 = 1.21 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.21 \times 10^{-5} \times 35.45/112.56 \times 1 = 3.80 \times 10^{-6} \text{ lbs/hr}$

1.4-Dichlorobenzene

 $(14 \times 10^{-9}) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 147.00 = 1.00 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.00 \times 10^{-5} \times 35.45/147.00 \times 2 = 4.83 \times 10^{-6} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $1.38 \times 10^{-3} + 4.18 \times 10^{-4} + 2.90 \times 10^{-5} + (1.69 + 2.42 + 3.80 + 4.83) \times 10^{-6} = 1.84 \times 10^{-3}$

Vent 66

C (nnh)	MW	Molecules
770	120.91	2
760	170.92	2
40	62.5	1
36	64.52	· 1
65	112.56	1
38	147.0	2
	760 40 36 65	770 120.91 760 170.92 40 62.5 36 64.52 65 112.56

e = 9 R = 22.0

Dichlorodifluoromethane:

 $(770 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 120.91 = 3.14 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $3.14 \times 10^{-4} \times 35.45/120.91 \times 2 = 1.84 \times 10^{-4} \text{ lbs/hr}$

1,2-Dichloro-1,1,2,2-Tetrafluoroethane:

 $(760 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 170.92 = 4.37 \times 10^{-4} \text{ lbs/hr}$ As Chlorine: $4.37 \times 10^{-4} \times 35.45/170.92 \times 2 = 1.81 \times 10^{-4} \text{ lbs/hr}$

Vinvl Chloride:

 $(40 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 62.5 = 8.42 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $8.42 \times 10^{-6} \times 35.45/62.5 \times 1 = 4.78 \times 10^{-6} \text{ lbs/hr}$

Chloroethane:

 $(36 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 64.52 = 7.82 \times 10^{-6} \text{ lbs/hr}$ As Chlorine: $7.82 \times 10^{-6} \times 35.45/64.52 \times 1 = 4.30 \times 10^{-6} \text{ lbs/hr}$

Chlorobenzene:

(65 x 10^{-9}) x 22.0 x 1/359 x 492/537 x 60 x 112.56 = 2.46 x 10^{-5} lbs/hr As Chlorine: 2.46 x 10^{-5} x 35.45/112.56 x 1 = 7.76 x 10^{-6} lbs/hr

I.4-Dichlorobenzene

 $(38 \times 10^{-9}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 147.00 = 1.88 \times 10^{-5} \text{ lbs/hr}$ As Chlorine: $1.88 \times 10^{-5} \times 35.45/147.00 \times 2 = 9.08 \times 10^{-6} \text{ lbs/hr}$

TOTAL CHLORIDES (lbs/hr):

 $(1.84 + 1.81) \times 10^{-4} + (4.78 + 4.30 + 7.76 + 9.08) \times 10^{-6} = 3.91 \times 10^{-6}$

The highest concentration of chlorides was measured at Vent 45 (6.71 x 10^3 lbs/hr). The worst case emission from the landfill is estimated by multiplying 6.71 x 10^3 by 65, the total number of vents. The resulting emission rate is 0.44 lbs/hr.

Emission Rates for Hydrogen Sulfide:

Vent 11

C = 5 e = 6 R = 49.8 MW = 34.06

 $(5 \times 10^6) \times 49.8 \times 1/359 \times 492/537 \times 60 \times 34.06 = 1.30 \times 10^3 \text{ lbs/hr}$

Vent 25

C = 1 e = 6 R = 17.4 MW = 34.06

 $(1 \times 10^{-6}) \times 17.4 \times 1/359 \times 492/537 \times 60 \times 34.06 = 9.07 \times 10^{-5}$ lbs/hr

Vent 26

 $\begin{array}{cccc} C & = & 2 \\ e & = & 6 \\ R & = & 47.9 \\ MW & = & 34.06 \end{array}$

 $(2 \times 10^{-6}) \times 47.9 \times 1/359 \times 492/537 \times 60 \times 34.06 = 5.00 \times 10^{-4} \text{ lbs/hr}$

Vent 27

C = 5 e = 6 R = 35.8 MW = 34.06

 $(5 \times 10^6) \times 35.8 \times 1/359 \times 492/537 \times 60 \times 34.06 = 9.33 \times 10^4 \text{ lbs/hr}$

<u>Vent 28</u>

C = 8 e = 6 R = 40.8 MW = 34.06

 $(8 \times 10^6) \times 40.8 \times 1/359 \times 492/537 \times 60 \times 34.06 = 1.70 \times 10^{-3} \text{ lbs/hr}$

Vent 45

C = 3 e = 6 R = 46.6 MW = 34.06

 $(3 \times 10^6) \times 46.6 \times 1/359 \times 492/537 \times 60 \times 34.06 = 7.29 \times 10^4 \text{ lbs/hr}$

Vent 57

C = 1 e = 6 R = 31.8 MW = 34.06

 $(1 \times 10^6) \times 31.8 \times 1/359 \times 492/537 \times 60 \times 34.06 = 1.66 \times 10^4 \text{ lbs/hr}$

<u>Vent 66</u>

C = 1 e = 6 R = 22.0 MW = 34.06

 $(1 \times 10^{-6}) \times 22.0 \times 1/359 \times 492/537 \times 60 \times 34.06 = 1.15 \times 10^{-4} \text{ lbs/hr}$

The highest hydrogen sulfide concentration was measured at Vent 28 (1.70 x 10^3 lbs/hr). The worst case emission from the landfill is estimated by multiplying 1.70 x 10^3 by 65, the total number of vents. The resulting emission rate is 0.11 lbs/hr.

Calculation of Risk Assessment for Carcinogenic Effects:

Of the fifty-six contaminants listed on the "Screening Risk Assessment Worksheet for Carcinogenic Effects", only four were detected in the landfill gas: benzene, methylene chloride, tetrachloroethylene, and vinyl chloride. To determine the risk posed to the population, two scenarios were modeled, a worst case emissions scenario and an average case emissions scenario. The results show that the maximum risk associated with the landfill gas emissions is 4.75×10^{-5} , whereas the average risk is 8.72×10^{-7} . Since the average risk is less than the NJDEP guideline of 1×10^{-6} , SOTA pollution control does not appear to be required. Although the worst case emissions exceed this guideline, it is unlikely that there will be adverse affect for two reasons: (1) The site is enclosed by a nine foot high fence; and (2) The wells producing the greatest volume of gas and greatest concentration of contaminants are located in the interior portion of the landfill. In general, these wells are located a minimum distance of 400 feet from the nearest property line, thereby greatly reducing the risk.

Calculations for worst case and average emissions are presented below.

Benzene:

Worst Case: Vent 45 (8.36 x 10⁴ lbs/hr)

Total No. of Vents: 65

Rate: 8.36×10^{-4} lbs/hr $\times 65 = 5.43 \times 10^{-2}$ lbs/hr

Average Case:

Interior Vent	Benzene Emission (lbs/hr)
11	7.15 x 10 ⁻⁵
2 6	1.15 x 10 ⁻⁴
27	3.04 x 10 ⁻⁴
28	4.05 x 10 ⁻⁴
45	8.36 x 10 ⁻⁴
57	7.99 x 10 ⁻⁶
	1.74×10^{-3}

Average Interior Vent Emission: $1.74 \times 10^{-3}/6 = 2.90 \times 10^{-4}$ lbs/hr

Combe Fill South Landfill Application for Air Permit Equivalent for Passive Venting

Combe Fill South Landfill Application for Air Permit Equivalent for Passive Venting

Perimeter Vent	Benzene Emission (lbs/hr)
25	5.41 x 10 ⁻⁶
6 6	2.42 x 10 ⁻⁵
•	2.96 x 10 ⁻⁵

Average Perimeter Vent Emission:

 $2.96 \times 10^{-5}/2 = 1.48 \times 10^{-5} \text{ lbs/hr}$

Average Landfill Emission:

 $2.90 \times 10^{-4} \times 27 = 7.83 \times 10^{-3} \text{ lbs/hr}$ $1.48 \times 10^{-5} \times 38 = 5.63 \times 10^{-4} \text{ lbs hr}$ TOTAL: 8.39 X 10⁻³ lbs hr

where:

27 = number of interior vents 38 = number of perimeter vents

Methylene Chloride:

Worst Case: Vent 26 (1.06 x 10⁻⁵ lbs/hr)

Total No. of Vents: 65

Rate: 1.06×10^{-5} lbs/hr x $65 = 6.89 \times 10^{-4}$ lbs/hr

Note that this case is highly unlikely because methylene chloride was only detected in one of the eight vents that were tested.

Average Case:

Interior Vent	Methylene Chloride Emission (lbs/hr)
11	0.0
26	1.06×10^{-5}
27	0.0
28	0.0
45	0.0
57	<u>0.0</u>
	1.06×10^{-5}

Average Interior Vent Emission: 1.06 x 10⁻⁵ lbs/hr

Perimeter Vent	Methylene Chloride Emission (lbs/hr)
25	0.0
66	<u>0.0</u>
•	0.0

Average Perimeter Vent Emission: 0.0 lbs/hr

Average Landfill Emission:

Methylene chloride was detected in only one of the eight vents that were tested, Vent 26. As a result, it is assumed for the average case model that methylene chloride will be emitted only from Vents 23, 26, and 33 at a rate of 1.06 x 10⁻⁵ lbs/hr.

 $1.06 \times 10^{-5} \times 3 \text{ vents} = 3.18 \times 10^{-5} \text{ lbs/hr}$

Tetrachloroethylene:

Worst Case: Vent 28 (5.49 x 10⁻⁵ lbs/hr)

Total No. of Vents: 65

Rate: 5.49×10^{-5} lbs/hr x $65 = 3.57 \times 10^{-3}$ lbs/hr

Note that this case is highly unlikely because tetrachloroethylene was only detected in one of the eight vents that were tested.

Average Case:

Interior Vent	Tetrachloroethylene Emission (lbs/hr)
11	0.0
26	0.0
27	0.0
28	5.49 x 10 ⁻⁵
45	0.0
57	0.0
_	5.49 x 10 ⁻⁵

Average Interior Vent Emission: 5.49 x 10⁻⁵ lbs/hr

Perimeter Vent	Benzene Emission (lbs/hr)
25	0.0
6 6	<u>0.0</u>
•	0.0

Average Perimeter Vent Emission:

0.0 lbs/hr

Average Landfill Emission:

Tetrachloroethylene was detected in only one of the eight vents that were tested, Vent 28. As a result, it is assumed for the average case model that tetrachloroethylene will be emitted only from Vents 21, 22, 28, 29, and 34 at a rate of 5.49 x 10⁻⁵ lbs/hr.

 $5.49 \times 10^{-5} \times 5 \text{ vents} = 2.74 \times 10^{-4} \text{ lbs/hr}$

Vinyl Chloride:

Worst Case: Vent 28 (1.13 x 10⁻⁴ lbs/hr)

Total No. of Vents: 65

Rate: $1.13 \times 10^4 \text{ lbs/hr} \times 65 = 7.35 \times 10^{-3} \text{ lbs/hr}$

Average Case:

Interior Vent	Vinyl Chloride Emission (lbs/hr)
11	3.48 x 10 ⁻⁵
26	6.42 x 10 ⁻⁵
27	4.11 x 10 ⁻⁵
28	1.33 x 10 ⁻⁴
45	1.87 x 10 ⁻⁵
57	2.98 x 10 ⁻⁶
	2.95×10^{-4}

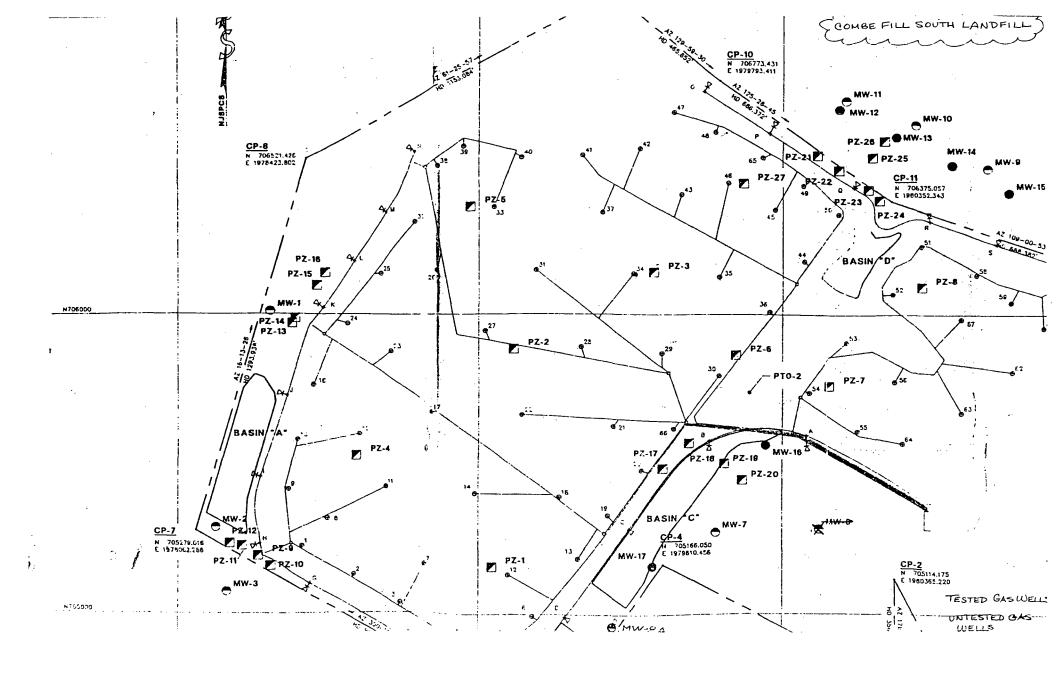
Average Interior Vent Emission:

 $2.95 \times 10^{-4}/6 = 4.91 \times 10^{-5}$ lbs/hr

Combe Fill South Landfill Application for Air Permit Equivalent for Passive Venting

Perimeter Vent	Vinyl Chloride Emission (lbs/hr)
25	7.32 x 10 ⁻⁷
6 6	8.42×10^{-6}
•	9.15 x 10 ⁻⁶

Average Perimeter Vent Emission:


 $9.15 \times 10^{-6}/2 = 4.58 \times 10^{-6}$ lbs/hr

Average Landfill Emission:

4.91 x 10^{-5} x 27 = 1.33 x 10^{-3} lbs/hr 4.58 x 10^{-6} x 38 = 1.74 x 10^{-4} lbs hr TOTAL: 1.50 X 10^{-3} lbs hr

where:

27 = number of interior vents 38 = number of perimeter vents

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY

CHRISTINE TODD WHITMAN
Governor

ROBERT C. SHINN, JR. Commissioner

August 2, 1994

MEMORANDUM

TO:

Edward Putnam, Assistant Director

Remedial Planning and Design

Division of Publicly Funded Site Remediation

FROM:

Dr. Iclal Atay, Chief

Bureau of Air Quality Engineering Air Quality Regulation Program

Environmental Regulation

SUBJECT:

Combe Fill South Landfill Superfund Site

Air permit equivalent application to allow passive venting of the 65 wells which were installed on the

property.

Application Log # 01-94-3086

A permit equivalent for the Combe Fill South Landfill passive Gas Venting System is enclosed. Please be informed that an air permit equivalent issued on February 10, 1993 (Plant ID #: 25681, Permit/Certificate No.: 114162, Application Log NO.: 01-90-4341) for Direct Flow Flare is now cancelled.

If you have any questions, please call me at 4-0491.

Enclosure

C: J. Walsh, Chief, Bureau of Enforcement Services (w/1)

M. Papp, REO, Northern Office (w/1)

D. Prince, Section Chief, Bureau of Construction (w/1)

P. Walshe, Construction Manager, Bureau of Construction (w/1)

R. Patel (w/1)

1657 AUG - 8 1994

CFS QHI8

State of New Jersey

DEPARTMENT OF ENVIRONMENTAL PROTECTION AND ENERGY

CHRISTINE TODD WHITMAN Governor

ROBERT C. SHINN, JR. Commissioner

PERMIT TO CONSTRUCT AND CERTIFICATE TO OPERATE CONTROL APPARATUS OR EQUIPMENT

Name:

Combe Fill South Landfill

Superfund Site

Plant Location:

Parker Road

Chester & Washington Townships

Morris County New Jersey

Plant ID No.:

25681

Permit/Certificate NO.:

To be assigned

Applicant's Designation of Stack: GC #1 to #59, #61 to #66

Effective date of Permit Equivalent: August 2, 1994

Application Log #:

01-94-3086

On the basis of all the information available regarding Combe Fill South Landfill passive vents, the Department of Environmental Protection concludes that the vents meet all applicable requirements of the New Jersey Air Pollution Control Regulations codified at N.J.A.C. 7:27-1 et seq. Accordingly, the Department issues this Permit equivalent to Construct and Certificate to Operate the gas vents at Combe Fill South Landfill Superfund Site.

