80109

February 1997

For

U.S. Environmental Protection Agency Region II and U.S. Army Corps of Engineers Kansas City District

Volume 2C Book 2 of 3

TAMS CONSULTANTS, Inc.

The CADMUS Group, Inc.

Gradient Corporation

HRP 002 1949

February 1997

For

U.S. Environmental Protection Agency Region II and U.S. Army Corps of Engineers Kansas City District

Volume 2C Book 2 of 3

TAMS CONSULTANTS, Inc.

The CADMUS Group, Inc.

Gradient Corporation

		Table of Contents	
		Pag	2
Volu	ие 2С (В	OOK 1 OF 3)	
TABLE	OF CONTE	NTS	i
	LIST OF '	ΓABLES	,
1	LIST OF I	FIGURES	i
1	LIST OF I	PLATES	- 7
EXECUT	IVE SUMN	1ARY E-3	l
Снарте	R 1		
Ι	NTRODU	JCTION	l
1	.1 Pur	pose of Report	Ł
1	.2 Rej	port Format and Organization 1-2	2
1	.3 Tec	hnical Approach of the Data Evaluation and Interpretation Report 1-2	2
1	.4 Rev	view of the Phase 2 Investigations 1-5	5
	1.4	.1 Review of PCB Sources 1-3	5
	1.4	.2 Water Column Transport Investigation 1-6	Ś
	1.4	.3 Assessment of Sediment PCB Inventory and Fate 1-9)
	1.4	.4 Analytical Chemistry Program	ł
Снарте	R 2		
F	PCB SOU	RCES TO THE UPPER AND LOWER HUDSON RIVER 2-3	Ĺ
2	2.1 Bac	kground 2-1	L
2	2.2 Up	per Hudson River Sources	2
	2.2	.1 NYSDEC Registered Inactive Hazardous Waste Disposal Sites 2-2	2
	2.2	.2 Remnant Deposits	5
	2.2	.3 Dredge Spoil Sites	l
~	2.2 12 I.a	.4 Other Upper Hudson Sources	2 5
2	2.5 LO	$\begin{array}{c} \text{wer Hudson River Sources} \\ 1 \text{Poview of Phase 1 A values} \\ \end{array}$	۲ ۲
		2 Sampling of Doint Sources in New York/New Jersov (NY/NI))
	4.5	Harbor 2.2	2
	23	3 Other Downstream External Sources 2-2	2 2
	<i>ت</i> . ب <i>ت</i>		ر
Снарте	CR 3		
Ĩ	WATER C	OLUMN PCB FATE AND TRANSPORT IN THE HUDSON RIVER 3-	1
3	Page VOLUME 2C (BOOK 1 OF 3) FABLE OF CONTENTS i LIST OF TABLES v LIST OF FIGURES viii LIST OF PLATES xv EXECUTIVE SUMMARY E-1 CHAPTER 1 INTRODUCTION 1.1 Purpose of Report 1.2 Report Format and Organization 1.3 Technical Approach of the Data Evaluation and Interpretation Report 1.4 Review of PCB Sources 1.4.1 Review of PCB Sources 1.4.2 Water Column Transport Investigation 1.4.3 Assessment of Sediment PCB Inventory and Fate 1.4.4 Analytical Chemistry Program 1.4.4 Analytical Chemistry Program 1.4.4 Analytical Chemistry Program 1.4.4 Analytical Chemistry Program 2.1 Background 2-1 2.2 Upper Hudson River Sources 2-2 2.2.1 NYSDEC Registered Inactive Hazardous Waste Disposal Sites 2-2 2.2.2 Remant Deposits 2-23 2.3.1 Review of Phase 1 Analysis 2-23 2.3.2 Sampling of Point		

TAMS/Cadmus/Gradient

HRP 002 1951

i

 Table of Contents (cont'd)

	3.1.1	Two-Phase Models of Equilibrium Partitioning	. 3-4
	3.1.2	Three-Phase Models of Equilibrium Partitioning	3-24
	3.1.3	Sediment Equilibrium Partition Coefficients	. 3-31
	3.1.4	Summary	. 3-38
3.2	Water	Column Mass Loading	. 3-39
	3.2.1	Phase 2 Water and Sediment Characterization	. 3-40
	3.2.2	Flow Estimation	3-41
	3.2.3	Fate Mechanisms	3-46
	3.2.4	Conceptual Model of PCB Transport in the Upper Hudson	3-58
	3.2.5	River Characterization	3-60
	3.2.6	Mass Load Assessment	3-68
	3.2.7	Source Loading Quantitation	. 3-86
3.3	Histor	ical Water Column Transport of PCBs	3-91
	3.3.1	Establishing Sediment Core Chronologies	3-92
	3.3.2	Surface Sediment Characterization	3-105
	3.3.3	Water Column Transport of PCBs Shown by Sediment Deposited	
		After 1975	3-107
	3.3.4	Estimation of the PCB Load and Concentration across the	
		Thompson Island Pool based on GE Capillary Column Data	3-124
	3.3.5	Estimated Historical Water Column Loadings Based on USGS	
		Measurements	3-131
	3.3.6	Conclusions Concerning Historical Water Column Transport	3-136
3.4	Integra	ation of Water Column Monitoring Results	3-140
	3.4.1	Monitoring Techniques and PCB Equilibrium	3-141
	3.4.2	Loadings Upstream of the Thompson Island Pool	3-143
	3.4.3	Loading from the Thompson Island Pool during 1993	3-146
	3.4.4	Loading at the Thompson Island Dam - 1991 to 1996	3-150
	3.4.5	PCB Loadings to Waterford	3-155
	3.4.6	PCB Loadings to the Lower Hudson	3-160
3.5	Integra	ation of PCB Loadings to Lower Hudson River and New York/New	
	Jersey	Harbor	3-164
	3.5.1	Review of Lower Hudson PCB Mathematical Model	3-164
	3.5.2	Estimate of 1993 PCB Loading from the Upper Hudson River .	3-166
	3.5.3	Revised PCB Loading Estimates	3-167
3.6	Water	Column Conclusion Summary	3-170
CHAPTER 4			
INVE	NTORY	Y AND FATE OF PCBs IN THE SEDIMENT OF THE HUDSON	
RIVE	R		. 4-1

TAMS/Cadmus/Gradient

HRP 002 1952

Table of Contents (cont'd)

4.1	Characterization of Upper Hudson Sediments by Acoustic Techniques 4-2
	4.1.1 Geophysical Data Collection and Interpretation Techniques 4-6
	4.1.2 Correlation of Sonar Image Data and Sediment Characteristics 4-15
	4.1.3 Delineation of PCB-Bearing and Erodible Sediments 4-21
4.2	Geostatistical Analysis of PCB Mass in the Thompson Island Pool, 1984 4-25
	4.2.1 Data Preparation for PCB Mass Estimation 4-26
	4.2.2 Geostatistical Techniques for PCB Mass Estimation 4-32
	4.2.3 Polygonal Declustering Estimate of Total PCB Mass 4-33
	4.2.4 Geostatistical Analysis of Total PCB Mass 4-34
	4.2.5 Kriging Total PCB Mass 4-38
	4.2.6 Kriged Total Mass Estimate 4-41
	4.2.7 Surface Sediment PCB Concentrations 4-42
	4.2.8 Summary
4.3	PCB Fate in Sediments of the Hudson River 4-49
	4.3.1 Anaerobic Dechlorination and Aerobic Degradation
	4.3.2 Anaerobic Dechlorination as Documented in Phase 2 High-
	Resolution Sediment Cores 4-52
4.4	Implication of the PCB Fate in the Sediments for Water Column Transport 4-71
4.5	Summary and Conclusions 4-83

REFERENCES R-1

VOLUME 2C (BOOK 2 OF 3)

TABLES FIGURES PLATES

VOLUME 2C (BOOK 3 OF 3)

APPENDIX A

DATA USABILITY REPORT FOR PCB CONGENERS HIGH RESOLUTION SEDIMENT CORING STUDY

A.1	Introduction	A-1
A.2	Field Sampling Program	A-2
A.3	Analytical Chemistry Program	A-3
	A.3.1 Laboratory Selection and Oversight	A-3
	A.3.2 Analytical Protocols for PCB Congeners	A-4
A.4	Data Validation	A-7
A.5	Data Usability	A-10
	A.5.1 Approach	A-10

Table of Contents (cont'd)

	A.5.2 Usability - General IssuesA-11A.5.3 Usability - Accuracy, Precision, Representativeness and SensitivityA-16A.5.4 Usability - Principal CongenersA-25
APPENDIX B	
DATA	A USABILITY REPORT FOR PCB CONGENERS WATER COLUMN
MON	ITORING PROGRAM
B.1	Introduction
B.2	Field Sampling Program
B.3	Analytical Chemistry Program B-3
	B.3.1 Laboratory Selection and Oversight B-3
	B.3.2 Analytical Protocols for PCB Congeners B-4
B .4	Data Validation B-8
B.5	Data Usability B-10
	B.5.1 Approach B-10
	B.5.2 Usability - General Issues B-11
	B.5.3 Usability - Accuracy, Precision, Representativeness and Sensitivity B-16
	B.5.4 Usability - Principal Congeners B-25
B.6	Conclusions B-28
APPENDIX C	
DATA	USABILITY REPORT FOR NON-PCB CHEMICAL AND PHYSICAL DATA
C.1	Introduction
C.2	High Resolution Coring Study and Confirmatory Sediment Sample Data C-4
	C.2.1 Grain Size Distribution Data C-5
	C.2.2 Total Organic Nitrogen (TON) Data C-10
	C.2.3 Total Carbon/Total Nitrogen (TC/TN) Data C-13

C.2.5 Total Carbon/Total Nillogen (TC/TN) Data	• • • • • • • • • • • •	C-13
C.2.4 Total Inorganic Carbon (TIC) Data		C-16
C.2.5 Calculated Total Organic Carbon (TOC) Data		C-18
C.2.6 Weight-Loss-on-Ignition Data		C-18
C.2.7 Radionuclide Data		C-19
C.2.8 Percent Solids		C-22
C.2.9 Field Measurements		C-22
Water Column Monitoring Program and Flow-Averaged	Sampling Program	ns
		C-23
C.3.1 Dissolved Organic Carbon (DOC) Data		C-24
C.3.2 Total Suspended Solids and Weight-Loss-on-Ignit	tion (TSS/WLOI)	Data
		C-27
C.3.3 Chlorophyll-a		C-33

TAMS/Cadmus/Gradient

HRP 002 1954

C.3

List of Tables

Tables

<u>Title</u>

- 1-1 Water Column Transect and Flow-Averaged Sampling Stations
- 1-2 Water Column Transect and Flow-Averaged Sampling Events
- 1-3 High-Resolution Sediment Core Sample Locations
- 1-4 Phase 2 Target and Non-target PCB Congeners Used in Analyses (3 Pages)
- 2-1 Summary of Niagara Mohawk Power Corp. RI Data Queensbury Site
- 2-2 Phase 1 Estimates of PCB Loads to the Lower Hudson
- 2-3 Summary of Results of USEPA Study of PCBs in NY/NJ Point Sources
- 2-4 Estimates of PCB Loading from Treated Sewage Effluent
- 3-1 Stepwise Multiple Regression for $log(K_{P,a})$ of Key PCB Congeners Showing Sign of Regression Coefficients Determined to be Significant at the 95 Percent Level
- 3-2 Stepwise Multiple Regression for log(K_{POC.a}) of Key PCB Congeners Showing Sign of Regression Coefficients Determined to be Significant at the 95 Percent Level
- 3-3 Correlation Coefficient Matrix for Explanatory Variables Evaluated for Analysis of PCB Partition Coefficients (K_{POC.a})
- 3-4 Temperature Slope Factors for Capillary Column Gas Chromatogram Peaks Associated with Key PCB Congeners
- 3-5 Relative Performance of Distribution Coefficient Formulations: Squared Error in Predicting Particulate-Phase PCB Congener Concentration from Dissolved-Phased Concentration
- 3-6a In Situ K_{POC,a} Estimates for Hudson River PCB Congeners Corrected to 20°C (3 pages)
- 3-6b In Situ log (K_{POC,a}) Estimates for Hudson River PCB Congeners Corrected to 20°C (3 pages)
- 3-7 Three-Phase PCB Partition Coefficient Estimates Using Regression Mehtod
- 3-8 Three-Phase PCB Partition Coefficient Estimates Using Optimization with Temperature Correction to 20°C
- 3-9 A Comparison of Two-Phase Sediment log (K_{OC,a}) and log (K_{POC,a}) Estimates for Hudson River PCB Congeners
- 3-10a Three-Phase Partition Coefficient Estimates for PCBs in Sediment of the Freshwater Portion of the Hudson River
- 3-10b Predicted Relative Concentration of PCB Congeners in Sediment Porewater for Various Assumptions Regarding Three-Phase PCB Congener Partition Coefficients
- 3-11 Models for Predicting Flow at Stillwater and Waterford
- 3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 (7 pages)
- 3-13 Summary of Prediction Uncertainty for Stillwater Flow Models
- 3-14 Summary of Prediction Uncertainty for Waterford Flow Models

HRP 002 1955

List of Tables (cont'd)

- 3-15 Summary of River Segment Characteristics
- 3-16 Comparison of Water Column Mass Transport at Rogers Island, Thompson Island Dam and Waterford
- 3-17 Application of Dating Criteria to High Resolution Cores (2 pages)
- 3-18 Estimated Sedimentation Rates for Dated Cores
- 3-19 Comparison of Total PCB Concentrations of Suspended Matter and Surficial Sediment Deposited after 1990
- 3-20 Dated Sediment Cores Selected for Historical Water Column PCB Transport Analysis
- 3-21 Cumulative Loading Across the Thompson Island Pool by Homologue Group from GE Data April 1991 through February 1996
- 3-22 Breakpoint of Flow Strata (cfs) Used for Total PCB Load Estimation in the Upper Hudson River
- 3-23 Estimated Yearly Total PCB Loads (kg/yr) in the Upper Hudson Based on USGS Monitoring
- 3-24 Comparison of Calculated Water Column Loads at Rogers Island and Thompson Island Dam for Phase 2, GE and USGS Data
- 3-25 Total PCB Loading Contribution Relative to River Mile 143.5 Near Albany Based on Dated Sediment Cores for 1991 to 1992
- 4-1 Results of Linear Regression Study Grain Size Parameter vs Image DN
- 4-2 GC-Mass Spectrometer Split-Sample Results for Total PCB Concentrations and Point Values Selected to Represent Reported Ranges for the 1984 Thompson Island Pool Sediment Survey
- 4-3 Sample Statistics for Thompson Island Pool PCB Mass Concentration Estimates, 1984 Sediment Survey
- 4-4 Subreach Variogram Models^a for Natural Log of PCB Mass Concentration, 1984 Thompson Island Pool Sediment Survey
- 4-5 Total PCB Mass Concentration in the Thompson Island Pool, 1984: Cross Validation Comparison of Lognormal Kriging Results and Observed Values
- 4-6 Exponential Variogram Models for Natural Log of Surface Concentrations in the 1984 Sediment Survey of the Thompson Island Pool
- 4-7 Summary Results for Kriged Surface Layer Concentration of Total PCBs by Subreach, 1984 Sediment Survey of the Thompson Island Pool
- 4-8 Dechlorination of Aroclor 1242 (3 pages)

HRP 002 1956

List of Tables (cont'd)

- 4-9 Molar Dechlorination Product Ratio and Mean Molecular Weight of Various Aroclor Mixtures
- 4-10 Representation of Three Aroclor Mixtures by the Phase 2 Analytical Procedure
- 4-11 Statistics for High Resolution Sediment Core Results Molar Dechlorination Product and Change in Molecular Weight

HRP 002 1957

List of Figures

Figures

<u>Title</u>

- 1-1 PCB Structure
- 2-1 Fish PCB Results Niagara Mohawk Queensbury RI Report
- 2-2 General Electric Company Hudson Falls Plant and Vicinity
- 2-3 GE Fort Edward Outfall Discharge Monitoring Report Data
- 2-4 NY/NJ POTW Influent PCB Data Congener Basis
- 2-5 NY/NJ POTW Influent PCB Data Homologue Basis
- 2-6 NY/NJ POTW Effluent PCB Data Congener Basis
- 2-7 NY/NJ POTW Effluent PCB Data Homologue Basis
- 2-8 NY/NJ River Water PCB Data Congener Basis
- 2-9 NY/NJ River Water PCB Data Homologue Basis
- 3-1 Total Suspended Solids Concentration [TSS] Upper Hudson River Water Column Transects
- 3-2 Particulate Organic Carbon Concentration [POC], Upper Hudson River Water Column Transects
- 3-3 Two-Phase Partition Coefficients to Particulate Matter (K_{P,a}) for Water Column Transects
- 3-4 Two-Phase Partition Coefficients to Particulate Organic Carbon (K_{POC,a}) for Water Column Transects
- 3-5 Observed vs. Theoretical Partitioning to Organic Carbon for PCB Congeners in the Freshwater Hudson
- 3-6 K_{POC,a} Estimates vs. Water Temperature for BZ#52, Hudson River Water Column Transect Samples
- 3-7 Variation in log $K_{P,a}$ by Transect for BZ#44
- 3-8 Variation in log $K_{POC,a}$ by Transect for BZ#44
- 3-9 Variation in log $K_{P,a}$ by River Mile for BZ#44
- 3-10 Variation in $\log K_{POC,a}$ by River Mile for BZ#44
- 3-11 Temperature Correction Slope Estimates for PCB Capillary Column Peaks
- 3-12 Equilibration K_P Estimates for PCB Partitioning in Hudson River Transect Samples
- 3-13 K_{P.a} Estimates for Hudson River Transect 1
- 3-14 K_{Pa} Estimates for Hudson River Transect 4
- 3-15 K_{P.a} Estimates for Hudson River Transect 6
- 3-16 Percent Deviations in log K_{POC,a} Estimates for PCB Congeners by River Mile
- 3-17 Prediction of Particulate-Phase PCB Congener Concentration Using K_{P,a} with Temperature Correction
- 3-18 Prediction of Particulate-Phase PCB Congener Concentration Using $K_{POC,a}$ with Temperature Correction
- 3-19 Median Values of log K_{POC.a} Corrected to 20°C

HRP 002 1958

List of Figures (cont'd)

- 3-20 PCB Congener K_{POC,a} Estimates for Hudson River Flow-Averaged vs. Transect Samples
- 3-21 Relationship of Dissolved and Particulate Organic Carbon Concentrations in Upper Hudson Transect Samples
- 3-22 Estimated Average Percent Distribution of PCB Congeners Among Dissolved, POC and DOC Phases in Hudson River Water Column Transect Data
- 3-23 Comparison of USGS Measured Flows at Fort Edward, Stillwater, and Waterford for Water Year 1992
- 3-24 Stillwater Low-Flow Model C Prediction Uncertainty as a Function of Stillwater Flow
- 3-25 Comparison of Flows Predicted by Stillwater Low-Flow Models (Fort Edward Flow≤ 8,000 cfs)
- 3-26 Comparison of Flows Predicted by Stillwater High-Flow (Fort Edward Flow > 8,000 cfs) Models
- 3-27 Comparison of Flows Predicted by Stillwater Low-Flow (Fort Edward Flow ≤ 8,000 cfs) and Stillwater High-Flow (Fort Edward > 8,000 cfs) Models
- 3-28 Comparison of Flows Predicted by Waterford Low-Flow (Fort Edward Flow≤ 8,000 cfs) Models
- 3-29 Comparison of Flows Predicted by Waterford High-Flow (Fort Edward Flow>8,000 cfs) Models
- 3-30 Comparison of Flows Predicted by Waterford Low-Flow (Fort Edward Flow≤ 8,000 cfs) Models and Waterford High-Flow (Fort Edward > 8,000 cfs) Models
- 3-31 Homologue Distribution of the GE Hudson Falls Facility Source as Characterized by the Transect 1 Remnant Deposit Area (RM 195.8) Sample
- 3-32 Suspended-Matter Loading in the Upper Hudson River Transect 1 Low-Flow Conditions
- 3-33 Suspended-Matter Loading in the Upper Hudson River Transect 3 Transition between Low-Flow and High-Flow Conditions
- 3-34 Suspended-Matter Loading in the Upper Hudson River Transect 4 High-Flow Conditions
- 3-35 Suspended-Matter Loading in the Upper Hudson River Transect 6 Low-Flow Conditions
- 3-36 Sediment Homologue Distributions in the Thompson Island Pool
- 3-37 Estimated Porewater Homologue Distributions in Sediments from the Thompson Island Pool
- 3-38 Upper River Water Column Instantaneous PCB Loading for Transect 1 Low-Flow Conditions
- 3-39 Typical Homologue Distributions of the Batten Kill and Hoosic River PCB Water Column Loads
- 3-40 Upper River Water Column Instantaneous PCB Loading for Transect 3 Transition from Low-Flow to High-Flow Conditions
- 3-41 Homologue Distributions of Surficial Sediments (0 to 2 cm) in the Batten Kill and the Hoosic River
- 3-42 Sediment Homologue Distributions in the Upper River Reaches below the Thompson Island Dam

List of Figures (cont'd)

