

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY REGION 2 290 BROADWAY NEW YORK, NY 10007-1866

March 1999

To All Interested Parties:

The U.S. Environmental Protection Agency (EPA) is pleased to release the *Evaluation of Removal Action Alternatives, Thompson Island Pool, Early Action Assessment* (Early Action report) for the Hudson River PCBs Superfund Site. This report presents alternatives which were evaluated for potential early action in the Thompson Island Pool.

In July of 1998, EPA issued the *Low Resolution Sediment Coring Report* (LRC). One of the most significant conclusions in this report was that "From 1984 to 1994, there had been a net loss of approximately 40 percent of the PCB inventory from highly contaminated sediments in the Thompson Island Pool." This means that the Thompson Island Pool lost PCB mass to locations within the Thompson Island Pool and to other locations in the Hudson River. On July, 23, 1998, EPA issued a statement regarding the conclusions in the LRC and indicating that the Agency would consider taking early action in the Hudson River to mitigate any further migration of PCBs throughout the river.

To that end, EPA tasked TAMS Consultants, an EPA contractor, to perform an evaluation of possible early action alternatives for the Thompson Island Pool. This evaluation explored different possible interim actions to address PCB-contaminated sediments in the Thompson Island Pool. The principal technologies considered were dredging, capping, and a combination of dredging and capping.

On December 17, 1998, EPA issued a press release stating that the Agency was not able to identify a feasible and appropriate interim action. EPA will continue to focus its full attention and resources on completing the ongoing Hudson River PCBs Reassessment so that a Proposed Plan can be presented to the public by December 2000.

If you need additional information regarding the Early Action report, please contact Ann Rychlenski, the Community Relations Coordinator for this site, at 212-637-3672.

Sincerely yours,

Richard L. Caspe, Director Emergency and Remedial Response Division

HUDSON RIVER PCBs REASSESSMENT RI/FS

EVALUATION OF REMOVAL ACTION ALTERNATIVES THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT

March 1999

For

U.S. Environmental Protection Agency Region II

and

U.S. Army Corps of Engineers Kansas City District

TAMS CONSULTANTS, Inc.

HUDSON RIVER PCBS REASSESSMENT RI/FS EVALUATION OF REMOVAL ACTION ALTERNATIVES THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT

CONTENTS

1.	BACKGROUND AND PURPOSE 1-1
2.	MAPPING AND DETERMINATION OF EARLY ACTION TARGET AREAS 2-1
3.	EVALUATION OF ACTION ALTERNATIVES AND COST3-13.1Categorization of Early Action Target Areas3-13.2Alternatives Development3-13.3Alternatives Comparison and Cost Estimates3-5
4.	PREDICTION OF IMPACTS TO FISH 4-1
5.	EVALUATION OF ECOLOGICAL IMPACTS OF ACTION ALTERNATIVES5-15.1Dredging Impacts Analysis5-15.2Capping and Dredging Alternative Impact Analysis5-5
6.	ALTERNATE WATER TREATMENT COST ANALYSIS
7.	REFERENCES

FIGURES

- 4-1 Total PCBs in Largemouth Bass
- 4-2 Total PCBs in Brown Bullhead
- 4-3 Total PCBs in Pumpkinseed
- 6-1 PCBs and Flow at Thompson Island Dam
- 6-2 TSS and Flow at Thompson Island Dam

i

CONTENTS (CONTINUED)

TABLES

- 1-1 Preliminary Technology Screening
- 3-1 Dredging Target Area Summary
- 3-2 Dredging Target Area Sequence: Alternative D-1
- 3-3 Dredging Target Area Sequence: Alternative D-2
- 3-4 Dredging Target Area Sequence: Alternative D-3
- 3-5 Capping and Dredging Target Area Summary
- 3-6 Capping and Dredging Target Area Sequence: Alternative CD-1
- 3-7 Capping and Dredging Target Area Sequence: Alternative CD-2
- 3-8 Capping and Dredging Target Area Sequence: Alternative CD-3
- 3-9 Comparison of Alternatives
- 3-10 Dredging and Capping/Dredging Alternatives Summary Data
- 6-1 Water Treatment Plant Estimated Construction Costs
- 6-2 Water Treatment Plant Estimated Annual O&M Costs
- 6-3 Water Treatment Plant Present Value Calculation

DRAWINGS

Early Action Target Areas

Dredging Alternative D-1: Four-Year Program

Dredging Alternative D-2: Two-Year Program

Dredging Alternative D-3: One-Year Program

Capping and Dredging Alternative CD-1: Three-Year Program

Capping and Dredging Alternative CD-2: Two-Year Program

Capping and Dredging Alternative CD-3: One-Year Program

1. BACKGROUND AND PURPOSE

In August 1998, the US Environmental Protection Agency (USEPA) directed that an investigation be undertaken immediately of the feasibility and cost of early action to forestall further loss of PCB mass in the Thompson Island Pool (TIP). This directive was prompted by the finding of the Low Resolution Sediment Coring Report (USEPA, 1998) that the inventory of PCBs in the sediments of the TIP may have decreased by as much as 40 percent since 1984 through erosion or other nondegradative forces. In response to this directive, representatives of USEPA, the US Army Corps of Engineers (USACE) and TAMS Consultants, Inc. (TAMS) in a meeting on August 10, 1998 established the alternatives for such early action based on preliminary technology and alternatives screening previously performed for the Reassessment Phase 3 Feasibility Study. The screening process conducted for the purposes of this evaluation is documented in Table 1-1. At the August 10 meeting among USEPA, USACE and TAMS, the following alternatives were agreed upon for further evaluation:

- Excavation/dredging of selected sediments and off-site disposal of spoils;
- Capping of selected sediments; and
- Combined excavation/dredging and capping.

The objective of this report is to provide USEPA with supporting documentation which will assist the Agency in making an informed decision regarding early action to address sediments in the TIP. The work documented herein should not be considered a recommendation by TAMS or its subcontractors either for early action or for No Action. While the information developed may be incorporated into the final Reassessment Phase 3 Feasibility Study, this evaluation is not intended as a substitute for the Feasibility Study effort.

The purpose of this evaluation is to assess the feasibility and cost of dredging and capping alternatives at a preliminary conceptual level against a No Action alternative for reducing the ultimate loss of PCB mass downstream. In the interests of addressing the directive in an expeditious manner, methods have been selected for conceptual and cost estimating purposes which are believed to be technically feasible and environmentally acceptable, with consideration of community constraints. It has not been determined that the methods described represent the optimum approach for dredging or capping of the sediments. Additional work would be necessary to advance development of the alternatives presented in order to prepare a refined cost estimate or to serve as a basis for detailed planning for the purposes of early action.

In order to address the entire TIP, it is necessary to target and categorize specific sediment areas, and calculate the individual inventories and sediment volumes involved in those individual areas. However, there is more confidence in the reported PCB inventory of the entire TIP than for any individually designated zone of sediment. Therefore, confidence in the cost estimate and outcome for the whole is greater than confidence in the category, cost or outcome for any individual area. Implementation of an early action may require additional investigation to reduce uncertainty where there are few sediment samples to define the PCB inventory.

The Data Evaluation and Interpretation Report (or DEIR, USEPA, 1997a) reports the continuing transport of PCB mass over the Thompson Island Dam, originating from the sediment. Therefore, as an alternative to sediment removal and capping, consideration is given to the feasibility of treatment of the water flow over the Thompson Island Dam to reduce the PCB transport to downstream areas.

Specific tasks included in the scope of work for this evaluation include:

- Combine side-scan sonar mapping, bathymetry, and low resolution sediment data from USEPA's Phase 2 investigations (USEPA, et al., 1997a and 1998) with General Electric Company's (GE) 1996 to 1997 Thompson Island Pool Studies (O'Brien & Gere, February 1998) into GIS maps for the TIP and determine areas and volumes for consideration in coordination with USEPA and USACE.
- Prepare cost estimates of the two alternatives selected for further evaluation, in coordination with USACE.
- Develop a comparison table which summarizes the evaluation factors for the alternatives. The evaluation will consider the criteria pertinent to a Superfund removal action.
- Predict the temporary impacts to fish during the action in relation to current levels of PCBs in fish in the TIP, based on the estimated short-term increase in PCB loading due to implementation of the alternatives.
- Determine ecological impacts of the alternatives.
- Prepare a parametric cost analysis of treating the water flow over the Thompson Island Dam to remove PCBs to the Maximum Contaminant Level (MCL), as an alternative to sediment removal.

Each of these scope items is addressed in sequence in the chapters below. Chapter 3 combines the cost estimate and comparison of the removal alternatives, while other items are presented individually in separate chapters. Figures, tables and other supporting information for each scope item are provided immediately following the text of each chapter. Drawings are presented separately at the back of the report.

403146

March 1999 Thompson Island Pool Early Action Assessment

TABLE 1-1 HUDSON RIVER PCBs -THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT PRELIMINARY TECHNOLOGY SCREENING

GENERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
NO ACTION	NONE	NONE	No institutional or remedial actions. Does not meet remedial action objectives.	Easily implemented.		
INSTITUTIONAL ACTIONS	MONITORING	WATER COLUMN SAMPLING	Monitors PCB trends in water column - shows flux from sediment and sources. Does not meet remedial action objectives.	Easily implemented. May be implemented with other remedial action(s).	Low capital; moderate O&M.	
		SEDIMENT CORING	Monitors depositional trends over time. Does not meet remedial action objectives.	Easily implemented, May be implemented with other remedial action(s).	Low capital; moderate O&M.	
	-	FISH SAMPLING	Monitors acceptability of resident and transient fish populations for human consumption. Does not meet remedial action objectives.	Easily implemented. May be implemented with other remedial action(s).	Low capital; moderate O&M.	
	× -	BIOTA SAMPLING	Monitors health of biotic communities with respect to PCB concentrations. Does not meet remedial action objectives.	Easily implemented. May be implemented with other remedial action(S).	Low capital; moderate O&M.	<u></u>
		GROUNDWATER SAMPLING	Monitors potential PCB source inputs to the water column. Does not meet remedial action objectives.	Easily implemented. May be implemented with other remedial action(s).	Low capital; moderate O&M.	
		AIR SAMPLING	Monitors volatilization of PCBs from the water column and airborne input from atmospheric sources. Does not meet remedial action objectives.	Easily implemented. May be implemented with other remedial action(s).	Low capital; moderate O&M.	
		FISHING BAN	Provides protection of human health by limiting consumption of contaminated fish species. Does not reduce environmental impacts.	Easily implemented from an institutional perspective. Enforcement may be difficult.	Los maintenance cost. Existing force of Environmental Conservation officers.	'
•	SITE USE RESTRICTIONS					
		LIMIT RECREATIONAL HISE	Potentially effective in limiting contact with contaminated media. Does not reduce environmental impacts	Easily implemented from an institutional perspective. Enforcement may be difficult.	Low maintenance cost. Existing force of Environmental Conservation officers.	
						Page

TABLE 1-1
HUDSON RIVER PCBs -THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT
PRELIMINARY TECHNOLOGY SCREENING

GEMERA I RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
		SED I MENT REMOVAL CONTROLS	Will minimize non-natural resuspension of sediment and downstream transport.	Will require interaction with state agencies and possibly legislative action to suspend state constitutional requirements. Potentially implementable.	Capital costs will depend on measures necessary to upgrade dredging fleet and possibly to reassign crews; moderate 0&M cost.	Malcolm Pirnie (1984)
	SUBAQUEOUS CAPPING	INERT MATERIALS EARTHEN	If properly designed and installed, capping is effective in containing PCBs in sediments if groundwater flux is not an issue. Also not appropriate where point source discharges are continuing.	Potentially implementable in deeper areas. May significantly modify shoreline and affect hydraulics of river if implemented in shallow areas.	Varies depending on cap materials.	
CONTAINMENT	RETAINING DIKES AND BERMS	EMBANKMENTS BULKHEADS SHEET PILING SPUR DIKES	Proven and conventional technology for reducing downstream sediment transport. Will not reduce diffusive flux of PCBs from sediment. Suitable for hot spots with a history of deposition. Most effective in shallow waters (<10 ft) with a flow velocity <2 ft/min.	Implementable in limited areas. May impede navigation. Rocky soils can hinder imple- mentability of such containment options as sheet piling.	Maintenance dependent on containment method selected.	AD-A184 930 (1986), P.245 EM 110-2-5025 p. 4.23 Ebasco Services Inc. Vol. II August 1990, p.5.54-5.55 Sirrine p. 143-145
IN-SITU TREATMENT	BLOREMEDIATION	ANAEROBIC TREATMENT	Effective only with highly chlorinated PCBs. Indicative of ongoing process in older sediments. Not effective alone in mineralizing PCBs.	Technology is still in developmental stage.	No costs are available.	EPA/625/6-91/028 (1991), p.34-36. EPA/600/K-93/002 (1992) General Electric Co.(1992) p. 179
		AEROBIC TREATMENT	Potentially effective for dechlorinating and mineralizing lightly chlorinated PCBs as based on laboratory and field studies. Not effective alone in dechlorinating highly chlorinated PCBs.	Technology is still in developmental stage.	No costs are available.	EPA/625/6-91/028,p.34-36 EPA/600/K-93/002 (1993) General Electric Co.(1992) p. 167
		ANAEROBIC7 AEROBIC CYCLING	Potentially effective in reducing the overall PCB concentration. Plans exist for field testing in the Great Lakes using a confined treatment facility. Bioavailability may be a problem.	Containment system to control process may be difficult to construct without signi- ficant disruption. Sequential management of smaller areas using temporary containment systems. There is no evidence available that this technique has been developed or demonstrated for a riverine setting at the scale necessary for the Hudson. Implementa- bility requires further analysis.	No costs are available.	EPA/600R-92/126 (1992), p. 51-52 EPA/600/K-93/002 (1993)

Page 2

TABLE 1-1 HUDSON RIVER PCBs - THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT PRELIMINARY TECHNOLOGY SCREENING

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
IN SITU TREATMENT	SOLIDIFICATION STABILIZATION	IWT/GEO-CON	Process appears to immobilize PCBs. Confirmation of PCB immobilization has not been possible in field scale demon- stration. Long-term monitoring is difficult and long-term effectiveness is unknown.	Employs a deep soil mixing system composed of auger mounted blades. Volume increase may significantly modify shoreline if implemented in shallow areas. Bottom debris/shallow, uneven bedrock may hinder implementation.	\$111/ton	EPA-823-B93-001 (1993),p.3.34-3.35 EPA 540/R-92/077 (1992),p114-115 NTIS PB90-1113291 (1989)
	DECHLORINATION/ SOLIDIFICATION	FUNDERBURK FORMERLY HAZCON	Effective demonstration in bench-scale and field-scale treatability studies.	Employs a barge-mounted soil mixing system. Processes 60-80 tons of sediment per batch. Typically 10-15% volume increase associated with process. Volume increase may signifi- cantly modify shoreline if implemented in shallow areas. Bottom debris/shallow, uneven bedrock may hinder implementation.	\$100/ton	EPA 540/R-92/077 (1992),p.92-93 Funderburk & Associates (1993)
REMOVAL TECHNOLOGIES	ENVIRONMENTAL DREDGING	MECHANICAL	Proven and conventional technology. Handles small volumes of material. Useful in confined areas or near structures. Provides high solids content. Typically high sediment resuspension; resuspension can be reduced through operational controls.	Widely available. Cannot excavate highly consolidated sediment. Typical production rates of 30 - 700 cy/hr. Dredging with en- vironmental watertight buckets may be approp- priate.	Dredging costs range from \$5.00-\$25.00/cy for contaminated sediments. Unit cost for mechanical dredges is typically higher than for hydraulic	Herbich (1992), p.4.1-4.4 Randall (1992), p.2 EPA/625/6-91/028 (1991), p.15 EL-88-15 Rpt 10/12 (1988),p.13-15, 29-36 EPA/540/2-91/010 (1991),p.32-37 EM 1110-2-5025 (1983),p.3.1-3.34 EPA-823-B93-001 (1993), p.3.9-3.11, 3.15-3.17
		HYDRAULIC	Proven and conventional technology. Can operate at shallow depths. Provides low solids content and moderate sediment resuspension; resuspension can be reduced through operational controls.	Susceptible to debris damage. Typical production rates of 10-10,000 cy/hr. Cutterhead dredging may be appropriate in deeper areas (>5 feet)	dredges.	Herbich (1992), p.4.4-4.5 EPA/625/6-91/028 (1991), p.16 EL-88-15 rPT 10/12 (1988), P.15-19 29-36 EPA/540/2-91/010 (1991), p.38 EM 1110-2-5025 (1983), p.3.1-3.34 EPA-823-893-001 (1993), p.3.9, 3.23-3,14, 3.15-3.17.
DISPERSION CONTROLS	VERTICAL BARRIERS	COFFERDAMS	Proven and conventional technology. Effective in shallow waters (<10 ft) and in areas of low velocity (<1-2 ft/min.). Sediment suspension is associated with barrier removal.	Implementable in limited areas. Silt curtains not recommended in situations which require frequent curtain move- ment, as for hydraulic dredging.		Sirrine (1990), p. 143-145 AD-A184-930 (1986), p. 2.45 American Marine (undated) AD-A184 930 (1986), p.2.44-2.45 Serrine (1990), p. 144-145 EL-88-15 Rpt. 10 pg. 42-46
403	OPERATIONAL CONTROLS	EQUIPMENT MODIFICATIONS	Equipment modifications are effective in reducing resuspension of sediment. Productivity of modified dredging equipment may be decreased.	Implementable. Availability of modified equipment may be limited. Used as available to minimize sediment resuspension during dredging.		Herbich, P. 9.9-9.16 AD-A184-930 (1986), p.2-23-2-34 New Bedford Harbor Superfund Pilot Study, May 1990, p.13 Page 3

