UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - REGION II

290 BROADWAY NEW YORK, NEW YORK 10007-1866

DocID 80150

HUDSON RIVER PCBs REASSESSMENT REMEDIAL INVESTIGATION/FEASIBILITY STUDY (RRI/FS) COMMUNITY INTERACTION PROGRAM

JOINT LIAISON GROUP MEETING Monday, December 11, 1995 Latham, NY

On Monday, December 11, 1995, a Joint Liaison Group meeting was held at the Holiday Inn Express in Latham, NY, as part of EPA's on-going Community Interaction Program for the Hudson River PCBs Reassessment RI/FS. The purpose of the meeting was to provide liaison group members and other interested parties with a presentation on the Phase 2 Database Report and a demonstration of use of CD-ROM that contains the database.

Attached to these minutes are copies of the agenda, sign-in sheets, and presentation overheads. The Phase 2 Database Report, the first volume of six portions of the total Phase 2 Report - Further Site Characterization and Analysis, can be found in the Information Repositories and has also been distributed to the chairpeople of each of the liaison groups for the use of liaison group members. That report describes the organization of the data collected for the RRI/FS, including historical data, Phase 2 project data, and recent data collected by others.

The CD-ROM that contains the more-than-750,000 database records is available for use at two of the current RRI/FS Information Repositories, the Saratoga Springs Public Library and the Saratoga County Environmental Management Council (50 West High Street, Ballston Spa). The CD-ROM is also available at Rensselaer Polytechnic Institute's R.G. Folsom Library, the SUNY Albany library, the Marist College library (Poughkeepsie), and the USMA library at West Point. People genuinely intending to use the disk extensively can also obtain one directly from Doug Tomchuk at the above address.

Ann Rychlenski, Community Relations Coordinator for the RRI/FS, opened the meeting and introduced Doug Tomchuk, EPA Remedial Project Manager, who made some introductory remarks about the report. He explained that the report contained no conclusions. It is a guide for using, or going through, the database and provides information on what data sets were incorporated into the database. The report makes the foundation of the PCBs RRI/FS, the data, available to all interested parties. Mr. Tomchuk also referenced the five other volumes of the Phase 2 Report and reviewed the current release schedule.

Dr. Ed Garvey of TAMS Consultants, Inc. presented an overview of the contents of the database and how it is structured. His talk focused on a discussion of the database elements and how they are arranged/organized. Key points can be found and easily followed using the copies of the overheads that accompanied the presentation, Attachment 3 to these minutes.

Dr. Garvey entertained questions, but stressed that there is no interpretation in this report. In answer to a question from Darryl Decker, for example, as to whether "inconsistent" data were thrown out, Dr. Garvey explained that all data were validated, and data that did not meet data quality standards were rejected, but determining that data are "inconsistent" involves interpretation, and that has not been done here. Other questions pertaining to interpretation and analysis, such as what was discovered about impacts of 100-year flood events, were deferred until later in the project for the same reason.

Amy Michelson of Gradient Corporation, a subcontractor to TAMS, followed with a hands-on demonstration of how to use the database for inquiries. She used three examples of queries - sediment, water, and biota - for her demonstration. Copies of Ms. Michelson's overheads are also found in Attachment 3, including questions and illustrations of where in the hierarchical structure of the database the relevant information would be found. However, this type of presentation does not lend itself well to written summarization. Important to these minutes is the fact that Ms. Michelson emphasized several times during her presentation that the overheads contained illustrations and selections of data, pulled for the purposes of discussion only. That needs to be kept in mind when reviewing the copies of her presentation overheads in the attachment.

Ms. Michelson explained that the database is a "relational database," meaning that the data are contained in tables within the database that are related to each other using a common field, or link. The tables are made up of records and fields, separated into rows and columns. She stressed the importance of the Database Report itself as a very good basis from which to work and the place to find assistance in using the data correctly. For example, it is very important to use enough fields to identify a sample uniquely. Different data sets require use of different numbers of fields for this unique identification. The Database Report explains how to do this properly, based on what the user is trying to do.