- 3-43 Upper River Water Column Instantaneous PCB Loading for Transect 4 High-Flow Conditions
- 3-44 Upper River Water Column PCB Loading for Flow-Averaged Event 1 High-Flow Conditions
- 3-45 Upper River Water Column PCB Loading for Flow-Averaged Event 2 Low-Flow Conditions
- 3-46 Upper River Water Column PCB Loading for Flow-Averaged Event 3 Low-Flow Conditions
- 3-47 Upper River Water Column Instantaneous PCB Loading for Transect 6 Low-Flow Conditions
- 3-48 Upper River Water Column PCB Loading for Flow-Averaged Event 5 Low-Flow Conditions
- 3-49 Upper River Water Column PCB Loading for Flow-Averaged Event 6 Low-Flow Conditions
- 3-50 The Coincidence of the ¹³⁷Cs and ⁶⁰Co Maxima at River Mile 43.2 (Core 6)
- 3-51 ¹³⁷Cs Concentrations in High Resolution Sediment Core 11 and Core 19
- 3-52 Comparison of ¹³⁷Cs Profiles between a Phase 2 High-Resolution Sediment Core and a Historical Core at River Mile 188.5
- 3-53 Upper River High-Resolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration
- 3-54 Lower River High-Resolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration
- 3-55 Tributaries and Background High Resolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration
- 3-56 Comparison of the Surficial Sediment Congener Distribution with the Corresponding Transect 4 High-Flow Suspended-Matter Congener Distribution
- 3-57 Comparison of the Thompson Island Pool Surficial Sediment Congener Distribution with the Thompson Island Dam Suspended-Matter Congener Distributions associated with Low-Flow Winter and Summer Conditions
- 3-58 Comparison of the Albany Turning Basin Surficial Sediment Congener Distribution with the Green Island Bridge Suspended-Matter Congener Distributions associated with Low-Flow Winter and Summer Conditions
- 3-59 Total PCBs in Sediment vs. Approximate Year of Deposition at River Mile 188.5 Near the Thompson Island Dam: High Resolution Sediment Core 19
- 3-60 Total PCB Content in Sediment Deposited Between 1991 and 1992 vs. River Mile
- 3-61 Total PCBs in Post-1975 Sediment vs. Approximate Year of Deposition in the Hudson River
- 3-62 Total PCB Content in Sediment vs. River Mile
- 3-63 ¹³⁷Cs Levels in Surface Sediments in the Hudson River Based on High-Resolution Sediment Coring Results

Х

List of Figures (cont'd)

- 3-64 Total PCBs/¹³⁷Cs Content in Sediment vs. River Mile
- 3-65 Time Interval Comparison for Total PCBs/¹³⁷Cs Ratios: 1975 through 1992
- 3-66 Comparison of Measured and Calculated Total PCBs/¹³⁷Cs Ratios for Sediment Deposited between 1991 and 1992
- 3-67 Comparison of Measured and Calculated Total PCBs/¹³⁷Cs Ratios for Sediment Deposited between 1982 and 1986
- 3-68 Total PCBs/¹³⁷Cs Ratios in Dated Sediment vs. River Mile: A Comparison of Calculated and Measured Results
- 3-69 Comparison of the Duplicate Core Results on a Congener Basis for RM 177.8 near Stillwater for 1991 to 1992
- 3-70 A Comparison between the Post-1990 Sediment PCB Congener Pattern for Core 21 at River Mile 177.8 near Stillwater and Three Aroclor Mixtures
- 3-71 Normalized PCB Congener Concentrations in Stillwater 1991 to 1992 Sediments and Rogers Island Suspended Matter vs. Aroclors 1254 and 1260
- 3-72 Comparison of PCB Congener Patterns: Suspended Matter from River Mile 194.6 at Rogers Island for Transect 4, April 12 to 14, 1993 and a Mixture of 94% Aroclor 1242 + 5% Aroclor 1254 + 1% Aroclor 1260
- 3-73 A Comparison between the 1991 to 1992 PCB Congener Pattern at River Mile 177.8 near Stillwater with the Period 1975 to 1990
- 3-74 A Comparison of the PCB Congener Pattern Chronology between River Mile 143.5 near Albany and River Mile 177.8 near Stillwater for 1975 to 1992
- 3-75 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated Post-1990
- 3-76 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1987 to 1990
- 3-77 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1982 to 1986
- 3-78 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1975 to 1981
- 3-79 Comparison of PCB Congener Patterns at River Mile 143.5
- 3-80 Comparison of PCB Congener Patterns at River Mile -1.9
- 3-81 Monthly PCB Load, River Mile 194.6 at Rogers Island and River Mile 188.5 at Thompson Island Pool Averaging Estimate on GE Data
- 3-82 Total PCB Concentrations at River Mile 194.6 GE Data, with Moving Average
- 3-83 Load across the Thompson Island Pool Total PCBs, GE Data
- 3-84 Load across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data
- 3-85 Load across the Thompson Island Pool Di-Chlorinated PCB Homologues, GE Data

List of Figures (cont'd)

- 3-86 Load across the Thompson Island Pool Tri-Chlorinated PCB Homologues, GE Data
- 3-87 Load across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data
- 3-88 Average Daily PCB Homologue Load at Rogers Island (River Mile 194.6) and Thompson Island Dam (River Mile 188.5) April 1991 through February 1996, Averaging Estimate on GE Data
- 3-89 Gain across the Thompson Island Pool Total PCBs, GE Data
- 3-90 Gain across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data
- 3-91 Gain across the Thompson Island Pool Di-Chlorinated PCB Homologues, GE Data
- 3-92 Gain across the Thompson Island Pool Tri-Chlorinated PCB Homologues, GE Data
- 3-93 Gain across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data
- 3-94 PCB Homologue Composition Change across the Thompson Island Pool April 1991 through February 1995, GE Data
- 3-95 Summer PCB Homologue Concentrations June through August 1991, GE Data
- 3-96 Summer PCB Homologue Concentrations June through August 1992, GE Data
- 3-97 Summer PCB Homologue Concentrations June through August 1993, GE Data
- 3-98 Summer PCB Homologue Concentrations June through August 1994, GE Data
- 3-99 Summer PCB Homologue Concentrations June through August 1995, GE Data
- 3-100 Total PCB Load from USGS Data: Ratio Estimator
- 3-101 Total PCB Load from USGS Data: Averaging Estimator
- 3-102 Water Column PCB Homologue Composition at River Mile 194.6 at Rogers Island
- 3-103 Water Column PCB Homologue Composition of the Net Thompson Island Pool Load
- 3-104 Comparison of 1993 Upper Hudson River PCB Loadings at Waterford based on Phase 2 Data
- 3-105 Comparison of Transect Results, Flow-Averaged Event Results, and Monthly Mean Based on GE Data
- 3-106 Mean PCB Loadings at the Thompson Island Dam from April 1991 through October 1995, GE Data
- 3-107 Water Column Total PCB Concentrations at the Thompson Island Dam: June 1993 to May 1996 GE Data
- 3-108 PCB Homologue Composition of the Net Thompson Island Pool Load, GE Data
- 3-109 Total PCB Load at Rogers Island and the Thompson Island Dam May 27, 1996, GE Data
- 3-110 PCB Load vs. River Mile for Three Phase 2 Water Column Transects
- 3-111 PCB Loadings to the Hudson River at River Mile 153.9 near Albany based on the Water Column Transect Sampling
- 3-112 Fractional PCB Loads at Albany for 1991 to 1992 Based on Dated High-Resolution Sediment Core Results
- 3-113 Model-Projected PCB Loadings to Lower Hudson River and Harbor for 1993
- 3-114 Estimated PCB Loadings to Lower Hudson and Harbor for 1993

List of Figures (cont'd)

- 4-1 A Comparison Between River Flow Velocity and Maximum Sediment PCB Inventory by River Mile in the Thompson Island Pool
- 4-2 Hudson River Cross-Sectional Area for 8400 cfs Flow at Fort Edward
- 4-3 Comparison of the DN Value for 10 ft and 50 ft Circles at Confirmatory Sampling Sites
- 4-4 Calibration Plots of DN vs. Grain-Size
- 4-5 Three-Dimensional Correlation Plot of Digital Number vs. Grain Size
- 4-6 Two-Dimensional Correlation Plot of Digital Number vs. Grain Size
- 4-7 Comparison of 500 kHz Acoustic Signal and 1984 NYSDEC PCB Levels in Surface Sediments
- 4-8 Examples Semivariogram with Labels
- 4-9 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreaches 1 and 2, Isotropic Variogram
- 4-10 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 3, Major Axis N 35 W
- 4-11 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 4, Major Axis N 10 W
- 4-12 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 5, Isotropic Variogram
- 4-13 Typical Arrangement of the Point Estimates Used in Generating Block Kriging Values
- 4-14 Variogram of Natural Log of Surface PCB Concentration GC/MS Screening Data Thompson Island Pool, 1984 Sediment Survey
- 4-15 Variogram of Natural Log of Surface PCB Concentration GC/ECD Analytical Data Thompson Island Pool, 1984 Sediment Survey
- 4-16 Variogram of Natural Log of Surface PCB Concentration Cross-Variogram between GC/ECD and GC/MS Data Thompson Island Pool, 1984 Sediment Survey
- 4-17 Locations of Potential Chlorine Sites on a PCB Molecule
- 4-18 Congener Content of Four Aroclor Mixtures
- 4-19 Histogram of the Molar Dechlorination Product Ratio
- 4-20 Histogram of the Fractional Molecular Weight Difference Relative to Aroclor 1242
- 4-21 Comparison Between the Molar Dechlorination Product Ratio and the Fractional Change in Molecular Weight for All Post-1954 Freshwater Sediments
- 4-22 Molar Dechlorination Product Ratio vs. Total PCB Concentration in Post-1954 Sediments from the Freshwater Hudson River
- 4-23 Molar Dechlorination Product Ratio vs. Total PCB Concentration with Depth (Age) in Core 18 at River Mile 185.8
- 4-24 Molar Dechlorination Product Ratio vs. Total PCB Concentration with Depth (Age) in Core 19 at River Mile 188.5
- 4-25 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight
- 4-26 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight Expanded Scale

HRP 002 1963

List of Figures (cont'd)

- 4-27 Molar Dechlorination Ratio and Total PCB Concentration vs. Depth for Phase 2 Sediment Core Samples
- 4-28a Histogram of the Change in Molecular Weight as a Function of Time of Deposition in Post-1954 Dated Sediments from the Hudson River
- 4-28b Fractional Mass Loss as Measured by the Change in Mean Molecular Weight in Post-1954 Dated Sediments from the Hudson River
- 4-29 A Comparison Between Sediment and Water Column Samples from Rogers Island and Thompson Island Dam
- 4-30 A Comparison of the Net Thompson Island Pool Contribution to the Water Column with the Sediments of the Upper Hudson
- 4-31 Relationship Between Phase 2 Hudson River Water Column Samples and the Sediment Regression Line - Molar Dechlorination Product Ratio vs. Change in Molecular Weight
- 4-32 Molar Dechlorination Product Ratio vs. Change in Molecular Weight for Water Column Transects Showing Trend with Station
- 4-33 Trend of High Resolution Core Top Molar Dechlorination Ratio and Total PCB Concentration with River Mile
- 4-34 A Comparison Among Various Water Column and Sediment Samples on a Homologue Basis
- 4-35 Comparison Between Various Water Column and Estimated Porewater Distributions on a Homologue Basis
- 4-36 Estimation of the Age of the Sediments Responsible for the Thompson Island Pool Source

and the second second

List of Plates

Plates

<u>Title</u>

- 1-1 Hudson River Drainage Basin and Site Location Map
- 1-2 Phase 2 Water Column Sampling Locations in Hudson River
- 1-3 Phase 2 High-Resolution Sediment Core Sampling Locations in Hudson River
- 1-4 NYSDEC Hot Spot Locations in Upper Hudson River
- 1-5 Sheet 1 of 2 Geophysical and Confirmatory Sediment Sampling Locations in Upper Hudson River (2 Sheets)
- 2-1 PCB Contaminated Sites in the Upper Hudson Watershed
- 2-2 General Electric Hudson Falls, NY Site Plan and Shore Profile
- 2-3 USEPA Point Source Sampling Locations in NY/NJ Harbor
- 3-1 NYS Thruway Authority, Office of Canals, Staffing Gauge Locations in the Upper Hudson River
- 3-2 Dated High-Resolution Sediment Core Locations in Hudson River
- 4-1 Side-Scan Sonar Mosaic of the Hudson River Sediments in the Vicinty of Hotspot 14
- 4-2 X-Radiograph of Confirmatory Core 88 Collected at Approximately RM 187.6, South of Thompson Island Near Hotspot 24
- 4-3 Interpretation of the 500 kHz Side-Scan Sonar Mosaic (A) and Comparison of Fine-Grained Sediments & NYSDEC Hot Spot Areas (B) in the vicinity of Hot Spot 14
- 4-4 Zones of Potentially High Sediment PCB Contamination in the Upper Hudson River (2 Sheets)
- 4-5 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island Pool - Subreach 1
- 4-6 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island Pool - Subreach 2
- 4-7 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island Pool - Subreach 3
- 4-8 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island Pool - Subreach 4
- 4-9 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island Pool - Subreach 5
- 4-10 Segmentation of the Thompson Island Pool for Semivariogram Analysis
- 4-11 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -Subreach 1
- 4-12 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -Subreach 2

HRP 002 1965

List of Plates (cont'd)

- 4-13 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -Subreach 3
- 4-14 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -Subreach 4
- 4-15 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -Subreach 5
- 4-16 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool Based on Kriging Analysis - Subreach 1
- 4-17 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool Based on Kriging Analysis - Subreach 2
- 4-18 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool Based on Kriging Analysis - Subreach 3
- 4-19 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool Based on Kriging Analysis - Subreach 4
- 4-20 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool Based on Kriging Analysis - Subreach 5

TABLES

796 T

20S

û M

Table 1-1

I

Station No. ^a		Location	River Mile ^b	Abbreviation	Alternate Reference
0001	Т	Glens Falls	199.5	GF	GF Public Works
0002	T and F	Fenimore Bridge	197.6	FB	Bakers Falls Bridge
0003	Т	Remnants	195.5	RMNTS	Remnant Deposits Site
0004	T and F	Rt. 197	194.6	RT 197	Rogers Island, Fort Edward
0005	T and F	Thompson Island Dam	188.5	TID	Crockers Reef Dam
0006	T	Schuylerville	181.3	SCHYLER	Rt 29 Bridge
0007	T	Stillwater	168.3	SW	Near USGS Water Quality Sta. 01331095
0008	T and F	Waterford	156.5	WTFD	Rt 4 Bridge at Waterford
0009	Т	Saratoga Springs	NA	SS	Orenda Spring at Saratoga Park
0010	Т	Lock 7	193.7 ^c	LOCK 7	
0011	Т	Batten Kill	182.1 ^c	BK	
0012	T	Hoosic River	167.5 [°]	HOOS	
0013	Т	Mohawk River	156.2 ^c	МОН	
0014	Т	Green Island Bridge	151.7	GIB	
0015	Т	Coxsackie	125.0	ĊOS	
0016	Т	Cementon	110.0	CEM	
0017	T	Highland	77.0	HIGH	
0019	Т	Mechanicville	165.4	MECH	Mechanicville Public Dock
0020		Performance Evaluation Sample	NA	PE	

Water Column Transect and Flow-Averaged Sampling Stations

Notes:

a. T - Transect Sampling Station

F - Flow-Averaged Sampling Station

b. Water-column transect and flow-averaged samples were collected within a half mile of the river mile noted.

c. Tributary river mile designations correspond to point of confluence with the Hudson River.

Table 1-2 Water-Column Transect and Flow-Averaged Sampling Events

Sampling Event	Sampling Date	Seasonal Conditions
Transect 1	January 29 - February 8, 1993	Winter - Low-Flow
Transect 2	February 19 - February 26, 1993	Winter - Low-Flow
Transect 3	March 26 - March 31, 1993	Spring - Transition from Low-Flow to High-Flow
Transect 4	April 12 - April 14, 1993	Spring - Low-Flow
Transect 5	June 24 - June 30, 1993	Summer - Low-Flow
Transect 6	August 19 - September 1, 1993	Summer - Low-Flow
Transect 8	April 23, 1993	Spring - High-Flow
Flow-Average 1	April 23 - May 8, 1993	Spring - High-Flow
Alª	April 23, 25, 27, 29, 1993	Spring - High-Flow
A2ª	May 1, 3, 5, 7, 1993	Spring - High-Flow
Flow-Average 2	May 12 - May 27, 1993	Spring - Low-Flow
Flow-Average 3	June 6 - June 19, 1993	Spring - Low-Flow
Flow-Average 4	July 6 - July 20, 1993	Summer - Low-Flow
Flow-Average 5	August 2 - August 17, 1993	Summer - Low-Flow
Flow-Average 6	September 9 - September 23, 1993	Summer - Low-Flow

Note:

a. Event includes samples taken only at River Mile 156.6 at Waterford.

Source: TAMS/Gradient Database

Table 1-3

RIVER MILE	HIGH RESOLUTION CORES	CORE NO.
202.9	Background - Above Feeder Canal	27
197.1	Bakers Falls	28
194.1E	Rogers Island (East Channel)	26
194.2W	Rogers Island (West Channel)	25
191.2	Thompson Island Pool	20
189.3	Thompson Island Pool	23
188.5	Thompson Island Dam	19
185.8	Above Lock No. 5	18
(NA)	Batten Kill	17
177.8	Stillwater Pool	22
177.8	Stillwater Pool	21
(NA)	Hoosic River	24
166.3	Above Lock No. 3	16
159.0	Below Lock No. 1	15
(NA)	Mohawk River	12
143.5	Albany Turning Basin	11
124.1	Stockport	14
99.2	Tivoli Bay	13
88.5	Kingston	10
59.6	Denning's Point	9
54.0	Foundry Cove	8
43.2	Lents Cove	7
43.2	Lents Cove	6
25.0	Piermont Marsh	1
2.4	Mid-Harbor	4
(NA)	Newtown Creek	5
-1.9	Upper NY Bay	2
-2.2	Upper NY Bay	3

High-Resolution Sediment Core Sample Locations

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

۰. . .

Table 1-4Phase 2 Target and Non-Target PCB Congeners Used in Analyses
Page 1 of 3

Congener Number ^a	Homologue	Congener Name	Conversion	Target ^c
	Group		Factor ^b	
BZ#1	Mono	2-Chlorobiphenyl		Yes
BZ#2	Mono	3-Chlorobiphenyl		Yes
BZ#3	Mono	4-Chlorobiphenyl		Yes
BZ#4	Di	2,2'-Dichlorobiphenyl		Yes
BZ#5	Di	2,3-Dichlorobiphenyl		Yes
BZ#6	Di	2.3'-Dichlorobiphenvi		Yes
BZ#7	Di	2,4-Dichlorobiphenyl		Yes
BZ#8	Di	2,4'-Dichlorobiphenyl		Yes
BZ#9	Di	2,5-Dichlorobiphenyl		Yes
BZ#10	Di	2,6-Dichlorobiphenyl		Yes
BZ#12	Di	3.4-Dichlorobiphenyl	· · · · · · · · · · · · · · · · · · ·	Yes
BZ#15	Di	4.4'-Dichlorobiphenyl		Yes
BZ#16	Tri	2.2'.3-Trichlorobiphenvl		Yes
BZ#17	Tri	2.2'.4-Trichlorobinhenvl	1.1589	No
BZ#18	Tri	2.2'.5-Trichlorobinhenvl		Yes
BZ#19	Tri	2.2'.6-Trichlorobinhenyl	· · · · · · · · · · · · · · · · · · ·	Yes
B7#20	Tri	2 3 3'-Trichlorobinhenvi		No
B7#22	Tri	2 3 4'-Trichlorobinhenyl		Yes
B7#23	Tri	2 3 5-Trichlorobinhenvl	0 774	No
B7#24	Tri	2,3.6 Trichlorobiphenyl	0.708	No
B7#25	Tri	2,3,4. Trichlorobiphenyl	0.700	Yes
B7#26	Tri	2,3' 5-Trichlotobiphenyl		Ves
B7#27	Tri	2,3,5,5 Trichlorobinhenvi		Ves
BZ#21 B7#28	Tri	2.4.4'-Trichlorobinhenvl		Ves
B7#29	Tri	2.4.5-Trichlorobinhenyl		Ves
BZ#27	 Tri	2.4' 5-Trichlorobiphenyl		Ves
B7#37	Tri	2.4' 6-Trichlorobiphenyl	0.901	No
BZ#32 B7#33	Tri	2' 3 4-Trichlorobiphenyl	0.901	No
BZ#33	Tri	2, 3, 5-Trichlorobinhenvl	1.12	No
BZ#37	Tri	3 4 4'-Trichlorobinhenyl	1.12	Vec
BZ#37	 Tetra	2.2' 3.3'-Tetrachlorobinhenvi		Vac
BZ#40	Tatro	2.2' 3.4 Tetrachlorobinhenvl		I ES Vec
BZ#41	Terro	2,2,3,4-1 cu acinorooppienyi	0.720	No
DZ#42 D7#44	Tetra	2,2,3,4 - 1 etrachiorobiphenyl	0.729	No
B7#45	Tetro	2,2,3,5-recachiorobinhanul	1.04	I CS
B7#/7	Tetro	2,2,3,0-1 Ciracino(00)pilenyi	1.00	
DZ#4/ D7#49	Tetro	2,2, +, + - 1 cuachdorobiphenyi 2,2' $4,5$. Tetrachlorobiphenyi	0.026	i es
D2#+0 D7#40	Tetro	2,2,4,3-1 cu autitorodipitenyl	0.920	INO
D2#47	Tetra	2,2,4,3 - 1 etrachiorodiphenyi	1.000	I es
D2#31	Tetra	2,2,5,5 Totrochiership	1.009	INO Mar
DL#34	Тана	2,2,3,3 - 1 etrachiorobiphenyi		Tes
BL#33	Tetra	2,2,3,0 - 1 etrachiorodiphenyi		Y es
BZ#30 B7#59	i etra	2,3,3,4 - i etrachiorobiphenyl	0 700	Yes
BZ#38	l etra	2,3,3,3 - i etrachiorobiphenyl	0.792	No
BZ#60	Tetra	2,5,4,4 - 1 etrachlorobiphenyl	0.56	No
BZ#03	Tetra	2,3,4',5-1etrachlorobiphenyl	0.654	No
BZ#64	Tetra	2,3,4,6-Tetrachlorobiphenyl	0.577	No
BZ#66	Tetra	2,3',4,4'-Tetrachlorobiphenyl		Yes
BZ#67	Tetra	2,3'.4,5-Tetrachlorobiphenyl		No
BZ#69	Tetra	2.3',4.6-Tetrachlorobiphenyl	0.731	No