This permit equivalent incorporates by reference all conditions in the application submitted on July 27, 1994.

Sincerely,

Iclal Atay, Ph.D., Chief

Bureau of Air Quality Engineering

March 16, 1998

George H. King, P.E., Chief NJDEP/DPFSR Bureau of Construction 401 East State Street, 6th Floor Trenton, New Jersey 08625-0413

Re: Combe Fill South Landfill

Gas Well Emissions Sampling Confirmation Round - 1997

File: 3013.015.

Dear Mr. King:

O'Brien & Gere Engineers, Inc. (O'Brien & Gere) is pleased to present the results of gas well emissions sampling performed by O'Brien & Gere on November 5, 1997 at the Combe Fill South landfill located in Chester, New Jersey. Gas well emissions sampling was performed at the request of the New Jersey Department of Environmental Protection (NJDEP) under the Construction Supervision Agreement (CSA). Field and engineering activities associated with this sampling program were presented in our work plan submitted to the NJDEP, dated October 23, 1997 and approved November 5, 1997.

The results of the gas well emissions sampling are summarized in the attached tables, as follows:

- Table 1 Non-methane Hydrocarbons Emissions
- Table 2 Toxic Volatile Organic Substance Emissions
- Table 3 Total Volatile Chlorinated Organic Emissions
- Table 4 Hydrogen Sulfide Emissions
- Table 5 Nitrogen Concentrations.

The laboratory data are presented in Attachment A. Gas well field data sheets are presented in Attachment B.

Background

At the request of NJDEP, O'Brien & Gere performed a gas well emissions sampling program on June 13 and 14, 1994 in order to evaluate whether changes in the landfill gas characterization had occurred such that the need for a flare to control landfill emissions could be downsized or eliminated. The sampling program parameters were non-methane hydrocarbons (NMHC), toxic volatile organic substances (TXS), total volatile chlorinated organics (TVCO), hydrogen sulfide (H₂S), and nitrogen (N₂). Eight gas wells (out of a total of sixty-five) were sampled; specifically, well numbers 11, 25, 26, 27, 28, 45, 57, and 66. These wells were selected by O'Brien & Gere as being representative of worst case landfill emissions. The results of the 1994 sampling program indicated that even under worst case assumptions (attributing the highest result from the eight wells sampled to each of the 65 wells), total landfill emission estimates were below NJDEP emission rate limitations. After significant review with NJDEP and with its concurrence, O'Brien & Gere recommended that the gas flare system be deleted from the construction contract, resulting in an estimated cost savings of over \$1,000,000.

O'Brien & Gere Engineers, Inc., an O'Brien & Gere company 5000 Brittonfield Parkway / P.O. Box 4873, Syracuse, New York 13221-4873 (315) 437-6100 / FAX (315) 463-7554 • http://www.obg.com... and offices in major U.S. cities

MAR 24 1998

George H. King, P.E., Chief March 16, 1998 Page 2

At the request of NJDEP, O'Brien & Gere performed a second gas well emissions sampling program on November 5, 1997, for the same parameters evaluated in the 1994 sampling program. The purpose of this sampling event was to confirm that landfill emissions continue to be within the NJDEP emission rate limitations.

Sampling and Analytical Procedures

The following summarizes the sampling and analytical procedures employed during the sampling program.

Sampling locations

Sampling was performed on gas wells 11, 25, 26, 27, 28, 45, 57, and 66. The above-ground piping of the wells was modified so that representative samples could be collected. The existing 4-inch PVC pipe was cut approximately 6 inches above the landfill cover and a new piece of 4-inch PVC (approximately 60 inches in length) was coupled to the existing stub. Two sample ports were located in accordance with USEPA Reference Method 1A. One tube compression fitting sample port and one velocity traverse sample port were located 90° apart in the same plane. The sample ports were located ten duct diameters downstream of a flow disturbance and four duct diameters upstream of a flow disturbance.

Gas velocity measurements

A total of eight traverse points were monitored on one cross-sectional traverse of the 4-inch gas wells. O'Brien & Gere proposed to measure gas velocity using an Alnor air velocity kit. In some cases, however, the gas velocity was less than the detectable range of this instrument. As a result, gas velocity measurements were obtained using a NJDEP-supplied "hot wire" anemometer, manufactured by Solomat. Gas velocity was measured prior to, and immediately following, collection of the samples and portable analyzer monitoring. Gas well air temperatures were obtained using an O'Brien & Gere-supplied Type-K thermocouple, manufactured by Solomat.

NMHC, TXS, TVCO, and N₂ sampling and analysis

Gas well samples for NMHC, TXS, TVCO, and N_2 were collected in pre-evacuated SUMMA canisters using laboratory-supplied flow regulators calibrated to approximately 500 millimeters (ml) per minute. The canisters arrived from the laboratory under vacuum at approximately 30 inches of mercury. Prior to sampling, a Teflon sample line was positioned in the center of the gas well, secured by a compression fitting, and purged with a sample pump for approximately 5 minutes. Following purging of the Teflon line, gas well samples were collected in the canisters over a 5-minute period. Canister identification tags were completed with the following information: gas well number, sampling date and time, pre- and post-vacuum readings, and the initials of the field sampler.

At the completion of the sampling program, a chain-of-custody form was completed and the canisters were shipped to Quanterra Environmental Services, Inc. (Quanterra), Industry, California for laboratory analysis. Gas well samples were analyzed in accordance with the following methods:

Analyte	Method	Analytical technique
NMHC	USEPA Method 25C	Gas Chromatography/ Flame Ionization Detection (GC/FID)
тхѕлусо	USEPA Method TO-14	GC/Mass Spectrometry (MS)
N ₂	USEPA Method 3C	GC/Thermal Conductivity Detection (TCD)

H₂S monitoring

Gas well monitoring for H_2S was conducted using an Industrial Scientific Model HMX 271 portable gas monitor. The monitor was calibrated prior to field use with a National Institute of Standards & Technology (NIST) traceable calibration gas standard of 25.1 parts per million (ppm) H_2S in nitrogen. H_2S was monitored from the same sample line used for collecting canister samples. Once the H_2S monitor readings stabilized, the concentration was recorded on a field data sheet.

Sampling Results and Discussion

The laboratory results presented in Attachment A are reported in ppm and parts per billion (ppb). The following conversion formulas were used to express the compound concentrations in pounds per hour (lb/hr), as presented in Tables 1 through 4.

Converting ppm to lb/hr:

Mass emission rate (lb/hr) =
$$\frac{C \times V \times P \times MW \times 60}{R \times T_G}$$

where:

C =compound concentration, ppm (or $ft^3/10^6 ft^3$)

V = actual volumetric flowrate, ft³/min

P = atmospheric pressure, 1 atm

MW = molecular weight of compound, lb/lb-mol R = ideal gas constant, 0.7302 ft³ atm/lb-mol R

 $T_G = gas well temperature, °R$

Converting ppb to lb/hr:

Mass emission rate (lb/hr) =
$$\frac{C \times V \times P \times MW \times 60}{R \times T_G}$$

where: $C = \text{compound concentration, ppb (or ft}^3/10^9 \text{ ft}^3)$

Converting lb/hr of a chlorinated organic (CLO) to lb/hr as chlorine (Cl):

$$\frac{lb}{hr}$$
 CLO x 35.45 x $\frac{N}{MW} = \frac{lb}{hr}$ as Cl

where: 35.45 = molecular weight of chlorine, lb/lb-mole

N = number of chlorine atoms in the CLO MW = molecular weight of the CLO, lb/lb-mole

NMHC results

Gas well emission results for NMHC are presented in Table 1. As identified in the NJDEP Sanitary Landfill Policy (Policy no. DEQ/BERD/001), NMHC emissions in excess of 3.5 lb/hr from the entire landfill require "state-of-the-art" air pollution control equipment. The worst case NMHC emission rate was 0.0126 lb/hr and occurred from gas well 26. Using this worst case value for each of the 65 gas wells at the landfill results in a total projected landfill NMHC emission rate of 0.819 lb/hr, which is well below the NJDEP emission rate limitation of 3.5 lb/hr.

It is noted that the NMHC emission rate limitation of 0.5 lb/hr, which was provided by NJDEP and used by O'Brien & Gere in the 1994 sampling program, was incorrect. The correct value for comparison to the NMHC emission rate limit is 3.5 lb/hr.

The 1994 NMHC emission rate from the entire landfill was 0.443 lb/hr. The worst case 1997 NMHC emission rate of 0.819 lb/hr indicates an increase of approximately 85% from the entire landfill.

TXS Results

The individual TXS emission results for the eight gas wells sampled are presented in Table 2. TXS analytes included benzene, benzyl chloride, 1,3-butadiene, carbon tetrachloride, chloroform, 1,2-dichloropropane, 1,4-dioxane, ethylene dibromide, ethylene dichloride, methyl chloride, methylene chloride, styrene, 1,1,2,2-tetrachloroethane, tetrachloroethylene, 1,1,2-trichloroethane, trichloroethylene, and vinyl chloride.

A review of Table 2 indicates that the laboratory detected five of the eighteen TXS listed above. As identified in the New Jersey Final Regulations, NJAC 7:27-17.9, TXS emissions in excess of 0.1 lb/hr from the entire landfill require "state-of-the-art" air pollution control equipment. The worst case TXS (benzene) emission rate was 0.000201 lb/hr and occurred from gas well 26. Using this worst case value for each of the 65 gas wells at the landfill results in a total projected landfill TXS emission rate of 0.0130 lb/hr, which is below the NJDEP emission rate limitation of 0.1 lb/hr.

The 1994 TXS emission rate from the entire landfill was 0.0543 lb/hr. The worst case 1997 TXS emission rate of 0.0131 lb/hr indicates a decrease of approximately 76% from the entire landfill.

TVCO Results

The individual TVCO emission results for the eight gas wells sampled are presented in Table 3. The worst case TVCO emission rate was 0.00112 lb/hr and occurred from gas well 27. Using this worst case value for each of the 65 gas wells at the landfill results in a total projected landfill TVCO emission rate of 0.0728 lb/hr. NJDEP has not established a TVCO emission rate limitation for landfills.

The 1994 TVCO emission rate from the entire landfill was 0.436 lb/hr. The worst case 1997 TVCO emission rate of 0.0728 lb/hr indicates a decrease of approximately 83% from the entire landfill.

H₂S Results

The individual H_2S emission results for the eight gas wells sampled are presented in Table 4. The worst case H_2S emission rate was 0.000239 lb/hr and occurred from gas well 11. Using this worst case value for each of the 65 gas wells at the landfill results in a total projected landfill H_2S emission rate of 0.0155 lb/hr. NJDEP has not established an H_2S emission rate limitation for landfills.

The 1994 H₂S emission rate from the entire landfill was 0.111 lb/hr. The worst case 1997 H₂S emission rate of 0.0155 lb/hr indicates a decrease of approximately 86% from the entire landfill.

N₂ Results

Gas well concentrations of N_2 are presented in Table 5. As identified in the current version of USEPA Method 25C, the gas sample is considered acceptable if the N_2 concentration is less than 20%. The USEPA is presently updating sampling methodologies in 40 CFR Parts 60, 61, and 63, (Method 25C is located in Part 60). The draft version of Method 25C has the same provisions for N_2 concentrations, but alternatively allows the sample to be considered acceptable if the oxygen concentration is less than 5%.

A review of Table 5 indicates that gas wells 25, 45, 57, and 66 had N_2 concentrations in excess of 20%. Of these gas wells, 25 and 45 had oxygen concentrations of 9% and 5.8%, respectively (oxygen concentrations are noted on the field data sheets). It is noted, however, that gas wells 25 and 45 also had lower explosive limit (LEL) concentrations of 49% and 20%, respectively, whereas the remaining gas wells sampled had LEL concentrations of 100% and oxygen concentrations not greater than 0.5%. The lower levels of LEL and higher levels of oxygen indicate less activity in gas wells 25 and 45.

In addition, the volumetric flowrates associated with gas wells 25 and 45 are notably very low, and indicate that ambient air may be influencing these gas wells, thus causing elevated N₂ and oxygen concentrations. Factors that may affect the volumetric flowrate are ambient temperature, gas well temperature, atmospheric pressure, precipitation, hydrogeology, topography, freeze/thaw cycles, and refuse placement. O'Brien & Gere believes that the nitrogen concentrations observed during this test program are accurate and representative of the current landfill activity, and therefore, we consider the samples from gas wells 25 and 45 to be acceptable.

Conclusions and Recommendations

Based on the 1994 and 1997 sampling programs, there has been an increase in emission rates of NMHC, and a decrease in emission rates of TXS, TVCO, and H₂S. O'Brien & Gere presumes that the impervious nature of the landfill cap installed after the 1994 sampling program may be creating a concentrating effect, where landfill gas that would have otherwise been penetrating the landfill cover, is now directed to the gas wells. Nevertheless, the worst case emission rates of NMHC and TXS from the landfill are below the NJDEP emission rate limitations, which confirms the results of the 1994 sampling program, and therefore, there is no change in the status of the landfill and no further action relating to landfill gas venting is required.

If you have any questions or comments regarding this report, please call Robert Bowers or me.

Very truly yours,

O'BRIEN & GERE ENGINEERS INC.

Peter W. McMaster, P.E. Senior Vice President

RMN:djb

Enclosures:

Tables 1 - 5

Attachment A - Laboratory data

Attachment B - Gas Well Field Data Sheets

cc:

Denis Prince, NJDEP/DPFSR

Jesse Robbins, NJDEP/DPFSR

Robert R. Bowers, P.E. - O'Brien & Gere Engineers, Inc. Wayne Hoagland, P.E. - O'Brien & Gere Engineers, Inc.

Table 1

Combe Fill South Landfill Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Non-Methane Hydrocarbon Emissions

Gas Well No.	NMHC Concentration as carbon (ppmv)	Velocity (ft/min)	Flowrate (acfm)	Gas Well Temperature (°F)	Molecular Weight as Carbon (lb/lb-mol)	Emissions (lb/hr)
11	370	51	4.45	62	12.0	0.00311
25	290	10	0.873	68	12.0	0.000473
26	290	266	23.2	67	12.0	0.0126
27	310	130	11.3	69	12.0	0.00656
28	340	164	14.3	66	12.0	0.00912
45	120	22	1.92	59	12.0	0.000438
57	290	89	7.77	63	12.0	0.00425
66	310	93	8.12	57	12.0	0.00480
		Worst Case	Assumptio	_	. 26 x 65 gas wells: EP emission limit:	0.819 3.5

Note: The emission limit is identified in the NJDEP Sanitary Landfill Policy (Policy No. DEQ/BERD/001).

Table 2

Combe Fill South Landfill Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Toxic Volatile Organic Substance Emissions

Gas Well No.	Compounds	Concentration (ppbv)	Velocity (ft/min)	Flowrate (acfm)	Gas Well Temperature (°F)	Molecular Weight (lb/lb-mol)	Emissions (lb/hr)
11	benzene	330	51	4.45	62	78.12	0.0000181
25	benzene	360	.10	0.873	62	78.12	0.00000386
26	benzene	710	266	23.2	67	78.12	0.000201
	trichloroethene	24	266	23.2	67	131.38	0.0000114
27	benzene	580	130	11.3	69	78.12	0.0000798
	trichloroethene	12	130	11.3	69	131.38	0.00000278
28	benzene	910	164	14.3	66	78.12	0.000159
	tetrachloroethene	75	164	14.3	66	131.5	0.0000220
	vinyl chloride	92	164	14.3	66	62.50	0.0000129
45	methylene chloride	170	22	1.92	59	84.93	0.00000439
57	vinyl chloride	130	89	7.77	63	62.50	0.00000991
66	benzene	100	93	8.12	57	78.12	0.0000101
		Wors	t Case Assu	ımption: ga	ıs well no. 26 x 6 NJDEP em	55 gas wells: nission limit:	0.0130 0.1

Note: The emission limit is identified in the New Jersey Final Regulations, NJAC 7:27-17.9.