Ms. Michelson explained that to use data from the CD, which is "read only," one must copy the desired files from the CD onto one's own computer hard drive. There are two formats available - ParadoxTM 4.0 for DOS and FoxProTM/DBase IIITM.

Questions followed regarding specifics of CD and Database Report use.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY - REGION II

290 BROADWAY NEW YORK, NEW YORK 10007-1866

HUDSON RIVER PCB: REASSESSMENT RI/FS COMMUNITY INTERACTION PROGRAM

JOINT LIAISON GROUP MEETING Monday, December 11, 1995 7:30 pm Latham, NY

AGENDA

a may .

7

Welcome

Introduction

Presentation & Demonstration Phase 2 Database Report

Closing Remarks

Ann Rychlenski Community Relations Coordinator USEPA Region II

.)

Doug Tomchuk Remedial Project Manager USEPA Region II

Dr. Edward Garvey TAMS Consultants, Inc. Amy Michelson Gradient Corporation

Ann Rychlenski

USEPA REGION 2 HUDSON RIVER PCBs RRI/FS COMMUNITY INTERACTION PROGRAM JOINT LIAISON GROUP MEETING DECEMBER 11, 1995 LATHAM, NY

Name	Address	Affiliation if Applicable
Paul McDowner	1112 Parkwood Bill Shing NY 12308	New York Farm Bureau
John Soutaciose	46 Ronak Rd SelKark, NY 12158	The Audusin Scrop of Now York State, Inc
Shaw Ruggi	15 Burgayne Que Hudson Jalls 14.4. 12839	CEASE
Judy Schnucit Dan	1 Ferry St. Schwille 119 12871	Charr. Citle Comm.
WilliamT.Ports	3102 Lone Pine Rol Schenectaly NY 12303	WYSDEC
Indy Mele	112 Market St. Porjukepsie My 12601	HRS Cleaructri Ic.
	•	

貜

le la s

.

10.11097

USEPA REGION 2 HUDSON RIVER PCBs RRI/FS COMMUNITY INTERACTION PROGRAM JOINT LIAISON GROUP MEETING DECEMBER 11, 1995 LATHAM, NY

Name	Address	Affiliation if Applicable
Mel Schweiger	1 computer Prive	0E
John Haggard	Alby NY 12205 Alby NY 12205	6E
CAVID ADAMS	ZIG STAGE RD CITARLETON, NY 12019	SMRATOGA CO. EMC GOVIT. LAMISON COMM.
J. REERE GONTIER	1221 125295 E. CHATHAM NY 12660	Cul. Cu Em C
MAL MICHELSON	330 OWL CREEK RA SPENLER, NY 14883	CORNELLUNIU
Ron Sloan	NYSDEC 50 Wolf Rd, Rm576 Albam NY12233	DEC
Marmil Decken	P.U. Box 205 Caminique, 14 12816	Soit Laisn Gerry
MHARIC BEALAN	BO BOX 922 GIENS FALLS 14128	6E

PHASE 2 REPORT - FURTHER SITE CHARACTERIZATION AND ANALYSIS DATABASE REPORT

Dr. Edward Garvey, TAMS Consultants, Inc. Amy Michelson, Gradient Corporation

USEPA Region II

TAMS/Gradient

Attachment

III

PHASE 2 REPORT - FURTHER SITE CHARACTERIZATION AND ANALYSIS DATABASE REPORT

Overview
 Database Elements

 (20 minute break)

 Example Database Queries

USEPA Region II

10.

11100

DATABASE OVERVIEW: PURPOSE

Foundation for all studies to be performed by USEPA for the Reassessment RI/FS

USEPA Region II

DATABASE OVERVIEW: ATTRIBUTES

Combination of data from many sources:

- Historical data collected prior to the Reassessment
- Complementary programs by other investigators (e.g., GE, NOAA)
- Phase 2 Reassessment sampling effort

10.