TABLE 1-1
HUDSON RIVER PCBs - THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT
PRELIMINARY TECHNOLOGY SCREENING

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
		PROCEDURE MODIFICATIONS	Procedural modifications are effective in reducing sediment resuspension. Modifications may decrease productivity.	Implementable. Used as available to minimize sediment resuspension during dredging.	Controls typically increase cost as compared to conventional dredging techniques	AD-A184 930 (1986), p. 2.34-2.46
		SUBMERGED D 1 FFUSERS	Effective in reducing sediment resuspension associated with disposal of dredged material in open water. Unnecessary due to elimination of CAD and near shore confinement options.	Requires support barge with a small crane to position and adjust diffuser. Effective use of diffuser requires high level of control.		New Bedford Harbor Super- fund Pilot Study,May 1990, p.16,36 AD-A184 930 (1986) p. 6.9-6.10
	DEWATERING	UPLAND IMPOUNDMENT(S)	Traditional method. Effective in dewatering sediments to a solids content of 60% with up to 99% solids removal. System can achieve a 40% solids content after 10-15 days. Efficiency decreases as basin capacity decreases.	Requires substantial amount of land. Systems using gravity drainage are prone to clogging. Slow process.	Hìgh capital costs.	Herbich (1992), ch.8 AD-A184 930 (1986), p.? EPA 823-893-001 (1993), p.3.18-3.19 EPA/625/6-91/028 p.22-23
		CLARIFIERS	Potentially effective. Capable of attaining solids content of 15-20%. Typically not cost effective for influent solids content >6%. Potentially effective for material with lower solids content (i.e., hydraulically dredged material).	Best suited to small or moderate scale operations or where impound- ments are impractical. Can be barge mounted.	Low-medium cost method.	AD-A184 930 (1986), p.4.53-4.63 EPA 823-893-001 (1993), p.3.22 EPA/625/6-91//028 (1991), p.21-22 Sirrine (1990), p.141
		DECANTING	Potentially efective for mechanical dredging.	Implementable, Useful for initial removal of excess water.	Low cost method.	
SEDIMENT PRETREATMENT]	FILTRATION SYSTEMS	Potentially effective. Capable of attaining solids contents of 35-80% Effectiveness is dependent on type of filter, particle size, and solids concentration of influent. Limited application to contaminated sediments.	Requires less area than air drying processes (CDFs).	Typically costly and energy intensive.	EPA/540/2-91/010 (1991) Sirrine (1990),p142-143 EPA 823-893-001 (1993), p. 3.21 EPA/625/6-91/028, p.22-24
	SOLIDS CLASSIFICATION	STATIONARY SCREENS & SIEVES	Potentially effective. Oversized material removed tends to have fines content. Less efficient than vibratory screens. Can be modified with water spray addition to facilitate fines removal. Not applicable when dreding is confined to fine-grained sediments.	Hydrosieves with capabilities of 1500 gpm are available.	Low cost method.	AD-A184 930 (1986), p. 4.51-4.52 EPA 823-893-001 (1993), p. 3.22

Page 4

TABLE 1-1 HUDSON RIVER PCBs - THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT PRELIMINARY TECHNOLOGY SCREENING

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORT ING REFERENCE
		VIBRATORY SCREENS	Potentially effective. Can separate particles from ½ to 6 in. diameter. High speed models range from 4 to 325 mesh. Best suited for dry materials. Not applicable when dredging is con- fined to fine-grained sediments	Wet materials tend to blind screen. Wet screening with water sprays (3-6 gpm at 20 psi) tends to reduce blinding.	Wet screening modifi- cations can be costly.	AD-A184 930 (1986), p. 4.53-4.62 EPA 823-893-001 (1993), p. 3.22.
· .	DECHLOR I NAT I GN	APEG	Effective in treating aromatic halides. Less toxic byproducts are produced. TOC is not reduced.	Excess reagent required with high moisture content and presence of alkaline reactive metals. Clay and humic content increase required reaction time. Processing time too limiting.	\$200-\$500/ton including pretreatment size re- duction (1990).	Galson Research Corp.(1991) EPA/625/6-91//028 (1991)p.34 EPA/600/S2-90/026 (1990)
EX SITU TREATMENT		B.E.S.T.(RCC)	Effective. Obtained >99% PCB removal efficiency for bench scale test of New Bedford Harbor Sediments.	Not suited for particle size >1" diameter. Requires anoxic treatment environmental due to flammability of extraction solvent. Solvent is recovered. Processing time too limiting.	\$100/cy for unit that will treat 680 cy/day	EPA/540/2-88/004 (1988), p.63-67 EPA/540/MR-92/079 (1992) EPA/25/6-91/028 (1991),p.30 EPA-823-893-001,p.3.45-3.50 EPA/540/R-92/077 (1992) p. 136-137 Resources Conservative Co. (1993)
	SOLVENT EXTRATION	L.E.E.P. (ART INTL.)	Effective. PCB concentration reduction from 3,200 ppm to 1 ppm in bench scale test at Waukegan Harbor, Illinois. Can potentially process sediment containing up to 50% water with efficiencies up to 85%.	Has been effectively demonstrated at pilot- scale (100 lb/hr). Extraction solvent is not recovered. Subsequent treatment of PCB-containing solvent is necessary. Processing time too limiting.	\$200-\$150/ton (for a 40,000 ton site)	EPA/625/6-91/028 (1991), p.31 EPA-823-893-001, p.3.45-3.49 ART International (1990)
		PROPANE EXTRACTION (CF SYSTEMS)	Effective. PCB extration efficiency of 90-98% for sediments containing 360- 2575 ppm PCBs.	Not suited for particle size >1/4" diameter Solvent is recovered and reused. Processing time too limiting.	\$100-150/ton. Cost in- cludes mobilization/ demobilization, operating utilities, and labor. Cost does not include materials	EPA/625/6-91//028 (1991), p.30 EPA/540/A5-90/002 (1990) EPA-823-B93-001,p.3.45-3.49 EPA/540/R-92/077 (1992), p. 58-59 CF Systems (1993)

403151

Page 5

TABLE 1-1
HUDSON RIVER PCBs - THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT
PRELIMINARY TECHNOLOGY SCREENING

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
	THERMAL DESORPTION	X*TRAX SYSTEM (CHEMICAL WASTE MANAGEMENT)	Effective. Soils containing 120-6000 ppm PCB reduced to 2-25 ppm PCBs. Demonstrated effectiveness in full scale application.	Carrier gas is recovered and reused. Feed stream must contain <10% organics (BP >800°F) and less than 60% moisture content. PCBs are not destroyed and must undergo subsequent treatment/disposal. Not suited for particle size >2" diameter. Processing time too limiting.	\$120/ton variable cost with \$1.5 million for mobilization/demobili- zation and permitting. Pre/post treatment costs are not included (1993).	EPA/540/MR-93/503 (1993) EPA-823-893-001, p. 3.59-3.64 EPA/540/R-92/077 (1992) p. 66-67 Chemical Waste Management (1993)
	COMBINATION PHYSICAL/ CHEMICAL	AOSTRA TACUIK (Soiltech)	Potentially effective. Demonstrated in full scale to reduce PCB con- centrations from 28.2 ppm to <0.05 ppm in contaminated soil.	Dewatering required to optimize process economics. Not suited for particle size >2". End product loses some soil charac- teristics. Transportable plant capacities of 3-25 tons/hr are available. Processing time too limiting.	\$200-220/ton based on a 10-15% moisture content. Cost impacted significantly by moisture content of waste.	SoilTech (1993) EPA/540/R-92/077 (1992), p. 166-167
EX SITU TREATMENT		THERMAL GAS PHASE REDUCTION (ECO LOGIC)	Potentially effective. Demonstrated in pilot-scale to achieve 99.9999% PCB destruction. Presence of water enhances reaction.	No full-scale demonstration. Not enough available existing treatment units for full scale implementation.	\$400/ton	Eco Logic (1993) EPA/540/R-92/077 (1992), p.80-81
	INCINERATION	ROTARY KLIN INCINERATION	Effective. Demonstrated technology in treatment of PCB containing sediments. Not required for concentrations ex- pected in dredge spoils.	Special permits may be required. Dewatering pretreatment is required. Treatment of residual ash prior to disposal may be necessary. Flue gases must be treated prior to discharge. Ash content, particle size, waste density, and the presence of sulfonated compounds affect the process. BTU should be <8,000. Process has been demonstrated on full scale basis. Dn-site incineration may have significant local opposition.	High capital; \$100-\$400/ton onsite, >30,000 tons, >10 tph. \$1,300 - \$1,400/cy offsite.	p. 32-34
		CIRCULATING FLUID BED INCINERATION	Demonstrated treatment in field studies of PCB contaminated sediments from Swanson River, Oak Field, Alaska. Suited to homogenous materials with low heating values. Not required for concentrations expected in dredge spoils.	Special permits may be required. Dewatering pretreatment is required. Treatment of residual ash prior to disposal may be necessary. Ash content, particle size, waste density, and the presence of sul- fonated compounds affect the process. On- site incineration may have significant local opposition	High capital;\$100-\$400/ton onsite, >30,000 tons, >10 tph. \$1,300 - \$1,400/cy offsite	EPA/625/6-91/028 (1991) p. 32-34

Т.

Page 6

TABLE 1-1
HUDSON RIVER PCBs - THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT
PRELIMINARY TECHNOLOGY SCREENING

.

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
		CONVEYOR FURNACE ELECTRIC PYROLYZER	Potentially effective. An emerging technology. Vendor data is the primary data source and is limited in scope and quantity. Engineering scale tests on PCB contaminated soils indicate >99.99999% destruction and removal after off-gassing. Oxidation products and large air emissions are not created with this process. Less proven than alternate treatments offering similar benefits. Not required for concentrations expected in dredge spoils.	Organic content is limited to 10%. Process requirements are standard for thermal treatment technologies. Not efficient for sediments with high moisture content. On site incineration may have significant local opposition.	High capital, 20,000 tons. 3.3 tph soil \$465/ton if online 80% of the time. \$529/ton if online 60% of the time.	EPA/625/6-91/028 (1991), p, 32-34
EX SITU		OFF-SITE CONTRACT THERMAL DESTRUCTION	Effective. Demonstrated technology in treatment of PCB containing sediments. Not required for concentrations ex- pected in dredge spoils.	Implementability may be limited by transportation issues.	Higher unit cost than on-site incineration because ash disposal costs included.	
	SOIL WASHING	BERGMANN USA	Potentially effective. Was been demonstrated in pilot scale for treating PCB contaminated sediments from Saginaw Bay, Michigan. Less than 0.2 ppm PCBs were retained in the coarse fraction (influent sediment contained 1.6 ppm PCBs). Not effective for material with high concentration of fines.	Moisture content >20% hinders process. Sediment should contain <40% silt and clay material. Capable of processing 20-100 tons/ hr.	\$75-125/ton (1993).	EPA/540/2-90/017 (1990) EPA/540/R-92/077 (1992), p.38-39 Bergmann USA (1993)
	SOLIDIFICATION/	SOLIDIFICATION/ STABILIZATION	Generally low PCB concentration supports selection of S/S. Use of pozzolanic material mixed with proprietary reagents demonstrated at the Imperial Oil Company/Champion Chemical Site. PCBs not detected in TCLP tests. Long term effectiveness is unknown. The process is sensitive to numerous interference mechanisms. S/S can be applied for water absorption in dredged sediments for trans- port and landfill disposal.	Increased volume and weight of end product are a process disadvantage.	Application of S/S to hazardous waste is estimated at \$20-50/ton. Cost varies with amount of setting agent required.	AD-A184 930 (1986), p 4.64-4.70 EL-88-15 Rpt 9/12 (1989) EPA/540/55-89/005 (1990)
`	DECHLORINATION/ SOLIDIFICATION	FUNDERBURK (FORMERLY HAZCON)	Effective demonstration in bench-scale and and field-scale treatability studies.	Typically 10-15% volume increase associated with process.	\$150/ton	EPA 540/R-92/077 (1992), p. 92-93 Funderburk & Associates (1993) Page 7

TABLE 1-1
HUDSON RIVER PCBs -THOMPSON ISLAND POOL EARLY ACTION ASSESSMENT
PRELIMINARY TECHNOLOGY SCREENING

GEMERAL RESPONSE	REMEDIAL TECHNOLOGY	PROCESS OPTION	EFFECTIVENESS	IMPLEMENTABILITY	COST	SUPPORTING REFERENCE
	•	FILLER FOR ASPHALT/CEMENT	Effective disposal option for dewatered spoils.	Potentially implementable.	Transportation costs.	
	BENEFICIAL USE	SANITARY LANDFILL COVER	Effective disposal option for treated and dewatered spoils (<1-2 ppm PCBs)	Potentially implementable. May encounter public opposition and difficulty in delisting treated material.	Transportation costs.	ЕМ 1110-2-5026, p.13.7-13.9
		UPLAND LANDFILL	An effective containment option. A high degree of isolation with a low probability of discharge if disposed in a lined, secure landfill meeting all regulatory requirements.	Requires large land area to construct. May encounter difficulty in siting the landfill, particularly within time frame of early action. Landfill must be EPA approved for PCB contaminated materials in order to accept material with PCB concentration greater than 50 ppm.	Very high capital; moderate O&M.	EPA/625/6-91/028 (1991), p. 43 EPA-823-893-001 (1993), p. 3.73
DISPOSAL	LAND DISPOSAL	-				
L		PERMITTED OFF- SITE DISPOSAL FACILITY	Effective means of containment.	Potentially implementable. Availability of landfill space for large quantities of sediments may limit implementability. De- watering of sediment to reduce volume is preferable pretreatment. Landfill must be EPA approved for PCB contaminated materials in order to accept PCB contaminated materials exceeding 50 ppm.	\$20-\$30/cy for <50 ppm PCBs. \$100-200/cy for disposal in hazardous waste landfill. Transportation costs additional.	EPA/625/6-91/028 (1991), p. 43 EPA-823-893-001 (1993), p. 3.73
	CONFINED DISPOSAL FACILITY	IN-RIVER CDF	Effective means of containment.	Significant changes in river geometry would result in changes in channel hydraulic characteristics. Will result in disturbance of water front property and shoreline location. Siting very difficult, particularly within time frame of early action.		
	L	UPLAND CDF	Effective means of containment Demonstrated technology.	May significantly modify shoreline and water front properties. May be difficult to site, particularly within time frame of early action.	Costs range from \$5-20/cy.	EL-88-15 Rpt 11/12 (1989), p. 11-13 EPA-823-893-001 (1993), p. 3.27-3.30

NOTE: General responses, remedial technologies, and process options which are screened out are shown in bold-outlined boxes.

1

Page 8

2. MAPPING AND DETERMINATION OF EARLY ACTION TARGET AREAS

Mapping for this evaluation was created by combining side-scan sonar maps, bathymetry, and low resolution sediment data from USEPA's Phase 2 investigations (USEPA, et al., 1997a and 1998) into Geographic Information System (GIS) coverages for the TIP. These coverages provide definition of the shoreline, interpretation of the side-scan sonar images for designation of fine-grained, coarse-grained and rocky or bedrock outcrop areas, bathymetry (converted to water depth at base flow conditions of 3,090 cfs), locations of 1984 sampling points with the depth interval where PCB concentration is diminished to 10 ppm, along with "polygons of influence" for each sampling point based upon a polygonal declustering analysis (Thiessen polygons) providing a calculation of PCB mass per unit area for each polygon. Coverages of water column sampling conducted during "float surveys" for GE's 1996 to 1997 Thompson Island Pool Studies (O'Brien & Gere, February 1998) were also used as a reference but are not shown on the base mapping for this evaluation.

Base map coverages are shown on the drawing entitled "Early Action Target Areas," overlaid by the outlines of the fine-grained sediment areas targeted for early action, which have been designated "target areas" for purposes of this evaluation. The boundaries of these target areas are not necessarily geographically coincident with *Hot Spots* 5 through 20 in the TIP as previously defined by NYSDEC. For reference, the approximate boundaries of the NYSDEC *hot spots* are also shown on the drawings. For purposes of cost-effectiveness, the following parameters were used in targeting sediments for early action:

- Fine-grained sediments as delineated by interpretation of side-scan sonar data;
- Areas where PCB mass per unit area is at least 7.5 to 10 g/m^2 (equivalent to approximately 23 to 30 ppm in the top foot of sediment) based upon the 1984 sampling data; and
- Depth limited to intervals of PCB concentrations greater than 10 ppm.

Using these parameters, blocks of sediment were delineated as target areas and listed on the drawing. Small, isolated or inaccessible areas of sediments were not targeted even though they may fall within the criteria listed above. In preparing the mass estimates for the various target areas, TAMS used a polygonal declustering analysis (Thiessen polygons). In this analysis, two coverages of polygons were prepared, the first representing all fine-grained sediment samples (described as cohesive sediments) and the second representing all coarse-grained sediments (described as noncohesive sediments). The coverage representing the cohesive sediments was used to estimate the PCB inventory of the various fine-grained sediment areas. The areas themselves were originally defined by the side-scan sonar texture boundaries. The 1984 sample location textures were based on the visual field descriptions compiled as part of the 1984 NYSDEC survey. Thus the nearest fine-grained 1984 sediment samples to any given side-scan sonar fine-grained area were used to define the sediment PCB inventory for the area.

Based on the intersection of the fine-grained side-scan sonar areas and the 1984 cohesive sediment Thiessen polygons, areas representing higher levels of PCB contamination were selected as target areas. In the refinement of the target areas, the boundaries were straightened and squared, resulting in the inclusion of small areas of noncohesive (coarse-grained) sediments. Final target area inventories were then prepared consisting of an area-weighted mean for each target area based on the proportion of each target area assigned to a specific sampling location, with fine-grained areas defined by cohesive sampling points and the small additional coarse-grained areas defined by noncohesive sampling points.