Table 3

Combe Fill South Landfill
Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Total Volatile Chlorinated Organic Emissions

Gas Well No.	Compounds	Concentration (ppbv)	Velocity (ft/min)	Flowrate (acfm)	Gas Well Temperature (°F)	Molecular Weight (lb/lb-mol)	Emissions (lb/hr)	Emissions as Chlorine (lb/hr)
11	chlorobenzene	900	51	4.45	62	112.56	0.0000710	0.0000224
	chloroethane	380	51	4.45	62	64.52	0.0000172	0.00000944
	1,4-dichlorobenzene	420	51	4.45	62	147.00	0.0000433	0.0000209
	dichlorodifluoromethane	440	51	4.45	62	120.91	0.0000373	0.0000219
	1,2-dichloro-1,1,2,2-tetrafluoroethane	190	51	4.45	62	170.92	0.0000228	0.00000944
							Total:	0.0000839
25	chlorobenzene	630	10	0.873	68	112.56	0.00000963	0.00000303
	chloroethane	300	10	0.873	68	64.52	0.00000263	0.00000144
	1,4-dichlorobenzene	130	10	0.873	68	147.00	0.00000260	0.00000125
	1,2-dichloro-1,1,2,2-tetrafluoroethane	1300	10	0.873	68	170.92	0.0000302	0.0000125
							Total:	0.0000182
26	chlorobenzene	480	266	23.2	67	112.56	0.000196	0.0000616
	chloroethane	370	266	23.2	67	64.52	0.0000864	0.0000475
	1,2-dichlorobenzene	17	266	23.2	67	147.00	0.00000904	0.00000436
	1,4-dichlorobenzene	370	266	23.2	67	147.00	0.000197	0.0000949
	dichlorodifluoromethane	710	266	23.2	67	120.91	0.000311	0.000182
	cis-1,2-dichloroethene	15	266	23.2	67	96.94	0.00000526	0.00000385
	1,2-dichloro-1,1,2,2-tetrafluoroethane	520	266	23.2	67	170.92	0.000322	0.000133
	trichloroethene	24	266	23.2	67	131.38	0.0000114	0.00000924
	trichlorofluoromethane	48	266	23.2	67	137.36	0.0000239	0.0000185
							Total:	0.000556

Final: 03/16/98 (i:\11\3013015\5\div52\tvco.wb2)

Table 3

Combe Fill South Landfill
Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Total Volatile Chlorinated Organic Emissions

		0	\/-\i+-		Gas Well	Molecular	-	Emissions
Cae Well No	Compounds	Concentration (ppbv)	Velocity (ft/min)	Flowrate (acfm)	Temperature (°F)	Weight (lb/lb-mol)	Emissions (lb/hr)	as Chlorine (lb/hr)
Jas Well No.	Compounds	(ppbv)	(1211111)	(aciiii)	(1)	(ID/ID-IIIOI)	(ID/III)	
27	chlorobenzene	600	130	11.3	69	112.56	0.000119	0.0000375
	chloroethane	250	130	11.3	69	64.52	0.0000284	0.0000156
	1,2-dichlorobenzene	9.1	130	11.3	69	147.00	0.00000236	0.00000114
	1,4-dichlorobenzene	240	130	11.3	69	147.00	0.0000622	0.0000300
	dichlorodifluoromethane	5000	130	11.3	69	120.91	0.00107	0.00062
	1,1-dichloroethane	10	130	11.3	69	98.96	0.00000174	0.0000012
	cis-1,2-dichloroethene	14	130	11.3	69	96.94	0.00000239	0.0000017
	1,2-dichloro-1,1,2,2-tetrafluoroethane	3200	130	11.3	69	170.92	0.000964	0.00040
	trichloroethene	12	130	11.3	69	131.38	0.00000278	0.0000022
	vinyl chloride	92	130	11.3	69	62.50	0.0000101	0.0000057
							Total:	0.0011
28	chlorobenzene	520	164	14.3	66	112.56	0.000131	0.000041
	chloroethane	160	164	14.3	66	64.52	0.0000231	0.000012
	1,2-dichlorobenzene	30	164	14.3	66	147.00	0.00000986	0.0000047
	1,4-dichlorobenzene	330	164	14.3	66	147.00	0.000108	0.000052
	dichlorodifluoromethane	76	164	14.3	66	120.91	0.0000205	0.000012
	cis-1,2-dichloroethene	41	164	14.3	66	96.94	0.00000889	0.0000065
	1,2-dichloro-1,1,2,2-tetrafluoroethane	890	164	14.3	66	170.92	0.000340	0.00014
	methylene chloride	30	164	14.3	66	84.93	0.00000570	0.0000023
	tetrachloroethene	75	164	14.3	66	165.82	0.0000278	0.000023
	trichlorofluoromethane	980	164	14.3	66	131.50	0.000288	0.00023
							Total:	0.00053

Table 3

Combe Fill South Landfill
Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Total Volatile Chlorinated Organic Emissions

		Concentration	Velocity	Flowrate	Gas Well Temperature	Molecular Weight	Emissions	Emissions as Chlorine
as Well No.	Compounds	(ppbv)	(ft/min)	(acfm)	(°F)	(lb/lb-mol)	(lb/hr)	(lb/hr
45	dichlorodifluoromethane	25000	22	1.92	59	120.91	0.000919	0.000539
	1,2-dichloro-1,1,2,2-tetrafluoroethane	6900	22	1.92	59	170.92	0.000358	0.000149
	methylene chloride	170	22	1.92	59	84.93	0.00000439	0.0000018
	trichlorofluoromethane	10000	22	1.92	59	131.50	0.000400	0.00032
							Total:	0.0010
57	chlorobenzene	69	89	7.77	63	112.56	0.00000948	0.0000029
	chloroethane	210	89	7.77	63	64.52	0.0000165	0.0000090
	1,4-dichlorobenzene	170	89	7.77	63	147.00	0.0000305	0.000014
-	dichlorodifluoromethane	1300	89	7.77	63	120.91	0.000192	0.00011
	1,2-dichloro-1,1,2,2-tetrafluoroethane	1200	89	7.77	63	170.92	0.000250	0.00010
	trichlorofluoromethane	6200	89	7.77	63	131.50	0.000995	0.00080
	vinyl chloride	130	89	7.77	63	62.50	0.00000991	0.0000056
							Total:	0.0010
66	chlorobenzene	100	93	8.12	57	112.56	0.0000145	0.0000045
	1,4-dichlorobenzene	120	93	8.12	57	147.00	0.0000228	0.000011
	dichlorodifluoromethane	2500	93	8.12	57	120.91	0.000390	0.00022
	1,2-dichloro-1,1,2,2-tetrafluoroethane	7200	93	8.12	57	170.92	0.00159	0.00065
							Total:	0.00090
			w	orst Case A	Assumption: gas	s well no. 27 x	65 gas wells:	0.0

Final: 03/16/98 (i:\11\3013015\5\div52\tvco.wb2)

Table 4

Combe Fill South Landfill Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Hydrogen Sulfide Emissions

Gas Well No.	H2S Concentration (ppmv)	Velocity (ft/min)	Flowrate (acfm)	Gas Well Temperature (°F)	Molecular Weight (lb/lb-mol)	Emissions (lb/hr)
11	10	51	4.45	62	34.06	0.000239
25	10	10	0.873	68	34.06	0.0000463
26	1	266	23.2	67	34.06	0.000123
27	0	130	11.3	69	34.06	0
28	0	164	14.3	66	34.06	0
45	0	22	1.92	59	34.06	0
57	1	89	7.77	63	34.06	0.0000416
66	1	93	8.12	57	34.06	0.0000439

Worst Case Assumption: gas well no. 11 x 65 gas wells:

0.0155

Table 5

Combe Fill South Landfill Chester, NJ

Gas Well Emissions Sampling - 11/05/97 Nitrogen Concentrations

Gas Well No.	Nitrogen Concentration (%v)
11	ND
25	27
26	7.1
27	11
28	9.4
45	38
57	36
66	49

ATTACHMENT A

Laboratory data

Quanterra Incorporated 18501 East Gale Avenue #130 City of Industry, California 91748

818 965-1006 Telephone 818 965-1003 Fax

December 15, 1997

O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway East Syracuse, NY 13057 Mr. Robert Neimeier

ANALYSIS NO.: 129361-0001/0008-SA ANALYSES: Volatile Organics by GCMS - EPA TO14, EPA Method 25C, EPA Method 3C - Nitrogen DATE SAMPLED: 11/05/97 DATE SAMPLES REC'D: 11/14/97

PROJECT: COMBE FILL SOUTH

Enclosed with this letter is the report on the chemical and physical analyses for the samples from ANALYSIS NO.: 129361-0001/0008-SA as shown above.

The samples were received by Quanterra Incorporated, City of Industry, intact and with the chain-of-custody record attached.

Please note that ND means not detected at the reporting limits expressed.

The preliminary results were faxed to Mr. Robert Neimeier on November 26, 1997.

Project Manager

Approved

SAMPLE DESCRIPTION INFORMATION for O'Brien & Gere Engineers, Inc.

					Sar	np1	ed	Re	ceive	ed
Lab ID	Client	ID	Matrix		Date		Time]	Date	
129361-0001-SA	GW-45	12841	AIR	05	NOV	97	10:58	14	NOV	97
129361-0002-SA	GW-26	9323BB	AIR	05	NOV	97	11:40	14	NOV	97
129361-0003-SA	GW-25	9530BB	AIR	05	NOV	97	12:17	14	NOV	97
129361-0004-SA	GW-11	93298	AIR	05	NOV	97	12:59	14	NOV	97
129361-0005-SA	GW-28	93085	AIR	05	NOA	97	13:32	14	NOV	97
129361-0006-SA	GW-27	9695B	AIR	05	NOV	97	14:04	14	NOV	97
129361-0007-SA	GW-57	A-286	AIR	05	NOV	97	14:46	14	NOV	97
129361-0008-SA	GW-66	136	AIR	05	NOA	97	15:21	14	NOA	97

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-45 12841

LAB ID:

129361-0001-SA

Matrix:

AIR

Authorized:

14 NOV 97

Sampled: 05 NOV 97 Prepared: N/A

Received: 14 NOV 97 Analyzed: 15 NOV 97

Instrument:

Parameter

GC/MS-A

Result	Qualifier	\mathtt{RL}	Units
--------	-----------	---------------	-------

- 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3		•		
Dichlorodifluoromethane	25000	D	210	ppb (v/v)
Chloromethane	ND		170	ppb (v/v)
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	6900		84	ppb (v/v)
Vinyl chloride	ND		84	ppb (v/v)
Bromomethane	ND		84	ppb (v/v)
Chloroethane	ND		170	ppb (v/v)
Trichlorofluoromethane	10000		84	ppb (v/v)
1,1-Dichloroethene	ND		84	ppb (v/v)
Carbon disulfide	ND		420	ppb (v/v)
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND		84	ppb (v/v)
Acetone	ND		420	ppb (v/v)
Methylene chloride	170		84	ppb (v/v)
trans-1,2-Dichloroethene	ND		84	ppb (v/v)
1,1-Dichloroethane	ND		84	ppb (v/v)
Vinyl acetate	ND		420	ppb (v/v)
cis-1,2-Dichloroethene	ND		84	ppb (v/v)
2-Butanone	ND		420	ppb (v/v)
Chloroform	ND		84	ppb (v/v)
1,1,1-Trichloroethane	ND		84	ppb (v/v)
Carbon tetrachloride	ND		84	ppb (v/v)
Benzene	ND		84	ppb (v/v)
1,2-Dichloroethane	ND		84	ppb (v/v)
Trichloroethene	ND		84	ppb (v/v)
1,2-Dichloropropane	ND		84	ppb (v/v)
Bromodichloromethane	ND		84	ppb (v/v)
cis-1,3-Dichloropropene	ND		84	ppb (v/v)
4-Methyl-2-pentanone	ND		420	ppb (v/v)
Toluene	ND		84	ppb (v/v)
trans-1,3-Dichloropropene	ND		84	ppb (v/v)
1,1,2-Trichloroethane	ND		84	ppb (v/v)
Tetrachloroethene	ND		84	ppb (v/v)
2-Hexanone	ND		1300	ppb (v/v)
Dibromochloromethane	ND		84	ppb (v/v)
1,2-Dibromoethane (EDB)	ND		84	ppb (v/v)
Chlorobenzene	ND		84	ppb (v/v)
Ethylbenzene	ND		84	ppb (v/v)
Xylenes (total)	ND		84	ppb (v/v)
Styrene .	ND		84	ppb (v/v)
Bromoform	ND		84	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		84	ppb (v/v)
Benzyl chloride	ND		420	ppb (v/v)
4-Ethyltoluene	ND		84	ppb (v/v)
1,3,5-Trimethylbenzene	ND		84	ppb (v/v)
-				EE- \1111

D = Compound quantitated using a secondary dilution.

ND = Not Detected

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-45 12841

LAB ID:

129361-0001-SA

Matrix:

Authorized:

AIR 14 NOV 97 Sampled: 05 NOV 97

Prepared: N/A

Analyzed: 15 NOV 97

Received: 14 NOV 97

(cont.)

Instrument:

GC/MS-A

Parameter	Result	Qualifier	\mathtt{RL}	Units
1,2,4-Trimethylbenzene	ND	84		ppb (v/v)
1,3-Dichlorobenzene	ND	84		ppb (v/v)
1,4-Dichlorobenzene	· ND	84		ppb (v/v)
1,2-Dichlorobenzene	ND	84		ppb (v/v)
1,2,4-Trichlorobenzene	ND	840		ppb (v/v)
Hexachlorobutadiene	ND	170		ppb (v/v)
1,3-Butadiene	ND	420		ppb (v/v)
1,4-Dioxane	ND	420		ppb (v/v)

Services

Volatile Organics by GCMS - EPA TO14

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-26 9323BB

LAB ID:

129361-0002-SA

Matrix:

AIR

Authorized:

14 NOV 97

Sampled: 05 NOV 97 Prepared: N/A Received: 14 NOV 97 Analyzed: 15 NOV 97

Instrument:

Parameter

GC/MS-A

Dilution: 6.7

Result Qualifier RL Units

Parameter	Kebarc	Quartrici	КЦ	OHILCE
Dichlorodifluoromethane	710	D	140	ppb (v/v)
Chloromethane	ND	D	27	ppb (v/v)
1,2-Dichloro-1,1,2,2-	112		2,	ppb (v/v)
tetrafluoroethane	520		13	ppb (v/v)
Vinyl chloride	ND	G	110	ppb (v/v)
Bromomethane	ND	J	13	ppb (v/v)
Chloroethane	370		27	ppb (v/v)
Trichlorofluoromethane	48		13	ppb (v/v)
1,1-Dichloroethene	ND		13	ppb (v/v)
Carbon disulfide	ND		67	ppb (v/v)
1,1,2-Trichloro-1,2,2-			0,	PPB (V) V)
trifluoroethane	ND		13	ppb (v/v)
Acetone	74		67	ppb (v/v)
Methylene chloride	ND		13	ppb (v/v)
trans-1,2-Dichloroethene	ND		13	ppb (v/v)
1,1-Dichloroethane	ND		13	ppb (v/v)
Vinyl acetate	ND		67	ppb (v/v)
cis-1,2-Dichloroethene	15		13	ppb (v/v)
2-Butanone	ND		67	ppb (v/v)
Chloroform	ND		13	ppb (v/v)
1,1,1-Trichloroethane	ND	•	13	ppb (v/v)
Carbon tetrachloride	ND		13	ppb (v/v)
Benzene	710		13	ppb (v/v)
1,2-Dichloroethane	ND		13	ppb (v/v)
Trichloroethene	24		13	ppb (v/v)
1,2-Dichloropropane	ND		13	ppb (v/v)
Bromodichloromethane	ND		13	ppb (v/v)
cis-1,3-Dichloropropene	ND		13	ppb (v/v)
4-Methyl-2-pentanone	ND	G	99	ppb (v/v)
Toluene	170		13	ppb (v/v)
trans-1,3-Dichloropropene	ND		13	ppb (v/v)
1,1,2-Trichloroethane	ND		13	ppb (v/v)
Tetrachloroethene	ND		13	ppb (v/v)
2-Hexanone	ND		200	ppb (v/v)
Dibromochloromethane	ND		13	ppb (v/v)
1,2-Dibromoethane (EDB)	ND		13	ppb (v/v)
Chlorobenzene	480		13	ppb (v/v)
Ethylbenzene	700		13	ppb (v/v)
Xylenes (total)	2000		13	ppb (v/v)
Styrene	ND		13	ppb (v/v)
Bromoform	ND		13	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		13	ppb (v/v)
Benzyl chloride	ND		67	ppb (v/v)
4-Ethyltoluene	370		13	ppb (v/v)

D = Compound quantitated using a secondary dilution.

G = Reporting limit(s) raised due to matrix interference.