Table 1-4Phase 2 Target and Non-Target PCB Congeners Used in AnalysesPage 2 of 3

Congener Number ^a	Homologue	Congener Name	Conversion	Target
	Group		Factor ^b	
BZ#74	Tetra	2,4,4',5-Tetrachlorobiphenyl	0.944	No
BZ#75	Tetra	2,4,4',6-Tetrachlorobiphenyl		Yes
BZ#77	Tetra	3.3'.4.4'-Tetrachlorobiphenvl		Yes
B7#82	Penta	2.2' 3.3' 4-Pentachlorobinhenvl		Yes
B7#83	Penta	2 2' 3 3' 5-Pentachlorobinhenyl		Yes
BZ#83	Penta	2,2',3,3',5-Pentachlorobinhenvl		Yes
B7#85	Penta	2.2', 3.4 d'-Pentachlorobinhenvi		Ves
BZ#65	Penta	2.2' 3.4.5' Pentachlorobiphenyl		Ves
DZ#01	Penta	2,2,3,4,5 -1 Chtachlorobinhenvil		Vec
DZ#71 D7#02	Pento	2.2' 3.5 5' Pentachlorobinhenvi		Vec
DZ#72	Pento	2,2,3,5,5 - Pentachiotophenyl		Vac
DZ#75) D7#04	Ponto	2,2,3,5,0-reinachiotobiphenyl	0.002	No
BZ#90 R7#97	Penta	2,2,3,4,5-Pentachlorobinhenyl	0.774	Yes
BZ#99	Penta	2,2',4,4',5-Pentachlorobinhenvl		Yes
BZ#101Z	Penta	2,2',4,5,5'-Pentachlorobiphenyl		Yes
BZ#105	Penta	2,3,3',4,4'-Pentachlorobiphenyl		Yes
BZ#107	Penta	2,3,3',4',5-Pentachlorobiphenyl		Yes
BZ#110	Penta	2,3,3',4',6-Pentachlorobiphenyl	0.822	No
BZ#114	Penta	2,3,4,4',5-Pentachlorobiphenyl	0.564	No
BZ#115	Penta	2,3,4,4',6-Pentachlorobiphenyl		Yes
BZ#118	Penta	2.3'.4.4'.5-Pentachlorobiphenyl		Yes
BZ#119	Penta	2.3',4.4',6-Pentachlorobiphenvl		Yes
BZ#122	Penta	2',3,3',4,5-Pentachlorobiphenyl		Yes
BZ#123	Penta	2'.3.4.4'.5-Pentachlorobinhenvl		Yes
BZ#126	Penta	3.3'.4 4' 5-Pentachlorobiphenyl		Yes
BZ#128	Hexa	2.2' 3.3' 4 4'-Hexachlorohiphenyl		Yes
BZ#129	Hexa	2.2'.3.3' 4 5-Hexachlorobinhenyl		Yes
BZ#135	Hexa	2.2'.3.3' 5 6'-Hexachlorobinhenyl		No
B7#136	Hexa	2 2' 3 3' 6 6'-Hexachlorobinhenyl		Yes
B7#137	Hexa	2, 2 , 3 , 4 , 5 . Hexachlorobinhenyl		Ves
B7#138	Hera	2 2' 3 4 4' 5'-Heyschlorobinhenvi		Yes
B7#140	Hera	2.2', 3.4.4', 5 -Hexachlorobiphenyl	0.57	No
R7#141	Hera	2.2, 3, 4, 5, 5'-Herschlorohinhen-	0.57	Vac
BZ#141	Hera	2, 2, 3, 4, 5, 5 Hereehlorshinhan.	0.699	1 CS
B7#144	Hera	2, 2, 3, 4, 3, 0 -rickachlorobiphenyl	0.009	No.
B7#146	Heva	2,2,3,4,3,0-mexachiorobiphenyi	0.374	No
BZ#140	Неха	2, 2, 3, 4; 5; 6 Howashlowshinkard	0.302	Vac
DZ#147 D7#151	Цаха	2,2,2,3,4,2,0,0-riexacniorobipnenyl		Jes
DZ#131 D7#152	Пеха	2,2,3,3,5,5, -HexachioroDiphenyl		Yes
DZ#133	неха	2,2,4,4,5.3 - Hexachiorobiphenyl	0.741	Y es
DZ#150	Hexa	2,5,5,4,4,5-Hexachlorobiphenyl	0.741	<u>N0</u>
BZ#13/	Hexa	2,3,3,4,4,5 Hexachlorobiphenyl		Yes
BZ#158	Hexa	2.3.3,4.4,6-Hexachlorobiphenyl		Yes
BZ#167	Hexa	2,3',4,4',5,5 -Hexachlorobiphenyl		Yes
BZ#169	Hexa	3,3',4,4',5,5'-Hexachlorobiphenyl	0.604	No
BZ#1/0	Hepta	2,2,3,3,4,4,5-Heptachlorobiphenyl		Yes
BZ#171	Hepta	2,2',3,3',4,4',6-Heptachlorobiphenyl		Yes
BZ#172	Hepta	2,2',3.3',4.5,5'-Heptachlorobiphenyl		No
BZ#174	Hepta	2.2',3.3',4,5.6'-Heptachlorobiphenyl	0.609	No
BZ#175	Henta	2 2' 3 3' 4 5' 6-Heptachlorohiphenyl	0.483	No

HRP 002 1972

Table 1-4Phase 2 Target and Non-Target PCB Congeners Used in AnalysesPage 3 of 3

Congener Number ^a	Homologue	Congener Name	Conversion	Target ^c
	Group		Factor ^b	
BZ#178	Hepta	2,2',3,3',5,5',6-Heptachlorobiphenyl		No
BZ#180	Hepta	2,2',3,4,4',5,5'-Heptachlorobiphenyl		Yes
BZ#183	Hepta	2,2',3,4,4',5',6-Heptachlorobiphenyl		Yes
BZ#184	Hepta	2,2',3,4,4',6,6'-Heptachlorobiphenyl	0.592	No
BZ#185	Hepta	2,2',3,4,5,5',6-Heptachlorobiphenyl		Yes
BZ#187	Hepta	2,2',3,4',5,5',6-Heptachlorobiphenyl		Yes
BZ#189	Hepta	2,3,3',4,4',5,5'-Heptachlorobiphenyl		Yes
BZ#190	Hepta	2,3,3',4,4',5,6-Heptachlorobiphenyl		Yes
BZ#191	Hepta	2,3,3',4,4',5',6-Heptachlorobiphenyl		Yes
BZ#193	Hepta	2,3,3',4',5,5',6-Heptachlorobiphenyl		Yes
BZ#194	Octa	2,2',3,3',4,4',5,5'-Octachlorobiphenyl		Yes
BZ#195	Octa	2,2',3,3',4,4',5,6-Octachlorobiphenyl		Yes
BZ#196	Octa	2,2',3,3',4,4',5',6-Octachlorobiphenyl		Yes
BZ#197	Octa	2,2',3,3',4,4',6,6'-Octachlorobiphenyl	0.489	No
BZ#198	Octa	2,2',3,3',4,5,5',6-Octachlorobiphenyl		Yes
BZ#199	Octa	2,2',3,3',4,5,6,6'-Octachlorobiphenyl		Yes
BZ#200	Octa	2,2',3,3',4,5',6,6'-Octachlorobiphenyl		Yes
BZ#201	Octa	2,2',3,3',4',5,5',6-Octachlorobiphenyl		Yes
BZ#202	Octa	2,2',3,3',5,5',6,6'-Octachlorobiphenyl		Yes
BZ#203	Octa	2,2',3,4,4',5,5',6-Octachlorobiphenyl	0.447	No
BZ#205	Octa	2,3,3',4,4',5,5',6-Octachlorobiphenyl		Yes
BZ#206	Nona	2,2',3,3',4,4',5,5',6-Nonachlorobiphenyl		Yes
BZ#207	Nona	2,2',3,3',4,4',5,6,6'-Nonachlorobiphenyl		Yes
BZ#208	Nona	2,2',3,3',4,5,5',6,6'-Nonachlorobiphenyl		Yes
BZ#209	Deca	2,2',3,3',4,4',5,5',6,6'-Decachlorobiphenyl		Yes
	Homologue	Congener		
	Group	Ratio ^d		
	Mono	3:3		
	Di	9:12		
	Tri	18:24		
	Tetra	23:42		
	Penta	23:46		
	Hexa	19:42		
	Hepta	16:24		
	Octa	11:12		
	Nona	3:3		
	Deca	1:1		
	Sum	126:209		

Source: TAMS/Gradient Database

Notes:

a. BZ # represents congener nomenclature system developed by Ballschmiter & Zell (1980).

b. Conversion factors for non-target congeners.

c. Yes: Target; No: Non-target; No - Cal: Calibrated non-target.

d. Ratio of number of congeners used to total number of congeners in homologue group.

Table 2-1

Summary of Niagara Mohawk Power Corp. RI Data - Queensbury Site

Media	Total PCB Concentrations	Units	Comments
Sediment near RM 210 • Shallow (0 to 9") • Deeper (9" to 18") • Background	0.2 to 550 <0.1 to 2,000 <0.004 to 0.25	mg/kg (ppm)	 Samples collected by NMPC at 169 locations Zones of elevated total PCB concentrations within 100 feet of site's contaminated soils; Aroclor 1242 dominant, lesser amounts of Aroclors 1248 and 1260 In general, PCB concentrations decrease with increasing distance from shoreline; river/reservoir approximately 800 ft wide near site RI background samples essentially uncontaminated
Soil	<0.1 to >1,000	mg/kg (ppm)	 Contaminated zone (soils exceeding 1 ppm cleanup level) extends 600 feet paralleling the shoreline from Corinth Rd. to Hudson River, and 50 to 100 ft in width; Aroclor 1248 dominant Surficial soil samples collected north of Corinth Rd. were essentially uncontaminated
Groundwater	< 1	μg/L	1. Below Aroclor quantitation limits
Surface Water	< 65 - 72	ng/L	1. Eight river water samples were below Aroclor quantitation limits, including a sample at the Town of Queensbury water supply intake, approx. 0.8 miles downstream of site
 Fish Phase I (1992) Phase II (1993) Background 	<0.1 to 10 2 to 23 <0.1 to 1.4	mg/k g-wet (ppm)	 Four of ten Phase I samples exceeded 2 mg/kg FDA limit Although benthic data are not available, higher concentrations in smallmouth bass, perch, and pumpkinseed, compared to minnows, suggests food chain biomagnification (see Figure 2-1) RI background samples essentially uncontaminated; maximum of 1.4 ppm-wet (76 ppm-lipid) in pumpkinseed sample at Spier Falls pool (approx. RM 214)

Source: Engineering-Science (1994)

Тя	ble	2-2

Phase 1 Estimates of PCB Loads to the Lower Hudson

Source	Range of Load Estimates kg/day (lb/day)
Tributaries (not including Upper Hudson River)	0.1-1.0 (0.2-2.3)
Sewage	1.4-2.1 (3-4.6)
Combined Sewers and Stormwater	0.9-1.4 (2-3)
Atmospheric Deposition	0.05-0.23 (0.1-0.5)
Landfill Leachate	0-0.3 (0-0.7)

Source: TAMS/Gradient (1991)

Table 2-3

Summary of Results of USEPA Study of PCBs in NY/NJ Point Sources^a

Treatment Plant	Receiving Water	Receiving WaterSum of 50 Congeners (ng/L)		Aroclor Pattern				
Infl	uent to Sewage Treatm (Representing Con	ent Plant During F nbined Sewer Over	tainfall Event flow)	<u></u>				
Passaic ValleyUpper Bay3804001232								
Newtown Creek	East River	150	160	1254				
North River	Hudson River	150	160	1254				
Wards Island	East River	50	55	No Pattern				
· · · ·	Sewa	ge Effluent						
Passaic Valley	Upper Bay	90	100	1232				
Newtown Creek	East River	40	45	1254				
North River	Hudson River	18	20	No Pattern				
Wards Island	East River	9	10	No Pattern				
Owls Head	Upper Bay	18	20	1232				
	Tributaries (Ri	iver Water Samples	s)					
Hudson River ^b (approx. Riv	ver Mile 12)	24	26	1248				
Passaic River ^b		24	26	1248				
Hackensack River ^b		24	26	1248				
Raritan River ^b		12	13	1242/1016				

Notes:

\$

- a. See Plate 2-3 for approximate locations of "tributary" and sewage treatment plant sampling points
- b. River samples do not represent "tributary inflow" to the Harbor since the sampling points are located within the tidal estuary and exhibit significant salinities.

TAMS/Cadmus/Gradient

Source: Battelle Ocean Sciences for USEPA (1993)

Table 2-4

Treatment Plant	Receiving Water	Total PCB Estimate (ng/L) (1)	1992 Average Flow (MGD) (2)	Estimated Total PCB Load (lb/day) (1)x(2)x(8.34x10 ⁻⁴ L·lb ng·MG)
Passaic Valley	Upper Bay	100	278	0.23 (0.11 kg/day)
Newtown Creek	East River	45	297	0.11 (0.05 kg/day)
North River	Hudson River	20	177	0.03 (0.01 kg/day)
Wards Island	East River	10	267	0.02 (0.01 kg/day)
Owls Head	Upper Bay	20	126	0.02 (0.01 kg/day)
Totals			1145	0.42 (0.2 kg/day)

Estimates of PCB Loading from Treated Sewage Effluent

Calculation of Total Load from Sewage:

1. According to Hydroqual (3), approximate total 1989 sewage flow = 2,500 MGD (includes plants discharging to Hudson River, East River, Upper Bay, Jamaica Bay, Lower Bay, Raritan Bay, Sandy Hook Bay, Arthur Kill, Raritan River, and Hackensack River)

2. Ratio of flow from 5 plants which were analyzed to total flow = 1145/2500 = 0.46

3. Estimate of total PCB load from 2500 MGD of sewage = $0.42 \text{ lb/day} \div 0.46 = 0.91 \text{ lb/day} (0.4 \text{ kg/day})$

OR

Assuming mean sewage concentration = 40 ng/L: PCB Load = $(2500 \text{ MGD}) \times (40 \text{ ng/L}) \times (8.34 \times 10^{-6}) = 0.83 \text{ lb/day (0.4 kg/day)}$

Notes:

a. 1 MGD (million gallons per day) = 1.55 cfs (cubic feet per second)

b. 1 lb/day = 0.454 kg/day

TAMS/Cadmus/Gradient

Sources:

Battelle Ocean Sciences for USEPA (1993); Interstate Sanitation Commission 1992 Annual Report (1993); and Hydroqual, Inc. for USEPA (1991)

Table 3-1

1

Stepwise Multiple Regression for $log(K_{P,a})$ of Key PCB Congeners Showing Sign of Regression Coefficients^a Determined to be Significant at the 95 Percent Level

PCB Congener	Temperature	[DOC]	[TSS]	C _{d,a} ^b	Flow at Fort Edward
BZ#1	-				-
BZ#8					
BZ#18	-		-		
BZ#28	-		-		
BZ#52			-		-
BZ#70	-		-		
BZ#87		+	-		+
BZ#101	-			· · · · · · · · · · · · · · · · · · ·	
BZ#118	-		-		
BZ#138					+

Notes:

a. - indicates a significant negative regression coefficient.

+ indicates a significant positive regression coefficient.
b. C_{d,a} is the analytically-resolved dissolved-phase concentration of the congener.

Source: TAMS/Gradient Database

Table 3–2Stepwise Multiple Regression for log(KPOC,a) of Key PCB CongenersShowing Sign of Regression Coefficients*Determined to be Significant at the 95 Percent Level

PCB Congener	Temperature	[DOC]	[TSS]	C _{d.a} ^b	Flow at Fort Edward
BZ#1					
BZ#8					
BZ#18	· -				
BZ#28	······				+
BZ#52	···				
BZ#70					
BZ#87	· · ·			<u></u>	
BZ#101					
BZ#118					+
BZ#138					+

Notes:

- a. indicates a significant negative regression coefficient;
 - + indicates a significant positive regression coefficient.
- b. $C_{d,a}$ is the analytically-resolved dissolved-phase concentration of the congener.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

HRP 002 1979

Table 3-3

I

Correlation Coefficient Matrix for Explanatory Variables Evaluated for Analysis of PCB Partition Coefficients (K_{POC,a})

	[DOC]	Temperature	[TSS]	Flow	Dissolved Concentration
[DOC]	1.0	0.147	-0.183	-0.530	0.071
Temperature		1.0	-0.042	-0.514	0.008
[TSS]			1.0	0.191	-0.033
Flow				1.0	-0.021
Dissolved Concentration					1.0

Source: TAMS/Gradient Database

Table 3-4

Temperature Slope Factors for Capillary Column Gas Chromatogram Peaks Associated with Key PCB Congeners

PCB Congener	Capillary Column Peak	Slope Estimate
BZ#1	Not resolved	no data
BZ#4	la	1463.1
BZ#8	1d	no data
BZ#18	2b	1135.1
BZ#28	4d	920.1
BZ#52	6b	1116.7
BZ#70	9Ъ	1337.3
BZ#101	10d	no data
BZ#138	15a	1599.0
BZ#180	18a	529.5

Source: Warren et al. (1987)

Table 3–5

1

Relative Performance of Distribution Coefficient Formulations: Squared Error in Predicting Particulate-Phase PCB Congener Concentration from Dissolved-Phase Concentration

Calculation Method for Evaluation K Criterion	Average of Estimates, no Temperature Correction	Average of Estimates, with Temperature Correction	Median of Estimates, no Temperature Correction	Median of Estimates, with Temperature Correction
Mean Squared Error, Predicted from K _{P,a} and [TSS]	30.15	22.90	7.50	7.85
Mean Squared Error, Predicted from K _{POC,a} and [POC]	3.15	3.04	3.51	3.11
Median Squared Error, Predicted from K _{P,a}	0.061	0.032	0.013	0.008
Median Squared Error, Predicted from K _{POC,a}	0.026	0.017	0.013	0.006

Note: Smaller squared error indicates better fit between observed particulate-phase concentrations and particulate-phase concentrations predicted from observed dissolved concentration using calculated partition coefficients (K) for each congener and equilibrium partitioning assumptions.

Source: TAMS/Gradient Database

Table 3–6a In-Situ K_{POC,a} Estimates for Hudson River PCB Congeners Corrected to 20°C Page 1 of 3

HRP 002 1983

		K _{PO}	c., Corrected to	o 20° C (L/kg)		
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Standard Deviation
1	25	143,000	392,000	24,300	3,080,000	747,000
4	4	65,100	202,000	30,600	646,000	297,000
6	17	429,000	680,000	203,000	3,020,000	768,000
7	1	198,000	198,000	198,000	198,000	-
8	22	255,000	432,000	159,000	2,780,000	555,000
9	6	344,000	983,000	124,000	4,270,000	1,620,000
10	10	166,000	233,000	40,300	800,000	221,000
12	10	884,000	1,030,000	282,000	1,840,000	537,000
15	23	1,260,000	3,380,000	483,000	25,100,000	5,960,000
16	20	215,000	273,000	90,500	1,050,000	208,000
18	29	228,000	297,000	112,000	1,470,000	275,000
19	12	155,000	255,000	40,100	1,450,000	387,000
22	34	524,000	716,000	205,000	2,880,000	572,000
25	15	678,000	873,000	332,000	2,280,000	485,000
26	32	586,000	710,000	115,000	3,130,000	521,000
27	20	306,000	440,000	165,000	1,950,000	405,000
28	32	619,000	798,000	280,000	2,380,000	577,000
29	14	580,000	806,000	288,000	2,360,000	584,000
31	30	543,000	723,000	285,000	3,360,000	615,000
37	32	930,000	1,090,000	408,000	2,870,000	645,000
40	34	558,000	697,000	262,000	2,438,000	483,000
41	24	599,000	766,000	315,000	2,870,000	576,000
44	40	558,000	731,000	231,000	4,020,000	651,000
47	33	856,000	948,000	68,600	3,760,000	621,000
49	26	724,000	864,000	357,000	2,340,000	478,000
52	35	607,000	729,000	333,000	2,150,000	438,000
53	21	362,000	689,000	148,000	3,630,000	858,000
56	9	884,000	1,130,0001	313,000	2,920,000	832,000

Table 3-6a

In-Situ K_{POC,a} Estimates for Hudson River PCB Congeners Corrected to 20°C

Page 2 of 3

HRP 002 1984

	K _{POC,a} Corrected to 20° C (L/kg)							
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Standard Deviation		
66	33	1,140,000	1,480,000	555,000	4,810,000	943,000		
70	38	1,140,000	1,420,000	411,000	5,570,000	1,080,000		
77	3	2,190,000	2,420,000	1,020,000	4,050,000	1,530,000		
82	12	1,320,000	1,820,000	766,000	6,390,000	1,530,000		
83	10	1,440,000	1,670,000	692,000	5,140,000	1,270,000		
84	17	918,000	1,060,000	329,000	4,310,000	874,000		
85	17	1,540,000	1,790,000	742,000	6,230,000	1,220,000		
87	20	1,290,000	1,490,000	420,000	4,820,000	949,000		
91	13	1,150,000	1,010,000	394,000	1,970,000	435,000		
92	12	1,210,000	1,570,000	521,000	6,280,000	1,530,000		
95	9	1,050,000	1,310,000	546,000	3,820,000	962,000		
97	18	1,530,000	1,850,000	656,000	6,320,000	1,630,000		
99	19	1,640,000	2,030,000	575,000	7,710,000	1,700,000		
101	21	1,340,000	1,630,000	366,000	4,760,000	1,100,000		
105	5	2,670,000	2,270,000	929,000	3,460,000	997,000		
107	7	2,650,000	3,030,000	1,260,000	6,310,000	1,600,000		
118	12	2,350,000	2,580,000	1,160,000	7,670,000	1,710,000		
119	3	1,360,000	1,520,000	1,310,000	1,890,000	321,000		
122	1	3,170,000	3,170,000	3,172,812	3,170,000	-		
128	3	2,640,000	2,360,000	1,120,000	3,300,000	1,120,000		
136	7	1,920,000	1,800,000	883,000	3,320,000	836,000		
137	7	2,530,000	2,590,000	999,000	4,740,000	1,390,000		
138	9	2,210,000	2,420,000	976,000	3,960,000	1,000,000		
141	5	1,660,000	1,880,000	1,010,000	3,340,000	957,000		
149	3	2,320,000	2,300,000	2,140,000	2,440,000	151,000		
151	10	2,080,000	2,160,000	852,000	4,240,000	1,040,000		
Table 3–6aIn-Situ K_{POC,s} Estimates for Hudson RiverPCB Congeners Corrected to 20°C

T

Page 3of 3

	K _{POC,s} Corrected to 20° C (L/kg)												
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Standard Deviation							
153	10	2,770,000	2,970,000	627,000	9,750,000	2,580,000							
170	2	2,070,000	2,070,000	794,000	3,350,000	1,810,000							
171	1	717,000	717,000	717,000	717,000	-							
177	1	846,000	846,000	846,000	846,000	-							
180	1	600,000	600,000	600,000	600,000	-							
183	1	381,000	381,000	381,000	381,000	-							
187	1	690,000	690,000	690,000	690,000	-							
191	1	813,000	813,000	813,000	813,000								
194	1	365,000	365,000	365,000	365,000	-							
201	2	1,240,000	1,240,000	793,000	1,680,000	630,000							

Source:

TAMS/Gradient Database.