11102

DATABASE OVERVIEW: ATTRIBUTES (cont)

More than 20 years of monitoring data
 Data from many media

- Sediments
- Dissolved and suspended matter in the water column
- Fish and invertebrates tissues
- Both upper and lower Hudson River

DATABASE OVERVIEW: ATTRIBUTES (cont)

- Measurements of Total PCB, Aroclor mixtures, and congener-specific distributions
- Conventional parameters (e.g., TSS, TOC, grainsize distributions, percent lipids)

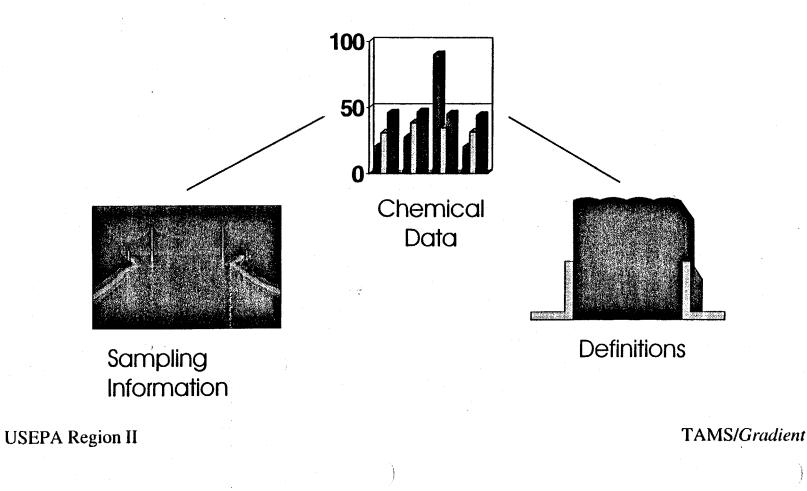
DATABASE OVERVIEW: PROCESS

- Compiled historical data during Phase 1
- Uploaded Phase 2 data
- Merged and refomatted additional data sources identified since Phase 1 including data from GE, USGS, NYSDOT, NYSDEC, and LDEO

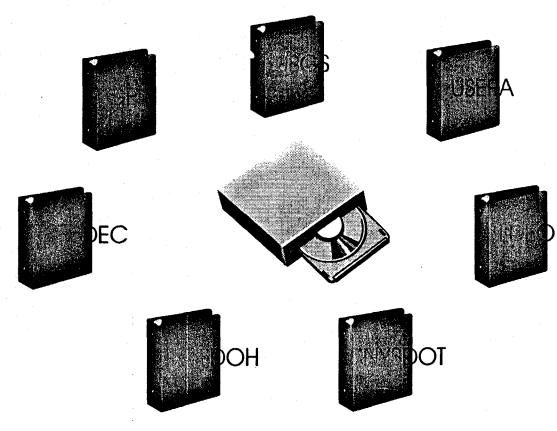
DATABASE OVERVIEW: STATISTICS

- Over 100 tables
- Over 1,00,000 records
- Available on CD as "read-only" in two database formats: ParadoxTM 4.0 and FoxProTM/dBASE IIITM

USEPA Region II


DATABASE ELEMENTS: TERMS

Collection of information organized into

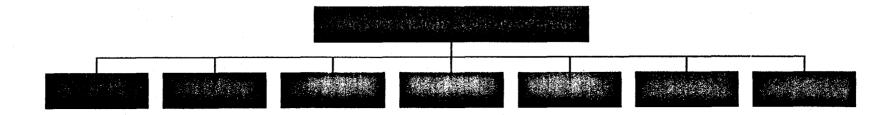

Tables

- + Records (rows)
- + Fields (columns)
- Links (relationships between elements)
- Data dictionaries
- Data glossaries