ND = Not Detected

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-26 9323BB

LAB ID:

Matrix:

129361-0002-SA

Authorized: Instrument: AIR

14 NOV 97 GC/MS-A

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 6.7

Received: 14 NOV 97 Analyzed: 15 NOV 97

Parameter	Result	Qualifier		RL	Unit	s
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene	340 600 ND 370 17		13 13 13 13		ppb ppb ppb	(v/v) (v/v) (v/v) (v/v) (v/v)
1,2,4-Trichlorobenzene Hexachlorobutadiene 1,3-Butadiene 1,4-Dioxane	ND ND ND ND		130 27 67 67		ppb	(v/v) (v/v) (v/v)

Received: 14 NOV 97

Analyzed: 15 NOV 97

Volatile Organics by GCMS - EPA TO14

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-25 9530BB

LAB ID:

129361-0003-SA

Matrix:
Authorized:

AIR

Sampled: 05 NOV 97 Prepared: N/A

Authorized: 14 NOV 97 Prepared: N/A Instrument: GC/MS-A Dilution: 8.4

Parameter	Result	Qualifier	RL	Units
Dichlorodifluoromethane		1		ppb (v/v)
Chloromethane	ND		34	ppb (v/v)
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	1300	_	17	ppb (v/v)
Vinyl chloride	ND	G	52	ppb (v/v)
Bromomethane	ND		17	ppb (v/v)
Chloroethane	300		34	ppb (v/v)
Trichlorofluoromethane	ND		17	ppb (v/v)
1,1-Dichloroethene	ND		17	ppb (v/v)
Carbon disulfide	ND		84	ppb (v/v)
1,1,2-Trichloro-1,2,2-) III)		1.7	1- (/)
trifluoroethane	ND		17	ppb (v/v)
Acetone	440	•	84	ppb (v/v)
Methylene chloride trans-1,2-Dichloroethene	ND ND		17	ppb (v/v)
	ND ND		17 17	ppb (v/v)
1,1-Dichloroethane	ND		1 / 84	ppb (v/v)
Vinyl acetate	ND		84 17	ppb (v/v)
cis-1,2-Dichloroethene	570		84	ppb (v/v)
2-Butanone	ND			ppb (v/v)
Chloroform 1,1,1-Trichloroethane	ND		17 17	ppb (v/v)
• •	ND			ppb (v/v)
Carbon tetrachloride Benzene	360		17 17	ppb (v/v)
	ND		17	ppb (v/v)
1,2-Dichloroethane Trichloroethene	ND		17	ppb (v/v)
				ppb (v/v)
1,2-Dichloropropane Bromodichloromethane	ND		17	ppb (v/v)
	ND		17	ppb (v/v)
cis-1,3-Dichloropropene	ND		17	ppb (v/v)
4-Methyl-2-pentanone Toluene	ND 37	G .	130 17	ppb (v/v)
trans-1,3-Dichloropropene	ND		17	ppb(v/v)
1,1,2-Trichloroethane	ND		17	ppb (v/v)
Tetrachloroethene	ND		17	ppb (v/v)
2-Hexanone	ND		250	<pre>ppb (v/v) ppb (v/v)</pre>
Dibromochloromethane	ND		17	ppb (v/v)
1,2-Dibromoethane (EDB)	ND		17	
Chlorobenzene	630		17	
Ethylbenzene	60		17	ppb (v/v)
Xylenes (total)	960		17	ppb (v/v) ppb (v/v)
Styrene	ND		17	ppb (v/v)
Bromoform	ND		17	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		17	ppb (v/v)
Benzyl chloride	ND		84	ppb (v/v)
4-Ethyltoluene	130		17	ppb (v/v)
. Don't root wone	130		1	PPD (0/0)

^{1 =} Compound not analyzed due to high level of carbon dioxide.

G = Reporting limit(s) raised due to matrix interference.

ND = Not Detected

Services (cont.)

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-25 9530BB

LAB ID:

129361-0003-SA

Matrix:

AIR

Authorized:

14 NOV 97

Sampled: 05 NOV 97

Prepared: N/A

Analyzed: 15 NOV 97

Received: 14 NOV 97

Instrument:

GC/MS-A

Dilution: 8.4

Parameter	Result Qualifie	er RL	Units
1,3,5-Trimethylbenzene 1,2,4-Trimethylbenzene 1,3-Dichlorobenzene	140 660 ND	17 17 17	ppb (v/v) ppb (v/v) ppb (v/v)
1,4-Dichlorobenzene 1,2-Dichlorobenzene	130 ND	17 17	ppb (v/v) ppb (v/v)
1,2,4-Trichlorobenzene Hexachlorobutadiene	ND ND	170 34	ppb (v/v) ppb (v/v)
1,3-Butadiene 1,4-Dioxane	ND ND	84 84	ppb (v/v) ppb (v/v)

Received: 14 NOV 97

Analyzed: 15 NOV 97

Services

Volatile Organics by GCMS - EPA TO14

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-11 93298

LAR ID:

129361-0004-SA

Matrix:

AIR

Authorized:

14 NOV 97

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 22

Instrument: GC/MS-A Result Oualifier RL Parameter Units Dichlorodifluoromethane 440 45 ppb (v/v)Chloromethane ND 90 (v/v)1,2-Dichloro-1,1,2,2tetrafluoroethane 190 45 (v/v) dqq ND Vinvl chloride 45 ppb (v/v)Bromomethane ND 45 ppb (v/v)Chloroethane 380 90 ppb (v/v)Trichlorofluoromethane ND 45 ppb (v/v)1,1-Dichloroethene ND 45 ppb (v/v) Carbon disulfide ND 220 ppb (v/v)1,1,2-Trichloro-1,2,2trifluoroethane 45 ND ppb (v/v)ND 220 Acetone ppb (v/v)Methylene chloride ND 45 ppb (v/v)trans-1, 2-Dichloroethene ND 45 ppb (v/v) 1,1-Dichloroethane ND 45 ppb (v/v)Vinyl acetate ND 220 ppb (v/v) cis-1,2-Dichloroethene ND 45 ppb (v/v)2-Butanone ND 220 ppb (v/v)Chloroform ND 45 ppb (v/v)1,1,1-Trichloroethane ND 45 ppb (v/v)Carbon tetrachloride ND 45 ppb (v/v) Benzene 330 45 ppb (v/v)1,2-Dichloroethane ppb (v/v) ND 45 Trichloroethene ND 45 ppb (v/v)1,2-Dichloropropane ND ppb (v/v) 45 Bromodichloromethane ND 45 ppb (v/v)cis-1,3-Dichloropropene ND 45 ppb (v/v)4-Methyl-2-pentanone ND 220 ppb (v/v)66 45 ppb (v/v)Toluene trans-1,3-Dichloropropene ND 45 ppb (v/v)1,1,2-Trichloroethane ND 45 ppb (v/v)Tetrachloroethene ND 45 ppb (v/v)2-Hexanone ND 670 ppb (v/v) Dibromochloromethane ND 45 ppb (v/v)1,2-Dibromoethane (EDB) ND 45 ppb (v/v)Chlorobenzene 900 45 ppb (v/v)Ethylbenzene 530 45 ppb (v/v)ppb (v/v) Xylenes (total) 4300 45 Styrene ND 45 ppb (v/v)Bromoform ND 45 ppb (v/v)1,1,2,2-Tetrachloroethane ND 45 ppb (v/v)Benzyl chloride ND 220 ppb (v/v)4-Ethyltoluene 680 45 ppb (v/v)1,3,5-Trimethylbenzene 670 45 ppb (v/v)

1600

45

ppb (v/v)

1,2,4-Trimethylbenzene

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-11 93298

LAB ID:

129361-0004-SA

Matrix:

AIR

Sampled: 05 NOV 97

Authorized:

14 NOV 97

Prepared: N/A

Received: 14 NOV 97

Instrument:

GC/MS-A

Analyzed: 15 NOV 97

Parameter	Result	Qualifier	RL	Units
1,3-Dichlorobenzene	ND	45		ppb (v/v)
1,4-Dichlorobenzene	420	45		ppb (v/v)
1,2-Dichlorobenzene	ND	45		ppb (v/v)
1,2,4-Trichlorobenzene	ND	450		ppb (v/v)
Hexachlorobutadiene	ND	90		ppb (v/v)
1,3-Butadiene	ND	220		ppb (v/v)
1,4-Dioxane	ND	220		ppb (v/v)

Environmental

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-28 93085

LAB ID:

129361-0005-SA

Matrix:

AIR

Authorized:

14 NOV 97 GC/MS-A

Sampled: 05 NOV 97

Prepared: N/A

Received: 14 NOV 97 Analyzed: 15 NOV 97

Instrument:

Parameter	Result	Qualifier	RL	Units
Dichlorodifluoromethane	76		29	ppb (v/v)
Chloromethane	ND		58	ppb (v/v)
1,2-Dichloro-1,1,2,2-				
tetrafluoroethane	890		29	ppb (v/v)
Vinyl chloride	ND	G	200	ppb (v/v)
Bromomethane	ND		29	ppb (v/v)
Chloroethane	160		58	ppb (v/v)
Trichlorofluoromethane	980		29	ppb (v/v)
1,1-Dichloroethene	ND		29	ppb (v/v)
Carbon disulfide	ND		140	ppb (v/v)
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND		29	ppb (v/v)
Acetone	ND		140	ppb (v/v)
Methylene chloride	30		29	ppb (v/v)
trans-1,2-Dichloroethene	ND		29	ppb (v/v)
1,1-Dichloroethane	ND		29	ppb (v/v)
Vinyl acetate	ND		140	ppb (v/v)
cis-1,2-Dichloroethene	41		29	ppb (v/v)
2-Butanone	ND		140	ppb (v/v)
Chloroform	ND		29	ppb (v/v)
1,1,1-Trichloroethane	ND		29	ppb (v/v)
Carbon tetrachloride	ND		29	ppb (v/v)
Benzene	910		29	ppb (v/v)
1,2-Dichloroethane	ИD		29	ppb (v/v)
Trichloroethene	ND		29	ppb (v/v)
1,2-Dichloropropane	ND		29	ppb (v/v)
Bromodichloromethane	ND		29	ppb (v/v)
cis-1,3-Dichloropropene	ND	0	29	ppb (v/v)
4-Methyl-2-pentanone Toluene	ND 340	G	210	ppb (v/v)
trans-1,3-Dichloropropene	ND		29 29	ppb (v/v)
1,1,2-Trichloroethane	ND		29	ppb (v/v)
Tetrachloroethene	75		29	
2-Hexanone	ND		430	ppb (v/v)
Dibromochloromethane	ND		29	ppb (v/v) ppb (v/v)
1,2-Dibromoethane (EDB)	ND		29	ppb (v/v)
Chlorobenzene	520		29	ppb (v/v)
Ethylbenzene	840		29	ppb (v/v)
Xylenes (total)	2500		29	ppb (v/v)
Styrene	ND		29	ppb (v/v)
Bromoform	ND		29	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		29	ppb (v/v)
Benzyl chloride	ND		140	ppb (v/v)
4-Ethyltoluene	260		29	ppb (v/v)
1,3,5-Trimethylbenzene	250		29	ppb (v/v)
_, · , · · · · · · <u>/ · · · · · · · · · · · · · · · · · </u>				PP~ (v / v /

G = Reporting limit(s) raised due to matrix interference.

ND = Not Detected

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-28 93085

LAB ID:

129361-0005-SA

Matrix:

AIR

Sampled: 05 NOV 97

Prepared: N/A

Received: 14 NOV 97 Analyzed: 15 NOV 97

Authorized: Instrument:

14 NOV 97 GC/MS-A

Parameter	Result Qualifi	er RL	Units
1,2,4-Trimethylbenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,3-Butadiene 1,4-Dioxane	350 ND 330 30 ND ND ND	29 29 29 29 290 58 140	ppb (v/v)

Services

Volatile Organics by GCMS - EPA TO14

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: GW-27 9695B LAB ID: 129361-0006-SA

Matrix: AIR Sampled: 05 NOV 97 Received: 14 NOV 97 Authorized: 14 NOV 97 Prepared: N/A Analyzed: 15 NOV 97

Instrument: GC/MS-A Dilution: 4.2

Parameter	Result	Qualifier	RL	Units
Dichlorodifluoromethane	5000	D1	140	(v/v)
Chloromethane	ND	D1	270	ppb (v/v)
1,2-Dichloro-1,1,2,2-	1.2	22	2,0	PP2 (1/1/
tetrafluoroethane	3200	D	140	ppb (v/v)
Vinyl chloride	92		8.4	ppb (v/v)
Bromomethane	ND		8.4	ppb (v/v)
Chloroethane	250		17	ppb (v/v)
Trichlorofluoromethane	11		8.4	ppb (v/v)
1,1-Dichloroethene	ND		8.4	ppb (v/v)
Carbon disulfide	ND		42	ppb (v/v)
1,1,2-Trichloro-1,2,2-				
trifluoroethane	ND		8.4	ppb (v/v)
Acetone	ND		42	ppb (v/v)
Methylene chloride	ND		8.4	ppb (v/v)
trans-1,2-Dichloroethene	ND		8.4	ppb (v/v)
1,1-Dichloroethane	10		8.4	ppb (v/v)
Vinyl acetate	ND		42	ppb (v/v)
cis-1,2-Dichloroethene	14		8.4	ppb (v/v)
2-Butanone	ND		42	ppb (v/v)
Chloroform	ND		8.4	ppb (v/v)
1,1,1-Trichloroethane	ND		8.4	ppb (v/v)
Carbon tetrachloride	ND		8.4	ppb (v/v)
Benzene	580		8.4	ppb (v/v)
1,2-Dichloroethane	ND		8.4	ppb (v/v)
Trichloroethene	12		8.4	ppb (v/v)
1,2-Dichloropropane	ND		8.4	ppb (v/v)
Bromodichloromethane	ND		8.4	ppb (v/v)
cis-1,3-Dichloropropene	ND		8.4	ppb (v/v)
4-Methyl-2-pentanone	ND	G	84	ppb (v/v)
Toluene	31		8.4	ppb (v/v)
trans-1,3-Dichloropropene	ND		8.4	ppb (v/v)
1,1,2-Trichloroethane	ND		8.4	ppb (v/v)
Tetrachloroethene	ND		8.4	ppb (v/v)
2-Hexanone	ND		130	ppb (v/v)
Dibromochloromethane	ND		8.4	ppb (v/v)
1,2-Dibromoethane (EDB)	ND		8.4	ppb (v/v)
Chlorobenzene	600		8.4	ppb (v/v)
Ethylbenzene	91	•	8.4	ppb (v/v)
Xylenes (total)	230		8.4	ppb (v/v)
Styrene	ND		8.4	ppb (v/v)
Bromoform	ND		8.4	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		8.4	ppb (v/v)
Benzyl chloride	ND		42	ppb (v/v)

^{1 =} Reporting limit elevated due to high level of moisture/carbon dioxide.

D = Compound quantitated using a secondary dilution.

G = Reporting limit(s) raised due to matrix interference.

ND = Not Detected

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-27 9695B

LAB ID:

129361-0006-SA

Matrix:

AIR

Sampled: 05 NOV 97

Authorized:

14 NOV 97

Prepared: N/A

Received: 14 NOV 97 Analyzed: 15 NOV 97

Instrument:

GC/MS-A

Dilution: 4.2

Parameter Result Qualifier RL Units

4-Ethyltoluene	44	8.4	(v/v) dag
1,3,5-Trimethylbenzene	47	8.4	ppb (v/v)
1,2,4-Trimethylbenzene	110	8.4	ppb (v/v)
1,3-Dichlorobenzene	ND	8.4	(v/v) dqq
1,4-Dichlorobenzene	240	8.4	ppb (v/v)
1,2-Dichlorobenzene	9.1	8.4	ppb (v/v)
1,2,4-Trichlorobenzene	ND	84	ppb (v/v)
Hexachlorobutadiene	ND	17	ppb (v/v)
1,3-Butadiene	ND	42	ppb (v/v)
1,4-Dioxane	ND	42	ppb (v/v)

Received: 14 NOV 97

Analyzed: 15 NOV 97

Services

Volatile Organics by GCMS - EPA TO14

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-57 A-286

LAB ID:

129361-0007-SA

Matrix:

AIR

Authorized: Instrument:

Parameter

14 NOV 97

GC/MS-A

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 28

Result Qualifier RL Units

Dichlorodifluoromethane	1300	56	ppb (v/v)
Chloromethane	ND	110	ppb (v/v)
1,2-Dichloro-1,1,2,2-			
tetrafluoroethane	1200	56	ppb (v/v)
Vinyl chloride	130	56	ppb (v/v)
Bromomethane	ND	56	ppb (v/v)
Chloroethane	210	110	ppb (v/v)
Trichlorofluoromethane	6200	56	ppb (v/v)
1,1-Dichloroethene	ND	56	ppb (v/v)
Carbon disulfide	ND	280	ppb (v/v)
1,1,2-Trichloro-1,2,2-			
trifluoroethane	ND	56	ppb (v/v)
Acetone	ND	280	ppb (v/v)
Methylene chloride	ND	56	ppb (v/v)
trans-1,2-Dichloroethene	ND	56	ppb (v/v)
1,1-Dichloroethane	ND	56	ppb (v/v)
Vinyl acetate	ND	280	ppb (v/v)
cis-1,2-Dichloroethene	ND	56	ppb (v/v)
2-Butanone	290	280	ppb (v/v)
Chloroform	ND	56	ppb (v/v)
1,1,1-Trichloroethane	ND	56	ppb (v/v)
Carbon tetrachloride	ND	56	ppb (v/v)
Benzene	ND	56	ppb (v/v)
1,2-Dichloroethane	ND	56	ppb (v/v)
Trichloroethene	ND	56	ppb (v/v)
1,2-Dichloropropane	ND	56	ppb (v/v)
Bromodichloromethane	ND	56	ppb (v/v)
cis-1,3-Dichloropropene	ND	56	ppb (v/v)
4-Methyl-2-pentanone	ND	280	ppb (v/v)
Toluene	ND	56	ppb (v/v)
trans-1,3-Dichloropropene	ND	56	ppb (v/v)
1,1,2-Trichloroethane	ND	56	ppb (v/v)
Tetrachloroethene	ND	56	ppb (v/v)
2-Hexanone	ND	840	ppb (v/v)
Dibromochloromethane	ND	56	ppb (v/v)
1,2-Dibromoethane (EDB)	ND	56	ppb (v/v)
Chlorobenzene	69	56	ppb (v/v)
Ethylbenzene	ND	56	ppb (v/v)
Xylenes (total)	ND	56	ppb (v/v)
Styrene	ND	56	ppb (v/v)
Bromoform	ND	56	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND	56	ppb (v/v)
Benzyl chloride	ND	280	ppb (v/v)
4-Ethyltoluene	ND	56	ppb (v/v)
1,3,5-Trimethylbenzene	ND	56	ppb (v/v)
1,2,4-Trimethylbenzene	ND	56	ppb (v/v)
-			

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-57 A-286

LAB ID:

129361-0007-SA

Matrix:

AIR

Sampled: 05 NOV 97

Authorized:

14 NOV 97

Prepared: N/A

Received: 14 NOV 97

Instrument:

GC/MS-A

Analyzed: 15 NOV 97

Parameter	Result Qualifier	RL	Units
1,3-Dichlorobenzene 1,4-Dichlorobenzene 1,2-Dichlorobenzene 1,2,4-Trichlorobenzene Hexachlorobutadiene 1,3-Butadiene 1,4-Dioxane	ND 170 ND ND ND ND ND	56 56 56 560 110 280 280	ppb (v/v)

Client Name: O'Brien & Gere Engineers, Inc.