Table 3-6b

In Situ log (K_{POC,a}) Estimates for Hudson River PCB Congeners Corrected to 20°C

Page 1 of 3

HRP 002 1986

		log (I	K _{POC,a}) Correct	ed to 20.° C (L	/Kg)	
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Theoretical log (K _{oc})
1	25	5.15	5.21	4.39	6.49	4.35
4	4	4.80	4.98	4.49	5.81	4.76
6	17	5.63	5.66	5.31	6.48	
7	1	5.30	5.30	5.30	5.30	4.83
8	22	5.41	5.50	5.20	6.44	4.83
9	6	5.53	5.64	5.09	6.63	4.83
10	10	5.22	5.23	4.61	5.90	4.76
12	10	5.95	5.95	5.45	6.27	4.85
15	23	6.10	6.22	5.68	7.40	4.91
16	20	5.33	5.36	4.96	6.02	5.16
18	29	5.36	5.39	5.05	6.17	5.24
19	12	5.19	5.16	4.60	6.16	
22	34	5.72	5.76	5.31	6.46	
25	15	5.83	5.89	5.52	6.36	
26	32	5.77	5.78	5.06	6.50	5.31
27	20	5.49	5.54	5.22	6.29	
28	32	5.79	5.82	5.45	6.38	5.31
29	14	5.76	5.83	5.46	6.37	5.26
31	30	5.73	5.77	5.45	6.53	5.31
37	32	5.97	5.98	5.61	6.46	5.26
40	34	5.75	5.77	5.42	6.39	5.57
41	24	5.78	5.81	5.50	6.46	
44	40	5.75	5.78	5.36	6.60	5.64
47	33	5.93	5.91	4.84	6.58	5.72
49	26	5.86	5.89	5.55	6.37	5.71
52	35	5.78	5.81	5.52	6.33	5.91
53	21	5.56	5.67	5.17	6.56	5.76

Table 3-6b

Ι

In Situ log (K_{POC,a}) Estimates for Hudson River PCB Congeners Corrected to 20°C

Page 2 of 3

HRP 002 1987

		log (H	K _{POC,a}) Correct	ed to 20° C (L	/Kg)	
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Theoretical log (K _{oc})
56	9	5.95	5.96	5.49	6.47	
66	33	6.06	6.11	5.74	6.68	5.74
70	38	6.06	6.08	5.61	6.75	5.73
77	3	6.34	6.32	6.01	6.61	5.75
82	12	6.12	6.18	5.88	6.81	
83	10	6.16	6.15	5.84	6.71	6.04
84	17	5.96	5.95	5.52	6.63	
85	17	6.19	6.20	5.87	6.79	
87	20	6.11	6.12	5.62	6.68	6.07
91	13	6.06	5.96	5.60	6.29	
92	12	6.08	6.09	5.72	6.80	
95	9	6.02	6.05	5.74	6.58	6.16
97	18	6.19	6.17	5.82	6.80	
99	19	6.21	6.22	5.76	6.89	6.14
101	21	6.13	6.15	5.56	6.68	6.14
105	5	6.43	6.31	5.97	6.54	
107	7	6.42	6.44	6.10	6.80	
118	12	6.37	6.36	6.06	6.88	
119	3	6.13	6.18	6.12	6.28	
122	1	6.50	6.50	6.50	6.50	
128	3	6.42	6.33	6.05	6.52	6.42
136	7	6.28	6.22	5.95	6.52	6.42
137	7	6.40	6.35	6.00	6.68	
138	9	6.34	6.35	5.99	6.60	6.49
141	5	6.22	6.23	6.01	6.52	
149	3	6.37	6.36	6.33	6.39	

Table 3--6b

In Situ log (K_{POC,a}) Estimates for Hudson River PCB Congeners Corrected to 20°C Page 3 of 3

		log (l	K _{POC,a}) Correct	ed to 20° C (L	/Kg)	
PCB Congener (BZ#)	Count	Median	Average	Minimum	Maximum	Theoretical log (K _{oc})
151	10	6.32	6.29	5.93	6.63	
153	10	6.44	6.36	5.80	6.99	6.57
170	2	6.21	6.21	5.90	6.53	6.85
171	1	5.86	5.86	5.86	5.86	6.94
177	1	5.93	5.93	5.93	5.93	
180	1	5.78	5.78	5.78	5.78	6.51
183	1	5.58	5.58	5.58	5.58	
187	1	5.84	5.84	5.84	5.84	6.99
191	1 ·	5.91	5.91	5.91	5.91	
194	1	5.56	5.56	5.56	5.56	7.27
201	2	6.06	6.06	5.90	6.23	

Source: TAMS/Gradient Database;

TAMS/Cadmus/Gradier

Note: Theoretical values of log (K_{oc}) are based on Burkhard (1984) as cited in Mackay *et al.* (1992). These represent a consistent set of estimates for partitioning to suspended particulate organic carbon developed from octanol-water partition coefficients. Blanks indicate data not available.

Table 3–7

T

PCB Congener (BZ#)	Sample Size	log(K _{POC}) (L/kg)	log(K _{DOC}) (L/kg)	Intercept probability value	Slope probability value
1	25	5.65	5.77	0.822	0.535
4	15°	NC	NC	0.535	0.208
8	22	5.98	5.56	0.346	0.114
18	29	6.07	5,95	0.697	0.112
28	32	6.72	6.12	0.718	0.032
31	30	NC	NC	0.713	0.023
44	40	6.15	5.44	0.390	0.259
52	35	6.10	5.29	0.262	0.299
66	33	6.73	5.80	0.608	0.127
70	38	6.47	5.46	0.366	0.215
101	21	6.11	NC	0.043	0.749
118	12	6.81	5.65	0.556	0.220
138	9	6.49	4.77	0.057	0.558
151	10	6.37	4.87	0.621	0.857
153	10	6.02	NC	0.122	0.367

Three-Phase PCB Partition Coefficient Estimates Using Regression Method^{*}

Notes:

a. Regression method adapted from Brannon et al. (1991).

b. NC = Did not yield physically realistic estimate ($K_{POC} < 0$).

c. Analysis for BZ #4 includes samples with suspected blank contamination and a quantitation value within 3 times the blank concentration. Samples with these characteristics are omitted for all other congeners.

Source: TAMS/Gradient Database

Table 3–8

I

РСВ		Estimated	Estimated	Phas	e Distribu	tion ^b
Congener (BZ #)	Optimization Method [*]	log (K _{POC}) (L/kg)	log (K _{DOC}) (L/kg)	Dissolved Fraction	DOC Fraction	POC Fraction
1	1	5.65	5.12	0.44	0.28	0.28
4°	2	5.19	5.43	0.40	0.51	0.09
8	1	5.67	5.56	0.29	0.51	0.20
18	2	5.40	4.66	0.64	0.14	0.22
28	1	5.84	4.16	0.49	0.03	0.48
31	1	5.80	4.40	0.50	0.06	0.44
44	3	5.85	4.16	0.49	0.03	0.48
52	3	5.82	4.28	0.49	0.05	0.46
66	1	6.27	4.89	0.25	0.09	0.66
70	1	6.15	4.65	0.31	0.07	• 0.62
101	1	6.18	4.54	0.31	0.05	0.64
118	1	6.41	NC	0.22	0.00	0.78
138	1	6.43	4.86	0.20	0.07	0.73
151	1	6.55	5.09	0.15	0.09	0.76
153	1	6.38	5.00	0.21	0.10	0.69

Three-Phase PCB Partition Coefficient Estimates Using Optimization with Temperature Correction to 20°C

Notes:

NC not convergent, K_{DOC} estimate goes toward zero.

a. Key to Optimization Methods:

- 1. Simultaneous optimization.
- 2. Simultaneous optimization with outlier rejection.
- 3. Two-stage optimization.
- b. Fractional distribution calculated at 20°C with [DOC]=4.79 mg/L and [POC]=1.40 mg/L.
- c. Analysis for BZ #4 includes samples with suspected blank contamination and a quantitation value within 3 times the blank concentration. Samples with these characteristics are omitted for all other congeners.

Source: TAMS/Gradient Database

Table 3–9

J

GE Peak No.	PCB Congener Identification (BZ#)	Sample Size	GE-Based Mean ^a log (K _{OC,a}) (L/kg)	Standard Deviation	Minimum	Maximum	Theoretical log (K _{oc}) ^b (L/kg)	Phase 2 Mean log (K _{POC,a}) ^c (L/kg)
2	1	80	4.40	0.52	2.83	6.40	4.35	5.21
5	4 & 10	84	4.92	0.70	3.46	8.74	4.71, 4.76	4.98, 5.22
8	8&5	84	5.68	0.47	4.77	7.52	4.83, -	5.50,
14	18 & 15	84	5.75	0.45	4.69	6.89	5.24, 4.91	5.39, 6.22
24	28 & 50	84	6.17	0.54	5.00	7.45	5.31, 5.70	5.82,
23	31	84	5.92	0.57	4.71	7.34	5.31	5.77
37	44 & 104	78	5.71	0.54	4.20	6.94 [`]	5.64, 6.2	5.78,
31	52 & 73	84	5.72	0.61	4.32	7.07	5.91, -	5.81,
50	56 & 60	81	5.55	0.50	4.46	6.82	-,5.67	5.96,
47	70 & 76 & 61	83	5.87	0.56	4.71	7.22	5.73, -, 5.61	6.08,,
48	66 & 93 & 95	84	5.72	0.55	4.64	7.11	5.74, -, 6.16	5.91,, 6.05
53	101 & 90	84	5.54	0.52	4.33	7.05	6.14, -	6.15,
69	118 & 149 & 106	84	5.49	0.48	4.33	6.86	-, -, -	6.36, 6.36,
75	153	48	5.38	0.42	4.11	6.37	6.57	6.36
82	138 & 163	59	5.50	0.47	4.22	6.77	6.49, -	6.35,
88	187 & 182	52	5.21	0.40	4.05	5.78	5.84, -	6.17,

A Comparison of Two-Phase Sediment log (K_{OC,s}) and log (K_{POC,s}) Estimates For Hudson River PCB Congeners

Source: TAMS/Gradient Database.

Notes:

- a) Quality of fit of the partitioning model is difficult to ascertain for the sediment due to concerns with GE sample handling and compositing procedures, which may have altered the *in situ* phase distribution, so relative predictive ability of mean versus median estimates of the partition coefficient cannot be evaluated. Comparison to water-column partitioning is made on the basis of the mean of all log-transformed estimates of K_{OC,a} for each congener, which should approximate the median arithmetic value for lognormally distributed observations.
- b) From Burkhard (1984) as cited in Mackay et al. (1992).

c) Two-phase water column estimates, from Table 3-6b.

Table 3-10a

L

	Estima	ted from GE	Data	Reported fo Harbor	r New Bedford Sediments*	Water Colu Coefficien	imn Partition t Estimates ^b
PCB Congener (BZ#)	log K _{oc} (L/kg)	log K _{poc} (L/kg)	Method	log K _{OC} (L/kg)	log K _{doc} (L/kg)	log K _{oc} (L/kg)	log K _{DOC} (L/kg)
1 •	4.41	3.00	3	-		5.65	5.12
4 & 10	5.63	5.17	3	4.43	4.55	5.19, -	5.43, -
8&5	5.95	4.24	1	4.43	4.55	5.67, -	5.56, -
18 & 15	5.91	3.92	1	5.05, 4.43	4.86, 4.55	5.40, -	4.66, -
22 & 51	5.82	3.44	1	5.05, 5.29	4.86, 5.06	•, -	-, -
28 & 50	6.23	3.10	3	5.05, 5.29	4.86, 5.06	5.84, -	4.16, -
31	6.13	4.49	1	5.05	4.86	5.80	4.40
44 & 104	5.87	4.24	2	5.29, 5.43	5.06, 5.12	5.85, -	4.16, -
52 & 73	6.06	4.71	1	5.29	5.06	5.82, -	4.28, -
66 & 93 & 95	5.70	3.70	1	5.29, 5.43	5.06, 5.12	6.27, -, -	4.89, -, -
70 & 76 & 61	5.91	4.18	2	5.29	5.06	6.15, -, -	4.65, -, -
101 & 90	5.79	4.39	1	5.43	5.12	6.18, -	4.54, -
118 &149 & 106	5.77	4.39	1	5.43, 5.44	5.12, 5.04	6.41, -, -	-, -, -
138 & 163	6.02	4.95	1	5.44	5.04	6.43, -	4.86, -
153	5.60	4.10	1	5.44	5.04	6.38	5.00

Three-Phase Partition Coefficient Estimates for PCBs in Sediment of the Freshwater Portion of the Hudson River

Notes:

a. Averages by homologue reported by Burgess et al. (1996) for the 4-8 cm. depth layer.

b. From Table 3–8.

c. Optimization Methods:

1. Direct optimization.

2. Direct optimization with outliers deleted.

3. Conditional optimization based on estimated two-phase $K_{OC,a}$.

Source: TAMS/Gradient Database

Table 3-10b

Predicted Relative Concentration of PCB Congeners in Sediment Porewater for Various Assumptions Regarding Three-Phase PCB Congener Partition Coefficients.

Porewater Concentrations (ng/L) in Equilibrium with 1 mg/kg (Dry Weight) Total Sediment Concentration.

	K _{oc} , K _{poc} Est from GE Data	imated a		K _{oc} , K _{boc} Rep for New Bedfo	oorted ord Harbor *		K _{oc} , K _{DOC} Es from Water	timated Column Data ^b		Observed Median ^d
PCB Congener (BZ#)	Dissolved (ng/L) ^c	DOC- sorbed (ng/L) °	Total Porewater (ng/L)	Dissolved (ng/L) '	DOC-sorbed (ng/L) °	Total Porewater (ng/L)	Dissolved (ng/L) °	DOC-sorbed (ng/L) °	Total Porewater (ng/L)	Total Porewater (ng/L)
1	2101	78	2179	-	-	-	46	227	273	2180
4 & 10	128	693	821	771	1015	1786	135	1347	1482	850
8&5	61	40	101	771	1015	1786	44	591	635	127
18 & 15	67	20	87	185	498	683	84	141	225	109
22 & 51	82	8	90	185	498	683	35	7	42	82
28 & 50	32	1	33	185	498	683	30	16	46	36
31	40	47	87	185	498	683	33	30	63	73
44 & 104	74	58	132	107	454	561	30	16	46	92
52. & 73	48	91	139	107	454	561	31	22	53	111
66 93 95	107	20	127	107	454	561	11	32	43	103
70 76 61	66	37	103	107	454	561	15	24	39	74
101 & 90	88	80	168	77	378	455	14	18	32	175
118 149 106	92	84	176	77	378	455	8	00	8	186
138 & 163	52	171	223	75	307	382	8	21	29	201
150 00 105	137	63	200	75	307	382	9	32	41	232

Notes:

Averages by homologue reported by Burgess et al. (1996) for the 4-8 cm. depth layer. a.

Calculated for first of multiple congeners listed. b.

Phase distribution computed with porosity = 38.3%, m = 0.837 g/cc, TOC = 18,413 mg/Kg, [DOC] = 37.08 mg/L. c.

Median of observed ratio of porewater concentration (ng/L) to sediment concentration (mg/kg). d.

Source: TAMS/Gradient Database

1993

002

HRP

 Table 3-11

 Models for Predicting Flow at Stillwater and Waterford

Stillwater Models

General Model Formulation (see Notes a - c):

Flow = Ao + B*(Gauge 115) + C*(Gauge 114) + D*(Gauge 113) + E*(Gauge 113)² + F*(Gauge 109) + G*(Gauge 109)² + H*(Gauge 109)³ + H*(Gauge 109)³ + I*(Gauge 104)³ + L*(Gauge 104)³ + L*(Gauge 103) + M*(Fort Edward Flow)

					<u></u>				
Coefficient	Units	Model A	Model B	Model C	Model D	Model E	Model F	Model G	Model V ^e
Ao (Intercept)	cfs	-3276049.7337020	-3378402.9482520	-5957242.6098480	926684.2046496	1013923.1756045	185919.0495747	18366545.0134290	270837 0981818
B	cfs/ft	0	0	Ō	473.3300669	0	0	0	0
c	cfs/ft	0	0	0	813.0709879	0	0	0	0
Đ	cfs/ft	-22215.1555485	-24174.3361228	-20269.7658305	-27907.2299644	-5040.2093731	-6634.6009283	0	-9114.9039543
E	cfs/ft ²	137.3872350	151.6237246	124.8551945	170.7295079	39.9231368	52.8026899	0	70.3401991
F	cfs/ft	0	0	545.2425207	703.0331240	-21578.9322948	0	-60\$841.9284429	0
G	cfs/fl ²	0	0	0	0	133.4325059	0	6665.5350524	0
н	cfs/ft ³	0	0	0	0	0	0	-24.0505136	0
	cfs/ft	252037.1752807	261545.9055682	405649.8142012	475.3636000	0	0	0	0
J	cfs/ft ²	-5095.9312083	-5259.4458537	-8165.2552433	0	0	0	۰۶ O	. 0
K	cfs/ft ¹	34.3652917	35.2983604	54.8013558	Ō	0	0	0	. 0
L	cfs/ft	549.5417837	0	497.9488527	0	0	0	0	0
М		0.3955830	0.3645739	0.3708952	0	0.2124434	0.2352177	0.4443368	0

Waterford Models:

General Model Formulation (See Notes a - d):

Flow = A0 + B*(Gauge 113) + C*(Gauge 113)² + D*(Gauge 113)³ + D*(Gauge 109) + F*(Gauge 109)² + C*(Gauge 109)³ + H*(Gauge 104)² + J*(Gauge 104)³ + K*(Gauge 103)³ + L*(Gauge 103)³ + M*(Gauge 103)³ + N*(Fort Edward Flow) + O*(Fort Edward Flow) + I*(Gauge 104)² + J*(Gauge 104)³ + K*(Gauge 103)³ + L*(Gauge 103)³ + M*(Gauge 103)³ + D*(Gauge 104)² + J*(Gauge 104)³ + J*(Gauge 104)³ + J*(Gauge 103)³ + D*(Gauge 103)³ + D*(Gauge 104)³ + J*(Gauge 104)³ +

Coefficient	Units	Model H	Model I	Model J	Model K	Model L	Model M	Model N	Model W ^e
Ao (Intercept)	cfs	60589328.2249240	-11763551.0063700	51998478.3513660	942511.2282085	158644354.8177900	7965094.5678358	7482988.8714942	12382672.9529970
. в	cfs/ft	-2725236.8592380	1518 2932751	-2223606.4751900	18316.9925537	0	-499279.3648327	-574007.9803440	0
С	cfs/fl ²	31824.4729540	0	25711.1721566	-99.8302380	0	5796.5889442	6601.4783119	0
Ď	cfs/ft ³	-123.8095313	0	-98.9468044	0	0	-22.3356125	-25.1609474	U
Ê	cfs/ft	905.5135839	0	0	-25667.6932483	-5817960.2146860	-54317.8005877	0	0
F	cfs/ft ²	0	0	0	156.6231076	67571.8552761	328.5094230	C	0
G	cfs/ft ⁵	0	0	0	0	-261.4070585	0	0	0
ii C	cfs/ft	878081.3161150	727530.9378804	732822.2618892	-19760.8434590	509508.8910785	526667.1085706	555864.9623411	-699894.1290952
t	cfs/ft ²	-17817.3332271	-14809.8942210	-14911.7412496	203.6555497	-10549.3939164	-10815.0617960	-11370.1754706	13047 6852323
J	cfs/ft3	120.5397914	100.5247672	101.2333061	0	72.9270266	74.1110955	77.6146718	-79.9944846
К	cfs/ft	258820.2096101	-19214.2996200	0	-16914.3932913	0	0	0	0
L.	cfs/ft ²	-8433.8689033	330.4976230	0	291.9458319	Ō	0	0	U
M	cfs/ft ³	91.9776902	0	0'	0	0	0	0	0
N		0	0	0	0 .	0.2230530	0	0	0
0		0	0.0616570	0	0	0	-0.0492896	-0.0568143	0

Notes:

a. Models yield Stillwater and Waterford flows in cfs.

b. Gauge reference in the general flow model e.g., Gauge 104, corresponds to the staff gauge measurement in feet.

c. Fort Edward flow reference corresponds to flow measured at Fort Edward in cfs.

d. Fort Edward Flow - Lag reference corresponds to Fort Edward flow, with a one-day lag, in cfs.

e. Gauge-only model used during the period March 27 to April 5, 1993.