DATABASE ELEMENTS: HUDSON RIVER DATABASE

DATABASE ELEMENTS: DATA SOURCES

DATABASE ELEMENTS: DIRECTORY STRUCTURE


USEPA Region II

Ö

11110

TAMS/Gradient

DATABASE ELEMENTS: SEDIMENT DATA

USEPA Region II

SEDIMENT DATA: HISTORIC

■ 1976-78 NYSDEC survey

- Aroclor mixtures measured in over 1,000 core and grab samples
- ♦ 40-mile region of the Hudson
- 1984 NYSDEC Thompson Island Pool (TIP) survey
 - Aroclor mixtures and Total PCBs in some 2,000 samples
 - Approximately 5-mile reach in TIP
 - Conventional parameters

USEPA Region II

SEDIMENT DATA: HISTORIC (cont)

- 1989 GE Baseline Studies for the Remnant Deposit Containment Project
 - Aroclor mixtures
 - Five locations near remnant deposits
- I 1990 GE Sediment Sampling for Bioremediation Investigations
 - Aroclor mixtures
 - Approximately 100 cores from 12 "hot spots" from Fort Edward to below Mechanicville

SEDIMENT DATA: GE

- 1991 sediment program
- More than 400 sediment samples (composites)
- Total PCBs, homologue distributions, and capillary peak concentrations
- Conventional parameters
- Samples with coordinates located above RM 190

SEDIMENT DATA: LDEO

- Total PCB or Aroclor mixtures
- Radionuclide data
- Three cores from TIP and Kingston

TAMS/Gradient

SEDIMENT DATA: PHASE 2

10

11116

High Resolution Sediment Coring Study (1992)

- ◆ 28 cores from Glens Falls to upper NY Bay
- ♦ 12 supplemental core top samples
- Approximately 500 samples
- Congener-specific PCB analyses
- Conventional parameter (e.g., grainsize, TON, radionuclides)

USEPA Region II

SEDIMENT DATA: PHASE 2 (cont)

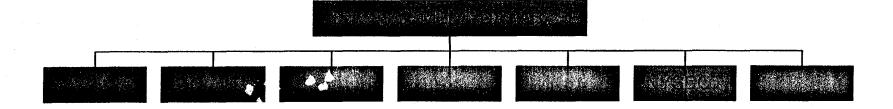
Low Resolution Sediment Coring Study (1994)

- More than 160 cores from TIP and "hotspots" below TIP
- Approximately 400 samples analyzed
- Congener-specific PCB analyses
- Conventional parameter (e.g., grainsize,TON, radionuclides)

TAMS/Gradient

SEDIMENT DATA: PHASE 2 (cont)

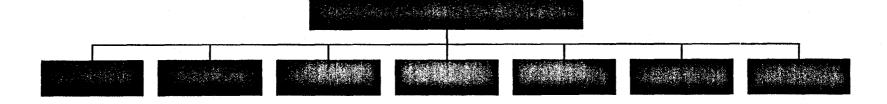
- Confirmatory Sampling (geophysical investigation) (1992)
 - ◆ 87 cores and 98 grab samples
 - Approximately 340 samples analyzed
 - Hudson Falls to Lock 5
 - All conventional parameters (e.g., grainsize distributions, TC, TN)


SEDIMENT DATA: PHASE 2 (cont)

Ecological sediment sampling (1993)

- Approximately 100 samples paired with fish and invertebrate samples
- Congener-specific PCB analysis
- Conventional parameters (e.g., grainsize distributions, TOC)

TAMS/Gradient


DATABASE ELEMENTS: WATER COLUMN DATA

040

USEPA Region II

DATABASE ELEMENTS: FLOW DATA

USEPA Region II

TAMS/Gradient

WATER COLUMN DATA: PHASE 2

1994 Suspended Solids Monitoring

- High flow conditions (April)
- Conventional parameters only (e.g., TSS, WLOI, DOC)
- ♦ 18 stations in the upper Hudson
- 1993 Suspended Solids Monitoring
 - April to October
 - Waterford to Fort Miller only
 - TSS only

USEPA Region II

10

11122

WATER COLUMN DATA: PHASE 2 (cont)