In most cases, the intersection of the fine-grained sediment areas and the actual 1984 sampling locations placed the sampling location within the target area. However, since the side-scan sonar results, and not the 1984 data set, were used to define the target areas, some target area inventories were defined with few or no sampling points internal to their area. For example, Target Areas A, B, and C, which are listed in Table 3-1, Dredging Target Area Summary, did not have fine-grained sediment samples available to estimate each of these areas' PCB mass¹. In these instances, the PCB concentration within the target area was inferred from the nearest 1984 cohesive sediment sampling locations using polygonal declustering techniques. Clearly in these instances, the degree of uncertainty is greater than for those areas which contain some or all of the sampling points used to estimate the inventory. Also beneficial to the inventory estimate is simply a large number of sampling points on which to base the inventory estimate. A large number of polygons forms the basis for the mass estimate.

In sum, the target areas comprise approximately 240,000 cubic yards (cy), which is slightly under 45 percent of a total of approximately 550,000 cy of fine-grained sediments in the TIP affected by PCB contamination. This volume is estimated to contain 90 percent of the 1984 PCB mass calculated to reside in fine-grained sediments of the TIP (*i.e.*, about 7,950 of 8,700 kg), and 55 percent of the total 1984 PCB mass calculated to reside in the TIP (*i.e.*, about 14,900 kg), including that found in coarse-grained sediments.

While target areas form the basis for dredging scenarios, two constraints further limit the areas amenable to capping. First, capping in very shallow areas would not only change the shoal geometry, perhaps unacceptably limiting access to shore by small craft, but could actually move the shoreline toward the center of the river by tens of feet. This would expose portions of the cap to dehydration during base flow conditions and would possibly adversely affect shore-front activities and property use. An additional consideration in this regard is the potential for disruption of the integrity of the cap resulting from moving blocks or sheets of ice during the spring thaw. For this reason, capping scenarios were limited to depths of about six feet or greater. Thus, assuming an 18-inch thick cap, at least 4.5 feet of water should be present over almost all portions of the cap. Since the flow during base flow conditions, reducing the chance for disturbance of the cap. However, this issue warrants further consideration if capping is implemented. The second constraint involves maintenance of the Champlain Canal for navigation. Since the deeper channel areas of the river generally coincide with the Champlain Canal, capping was not considered for sediments deeper than about 12 feet.

Categorization of the target areas for action is discussed in the next chapter.

¹ Sampling of fine-grained sediments in areas of the river coincident with Target Areas A, B, and C was performed in the fall of 1998. The additional data were not incorporated into this report since the volume of sediment and PCB inventory represented by these areas are small and do not materially affect USEPA's early action decision.

3. EVALUATION OF ACTION ALTERNATIVES AND COST

3.1 Categorization of Early Action Target Areas

For the purposes of this assessment, the action objective is to reduce to the lowest extent feasible the loss of PCB mass out of the TIP to downstream areas. It is estimated that, with the dredging technique described below, approximately 60,000 to 70,000 cy of sediment can be dredged in one season (May through November), while the capping operation can follow the dredging operation downstream during the same time frame. Depending on the funds available and the level of PCB removal or isolation required (to be determined by USEPA), an early action program comprising some or all of the target areas could be undertaken, with progressively diminishing relative effectiveness as lower concentration sediments are targeted. For purposes of establishing and comparing sub-alternatives involving various quantities of sediment to be removed or capped in programs of varying lengths (*i.e.*, from one to four years), the target areas were categorized based upon estimated volume-weighted (by polygon) bulk wet weight PCB concentration, as shown on Tables 3-1 and 3-5. The following exceptions to the categorization scheme are noted:

- Because Target Area D is located proximate to the proposed docking/barge unloading facility, Target Area D must be dredged in every scenario developed; thus it was included with the highest category sediments even though its bulk PCB concentration would place it lower.
- Target areas where the concentrations are represented only by cohesive, *i.e.*, fine-grained, sediment sampling points <u>outside</u> their boundaries were moved to the lowest category. These appear as the last 10 entries in Table 3-1 and have a listed sampling density of 0.0 samples per acre. In some cases, the presence of only non-cohesive sediment samples within a target area boundary adds to the uncertainty in the PCB inventory.
- For capping and dredging scenarios, dredging target areas divided into smaller segments by capping locations were kept together with the segment having the highest assigned category.

3.2 Alternatives Development

Three early action alternatives were developed for the TIP sediments by combining selected remedial technologies and process options. The alternatives include: a No-Action alternative (Alternative 1), a dredging alternative (Alternative D), and a combined capping and dredging alternative (Alternative CD). Capping alone was not considered based on its limitations (*i.e.*, it is only applicable at water depths between about 6 and 12 feet) and the categorization of the sediments for action (*i.e.*, some of the shallower sediments are in a higher category than those which could be capped).

Alternatives D and CD each include three sub-alternatives (Alternatives D-1, D-2, D-3, and Alternatives CD-1, CD-2, CD-3, respectively) which involve different volumes to be dredged, areas to be capped, and length of time to accomplish remediation, based upon the categorization scheme discussed above.

Based upon preliminary calculations for the dredging method selected, approximately 60,000 to 70,000 cy can be removed in a single dredging season. Therefore, removal of all target areas, comprising about 238,000 cy, would require four years. Alternatives D-2 and D-3 have been developed to require two years (to remove 120,000 cy) and one year (to remove 59,000 cy), respectively, with overall increasing bulk concentrations of PCBs. Tables 3-2 through 3-4 present the target areas associated with Alternatives D-1, D-2 and D-3, respectively, listed in the sequence in which dredging would be performed, *i.e.*, upstream to downstream. Drawings at the back of the report depict the target areas associated with each of the alternatives.

Since the amount of sediment to be removed in the event the maximum amount of capping were employed is about 172,000 cy, all target areas could be addressed in three years with a combined capping and dredging scenario. Thus, Alternatives CD-2 and CD-3 require two years and one year, respectively. Most of the areas identified as amenable for capping are in the lower end of the TIP. Since the operation will proceed following dredging in sequence, it is assumed that no capping will be performed during the first year for Alternative CD-1 (a three-year program). Therefore, a maximum of two construction seasons of capping is assumed for Alternatives CD-1 and CD-2, with only one season required for Alternative CD-3. Tables 3-6 through 3-8 present the target areas and portions of target areas associated with Alternatives CD-1, CD-2 and CD-3, respectively. On each table, the dredging sequence is presented first, followed by the capping sequence; upstream to downstream in each case. Drawings at the back of the report depict the target areas associated with each of the alternatives.

More detailed description of each major alternative is provided below.

No Action

Alternative 1 leaves the TIP undisturbed, with no removal or capping of contaminated sediments.

Dredging with Off-Site Disposal

Alternative D involves removing the contaminated sediments by dredging. According to information obtained from the US Army Engineer Waterways Experiment Station (WES) in Vicksburg, Mississippi (1998), the most important means of controlling sediment resuspension are the use of the appropriate equipment and control of the dredging operation. While production rates may be lowered, dredging with well-calculated and controlled movements is the best way to control resuspension. Sediment barriers are of secondary importance.

With this in mind, dredging would be conducted from upstream to downstream using a modified backhoe mounted to a small deck barge. The backhoe has a hydraulically operated lid and is fitted with specialized sensors for accurate positioning and environmental control measures to minimize sediment resuspension. While they are considered secondary in controlling resuspension, the use of sediment barriers to enclose dredging areas is included in the concept and cost estimate. Dredged sediments would be transferred directly to 30-cubic yard watertight containers on a flat-top transport barge. The number of containers a barge will haul depends on depth of water in the area of operation, with fewer containers on the transport barge when operating in shallow areas.

The transport barge would proceed to a docking facility and treatment area located on land where the filled containers would be off-loaded using a cable crane. It is assumed some settling of solids would occur on the transport barges. Decant water from the containers would be pumped to a water treatment system. Settled dredged material would be blended with Portland cement and/or other stabilization agents within the containers. A conventional backhoe with a specialized mixing head would be used to blend cement into the dredged material. The containers with the stabilized material would be loaded from the treatment area to rail cars for off-site disposal. It is proposed that transport to disposal will be conducted entirely by rail.

Based on on-site testing, sediments with PCB concentration less than 50 ppm would be disposed at the CECOS landfill in Niagara Falls, NY, which has direct rail access. Since the CECOS landfill is not permitted to handle wastes with PCB concentrations greater than 50 ppm, these sediments would be hauled to the nearest facility with direct rail access which could accept them. No such facility exists in New York State at present. For example, the rail head closest to the Model City landfill is approximately 30 miles away; containers would need to be off-loaded and hauled the remaining distance by truck. However, a rail spur is currently planned to be constructed soon directly to the Environmental Quality Wayne Disposal Landfill in Belleville, Michigan (Fulton, 1998). As this is the closest landfill identified with existing or planned rail access, it was assumed disposal would occur there. For purposes of estimating costs, it has been assumed that sediment from target areas having bulk wet-weight PCB concentrations greater than 35 ppm would require disposal at the Michigan landfill.

Based on information developed for the Landfill/Treatment Facility Siting Survey (USEPA, 1997b), the area of the Old Moreau Landfill was selected for conceptual purposes as the location of the docking facility, treatment area, and rail transfer area. Advantages of this location are its proximity to the TIP (limited dredging would be necessary to extend a navigable channel to the site), it has both rail and truck access, its immediate neighbor is a commercial facility, and improvements necessary to adapt the site for this purpose could be performed in a way which would allow long-term commercial development following the completion of the project. No investigation has been performed for the purposes of this evaluation to determine the availability of the parcel, although it is assumed to be owned by the municipality. The concept proposed assumes a temporary docking facility, although a full bulkhead could be installed for additional cost (probably no more than \$1.5 million extra, approximately doubling the cost of the unloading area proper).

Dredged areas would not be backfilled, except for replacing rocks/boulders (after some washing process to remove fines) when dredging is completed to enhance fish habitat. Other oversized debris (besides rocks/boulders) would be disposed of in a nonhazardous landfill.

The water decanted during gravity settling of the dredged material would be treated by settling in a clarifier and followed by gravity sand filtration. Provisions for addition of flocculating chemicals in the clarifier(s) can be included as required. Treated water would be returned to Hudson River.

Dredging with Off-Site Disposal, and Capping

Alternative CD involves removing some of the contaminated sediments by dredging and isolating the remaining contaminated sediments by capping. For the dredging operation, all material handling procedures including removal, stabilization, transport, and disposal of dredged material, as well as

water treatment procedures, are the same as described previously. The cap would be installed after dredging has been completed in successive individual areas. Consequently, capping would also be conducted from upstream to downstream.

For conceptual purposes, the cap would consist of three layers: two inches of sand, an Aquablok bentonite layer (~35 cm, or 14 inches, thick) overlain by a silty material (~10 cm, or 4 inches, thick). Prior to implementation, treatability studies should be conducted to determine the most appropriate thickness to achieve early action goals.

The Aquablok product is in pellet form consisting of gravel encapsulated in a clay/bentonite layer. The pellets can be manufactured on-site if the raw materials (gravel, clay, proprietary polymers) are available. The material would be applied from a barge. As the material is released to water, it hydrates and expands to form a continuous layer, typically twice the initial product thickness. A thick layer of Aquablok (*i.e.*, greater than eight inches) will take up to seven days or more to hydrate. The material can withstand erosion in water with velocity up to six fps. A two-inch layer of sand would be placed on top of the sediments prior to applying Aquablok to minimize sediment resuspension during Aquablok application. A four-inch layer of silt would be placed on top of the Aquablok layer to provide habitat for benthic biota. It is assumed that silt material is readily accessible from a dredge spoil disposal site upstream in the Champlain Canal within a few miles of the TIP.

Discussion Common to Alternatives D and CD

Alternatives D and CD assume all construction activities including mobilization and demobilization would be conducted from mid-May through mid-November when the locks on Hudson River are open. Most of the construction equipment including dredge, barges, and transport crane would be mobilized to the site at the beginning of each construction season and demobilized offsite at the end of each construction season. During the winter seasons, equipment that remains onsite, such as the water treatment plant, would be insulated for protection. In addition, water treatment units and piping would be completely drained of water during this time.

A treatment area would be prepared for Alternatives D and CD. The treatment area would include at a minimum: docking facilities, container handling equipment, water treatment facilities, material blending equipment (for stabilization). Subbase preparation, construction of access road(s), and extension of the rail spur would be conducted as appropriate depending on the area selected.

Monitoring of PCBs and concentration of suspended sediments in the water column, will be conducted during remediation to verify compliance with environmental requirements.

Prior to detailed design, several issues should be addressed to further define the remediation processes. Some of the issues may be resolved by obtaining information from vendors or other appropriate sources; several issues may require some type of treatability study or laboratory testing. The issues that have been identified are:

• the volume of water potentially entrained during dredging when an environmental backhoe is used

403160

3-4

- the settleability and rate of settling of sediments
- the amount and type of stabilization reagent most appropriate to absorb water in the dredged sediment
- will mechanical dewatering be more effective than stabilization in providing a drier sediment product for transport and disposal
- rate of dredging for selected dredging equipment
- availability of equipment, particularly transport containers and flat cars
- most appropriate cap thickness to achieve the cap's goals

3.3 Alternatives Comparison and Cost Estimates

For purposes of comparison, an analysis of the three alternatives using the criteria for evaluating remedial alternatives defined under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and under 40 CFR 300.430, is provided in Table 3-9. (These criteria would not apply directly to an early action conducted as a removal action under 40 CFR 300.415, although EPA would, as appropriate, consider these and other factors when selecting removal actions. The criteria presented in Table 3-9 are nevertheless instructive as a basis for comparing the options presented in this report.) This comparison does not consider differences among sub-alternatives. A summary of the amounts of sediments and PCBs removed and capped under the various sub-alternatives, along with the associated costs, is shown in Table 3-10. This table shows a range of costs for the various alternatives from \$47 million to \$101 million depending on the length of time and amounts of sediment addressed.

If all target areas are dredged over a four-year period, approximately 90 percent of the PCB mass in fine-grained sediment of the TIP will be removed, at a cost of \$101 million. This is equivalent to approximately 55 percent of the total PCBs in the TIP. On the other hand, an equivalent amount of sediments and PCB contamination could be addressed by a combination of capping and dredging over a period of three years at a cost of approximately \$83 million. Dredging for one year would result in removal of approximately 40 percent of the PCBs in TIP fine-grained sediments (*i.e.*, about 25 percent of the total TIP PCB mass) at a cost of \$48 million. With the one-year capping and dredging program, approximately the same volume of sediments would be removed, but additional PCB mass would be addressed through capping. This would result in management of about 55 percent of the PCB in fine-grained sediments, which is equivalent to 30 percent of total TIP PCB mass. While the costs presented for capping and dredging alternatives are lower than those estimated for dredging alone to address equivalent volumes of sediments, costs associated with monitoring and long-term maintenance of the cap have not been included. Also, dredging provides a more permanent action, while capping leaves some amount of high concentration PCBs in place, with greater long-term risk of future exposure through disruption of the cap.