Client ID: GW-66 136 LAB ID: 129361-0008-SA

Matrix: AIR Sampled: 05 NOV 97 Received: 14 NOV 97
Authorized: 14 NOV 97 Prepared: N/A Analyzed: 15 NOV 97

Authorized: 14 NOV 97 Prepared: N/I Instrument: GC/MS-B Dilution: 32

Parameter	Result	Qualifier	R	L Units
Dichlorodifluoromethane	2500		63	ppb (v/v)
Chloromethane	ND		130	ppb (v/v)
1,2-Dichloro-1,1,2,2-				, , , , ,
tetrafluoroethane	7200		63	ppb (v/v)
Vinyl chloride	ND		63.	ppb (v/v)
Bromomethane	ND		63	ppb (v/v)
Chloroethane	ND		130	ppb (v/v)
Trichlorofluoromethane	ND		63	ppb (v/v)
1,1-Dichloroethene	ND		63	ppb (v/v)
Carbon disulfide	ND		320	ppb (v/v)
1,1,2-Trichloro-1,2,2-			63	
trifluoroethane	ND		63 320	ppb (v/v)
Acetone	ND			ppb (v/v)
Methylene chloride	ND		63 63	ppb (v/v)
trans-1,2-Dichloroethene	ND		63	ppb (v/v)
1,1-Dichloroethane	ND			ppb (v/v)
Vinyl acetate	ND		320 63	ppb (v/v)
cis-1,2-Dichloroethene	ND			ppb (v/v)
2-Butanone	ND		320	ppb (v/v)
Chloroform	ND		63	ppb (v/v)
1,1,1-Trichloroethane	ND		63	ppb (v/v)
Carbon tetrachloride	ND		63	ppb (v/v)
Benzene	100		63	ppb (v/v)
1,2-Dichloroethane	ND		63	ppb (v/v)
Trichloroethene	ND	•	63	ppb (v/v)
1,2-Dichloropropane	ND		63 63	ppb (v/v) ppb (v/v)
Bromodichloromethane	ND		63	ppb (v/v)
cis-1,3-Dichloropropene	ND ND		320	ppb (v/v)
4-Methyl-2-pentanone	ND		63	ppb (v/v)
Toluene	ND		63	ppb (v/v)
trans-1,3-Dichloropropene	ND		63	ppb (v/v)
1,1,2-Trichloroethane	ND		63	ppb (v/v)
Tetrachloroethene 2-Hexanone	ND		950	ppb (v/v)
2-Hexanone Dibromochloromethane	ND		63	ppb (v/v)
	ND		63	ppb (v/v)
1,2-Dibromoethane (EDB) Chlorobenzene	100		63	ppb (v/v)
Ethylbenzene	ND		63	ppb (v/v)
Xylenes (total)	76		63	ppb (v/v)
Styrene	ND		63	ppb (v/v)
Bromoform	ND		63	ppb (v/v)
1,1,2,2-Tetrachloroethane	ND		63	ppb (v/v)
Benzyl chloride	ND		320	ppb (v/v)
4-Ethyltoluene	ND		63	ppb (v/v)
1,3,5-Trimethylbenzene	ND		63	ppb (v/v)
1,2,4-Trimethylbenzene	ND		63	ppb (v/v)
1/2/. 111/00/1/120/120/10	-		-	

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-66 136

LAB ID:

129361-0008-SA

Matrix: Authorized:

AIR 14 NOV 97

Sampled: 05 NOV 97

Prepared: N/A

Received: 14 NOV 97 Analyzed: 15 NOV 97

Instrument:

GC/MS-B

Parameter	Result Qu	alifier R	L Units
1,3-Dichlorobenzene	ND	63	(v/v) dag
1,4-Dichlorobenzene	120	63	ppb (v/v)
1,2-Dichlorobenzene	ND	63	ppb (v/v)
1,2,4-Trichlorobenzene	ND	630	ppb (v/v)
Hexachlorobutadiene	ND	130	ppb (v/v)
1,3-Butadiene	ND	320	ppb (v/v)
1,4-Dioxane	ND	320	ppb (v/v)

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-45 12841

LAB ID:

129361-0001-SA

Matrix: Authorized: AIR 14 NOV 97

Sampled: 05 NOV 97

Prepared: N/A

Instrument:

GC-1

Dilution: 2.1

Analyzed: 14 NOV 97

Received: 14 NOV 97

Avg.

Parameter

Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

120 8.6 21

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-26 9323BB

LAB ID:

129361-0002-SA

Matrix:

AIR 14 NOV 97 Sampled: 05 NOV 97

Received: 14 NOV 97

Authorized:

Parameter

GC-1

Prepared: N/A Dilution: 3.4

Analyzed: 14 NOV 97

Instrument: GC

Avg.

Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

290

17

34

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

Instrument:

GW-25 9530BB

LAB ID:

129361-0003-SA

Matrix:

AIR

Authorized:

14 NOV 97

GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 3.4

Received: 14 NOV 97

Analyzed: 14 NOV 97

Avg.

Parameter

Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

290 4.4

34

Received: 14 NOV 97

Analyzed: 14 NOV 97

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-11 93298

LAB ID:

129361-0004-SA

Matrix:

Authorized:

AIR 14 NOV 97 Sampled: 05 NOV 97

Prepared: N/A

Instrument:

GC-1

Dilution: 3.4

Avg.

Parameter

Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

370

10

34

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-28 93085

LAB ID:

129361-0005-SA

Matrix: Authorized: Instrument:

AIR

14 NOV 97

GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 3.6

Received: 14 NOV 97

Analyzed: 15 NOV 97

Avg.

Parameter

Result RSD Qualifier RL

Units

Total Gaseous Nonmethane

Organics as Carbon

340 7.4 36

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-27 9695B

LAB ID:

Matrix:

129361-0006-SA

AIR

Sampled: 05 NOV 97

Authorized: Instrument:

14 NOV 97 GC-1

Prepared: N/A

Dilution: 3.4

Received: 14 NOV 97

Analyzed: 15 NOV 97

Avg.

Parameter

Result RSD Qualifier

10

 \mathtt{RL}

Units

Total Gaseous Nonmethane

Organics as Carbon

310

34

Received: 14 NOV 97

Analyzed: 15 NOV 97

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-57 A-286

LAB ID:

129361-0007-SA

Matrix:

Authorized:

AIR 14 NOV 97 Sampled: 05 NOV 97

Prepared: N/A

Instrument:

GC-1

Dilution: 2.8

Avg.

Parameter

Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

290 2.8 28

EPA Method 25C TCA/FID Analysis

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

Instrument:

GW-66 136

LAB ID:

129361-0008-SA

Matrix:

AIR

Sampled: 05 NOV 97

Authorized:

14 NOV 97 GC-1

Prepared: N/A

Dilution: 3.2

Received: 14 NOV 97

Analyzed: 15 NOV 97

Parameter

Avg. Result RSD Qualifier

RL

Units

Total Gaseous Nonmethane

Organics as Carbon

310 1.5 32

Received: 14 NOV 97

Analyzed: 14 NOV 97

Fixed Gases Method 3C

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-45 12841

LAB ID:

129361-0001-SA

Matrix:

Parameter

AIR

GC-1

Authorized: Instrument:

14 NOV 97

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 2.1

Avg.

Result RPD Qualifier

RLUnits

Nitrogen

38 0.32 2.1

Received: 14 NOV 97 Analyzed: 14 NOV 97

Fixed Gases Method 3C

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-26 9323BB

LAB ID:

129361-0002-SA

Matrix:

AIR

Authorized: Instrument: 14 NOV 97

GC-1

Sampled: 05 NOV 97 Prepared: N/A

Dilution: 3.4

Avg.

Parameter

Result RPD Qualifier

RL

Units

Nitrogen

7.1 0.071

3.4

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

Authorized:

GW-25 9530BB

LAB ID:

129361-0003-SA

Matrix:

AIR 14 NOV 97 Sampled: 05 NOV 97

Prepared: N/A

Instrument: GC-1

Dilution: 3.4

Received: 14 NOV 97 Analyzed: 14 NOV 97

Avg.

Parameter

Result RPD Qualifier

 \mathtt{RL}

Units

Nitrogen

27 0.14

3.4

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-11 93298

LAB ID:

129361-0004-SA

Matrix:

Authorized: Instrument: AIR

14 NOV 97

GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 3.4

Received: 14 NOV 97

Analyzed: 14 NOV 97

Avg.

Parameter

Result RPD Qualifier

RL

Units

Nitrogen

ND

3.4

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-28 93085

LAB ID:

Matrix:

129361-0005-SA

Authorized: Instrument: AIR 14 NOV 97

GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 3.6

Received: 14 NOV 97

Analyzed: 15 NOV 97

Avg.

Parameter

Result RPD Qualifier

RL

Units

Nitrogen

9.4 2.8 3.6

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-27 9695B

LAB ID: Matrix: 129361-0006-SA

AIR 14 NOV 97 Sampled: 05 NOV 97

Result RPD Qualifier

Received: 14 NOV 97

Authorized:

Prepared: N/A

Analyzed: 15 NOV 97

Instrument:

Dilution: 3.4

Parameter

GC-1

Avg.

RL

Units

Nitrogen

11 1.2 3.4

Received: 14 NOV 97

Analyzed: 15 NOV 97

Fixed Gases Method 3C

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-57 A-286

LAB ID:

129361-0007-SA

Matrix:

123301 000 175

Authorized: Instrument: AIR 14 NOV 97

GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 2.8

Avg.

Parameter

Result RPD Qualifier

RL

Units

Nitrogen

36 0.66

2.8

Client Name:

O'Brien & Gere Engineers, Inc.

Client ID:

GW-66 136

LAB ID:

129361-0008-SA

Matrix:

Authorized: Instrument: AIR

14 NOV 97 GC-1

Sampled: 05 NOV 97

Prepared: N/A

Dilution: 3.2

Received: 14 NOV 97 Analyzed: 15 NOV 97

Avg.

Parameter

Result RPD Qualifier

RL

Units

Nitrogen

49 0.78 3.2

QC LOT ASSIGNMENT REPORT - MS QC Air Toxics

Laboratory			QC Lot Number	QC Run Number	MS QC Run Number
Sample Number	QC Matrix	QC Category	(DCS)	(SCS/BLANK/LCS)	(SA,MS,SD,DU)
129361-0001-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0002-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0003-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0004-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0005-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0006-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0007-SA	AIR	TO-14	15 NOV 97-A1	15 NOV 97-A1	
129361-0008-SA	AIR	TO-14	15 NOV 97-B1	15 NOV 97-B1	
129361-0001-SA	AIR	E25C-NMO-G		14 NOV 97-B1	·
129361-0002-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0003-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0004-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0005-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0006-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0007-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0008-SA	AIR	E25C-NMO-G		14 NOV 97-B1	
129361-0001-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0002-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0003-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0004-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0005-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0006-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0007-SA	AIR	EPA3C-G		14 NOV 97-B1	
129361-0008-SA	AIR	EPA3C-G		14 NOV 97-B1	

DUPLICATE CONTROL SAMPLE REPORT

Air Toxics

Project: 129361

Method TO-14 - Volatile Organics Category: TO-14

Matrix: AIR
QC Lot: 15 NOV 97-A1 Date Analyzed: 15 NOV 97

Concentration Units: ppb (v/v)

Concentration							Acceptance	
	Spiked Measured		&Reco	Recovery RPD		Limits		
Analyte		DCS1	DCS2	DCS1	DCS2		Recov.	RPD
Methylene chloride	48.4	50.3	50.0	104	103	0.7	80~120	20
1,1-Dichloroethene	48.4	49.0	49.4	101	102	0.7	70-120	20
Trichloroethene	36.8	37.8	37.8	103	103	0.1	80-120	20
Toluene	48.4	55.0	57.3	114	118	4.1	70-120	20
1,1,2,2-Tetrachloroethane	55.6	56.2	57.5	101	103	2.3	60-130	20

Category: TO-14 Method TO-14 - Volatile Organics

Matrix: AIR

QC Lot: 15 NOV 97-B1 Date Analyzed: 15 NOV 97

Concentration Units: ppb (v/v)

Concentration							Acceptance	
•	Spiked	Meas	ured	₹Reco	very	RPD	Limit	s
Analyte		DCS1	DCS2	DCS1	DCS2		Recov.	RPD
Methylene chloride	51.5	49.2	47.9	96	93	2.6	80-120	20
1,1-Dichloroethene	50.5	46.9	46.1	93	91	1.8	70-120	20
Trichloroethene	52.5	49.8	50.1	95	95	0.6	80-120	20
Toluene	52.5	49.7	51.2	95	98	3.0	70-120	20
1,1,2,2-Tetrachloroethane	50.5	60.6	61.7	120	122	1.7	60-130	20

Calculations are performed before rounding to avoid round-off errors in calculated results.

METHOD BLANK REPORT

Air Toxics

Project: 129361

Volatile Organics by GCMS - EPA TO-14

Test: TO-14-G
Matrix: AIR
QC Run: 15 NOV 97-A1 Date Analyzed: 15 NOV 97

			Reporting	
Analyte	Result	Units	Limit	
Dichlorodifluoromethane	ND	ppb (v/v)	2.0	
Chloromethane	ND	ppb (v/v)	4:.0	
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ppb (v/v)	2.0	
Vinyl chloride	ND	ppb (v/v)	2.0	
Bromomethane	ND	ppb (v/v)	2.0	
Chloroethane	ND	ppb (v/v)	4.0	
Trichlorofluoromethane	ND	ppb (v/v)	2.0	
1,1-Dichloroethene	ND	ppb (v/v)	2.0	
Carbon disulfide	ND	ppb (v/v)	10	
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ppb (v/v)	2.0	
Acetone	ND	ppb (v/v)	10	
Methylene chloride	ND	ppb (v/v)	2.0	
trans-1,2-Dichloroethene	ND	ppb (v/v)	2.0	
1,1-Dichloroethane	ND	ppb (v/v)	2.0	
Vinyl acetate	ND	ppb (v/v)	10	
cis-1,2-Dichloroethene	ND	ppb (v/v)	2.0	
2-Butanone	ND	ppb (v/v)	10	
Chloroform	ND	ppb (v/v)	2.0	
1,1,1-Trichloroethane	ND	ppb (v/v)	2.0	
Carbon tetrachloride	ND	ppb (v/v)	2.0	
Benzene	ND	ppb (v/v)	2.0	
1,2-Dichloroethane	ND	ppb (v/v)	2.0	
Trichloroethene	ND	ppb (v/v)	2.0	
1,2-Dichloropropane	ND	ppb (v/v)	2.0	
Bromodichloromethane	ND	ppb (v/v)	2.0	
cis-1,3-Dichloropropene	ND	ppb (v/v)	2.0	
4-Methyl-2-pentanone	ND	ppb (v/v)	10	
Toluene	ND	ppb (v/v)	2.0	
trans-1,3-Dichloropropene	ND	ppb (v/v)	2.0	
1,1,2-Trichloroethane	ND	ppb (v/v)	2.0	
Tetrachloroethene	ND	ppb (v/v)	2.0	
2-Hexanone	ND	ppb (v/v)	30	
Dibromochloromethane	ND	ppb (v/v)	2.0	
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	2.0	
Chlorobenzene	ND	ppb (v/v)	2.0	
Ethylbenzene	ND	ppb (v/v)	2.0	
Xylenes (total)	ND	ppb (v/v)	2.0	
Styrene	ND	ppb (v/v)	2.0	
Bromoform	ND	ppb (v/v)	2.0	
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	2.0	
Benzyl chloride	ND	ppb (v/v)	10	
4-Ethyltoluene	ND	ppb (v/v)	2.0	
1,3,5-Trimethylbenzene	ND	ppb (v/v)	2.0	
1,2,4-Trimethylbenzene	ND	ppb (v/v)	2.0	
1,3-Dichlorobenzene	ND	ppb (v/v)	2.0	
1,4-Dichlorobenzene	ND	ppb (v/v)	2.0	
1,2-Dichlorobenzene	ND	ppb (v/v)	2.0	
T' T-DICHTOTODEHTEHE	MD	PPD (4)4)	∠.∪	

ND = Not Detected

METHOD BLANK REPORT (cont.)