Source: USGS; NYS Thruway Authority, Office of Canals

Table 3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 Page 1 of 7

Date	Fort Edward Measured Flow (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model
1/1/93					
1/2/93		10,700	D	13,800	J
1/3/93		10,500	D	13,500	J
1/4/93		8,100	D	9,800	J
1/5/93		10,100	D	11,500	J
1/6/93	10,300	15,400	Е	19,400	L
1/7/93	11,000	15,900	E	20,000	М
1/8/93	10,100	16,000	E	19,300	М
1/9/93	8,870	14,400	Е	17,700	M
1/10/93	12,200	13,800	E	15,600	M
1/11/93	6,970	12,000	E	13,700	М
1/12/93	7,110	12,100	E	14,000	М
1/13/93	7,140	12,100	Е	13,600	М
1/14/93	7,020	12,200	E	13,900	М
1/15/93	6,760	12,800	E	14,500	М
1/16/93	6,690	12,100	E	14,200	М
1/17/93	6,720	11,700	E	13,400	M
1/18/93	6,610	9,400	Interpolated	12,300	Interpolated
1/19/93	6,120	9,400	Interpolated	9,500	L
1/20/93	6,100	7,900	D	10,300	J
1/21/93	6,260	7,700	D	9,600	J
1/22/93	6,430	8,100	D	10,500	J
1/23/93	6,360	7,900	D	10,000	J
1/24/93	6,700	8,700	D	11,200	J
1/25/93	6,500	9,400	D	12,500	M
1/26/93	6,490	9,000	D	11,300	J
1/27/93	6,100	8,300	D	10,500	J
1/28/93	6,120	7,700	D	9,700	J
1/29/93	6,030	7,800	D	9,800	J
1/30/93		8,100	D	10,300	J
1/31/93		8,400	D	11,000	J
2/1/93		8,900	D	11,600	J
2/2/93	5,150	8,800	D	11,500	J
2/3/93	4,160	8,900	D	11,700	J
2/4/93	4,240	8,500	D	11,300	J
2/5/93	4,210	8,100	D	10,500	J
2/6/93	4,430	7,700	D	9,900	J
2/7/93	5,120	7,900	Interpolated	10,300	Interpolated
2/8/93	4,050	8,100	D	10,800	J
2/9/93	4,160	8,300	D	11,100	J
2/10/93	3,970	7,800	D	10,400	J

Table 3-12Calculated Flows at Stillwater and Waterfordfor January 1993 to September 1993Page 2 of 7

Date	Fort Edward Measured Flow (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model	
2/11/93	4,320	7,800	В	10,400	J	
2/12/93	4,630	7,600	В	9,800	J	
2/13/93	4,570	7,500	В	9,800	J	
2/14/93	4,500					
2/15/93	4,560					
2/16/93	4,570					
2/17/93	4,710	7,700	В	10,000	J	
2/18/93	4,590	7,500	Interpolated	9,700	Interpolated	
2/19/93	4,540	7,300	В	9,400	J	
2/20/93	4,510	7,400	В	9,500	J	
2/21/93	4,610	7,200	В	9,100	J	
2/22/93	4,520	6,900	В	8,600	J	
2/23/93	4,530	7,300	В	9,300	J	
2/24/93	4,510	7,400	В	9,600	J	
2/25/93	4,700	7,500	В	9,600	J	
2/26/93	4,530	7,400	В	9,600	J	
2/27/93	2/27/93 4,570		В	9,600	J	
2/28/93	4,480	7,400	В	9,600	J	
3/1/93	4,440	7,000	В	8,800	J	
3/2/93	4,460	7,200	7,200 B 9,20		J	
3/3/93	4,470	7,000	В	8,800	J	
3/4/93	4,300	6,900 B		8,800	J	
3/5/93	4,570	6,800	В	8,500	J	
3/6/93	4,550	6,600	В	8,200	J	
3/7/93	4,430	6,600	В	8,200	J	
3/8/93	3,000	5,400	Interpolated	6,700	Interpolated	
3/9/93	2,880	4,300	В	5,100	J	
3/10/93	3,010	4,800	В	6,000	Í J	
3/11/93	2,880	5,200	В	6,800	J	
3/12/93	2,890	4,400	В	5,500	J	
3/13/93	2,720	4,400	В	5,500	J	
3/14/93	2,660	4,800	Interpolated	6,200	Interpolated	
3/15/93	2,850	5,300	В	7,000	J	
3/16/93	2,500	4,800	В	6,300	J	
3/17/93	2,630	4,500	В	5,700	J	
3/18/93	3,460	5,100	В	6,300	J	
3/19/93	2,870	4,800	Interpolated	6,000	Interpolated	
3/20/93	2,890	4,600	В	5,700	J	
3/21/93	2,890	4,300	В	5,200	J	
3/22/93	2,400	4,200	В	5,300	J	
3/23/93	2,660	4,500	B	5,700	J	

Table 3-12Calculated Flows at Stillwater and Waterfordfor January 1993 to September 1993Page 3 of 7

Date	Fort Edward Measured Flow (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model
3/24/93	2,880	4,700	Interpolated	5,900	Interpolated
3/25/93	2,870	4,800	В	6,100	J
3/26/93	3,310	5,100	Interpolated	6,500	Interpolated
3/27/93	3,300	6,000	V	6,500	W
3/28/93	3,420	9,000	V	9,400	W
3/29/93	4,410	14,300	v	20,400	W
3/30/93	7,350	23,000	v	44,400	W
3/31/93	8,830	22,200	v	37,800	W
4/1/93	10,200	21,000	v	32,600	W
4/2/93	9,440	19,000	V	28,100	W
4/3/93	8,060	15,800	V	29,900	W
4/4/93	7,660	14,800	V	21,300	W
4/5/93	6,310	11,800	v	14,800	W
4/6/93	6,390	11,700	F	15,700	N
4/7/93	6,110	11,500	E	15,400	_M
4/8/93	7,010	12,200	E	16,000	М
4/9/93	7,280	12,000	E	15,900	М
4/10/93	10,300	13,900	E	18,600	М
4/11/93	17,200	20,600	E	28,500	М
4/12/93	20,300	26,300	E	33,800	М
4/13/93	18,100	24,400	E	31,800	M
4/14/93	13,500	19,200	E	24,700	М
4/15/93	13,500	17,700	E	21,900	М
4/16/93	14,000	17,100	G	21,200	L
4/17/93	24,900	27,100	Interpolated	32,300	Interpolated
4/18/93	28,800	37,100	E	43,300	M
4/19/93	21,400	30,100	E	35,700	М
4/20/93	16,200	23,300	E	30,100	M
4/21/93	14,000	17,900	E	28,300	Interpolated
4/22/93	19,600	22,100	E	26,600	<u>M</u>
4/23/93	27,900	33,800	E	40,300	K
4/24/93	27,600	36,300	E	47,700	M
4/25/93	27,100	33,900	E	41,800	М
4/26/93	24,300	31,300	E	29,100	K
4/27/93	27,500	33,200	E	38,000	K
4/28/93	25,400	31,000	E	34,000	K
4/29/93	23,300	27,600	E	28,300	K
4/30/93	20,400	25,000	E	26,600	K
5/1/93	16,900	20,300	E	20,000	K
5/2/93	16,100	18,300	E	17,200	K
5/3/93	14,900	18,000	Е	16,700	K

Table 3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 Page 4 of 7

Date	Fort Edward Measured Flow (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model	
5/4/93	12,300	14,200	E	10,300	Н	
5/5/93	11,100	13,100	E	10,800	Н	
5/6/93	8,860	10,200	Е	10,600	Н	
5/7/93	9,040	10,100	Е	10,900	Н	
5/8/93	8,930	9,700	С	10,000	Н	
5/9/93	8,460	8,900	С	9,300	Н	
5/10/93	7,830	8,200	С	8,500	Н	
5/11/93	6,240	6,800	С	7,100	Н	
5/12/93	5,830	6,600	С	7,100	Н	
5/13/93	5,830	6,300	С	6,500	Н	
5/14/93	4,620	6,300	С	6,600	Н	
5/15/93	4,380	4,900	Α	5,200	Ι	
5/16/93	4,570	5,500	Α	5,900	I	
5/17/93	4,550	5,300	Α	5,800	Ι	
5/18/93	4,110	5,000	Α	5,500	I	
5/19/93	3,740	3,900	Α	4,100	Ι	
5/20/93	2,060	3,700	Α	4,500	I	
5/21/93	2,510	4,100	Α	4,800	I	
5/22/93	1,850	4,100	С	5,300	Н	
5/23/93	2,130	5,200	Α	7,200	Ι	
5/24/93	1,840	4,500	C	6,300	Н	
5/25/93	1,080	4,100	С	6,100	Н	
5/26/93	2,230	4,600	С	6,200	Н	
5/27/93	2,830	4,600	С	5,600	Н	
5/28/93	2,900	4,100	С	4,800	Н	
5/29/93	2,740	4,600	С	5,700	Н	
5/30/93	2,810	4,400	С	5,300	Н	
5/31/93	2,520	4,200	С	5,300	Н	
6/1/93	2,610	3,900	С	4,800	Н	
6/2/93	2,920	4,300	С	5,300	Н	
6/3/93	3,120	5,200	С	6,500	Н	
6/4/93	3,340	5,900	С	7,300	Н	
6/5/93	2,760	5,500	С	7,100	Н	
6/6/93	2,570	5,300	С	7,000	Н	
6/7/93	2,870	5,700	С	7,500	Н	
6/8/93	2,830	5,500	С	7,200	Н	
6/9/93	2,910	5,100	С	6,300	Н	
6/10/93	2,960	5,200	С	6,600	Н	
6/11/93	3,200	5,200	С	6,400	Н	
6/12/93	3,740	5,700	С	6,900	Н	
6/13/93	3,500	5,000	С	5,900	Н	

TAMS/Cadmus/Gradient

HRP 002 1998

Table 3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 Page 5 of 7

Date	Fort Edward Measured Flow a (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model
6/14/93	2,920	4,700	С	5,800	Н
6/15/93	2,620	4,900	С	6,500	Н
6/16/93	3,000	5,600	С	7,600	Н
6/17/93	3,300	5,300	С	6,600	Н
6/18/93	2,600	4,600	С	5,900	Н
6/19/93	2,810	5,000	С	6,600	Н
6/20/93	2,970	5,200	С	6,600	Н
6/21/93	2,960	5,300	С	7,100	Н
6/22/93	3,070	5,900	С	8,000	Н
6/23/93	3,510	6,000	С	7,800	Н
6/24/93	1,580	3,900	С	5,300	Н
6/25/93	2,810	5,400	C	7,200	Н
6/26/93	2,560	4,700	С	6,200	Н
6/27/93	2,530	4,400	С	5,600	Н
6/28/93	2,400	4,300	С	5,500	Н
6/29/93	2,570	4,500	С	5,700	Н
6/30/93	2,380	4,600	С	6,100	Н
7/1/93	2,490	4,700	C	6,100	Н
7/2/93	2,360	4,500	С	5,900	Н
7/3/93	2,080	4,200	С	5,400	H
7/4/93	2,350	4,600	С	6,100	Н
7/5/93	2,290	4,200	С	5,300	Н
7/6/93	2,610	4,300	С	5,300	Н
7/7/93	2,670	5,000	С	6,700	Н
7/8/93	2,530	5,200	С	6,900	Н
7/9/93	2,680	4,900	С	6,300	Н
7/10/93	2,690	4,900	С	6,300	Н
7/11/93	2,520	4,800	C	6,300	Н
7/12/93	2,560	4,600	С	6,000	Н
7/13/93	2,440	4,400	С	5,600	Н
7/14/93	2,520	4,700	C	6,000	Н
7/15/93	2,470	4,900	С	6,700	Н
7/16/93	2,310	4,600	С	6,000	Н
7/17/93	2,340	4,700	С	6,300	Н
7/18/93	2,430	4,700	C	6,000	· H
7/19/93	2,310	4,500	С	5,800	Н
7/20/93	2,180	4,200	C	5,500	Н
7/21/93	2,210	4,600	C	6,100	Н
7/22/93	2,440	4,800	C	6,400	Н
7/23/93	2,410	4,500	C	5,800	Н
7/24/93	2,280	4,400	С	5,600	Н

Table 3-12Calculated Flows at Stillwater and Waterfordfor January 1993 to September 1993Page 6 of 7

Date	Fort Edward Measured Flow a (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model
7/25/93	2,340	4,400	С	5,700	Н
7/26/93	2,280	4,400	С	5,700	Н
7/27/93	3,290	5,400	С	6,800	Н
7/28/93	2,660	4,900	С	6,300	Н
7/29/93	1,990	4,400	С	5,800	Н
7/30/93	2,050	4,500	С	6,000	Н
7/31/93	2,580	4,800	С	6,300	Н
8/1/93	2,770	4,700	С	6,000	Н
8/2/93	2,540	4,900	С	6,300	Н
8/3/93	2,230	4,400	С	5,700	Н
8/4/93	2,440	5,000	С	6,600	Н
8/5/93	2,600	4,900	С	6,200	Н
8/6/93	2,750	5,000	С	6,400	Н
8/7/93	2,460	4,700	С	6,000	Н
8/8/93	2,500	4,800	С	6,200	Н
8/9/93	2,480	4,600	С	6,000	Н
8/10/93	2,350	4,600	С	5,900	Н
8/11/93	2,440	4,500	C	5,900	Н
8/12/93	2,520	4,700	С	6,000	Н
8/13/93	2,480	4,600	С	6,000	Н
8/14/93	2,590	4,400	С	5,500	Н
8/15/93	2,690	4,800	С	6,200	Н
8/16/93	2,640	4,400	С	5,500	Н
8/17/93	2,490	4,500	С	5,800	Н
8/18/93	2,630	5,000	С	6,600	Н
8/19/93	2,290	4,700	С	6,400	Н
8/20/93	2,320	4,600	С	6,000	Н
8/21/93	2,190	4,300	С	5,600	Н
8/22/93	2,800	4,800	C	6,100	Н
8/23/93	2,500	4,600	С	6,100	Н
8/24/93	2,550	4,400	С	5,300	Н
8/25/93	2,810	4,600	С	5,500	Н
8/26/93	2,360	4,800	С	6,400	Н
8/27/93	2,280	4,800	С	6,400	Н
8/28/93	2,540	4,500	С	5,800	Н
8/29/93	2,510	4,500	С	5,900	Н
8/30/93	2,300	4,700	С	6,300	Н
8/31/93	2,370	4,600	C	6,100	Н
9/1/93	2,630	4,900	C	6,300	Н
9/2/93	2,510	5,000	С	6,600	Н
9/3/93	2,500	4,500	С	5,800	Н

Table 3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 Page 7 of 7

Date	Fort Edward Measured Flow a (cfs)	Stillwater Calculated Flow b (cfs)	Model	Waterford Calculated Flow b (cfs)	Model
9/4/93	2,980	5,000	С	6,200	Н
9/5/93	2,870	5,000	С	6,400	H
9/6/93	3,050	5,200	С	6,400	Н
9/7/93	2,450	5,000	С	6,500	Н
9/8/93	2,240	5,000	С	6,500	Н
9/9/93	2,430	5,100	С	6,800	Н
9/10/93	1,910	4,700	С	6,600	Н
9/11/93	2,830	5,300	С	7,000	Н
9/12/93	2,720	5,800	С	7,600	Н
9/13/93	2,160	5,300	С	6,900	Н
9/14/93	2,830	5,600	С	7,400	Н
9/15/93	2,950	5,700	С	7,500	Н
9/16/93	2,830	5,400	С	7,000	Н
9/17/93	2,700	6,300	С	8,000	Н
9/18/93	2,170	4,500	С	6,000	Н
9/19/93	2,160	4,600	С	6,100	Н
9/20/93	2,480	5,000	С	6,700	Н
9/21/93	2,980	5,700	С	7,800	Н
9/22/93	2,500	5,300	С	7,300	Н
9/23/93	2,070	5,200	С	7,700	Н
9/24/93	1,980	4,500	С	6,000	Н
9/25/93	2,310	4,900	С	6,500	Н
9/26/93	2,490	4,700	С	6,100	Н
9/27/93	2,910	5,300	С	6,700	Н
9/28/93	2,570	5,400	С	7,400	. H
9/29/93	2,880	5,800	С	8,000	Н
9/30/93	3,170	4,800	D	5,800	J

Source: TAMS/Gradient Database; and NYS Thruway Authority, Office of Canals.

TAMS/Cadmus/Gradient

Notes:

a. Blank cells indicate that no measurement was reported by the U.S.G.S.

b. Blank cells indicate that flow was not calculated due to lack of data.

Table 3-13

Summary of Prediction Uncertainty for Sitliwater Flow Models

			Percent	Percent Uncertainty about Predicted Flow*			
Model Description	Model	el Stillwater Flow Regime (cfs)	Based on the Central 959 Residua	Based on 2 Standard Deviations of the Percent Residual Errors ^b			
			Lower	Upper	$(1,1,2,\dots,2^{n-1}) \in \mathbb{R}^{n-1}$		
		Flow ≤ 4,000	-21.2%	13.6%	17.6%		
	A	$4,000 < Flow \le 6,000$	-11.7%	17.9%	12.8%		
		$6,000 < \text{Flow} \le 10,000$	-8.3%	-10.6%	. 10.2%		
Low-Flow Models		Flow ≤ 4,000	-23.5%	14.5%	19.8%		
	В	$4,000 < Flow \le 6,000$	-12.7%	17.5%	15.3%		
Criteria for use of Low-Flow Models:		$6,000 < \text{Flow} \le 10,000$	-12.4%	12.3%	12.4%		
Fort Edward Flow ≤ 8,000 cfs		Flow ≤ 4,000	-18.5%	12.2%	16.8%		
and	C	$4,000 < Flow \le 6,000$	-10.8%	13.5%	11.8%		
Stillwater Flow ≤ 10,000 cfs		6,000 < Flow ≤ 10,000	-8.5%	11.2%	10.0%		
		Flow ≤ 4,000	-24.4%	14.6%	19.6%		
	D	$4,000 < Flow \le 6,000$	-13.7%	15.2%	14.6%		
		$6,000 < Flow \le 10,000$	-9.9%	11.7%	11.4%		
	Е	10,000 < Flow ≤ 14,000	-8.7%	12.2%	11.0%		
High Flow Models		Flow > 14,000	-9.4%	7.6%	7.9%		
	F	$10,000 < Flow \le 14,000$	-10.1%	13.2%	11.6%		
Criteria for use of High-Flow Models:		Flow > 14,000	-10.3%	8.3%	8.3%		
Fort Edward Flow > 8,000 cfs	G	10,000 < Flow ≤ 14,000	-12.8%	16.3%	15.6%		
or		Flow > 14,000	-11.7%	14.8%	11.4%		
Stillwater Flow > 10,000 cfs	v	10,000 < Flow ≤ 14,000	-11.4%	13.8%	13.4%		
		Flow > 14,000	-11.2%	8.9%	8.6%		

Notes:

a. For Example, the range of prediction uncertainty for a 5,000 cfs flow calculated using Model A is as follows:

Based on the central 95% quantile of the percent residual errors: Lower Bound: (5,000 cfs + (-0.117 x 5,000 cfs) = 4,415 cfs.Upper Bound: (5,000 cfs + (0.179 x 5,000 cfs) = 5,895 cfs.

Based on 2 standard deviations of the percent residual errors: Lower Bound: (5,000 cfs + (-0.128 x 5,000 cfs) = 4,360 cfs.Upper Bound: (5,000 cfs + (0.128 x 5,000 cfs) = 5,640 cfs.

b. This error is calculated assuming the percent residual errors to be normally distributed. The extent of non-normality in the error distribution can be estimated based on the difference between the absolute values of the upper and lower bounds of the central 95% quantile of the percent residual errors. The smaller the difference between the upper and lower bounds, the more normally distributed the data set.

Table 3-14

Summary of Prediction Uncertainty for Waterford Flow Models

			Percent U	ncertainty about Predict	ed Flow*
Model Description	Model	Waterford Flow Regime (cfs)	Based on the Central 95% Residual	Based on 2 Standard Deviations of the Percent Residual Errors ^b	
			Lower	Upper	
		Flow ≤ 4,000	-29.4%	14.1%	22.4%
	н	$4,000 < Flow \le 8,000$	-19.2%	19.4%	19.2%
Low Flow Models		$8,000 < Flow \le 12,000$	-16.5%	20.4%	17.9%
		Flow ≤ 4,000	-30.8%	13.7%	22.6%
Criteria for use of Low-Flow Models:	I	$4,000 < Flow \le 8,000$	-20.7%	22.3%	20.2%
Fort Edward Flow ≤ 8,000 cfs		8,000 < Flow ≤ 12,000	-18.0%	23.0%	18.5%
and		$Flow \leq 4,000$	-36.9%	15.8%	27.6%
Waterford Flow $\leq 12,000$ cfs	L I	$4,000 < Flow \le 8,000$	-25.1%	25.9%	25.8%
		8,000 < Flow ≤ 12,000	-21.2%	24.9%	23.1%
	К	12,000 < Flow ≤ 14,000	-15.5%	19.0%	17.1%
		Flow > 14,000	-10.0%	15.6%	12.0%
High Flow Models	L	12,000 < Flow ≤ 14,000	-24.0%	25.0%	23.0%
		Flow > 14,000	-16.5%	24.9%	18.5%
Criteria for use of High-Flow Models:	М	12,000 < Flow ≤ 14,000	-20.2%	21.0%	20.8%
Fort Edward Flow > 8,000 cfs		Flow > 14,000	-13.9%	23.4%	17.2%
or	N	12,000 < Flow ≤ 14,000	-22.2%	21.6%	22.2%
Waterford Flow > 12,000 cfs		Flow > 14,000	-14.6%	23.8%	18.6%
	W	12,000 < Flow ≤ 14,000	-33.0%	29.0%	31.8%
		Flow > 14,000	-23.7%	24.9%	23.4%

Notes:

a. For Example, the range of prediction uncertainty for a 5,000 cfs flow calculated using Model H is as follows:

Based on the central 95% quantile of the percent residual errors: Lower Bound: (5,000 cfs + (-0.192 x 5,000 cfs) = 4,040 cfs.Upper Bound: (5,000 cfs + (0.194 x 5,000 cfs) = 5,970 cfs.