	TABLE	3-1	
DREDGING	TARGET	AREA	SUMMARY

Target Area	Depth (ft)	Area (ft ²)	Area (acres)	Volume (cy)	Cumul. Volume (cy)	PCB Mass (kg)	Bulk Density (g/cc)	Fraction Solids	Sediment Mass (kg) dry	PCB Conc. (ppm) dry	Sediment Mass (kg) wet	PCB Conc. (ppm) wet
D ⁽¹⁾	1.0	31,192	0.72	1,155	1,155	30	1.42	0.55	689,835	44	1,254,245	24.2
С	1.0	21,633	0.50	801	1,957	204	1.42	0.55	478,420	426	869,854	234.3
AS	3.0	38,075	0.87	4.231	6,187	511	1,45	0.60	2,579,538	198	4,299,230	118.8
AW	. 2.0	10,565	0.24	783	6,970	90	1.45	0.60	477,171	188	795,285	112.9
AU	2.0	23,256	0.53	1,723	8,693	180	1.45	0.60	1.050,358	171	1,750,596	102.9
ĸ	1.0	79,668	1.83	2.951	11,643	296	1.42	0.55	1,761,906	168	3.203,465	92.4
Р	3.0	32,906	0.76	3,656	15,300	272	1.45	0.60	2,229,334	122	3,715,557	73.1
AT	1.0	10,063	0.23	373	15.673	24	1.42	0.55	222,546	108	404,629	59.4
X	1.0	10,740	0.25	398	16,070	25	1.42	0.55	237,519	105	431,853	57.8
BA	1.0	80,184	1.84	2.970	19,040	165	1.42	0.55	1,773,315	93	3,224,209	51.1
AB	2.0	69,420	1.59	5.142	24,183	257	1.45	0.60	3,135,412	82	5,225,687	49.2
AY	3.0	13,879	0.32	1,542	25,725	75	1.45	0.60	940,269	79	1,567,115	47.7
AV	4.0	36,069	0.83	5.344	31,069	253	1.45	0.60	3,258.144	78	5,430,240	46.5
AE	1.5	15,732	0.36	874	31,943	36	1,45	0.60	532.925	68	888,209	40.9
AL	2.0	349,197	8.02	25,868	57,810	1.062	1.45	0.60	15,771,688	67	26,286,147	40.4
BB	3.0	12,848	0.29	1,428	59,238	56	1.45	0.60	870,447	64	1,450,744	38.3
U	3.0	156,752	3.60	17.418	76,656	596	1.45	0.60	10,619,726	56	17.699,543	33.6
Z	3.0	3,144	0.07	349	77,005	12	1.45	0.60	212,992	56	354,987	33,4
<u>M</u>	1.0	130,101	2.99	4.819	81,824	171	1.42	0.55	2,877,257	60	5,231,376	32.7
G	3.0	30,137	0.69	3.349	85,172	110	1.45	0.60	2,041,705	54	3.402,841	32.3
W	1.5	138,782	3.19	7,710	92,883	241	1.45	0.60		51	7.835,228	30.8
AR	2.0	54,978	1.26	4.073	96,955	127	1.45	0.60	2,483,128	51	4.138.546	30.6
Q	2.0	150,825	3.46	11.173	108,128	336	1.45	0.60	6.812.096	49	11,353,493	29.6
AJ	3.0	107,187	2.46	11.910	120.038	346	1.45	0.60	100 C 110 C 199 C 100 C	48	12.102.874	28.6
AK	2.0	154,902	3,56	11.475	131,513	275	1.45	0.60	6.996.246	39	11.660.410	23.6
AF	2.0	21,621	0.50	1.602	133,115	38	1.45	0.60		39	1.627,541	23.3
V,	2.0	110,101	2.53	8,156	141,271	189	1.45	0.60		38	8,287,940	22.8
S	2.0	103,402	2.37	7.660	148,930	177	1.45	0.60		38	7,783,657	22.8
. L	1.0	165,189	3.79	6,118	155.049	150	1.42	0.55			6.642.279	•
AA	3.0	35,741	0.82	3,971	159,020	88	1.45	0.60		36	4,035,639	21.8
AP	3.0	66,338	1.52	7,371	166,391	159	1.45	0.60	AN . A APP	35	7,490,478	21,2
ΑX	. 2.0	160,470	3.68	11.887	178,278	245	1.45	0.60	we was a since a since	34	12,079,540	20.3
Al	1.0	46,522	1.07	1,723	180,002		1.42	0.55		. 36	1.870,665	
R	2.0	182,809	4.20	13,542	193,544	269	1.45	0.60	41 110 mm 1 1 1 1	33	13.761,143	
J	1.0	44,230	1.02	1.638	195,182		1,42	0.55			1.778.514	18.9
AM	4.0	12,617	0.29	1,869	197.051	36	1.45	0.60		31	1.899,553	18.7
AZ	2.0	70,682	1.62	5,236	202,287	95	1.45	0.60	and the second sec	30	5,320,681	17.8
AO	2.0	120,364	2.76	8,916	211,203	160	1.45	0.60		29	9,060,487	• • • •
AN	1.5	10,552	0.24	586	211,789	10	1,45	0.60		28	* · · · · ·	•
AD	1.0	10.070	0.23	373	237,738	7	1.42	0.55	the second second to be	. 30	404.911	
H_	2.0	38,473	0.88	2,850	214,639		1.45	0.60				• •
F	3.0	29,418	0.68	3.269	217,908	. 50	1.45	0.60		. 25	•	·
AH	2.0	16,952	0.39	1.256	219.164		1.42	0.60		. 23		•
1	3.0	77.819	1.79	8.647	227,811	• •	1.45	0.60	A 1 41 4 1 4 1	. 18	• • • •	•
AG	1.5	3,406	0.08	189	228,000		1.45	0.60	•	• •		
Y	1.0	6.528	0.15	242	228.242	•· •	1,42	0.5	•	•		
	1.5	38,963	0.89	2.165	230,407		1.45	0.60	•			•
0	1.0	24.222	0.56	897	231,304	• • • • · · · · · · · ·	1.42	0.5		• •	•	•
<u>E</u> N	4.0	5.956	0.14	882	232,186		1.45 1.42	0.60			• •	•
	. 1.0	10,643	0.24	394	232,580			0.5				
B	3.0	8.666	0.20	963	233,543	19	1.45	0.6			978,517	
T.	2.0	48,797	1.12	3,615	237,158	A	1.45	0.6	• • • • • • • • •		3.673.235	18.8
AC	1.0	5,598	0.13	207	237,365	••••••	1.42	0.5				
A	2.0	4,751	0.11	352	238.090		1.45	0.6	0 214.571	12	357,618	7.

NOTE (1) Area D was moved to the top of the list because this area would require dredging for navigation purposes regardless of the alternative implemented

Target				Cumul.	PCB Mass	PCB Conc.
Area	Depth (ft)	Area (ft ²)	Volume (cy ³)		(kg)	(ppm) wet
A	2.0	4,751	352	352	3	7
В	3.0	8.666	963	1,315	19	20
Ċ	1.0	21.633	801	2,116	204	234
	1.0	31,192	1,155	3.271	30	24
D E	4.0	5.956	882	4,154	26	29
F	3.0	29,418	3.269	7,423	50	15
G	. 3.0	30,137	3.349	10.771	110	32
Ĥ	2.0	38.473	2.850	13.621	45	15
I	3.0	77,819	8.647		96	ii ii
J	1.0	44,230	1,638	23,906	34	19
ĸ	1.0	79,668	2,951	26.857	296	92
L	1.0	165,189	6.118		150	23
M	1.0	130.101	4.819	37.794	171	33
N	1.0	10,643	394	38.189	10	24
0	1.0	24.222	897		29	29
·	3.0	32.906	3,656		272	73
	2.0	150.825	11.173		336	30
Q R	2.0	182.809	13.542	67,457	269	20
C C	2.0	103.402	7.660		177	20
S T	2.0	48,797	3.615		69	19
Ŭ	. 3.0	· · · · · · · · · · · · · · · · · · ·			596	
v	2.0	156,752	17,418		189	34 23
Ŵ	1.5	110,101	8.156			
x	1.5	138.782	7.710		241	31
		10.740			25	58
$-\frac{Y}{Z}$	1.0	6.528			18	69
	3.0	3.144			12	33
AA	3.0	35.741	3.971	116.976	88	22
AB	2.0	69.420			257	49
AC	1.0	5.598			4	19
AD	1.0	10.070			7	17
AE	1.5	15.732			36	41
AF	2.0	21.621	1,602			
AG	1.5	3.406			16	81
AH	2.0	16.952			17	
AI	1.0	46.522			38	
AJ	3.0	107.187			346	
AK	2.0	154.902			275	
AL.	2.0	349,197			1.062	
AM	4.0	12.617		179.464	36	
AN	1.5	10.552			10	
AO	2.0	120.364	•		160	•
AP	3.0	66.338			159	
AQ	1.5	38.963			104	
AR	2.0	54.978		202.575	127	
AS	3.0	38,075	4.231	206.806	511	
AT	1.0	10.063	373	3 207.178	24	
AU	2.0	23.256	1.723	208.901	180	103
AV	4.0	36.069			253	
AŴ	2.0	10.565			. 90	
AX	2.0	160.470			245	
AY	3.0	13.879				
AZ	2.0	70.682			. 95	
BA	1.0	80.184			165	
BB	3.0	12.848				

TABLE 3-2

DREDGING TARGET AREA SEQUENCE: ALTERNATIVE D-1

TABLE 3-3

Cumul. PCB Volume Depth Mass PCB Conc. Target Area (ft) Area (ft²) Volume (cy³) (cy^3) (kg) (ppm) wet С 1.0 21,633 801 204 234 801 D 1.0 31,192 1,155 1,957 30 24 G 5,305 3.0 30,137 3,349 110 32 ĸ 1.0 79,668 2,951 8,256 296 92 Μ 1.0 130,101 13.075 171 4.819 33 P 3.0 32,906 272 73 3,656 16,731 Q 2.0 150.825 11,173 27.904 336 30 U 3.0 596 156,752 17,418 45,322 . 34 w 1.5 138,782 7,710 241 31 53,032 58 Х 1.0 10,740 398 25 53.430 Ζ 3.0 12 33 3.144 349 53.779 AB 2.0 69,420 5.142 58,922 257 49 41 AE 1.5 15,732 36 874 59.796 3.0 107.187 11.910 71.706 29 АJ 346 AL 2.0 349,197 25,868 97.573 1.062 40 AR 2.0 54.978 127 31 4.073 101.646 AS 3.0 38.075 4,231 105.877 511 119 AΤ 1.0 10.063 373 106.249 24 59 AU 2.0 23.256 1,723 107.972 180 103 AV 4.0 36,069 5.344 113.316 253 47 AW 2.0 10,565 783 114,099 90 113 AY 3.0 13.879 75 48 1.542 115.641 ΒA 1.0 2.970 51 80,184 118.611 165 ΒB 3.0 12.848 1.428 120.038 56 38

DREDGING TARGET AREA SEQUENCE: ALTERNATIVE D-2

Target Area	Depth (ft)	Area (ft ²)	Volume (cy ³)	Cumul. Volume (cy ³)	PCB Mass (kg)	PCB Conc. (ppm) wet
С	1.0	21.633	801	801	204	234
D	1.0	31.192	1,155	1,957	30	24
K	1.0	79.668	2,951	4,907	296	92
Р	3.0	32.906	3.656	8,564	272	73
X	1.0	10,740	398	8,962	25	58
AB	2.0	69,420	5,142	14.104	257	49
AE	1.5	15,732	874	14.978	36	41
AL	2.0	349.197	25,868	40.846	1,062	40
AS	3.0	38.075	4.231	45,076	511	119
AT	1.0	10.063	373	45,449	24	59
AU	2.0	23,256	1.723	47,172	180	103
AV	4.0	36,069	5.344	52,516	253	47
AW	2.0	10.565	783	53,298	90	113
AY	3.0	13,879	1.542	54,840	75	48
BA	1.0	80.184	2.970	57.810	165	51
BB	3:0	12.848	3 1,428	59.238	56	. 38

TABLE 3-4DREDGING TARGET AREA SEQUENCE: ALTERNATIVE D-3

TABLE 3-5 CAPPING AND DREDGING TARGET AREA SUMMARY

				DI	CEDGING 1/	ARGET ARE	15				
Dredge Target				Cumul. Volume	PCB Mass	Bulk Density	Fraction	Sediment Mass	PCB Conc. (ppm)	Sediment	PCB Conc.
Area	Depth (ft)		'olume (cy)	(cy)	(kg)	(g/cc)	Solids	(kg) dry		Mass (kg) wet	(ppm) wet
D*	1.0	31,181	1,155	1,155	30	1.42	0.55	689,575	- 44	1,253,773	24
C	1.0	21,633	801	1,956	204	1.42	0.55	478,420	426	869,854	234
AS	3.0	38,075	4,231	6,187	511	1.45	0.60	2,579,507	198	4,299,178	119
AW	2.0	10,565	783	6,969	90	1.45	0.60	477,171	188	795,285	113
AU	2.0	23,256	1.723	8,692	180;	1.45	0.60	1,050,387	171	1,750,645	103
к	1.0	79,668	2.951	11,643	296	1.42	0.55	1,761,906	168	3,203,465	92
Р	3.0	32,906	3.656	15,299	272	1.45	0.60	2.229,334	122	3,715,557	73
AL3	2.0	34,195	2.533	17,833	181	1.45	0.60	1.544,459	117	2,574,098	70
AL2	2.0	35,091 69,529	2,599	20,432	60	1.45	0.60	1,584,909	38	2.641,515 5,233,882	23
ALI	2.0	10,063	5.151 373	25,583 25,955	94	1.45	0.60	3,140,329 222,546	30	404,629	18 59
AT X	1.0	10,005	398	26,353	24 25	1.42	0.55	237,519	108	431,853	58
BA	1.0	80,184	2.970	29,323	165	1.42	0.55	1,773,315	93	3,224,209	51
AY1	3.0	6,703	745	30.068	36	1.42	0.60	454,110	80	756,850	48
AY2	3.0	494	55	30,123	2	1.45	0.60	33,481	70	55,802	48
AV	4.0	36,046	5,340	35,463	252	1.45	0.60	3,256,066	77	5,426,777	46
BB	3.0	12,848	1,428	36,891	56	1.45	0.60	870,447	64	1,450,744	38
<u> </u>	3.0	55,102	6,123	43,013	229	1,45	0.60	3,733,088	61	6,221,813	37
U2	3.0	32,527	3,614	46,628	117	1.45	0.60	2,203,659	53	3,672,765	32
U3	3.0	15,063	1.674	48,301	52	1.45	0.60		51	1,700,791	31
ABI	2.0	7,418	550	48,851	21	1.45	0.60	335,039	61	558,398	37
AB2	2.0	420	31	48.882	0.1	1.45	0.60	a any against the second state of the second state of the	3	31,640	
W2	1.5	26,782	1,488	50,370	51	1.45	0.60		56	1,512,032	
W3	1.5	11,769	654	51,024	20	1.45	0.60	and the second sec	51	664,442	31
WI	1.5	32,601	1.811	52,835	46	1.45	0.60	مستحد والتعام والمعاد	42	1,840,563	25
Z	3.0	3,144	349	53,184	12	1.45	0.60	an de la caractería de la caractería de la compañía de la caractería de la caractería de la caractería de la c	56	354,987	
м	1.0	130,101	4,819	58,003	171	1.42	0.55	· · · · · · · · · · · · · · · · · · ·	60	5,231,376	
G	3.0	29,700	3.300	61,303	110	1.45	0.60	CARL COLOR CONTRACTOR CONTRA	55	3,353,510	
AR	2.0	36,804	2.726	64,030	89	1.45	0.60	1,662,285	54	2,770,476	
AA2	3.0	6.811	757	64,786	23	1.45	0.60	461,451	49	769,084	
AAT	3.0	9,147	1.016	65,803	16	1.45	0.60	619,699	26	1,032,832	16
Q	2.0	150.825	11,173	76,976	336	1.45	0.60	6,812,096	49	11,353,493	30
AJ	3.0	107,187	11.910	88,886	346	1.45	0.60	7,261,727	48	12,102,878	29
F	3.0	8,278	920	89,805		1.45	0.60	560,814	46	934,690	28
AF	2.0	21,621	1,602	91,407	38	1.45	0.60	and the statement of the second		1.627,541	rear a ser e co
S		103,402	7.660	99,067	177	1,45	0.60	4,670,194	38	····	AN ANTAL
, L	- 1.0	165,189	6,118	105,185	150	1.42	0.55	and the second sec	41	at a same that the second second second	• • • • • • • • • • • • • • • • • • •
AP	3.0	66,338	7,371	112,556		1.45	0.60	the same entremain of the	35	ana ana ana ana ana ana	belt concerns (7)
AI		19,101	707	113,264		1.42	0.55	· · · · · · · · · · · · · · · · · · ·	38		
AXI	2.0	83,908	6.216	119,480		1.45	0.60			••• • • • • • • •	* ** ** ** ** ** ** **
AX2	2.0.	8,286	614	120,093		1.45	0.60		32		• • •
R	2.0	182,809	13,542	133,635	269	1.45	0.60	remain and and the bootstands around a		arrana e com comerce	recent and a
J		44.230	1,638	135,274	• • • • •	1.42	0.55	and an an an information	34	and the set of the second many figure the se	
AZ	2.0	70,682	5,236	140,510		1.45	0.60				•
AO	2.0	120,364	8.916	149.426	• • • • • • • • •	1.45	0.60		. 29		••
AN	1.5	10,552	586	150,012			0.60				•
H	. 2.0	38,067	2.820	152.832		1.45	0.60		26	MA	
AH .	2.0	16.952	1,256	154.088		1.45	0.60		23	1,276,07-	
AK	2.0	13.089 77,819	970	155,057		1.45	0.60			985,305	
	3.0	1-1 4 -0	8,647	163.704	* *** **	1.45	0.60	And the second s	12		
AG	1.5	3,406 6,528		163.893		1.45	0.60		134		
Y	1.0		242	164,135	• · · · · · · · · · · · · · · · · · · ·	1.42	0.5		126	• •	
AQ	1.5		1.452	165,587	• • •		0.6		79		
O N	1.0	10.643	394	166,484		1.42	0.5	•	53		• • • •
В	3.0	8,666	963	167.841		••••••••••	0.5	•• •	. 41 31	• •	
Т	2.0	48,797	3.615	171.456	•	1.45	0.6				
AC	1.0	5.598	207	171.663	•		. 0.5	•	*	•	••• •
AD	. 1.0	10,070	373	. 171.003			0.5	· · ·	3.		• •
A	. 2.0	4.751	352	•		•	0.5	•	·		
L		4.731		172.300	,	1.45	0.0	v 214.371			<u> </u>

DREDGING TARGET AREAS

А NOTE

*Area D was moved to the top of the list because this area would require dredging for navigation purposes regardless of the alternative implemented

Cap Target		Cumul.	PCB Mass
Area	Area (ft ²)	Area (ft ²)	(kg)
AB	61,049	61,049	237
ΑY	6,613	67,663	36
AE	15,732	83,395	36
AL	210,801	294,196	741
U	50,329	344,525	186
w	67,055	411,580	123
AR	17,934	429,514	37
AA	19,080	448,594	48
AI	25,525	474,119	20
AX	64,767	538,886	99
AK	141,576	680,462	264
v	101,330	781,793	182
F	13.450	795,243	20
AQ	12,532	807,774	33
E	3,316	811,091	19

TABLE 3-5 CAPPING AND DREDGING TARGET AREA SUMMARY (continued)