Air Toxics

Project: 129361

Test: TO-14-G Volatile Organics by GCMS - EPA TO-14

(cont.)

Matrix: AIR QC Run: 15 NOV 97-A1

Date Analyzed: 15 NOV 97 Reporting

Analyte	Result	Units	Reporting Limit
1,2,4-Trichlorobenzene	ND	ppb (v/v)	20
Hexachlorobutadiene	ND	ppb (v/v)	4.0
1,3-Butadiene	ND	ppb (v/v)	10
1,4-Dioxane	ND	ppb (v/v)	10

METHOD BLANK REPORT (cont.)

Air Toxics

Project: 129361

Test: TO-14-G Volatile Organics by GCMS - EPA TO-14

(cont.)

Matrix: AIR

QC Run: 15 NOV 97-B1 Date Analyzed: 15 NOV 97

QC Run: 15 NOV 97-B1			Reporting
Analyte	Result	Units	Limit
Dichlorodifluoromethane	ND	ppb (v/v)	2.0
Chloromethane	ND	ppb (v/v)	4.0
1,2-Dichloro-1,1,2,2-tetrafluoroethane	ND	ppb (v/v)	2.0
Vinyl chloride	ND	ppb (v/v)	2.0
Bromomethane	ND	ppb (v/v)	2.0
Chloroethane	ND	ppb (v/v)	4.0
Trichlorofluoromethane	ND	ppb (v/v)	2.0
1,1-Dichloroethene	ND	ppb (v/v)	2.0
Carbon disulfide	ND	ppb (v/v)	10
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	ppb (v/v)	2.0
Acetone	ND	ppb (v/v)	10
Methylene chloride	ND	ppb (v/v)	2.0
trans-1,2-Dichloroethene	ND	ppb (v/v)	2.0
1,1-Dichloroethane	ND	ppb (v/v)	2.0
Vinyl acetate	ND	ppb (v/v)	10
cis-1,2-Dichloroethene	ND	ppb (v/v)	2.0
2-Butanone	ND	ppb (v/v)	10
Chloroform	ND	ppb (v/v)	2.0
1,1,1-Trichloroethane	ND	ppb (v/v)	2.0
Carbon tetrachloride	ND	ppb (v/v)	2.0
Benzene	ND	ppb (v/v)	2.0
1,2-Dichloroethane	ND	ppb (v/v)	2.0
Trichloroethene	ND	ppb (v/v)	2.0
1,2-Dichloropropane	ND	ppb (v/v)	2.0
Bromodichloromethane	ND	ppb (v/v)	2.0
cis-1,3-Dichloropropene	ND	ppb (v/v)	2.0
4-Methyl-2-pentanone	ND	ppb (v/v)	10
Toluene	ND	ppb (v/v)	2.0
trans-1,3-Dichloropropene	ND	ppb (v/v)	2.0
1,1,2-Trichloroethane	ND	ppb (v/v)	2.0
Tetrachloroethene	ND	ppb (v/v)	2.0
2-Hexanone	ND	ppb (v/v)	30
Dibromochloromethane	ND	ppb (v/v)	2.0
1,2-Dibromoethane (EDB)	ND	ppb (v/v)	2.0
Chlorobenzene	ND	ppb (v/v)	2.0
Ethylbenzene	ND	ppb (v/v)	2.0
Xylenes (total)	ND	ppb (v/v)	2.0
Styrene	ND	ppb (v/v)	2.0
Bromoform	ND	ppb (v/v)	2.0
1,1,2,2-Tetrachloroethane	ND	ppb (v/v)	2.0
Benzyl chloride	ND	ppb (v/v)	10
4-Ethyltoluene	ND	ppb (v/v)	2.0
1,3,5-Trimethylbenzene	ND	ppb (v/v)	2.0
1,2,4-Trimethylbenzene	ND	ppb (v/v)	2.0
1,3-Dichlorobenzene	ND	ppb (v/v)	2.0
1,4-Dichlorobenzene	ND	ppb (v/v)	2.0
•		** ' ' ' '	

ND = Not Detected

METHOD BLANK REPORT (cont.)

15 NOV 97-B1

Air Toxics

Project: 129361

Test: TO-14-G

Matrix: AIR

QC Run:

Volatile Organics by GCMS - EPA TO-14

Date Analyzed: 15 NOV 97

(cont.)

Reporting

Units Analyte Result Limit ND 2.0 1,2-Dichlorobenzene ppb (v/v)1,2,4-Trichlorobenzene ND 20 ppb (v/v)ND Hexachlorobutadiene ppb (v/v)4.0 1,3-Butadiene ND 10 ppb (v/v)1,4-Dioxane ND ppb (v/v)10

Test:

EPA-25C-NMO-G

Method EPA 25C

Matrix: AIR

QC Run: 14 NOV 97-B1 Date Analyzed: 14 NOV 97

Reporting

Analyte Result Units Limit

Total Gaseous Nonmethane

Organics as Carbon

ND

ppm-c

10

Test:

EPA3C-G

Method EPA 3C - Fixed Gases

Matrix: AIR

QC Run: 14 NOV 97-B1 Date Analyzed: 14 NOV 97

Reporting Limit

Analyte

Nitrogen

Result

Units

1.0

ND

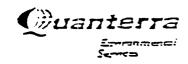
% (v/v)

ND = Not Detected

	ن ش	KISTER RELD	DATA RECORD		~ /
OBG			VFR ID:	T-42	
CANISTER SERIAL #:	128 41		— 	<u></u>	The later Com
	0/23/9	7 A	i		į
		/ //	1		: (soonefmi)
	W-45		- Initials: M	L(1 / 12m POR JD
SITE LOCATION: Con	nB& FILL SO	utH			
		TIME	VAC Gramm Hel	<u> </u>	
READING			₩ ३९६ <u>घ</u> . (लांख	DATE	INITIALS
INITIAL VACUUM CHECK		• .	30"	10/30/97	n
INITIAL FIELD VACUUM		731	36"	11/5/97	RMN
final feet reacing		1545	16	11/5/57	Rm
gauge reacing upon rece	FT				
	∪ac≂	בוונבט אדטדא	TER PRESSURIZATIO	N.	
INITIAL VACUUM (Inches Hç a	ne PSIA) .		b"	11/14/97	1. da
Final Pressure (PSIA)			24.6	11/14/97	da
Pressurezan casa Ho		•			
CCMMENTS			G	Gours	Fish rate Flance (mt/min)
		•		0.3	152
				1 1	153 - 188.7 79.2 - 32.2
				2 1	35.5 · 47.7
			<u> </u>	= 1	19.3 - 20.5
· · ·	· ·			<u> </u>	13.2 - 12.4
				10 1	7.52 - 3.2
				12	i.i - 1.9
			<u>}</u>	24	3.2 - 3.5

- 2

	lanister field o	DATA RECORD		- 2
CBG		VFR IC:	3-4	
LANISTER SERIAL #: 9323 JATE CLEANED: /0/23/ LENT SAMPLE # GW-26 INTELOCATION: Combs FILL S			c/12m POR JD	
REASING	TIME	VAC from Hell or PRESS, Issiel	DATE	INITIALS
NITIAL VACUUM CHECK		30"	10/30/97	M
NITIAL FIELD VACUUM	740	30"	11/5/97	RmN
rnal relo reacing	1547	15"	11/5/97	RmN
BAUGE REACING UPON RECEFT				
Ŀs	בדבווגט צגטדגגס	r przesurizatio		
NITAL VACUUM (Inches Hg and PSIA)		154	11/14/97	ide
final pressure (PSIA)		24.6	11/14/97	do
COMMENTS	 	[9	and, Time (Hours)	Flow rate Rance (mt/min)
			0.≡ 1 2 4 6	152 - 166.7 75.2 - 322 35.3 - 41.7 15.3 - 32.6 13.2 - 12.4
		 	10) 12	9.9 - 10.4 7.92 - 3.2 8.8 - 8.9



C	LIBR RETZINA	DATA RECORD		-3_
CLENT: OBG CANISTER SERIAL 2: 9530 DATE CEANE: $10/23/$ CENT SAMPLE: $6W-25$		Figw section;_		: (soo me/min)
STTELECATION: COMBE FILL	Sou 174	Initials:	_ rc	1 / 12m FOR JD
READING	TIME	₩ 28853. (mid)	DATE	INITIALS
INITIAL VACUUM CHECK		30"	10/30/97	m
INITIAL FIELD VACUUM	745	30"	11/5/97	RMN
Final Field Reading	1551	16	11/5/97	Rm 1"
GAUGE REACING UPON RECEPT				
L45	כהבדכהץ באונד	er pressurizatio	:ห 	
INITAL VACUUM (Inches Hg and PSIA)		15"	11/14/97	1. 20
final Pressure (PSIA)		24.6	11/14/97	de
Pressure cast Me CEMMENTS	·	(Chaurs	řísw rate Řance (mi/min)
		-	0.5 1 2 1 4 1 6 1	152 - 188.7 79.2 - 32.2 15.5 - 41.7 19.3 - 20.8 13.1 - 13.8
		<u> </u>	ā I 10 I 12 }	9.9 - 10.4 7.52 - 8.3 8.5 - 4.9

CANISTER FIELD DATA RECORD

CA:	MISTER RELE	DATA RECOR	3	-4
CAMPLE : CAMBE FILL SOL			709 WNW	c / 12cm FOR JD
READING	TIME	VAC, Granus Ho or PRESS, (pric	· 1	INITIALS
INITIAL VACUUM CHECK		30"	10/30/97	m
INITIAL FIELD VACUUM	735	30"	11/5/97	RMN
final regulation	1555	16	11/5/17	Rinn
SAUGE REACING UPON RECEPT				
بعدة	كالك لالمكاتب	TER PRESSURIZAT	icii	
NITIAL VACUUM (inches Hg and FSIA)	. ·	151	11/14/97	1. do
RNAL PRESSURE (PSIA)		24.6	11/14/9	1 40
CEMMENTS	·		Care, Time (Hours)	Fish rate Fishes (mil/min)
			0.5 1 1 2 2	158 - 188.7 79.2 - 32.2 39.5 - 41.7 19.6 - 20.8 13.2 - 12.8 9.3 - 10.4 7.92 - 3.2 6.5 - 8.9 3.2 - 3.5

	حمد	KISTER FIELD D	ATA RECORD ,	HT-43	-5
CUENT: OBC			VFR 127		
			- 0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	=:_ <u> </u>	1,
CANISTER SERIAL #	93085		- (
DATE CLEANED:	10/23/9	7 A	Flow seconds	mVmin	(soonlymin)
CLENT SAMPLE #	EW-20		, <u>, , , , , , , , , , , , , , , , , , </u>		/ 1
STITE LOCATION:	Com Br FIL SOG	174	lucais: / 0		/ RM FOR JD
		TIME	VAC, Snemes Hell or PRESS. (cried	DATE	INITIALS
READING	· · · · · · · · · · · · · · · · · · ·		, , , , , , , , , , , , , , , , , , , ,		
INITIAL VACUUM CHE	cx		30"	10/30/97	M
INITIAL FIELD VACUUN	.1	127	38"	11/5/91	RAN
			<u>'. </u>		
FINAL RELO READING		1601	16"	11/5/91	RMN
gauge reading upci	N RECEPT				
	LASCR	ATORY CANISTE	i PRESSURIZATIO:	, ,	
INITAL VACUUM (inch	es Hg and PSIA) .		16"	11/14/97	· da
Final pressure (PSIA	.1		24.4	1/1/14/971	do
Pressurization gast Hy	0				
COMMENTS			[orra. Turne (Hours)	Flow rate Flance (m!/min)
CC		· · · · · · · · · · · · · · · · · · ·			
				0.5 1	152 - 166.7
			 	2 1	<u> 79.2 - 32.2 </u>
				4 1	38.8 - 41.7 - 1 18.8 - 20.8 _
			1	a 1	15.2 - 20.9 13.2 - 13.9
			1	ā I	9.3 - 10.4
				10 1	7.52 - 3.2
				12	5.5 • 4.9
				24	3.3 - 1.5

	ورمي	var en menn c	コン・ストー・ストー		Ø
CIENT: OB	3 <i>G</i>		VFR IC:	T-51	
CANISTER SERIAL AT	9695B		Ouration of term	عظ كـ نـو:	a.com
DATE CLEANES:	10/23/9	7 A	- !		: (soonlymin)
CIENT SAMPLE #	GW-27		Initials: M		/ 1
מדב נבכאדוכא:	COMBE FILL SOUTH	(Initials: /0"		1 / MIN POR JD
		TIME	VAC Snenes Hell		
reading		· · · · · · · · · · · · · · · · · · ·	₩ 29823. (mid)	DATE	INITIALS
INITIAL VACUUM CH	ECK	• .	30"	10/30/97	m
INITAL FIELD VACUU	iM	751	30"	11/5/97	Rmn
Final Field Reading		1606	16"	11/5/97	Kwy
gauge reading upg	IN RECEPT				
	LASCRA	בדכוונבם צונבדב	R PRESSURIZATIC	Ņ	
NITAL VACUUM (Inc	nes Hg and PSIA)	·	15 V	11/14/97	de
FINAL PRESSURE (PSI	<u> </u>		24.6	11/14/97	1 42
Pressurization gast 1	la	•			
COMMENTS			و	me. Time	Fisw rate Rance (m!/min)
		•			
				0.5	155 - 188.7 79.1 - 32.2
				2 1	78.2 · 32.2
		·		4 1	19.3 - 20.9
				ŝ	13.2 - 12.9
			<u> </u>	ā I	3.3 - 10.4
				12 1	7.52 - 3.2
			<u></u>	24	1.1 - 1.5
			•		

C	LANSTER FIELD	DATA RECORD		~ 7					
TIENT: OBG LANISTER SERIAL 5: $A - 28G$ LATECLEANED: $/0/23/$ TENT SAMPLE 5: $GW - 57$ SITELOCATION: $GWBGFILL$	VFR ID: HT-40 Duration of come: 5 box/min Flow seeing: 508 ml/min (Soome/min) LC / 1204 POR JD								
READING	TIME	VAC, 50000 Hell or 79855, Irriel	DATE	INITIALS					
NITIAL VACUUM CHECK		30"	10/30/97	n					
NITAL FIELD VACUUM	708	30"	11/5/97	RMN					
final field reading	1611	19"	11/5/47	Rmw					
gauge reading upon recept									
Lis	כהגדכהץ כגיונוד	R PRESSURIZATION							
NITAL VACUUM (Inches Hg and PSIA)		1211	11/14/97	· Ha					
TNAL PRESEURE (PSIA)		246	11/14/97	da					
on propertly at anic	ado Cap	not [s	0.5 1 2 4 1 6 1 1 1 1 1 1 1 1	Figw rate Fance (mi/min) 153 - 168.7 75.1 - 32.2 35.5 - 41.7 15.5 - 20.8 13.1 - 12.8 9.5 - 10.4 7.52 - 3.2					
		<u></u>	24	3 - 4.9					