Based on 2 standard deviations of the percent residual errors: Lower Bound: (5,000 cfs + (-0.192 x 5,000 cfs) = 4,040 cfs.Upper Bound: (5,000 cfs + (0.192 x 5,000 cfs) = 5,960 cfs.

b. This error is calculated assuming the percent residual errors to be normally distributed. The extent of non-normality in the error distribution can be estimated based on the difference between the absolute values of the upper and lower boundsof the central 95% quantile of the percent residual errors. The smaller the difference between the upper and lower bounds, the more normally distributed the data set.

Table 3-15 Summary of River Segment Characteristics

		PCBs (% of total)	
Segment No.	River [*] Mile	Tofflemire, 1980 ^b Percentage of Total PCB Mass Stored in Sediments	Tofflemire and Quinn, 1979 ^c Percentage of Total PCB Mass Stored in <i>Hot Spots</i>	Tributaries
1	199.5-197.2	-	-	-
2	197.2-194.6	1%	1%	-
3	194.6-188.5	41%	62%	Snook & Moses Kills
4	188.5-181.3	22%	23%	Batten Kill
5	181.3-168.2	15%	3%	Fish Creek
6	168.2-156.6	16%	12%	Hoosic River
7	156.2-151.7	4%	0%	Mohawk River

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Notes:

a. River mile designations are based on Phase 2 sampling stations. Segments as reported in NUS (1984) are assigned to the nearest Phase 2 segment.

b. Tofflemire (1980) reported in NUS (1984) as percentage of total PCB mass stored in sediments.

c. Tofflemire and Quinn (1979) reported in NUS (1984) as percentage of total PCB mass stored in hot spots .

		Tot	al PCB Load (kg	/d)	Thompson Is	sland Pool	Thompson Island Dam to Waterford	
Seasonal Characteristics	Sampling Event	Rogers Island	Thompson Island Dam	Waterford	Net TIP PCB Load Gain (kg/d)	Percent Load*	Net TID PCB Load Gain (kg/d)	Percent Load
Winter -	Transect I	b	0.80	0.97			0.17	21%
Low Flow	Transect 2	0.17	0.61	0.38	0.43	248%	-0.23	-37%'
Spring - Transition Flow	Transect 3	0.20	1.07	17.7	0.87	425%	16.7	1550%
Spring - High Flow	Transect 4	17.9	18.1	18.3		·		
	Flow Average 1	7.15	5.90	d	-1.26	-18%		
	Transect 5	e	1.57	1.19			-0.38	-24%
Spring/Early Summer - Low Flow	Flow Average 2	0.41	1.48	1.34	1.08	264%	-0.14	-10%
	Flow Average 3	1.29	1.49	1.46	0.19	15%	-0.02	-2%
	Transect 6	0.17	0.67	0.74	0.50	292%	0.07	10%
Summer -	Flow Average 4	0.23	1.38	1.19	1.15	507%	-0.19	-14%
Low Flow	Flow Average 5	0.22	0.87	1.02	0.65	297%	0.15	18%
	Flow Average 6	0.17	0.63	0.88	0.46	268%	0.25	39%
Low Flo	w Mean	0.49	1.16	1.16				
High Flo	High Flow Mean		18.1	18.0				

 Table 3-16

 Comparison of Water-Column Mass Transport at Rogers Island, Thompson Island Dam and Waterford

Notes:

a. Percent Increase = 100 * (Downstream Station - Upstream Station)/Upstream Station.

b. Discrepant Rogers Island sample.

c. Schuylerville load used Thompson Island Dam sample reflected inappropriate degree of dilution by Moses Kill.

d. Waterford samples are inappropriate for comparison due to Lock 1 construction activities.

e. Sediment was disturbed during sample collection.

f. Transport from Schuylerville south did not vary by more than 5%.

Source: TAMS/Gradient Database; USGS; and NYS Thruway Authority, Office of Canals

TAMS/Cadmus/Gradient

Core # (a)	River Mile	Criterion #1 (b)	Criterion #2 (b)	Criterion #3 (b)	Criterion #4 (b)	Criterion #5 (b)	Criterion #6 (b)
1	25.0			NA (c)	NA (c)		NA (c)
2	-1.9	D		N			0
3	-2.2		📕 (d)	NA (c,d)	NA (c,d)		NA (c,d)
4	2.4		📕 (d)	NA (c,d)	NA (c,d)	0	NA (c,d)
5	Newtown Creek			NA (e)	NA (c)		NA (c)
6	43.2	C		NA (c.f)	Ē	B (g)	NA (c)
7	43.2			NA (q,f)	D		NA (c)
8	54.0					iii	
9	59.6						
10	88.5		D	Ľ		D	۵
11	143.5		(f)	NA (c,f)	🛛 (h)	🗆 (i)	NA (c)
12	Mohawk River		D	NA (e)	D		
13	99.2				0	🛾 (g)	0
14	124.1			■.	NA (c)		
15	159.0						
16	166.3						
17	Batten Kill		ū	NA (e)	0	E (g)	đ
18	185.8	D	0		D	Ē	D
19	188.5			0	D		D
20	191.2						
21	177.8	D	۵	3			D
22	177.8			NA (c,d)	NA (c,d)	(g)	
23	189.3	D	D	0	0		0
24	Haosic River			NA (e)	NA (c)		NA (c)
25	194.2W				NA (c)		NA (c)
26	194.1E	0	0	(j)		■ (k)	
27	202.9			<u> </u>			NA (c)
28	197.1					🗆 (g)	NA (c)

Table 3 - 17 Application of Dating Criteria to High Resolution Cores

Legend:

 \square = Meets criterion well.

 \blacksquare = Meets criterion.

= Does not meet criterion.

NA = Not Applicable

See notes on next page.

Table 3 - 17 (continued) Application of Dating Criteria to High Resolution Cores

Notes:

a. Shading indicates that a core chronology was established.

b. Core Selection Criteria for Dating.

1	l,	Α	minin	um '	value	of the	¹⁷⁷ Cs	- peak	concentrat	ion as	follows:	

<u>River Section</u>	Section Endpoints (River Miles)	Minimum ¹³⁷ Cs - Peak <u>Concentration (pCi/kg)</u>
Freshwater	203 to 153.1	1000
Freshwater Tidal	153 to 60.1	900
Power	60 to 30	1000
Upper New York Bay	29.9 to -2.2	500
Tributaries	NA	500

2. A clear ¹³⁷Cs peak relating to the 1963 or 1971 event, or a clear and defined time horizon, e.g., a dredge boundary which occurred in a documented year.

3. The ¹³⁷Cs peak associated with 1963 being clearly deeper than the PCB maximum which has been ascribed to the early 1970s (Bopp, et al., 1982) which indicates a significant deposition rate and low bioturbation.

4. A minimum sedimentation rate of 0.75 cm/yr based on the 1963 or 1971 ¹³⁷Cs maximum.

- 5. Presence of 'Be in the surface layer.
- 6. The sedimentation rates being consistent to within 50 percent when multiple time horizons are available.
- c. Insufficient data for determination.
- d. Insufficient core depth.

00 N

2007

- e. No documented PCB releases associated with tributaries.
- f. Documented occurrence of dredging event.
- g. 'Be was present in a co-located core collected at the same time.
- h. The presence of "Cs at 104 cm depth can provide a minimum approximation of the sedimentation rate since the coring site was dredged in the early 1970s.
- i. 'Be was not analyzed soon enough to be measured as deep in the core as expected.
- j. Resolution reduced since core contains 8 cm slices.
- k. Core location was subsequently observed (Summer 1993) to be exposed to air.

Source: TAMS/Gradient Database

			Sedimentation Rate	,
Core No.	River Mile	Location	(cm/yr)	Main Dating Horizon
2	-1.9	Upper New York Bay	1.6	1963 ¹³⁷ Cs and also 1971 ⁶⁰ Co event
6	43.2	Lents Cove	1.4	1971 ¹³⁷ Cs event
7	43.2	Lents Cove	1.4	1971 ¹³⁷ Cs event
10	88.5	Kingston	1.7	1963 ¹³⁷ Cs event and ⁷ Be
11	143.5	Albany Turning Basin	5	1970 Dredge Event
18	185.8	Above Lock No. 5	0.76	1963 ¹³⁷ Cs Event
19	188.5	Thompson Island Dam	0.9	1963 ¹³⁷ Cs Event
21	177.8	Stillwater Pool	1.1	1963 ¹³⁷ Cs Event
22	177.8	Stillwater Pool	1.7	Match to Core No. 21
23	189.3	Thompson Island Pool	1.2	1963 ¹³⁷ Cs Event
27	202.9	Glens Falls	0.48	1963 ¹³⁷ Cs Event
12	NA	Mohawk	1.9	1963 ¹³⁷ Cs Event
17	NA	Batten Kill	1.3	1963 ¹³⁷ Cs Event
	NA	Hoosic	>0.87	⁷ Be

Table 3-18 Estimated Sedimentation Rates for Dated Cores

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

 Table 3-19

 Comparison of Total PCB Concentrations of Suspended Matter and Surficial Sediment Deposited after 1990

Core Location		Surficial Sediment Total PCB Concentration (mg/kg)	Water-Column Sa	mpling Locations	Water-Column Transect Suspended Solids Total PCB Concentration (mg/kg)		
Thompson Island Pool RM 188.5			Rogers Island	RM 194.6	Median 17.3 Minimum 1.9 Maximum 21.3		
		25.1	Thompson Island Dam	RM 188.5	Median5.3Minimum3.2Maximum7.1		
Stillwater Pool	RM 177.8	5.0					
Stillwater Pool	RM 177.8	12.5	Stillwater	RM 168.3	0.4, 2.4, 4.7		
Albany Turning Basin	RM 143.5	3.0	Green Island Bridge	RM 151.7	1.2, 1.8, 1.2		
			Cementon	RM 110.0	0.8		
Kingston RM 88.5		0.96	Highland	RM 77.0	0.4, 1.5		

Source: TAMS/Gradient Database

 Table 3-20

 Dated Sediment Cores Selected for Historical Water-Column PCB Transport Analysis

ł

Core Number	River Mile	Description
27	202.9	Background
19	188.5	Thompson Island Dam
18	185.8	Above Lock No. 5
21 and 22	177.8	Stillwater Pool
11	143.5	Albany Turning Basin
10	88.5	Kingston
6 and 7 (duplicate cores)	43.2	Lents Cove
2	-1.9	Upper New York Bay
12	NA	Mohawk River
17	NA	Batten Kill
24	NA	Hoosic River

Source: TAMS/Gradient Database

Table 3-21

Cumulative Loading Across the Thompson Island Pool by Homologue Group from GE Data April 1991 through February 1996

	Total PCBs	Monochloro- Homologues	Dichloro- Homologues	Trichloro- Homologues	Tetrachloro- Homologues	Pentachloro- Homologues	Hexa- and Heptachloro- Homologues
River Mile 194.6 (Rt. 197 Bridge; kg)	2190.3	9.8	248.7	864.7	767.9	205.7	93.5
River Mile 188.5 (Thompson Island Dam; kg)	3188.3	320.6	539.2	1163	859.6	219.1	86.8
Gain in Load across Thompson Island Pool (kg, cumulative)	998	310.8	290.5	298.3	91.7	13.4	-6.7
Gain in Load across Thompson Island Pool (kg/yr)	203.1	63.3	59.1	60.7	18.7	2.7	-1.4
Average Loading Rate at River Mile 188.5 (kg/day)	1.78	0.17	0.3	0.65	0.48	0.12	-0.004

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

٠

HRP 002 2011

Table 3-22

ſ

Breakpoints of Flow Strata (cfs) Used for Total PCB Load Estimation in the Upper Hudson River

Breakpoint #	Fort Edward	Schuylerville	Stillwater	Waterford
1	5000	6000	7000	9000
2	11000	12000	16000	19200
3	20000	23000	25000	30000

Note: The breakpoints are used to develop ratio estimates of PCB load by stratification of the data into four distinct flow regimes, as described in Section 3.3.5.

Source: Analysis of USGS flow data.

ł

Estimated Yearly Total PCB Loads (kg/yr) in the Upper Hudson Based on USGS Monitoring^a

Calendar	River Mile	e 194.3	River Mile	181.3	River Mile	168.2	River Mile	156.6
Year	Ratio	Averaging	Ratio	Averaging	Ratio	Averaging	Ratio	Averaging
1977	1414°	2308 ^{c.d}	2519	3106	2926	3956	2439	3371
	s=1216	n=3 (3)	s=463	n=37 (33)	s=493	n=36 (35)	s=235	n=60 (49)
1978	544	544	2747	2497	2138	2087	2260	2218
	s=74	n=35 (29)	s=294	n=12 (12)	s=234	n=31 (30)	s=205	n=31 (28)
1979	1272	1321	4635	5351	3008	3701	2963	3953
	s=390	n=54 (30)	s=1363	n=15 (15)	s=372	n=36 (34)	s=219	n=39 (33)
1980	439	499	760	834	899	922	1007	892
	s=30	n=55 (25)	s=93	n=15(11)	s=68	n=28 (26)	s=119	n=43 (33)
1981	354	371	962	1652	922	1420	1299	1392
	s=15	n=58 (26)	s=70	n=36 (25)	s=94	n=33 (28)	s=71	n=26 (24)
1982	374	388	528	566	635	821	818	966
	s=31	n=50 (27)	s=34	n=34 (27)	s=51	n=44 (29)	s=107	n=33 (27)
1983	657°	619 ^e	997	1005	1612	1671	1191	1308
	s=145	n=44 (33)	s=118	n=44 (36)	s=343	n=50 (37)	s=117	n=53 (44)
1984	477	462	830	678	826	908	702	625
	s=152	n=32 (23)	s=295	n=30 (28)	s=166	n=32 (28)	s=139	n=39 (30)
1985	294	275	324	379⁴	299	301	432	437 ^d
	s=53	n=16 (11)	s=47	n=15 (14)	s=38	n=17 (14)	s=29	n=6 (5)
1986	423	385	320	321	358	358	366	375
	s=80	n=28 (23)	s=28	n=23 (23)	s=65	n=26 (26)	s=24	n=26 (23)
1987	197	301	213	237	235	328 ^d	300	364 ^d
	s=58	n=15 (8)	s=25	n=10 (10)	s=89	n=8 (8)	s=59	n=27 (15)
1988	119	97	83	79	105	107	100	100
	s=39	n=38 (21)	s=15	n=21 (21)	s=15	n=23 (23)	s=15	n=21 (21)
1989	445	247 ^d	195	201 ^d	200	212ª	151	169 ⁴
	s=358	n=23 (12)	s=30	n=20 (20)	s=30	n=19(19)	s=16	n=26 (24)
1990	398 s=372	341 n=11 (7)	Discontinued		220 s=133	185 n=10(10)	115 s=32	98 n=11(11)
1991	185 s=137	138 n=19 (17)			208 s=112	150 n=16(16)	212 s=101	130 n=16(16)
1992	825 s=442	951 n=21 (20)			411 s=70	537 ^d n=24 (16)	317 s=74	441 ^d n=25 (17)
1993	310 s=85	205 n=27(27)			420 s=115	497 ⁱ n=22(22)	229 s=25	244 n=56(38)
1 994	90 s=26	85 n=26(26)			f	168 ^r n=18(18)	f	177 ^f n=2(27)

Notes:

a. Nondetects set at one-half the detection limit

b. Abbreviations:

n = total number of measurements (and number of individual days with measurements)

s = estimated asymptotic standard deviation for ratio estimator

c. Insufficient data

d. Quarter missing; average concentration for year used to estimate load for that quarter

e. Observation of 77 µg/L in one channel omitted from calculation

f. Daily flow data not available; quarterly flow sum extrapolated from Fort Edward

Source: TAMS/Gradient Database; additional data from USGS/WATSTORE.

HRP 002

2013

Table 3-24

Comparison of Calculated Water Column Loads at Rogers Island and Thompson Island Dam for Phase 2, GE and USGS Data

			Phase 2 ^a (kg/month)			G	ric ^b	USGS ^C (kg/month)	
Seasonal Characteristics	Date	Phase 2 Sampling Event	Rogers Island	Thompson Island Dam	Load Gain (kg/month)	Rogers Island	Thompson Island Dam	Load Gain (kg/month)	Rogers Island
Winter -	Jan 93	Transect 1	d	24		220	24	-200	and the second
Low Flow	Feb 93	Transect 2	5.2	18	13	11	19	7.7	18
Spring - Transition Flow	Mar 93	Transect 3	6.1	32	26	17	44	27	18
Spring -	Apr 93	Transect 4	540	е		110	190	80	270
High Flow	Apr - May 93	Flow Average 1	215	180	-35	110 ^f	190 ^f	80 ^f	270
Sprina/	May 93	Flow Average 2	12	45	32	100	76	-24	270
Early Summer -	Jun 93	Flow Average 3	39	45	5.8	6.1	43	36	270
Low Flow	Jun 93	Transect 5	g	47		6.1	43	36	270
	Jul 93	Flow Average 4	6.8	41	35	12	41	30	h
Summer -	Aug 93	Transect 6	5.1	20	15	6.5	32	26	h
	Aug 93	Flow Average 5	6.5	26	19	6.5	32	26	h
LOW FIOW	Sen 93	Flow Average 6	5.1	19	14	6.1	24	18	<u> </u>

Notes:

Phase 2 data represent instantaneous or 15-day-mean conditions which were converted to a monthly basis for this table. a.

General Electric data were used to generate monthly average conditions. b.

USGS values were calculated quarterly due to limited data and converted to a monthly basis. c.

- Discrepant Rogers Island sample. d.
- Thompson Island Dam load could not be calculated due to incomplete mixing of Moses Kill flow. e.
- Phase 2 Flow Average Event 1 data which span late April to early May are compared to General Electric data for
- f. April since load conditions at Rogers Island are more similar than those for May.
 - Flux could not be calculated due to disturbed sediment included in sample.
- g. USGS load was not calculated for the third quarter since only one measurement was available. h.

Source: TAMS/Gradient Database

Total PCB Loading Contribution Relative to River Mile 143.5 Near Albany Based On Dated Sediment Cores for 1991 to 1992

		Average	Drainage	Per	centage of Albany Load ^b
Coring Location	PCB/Cs-137	PCB/Cs-137 ^a	Basin Area	Main-Stem	Background and
	(mg/pCi)	(mg/pCi)	(mi²)	Stations	Tributaries
ackground (RM 202.9)		0.05	2800		0.3%
hompson Island Pool (RM 188.5)		19.5	2954	107%	
bove Lock 5 (RM 185.8)		12.9	2996	69%	
Batten Kill-Core 17	0.27				0.2%
Batten Kill-Core 33	1.26	0.77	435		1.1% 5 0.7%
Stillwater Pool (RM 177.8)-Core 22	15.9	·		112%	
Stillwater Pool (RM 177.8)-Core 21	8.43	12.2	3773	55% \$ 83%	
Jongie Diver		0.83	712		1%
Mohawk River-core 12	0.29				2.0%
	}	1.01	3456		5 7%
Mohawk River-core 29	1.74	5 00	8788	91%	12.170
Upper Hudson Contribution at RM 143.5		5.77	0200	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00/
Total Tributaries					9%
	,				100.0%
Upper Hudson Contribution at RM 143.3 Total Tributaries Total Load at Albany Notes: a. This represents the average PCB/Cs-137 rd b. Percentage is calculated as follows:	atio at the coring loc	cation for the period 19	91-1992.		9%
Percentage = $100 *$	{Area *[∑PCE	3]/[Cs-137]} _{Station} - {Ar {Area * [∑PCB]/[(ea * [<u>>PCB]/[Cs-1</u> Cs-137]} _{RM 143.5}	37]}Backeround + Tributaries	

002

2015

- = cesium-137 concentration in pCi/kg
- Cs-137 = drainage basin area in square miles Area

1

Results of Linear Regression Study – Grain Size Parameter vs Image DN^a

	Reduced 500 kHz Images											
	Med	Median Digital Number Median Digital Number					Standard Deviation Digital number					
Grain Size Parameter ^b	Slope	Intercept	r-Squared	Slope	Intercept	r-Squared	Slope	Intercept	r-Squared			
d(15)	-6.713	60.450	0.529	-6.788	61.838	0.526	-1.334	15.428	0.256			
d(40)	-5.992	66.337	0.500	-6.073	67.813	0.499	-1.236	16.669	0.261			
d(50)	-5.834	68.785	0.484	-5.924	70.315	0.484	-1.245	17.259	0.270			
d(70)	-6.128	76.216	0.497	-6.231	77.892	0.499	-1.357	19.001	0.299			
d(85)	-6.297	83.653	0.518	-6.403	85.454	0.520	-1.404	20.686	0.315			
d(90)	-6.197	86.599	0.498	-6.300	88.443	0.500	-1.379	21.332	0.302			
% gravel	0.387	52.458	0.148	0.391	53.757	0.147	0.059	14.042	0.042			
% sand	0.404	34.207	0.271	0.412	35.107	0.274	0.109	8.617	0.241			
% mud	-0.502	73.154	0.529	-0.511	74.774	0.531	-0.114	18.413	0.334			
mean	-6.798	74.409	0.539	-6.896	76.010	0.539	-1.438	18.425	0.295			
std. dev.	5.185	47.310	0.013	4.942	49.109	0.012	-0.301	15.278	0.001			

Reduced 100 kHz Images

	Median Digital Number			Medi	Median Digital Number			Standard Deviation Digital number		
Grain Size	Slope	Intercept	r-Squared	Slope	Intercept	r-Squared	Slope	Intercept	r-Squared	
Parameter										
d(15)	-5.490	52.442	0.325	-5.387	55.219	0.310	-1.004	19.327	0.091	
d(40)	-4.994	57.404	0.319	-4.901	60.090	0.304	-0.900	20.212	0.087	
d(50)	-4.704	59.120	0.289	-4.617	61.775	0.275	-0.846	20.519	0.078	
d(70)	-4.472	63.635	0.243	-4.381	66.180	0.231	-0.795	21.301	0.064	
d(85)	-4.343	67.988	0.227	-4.251	70.430	0.215	-0.784	22.127	0.062	
d(90)	-4.267	69.989	0.217	-4.175	72.379	0.205	-0.769	22.481	0.059	
% gravel	0.510	43.686	0.236	0.489	46.762	0.214	0.061	18.099	0.028	
% sand	0.111	43.312	0.019	0.120	45.605	0.022	0.054	15.735	0.038	
% mud	-0.328	60.145	0.207	-0.325	62.900	0.202	-0.072	21.117	0.083	
mean	-5.231	63.012	0.293	-5.126	65.574	0.279	-0.941	21.220	0.080	
std. dev.	11.737	27.841	0.063	11.601	30.926	0.060	2.282	14.578	0.020	

Notes:

•

a. DN= (grain size parameter) * (slope) + (intercept)

b. Correlation among the image digital number (DN) and D(15) to D(90), mean and standard deviation grain-size parameters

parameters are based on the phi scale

phi = $-\log(\text{diameter in mm})$

log 2

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

1

GC-Mass Spectrometer Split-Sample Results for Total PCB Concentrations and Point Values Selected to Represent Reported Ranges for the 1984 Thompson Island Pool Sediment Survey

	Split-Sample Comparison										
Mass Spectrometry Category	Total Number Screened	Number of Split Samples	Number Mean (and Standard of Split Deviation) M amples (mg/kg) (1		Log Transform Mean (and Standard Deviation)	Used by Brown <i>et al.</i> (1988) (mg/kg)	Used in current analyses (mg/kg)				
<10 ppm	957	61	15.0 (39.2)	3.30	1.41 (2.45)	15.0	3.3				
10–50 ppm	482	347	30.8 (42.6)	18.20	2.76 (1.65)	30.8	18.2				
50–100 ppm	71	67	133.6ª (143.8)	88.7	4.40 (1.23)	134.6	88.7				
>100 ppm	26	22	517.9 (1397)	126.3	4.87 (2.84)	517.9	126				

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

HRP

002

2017

Note:

a. This value is obtained directly from the reported samples. It is slightly different from the actual value used by Brown *et al.* (1988).