TABLE 3-6	
CAPPING AND DREDGING TARGET AREA SEQUENCE:	ALTERNATIVE CD-1

Target AreaCumul. Volume (cy)PCB 4 (kg)PCB 4 (ppmA2.04.7513523523B3.08.6669631,31519C1.021,6338012,116204D1.031,1811,1553,27130F3.08,2789204,19126G3.02,97003,3007,491110H2.038,0672,82010,3114413.077,8198,64718,95896L1.0164,2301,63820,59634K1.019,6682,9513,547296L1.010,64333434,484171N1.010,64333434,487810O1.010,82511,17250,604336R2.0150,82511,17250,604336R2.0103,4027,66071,806177T2.0148,7973,61575,42169U13.055,1026,12381,543229U23.032,5273,61485,81352W11.522,6011,81186,63364W21.526,6721,48890,13151W33.051,5026,12381,543229U13.050,65430,6443646W21.526,672 <th colspan="11">DREDGING SEQUENCE</th>	DREDGING SEQUENCE										
A 2.0 4,751 352 352 3 B 3.0 8,666 965 1,315 19 C 1.0 21,633 801 2,116 204 D 1.0 31,181 1,155 3,271 30 F 3.0 29,700 3,300 7,491 110 H 2.0 38,667 2,820 10,311 44 1 3.0 29,700 3,300 7,491 110 H 2.0 38,667 2,820 10,311 44 1 1.0 44,230 1,638 20,596 34 K 1.0 77,819 8,647 18,958 966 M 1.0 10,643 394 34,848 171 N 1.0 10,643 394 34,873 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,4	-			-			PCB Conc.				
B 3.0 8,666 963 1,315 19 C 1.0 21,633 801 2,116 204 D 1.0 31,181 1,155 3,271 30 F 3.0 8,778 920 4,191 26 G 3.0 29,700 3,300 7,491 10 H 2.0 3,8067 2,820 10,311 44 I 3.0 77,819 8,647 18,958 96 J 1.0 44,230 1,638 20,596 34 K 1.0 165,189 6,118 29,665 150 M 1.0 10,643 394 34,873 10 O 1.0 24,222 897 3,575 29 Q 2.0 150,825 11,173 50,604 336 R 2.0 163,402 7,660 177 7 T 2.0 48,797 3,615 7	Area			Volume (cy ³)	Volume (cy ³)	(kg)	(ppm) wet				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	}					7				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		3.0	8,666	963	1,315	19	20				
F 3.0 8,278 920 4,191 26 G 3.0 29,700 3,300 7,491 110 H 2.0 38,067 2,820 1,491 110 I 1.0 44,230 1,638 20,596 34 K 1.0 77,819 8,647 18,958 96 L 1.0 165,189 6,118 29,665 150 M 1.0 10,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 163,825 11,173 50,604 336 R 2.0 182,809 13,542 64,146 269 U1 3.0 15,062 1,173 5066 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 32,627 3,614<	С		21,633		2,116		234				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D	1.0	31,181		3,271	30	24				
H 2.0 38.067 2.820 10.311 44 I 3.0 77,819 8,647 18.958 96 J 1.0 144,230 1,638 20,596 34 K 1.0 1651.89 6,118 29,665 150 M 1.0 106,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,665 39,432 272 Q 2.0 158,825 11,173 50,604 336 R 2.0 182,809 13,542 64,146 269 S 2.0 103,402 7,666 71,806 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 15,603 1,674 86,831 52 W1 1.5 32,601 1,811 86,431 46 W2 1.5 26,782 <		Long and the second second		920		26	28				
I 3.0 77,819 8,647 18,958 96 J 1.0 44,230 1,638 20,596 34 K 1.0 195,668 2,951 23,547 296 L 1.0 155,189 6,118 29,665 150 M 1.0 100,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 103,402 7,660 71,806 177 T 2.0 48,797 3,613 52 1173 U3 3.0 15,502 6,123 81,543 229 U2 3.0 15,627 3,614 85,158 117 U3 3.0 15,024 44,91,773 12 V1 1.5 25,601 1,811	G	3.0	29,700	3,300	7,491	110	33				
J 1.0 44,230 1,638 20,596 34 K 1.0 165,189 6,118 29,665 150 M 1.0 165,189 6,118 29,665 150 M 1.0 10,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 103,402 7,660 71,806 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 15,063 1,674 86,831 52 W1 1.5 32,601 1,811 88,643 46 W2 1.5 52,6782 1,428 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740	Н	2.0		2,820	10,311	44	16				
K 1.0 75,668 2,951 23,547 296 L 1.0 165,189 6,118 29,665 150 M 1.0 130,101 4,819 34,484 171 N 1.0 10,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 182,809 13,542 64,146 269 U1 3.0 25,102 6,123 81,543 229 U2 3.0 32,227 3,614 85,158 117 U3 3.0 15,063 1,674 86,831 52 W1 1.5 26,782 1,488 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740	I	3.0	77,819	8,647	18,958	96	11				
L 1.0 165,189 $6,118$ 29,665 150 M 1.0 130,101 4,819 34,484 171 N 1.0 10,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 103,402 7,660 71,806 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 25,5102 6,123 81,543 229 U2 3.0 32,603 1,674 86,831 52 W1 1.5 32,601 1,811 80,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740 398 91,182 25 Y 1.0 6,528 <t2< td=""><td></td><td></td><td>44,230</td><td>1,638</td><td>20,596</td><td>34</td><td>19</td></t2<>			44,230	1,638	20,596	34	19				
M 1.0 130,101 4,819 34,484 171 N 1.0 10,643 394 34,878 10 O 1.0 24,222 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 182,809 13,542 64,146 269 S 2.0 182,809 13,542 64,146 269 U1 3.0 55,102 6,123 81,543 229 U2 3.0 32,527 3,614 85,158 117 U3 3.0 15,063 1,674 86,831 52 W1 1.5 26,601 1,811 88,643 46 W2 1.5 26,782 1,488 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740					23,547	296	92				
N 1.0 10,643 394 34,878 10 O 1.0 24,202 897 35,775 29 P 3.0 32,906 3,656 39,432 272 Q 2.0 150,825 11,173 50,604 336 R 2.0 182,809 13,542 64,146 269 S 2.0 103,402 7,660 71,806 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 15,063 1,674 86,831 52 W1 1.5 32,601 1,811 88,643 46 W2 1.5 26,782 1,488 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740 398 91,182 25 Y 1.0 6,528 242 91,424 18 Z 3.0 3,144 349 <td>L</td> <td></td> <td>165,189</td> <td>6,118</td> <td>29,665</td> <td>150</td> <td>23</td>	L		165,189	6,118	29,665	150	23				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	M	1.0	130,101	4,819	34,484	171	33				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	N	1.0	10,643	394	34,878	10	24				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	1.0	24,222	897	35,775	29	29				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Р	3.0	32,906	3,656	39,432	272	73				
S 2.0 103,402 7,660 71,806 177 T 2.0 48,797 3,615 75,421 69 U1 3.0 32,527 3,614 85,158 117 U3 3.0 15,063 1,674 86,831 52 W1 1.5 32,601 1,811 88,643 46 W2 1.5 26,782 1,488 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740 398 91,182 25 Y 1.0 6,528 242 91,424 18 Z 3.0 3,144 349 91,773 12 AA1 3.0 9,147 1.016 92,790 16 AA2 3.0 6,811 757 93,547 23 AB1 2.0 7,418 550 94,096 21 AB2 2.0 420 31	Q	2.0	150,825	11,173	50,604	336	30				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		2.0	182,809	13,542	64,146	269	20				
U1 3.0 $55,102$ $6,123$ $81,543$ 229 U2 3.0 $32,527$ $3,614$ $85,158$ 117 U3 3.0 $15,063$ $1,674$ $86,831$ 52 W1 1.5 $32,601$ $1,811$ $88,643$ 46 W2 1.5 $26,782$ $1,488$ $90,131$ 51 W3 1.5 $11,769$ 654 $90,784$ 20 X 1.0 $10,740$ 398 $91,182$ 25 Y 1.0 $6,528$ 242 $91,424$ 18 Z 3.0 $3,144$ 349 $91,773$ 12 AA1 3.0 $9,147$ $1,016$ $92,790$ 16 AA2 3.0 $6,811$ 757 $93,547$ 23 AB1 2.0 7418 550 $94,906$ 21 AB2 2.0 420 31 $94,708$	S	2.0	103,402	7,660		177	23				
U1 3.0 $55,102$ $6,123$ $81,543$ 229 U2 3.0 $32,527$ $3,614$ $85,158$ 117 U3 3.0 $15,063$ $1,674$ $86,831$ 52 W1 1.5 $32,601$ $1,811$ $88,643$ 46 W2 1.5 $26,782$ $1,488$ $90,131$ 51 W3 1.5 $11,769$ 654 $90,784$ 20 X 1.0 $10,740$ 398 $91,182$ 25 Y 1.0 $6,528$ 242 $91,424$ 18 Z 3.0 $3,144$ 349 $91,773$ 12 AA1 3.0 $9,147$ $1,016$ $92,790$ 16 AA2 3.0 $6,811$ 757 $93,547$ 23 AB1 2.0 7418 550 $94,906$ 21 AB2 2.0 420 31 $94,708$	T	2.0	48,797	3,615		69	.19				
U2 3.0 $32,527$ $3,614$ $85,158$ 117 U3 3.0 $15,063$ $1,674$ $86,831$ 52 W1 1.5 $32,601$ $1,811$ $88,643$ 46 W2 1.5 $26,782$ $1,488$ $90,131$ 51 W3 1.5 $11,769$ 654 $90,784$ 20 X 1.0 $10,740$ 398 $91,822$ 25 Y 1.0 $6,528$ 242 $91,424$ 18 Z 3.0 $3,144$ 349 $91,773$ 12 AA1 3.0 $9,147$ $1,016$ $92,790$ 16 AA2 3.0 $6,811$ 757 $93,547$ 23 AB1 2.0 $7,418$ 550 $94,096$ 211 AB2 2.0 420 31 $94,127$ 0.1 AC 1.0 $5,598$ 207 $94,335$ 4 AD 1.0 $10,070$ 373 $94,708$ 7 AF 2.0 $21,621$ $1,602$ $96,309$ 38 AG 1.5 $3,406$ 189 $96,498$ 16 AH 2.0 $10,972$ $11,910$ $110,372$ 346 AK 2.0 $13,089$ 970 $111,341$ 11 AL2 2.0 $35,091$ $2,599$ $110,091$ 60 AL3 2.0 $34,955$ $5,5151$ $116,492$ 94 AL2 2.0 $35,091$ $2,599$ $19,091$ 60 AL2	U1	3.0				229	37				
W1 1.5 32,601 1,811 88,643 46 W2 1.5 26,782 1,488 90,131 51 W3 1.5 11,769 654 90,784 20 X 1.0 10,740 398 91,182 25 Y 1.0 6,528 242 91,424 18 Z 3.0 3,144 349 91,773 12 AA1 3.0 9,147 1,016 92,790 16 AA2 3.0 6,811 757 93,547 23 AB1 2.0 7418 550 94,096 21 AB2 2.0 420 31 94,127 0.1 AC 1.0 10,070 373 94,708 7 AF 2.0 21,621 1,602 96,399 38 AG 1.5 3,406 189 96,498 16 AH 2.0 16,952 1,256 <td< td=""><td>U2</td><td>3.0</td><td>32,527</td><td>3,614</td><td>85,158</td><td>117</td><td>32</td></td<>	U2	3.0	32,527	3,614	85,158	117	32				
W2.1.526,7821,48890,13151W31.511,76965490,78420X1.010,74039891,18225Y1.06,52824291,42418Z3.03,14434991,77312AA13.09,1471,01692,79016AA23.06,81175793,54723AB12.07,41855094,09621AB22.04203194,1270.1AC1.05,59820796,3354AD1.010,07037394,7087AF2.021,6211,60296,30938AG1.53,40618996,49816AH2.016,9521,25697,75417AI1.019,10170798,46216AJ3.0107,18711,910110,372346AK2.035,0912,599119,09160AL12.069,5295,151116,49294AL22.035,0912,599119,09160AL32.034,1952,533121,624181AN1.510,552586122,21110AO2.0120,3648,916131,127160AP3.066,3387,371138,498159AQ1.526,1271,452<	U3	3.0	15,063	1,674	86,831	52	31				
W31.511,76965490,78420X1.010,74039891,18225Y1.06,52824291,42418Z3.03,14434991,77312AA13.09,1471,01692,79016AA23.06,81175793,54723AB12.07,41855094,09621AB22.04203194,1270.1AC1.05,59820794,3354AD1.010,07037394,7087AF2.021,6211,60296,30938AG1.53,40618996,49816AH2.016,9521,25697,75417A11.019,10170798,46216AK2.013,089970111,34111AL12.069,5295,151116,49294AL22.035,0912,599119,09160AL32.034,1952,533121,624181AN1.510,552586122,21110AQ1.526,1271,452139,95070AR2.036,8042,726142,67689AQ1.526,1271,452139,95070AR2.036,8042,726142,67689AQ1.526,1271,452	W1	1.5	32,601	1,811		46	25				
X 1.0 10,740 398 91,182 25 Y 1.0 6,528 242 91,424 18 Z 3.0 3,144 349 91,773 12 AA1 3.0 9,147 1,016 92,790 16 AA2 3.0 6,811 757 93,547 23 AB1 2.0 7,418 550 94,096 21 AB2 2.0 420 31 94,127 0.1 AC 1.0 5,598 207 94,335 4 AD 1.0 10,070 373 94,708 7 AF 2.0 21,621 1,602 96,309 38 AG 1.5 3,406 189 96,498 16 AH 2.0 16,952 1,256 97,754 17 A1 1.0 19,101 707 98,462 16 AJ 3.0 107,187 11,910	W2	1.5	26,782	1,488	90,131	51	34				
Y 1.0 6,528 242 91,424 18 Z 3.0 3,144 349 91,773 12 AA1 3.0 9,147 1,016 92,790 16 AA2 3.0 6,811 757 93,547 23 AB1 2.0 7,418 550 94,096 21 AB2 2.0 420 31 94,127 0.1 AC 1.0 5,598 207 94,335 4 AD 1.0 10,070 373 94,708 7 AF 2.0 21,621 1,602 96,309 38 AG 1.5 3,406 189 96,498 16 AH 2.0 16,952 1,256 97,754 17 A1 1.0 19,101 707 98,462 16 AK 2.0 13,089 970 111,341 11 AL2 2.0 35,091 2,599 <th< td=""><td>W3</td><td>1.5</td><td>11,769</td><td>654</td><td>90,784</td><td>20</td><td>31</td></th<>	W3	1.5	11,769	654	90,784	20	31				
Z 3.0 3.144 349 91,773 12 AA1 3.0 9,147 1,016 92,790 16 AA2 3.0 6,811 757 93,547 23 AB1 2.0 7,418 550 94,096 21 AB2 2.0 420 31 94,127 0.1 AC 1.0 5,598 207 94,335 4 AD 1.0 10,070 373 94,708 7 AF 2.0 21,621 1,602 96,309 38 AG 1.5 3,406 189 96,498 16 AH 2.0 16,952 1,256 97,754 17 A1 1.0 19,101 707 98,462 16 AJ 3.0 107,187 11,910 110,372 346 AK 2.0 13,089 970 11341 11 AL1 2.0 69,529 5,151	X	1.0	10,740	398	91,182	25	58				
AA1 3.0 $9,147$ $1,016$ $92,790$ 16 AA2 3.0 $6,811$ 757 $93,547$ 23 AB1 2.0 $7,418$ 550 $94,096$ 21 AB2 2.0 420 31 $94,127$ 0.1 AC 1.0 $5,598$ 207 $94,335$ 4 AD 1.0 $10,070$ 373 $94,708$ 7 AF 2.0 $21,621$ $1,602$ $96,309$ 38 AG 1.5 $3,406$ 189 $96,498$ 16 AH 2.0 $16,952$ $1,256$ $97,754$ 17 A1 1.0 $19,101$ 707 $98,462$ 166 AJ 3.0 $107,187$ $11,910$ $110,372$ 346 AK 2.0 $13,089$ 970 $111,341$ 11 AL1 2.0 $69,529$ $5,151$ $116,492$ 94 AL2 2.0 $35,091$ $2,533$ $121,624$ 181 AN 1.5 $10,552$ 586 $122,211$ 10 AO 2.0 $120,364$ $8,916$ $131,127$ 160 AP 3.0 $66,338$ $7,371$ $138,498$ 159 AQ 1.5 $26,127$ $1,452$ $139,950$ 70 AR 2.0 $36,804$ $2,726$ $142,676$ 89 AS 3.0 $38,075$ $4,221$ $146,907$ 511 AT 1.0 $10,063$ 373 $147,279$ 24	Y	1.0	6,528	242	91,424	18	69				
AA1 3.0 $9,147$ $1,016$ $92,790$ 16 AA2 3.0 $6,811$ 757 $93,547$ 23 AB1 2.0 $7,418$ 550 $94,096$ 21 AB2 2.0 420 31 $94,127$ 0.1 AC 1.0 $5,598$ 207 $94,335$ 4 AD 1.0 $10,070$ 373 $94,708$ 7 AF 2.0 $21,621$ $1,602$ $96,309$ 38 AG 1.5 $3,406$ 189 $96,498$ 16 AH 2.0 $16,952$ $1,256$ $97,754$ 17 A1 1.0 $19,101$ 707 $98,462$ 16 AJ 3.0 $107,187$ $11,910$ $110,372$ 346 AK 2.0 $13,089$ 970 $111,341$ 11 AL1 2.0 $69,529$ $5,151$ $116,492$ 94 AL2 2.0 $35,091$ $2,599$ $119,091$ 60 AL3 2.0 $34,195$ $2,533$ $121,624$ 181 AN 1.5 $10,552$ 586 $122,211$ 10 AO 2.0 $120,364$ $8,916$ $131,127$ 160 AP 3.0 $66,338$ $7,371$ $138,498$ 159 AQ 1.5 $26,127$ $1,452$ $139,950$ 70 AR 2.0 $36,804$ $2,726$ $142,676$ 89 AS 3.0 $38,075$ $4,221$ $146,907$ 5111 <	Z	3.0	3,144	349	91,773	12	33				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AA1	3.0	9,147	1,016		16	16				
AB22.042031 $94,127$ 0.1AC1.05,598207 $94,335$ 4AD1.010,070373 $94,708$ 7AF2.021,6211,602 $96,309$ 38AG1.53,406189 $96,498$ 16AH2.016,9521,256 $97,754$ 17A11.019,101707 $98,462$ 16AJ3.0107,18711,910110,372346AK2.013,089 970 111,34111AL22.035,0912,599119,09160AL32.034,1952,533121,624181AN1.510,552586122,21110AO2.0120,3648,916131,127160AP3.066,3387,371138,498159AQ1.526,1271,452139,95070AR2.036,8042,726142,67689AS3.038,0754,231146,907511AT1.010,063373147,27924AU2.023,2561,723149,002180AV4.036,0465,340154,343252AW2.010,565783155,12590AX12.082,966614161,95512AY13.06,703745162,69936AY2 <td< td=""><td>AA2</td><td>3.0</td><td>6,811</td><td>757</td><td>93,547</td><td>23</td><td>30</td></td<>	AA2	3.0	6,811	757	93,547	23	30				
AC 1.0 $5,598$ 207 $94,335$ 4 AD 1.0 10,070 373 $94,708$ 7 AF 2.0 21,621 1,602 $96,309$ 38 AG 1.5 3,406 189 $96,498$ 16 AH 2.0 16,952 1,256 $97,754$ 17 A1 1.0 19,101 707 $98,462$ 16 AJ 3.0 107,187 11,910 110,372 346 AK 2.0 13,089 970 111,341 11 AL1 2.0 69,529 5,151 116,492 94 AL2 2.0 35,091 2,599 119,091 60 AL3 2.0 34,195 2,553 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,3	AB1	2.0	7,418	550	94,096	21	37				
AD1.010,07037394,7087AF2.021,6211,60296,30938AG1.53,40618996,49816AH2.016,9521,25697,75417A11.019,10170798,46216AJ3.0107,18711,910110,372346AK2.013,089970111,34111AL12.069,5295,151116,49294AL22.035,0912,599119,09160AL32.034,1952,533121,624181AN1.510,552586122,21110AO2.0120,3648,916131,127160AP3.066,3387,371138,498159AQ1.526,1271,452139,95070AR2.036,8042,726142,67689AS3.038,0754,231146,907511AT1.010,063373147,27924AU2.023,2561,723149,002180AV4.036,0465,340154,343252AW2.010,565783155,12590AX12.08,286614161,95512AY13.06,703745162,69936AY23.049455162,7542AZ2.0	AB2	2.0	420	31	94,127	0.1	2				
AF2.0 $21,621$ $1,602$ $96,309$ 38AG1.5 $3,406$ 189 $96,498$ 16AH2.0 $16,952$ $1,256$ $97,754$ 17A11.0 $19,101$ 707 $98,462$ 16AJ3.0 $107,187$ $11,910$ $110,372$ 346AK2.0 $13,089$ 970 $111,341$ 11AL12.0 $69,529$ $5,151$ $116,492$ 94AL22.0 $35,091$ $2,599$ $119,091$ 60AL32.0 $34,195$ $2,533$ $121,624$ 181AN1.5 $10,552$ 586 $122,211$ 10AO2.0 $120,364$ $8,916$ $131,127$ 160AP3.0 $66,338$ $7,371$ $138,498$ 159AQ1.5 $26,127$ $1,452$ $139,950$ 70AR2.0 $36,804$ $2,726$ $142,676$ 89 AS3.0 $38,075$ $4,231$ $146,907$ 5111 AT1.0 $10,063$ 373 $147,279$ 24 AU2.0 $23,256$ $1,723$ $149,002$ 180 AV 4.0 $36,046$ $5,340$ $154,343$ 252 AW2.0 $10,565$ 783 $155,125$ 90 AX12.0 $8,908$ $6,216$ $161,341$ 131 AX22.0 $8,286$ 614 $161,955$ 12 AY13.0 $6,703$ 745	AC	1.0	5,598	207	94,335	4	19				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	AD	1.0	10,070	373	94,708	7	17				
AH2.0 $16,952$ $1,256$ $97,754$ 17 A1 1.0 $19,101$ 707 $98,462$ 16 AJ 3.0 $107,187$ $11,910$ $110,372$ 346 AK 2.0 $13,089$ 970 $111,341$ 11 AL1 2.0 $69,529$ $5,151$ $116,492$ 94 AL2 2.0 $35,091$ $2,599$ $119,091$ 60 AL3 2.0 $34,195$ $2,533$ $121,624$ 181 AN 1.55 $10,552$ 586 $122,211$ 10 AO 2.0 $120,364$ $8,916$ $131,127$ 160 AP 3.0 $66,338$ $7,371$ $138,498$ 159 AQ 1.5 $26,127$ $1,452$ $139,950$ 70 AR 2.0 $36,804$ $2,726$ $142,676$ 89 AS 3.0 $38,075$ $4,231$ $146,907$ 511 AT 1.0 $10,063$ 373 $147,279$ 24 AU 2.0 $23,256$ $1,723$ $149,002$ 180 AV 4.0 $36,046$ $5,340$ $154,343$ 252 AW 2.0 $10,565$ 783 $155,125$ 90 AX1 2.0 $8,908$ 6.216 $161,341$ 131 AX2 2.0 $8,286$ 614 $161,955$ 12 AY1 3.0 $6,703$ 745 $162,699$ 36 AY2 3.0 494 55 $162,754$	AF	2.0	21,621	1,602	96,309	38	23				
A1 1.0 19,101 707 98,462 16 AJ 3.0 107,187 11,910 110,372 346 AK 2.0 13,089 970 111,341 11 AL1 2.0 69,529 5,151 116,492 94 AL2 2.0 35,091 2,599 119,091 60 AL3 2.0 34,195 2,533 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,2	AG	1.5	3,406	189	96,498	16	81				
AJ 3.0 107,187 11,910 110,372 346 AK 2.0 13,089 970 111,341 11 AL1 2.0 69,529 5,151 116,492 94 AL2 2.0 35,091 2,599 119,091 60 AL3 2.0 34,195 2,533 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0	AH	2.0			97,754	17	14				
AK2.013,089970111,34111AL12.0 $69,529$ $5,151$ $116,492$ 94 AL22.0 $35,091$ $2,599$ $119,091$ 60 AL32.0 $34,195$ $2,533$ $121,624$ 181 AN 1.5 $10,552$ 586 $122,211$ 10 AO2.0 $120,364$ $8,916$ $131,127$ 160 AP3.0 $66,338$ $7,371$ $138,498$ 159 AQ 1.5 $26,127$ 1452 $139,950$ 70 AR2.0 $36,804$ $2,726$ $142,676$ 89 AS3.0 $38,075$ $4,231$ $146,907$ 511 AT 1.0 $10,063$ 373 $147,279$ 24 AU2.0 $23,256$ $1,723$ $149,002$ 180 AV 4.0 $36,046$ $5,340$ $154,343$ 252 AW 2.0 $10,565$ 783 $155,125$ 90 AX1 2.0 $8,286$ 614 $161,955$ 12 AY1 3.0 $6,703$ 745 $162,699$ 36 AY2 3.0 494 55 $162,754$ 2 AZ 2.0 $70,682$ $5,236$ $167,990$ 95	Al	1.0	19,101	707	98,462	16	21				
AL1 2.0 69,529 5,151 116,492 94 AL2 2.0 35,091 2,599 119,091 60 AL3 2.0 34,195 2,533 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8	AJ	3.0			110,372	346	29				
AL2 2.0 35,091 2,599 119,091 60 AL3 2.0 34,195 2,533 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8,286 614 161,955 12 AY1 3.0 6,70	AK	2.0	13,089	970	111,341	11	11				
AL3 2.0 34,195 2,533 121,624 181 AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 <td>AL1</td> <td>2.0</td> <td>69,529</td> <td>5,151</td> <td>116,492</td> <td>94</td> <td>18</td>	AL1	2.0	69,529	5,151	116,492	94	18				
AN 1.5 10,552 586 122,211 10 AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682		der anne an anne an	35,091	2,599	119,091	60	23				
AO 2.0 120,364 8,916 131,127 160 AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184	AL3	2.0			121,624	181	70				
AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184	AN	1.5	10,552			10	17				
AP 3.0 66,338 7,371 138,498 159 AQ 1.5 26,127 1,452 139,950 70 AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184	AO	2.0	120,364	8,916	131,127	160					
AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 8,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AP	3.0	66,338	7,371	138,498	159	21				
AR 2.0 36,804 2,726 142,676 89 AS 3.0 38,075 4,231 146,907 511 AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AQ	1.5	26,127	1,452	139,950	70	48				
AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AR	2.0	36,804			89	32				
AT 1.0 10,063 373 147,279 24 AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AS	3.0	38,075	4,231	146,907	511	119				
AU 2.0 23,256 1,723 149,002 180 AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AT	1.0	10,063	373	147,279	24	59				
AV 4.0 36,046 5,340 154,343 252 AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AU	2.0	23,256			180	103				
AW 2.0 10,565 783 155,125 90 AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AV	4.0				252	46				
AX1 2.0 83,908 6,216 161,341 131 AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165	AW	2.0				90	113				
AX2 2.0 8,286 614 161,955 12 AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165							21				
AY1 3.0 6,703 745 162,699 36 AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165							19				
AY2 3.0 494 55 162,754 2 AZ 2.0 70,682 5.236 167,990 95 BA 1.0 80,184 2,970 170,960 165				the second secon		the second se					
AZ 2.0 70,682 5,236 167,990 95 BA 1.0 80,184 2,970 170,960 165					in the second se		42				
BA 1.0 80,184 2,970 170,960 165			·								
BB 3.0 12,848 1,428 172,388 56											