CANISTER FIELD DATA RECORD

-8

DBG	1	VFR 10: 47-52									
CANISTER SERIAL # 136		Ourseign of compathttps://min.									
DATE CLEANE: / 0/23/9	Firm setting	Flow section (soo me /min)									
CENT SAMPLE & GW-66											
STELECATION: Combe FILL S	ગ ્ય િ	lordaist / 0	- Invitair M LC / 12 in FOR JD								
	TIME	VAC. Sname H or PRESS. Ichi		INITIALS							
RELDING		, -,									
INITIAL VACUUM CHECK	٠.	30"	10/30/97	m							
INITIAL FIELD VACUUM	720	30"	11/5/97	RMU							
final feld reading	1600	15	11/5/91	Rmn							
gauge reacing upon recept											
Laca	בוונבס צאטדב	ER ARESSURIZAT	TCH								
INITIAL VACUUM (Inches Hg and FSIA)		1411	11/14/97	de							
final pressure (PSIA)		24.6	11/14/97	1 do 1							
President gast He											
CCMMENTS			Carro, Time (Hours)	Flance (mi/min)							
	•		Q. <u>=</u> 1	155 - 188.7							
			1 1	79.2 + 32.2 1							
			2 1	35.5 - 41.7							
			1 5 1	15.2 - 22.5							
			1 8 1	3.5 - 10.4							
			10 1	7.52 - 3.2							
			12 1	i.i • 4.9 i							
·			1 24 1	3.2 - 3.5							

Chain of Custody Record

QUA-4124-1																										
O'BRICA & CERS SAL	1105	Project Manager Rob Neimere 11										Date Chain Of Custody Number 75058														
O'BRIEN & GERE ENGINE	28/63	Teleohone Number (Area Code)/Fax Number							Lab Number						13036											
		315 437-6100 315 463-7554							1			9	30	61	Pag	ie	/	of	/							
City State Zip C	ode	Site Contact				Lab Contact								Analysis (Attach list if						Ŧ						
5000 Britton Geld Porkway City State / Zipc East Syracuse VY Project Name	3057	Carrier/Waybil	IA						NF	9				- All	<u> </u>		more :	space	is n	eede	rd) 					
Project Name Ombe F. 11 South Contract/Purchase Order/Quote No.	·.	Carrier/Waybill Number										-Twmoc	Full Sca	3 C								•	al Instrue			
Jo5-# 3013 - 015 - 968 , P0 #	to follow	Matrix			Containers & Preservatives					56 -	٠,	3								Conditions of Receipt						
Sample I.D. No. and Description (Containers for each sample may be combined on one line)	Date	Time	Aqueous	Sed.	Soil	416	Unpres.	H2SO4	HNO3	HC	NaOH	ZnAc/ NaOH	Sym	SEW	-41-01	7										
GW-45 12841	11/5/97	1058				x							X	X	X.	X										
GW-26 9323BB	11/5/97	1140				X.							х	у	¥	x										
GW-25 9530 BB	11/5/97	1217				X							x	X	×	x							\perp			
GWII 93298	11/5/97	1259				ų							X.	7	×	x							\perp			
GW-28 93085	11/5/97	1332				X							х	×	×	X	_									
GW-27 9695B	11/5/97	1404				х							X.	×	又	X										
GW-57 A-286	11/5/97	1446		_		×							×	×	×	乂										
GW-66 136	11/5/97	1521				x							х	×	×	X				\downarrow			ightharpoonup	· ————		
					_										 								\perp		_	
																							_			
																							_			
Possible Hazard Identification Non-Hazard Flammable Skin Irritant	Poison B Un		ample I Ret	•		ent	[4	Dis	spos	al By	' Lab	,		\rchiv	ve Fo	or		Mon	ths lo	A fee onaer	may be than 3	assess months	sed if	f samples	are retai	ned
Turn Around Time Required								C Re	- <u>'</u>											90						
1. Relippuished By	ays 🗌 21 Days	Other _		Time	==		١,		-/					<u>-</u>									5.1.		T:	
2. Reinquished By		11/6/9	7		7 <i>0</i> -0		'	. Rec	eiveo	Бу				/									Date		Time	
2. Retinquished By		Date		Time	_/	/	2	. Rec	eivea	I Ву				•	,	/						D	Date		Time	/
3. Relinquished By		Date		Time		/	3	. Rec	eived	١.		بح	. 6	2.	ė					············			Date	14/9-	7 /	1:00
Comments Please analyze who 14 d	lays of so	mpling	+,,	m e		-				•														(UP	\

DISTRIBUTION: WHITE - Stays with the Sample; CANARY - Returned to Client with Report; PINK - Field Copy

Gas well Field data sheets

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Client	NIDED	
Client: Location:	NJDEP Combe Fill Landfill, Chester, NJ	
Gas Well No:	45 /284/	
Date:	11/5/97	
Sampler:	RMN	
Campion.		_
SUMMA Canister Samples:		
Sample parameters:	NMHC, TXS, TVOC, N2	
Sample time start:	1053	
Sample time end:	1058	
Hydrogen Sulfide Monitoring:	· "	
Sample time:	1050 Kesult = 0,0	LEL= 18-20% at 1051
Hydrogen Sulfide meter name:	Industrial Scientific	LEL: 18-20% at 1051
Meter model number:	<u> 4mx 271</u>	Oz = 5.8% at 1051
Meter serial number:	9206077-155	
		14, S = 0.0 ppm
Air Velocity Data (ft/min)		
Monitoring time:	1040	a contract
Velocity meter name:	SOLOMAT - HOT WIRE	129 MSX - NJDEP
Meter model number:	Mpm 500 €	
Meter serial number:	232431	•
Gas well temperature:	59°F	- Flows Solow detenable
Traverse Point	ft/min reading	- Flows below debeath
1	51 63-1100	THE DE ALNOR + VANE
2	57 40	of solomat
3	54 24	
4	32 18	
5	<u> </u>	
6	<u> </u>	
7		- very slight plume visible
8	<u> </u>	
average	(25+19)/2=22	

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards

[&]amp; Technology (NIST) within the limits of the Institute's calibration service.

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Client:	NJDEP
Location:	Combe Fill Landfill, Chester, NJ
Gas Well No:	26 9323 BB Andrent Temp: 52°F
Date:	11/5/97
Sampler:	RmN
SUMMA Canister Samples:	
Sample parameters:	NMHC, TXS, TVOC, N2
Sample time start:	1135
Sample time end:	1140
Hydrogen Sulfide Monitoring:	
Sample time:	1/30 H25 = 1 ppm
Hydrogen Sulfide meter name:	Industrial Scentific LEL = 10006
Meter model number:	<u> </u>
Meter serial number:	9206077-155 02 = 0.3%
Air Velocity Data (ft/min)	tra little
Monitoring time:	SOLUMNIT - HOTWISE 129 MSX - NJDEP
Velocity meter name:	
Meter model number: Meter serial number:	MPM 500 E
	23243/ (07°F
Gas well temperature:	67°F
Traverse Point	ft/min reading
1 1/30	316 1 253
2	361 275
3	345 248
4	396 270
5	345 241
6	314 212
7	239 193
•	Act and I see that

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards

& Technology (NIST) within the limits of the Institute's calibration service.

8

average

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Client:	NJDEP	
Location:	Combe Fill Landfill, Chester, NJ	
Gas Well No:	25	
Date:	11-5-97	
Sampler:	RMN	
SUMMA Canister Samples:		
Sample parameters:	NMHC, TXS, TVOC, N2	
Sample time start:	1212	
Sample time end:	1217	
Hydrogen Sulfide Monitoring:		
Sample time:	1210 H25 = 9 to 10	ppm
Hydrogen Sulfide meter name:	INDUSTRIA SCIENTIA LEL = 28 To 49	0/.
Meter model number:	Hmx 27/	70
Meter serial number:	9204077 155 02 : 8 6 9%	
At the last two Dates (false)		
Air Velocity Data (ft/min)	1200, 1219	
Monitoring time:		
Velocity meter name:	NDEP Salonet Hornine 129 MSZ	
Meter model number:	232431	
Meter serial number:	68°F	
Gas well temperature:		
Traverse Point	ft/min reading	
1	9 11	
2	3 7	
3	4 0	
. 4	7 9	
5	11 17	
6	14 30	
7	9 17	1
8	3 18 Slight heat plum.	e noticed

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the Institute's calibration service.

average

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Client:

Combe Fill Landfill, Chester, NJ Location: Gas Well No: 11-5-97 Date: RmN Sampler: **SUMMA Canister Samples:** Sample parameters: NMHC, TXS, TVOC, N2 Sample time start: 1254 Sample time end: **Hydrogen Sulfide Monitoring:** Sample time: Hydrogen Sulfide meter name: Meter model number: Meter serial number: 0; = 0.1% Air Velocity Data (ft/min) Monitoring time: NJDEP Solond Hotwic 129 msx Velocity meter name:

NJDEP

Gas well temperature:	62						
Traverse Point	ft/min rea	iding					
1	115	93					
2	89	76					
3	81	45					
4	52	53					
. 5	34	20					
6	32	23					
7	26	11.					

51

8

average

Meter model number: Meter serial number:

moderate plune vis. 84

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the Institute's calibration service.

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

NJDEP Client: Combe Fill Landfill, Chester, NJ Location: Gas Well No: Date: 11-5-97 Sampler: **SUMMA Canister Samples:** NMHC, TXS, TVOC, N2 Sample parameters: 1327 Sample time start: 1332 Sample time end: Hydrogen Sulfide Monitoring: Sample time: Hydrogen Sulfide meter name: Meter model number: Meter serial number: Air Velocity Data (ft/min) Monitoring time: Velocity meter name: NJDEPSOLOMAN HUTWIRE

Meter model number: 232431 Meter serial number: Gas well temperature:

Traverse Point	ft/min rea	ading
1	168	204
2	216	214
3	191	198
4	207	188
5	198	167
, 6	183	135
7	122	1)1
8	(05	54

Distract plume visible

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the institute's calibration service.

164

average

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Onone:			
Location:	Combe Fill Landfill, Ches	er, NJ	·
Gas Well No:	57		
Date:	11.5.97		•
Sampler:	Rmn		
	•		
SUMMA Canister Samples:		•	•
Sample parameters:	NMHC, TXS, TVOC, N2	· · · · · · · · · · · · · · · · · · ·	
Sample time start:	1441		
Sample time end:	1446		
Hydrogen Sulfide Monitoring:	,		
Sample time:		H ₂ 5 =	0 - 1 ppm
Hydrogen Sulfide meter name:	Industral Scientific	۷	, ,
Meter model number	Hm v 27/	LEL:	1000/.

NJDEP

Air Velocity Data (ft/min)

Meter serial number:

Client:

Monitoring time:

Velocity meter name:

MSD(rSolomm MT w, RE 129 msx

Meter model number:

Meter serial number:

Gas well temperature:

1426 1448

NSD(rSolomm MT w, RE 129 msx

MPm 500E

23243/

63°F

Traverse Point	ft/min reading	
1	100 135	
2	116 1 129	
3	115 117	
4	106 102	
5	$\frac{80}{73}$	·
6	78 65	
7	54 52	
8	53 55	5/194+ plume
average	<u>- 31</u>	

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the Institute's calibration service.

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Client:	NJDEP	
Location:	Combe Fill Landfill, Chester, NJ	
Gas Well No:	ر) _ک	
Date:	11-5-97	
Sampler:	RMN	· ·
SUMMA Canister Samples:		
Sample parameters:	NMHC, TXS, TVOC, N2	
Sample time start:	1516	
Sample time end:	1521	
Hydrogen Sulfide Monitoring:	,	
Sample time:	1511	
Hydrogen Sulfide meter name:	Industral Scratteric	H25 = 100%
Meter model number:	Hm x 27/	1 E 1 : 100%
Meter serial number:	9206077-125	
Weter Serial Humber.	7 20 60 7 123	02 : 0.2 to 03 %
Air Velocity Data (ft/min)		,
Monitoring time:	1502, 1522	
Velocity meter name:	NJDEP, SULOMAT HUT W	ire 129 max

Traverse Point	ft/min reading	
1	109 139	
2	117 144	•
3	98 136	
4	73 121	
5	72 71	
. 6	77 69	
7	72 62	
8	63 (14	51.94+ Plume
average	923	J

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the Institute's calibration service.

Meter model number: Meter serial number: Gas well temperature:

O'Brien & Gere Engineers, Inc. Gas Well Field Data Sheet

Location:	Combe Fill Landfill, Cheste	r, NJ
Gas Well No:	27	
Date:	11-5-97	
Sampler:	RMN	
SUMMA Canister Samples:		
Sample parameters:	NMHC, TXS, TVOC, N2	<u> </u>
Sample time start:	1359	· · · · · · · · · · · · · · · · · · ·
Sample time end:	1404	
Hydrogen Sulfide Monitoring:		
Sample time:	1357	H25 - 0.0 PPM
Hydrogen Sulfide meter name: Meter model number:	JND SCIENDAL	Hz S - 0.0 ppm LEL - 100%
Meter serial number:	9206077-125	02 - 0.4-0.5%

NJDEP

Air Velocity Data (ft/min)

Client:

Monitoring time:	1346, 1405		
Velocity meter name:	NJDEP SOLOMAT HOT WIRE	129	MSX
Meter model number:	mpm 500 E		
Meter serial number:	<u> 232431</u>		
Gas well temperature:	69°F		
•			

Traverse Point	ft/min reading	
1	160 / 217	
2	188 214	
3	103 201	
4	131 200	
5	84 162	
. 6	68 114	
7	25 60	
8	38 40	VISIBLE AUME
average	130	

This equipment has been calibrated using standards whose accuracies are traceable to the National Institute of Standards & Technology (NIST) within the limits of the Institute's calibration service.

9.6/9.4

JUL 2 8 1994

cc. RHis

FW ENVIRESPONSE

July 27, 1994

Foster Wheeler Enviresponse, Inc. (FWEI) Combe Fill South Landfill P.O. Box 504 Chester, NJ 07930

Attention: Mr. Ron Mis-

Re: Combe Fill South Landfill

CN#52

Subj: CN-52: Landfill Gas Treatment

Reduction in Scope of Work

File: 3013.015.603

Gentlemen:

O'Brien & Gere has completed its review of certain landfill gas analytical data, which was discussed in our letter dated 6/14/94. Consistent with the results of the recent landfill gas testing, no collection and treatment systems will be constructed for landfill gas or landfill gas condensate on this project. Landfill gas will be passively vented only. This letter will serve as notice that NJDEP is exercising its rights under Article 12 for a reduction in scope of work. Note that the Gas Extraction Building is not going to be eliminated.

The Pay Items for the affected work are noted below. The format of FWEI's approved subitem price breakdown (FWEI Transmittal 464, January 10, 1994) is used to describe the reductions to Pay Items 33 and 44 (ref. "Item Nos." below)

Pay Item & Item No (if Applicable)	Item Description	Item Change
Pay Item 31	Gas Header Piping and Fittings	Eliminated
Pay Item 32	Condensate Collection System	Eliminated
Pay Item 33	Landfill Gas Treatment System	See Below
- Item No. 27	Flare System Equipment	Eliminated
- Item Nos. 28 - 31	Landfill Gas Exhausters	Eliminated
- Item Nos. 37 - 42	Pipe/Valves to/from Exhausters	Eliminated
- Item Nos. 59 - 76	Electrical	Modified

Combe Fill South Landfill

CN-52: Landfill Gas Treatment Reduction in Scope of Work

July 28, 1994

Page 2

Pay It	em &		
Item N		Item Description	Item <u>Change</u>
Pay Ite	em 44	Ground Water Treatment System	See Below
-	Item Nos. 2, 3	U/G Pipe to T 102	Eliminated
•	Item Nos. 4 - 6	U/G Plant Drainage Pipe	Elim/Mod*
•	Item No. 22	Skimmer Piping @ T-102	Eliminated
-	Item No. 74	SBR System - Tanks - T-102	Eliminated
-	Item Nos. 81, 86, 94	T-102 Concrete Work	Eliminated
•	Item Nos. 119, 122	Framing (Trim, Exterior): T-102	Eliminated
-	Item No. 125	Submersible Mixer	Eliminated
-	Item No. 130	Floating Skimmer	Eliminated
•	Item Nos. 143, 144	Pumps: P-102 A/B	Eliminated
-	Item No. 170	MCC	Modified

^{*(}Elimination outside limits shown on drawing G-1, modification within drawing G-1 limits)

A modification identifying details of the affected work will be issued to FWEI in the near future.

Subsequently, an on site meeting will be haid to discuss the affected work items. Should FWEI identify any other items which may be affected by the elimination of either the landfill gas or landfill gas condensate collection and treatment systems, please notify us accordingly.

Combe Fill South Landfill CN-52: Landfill Gas Treatment Reduction in Scope of Work July 28, 1994 Page 3

O'Brien & Gere and NJDEP recognize this notification as a substantial change with major cost reduction and possible time reduction impacts. Please be advised that all changes in contract price as a result of the forthcoming modification will be made in accordance with Article 13, and will not necessarily reflect FWEI's subitem price breakdown. The subitem price breakdown above was only used above to facilitate communication of the affected work.

Should you have further questions, please contact the undersigned.

Very truly yours,

O'BRIEN & GERE ENGINEERS, INC.