1993 Transect samples

- Six transects consisting of 12 to 16 stations along the upper and lower Hudson
- Dissolved and particulate phases
- Approximately 100 samples collected January to September
- Congener-specific PCB analyses
- Conventional parameter (e.g., TSS, WLOI)

USEPA Region II

WATER COLUMN DATA: PHASE 2 (cont)

■ 1993 Flow-Averaged samples

- Six 15-day flow-based composites from 4 main stem stations along the upper Hudson
- Collected April to September
- Approximately 25 samples
- Congener-specific PCB analyses
- Conventional parameters (e.g., TSS, WLOI)

WATER COLUMN DATA: GE

Temporal Water Column Monitoring Program

- Over 1,500 samples from 1991 to 1995
- From Troy to Hudson Falls
- Total PCBs, normologue distributions, and capillary column peak concentrations
- Conventional parameters (e.g., TSS)

USEPA Region II

WATER COLUMN DATA: USGS

Water quality data from WATSTORE
 Total PCB and Aroclor mixtures
 1975 to 1994
 From Green Island to Corinth

USEPA Region II

10.

11126

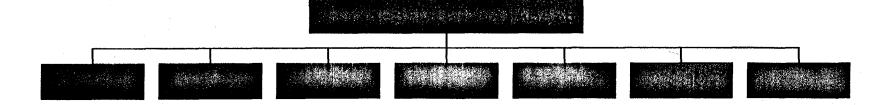
FLOW DATA: USGS

- Daily river discharge (flow) rates
 1970 (some earlier) to 1994
- Upper Hudson and Mohawk stations

FLOW DATA: NYSDOT

10

11128


Staff gauge readings along the Champlain Canal in the upper Hudson 1976 - 1992

FLOW DATA: PHASE 2

- Calculated flow at Waterford and Stillwater (USGS data not available because of construction)
- January through September 1993

10.11129

DATABASE ELEMENTS: BIOTA DATA

USEPA Region II

BIOTA DATA: HISTORIC

More than 11,000 fish samples

- ♦ 1973 to 1994
- Individual fish and composited fish samples
- Aroclor mixtures with Total PCBs being derived as the sum of Aroclors
- Macroinvertebrate data

BIOTA DATA: Ge

0

11132

- 75 archived NYSDEC fish samples and 18 biota samples (mostly fish) from GE 1992 Food Chain Program
- Total PCBs and Aroclor mixtures

USEPA Region II

BIOTA DATA: NOAA

- 115 fish samples collected at selected stations in upper and lower Hudson
- Collected in 1993 from 10 of 20 ECO sampling locations
- Congener-specific PCB analysis
- Percent lipids

TAMS/Gradient

BIOTA DATA: PHASE 2

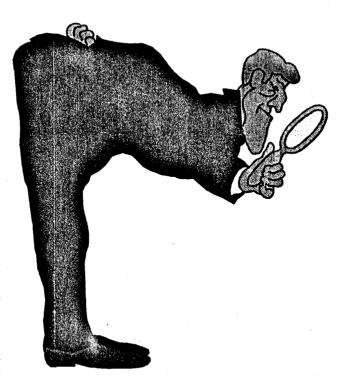
Ò

1113

- 120 fish samples collected at selected stations in upper and lower Hudson
 - Collected in 1993 from 20 sampling locations
 - Congener-specific PCB analysis
 - Percent lipids

USEPA Region II

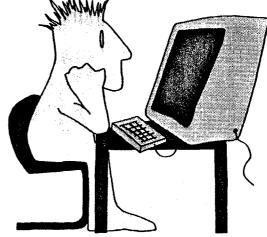
BIOTA DATA: PHASE 2 (cont)


- 87 Benthic and epibenthic samples from selected stations in upper and lower Hudson
 - Collected in 1993 from 20 sampling locations
 - Congener-specific PCB analysis
 - Percent lipids