DREDGING SEQUENCE

Cap Target		Cumul. Àrea	PCB Mass
Area	Area (ft ²)	(ft ²)	(kg)
E	3,316	3,316	19
F i	13,450	16,767	20
U	50,329	67,095	186
V	101,330	168,426	182
W	67,055	235,481	123
AA	19,080	254,560	48
AB	61,049	315,610	237
AE	15,732	331,342	36
AI	25,525	356,867	20
AK	141,576	498,443	264
AL	210,801	709,244	741
AQ	12,532	721,776	. 33
AR	17,934	739,710	37
AX	64,767	804,478	99
AY	6,613	811,091	36

TABLE 3-6 CAPPING & DREDGING TARGET AREA SEQUENCE: ALTERNATIVE CD-1 (continued)

TABLE 3-7 CAPPING AND DREDGING TARGET AREA SEQUENCE: ALTERNATIVE CD-2

			KEDGING SE	<u>vourieu</u>	1	1
Dredge						
Target	Depth			Cumul.	PCB Mass	PCB Conc.
Area	(ft)	Area (ft ²)	Volume (cy ³)	Volume (cy ³)	(kg)	(ppm) wet
С	1.0	21,633	801	801	204	234
D	1.0	31,181	1,155	1,956	30	24
G	3.0	29,700	3,300	5,256	110	33
K	1.0	79,668	2,951	8,207	296	92
L	1.0	165,189	6,118	14,325	150	23
M	1.0	130,101	4,819	19,144	171	33
Р	3.0	32,906	3,656	22,801	272	73
Q	2.0	150,825	11,173	33,973	336	30
S	2.0	103,402	7,660	41,633	177	23
UI	3.0	55,102	6,123	47,756	229	37
U2	3.0	32,527	3,614	51,370	117	32
U3	3.0	15,063	1,674		52	. 31
W1	1.5	32,601	1,811	54,855	46	25
W2	1.5	26,782	1,488	56,343	51	34
W3	1.5	11,769	654	56,997	20	31
Х	1.0	10,740	398	57,395	25	58
Z	3.0	3,144	349	57,744	12	33
AAl	3.0	9,147	1,016	58,760	16	16
AA2	3.0	6,811	757	59,517	23	30
AB1	2.0	7,418	550	60,067	21	37
AB2	2.0	420	31	60,098	0.1	2
AF	2.0	21,621	1,602	61,699	38	23
AI	1.0	19,101	707	62,407	16	21
AJ	3.0	107,187	11,910	74,317	346	29
AK	2.0	13,089		75,287		11
ALI	2.0	69,529			94	18
AL2	2.0	35,091	2,599		60	23
AL3	2.0	34,195		1	181	70
AP	3.0	66,338			159	21
AR	2.0	36,804	· · · · ·		89	32
AS	3.0	38,075			511	119
AT	1.0	10,063			24	59
AU	2.0	23,256			180	103
AV	4.0	36,046			252	46
AW	2.0	10,565		,	90	113
AX1	2.0	83,908			131	21
AX2	2.0	8,286			12	19
AY1	3.0	6,703			36	48
AY2	3.0	494		1	2	42
BA	1.0	80,184			165	51
BB	3.0	12,848	1,428	120,143	56	38

DREDGING SEQUENCE

CAPPING SEQUENCE							
Cap Target Area			PCB Mass (kg)				
U	50,329	50,329	186				
W	67,055	117,384	123				
AA	19,080	136,464	48				
AB	61,049	197,513	237				
AE	15,732	213,245	36				
AI	25,525	238,770	20				
AK	141,576	380,346	264				
AL	210,801	591,147	741				
AR	17,934	609,082	37				
AX	64,767	673,849	99				
AY	6,613	680,462	36				

DREDGING SEQUENCE										
Dredge Target			Volume	Cumul. Volume	PCB Mass	PCB Conc.				
Area	Depth (ft)	Area (ft ²)	(cy ³)	(cy ³)	(kg)	(ppm) wet				
С	1.0	21,633	801	801	204	234				
D	1.0	31,181	1,155	1,956	30	24				
G	3.0	29,700	3,300	5,256	110	33				
K	1.0	79,668	2,951	8,207	296	92				
М	1.0	130,101	4,819	13,026	171	33				
Р	3.0	32,906	3,656	16,682	272	73				
U1	3.0	55,102	6,123	22,805	229	37				
U2	3.0	32,527	3,614	26,419	117	32				
U3	3.0	15,063	1,674	28,093	52	31				
W1	1.5	32,601	1,811	29,904	46	25				
W2	1.5	26,782	1,488	31,392	51	34				
W3	1.5	11,769	654	32,046	20	31				
Х	1.0	10,740	398	32,444	25	58				
Z	3.0	3,144	349	32,793	12	33				
AB1	2.0	7,418	550	33,343	21	37				
AB2	2.0	420	31	33,374	0.1	2				
ALI	2.0	69,529	5,151	38,524	94	18				
AL2	2.0	35,091	2,599	41,124	60	23				
AL3	2.0	34,195	2,533	43,657	181	70				
AS	3.0	38,075	4,231	47,888	511	119				
AT	1.0	10,063	373	48,260	24	59				
AU	2.0	23,256	1,723	49,983	180	103				
AV	4.0	36,046		55,323	252					
AW	2.0	10,565		56,106	90	113				
AY1	3.0	6,703	745	56,851	36					
AY2	3.0	494	55	56,906	2	42				
BA	1.0	80,184	2,970	59,876	165					
BB	3.0	12,848	1,428	61,303	56	38				

TABLE 3-8 CAPPING AND DREDGING TARGET AREA SEQUENCE: ALTERNATIVE CD-3

CAPPING SEQUENCE

Cap Target Area	Area (ft ²)	Cumul. Area (ft ²)	PCB Mass (kg)
U	50,329	50,329	186
W	67,055	117,384	123
AB	61,049	178,433	237
AE	15,732	194,165	36
AL	210,801	404,966	741
AY	6,613	411,580	36

TABLE 3-9COMPARISON OF ALTERNATIVES

	Alternative 1: No Action	Alternatives D-1, D-2, D-3: Dredging & Offsite Disposal	Alternatives CD-1, CD-2, CD-3: Capping Dredging & Offsite Disposal
Major Components	No remedial action	Removal of PCB-contaminated fine- grained sediments using environmental backhoe, suction removal of excess water from containers, stabilization of sediments with Portland Cement, transporting dewatered sediments to disposal landfill. Three scenarios involving increasing amounts of contaminated sediments with diminishing bulk concentration of PCBs.	Same as Alternatives D1, D2, D3, except contaminated areas in water depths of >6 feet are capped rather than dredged. Three scenarios involving increasing amounts of contaminated sediments with diminishing bulk concentration of PCBs.
 Short-Term Effectiveness Protection of community Protection of workers Environmental impacts Time to achieve protection 	No short-term, construction related effects would be incurred as there are no onsite construction activities.	Sediment resuspension during dredging can result in increased exposure to fish/biota and recreational users. Will be reduced by using environmental backhoe, prohibition of barge/container overflow, and use of sediment barriers where feasible. Exposure of workers will be minimized through use of personal protective equipment. Some interference to navigation and recreational activities may occur. Spill/leaking during transportation minimized through use of watertight containers. Disrupts benthic habitat temporarily; since fine-grained sediments will remain in most locations, communities will recover. Implementation would require 1 to 4 dredging seasons (May to November).	Similar impacts as for dredging alone. Two operations during part of the season as capping operation follows behind dredging. A 4-inch layer of silt will be placed on top of the Aquablok layer to provide habitat environment for benthic biota in capped areas. Implementation would require 1 to 3 construction seasons (May to November).
 Long-Term Effectiveness and Permanence Magnitude of residual risk Adequacy of controls Reliability 	Long-term residual risks will not be affected by this alternative.	At this time, residual risk after implementation will not be quantified, although qualitatively there is expected to be some reduction in overall risk as a removal of PCB mass. Dredging using backhoe is a proven technology for sediment removal.	At this time, residual risk after implementation will not be quantified, although qualitatively there is expected to be some reduction in overall risk as a result of removal and capping of PCB mass. Dredging using backhoe is a proven technology for sediment removal. Capping with bentonite is a proven method for chemical isolation, though not in riverine environments. Long-term performance and reliability of cap depends on annual inspection and proper cap maintenance. Long-term effectiveness of cap may be affected by ice flow in river during spring.