	PCB mass (g/m ²)	Natural log	
Number of Locations	1098	1098	
Mean	10.92	1.32	
Median	3.48	1.25	
Standard Deviation	41.65	1.41	
Skewness	22.92	0.08	
Minimum	0.04 -3.23		
Maximum	1218.39	7.10	

Sample Statistics for Thompson Island Pool PCB Mass Concentration Estimates, 1984 Sediment Survey

Source: TAMS/Gradient Database

	Subreach 5 1163000 - 1170100 N	Subreach 4 1170100 - 1177000 N	Subreach 3 1177000 - 1181900 N	Subreaches 1 and 2 1181900 - 1191700 N
Observations	235	320	238	321
Nugget	0.750 (.284)	0.484 (.154)	0.0 ()	1.54 (.108)
Sill-Nugget	1.520 (.282)	1.092 (.153)	1.733 (.060)	0.203 (.106)
Practical Range (ft)	340 (75)	280 (68)	286 (49)	582 (521)
Anisotropy Ratio	1.0	1.5	2.5	1.0
Major Axis	-	N 10° W	N 35° W	-

Subreach Variogram Models^a for Natural Log of PCB Mass Concentration, 1984 Thompson Island Pool Sediment Survey

Note:

a.

Variograms are exponential models, showing fit along the major axis and anisotropy ratio. Standard errors of the coefficients from the least squares estimation are shown in parentheses.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

.

	Subreach 5 1163000 - 1170100 N	Subreach 4 1170100 - 1177000 N	Subreach 3 1177000 - 1181900 N	Subreaches 1 and 2 1181900 - 1191700 N	All Data
Predicted arithmetic mean (g/m ²)	16.79	11.51	12.09	13.12	13.22
Observed arithmetic mean (g/m ²)	13.66	10.66	10.56	10.26	11.16
Predicted mean of natural logs	1.27	1.54	1.34	1.12	1.32
Observed mean of natural logs	1.31	1.55	1.33	1.11	1.32

Total PCB Mass Concentration in the Thompson Island Pool, 1984: Cross Validation Comparison of Lognormal Kriging Results and Observed Values

Source: TAMS/Gradient Database
	GC Data (First Structure)	GC Data (Second Structure)	Mass Spectrometry Screening Data	Cross- Variogram
Nugget	0.427		0.678	0.377
Sill - Nugget	1.191	0.095	0.458	0.120
Practical Range (ft)	123	750	752	750
Inflation Factor	1.38	1.38	1.0	1.17
Anisotropy Ratio	1.0	1.0	1.0	1.0

Exponential Variogram Models for Natural Log of Surface Concentrations in the 1984 Sediment Survey of the Thompson Island Pool

Source: TAMS/Gradient Database

.

Summary Results for Kriged Surface Layer Concentration of Total PCBs by Subreach, 1984 Sediment Survey of the Thompson Island Pool

Subreach (with NYS Northing range)	Surface Area (m ²)	Mean Surface PCB Concentration (ppm)
Subreach 5 1163000 - 1170100 N	512,274	33.42
Subreach 4 1170100 - 1177000 N	476,067	35.65
Subreach 3 1177000 - 1181900 N	383,356	28.89
Subreaches 1 and 2 1181900 - 1191700 N	642,683	20.17
Total for All Subreaches	2,024,379	28.72

Source: TAMS/Gradient Database

Table 4-8Dechlorination of Aroclor 1242Page 1 of 3

Only congeners detected in Aroclor 1242 are represented.									
Congener Number [,]	Congener Name	Mass Percent in Aroclor 1242 ⁶	Mol. Wt. of Congener	<u>Mass Percent</u> Mol. Wt. (moles/100g of A1242)	Final Dechlorination Product ⁴	Final Product Reported?	Mass Reduction Factor	Mass Percent of Final Product'	No. of Moles Remaining After Dechlor.
BZ#1	2-Chlorobiphenyl	0.59	189.0	0.0031	D741			<u>متی میں اور اور اور اور اور اور اور اور اور اور</u>	
BZ#3	4-Chlorobiphenyl	0.26	189.0	0.0031	BZ#I	Yes	1.00	0.59	0.003098
BZ#4	2,2'-Dichlorobiphenyl	3.13	223.1	0.0140	Bipnenyi	No	0.00	0.00	0.000000
BZ#6	2,3'-Dichlorobiphenyl	1.36	223.1	0.0140	BZ#4	Yes	1.00	3.13	0.014043
BZ#8	2.4'-Dichlorobiphenyl	7.20	223.1	0.0001	BZ#1	Yes	0.85	1.15	0.006083
BZ#9	2,5-Dichlorobiphenyl	0.58	223.1	0.0325	BZ#1	Yes	0.85	6.10	0.032287
BZ#10	2.6-Dichlorobiphenyl	0.22	223.1	0.001.0	BZ#1	Yes	0.85	0.49	0.002600
BZ#12	3.4-Dichlorobiphenyl	0.09	223.1	0.0004	BZ#10 Disharad	Yes	1.00	0.22	0.000990
BZ#15	4.4'-Dichlorobiphenyl	1.83	223.1	0.0004	Biphenyi	No	0.00	0.00	0.000000
BZ#16	2,2',3-Trichlorobiphenyl	2.67	257.5	0.0104	Biphenyi	No	0.00	0.00	0.000000
BZ#17	2.2',4-Trichlorobiphenyl	3.28	257.5	0.0104	BZ#4	Yes	0.87	2.31	0.010361
BZ#18	2.2'.5-Trichlorobiphenyl	8.72	257.5	0.0339	DZ#4	Yes	0.87	2.84	0.012725
BZ#19	2.2',6-Trichlorobiphenyl	0.84	257.5	0.0033	DZ#4 D7#10	Yes	0.87	7.56	0.033872
BZ#20	2.3.3'-Trichlorobiphenyl	0.99	257.5	0.0038	DL#19 D7#1	Yes	1.00	0.84	0.003257
BZ #22	2,3,4'-Trichlorobiphenyl	2.59	257.5	0.0101	DZ#1 D7#1	Yes	0.73	0.72	0.003828
BZ#23	2.3,5-Trichlorobiphenyl	0.07	257.5	0.0003	DL#1	Yes	0.73	1.90	0.010069
BZ#25	2,3',4-Trichlorobiphenyl	0.55	257.5	0.0021	DZ#1 D7#1	Yes	0.73	0.05	0.000286
BZ#26	2,3',5-Trichlorobiphenyl	1.53	257.5	0.0059	DL#1 D7#1	Yes	0.73	0.40	0.002139
BZ#27	2,3',6-Trichlorobiphenyl	0.53	257.5	0.0021	DL#1 D7#10	Yes	0.73	1.12	0.005924
BZ#28	2.4.4'-Trichlorobiphenyl	8.01	257.5	0.0311	DL#10 D7#1	Yes	0.87	0.46	0.002064
BZ#29	2,4,5-Trichlorobiphenyl	0.13	257.5	0.0005	DZ#1	Yes	0.73	5.88	0.031109
BZ#31	2,4',5-Trichlorobiphenyl	7.06	257.5	0.0274	DZ#1 107#1	Yes	0.73	0.10	0.000522
BZ#32	2.4'.6-Trichlorobiphenyl	1.83	257.5	0.0071	DZ#1	Yes	0.73	5.18	0:027416
BZ#33	2'.3.4-Trichlorobiphenyl	4.66	257.5	0.0371	BZ#10 B7#1	Yes	0.87	1.58	0.007101
BZ#34	2',3,5-Trichlorobiphenyl	0.02	257.5	0.0001	DZ#1 D7#1	Yes	0.73	3.42	0.018092
BZ#37	3.4.4'-Trichlorobiphenyl	1.85	257,5	0.0072	DL#1	Yes	0.73	0.01	0.000077
BZ#41	2.2.3.4-Tetrachlorobiphenyl	1.76	292.0	0.0072	Dipnenyi	No	0.00	0.00	0.00000
BZ#42	2.2'.3.4'-Tetrachlorobiphenyl	1.10	292.0	0.0038	DZ#4 D7#4	Yes	0.76	1.34	0.006021
BZ#44	2.2'.3.5'-Tetrachlorobiphenyl	3.61	292.0	0.0124	DZ#4 D7#4	Yes	0.76	0.84	0.003758
BZ#45	2.2'.3.6-Tetrachlorobiphenyl	1.03	292.0	0.0035	DZ#4 D7410	Yes	0.76	2.76	0.012370
BZ#47	2.2'.4.4'-Tetrachlorobiphenyl	0.73	292.0	0.0025	B7#4	Yes	0.88	0.91	0.003535
BZ#48	2.2'.4.5-Tetrachlorobiphenyl	1.44	292.0	0 0049	D2#4 D7#4	Yes	0.76	0.56	0.002511
BZ#49	2.2'.4.5'-Tetrachlorobiphenyl	2.93	292.0	0.0100	D1/#4 D7#A	Yes	0.76	1.10	0.004927
BZ#51	2.2'.4.6'-Tetrachlorobiphenyl	0.28	292.0	0.0010	DZ#4	Yes	0.76	2.24	0.010027
BZ#52	2.2'.5.5'-Tetrachlorobiphenyl	3.43	292.0	0.0118	DL#17 D7#A	Yes	0.88	0.25	0.000965
BZ#53	2.2'.5.6'-Tetrachlorobiphenyl	0.75	292.0	0.0026	DZ#4	Yes	0.76	2.62	0.011761
RZ#56	2 3 3' 4'-Tetrachlorobiphenyl	1.66	292.0	0.0020	D2#17	Yes	0.88	0.66	0.002577
R7#60	2 3 4 4' Tetrachlorobiphenyl	0.59	292.0	0.0020	DZ#1	Yes	0.65	1.08	0.005693
R7#63	2 3 4' 5-Tetrachlorobiphenyl	0.14	292.0	0.0025	DZ#1	Yes	0.65	0.38	0.002027
BZ#64	2.3.4'.6-Tetrachlorobiphenyl	1.70	292.0	0.0058	BZ#1 B7#10	Yes	0.65	0.09	0.000477
	2,3,7,0° *******			0.0055	DL#10	Yes	0.76	1.30	0.005805

TAMS/Cadmus/Gradient

.

Table 4-8Dechlorination of Aroclor 1242Page 2 of 3

[Only congeners detected in Aroclor 1242 are represented.										
Congener Number	Congener Name	Mass Percent in Aroclor 1242°	Mol. Wt. of Congener	<u>Mass Percent</u> Mol. Wt. (moles/100g of A1242)	Final Dechlorination	Final Product	Mass Reduction	Mass Percent of Final	No. of Moles Remaining		
				(10050171242)	r roauer	Reported?	Factor	Product'	After Dechlor.		
BZ#66	2,3',4.4'-Tetrachlorobiphenyl	3.46	292.0	0.0119	D7#1						
BZ#67	2,3',4,5-Tetrachlorobiphenyl	0.15	292.0	0.0005	BZ#1	Yes	0.65	2.24	0.011854		
BZ#70	2,3',4',5-Tetrachlorobiphenyl	3.74	292.0	0.0178	BZ#I	Yes	0.65	0.10	0.000517		
BZ#74	2,4,4',5-Tetrachlorobiphenyl	1.90	292.0	0.0128	BZ#1	Yes	0.65	2.42	0.012791		
BZ#75	2.4.4',6-Tetrachlorobiphenyl	0.11	292.0	0.000.4	BZ#1	Yes	0.65	1.23	0.006513		
BZ#77	3.3'.4.4'- i etrachlorobiphenyl	0.35	292.0	0.0004	BZ#10	Yes	0.76	0.09	0.000382		
BZ#82	2.2'.3.3'.4-Pentachlorobiphenyl	0.36	326.0	0.0012	Biphenyl	No	0.00	0.00	0.000000		
BZ#83	2,2'.3.3'.5-Pentachlorobiphenyl	0.11	326.0	0.000	BZ#4	Yes	0.68	0.24	0.001089		
BZ#84	2.2'.3.3',6-Pentachlorobiphenyl	0.50	326.0	0.0003	BZ#4	Yes	0.68	0.07	0.000334		
BZ#85	2,2',3,4,4'-Pentachlorobiphenyl	0.39	326.0	0.0013	BZ#19	Yes	0.79	0.39	0.001526		
BZ#87	2,2',3,4,5'-Pentachlorobiphenyl	0.61	326.0	0.0012	BZ#4	Yes	0.68	0.27	0.001198		
BZ#91	2,2',3,4',6-Pentachlorobiphenyl	0.23	326.0	0.0017	BZ#4	Yes	0.68	0.42	0.001863		
BZ#92	2,2',3,5,5'-Pentachlorobiphenyl	0.17	326.0	0.0005	BZ#19	Yes	0.79	0.18	0.000707		
BZ#95	2,2',3,5',6-Pentachlorobiphenyl	0.07	326.0	0.0007	BZ#4	Yes	0.68	0.11	0.000512		
BZ#96	2.2'.3,6.6'-Pentachlorobiphenyl	0.08	326.0	0.0002	BZ#19	Yes	0.79	0.06	0.000225		
BZ#97	2,2'.3',4.5-Pentachlorobiphenyl	0.48	326.0	0.0015	BZ#34	No	0.00	0.00	0.000000		
BZ#99	2,2',4,4'.5-Pentachlorobiphenyl	0.62	326.0	0.0019	BZ#4	Yes	0.68	0.33	0.001471		
BZ#101Zg	2,2',4,5,5'-Pentachlorobiphenyl	1.02	326.0	0.0031	BZ#4	Yes	0.68	0.43	0.001912		
BZ#105	2,3,3',4.4'-Pentachlorobiphenyl	0.55	326.0	0.0017	BZ#4	Yes	0.68	0.70	0.003129		
BZ#107	2,3,3',4',5-Pentachlorobiphenyl	0.10	326.0	0.0003	BZ#1	Yes	0.58	0.32	0.001702		
BZ#110	2,3,3',4',6-Pentachlorobiphenyl	1.09	326.0	0.0034	BZ#10	Yes	0.58	0.06	0.000301		
BZ#114	2,3,4,4',5-Pentachlorobiphenyl	0.06	326.0	0.0002	BZ#10	Yes	0.68	0.75	0.003351		
BZ#115	2,3,4,4',6-Pentachlorobiphenyl	0.10	326.0	0.0003	BZ#1	Yes	0.58	0.03	0:000171		
BZ#118	2,3',4,4',5-Pentachlorobiphenyl	0.76	326.0	0.0023	BZ#10	Yes	0.68	0.07	0.000306		
BZ#119	2,3',4.4',6-Pentachlorobiphenyl	0.06	326.0	0.0002	BZ#10	Yes	0.58	0.44	0.002338		
BZ#122	2',3,3',4.5-Pentachlorobiphenyl	0.05	326.0	0.0002	BZ#10	Ver	0.68	0.04	0.000172		
BZ#123	2',3,4,4'.5-Pentachlorobiphenyl	0.05	326.0	0.0001	BZ#1	I es	0.58	0.03	0.000165		
BZ#128	2,2',3,3'.4.4'-Hexachlorobiphenyl	0.08	361.0	0.0002	BZ#4	T es	0.58	0.03	0.000148		
BZ#129	2,2',3,3'.4,5-Hexachlorobiphenyl	0.04	361.0	0.0001	B7#4	Yes	0.62	0.05	0.000218		
BZ#136	2,2',3,3',6.6'-Hexachlorobiphenyl	0.05	361.0	0.0001	B7#54	Yes	0.62	0.03	0.000124		
BZ#137	2,2',3,4,4',5-Hexachlorobiphenyl	0.06	361.0	0.0002	B7#4	NO	0.00	0.00	0.000000		
BZ#138	2,2',3,4,4',5'-Hexachlorobiphenyl	0.20	361.0	0.0006	BZ#4	f es	0.62	0.04	0.000163		
BZ#141	2,2',3,4,5,5'-Hexachlorobiphenyl	0.06	361.0	0.0002	BZ#4	I es	0.62	0.12	0.000553		
BZ#146	2,2',3,4',5,5'-Hexachlorobiphenyl	0.01	361.0	0.0000	R7#4	I CS	0.62	0.04	0.000179		
BZ#149	2,2',3,4',5',6-Hexachlorobiphenyl	0.13	361.0	0.0004	BZ#19	I es	0.62	0.01	0.000037		
	······································					1 63	0.71	0.09	0.000350		

HRP

Table 4-8 **Dechlorination of Aroclor 1242** Page 3 of 3

			Only congene	ers detected in Aroclor 1242	are represented.				
Congener Number	Congener Name	Mass Percent in Aroclor 1242 ⁵	Mol. Wt. of Congener	<u>Mass Percent</u> Mol. Wt. (moles/100g of A1242)	Final Dechlorination Product ⁴	Final Product Reported?	Mass Reduction Factor	Mass Percent of Final Product'	No. of Moles Remaining After Dechlor.
BZ#153 BZ#156 BZ#157 BZ#158 BZ#167 BZ#170 BZ#178	2,2',4,4',5,5'-Hexachlorobiphenyl 2,3.3',4,4',5-Hexachlorobiphenyl 2,3,3',4,4',5'-Hexachlorobiphenyl 2,3,3',4,4',6-Hexachlorobiphenyl 2,3',4,4',5,5'-Hexachlorobiphenyl 2,2',3,3',4,4',5-Heptachlorobiphenyl 2,2',3,3',5,5',6-Heptachlorobiphenyl	0.12 0.04 0.09 0.06 0.04 0.06 0.06	361.0 361.0 361.0 361.0 361.0 395.3 395.3	0.0003 0.0001 0.0002 0.0002 0.0001 0.0001 0.0001	BZ#4 BZ#1 BZ#10 BZ#1 BZ#4 BZ#4	Yes Yes Yes Yes Yes Yes Yes	0.62 0.52 0.52 0.62 0.52 0.56 0.65	0.07 0.02 0.05 0.04 0.02 0.03 0.04	0.000336 0.000120 0.000244 0.000168 0.000097 0.000144 0.000141
Summary:		100% Molecul	Moles/100g A1242 = ar weight of A1242 =	0.38 265.7 g/mole	Fraction	Ma Moles Rema al Change in Mo Fractional C	iss Remaining = lining from a 100 Finai M lecular Weight R bange in Mass R	73.9% 9g initial mixture = Iolecular Weight = Relative to A1242 =	0.36 206.4 0.223 0.261

Source: TAMS/Gradient Database

Notes:

a. BZ# represents the congener nomenclature system developed by Ballschmiter & Zell (1980).

b. This mass percentage is normalized to the mass of Aroclor 1242 reported by the Phase 2 analysis. It does not include the 9% of Aroclor 1242 mass not represented by the 126 congeners reported in the Phase 2 method.

c. This value represents the number of moles of the congener in 100g of Aroclor 1242 as reported by the Phase 2 analysis method.

d. This compound represents the final form of the congener after undergoing complete meta- and para- dechlorination.

e. This factor is the fraction of the original congener mass which remains after meta- and para- dechlorination. This factor has been assigned a value of zero (0.00) for congeners whose final dechlorination products are biphenyl and BZ#54, which are not reported in the Phase 2 analytical data.

f. This is the product of the mass percentage and the mass reduction factor. The sum of this column represents the mass of Aroclor 1242 remaining after undergoing complete meta- and para- dechlorination, as would be reported by the Phase 2 method.

g. BZ#90 and BZ#101 are coeluting pentachlorobiphenyls. The structural name given is for BZ#101. However, both breakdown to form BZ#4 and thus they have identical reduction factors. For this analysis, they can be treated as a single entity with no loss of accuracy.