10.11136

HUDSON RIVER PCBs REASSESSMENT RI/FS

TAMS/Gradient


EXAMPLE DATABASE QUERIES

USEPA Region II

EXAMPLE DATABASE QUERIES: SEDIMENT

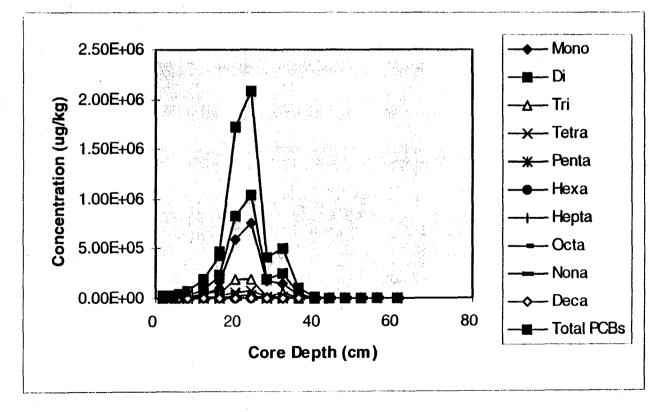
What is the distribution of PCB homologue sums with depth for a sediment core near the Thompson Island Dam?

10.11137

USEPA Region II

EXAMPLE DATABASE QUERIES: SEDIMENT (cont)

STATIONS Table


Station	TAMS ID	TAMS Type	Lower Depth (cm)	Upper Depth (cm)
HR-019	HR-019-0002	P .	Q	2
HR-019	HR-019-0204	Ρ	2	4
HR-019	HR-019-0406	• • • • • • • • • • • • • • • • • • •	4	6

PCBS Table

TAMS ID	TAMS Type	Parameter	Units	Value2
HR-019-0002	Р	Deca	ug/Kg DW	0
HR-019-0002	Р	Di	ug/Kg DW	6653
HR-019-0002	Ρ	Hepta	ug/Kg DW	122
HR-019-0204	Р	Penta	ug/Kg DW	1857
HR-019-0204	Р	Tetra	ug/Kg DW	5067
HR-019-0204	Р	Total PCBs	ug/Kg DW	32208

USEPA Region II

EXAMPLE DATABASE QUERIES: SEDIMENT (cont)

USEPA Region II

TAMS/Gradient

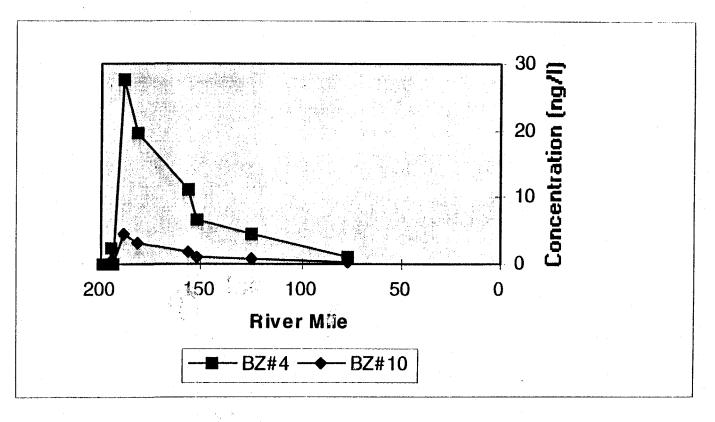
10.11139

EXAMPLE DATABASE QUERIES: WATER COLUMN DATA

How does the concentration BZ#4 and BZ#10 change moving down the river in September of 1993?