TABLE 3-9COMPARISON OF ALTERNATIVES

	Alternative 1: No Action	Alternatives D-1, D-2, D-3: Dredging & Offsite Disposal	Alternatives CD-1, CD-2, CD-3: Capping Dredging & Offsite Disposal
Reduction in Mobility, Toxicity, or Volume	No reduction in mobility, toxicity, or volume is expected except through natural processes such as biodegradation.	Reduction in volume of PCBs is achieved through removal and offsite landfill disposal. Will remove 40% to 90% of PCB mass of TIP, depending on option selected.	Dredging will remove 40% to 65% of PCB mass of TIP, depending on option selected. Capping will isolate 15% to 25% of PCB mass of TIP and decrease mobility of PCBs, depending on option selected. Total removal and isolation will be 55% to 90% of the PCB mass of the TIP.
 Implementability Technical feasibility Administrative feasibility Availability of services 	Implementable	All elements of this alternative are technically feasible. Dredging services and equipment are readily available. Availability of containers and rail flat cars for transportation is uncertain. Determination of administrative feasibility will involve discussions with NYSDEC, USACE, NYS Thruway.	All elements of this alternative are technically feasible. Dredging and capping services, supplies and equipment are readily available. Availability of containers and rail flat cars for transportation is uncertain. Determination of administrative feasibility will involve discussions with NYSDEC, USACE, NYS Thruway.
Cost	No cost associated with remediation	Alt. D-1 (Dredge ~238,000 cy over 4 year): \$101M Alt. D-2 (Dredge ~120,000 cy over 2 years): \$66M Alt. D-3 (Dredge ~59,000 cy over 1 years): \$48M	Alt. CD-1 (Dredge ~172,000 cy over 3 years, cap 811,000 sf over 2 years): \$83M Alt. CD-2 (Dredge ~120,000 cy, cap 680,000 sf over 2 years): \$66M Alt. CD-3 (Dredge ~61,000 cy, cap 412,000 sf over 1 year): \$47M
Compliance with ARARs		To be determined.	
Overall Protection of Human Health & the Environment	Residual risk levels are unchanged. PCB levels in fish will remain elevated.	This option is expected to result in overall protection of human health and the environment due to removal of PCB mass.	This option is expected to result in overall protection of human health and the environment due to removal and capping of PCB mass. Provided that the cap is maintained, capping limits PCB migration to water column and decreases exposure of PCBs to biota.
State Acceptance		To be addressed after public comment	period.
Community Acceptance		To be addressed after public comment	period.

TABLE 3-10

Hudson River PCB Reassessment RI/FS Thompson Island Pool Dredging and Capping/Dredging Alternatives Summary Data

	Alternative	Volume Sediment Removed (cy)	Fraction TIP Fine-Grained Sediment Removed (%)	Mass PCBs Removed (Kg)	Fraction TIP FG Sed PCBs Removed (%)	Removed (ppm)	Vol Wtd Mean PCB Conc (FG) Not Removed (ppm)	Sediment Area Capped (sf)	Fraction TIP FG Sediment Capped (% - sf)	Mass PCBs Capped (Kg)	Fraction TIP FG Sed PCBs Capped (%)	Mass PCBs Removed & Capped (Kg)	(%)	PCBs Removed & Capped (%)	Estimated Cost (1998\$)
D-1	Dredging Only - 4-Year Program	238,000	45	7,950	90	55	4					7,950	90	55	101 MM
D-2	Dredging Only - 2-Year Program	120,000	20	5,450	65	75	12					5,450	65	35	66 MM
D-3	Dredging Only - 1-Year Program	59,000	10	3,550	40	98	17					3,550	40	25	48 MM
CD-1	Capping & Dredging - 3-Year Program	172,000	30	5,800	65	55	12	811,000	15	2,100	25	7,900	90	55	83 MM
CD-2	Capping & Dredging - 2-Year Program	120,000	20	4,800	55	66	14	680,000	10	1,850	20	6,650	75	45	66 MM
CD-3	Capping & Dredging - 1-Year Program	61,000	10	3,300	40	89	17	412,000	5	1,350	15	4,650	55	30	47 MM

NOTES:

1. Total PCB mass in TIP fine-grained sediments is estimated to be 8.7 metric tons.

2. Total PCB mass in TIP sediments is estimated to be 14.9 metric tons (including 6.2 metric tons in coarse-grained sediments).

3. All figures are rounded to convenient multiples of 1 (concentrations), 5 (mass fractions), 50 (PCB mass), 1,000 (volumes and areas), or 10**6 (\$).

	QUANTITY	UNIT	UNIT COST	COST
General Conditions	1	LS	\$1,920,000	\$1,920,000
Mobilization (Contractor's facilities)	1	LS	\$102,300	\$102,300
Site Preparation - Treatment Area				
Clearing	19	acre	\$3,925	\$74,575
Base preparation (grading, compaction, aggregate)	19	acre	\$2,655	\$50,445
Construct/repair road and work areas	10,000	sy	\$9.20	\$92,000
Dredging channel (incl. handling, transport, and disposal)	11,400	cy V	\$173	\$1,971,744
Railroad spur Install fence	1,200	lf each	\$243 \$63,640	\$291,000 \$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land)	1	LS	\$72,450	\$72,450
Unloading Facility Construction	1	each	\$3,200,000	\$3,200,000
Water Treatment Facility	1	each	\$200,000	\$200,000
Dredging			1	
Mobilization/Demobilization	4	each	\$34,290	\$137,160
Mechanical (closed-bucket environmental backhoe)	238,000	cy	\$12.27	\$2,920,577
Sediment barriers	20	month	\$39,405	\$788,100
Sampling crew (confirmation sampling during dredging)	20	month	\$18,040	\$360,800
Confirmation sampling (field screening) (1 sample/5000 sf)	8	100 assay kit	\$1,300	\$10,400
Confirmation sampling analysis (10% field screening samples)	72	each	\$320	\$23,040
Testing and Monitoring (during remediation)		-		
Sampling crew (turbidity, water, fish)	20	month	\$14,260	\$285,200
Suspended sediment monitoring equipment	1	LS	\$1,500	\$1,500
Fish sample analysis	20	month	\$14,220	\$284,400
Water sample analysis	20	month	\$17,700	\$354,000
Barging Mobilization/Demobilization	4	each	\$29,675	\$118,700
Barges and tugs	238,000	cy	\$9.89	\$2,353,820
Stabilization	238,000		99.09	\$2,353,820
Processing (cement, equipment, labor)	238,000	су	\$22.685	\$5,399,030
Sediment Handling/Transport				
Container purchase (30-cy containers)	260	container	\$6,000	\$1,560,000
Container handling	20	month	\$41,920	\$838,400
Unload barge w/ crane/Load RR car w/ crane (incl. crane mob/demob)	20	month	\$75,720	\$1,514,400
Flat car leasing (65 cars for 24 months)	1,560	car-month	\$550	\$858,000
Rail transport (to CECOS)	3,214	car-trip	\$1,722	\$5,534,508
Rail transport (to Wayne Disposal, Michigan)	1,037	car-trip	\$1,922	\$1,993,114
Sediment unloading (at landfill)	238,000	су	\$2	\$476,000
Landfill Fees				****
Sediment Disposal (0-50 ppm PCBs)	270,000	ton	\$22 \$110	\$5,940,000
Sediment Disposal (>50 ppm PCBs) Sediment Sampling prior to Disposal (Non-hazardous landfill only)	87,125	ton 1000 tons	\$1,268	\$9,583,750 \$342,360
Water Treatment	16,025	1000 tons	\$17.13	\$274,508
Debris Handling	20	month	\$2,500	\$50,000
Debris Disposal (incl. transport)	10,000	ton	\$85	\$850,000
Demobilization	1	LS	\$87,600	\$87,600
Project Closeout	1	LS	\$20,000	\$20,000
DIRECT COSTS				\$51,042,386
G & A (15% Direct Costs)				\$7,656,358
SUBTOTAL (Direct Costs + G&A)				\$58,698,744
Profit (8% (Direct Costs + G&A)) SUBTOTAL				\$4,695,899 \$63,394,643
Bond (2.5% (Direct Costs + G&A + Profit)) SUBTOTAL				\$1,584,866 \$64,979,509
Design Contigency (20% (Direct Costs + G&A + Profit + Bond)) SUBTOTAL				\$12,995,902 \$77,975,411
Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency)) SUBTOTAL				\$3,119,016 \$81,094,428
Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation)) SUBTOTAL				\$12,164,164 \$93,258,592
SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))	-			\$7,460,687
		1		

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS DREDGING ALTERNATIVE D-1 - 4 YEAR PROGRAM

ITEM	QUANTITY	UNIT	UNIT COST	COST
General Conditions	1	LS	\$990,060	\$990,060
Mobilization (Contractor's facilities)	1	LS	\$98,300	\$98,300
Site Preparation - Treatment Area				
Clearing	19	acre	\$3,925	\$74,575
Base preparation (grading, compaction, aggregate)	19	acre	\$2,655	\$50,445
Construct/repair road and work areas	10,000	sy	\$9.20	\$92,000
Dredging channel (incl. handling, transport, and disposal)	11,400	су	\$173	\$1,971,744
Railroad spur	1,200	lf	\$243	\$291,000
Install fence	1	each	\$63,640	\$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land) Unloading Facility Construction	1	LS each	\$72,450 \$3,200,000	\$72,450
Water Treatment Facility	1	each	\$200,000	\$200,000
Dredging		cach	\$200,000	\$200,000
Mobilization/Demobilization	2	each	\$34,290	\$68,580
Mechanical (closed-bucket environmental backhoe)	120.000	cy	\$12.27	\$1,472,560
Sediment barriers	10	month	\$39,405	\$394,050
Sampling crew (confirmation sampling during dredging)	10	month	\$18,040	\$180,400
Confirmation sampling (field screening) (1 sample/5000 sf)	4	100 assay kit	\$1,300	\$5,200
Confirmation sampling analysis (10% field screening samples)	36	each	\$320	\$11,520
Testing and Monitoring (during remediation)				
Sampling crew (turbidity, water, fish)	10	month	\$14,260	\$142,600
Suspended sediment monitoring equipment	1	LS	\$1,500	\$1,500
Fish sample analysis	10	month	\$14,220	\$142,200
Water sample analysis	10	month	\$17,700	\$177,000
Barging				
Mobilization/Demobilization	2	each	\$29,675	\$59,350
Barges and tugs	120,000	су	\$9.89	\$1,186,800
Stabilization				
Processing (cement, equipment, labor)	120,000	cy	\$22.685	\$2,722,200
Sediment Handling/Transport	210		00.000	
Container purchase (30-cy containers)	260	container	\$6,000	\$1,560,000
Container handling Unload barge w/ crane/Load RR car w/ crane (incl. crane mob/demob)	10	month month	\$41,920 \$75,720	\$419,200 \$757,200
Flat car leasing (65 cars for 12 months)	780	car-month	\$550	\$429,000
Rail transport (to CECOS)	1,107	car-trip	\$1,722	\$1,906,254
Rail transport (to Wayne Disposal, Michigan)	1,037	car-trip	\$1,922	\$1,993,114
Sediment unloading (at landfill)	120,000	cy	\$2	\$240,000
Landfill Fees		i4		
Sediment Disposal (0-50 ppm PCBs)	93,000	ton	\$22	\$2,046,000
Sediment Disposal (>50 ppm PCBs)	87,125	ton	\$110	\$9,583,750
Sediment Sampling prior to Disposal (Non-hazardous landfill only)	93	1000 tons	\$1,268	\$117,924
Water Treatment	8,080	1000 gal	\$17.13	\$138,410
Debris Handling	10	month	\$2,500	\$25,000
Debris Disposal (incl. transport)	5,000	ton	\$85	\$425,000
Demobilization	1	LS	\$87,600	\$87,600
Project Closeout	1	LS	\$20,000	\$20,000
DIRECT COSTS				\$33,461,491
G & A (15% Direct Costs)				\$5,019,224
SUBTOTAL (Direct Costs + G&A)			1	\$38,480,715
Profit (8% (Direct Costs + G&A))				\$3,078,457
SUBTOTAL				\$41,559,172
Bond (2.5% (Direct Costs + G&A + Profit))				\$1,038,979
SUBTOTAL				\$42,598,151
Design Contigency (20% (Direct Costs + G&A + Profit + Bond)) SUBTOTAL				\$8,519,630 \$51,117,781
Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency)) SUBTOTAL		-		\$2,044,711 \$53,162,493
Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation))				\$7,974,374
SUBTOTAL				\$61,136,866
SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))				\$4,890,949
TOTAL PROJECT COSTS	1		1	\$66,028,000

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS DREDGING ALTERNATIVE D-2 - 2 YEAR PROGRAM

ITEM	QUANTITY	UNIT	UNIT COST	COST
General Conditions	-1	LS	\$525,100	\$525,100
Mobilization (Contractor's facilities)	1	LS	\$96,300	\$96,300
Site Preparation - Treatment Area				
Clearing Base preparation (grading, compaction, aggregate)	19 19	` acre	\$3,925	\$74,575
Construct/repair road and work areas	10,000	sy	\$2,655 \$9.20	\$50,445 \$92,000
Dredging channel (incl. handling, transport, and disposal)	11,400	 cy	\$173	\$1,971,744
Railroad spur	1,200	lf	\$243	\$291,000
Install fence	1	each	\$63,640	\$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land)	1	LS	\$72,450	\$72,450
Unloading Facility Construction	1	each	\$3,200,000	\$3,200,000
Water Treatment Facility	1	each	\$200,000	\$200,000
Dredging Mobilization/Demobilization		ah	624.200	624 200
Mobilization/Demobilization Mechanical (closed-bucket environmental backhoe)	1 59,000	each	\$34,290 \$12.27	\$34,290 \$724,008
Sediment barriers	5	month	\$39,405	\$197,025
Sampling crew (confirmation sampling during dredging)	5	month	\$18,040	\$90,200
Confirmation sampling (field screening) (1 sample/5000 sf)	2	100 assay kit	\$1,300	\$2,600
Confirmation sampling analysis (10% field screening samples)	19	each	\$320	\$6,080
Testing and Monitoring (during remediation)				
Sampling crew (hurbidity, water, fish)	5	month	\$14,260	\$71,300
Suspended sediment monitoring equipment	11	LS	\$1,500	\$1,500
Fish sample analysis	5	month	\$14,220	\$71,100
Water sample analysis	5	month	\$17,700	\$88,500
Barging , Mobilization/Demobilization	1	each	\$29,675	\$29,675
Barges and tugs	59,000	cy	\$9.89	\$583,510
Stabilization	53,000			4903,910
Processing (cement, equipment, labor)	59,000	cy	\$22.685	\$1,338,415
Sediment Handling/Transport	1		•.	
Container purchase (30-cy containers)	260	container	\$6,000	\$1,560,000
Container handling	5	month	\$41,920	\$209,600
Unload barge w/ crane/Load RR car w/ crane (incl. crane mob/demob)	5	month	\$75,720	\$378,600
Flat car leasing (65 cars for 6 months) Rail transport (to CECOS)	390	car-month	\$550 \$1,722	\$214,500 \$29,274
Rail transport (to Wayne Disposal, Michigan)	1,037	car-trip car-trip	\$1,722	\$1,993,114
Sediment unloading (at landfill)	59,000	cy	\$2	\$118,000
Landfill Fees				•••••
Sediment Disposal (0-50 ppm PCBs)	1,400	ton	\$22	\$30,800
Sediment Disposal (>50 ppm PCBs)	87,125	ton	\$110	\$9,583,750
Sediment Sampling prior to Disposal (Non-hazardous landfill only)	2	1000 tons	\$1,268	\$2,536
Water Treatment	4,000	1000 gal	\$17.13	\$68,520
Debris Handling	5	month	\$2,500	\$12,500
Debris Disposal (incl. transport) Demobilization	2,500	ton LS	\$85 \$87,600	\$212,500
Project Closeout	1	LS	\$20,000	\$87,600
	·	1.0	\$20,000	
DIRECT COSTS		l		\$24,441,616
G & A (15% Direct Costs)				\$3,666,242
SUBTOTAL (Direct Costs + G&A)				\$28,107,859
Profit (8% (Direct Costs + G&A))				\$2,248,629
SUBTOTAL		l		\$30,356,488
Bond (2.5% (Direct Costs + G&A + Profit))				\$758,912
SUBTOTAL				\$31,115,400
Design Contigency (20% (Direct Costs + G&A + Profit + Bond)) SUBTOTAL				\$6,223,080
Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency))				\$37,338,480 \$1,493,539
SUBTOTAL				\$38,832,019
Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation))			The second se	\$5,824,803
SUBTOTAL		-		\$44,656,822
SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))				\$3,572,546
1		t	1	1

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS DREDGING ALTERNATIVE D-3 - 1 YEAR PROGRAM