002 2025

Т

Mole Fraction ^a Mole Fraction = (Moles BZ#X)/(Total PCBs in moles)					
Aroclor 1016	Aroclor 1242	Aroclor 1254			
0.010	0.008	0.000			
0.045	0.038	0.000			
0.106	0.086	0.001			
0.003	0.003	0.000			
0.011	0.009	0.000			
	Mole Fracti Aroclor 1016 0.010 0.045 0.106 0.003 0.011 0.174	Mole Fraction = (Moles BZ#X)/(Total Aroclor 1016 Aroclor 1242 0.010 0.008 0.045 0.038 0.106 0.086 0.003 0.003 0.011 0.009 0.174 0.144			

Molar Dechlorination Product Ratio and Mean Molecular Weight of Various Aroclor Mixtures

Molecular Weight

Aroclor	Mean Molecular Weight ^b	Fractional Molecular Weight Change Relative to Aroclor 1242 ^b (ΔMW)
1016	257.9	0.03
1221	204.0	0.23
1232	229.7	0.14
1242	265.7	0.00
1248	291.4	-0.10
1254	327.7	-0.23
1260	372.2	-0.40

Notes:

a. Mole fraction based on chromatographic analysis of Aroclor standards performed as part of Phase 2 investigation.

b. See text (Equations 4-7 and 4-8) for the definition of these terms.

Source: TAMS/Gradient Database

Representation of Three Aroclor Mixtures by the Phase 2 Analytical Procedure

	No. of		Mass Fraction ^b				
Congener Fraction	Congeners ^a	Aroclor 1016	Aroclor 1242	Aroclor 1254			
Ortho-Substituted Congeners With Measured Dechlorination Products	108	0.897	0.866	0.949			
Congeners With Unmeasured Dechlorination Products (x)	18	0.036	0.041	0.009			
Total Congener Analysis (y)	126	0.933	0.907	0.958			
Percent of Mass Lost to Unmeasured Products via Dechlorination [°]		3.9%	4.5%	0.97%			

Mole Basis

	No. of		Mole Fraction ^d	
Congener Fraction	Congeners ^a	Aroclor 1016	Arocior 1242	Aroclor 1254
Ortho-Substituted Congeners With Measured Dechlorination Products	108	0.957	0.950	0.991
Congeners With Unmeasured Dechlorination Products (x)	18	0.043	0.050	0.009
Total Congener Analysis (y)	126	1.000	1.000	1.000
Percent of Moles Lost to Unmeasured Products via Dechlorination ^c		4.3%	5.0%	0.89%

Notes:

a. There are 209 different congeners. 126 congeners were quantitated based on commercially available standards during the Phase 2 geochemical sampling program and were determined for all sampled matrices.

b. Based on chromatographic analysis of Aroclor standards performed as part of Phase 2 investigation.

c. This percentage is the ratio of the congeners with unmeasured dechlorination products to the fraction of the total Aroclor represented (i.e. x/y).

d. Mole fraction based solely on congeners represented in Phase 2 analysis.

TAMS/Cadmus/Casting

Statistics for High Resolution Sediment Core Results Molar Dechlorination Product and Change in Molecular Weight

	Molar Dechlorination Product Ratio			Change in Mole	cular Weight Relativ	Expected Mass Loss* (%)		
Statistic	Upper Hudson	Lower Hudson	Tributaries and Background	Upper Hudson	Lower Hudson	Tributaries and Background	Upper Hudson	Lower Hudson
Mean	0.43	0.11	0.03	0.07	-0.02	-0.28	8.2%	
Median	0.36	0.10	0.00	0.06	-0.02	-0.22	7.0%	
Minimum	0.00	0.01	0.00	-0.12	-0.12	-0.67		
Maximum	0.93	0.37	0.79	0.21	0.07	0.10	24.6%	8.2%
No. of Samples	131	68	45	131	68	45	131	68

Notes:

a. Expected mass loss is calculated assuming the change in molecular weight is directly proportional to mass loss as follows:

 $Mass Loss = \underbrace{0.261}_{0.223} x Change in Molecular Weight x 100$

where 0.261 is the maximum theoretical mass loss possible via meta- and para- dechlorination and 0.223 is the maximum theoretical change in molecular weight relative to Aroclor 1242 via meta- and para- dechlorination. Expected mass loss values calculated only for positive values of change in molecular weight. Expected mass loss was not calculated for the background and tributary samples since the evidence strongly indicates that their PCB contamination was not Aroclor 1242-based.

Source: TAMS/Gradient Database

FIGURES

2029

002

ЦКП

Figure 1-1 PCB Structure

Figure 2-1 Fish PCB Results - Niagara Mohawk Queensbury RI

Figure 2-2 General Electric Company - Hudson Falls Plant and Vicinity

Source: DMR Printout for SPDES NY-0007048 (NYSDEC, 1994b)

L

Source: Battelle Ocean Sciences for USEPA (1993)

TAMS/Cadmus/Gradient

int

Source: Battelle Ocean Sciences for USEPA (1993)

Source: Battelle Ocean Sciences for USEPA (1993)

TAMS/Cadmus/Gradient -

Figure 2-7 NY/NJ POTW Effluent PCB Data - Homologue Basis

T

Source: Battelle Ocean Sciences for USEPA (1993)

Figure 2-8 NY/NJ River Water PCB Data - Congener Basis

Source: Battelle Ocean Sciences for USEPA (1993)

Figure 2-9 NY/NJ River Water PCB Data - Homologue Basis

T

Source: TAMS/Gradient Database

Note: POC concentration calculated from weight loss on ignition data.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-3 Two-Phase Partition Coefficients to Particulate Matter (K_{P,a}) for Water-Column Transects

Notes:

a. No temperature correction.

b. Plot includes congeners having at least three samples quantitated for both dissolved and particulate phases.

c. For some congeners with skewed sample distributions the median may be below the confidence interval on the mean.

Source: TAMS/Gradient Database

Notes:

a. No temperature correction.

b. Plot includes congeners having at least three samples quantitated for both dissolved and particulate phases.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Note: Theoretical values from Mackay et al. (1992).

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

T

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

I

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

T

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Source: Warren et al. (1987)

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

I.

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Note: Estimates without temperature correction.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

HRP 002 2055

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

HRP 002 2058

Note: [POC] calculated from weight-loss-on-ignition data.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

ł

Note: Percentages calculated at mean concentrations observed in Upper Hudson River of DOC = 4.79 mg/Land POC = 1.40 mg/L.

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-23 Comparison of USGS Measured Flows at Fort Edward, Stillwater and Waterford for Water Year 1992

Figure 3-24 Stillwater Low-Flow Model C Prediction Uncertainty as a Function of Stillwater Flow

 $\{ \cdot, \cdot \}$

Figure 3-31 Homologue Distribution of the GE Hudson Falls Facility Source as Characterized by the Transect 1 Remnant Deposit Area (RM 195.8) Sample

a) Tributary river mile designations correspond to point of confluence with the Hudson River.

b) Fish Creek suspended matter load is estimated using the suspended solids value for the Batten Kill and a flow estimate based on drainage basin area.

Figure 3-32

Suspended-Matter Loading in the Upper Hudson River - Transect 1 Low-Flow Conditions

a) Tributary river mile designations correspond to point of confluence with the Hudson River.

b) Fish Creek suspended matter load is estimated using the suspended solids value for the Batten Kill and a flow estimate based on drainage basin area.

c) Scour Event due to onset of spring flood event in lower part of the Upper River.

Figure 3-33 Suspended-Matter Loading in the Upper Hudson River

b) Fish Creek suspended matter load is estimated using the suspended solids value for the Batteri Kin and a now estimate based on the c) Sample is believed to over-represent dilution by the Moses Kill due to proximity of sampling location to Moses Kill confluence.

HRP

002

2072

d) Sample is believed to over-represent undfrom by the Moses fell due to promiting of sampling rocation to Moses fell contractice.

Figure 3-34

Note:

a) Tributary river mile designations correspond to point of confluence with the Hudson River.

b) Fish Creek suspended matter load is estimated using the suspended solids value for the Batten Kill and a flow estimate based on drainage basin area.

Figure 3-35 Suspended-Matter Loading in the Upper Hudson River - Transect 6 Low-Flow Conditions

Figure 3-36 Sediment Homologue Distributions in the Thompson Island Pool

Figure 3-37 Estimated Porewater Homologue Distributions in Sediments from the Thompson Island Pool

a. Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L). b. The homologue pattern measured for this station was unlike any seen in other Phase 2 samples and is considered suspect. c. Tributary river mile designations correspond to point of confluence with the Hudson River.

HRP 002-20

4

Figure 3-38 Upper River Water-Column Instantaneous PCB Loading for Transect 1 Low-Flow Conditions

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-39 Typical Homologue Distributions of the Batten Kill and Hoosic River PCB Water-Column Loads

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993) Notes:

a. Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L). b. Tributary river mile designations correspond to point of confluence with the Hudson River.
c. Scour event due to onset of spring flood in lower part of the Upper River.
d. Vertical scale expanded to show full scour event loading.

HRP-002-20

48

ſ

Figure 3-40 Upper River Water-Column Instantaneous PCB Loading for Transect 3 Transition from Low-Flow to High-Flow Conditions

Figure 3-41 Homologue Distributions of Surficial Sediments (0 to 2 cm) in the Batten Kill and the Hoosic River

Figure 3-42 Sediment Homologue Distributions in the Upper River Reaches below the Thompson Island Dam

(

HRP 002 208

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993) TAMS/Cadmus/Gradient Notes:

a. Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L). b. Sample is believed to over-represent dilution by Moses Kill due to proximity of sampling location to Moses Kill confluence. c. Tributary river mile designations correspond to point of confluence with the Hudson River.

c. Tributary river mile designations correspond to point of confluence with the nucleon rayed. d. Sample is believed to over-represent upstream load contribution due to incomplete mixing of the Mohawk River.

Figure 3-43

Upper River Water-Column Instantaneous PCB Loading for Transect 4 High-Flow Conditions

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)

TAMS/Cadmus/Gradie

a. Flow-Averaged Event 1 samples were collected during the period of April 23 to May 8, 1993.

Notes:

b. Samples collected at Waterford are not represented here due to local canal construction which is believed to have influenced the samples.

HKP 002 2082

Figure 3-44 Upper River Water-Column PCB Loading for Flow-Averaged Event 1 High-Flow Conditions

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)

Note: Flow-Averaged 2 samples were collected during the period of May 12 to May 27, 1993.

TAMS/Cadmus/Gradien

2083

002

Figure 3-45 Upper River Water-Column PCB Loading for Flow-Averaged Event 2 Low-Flow Conditions

L

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)

Note: Flow-Averaged 3 samples were collected during the period of June 6 to June 19, 1993.

TAMS/Cadmus/Gradie

Figure 3-46 HRP Upper River Water-Column PCB Loading for Flow-Averaged Event 3 Low-Flow Conditions

2084

002

a. Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L). b. Tributary river mile designations correspond to point of confluence with the Hudson River.

HRP 002 2085

Figure 3-47 Upper River Water-Column Instantaneous PCB Loading for Transect 6 Low-Flow Conditions

T

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)

Note: Flow-Averaged 5 samples were collected during the period of August 2 to August 17, 1993.

TAMS/Cadmus/Gradient

2086

HRP

002

Figure 3-48 Upper River Water-Column PCB Loading for Flow-Averaged Event 5 Low-Flow Conditions

J

Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)

Note: Flow-Averaged 6 water column samples were collected during the period of September 9 to September 23, 1993.

TAMS/Cadmus/Gradient

Figure 3-49 Upper River Water-Column PCB Loading for Flow-Averaged Event 6 Low-Flow Conditions

The Coincidence of the ¹³⁷Cs and ⁶⁰Co Maxima at River Mile 43.2 (Core 6)

HRP

Figure 3-51

HRP 002 2089

¹³⁷Cs Concentrations in High Resolution Sediment Core 11 and Core 19

Figure 3-53

Diana High Desolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration

TRU 002 Z091

귀단단

002

2092

TAMS/Cadmus/Gradient

Lower Diver High-Resolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration

base Figure 3-55 Tributaries and Background High Resolution Sediment Cores Depth vs. ¹³⁷Cs Concentration and PCB Concentration

Figure 3-57

Comparison of the Thompson Island Pool Surficial Sediment Congener Distribution with the Thompson Island Dam Suspended-Matter Congener Distributions associated with Low-Flow Winter and Summer Conditions

Figure 3-58

Comparison of the Albany Turning Basin Surficial Sediment Congener Distribution with the Green Island Bridge Suspended-Matter Congener Distributions associated with Low-Flow Winter and Summer Conditions

Figure 3-59 Total PCBs in Sediment vs. Approximate Year of Deposition at River Mile 188.5 Near the Thompson Island Dam: High Resolution Sediment Core 19

기엇₽

002

2097

Figure 3-60 Total PCB Content in Sediment Deposited Between 1991 and 1992 vs. River Mile

an and a second s

HRp

Source: TAMS/Gradient Database

Comparison for Total PCRs/137Cs Ratios: 1975 through 1992

Figure 3-66

Comparison of Measured and Calculated Total PCBs/¹³⁷Cs Ratios for Sediment Deposited between 1991 and 1992

Figure 3-67

Comparison of Measured and Calculated Total PCBs/¹³⁷Cs Ratios for Sediment Deposited between 1982 and 1986

Figure 3-69 Comparison of the Duplicate Core Results on a Congener Basis for RM 177.8 near Stillwater for 1991 to 1992

HRP 002 2107

Normalized PCB Congener Concentrations in Stillwater 1991 to 1992 Sediments and Rogers Island Suspended Matter vs. Aroclors 1254 and 1260

002 2109

TNP

Figure 3-72 Comparison of PCB Congener Patterns: Suspended Matter from River Mile 194.6 at Rogers Island for Transect 4, April 12 to 14, 1993 and a Mixture of 94% Aroclor 1242 + 5% Aroclor 1254 + 1% Aroclor 1260

And the second se

Figure 3-81 Monthly PCB Load, River Mile 194.6 at Rogers Island and River Mile 188.5 at Thompson Island Pool Averaging Estimate on GE Data

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-82 Total PCB Concentrations at River Mile 194.6 GE Data, with Moving Average

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-83 Load across the Thompson Island Pool Total PCBs, GE Data

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-84 Load across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data

Figure 3-85 Load across the Thompson Island Pool Di-Chlorinated PCB Homologues, GE Data

Figure 3-86 Load across the Thompson Island Pool Tri-Chlorinated PCB Homologues, GE Data

002 2124

HRP

Load across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data

Average Daily PCB Homologue Load at Rogers Island (River Mile 194.6) and Thompson Island Dam (River Mile 188.5) April 1991 through February 1996, Averaging Estimate on GE Data

HRP 002 212

Ū.

Figure 3-89 Gain across the Thompson Island Pool Total PCBs, GE Data

나맛つ 200 2127

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 3-90 Gain across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data

HRP 0 0 N 2120

HRP (

002 2130

Figure 3-93 Gain across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data

TETZ Z00

Source: TAMS/Gradient Database

Figure 3-95 Summer PCB Homologue Concentrations June through August 1991, GE Data

Source: TAMS/Gradient Database

Source: TAMS/Gradient Database

Figure 3-97 Summer PCB Homologue Concentrations June through August 1993, GE Data

200 2120 0

HPP

Source: TAMS/Gradient Database

Source: TAMS/Gradient Database

Figure 3-99 Summer PCB Homologue Concentrations June through August 1995, GE Data

HRP P 002 2137

TAMS/Cadmus/Gradient

TAMS/Cadmus/Gradient

Figure 3-102 Water-Column PCB Homologue Composition at River Mile 194.6 at Rogers Island

Figure 3-103 Water-Column PCB Homologue Composition of the Net Thompson Island Pool Load

From April 1991 through October 1995, GE Data

TAMS/Cadmus/Gradient

Figure 3-107 Water Column Total PCB Concentrations at the Thompson Island Dam: June 1993 to May 1996 - GE Data

3-108

TAMS/Cadmus/Gradient

Figure PCB Homologue Composition of the Net Thompson Island Pool Load, GE Data

Source: GE Remnant Deposit Monitoring Report Monthly Update, July 5, 1996

Figure 3-110 PCB Load vs. River Mile for Three Phase 2 Water-Column Transects

Figure 3-111

TAMS/Cadmus/Gradient

PCB Loadings to the Hudson River at River Mile 153.9 near Albany based on the Water-Column Transect Sampling

Fractional PCB Loads at Albany for 1991 to 1992 Based on Dated High-Resolution Sediment Core Results

Model-Projected PCB Loadings to Lower Hudson River and Harbor for 1993

Figure 3-114 Estimated PCB Loadings to Lower Hudson and Harbor for 1993

HRp

I

A Comparison between River Flow Velocity and Maximum Sediment PCB Inventory by River Mile in the Thompson Island Pool

2153 HRP 002

Figure 4-2 Hudson River Cross-Sectional Area for 8400 cfs Flow at Fort Edward

Figure 4-3 Comparison of the DN Value for 10 ft and 50 ft Circles at Confirmatory Sampling Sites

Figure 4-4 Calibration Plots of DN vs. Grain-Size

HRP 002

2156

Figure 4-5 Three-Dimensional Correlation Plot of Digital Number vs. Grain Size

Figure 4-6 Two-Dimensional Correlation Plot of Digital Number vs. Grain Size

ļ

Figure 4-7 Comparison of 500 kHz Acoustic Signal and 1984 NYSDEC PCB Levels in Surface Sediments

Figure 4-8 Example Semivariogram with Labels

TAMS/Cadmus/Gradient

Source: TAMS/Gradient Database

Figure 4-10 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 3, Major Axis N 35 W

HRD 002 2162

TAMS/Cadmus/Gradient

Figure 4-11 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 4, Major Axis N 10 W

Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey Subreach 5, Isotropic Variogram

TAMS/Cadmus/Gradient

Figure 4-13 Typical Arrangement of the Point Estimates Used in Generating Block Kriging Values

HRP 002

2165

Source: TAMS/Gradient Database

Figure 4-14 Variogram of Natural Log of Surface PCB Concentration GC/MS Screening Data Thompson Island Pool, 1984 Sediment Survey

Figure 4-15 Variogram of Natural Log of Surface PCB Concentration GC/ECD Analytical Data Thompson Island Pool, 1984 Sediment Survey

HRP 002 2167

Variogram of Natural Log of Surface PCB Concentration Cross-Variogram between GC/ECD and GC/MS Data Thompson Island Pool, 1984 Sediment Survey

HRP 002 2168

002 2169

HRP

Figure 4-19

HRP 002 2171

Histogram of the Molar Dechlorination Product Ratio

Results of All Freshwater Post-1954 Sediment Samples

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Results of All Freshwater Post-1954 High Resolution Sediment Samples

HRP $^{\circ2}$ 2172

Figure 4-21

Comparison Between the Molar Dechlorination Product Ratio and the Fractional Change in Molecular Weight for All Post-1954 Freshwater Sediments

002 2174

L R R

with Depth (Age) in Core 18 at River Mile 185.8

Figure 4-24 Molar Dechlorination Product Ratio vs. Total PCB Concentration with Depth (Age) in Core 19 at River Mile 188.5

Figure 4-25 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight

002

2177

Represents All Post-1954 Freshwater Sediment Core Data

Figure 4-26 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight - Expanded Scale

Represents All Post-1954 Freshwater Sediment Core Data

T

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 4-27 Molar Dechlorination Ratio and Total PCB Concentration vs. Depth for Phase 2 Sediment Core Samples

Figure 4-28a

Histogram of the Change in Molecular Weight as a Function of Time of Deposition in Post-1954 Dated Sediments from the Hudson River

Figure 4-28b Fractional Mass Loss as Measured by the Change in Mean Molecular Weight in Post-1954 Dated Sediments from the Hudson River

HRP

Figure 4-30 A Comparison of the Net Thompson Island Pool Contribution to the Water Column with the Sediments of the Upper Hudson

HRP 002 2183

Figure 4-31

Relationship Between Phase 2 Hudson River Water Column Samples and the Sediment Regression Line -Molar Dechlorination Product Ratio vs. Change in Molecular Weight

Figure 4-33 Trend of High Resolution Core Top Molar Dechlorination Ratio and Total PCB Concentration with River Mile

HRP 002 ≥106

Note:

nomologue Basis

Source: TAMS/Gradient Database

TAMS/Cadmus/Gradient

Figure 4-35 Comparison Between Various Water Column and Estimated Porewater Distributions on a Homologue Basis

HRP 002 2188

	PLATES	
		$\left(\right)$
	n en de la companya d La companya de la comp En grande de la companya de la compa	2190
an an an ann an an an ann an Arlanda. Ann an ann an ann an ann ann ann ann an		<u>N</u>
an an an ann an Albana ann an ann an an ann ann ann ann an		8
		a Y
n de la calencia de la composición de A general de la composición de la compos		
n og setter Menne og setter for en som e Te som en som Te som en som		
	en e	

HRP

CONFIRMATORY	CORE	SAMPLE
--------------	------	--------

HUDSON RIVER PCB REASSESSMENT RI/FS PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT

GEOPHYSICAL AND CONFIRMATORY

.

Zuman

A reason of the second seco

EASTERN SHORE PROFILE

TAMS / Cadmus / Gradient PLATE 2-2

GENERAL ELECTRIC HUDSON FALLS, NY SITE PLAN AND SHORE PROFILE

HUDSON RIVER PCB REASSESSMENT RI/FS PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT

ABANDONED DAM (FALLS) (FALLS) (HYDRAULIC PROFILE (APPROXIMATE) 75 0 75 MOTE: ELEVATIONS AND LOCATIONS ARE ESTIMATED. ESTIMATED SCALE IN FEET

<u>SOURCE:</u>

DRAWINGS OBTAINED FROM O'BRIEN & GERE (1994a).

ta Serie Carlos de C Carlos de C Carlos de C

EPA REGION II SCANNING TRACKING SHEET

DOC ID # <u>80109</u>

DOC TITLE/SUBJECT:

PLATE 4-1 HUDSON RIVER PCB UPDATE #1 SIDE SCAN SONAR MOSAIC OF THE HUDSON RIVER SEDIMENTS IN THE VICINITY OF HOT SPOT 14

THIS DOCUMENT IS OVERSIZED AND CAN BE LOCATED IN THE ADMINISTRATIVE RECORD FILE AT THE

> SUPERFUND RECORDS CENTER 290 BROADWAY, 18TH FLOOR NEW YORK, NY 10007

a second seco

and the second second

HRP 002 2211