USEPA Region II

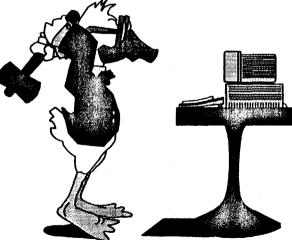
EXAMPLE DATABASE QUERIES: WATER COLUMN DATA (cont)


STATONS Table

Station	TAMS ID	TAMS Type	River Mile
0001	TW-006-0001		199.5
0002	TW-006-0002		197.6
0003	TW-006-0003	M	195.5
0004	TW-006-0004		194.6

PCBW Table

TAMS ID	TAMS Type	Parameter	Units	Value2	Qualifier
TW-006-0003	M	BZ#10	ng/L	0.0	U
TW-006-0003	n de la Maria di	BZ#4	ng/L	0.0	U
TW-006-0004		BZ#10	ng/L	0.4	J
TW-006-0004		BZ#4	ng/L	2.5	J
TW-006-0005		BZ#10	ng/L	4.4	J ST
TW-006-0005		BZ#4	ng/L	27.7	J
TW-006-0006		BZ#10	ng/L	3.1	
TW-006-0006		BZ#4	ng/L	19.5	
TW-006-0008		BZ#10	ng/L	1.8	J
TW-006-0008		BZ#4	ng/L	11.2	J


EXAMPLE DATABASE QUERIES: WATER COLUMN DATA (cont)

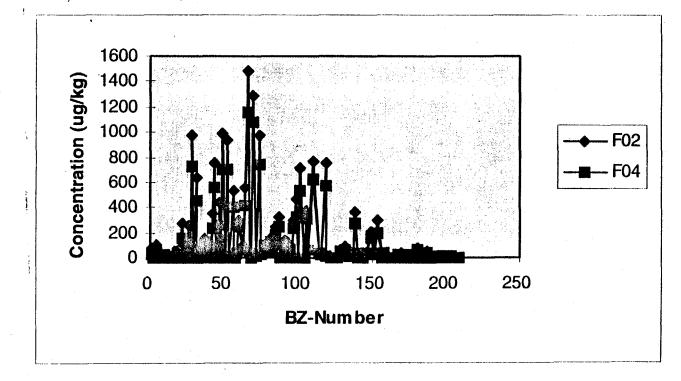
USEPA Region II

EXAMPLE DATABASE QUERIES: BIOTA DATA

How does the spectrum of congeners found in a Spot fish sample from station 2 compare with one from station 4?

TAMS/Gradient

10.11143


EXAMPLE DATABASE QUERIES: BIOTA DATA (cont)

PCBFISH Table

TAMS ID.	TAMS Type	Species	Parameter	Units	Value2	Qualifier
EC-F02-0001		SPOT	BZ#1	ug/Kg WW	96.5	<u> </u>
EC-F02-0001		SPOT	BZ#10	ug/Kg WW	32.6	J
EC-F02-0001		SPOT	BZ#100NT	ug/Kg WW	0	U
EC-F02-0002		SPOT	BZ#12	ug/Kg WW	0	U
EC-F02-0002		SPOT	BZ#123	ug/Kg WW	1.06	J
EC-F02-0003		SPOT	BZ#157	ug/Kg WW	3.64	J
EC-F02-0003		SPOT	BZ#158	ug/Kg WW	30.8	J
EC-F02-0003		SPOT	BZ#16	ug/Kg WW	8.06	J
EC-F04-0001		SPOT	BZ#123	ug/Kg WW	7.25	J
EC-F04-0001		SPOT	BZ#126	ug/Kg WW	0	U
EC-F04-0001		SPOT	BZ#128	ug/Kg WW	86.5	
EC-F04-0002	영상 같은 것을 받는 것	SPOT	BZ#156	ug/Kg WW	28.1	J
EC-F04-0002		SPOT	BZ#157	ug/Kg WW	0 No. 19	U C
EC-F04-0002		SPOT	BZ#158	ug/Kg WW	27.3	J
EC-F04-0003		SPOT	BZ#176	ug/Kg WW	0	U
EC-F04-0003		SPOT	BZ#177	ug/Kg WW	12.1	
EC-F04-0003		SPOT	BZ#178	ug/Kg WW	0	U
EC-F04-0003		SPOT	BZ#179	ug/Kg WW	4.68	J
EC-F04-0003		SPOT	BZ#18	ug/Kg WW	44.9	

USEPA Region II

EXAMPLE DATABASE QUERIES: BIOTA DATA (cont)

USEPA Region II