Wayne Hoagland, P.E. Resident Project Representative

cc:

Site - NJDEPE

D. Prince - NJDEPE

P. McMaster - O'Brien & Gere

R.Bowers - O'Brien & Gere

fwi 167. wp/ejk

August 19, 1994

Foster Wheeler Enviresponse, Inc. Combe Fill South Landfill P.O. Box 504 Chester, NJ 07930

Attention: Mr. Richard A. Hall

FILE 2.6/04 W 5.2

R. Well

AUG 1 9 1994

S. Gascani

FW ENVIRESPONSE

A, GARCIULO N. WOLFE

Re: Combe F

Combe Fill South Landfill

Subj:

Madification No. 32: Change Notice No. 529

File:

3013.015.603

Gentlemen:

Transmitted herewith are the scope of work and drawings Z-45 through Z-66 for Modification No. 32, which pertains to the elimination of the landfill gas and gas condensate collection and treatment systems. Please provide O'Brien & Gere Engineers, Inc. (O'Brien & Gere) and NJDEP with a lump sum cost proposal for this modification. The proposal should include a breakdown of any labor, material, and equipment costs associated with the original Contract work, as well as a similar breakdown for the work encompassed under Modification No. 32.

The following clarifications are noted for Modification No. 32:

- 1. The enclosed drawings pertain specifically to Modification No. 32. Certain facets of the work, which are unrelated to landfill gas and condensate collection and treatment, have been revised via other modifications such as Modification Nos. 30 and 31; however, these unrelated changes may not be reflected on the enclosed drawings. Foster Wheeler Enviresponse, Inc. (FWEI) is to disregard the work that is unrelated to Modification No. 32 when preparing a proposal for this modification;
- The plant drain pipe profile that is shown on drawing Z-46 is being revised because it identifies the deleted Tank T-102 in the profile. The revised drawing will be transmitted to FWEI in the near future;
- The ground water equifization pumps, P-101A and B, were inadvertently deleted on drawing Z-57. FWE1 is directed to disregard this deletion and to provide P-101A and B in accordance with the Contract; and
- 4. Consistent with drawing Z-55, delete disconnect switch DS-30 that is scheduled on drawing Z-63 for the Tank T-102 blower.

Combe Fill South Landfill Modification No. 32; Change Notice No. 52 August 19, 1994 Page 2

The enclosed modification fulfills O'Brien & Gere's obligations to FWEI, as outlined in the O'Brien & Gere letter dated 8/11/94. As FWEI was informed in the aforementioned letter, a stop work order will not be issued relative to Change Notice No. 52 because such an order is neither appropriate nor necessary for work that is deleted from the Contract. Please consider the above to be O'Brien & Gere's formal response to FWEI letter No. 1112 dated 8/18/94.

As discussed in O'Brien & Gere's 8/11/94 letter, O'Brien & Gere wishes to schedule a meeting with FWEI during the week of 8/22/94 to review the scope of the modification, as well as FWEI's efforts to prepare a cost proposal. Please advise me of an acceptable date for this meeting at your earliest convenience.

Should you have any further questions regarding this matter, please contact the undersigned.

Very truly yours,

C'BRIEN & GERE ENGINEERS INC.

Wayne G. Noagland, P.E. Resident Project Representative

CC:

Site - NJDEP
D. Prince - NJDEP

R. Bowers - O'Brien & Gere

P. McMaster - O'Brien & Gere

for 184, wp/c/k

COMBE FILL SOUTH SUPERFUND SITE Modification No. 32

August 17, 1994

The technical scope of this modification is described below together with modification Drawings Z-45 through Z-66, identified on the attached list.

The landfill gas and condensate collection and treatment systems and related equipment, as shown and specified in the Contract Documents, shall be deleted and modified as follows:

DELETE ALL: 1.

- 4", 6" and 8" gas extraction piping
 4" gravity condensate piping
 3" condensate force main piping 3 - condensate collection manholes
- 2 gravity condensate collection manholes
- 1 condensate drain clean-out including the fiberglass marker and sign
- 5 gas piping access manholes

as shown on Drawings 3, 6 through 20, G-1 (Z-45), M-2 (Z-47), M-3 (Z-48), M-7 (Z-49), M-10 (Z-50), E-1 (Z-53), E-7 (Z-58), E-10, E-12 (Z-56), E-18 (Z-62), HV-5, P-1 (Z-17) and any other drawings where this piping or manholes are shown. Included is deletion of all associated excavation, spoil disposal, backfill, compaction. Type F select fill concrete structures, valves, fittings, manhole steps and frames and covers.

- DELETE, in its entirety, the Multiple Gas Header Condensate Collection Vault including 2. all associated excavation, spoil disposal, backfill, compaction, Type F select fill, concrete structure, piping, fittings, valves, 4" drain pipe between the Multiple Gas Header Condensate Collection Vault and Condensate Pump Station No. 2, manhole steps and three 36"x36" hinged aluminum access doors. This deletion applies to Drawings 3, 10, 19 and any other drawings where this collection vault is shown.
- DELETE, in its entirety, Condensate Pump Station No. 1 and associated valve structure. 3. including all associated excavation, spoil disposal, backfill, compaction. Type F select fill, concrete structures, piping, fittings, valves, couplings, supports, floor drain, submersible pumps, power and control circuits (including control panel), manhole steps, 30"x48" doubleleaf aluminum access door and 36"x36" hinged access door. This deletion applies to Drawings 3, 19, 20, E-1 (Z-53), E-3 (Z-55), E-17 (Z-61), E-18 (Z-62) and any other drawings where this pump station is shown.
- DELETE, in its entirety, Condensate Pump Station No. 2 and associated valve structure 4. including all associated excavation, spoil disposal, backfill, compaction, Type F select fill, concrete structures, piping, fittings, valves, couplings, supports, floor drain, submersible pumps, power and control circuits, manhole steps, 30"x48" double-leaf aluminum access door and 36"x36" hinged access door. This deletion applies to Drawings 3, 10, 19, 20, G-2 (Z-46), M-2 (Z-47), E-1 (Z-53), E-3 (Z-55), E-7 (Z-58), E-17 (Z-61), E-18 (Z-62) and any other drawings where this pump station is shown.

- DELETE the Landfill Gas Condensate Equalization Tank and associated equipment (T-102); 5. the Landfill Gas Condensate Equalization Pumps (P-102A and P-102B) and associated piping fittings and valves; all landfill gas condensate piping and fittings, tank drain piping. and modify outside piping to remain, as shown and noted on Drawings Z-45 and Z-46. including all associated excavation, spoil disposal, backfill, compaction, foundations, pads and supports. Further included is deletion of all power and controls to T-102, P-102 A/B and associated equipment. Note that the connection on the Inclined Plate Settler unit, specification Section 13409, to accept landfill gas condensate is no longer required and contractor shall coordinate with the unit manufacturer to delete or plug this connection. This deletion applies to Drawings 3, 11, 14, A-1, A-5 (Z-66), M-2 (Z-47), M-3 (Z-48), M-7 (Z-49), M-9, M-11, E-1 (Z-53), E-2 (Z-54), E-3 (Z-55), E-4 (Z-56), E-6 (Z-57), E-12 (Z-59), E-16 (Z-60), E-19 (Z-63), E-20 (Z-64), HV-2, HV-4 (AD-2), P-1 (Z-17) and any other drawing where the tank or associated equipment is shown. Included is the deletion of 17'-0" of catwalk structure located above Tank T-102. The access ladder, originally located at the end of the catwalk system shall be relocated as shown on Drawing Z-66. This change shall also be noted on drawings G1, A1 (Z-19), M-7 (Z-42), M-11, E-1, E-2, E-6, P-1 (Z-17) and any other drawings where the catwalk or associated structures are shown.
- 6. DELETE from all air valve manholes the embedded 3" condensate force main pipe and tee, and the connected combination air release and vacuum valve. This deletion applies to Drawings 7, 11 through 13, 23, 24 and any other drawings where the air valve manholes are shown.
- 7. DELETE all piping fittings, valves and equipment associated with landfill gas treatment, including all associated supports, wall and roof penetrations, equipment pads, power and controls, as shown and noted on Drawing Z-50. Included is the deletion of the landfill gas exhausters and enclosed flare. This deletion also applies to Drawing G-1 (Z-45), M-7 (Z-49), E-2 (Z-54), E-3 (Z-55), E-4 (Z-56), E-6 (Z-57), E-7 (Z-58), E-10, HV-5, P-1 (Z-17) and any other drawings where gas treatment equipment is shown.
- 8. <u>DELETE</u> all 2" and 4" condensate drain piping, fittings and valves in the interior of the Gas Extraction Building, as shown on Drawing Z-47, to Condensate Pump Station No. 2. This deletion also applies to Drawing E-6 (Z-57), E-7 (Z-58), E-10, HV-5, P-1 (Z-17) and any other drawings where gas treatment equipment is shown.
- 9. MODIFY all Gas Extraction Wells, as shown and noted on Drawing Z-51.
- 10. FURNISH AND INSTALL the Plant Drainage Pump Station and the Plant Drainage Pump Station Force Main; and connect these facilities to the piping contained in the original contract, all as shown and noted on Drawings Z-45 through Z-49 and Z-52, including extension of the 3" HDPE (underground)/DI (above ground) drain line to T-101. Also, modify specification section 11300, 1.03D and E, deleting the original pump characteristics and substituting the required characteristics of the Plant Drainage Pump Station submersible pumps as follows:

D. Design Criteria:

1. Plant Drainage Pump Station -

a. Pumps Type Water

Submersible Process Drainage

Number

Size Service

3" Discharge Heavy Duty

Impeller

S.S. 1.77"

Max. Sphere

b. Motor

Type

Submersible

Max. Hp

Rated Speed

3480

Power Service Factor 230V, 60Hz, 3pH

1.25

Insulation

Class F

E. Design Operating Point:

Flow

100 GPM

Head

38.5 Feet

This change also applies to Drawings 3, 11, M-7 (Z-49), M-11, E-1 (Z-53) E-2 (Z-54), E-3 (Z-55), E-17 (Z-61), E-18 (Z-62) and any other drawings where the location of the plant drainage pump station is shown.

- DELETE the 4" HDPE natural gas line and 4" ball valve with valve box from Parker Road 11. to the Process Equipment Building and Gas Extraction Building, as shown on Drawings 11A. 14A, and G-1 (Z-45). FURNISH AND INSTALL, on the same line and grade, a 2" HDPE natural gas line and 2" ball valve with valve box from Parker Road to the Process Equipment Building. Also, DELETE the 1" gas line from the Process Equipment Building to the Gas Extraction Building, as shown on M-7 (Z-49). (Note that gas lines to the enclosed flare from the gas extraction building were deleted by Addendum No. 2)
- DELETE the 4" incoming gas main as shown on the Gas Meter Detail on Drawing P-1 (Z-12. 17). FURNISH AND INSTALL, on the same line and grade, a 2" incoming gas main.
- 13. DELETE in its entirety, exhaust fan EF-8, added by Addendum 4, E18.b and as shown on Drawing HV-5. Also, DELETE, in its entirety, the control circuit wiring and equipment associated with EF-8 as shown on the EF-8 Wiring Diagram on Drawing HV-8/AD-3.
- **DELETE** and **MODIFY** the electrical and control system as shown and noted on Drawings 14. Z-53 through Z-65.
- DELETE the gas monitoring / detection equipment located in the Gas Extraction Building. 15. including control panel and all associated conduit and wiring, as shown on Drawings M-10 (Z-50), E-4/Z-12 (Z-56), E-7 (Z-58), HV-5 and any other drawings where this equipment is shown.

Combe Fill South Landfill Modification No. 32 Drawing List

Drawing Number	
Z-45 (G-1)	Ground Water Treatment Facility Site Plan
Z-46 (G-2)	Mincellaneous Details
Z-47 (M-2)	Process Flow Schematic
Z-48 (M-3)	Equalization and Metals Removal Flow Diagram
Z-49 (M-7)	Ground Water Treatment Facility Outside Piping Plan
Z-50 (M-10)	Gas Extraction Building Plan Section and Details
Z-51 (18)	Gas Extraction Well Modified Layout
Z-52 (1 <i>9</i>)	Plant Oralnage Pump Station
Z-53 (E-1)	Site Plan
Z-54 (E-2)	Groundwater Treatment Facility Partial Site Plan
Z-55 (E-3)	Power Distribution One Line Diagram
Z-56 (E-4)	Power Schedules
Z-57 (E-6)	Power & Control Process Equipment Building
Z-58 (E-7)	Process Equipment Building and Gas Extraction Building Partial Plan
Z-59 (E-12)	Equalization & Metals Removal P&ID
Z-60 (E-16)	Electrical Details
Z-61 (E-17)	Details & Wire Diagram
Z-62 (E-18)	Electrical Details
Z-63 (E-19)	Electrical Details
Z-64 (E-20)	Elementary Details
Z-65 (Z-32)	Layouts & Panel Schedules
Z-66 (A-5)	Process Equipment Building Roof Plan

5000 Brittonfield Parkway / PO Box 4873 / Syracuse, NY 13221 / (315) 437-6100 FAX (315) 463-7554

"ECEIVED

APR 1 2 1995

To Foster Wheeler Enviresponse, Inc.

PO Box 504

Chester, NJ 07930

Attention: Mr. Richard A. Hall, P.E.

Date: 4/12/95

" ENVIRESPONSE

File: 3013.015.603

Re. Combe Fill South Landfill

t Action lettercod		N-reviewed and noted I-for your information V-for your approval	
: 			
		···	
		in percent completed)	!
; !		(The change in PI 61 & 62 is related to significant digits	<u> </u>
		one transmitted on 3/23/95	
		Revised Credit Calculation for CN #52 tobbe substituted for	I
Lizar loentify	ing Number	Title	Act on
		drawings descriptive literature letters	
Gentlemen. We are	sending you	Marewithunder separate cover	

If material received is not as listed, please notify us at once.

Site - NJDEP

Remarks

CC D. Prince - NJDEP

P. McMaster - O'Brien & Gere

R. Bowers - O'Brien & Gere

Very truly yours.
O'Brien & Gere Engineer Inc

Wayne G. Hoagland, P.E.

Resident Project' Representative

FOSTER 006 5083

	REVISED CREDIT CALCULATION FOR CN 52 Basis is the Unit Pricing and Subitem Breakdown of FWEI		Revised:		04/12/95
Pay Item &	<u> </u>				
Item No.	Item	Item	Percentage	Total	Total
(IF APPLICABLE)	Description	Cost	Completed	Payment	Reduction
Pay Item 31:	Gas Header Piping / Fittings:	\$510,073.24	5.00%	\$25,503.66	\$484,569.58
Pay Item 32:	Condensate Collection System:	\$217,838.49	5.00%	\$10,891.92	\$206,946.57
Pay Item 33:	LFG Treatment System:	See Below	5.00%	\$0.00	\$0.00
Item No. 27:	Flare System Equipment:	\$342,212.00	5.00%	\$17,110.60	\$325,101.
Item Nos. 28 - 31:	Landfill Gas Exhausters:	\$105,296.00	5.00%	\$5,264.80	\$100,031.20
Item Nos. 37 - 42:	Pipe/Valves to/from Exhausters:	\$236,914.00	5.00%	\$11,845.70	\$225,068.30
Item Nos. 64 - 77:	Electrical:	\$128,613.00	85.00%	\$109,321.05	\$19,291.95
Pay Item 44:	GWTS:	See Below			
Item No. 2:	U/G Pipe to T-102:	\$3,333.33	5.00%	\$166.67	\$3,166.66
Item No. 3:	Plant Drainage Pipe:	\$3,333.33	5.00%	\$166.67	\$3,166.66
Item No. 22:	Skimmer Piping @ T-102:	\$5,245.00	5.00%	\$262.25	\$4,982.75
Item No. 74:	SBR System - Tanks - T-102:	\$26,220.00	5.00%	\$1,311.00	\$24,909.00
Item Nos. 81, 86, 91:	T-102 Concrete Work:	\$16,651.00	5.00%	\$832.55	\$15,818.45
Item No. 119:	Trim T-102:	\$10,488.00	5.00%	\$524.40	\$9,963.60
Item No. 122:	Catwalk T-102:	\$10,488.00	5.00%	\$524.40	\$9,963.60
Item No. 125:	Submersible Mixer:	\$10,488.00	5.00%	\$524.40	\$9,963.60
Item No. 130:	Floating Skimmer:	\$26,000.00	5.00%	\$1,300.00	\$24,700.00
Item Nos. 143, 144:	Pumps: P-102 A/B:	\$9,198.00	5.00%	\$459.90	\$8,738.10
Pay Item 61:	O&M yr 1	\$982,186.22	94.81%	\$931,218.28	\$50,967.
Pay Item 62:	O&M yr 2	\$982,186.22	94.81%	\$931,218.28	\$50,967.94
	Subtotal	\$3,626,763.83		\$2,048,446.53	\$1,578,317.30
]					
)					
,					
}					
				_	