ITEM	QUANTITY	UNIT	UNIT COST	COST
General Conditions	1	LS	\$1,564,500	\$1,564,500
Mobilization (Contractor's facilities)	1	LS	\$99,600	\$99,600
Site Preparation - Treatment Area				
Clearing	19	acre	\$3,925	\$74,575
Base preparation (grading, compaction, aggregate)	19	acre	\$2,655	\$50,445
Construct/repair road and work areas Dredging channel (incl. handling, transport, and disposal)	10,000	sy	\$9.20 \$173	\$92,000 \$1,971,744
Railroad spur	1,200	cy lf	\$243	\$291,000
Install fence	1	each	\$63,640	\$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land)	1	LS	\$72,450	\$72,450
Unloading Facility Construction	1	each	\$3,200,000	\$3,200,000
Water Treatment Facility	1	each	\$200,000	\$200,000
	2		624 200	£102 870
Mobilization/Demobilization Mechanical (closed-bucket environmental backhoe)	3 172,000	each cy	\$34,290 \$12.27	\$102,870 \$2,110,669
Sediment barriers	172,000	month	\$39,510	\$592,650
Sampling crew (confirmation sampling during dredging)	15	month	\$18,040	\$270,600
Confirmation sampling (field screening) (1 sample/5000 sf)	6	100 assay kit	\$1,300	\$7,800
Confirmation sampling analysis (10% field screening samples)	53	each	\$320	\$16,960
Testing and Monitoring (during remediation)				
Sampling crew (turbidity, water, fish)	15	month	\$14,260	\$213,900
Suspended sediment monitoring equipment Fish sample analysis	1	LS	\$1,500 \$14,220	\$1,500
Fish sample analysis Water sample analysis	15	month	\$14,220	\$213,300 \$265,500
Barging	1.5	mondi		
Mobilization/Demobilization	3	each	\$29,675	\$89,025
Barges and tugs	172,000	cy	\$9.89	\$1,701,080
Stabilization				
Processing (cement, equipment, labor)	172,000	cy	\$22.744	\$3,911,968
Sediment Handling/Transport			64.000	61 <i>61</i> 000
Container purchase (30-cy containers) Container handling	260 15	container month	\$6,000 \$41,920	\$1,560,000 \$628,800
Unload barge w/ crane/Load RR car w/ crane	15	month	\$75,720	\$1,135,800
Flat car leasing (65 cars for 18 months)	1,170	car-month	\$550	\$643,500
Rail transport (to CECOS)	2,453	car-trip	\$1,722	\$4,224,066
Rail transport (to Wayne Disposal, Michigan)	619	car-trip	\$1,922	\$1,189,718
Sediment unloading (at landfill)	172,000	cy	\$2	\$344,000
Landfill Fees	2010 000		\$22	£4.633.000
Sediment Disposal (0-50 ppm PCBs) Sediment Disposal (>50 ppm PCBs)	206,000	ton ton	\$110	\$4,532,000
Sediment Sampling prior to Disposal (Non-hazardous landfill only)	206	1000 tons	\$1,268	\$261,208
Capping				
Cap installation (Aquablok, sand, silt)	811	1000 sf	\$3,168.60	\$2,569,735
Sílt retrieval dredging	10,000	cy	\$8.09	\$80,900
Storage facility (for Aquablok) Mobilization/Demobilization barge for capping	2	each	\$30,000 \$22,190	\$30,000
Barge and tug	10	each month	\$88,500	\$44,380 \$885,000
Water Treatment	11,600	1000 gal	\$17.28	\$200,448
Debris Handling	15	month	\$2,500	\$37,500
Debris Disposal (incl. transport)	7,500	ton	\$85	\$637,500
Demobilization	1	LS	\$87,600	\$87,600
Project Closeout	1	LS	\$20,000	\$20,000
DIRECT COSTS				\$42,054,795
G & A (15% Direct Costs) SUBTOTAL (Direct Costs + G&A)				\$6,308,219 \$48,363,015
Profit (8% (Direct Costs + G&A)) SUBTOTAL				\$3,869,041 \$52,232,056
Bond (2.5% (Direct Costs + G&A + Profit)) SUBTOTAL				\$1,305,801 \$53,537,857
Design Contigency (20% (Direct Costs + G&A + Profit + Bond))				\$10,707,571
SUBTOTAL Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency))				\$64,245,429 \$2,569,817
SUBTOTAL Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation))				\$66,815,246 \$10,022,287
SUBTOTAL			-	\$76,837,533 \$6,147,003
SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))	1			

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS CAPPING AND DREDGING ALTERNATIVE CD-1 - 3 YEAR PROGRAM

ITEM	QUANTITY	UNIT	UNIT COST	COST
General Conditions	1	LS	\$1,063,070	\$1,063,070
Mobilization (Contractor's facilities)	1	LS	\$97,850	\$97,850
Site Preparation - Treatment Area				
Clearing	19	acre	\$3,925	\$74,575
Base preparation (grading, compaction, aggregate)	19 10,000	acre	\$2,655 \$9.20	\$50,445 \$92,000
Dredging channel (incl. handling, transport, and disposal)	11,400	sy cy	\$173	\$1,971,744
Railroad spur	1,200	lf	\$243	\$291,000
Install fence	1	each	\$63,640	\$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land)	1	LS	\$72,450	\$72,450
Unloading Facility Construction Water Treatment Facility	1	each each	\$3,200,000 \$200,000	\$3,200,000 \$200,000
Dredging		Cacil	3200,000	\$200,000
Mobilization/Demobilization	2	each	\$34,290	\$68,580
Mechanical (closed-bucket environmental backhoe)	120,000	cy	\$12.27	\$1,472,560
Sediment barriers	10	month	\$39,510	\$395,100
Sampling crew (confirmation sampling during dredging)	10	month	\$18,040	\$180,400
Confirmation sampling (field screening) (1 sample/5000 sf)	4	100 assay kit	\$1,300	\$5,200
Confirmation sampling analysis (10% field screening samples) Testing and Monitoring (during remediation)	37	each	\$320	\$11,840
Sampling crew (turbidity, water, fish)	10	month	\$14,260	\$142,600
Suspended sediment monitoring equipment	1	LS	\$1,500	\$1,500
Fish sample analysis	10	month	\$14,220	\$142,200
Water sample analysis	10	month	\$17,700	\$177,000
Barging				
Mobilization/Demobilization	2	each	\$29,675	\$59,350
Barges and tugs Stabilization	120,000	cy	\$9.89	\$1,186,800
Processing (cement, equipment, labor)	120,000	¢y	\$22,744	\$2,729,280
Sediment Handling/Transport				
Container purchase (30-cy containers)	260	container	\$6,000	\$1,560,000
Container handling	10	month	\$41,920	\$419,200
Unload barge w/ crane/Load RR car w/ crane	10	month	\$75,720	\$757,200
Flat car leasing (65 cars for 12 months) Rail transport (to CECOS)	780	car-month car-trip	\$550 \$1,722	\$429,000 \$2,624,328
Rail transport (to Wayne Disposal, Michigan)	619	car-trip	\$1,922	\$1,189,718
Sediment unloading (at landfill)	120,000	cy	\$2	\$240,000
Landfill Fees				
Sediment Disposal (0-50 ppm PCBs)	128,000	ton	\$22	\$2,816,000
Sediment Disposal (>50 ppm PCBs)	52,000	ton	\$110	\$5,720,000
Sediment Sampling prior to Disposal (Non-hazardous landfill only)	128	1000 tons	\$1,268	\$162,304
Capping Cap installation (Aquablok, sand, silt)	680	1000 sf	\$3,168.60	\$2,154,648
Silt retrieval dredging	8,400	cy	\$8.09	\$67,956
Storage facility (for Aquablok)	1	each	\$30,000	\$30,000
Mobilization/Demobilization barge for capping	2	each	\$22,190	\$44,380
Barge and tug Water Treatment	10	month	\$88,500	\$885,000
Debris Handling	8,080	1000 gal month	\$17.28 \$2,500	\$139,622 \$25,000
Debris Disposal (incl. transport)	5,000	ton	\$85	\$425,000
Demobilization	1	LS	\$87,600	\$87,600
Project Closeout	1	LS	\$20,000	\$20,000
DIRECT COSTS				\$33,591,005
G & A (15% Direct Costs)				\$5,038,651
SUBTOTAL (Direct Costs + G&A)				\$38,629,656
Profit (8% (Direct Costs + G&A))				\$3,090,372
SUBTOTAL				\$41,720,028
Bond (2.5% (Direct Costs + G&A + Profit))				\$1,043,001
SUBTOTAL				\$42,763,029
) Design Contigency (20% (Direct Costs + G&A + Profit + Bond)) SUBTOTAL				\$8,552,606
Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency))				\$51,315,635 \$2,052,625
SUBTOTAL Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation))				\$53,368,260 \$8,005,239
SUBTOTAL SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))				\$61,373,499 \$4,909,880
	1	}	l l)
TOTAL PROJECT COSTS		1	1	\$66,283,000

.

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS CAPPING AND DREDGING ALTERNATIVE CD-2 - 2 YEAR PROGRAM

ITEM	QUANTITY	UNIT	UNIT COST	COST
General Conditions	1	LS	\$560,620	\$560,620
Mobilization (Contractor's facilities)	1	LS	\$96,080	\$96,080
Site Preparation - Treatment Area				
Clearing Base preparation (grading, compaction, aggregate)	19 19	acre	\$3,925	\$74,575
Construct/repair road and work areas	10,000	sy	\$2,655 \$9.20	\$50,445 \$92,000
Dredging channel (incl. handling, transport, and disposal)	11,400	cy	\$173	\$1,971,744
Railroad spur	1,200	lf	\$243	\$291,000
Install fence	1	each	\$63,640	\$63,640
Decon facility (incl. containment pad for mixing station)	1	pad	\$44,865	\$44,865
Surveying (channel/land)	1	LS	\$72,450	\$72,450
Unloading Facility Construction Water Treatment Facility	1	each each	\$3,200,000 \$200,000	\$3,200,000 \$200,000
Dredging	· · · · ·		5200,000	\$200,000
Mobilization/Demobilization	1	each	\$34,290	\$34,290
Mechanical (closed-bucket environmental backhoe)	61,000	cy	\$12.27	\$748,551
Sediment barriers	5	month	\$39,510	\$197,550
Sampling crew (confirmation sampling during dredging)	5	month	\$18,040	\$90,200
Confirmation sampling (field screening) (1 sample/5000 sf) Confirmation sampling analysis (10% field screening samples)	2 20	100 assay kit each	\$1,300 \$320	\$2,600 \$6,400
Testing and Monitoring (during remediation)	20	Cach	3320	30,400
Sampling crew (turbidity, water, fish)	5	month	\$14,260	\$71,300
Suspended sediment monitoring equipment	1	LS	\$1,500	\$1,500
Fish sample analysis	5	month	\$14,220	\$71,100
Water sample analysis	5	month	\$17,700	\$88,500
Barging Mobilization/Demobilization		1	600 CTE	100 CTC
Barges and tugs	1 61,000	each cy	\$29,675 \$9.89	\$29,675 \$603,290
Stabilization	01,000	Cy	49.09	\$005,250
Processing (cement, equipment, labor)	61,000	cy	\$22.744	\$1,387,384
Sediment Handling/Transport				
Container purchase (30-cy containers)	260	container	\$6,000	\$1,560,000
Container handling Unload barge w/ crane/Load RR car w/ crane	5	month	\$41,920	\$209,600
Flat car leasing (65 cars for 6 months)	5 390	month car-month	\$75,720 \$550	\$378,600 \$214,500
Rail transport (to CECOS)	476	car-trip	\$1,722	\$819,672
Rail transport (to Wayne Disposal, Michigan)	619	car-trip	\$1,922	\$1,189,718
Sediment unloading (at landfill)	61,000	¢y	\$2	\$122,000
Landfill Fees				
Sediment Disposal (0-50 ppm PCBs)	40,000	ton	\$22	\$880,000
Sediment Disposal (>50 ppm PCBs) Sediment Sampling prior to Disposal (Non-hazardous landfill only)	52,000 40	ton 1000 tons	\$110 \$1,268	\$5,720,000 \$50,720
Capping	40	1000 tons	\$1,200	\$30,720
Cap installation (Aquablok, sand, silt)	412	1000 sf	\$3,168.60	\$1,305,463
Silt retrieval dredging	5,100	cy	\$8.09	\$41,259
Storage facility (for Aquablok)	1	each	\$30,000	\$30,000
Mobilization/Demobilization barge for capping Barge and tug	1 10	each month	\$22,190 \$88,500	\$22,190 \$885,000
Water Treatment	4,100	1000 gai	\$17.28	\$70,848
Debris Handling	5	month	\$2,500	\$12,500
Debris Disposal (incl. transport)	2,500	ton	\$85	\$212,500
Demobilization	1	LS	\$87,600	\$87,600
Project Closeout	1	LS	\$20,000	\$20,000
DIRECT COSTS		1		\$23,881,929
G & A (15% Direct Costs) SUBTOTAL (Direct Costs + G&A)				\$3,582,289 \$27,464,219
Profit (8% (Direct Costs + G&A)) SUBTOTAL				\$2,197,137 \$29,661,356
Bond (2.5% (Direct Costs + G&A + Profit)) SUBTOTAL				\$741,534 \$30,402,890
Design Contigency (20% (Direct Costs + G&A + Profit + Bond))				\$6,080,578
SUBTOTAL Escalation (4% (Direct Costs + G&A + Profit + Bond + Design Contingency))				\$36,483,468 \$1,459,339
SUBTOTAL Contingency (15% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation))				\$37,942,807 \$5,691,421
SUBTOTAL SIOH (8% (Direct Costs + G&A + Profit + Bond + Design Contingency + Escalation + Contingency))				\$43,634,228 \$3,490,738
	1 .	1	1	\$47,125,00

HUDSON RIVER THOMPSON ISLAND POOL REMEDIATION ESTIMATED COSTS CAPPING AND DREDGING ALTERNATIVE CD-3 - 1 YEAR PROGRAM

- -

U.S. Army Corps of Engineers Eff. Date 01/01/98 PROJECT HUD-1A: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R - Dredging Only/Rev12/14/98

TIME 14:16:44

TITLE PAGE 1

HUDSON RIVER PCB R/Rev 12/14/98 Dredging of Hudson River to Remove PCB Contaminated Sediments

Designed By: Conceptual Idea Only - No Design Estimated By: PE-C

Prepared By: RCM

Preparation Date: 09/21/98 Effective Date of Pricing: 01/01/98 Est Construction Time: 540 Days

Sales Tax: 0.00%

This report is not copyrighted, but the information contained herein is For Official Use Only.

MCACES GOLD EDITION Composer GOLD Software Copyright (c) 1985-1994 by Building Systems Design, Inc. Release 5.30A

 Mon 14 Dec 1998
 U.S. Army Corps of Engineers

 Eff. Date 01/01/98
 PROJECT HUD-1A: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to

 PROJECT NOTES
 Hudson River PCB R - Dredging Only/Rev12/14/98

TIME 14:16:44

TITLE PAGE 2

HUDSON RIVER FCB REMEDIATION

Contract Loading is as follows:

General conditions (site overhead and home office support) are itemized as a direct item.

G&A	=	15%
Profit	=	88
Bond	Ŧ	2.5%
Design Contingency	8	20%
Escalation	=	48
Reserve Contingecy	ĸ	15%
SIOH	¢	8%

The base for the estimate is judged to be current with midpoint of construction in two years.

U.S. Army Corps of Engineers

TIME 14:16:44

Eff. Date 01/01/98 PROJECT HUD-1A: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R - Dredging Only/Rev12/14/98

SUMMARY PAGE 1

** PROJECT OWNER SUMMARY - Contract **

		QUANTY	UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT COST
01	General Conditions	1.00	EA	2,933,022	117,321	457,551	280,632	3,788,526	3788525.71
02	Mobilization	1.00	EA	156,296	6,252	24,382	14,954	201,885	201884.73
03	Site Preparation	1.00	EA	4,064,308	162,572	634,032	388,873	5,249,785	5249785.35
04	Unloading Facility - Dock	1.00	EA	4,888,512	195,540	762,608	467,733	6,314,393	6314393.18
05	Water Treatment Plant			305,532	12,221	47,663	29,233	394,650	
06	Mechanical Dredging	238000	CY	6,476,798	259,072	1,010,381	619,700	8,365,951	35.15
07	Testing/Monitoring - River			1,413,263	56,531	220,469	135,221	1,825,483	
08	Tug and Barges	238000	CY	3,777,574	151,103	589,301	361,438	4,879,416	20.50
09	Soil Stabilization	238000	CY	8,248,079	329,923	1,286,700	789,176	10,653,878	44.76
10	Handling and Transportation	238000	CY	19,514,990	780,600	3,044,338	1,867,194	25,207,122	105.91
11	Landfill Fees	238000	CY	24,238,063	969,523	3,781,138	2,319,098	31,307,821	131.55
12	Water Treatment	16025000	GAL	419,446	16,778	65,434	40,133	541,790	0.03
13	Debris Handling	20.00	MON	76,383	3,055	11,916	7,308	98,662	4933.12
14	Debris Disposal	10000	TNS	1,298,511	51,940	202,568	124,242	1,677,261	167.73
15	Demob			133,811	5,352	20,875	12,803	172,841	
16	Project Closeout			30,553	1,222	4,766	2,923	39,465	
TOTAL	HUDSON RIVER PCB R/Rev 12/14/98	238000	CY	77,975,141	3,119,006	12164122	7,460,661	100,718,930	423.19

01.01 Fie 01.02 How 01.05 Tra 01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	mme Office Labor ravel and Per Diem uppment sterial notos ans re-Construction Conference ffice Trailers corage Trailer scorage Trailer sectrical elephone bilets ruck Scales salth and Safety eneral Conditions	QUANTY UOM 24.00 MO 24.00 MON 24.00 MO	1,055,919 684,981 360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	ESCALATN 42,237 27,395 14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	CONTINGN 164,723 106,841 56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	SIOH 101,030 65,529 34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	1,363,909 884,646 465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415	56829.54 36860.27 5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.01 Fie 01.02 How 01.05 Tra 01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	Held Labor mme Office Labor ravel and Per Diem puipment Aterial motos mans re-Construction Conference ffice Trailers morage Trailer morage Trailer metrical elephone bilets ruck Scales malth and Safety emeral Conditions	24.00 MON 24.00 MO 24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	1,055,919 684,981 360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	42,237 27,395 14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	164,723 106,841 56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	101,030 65,529 34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	1,363,909 884,646 465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	56829.54 36860.27 5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.01 Fie 01.02 How 01.05 Tra 01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	Held Labor mme Office Labor ravel and Per Diem puipment Aterial motos mans re-Construction Conference ffice Trailers morage Trailer morage Trailer metrical elephone bilets ruck Scales malth and Safety emeral Conditions	24.00 MON 24.00 MO 24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	684,881 360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	27,395 14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	106,841 56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	65,529 34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	884,646 465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	36860.27 5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.01 Fie 01.02 How 01.05 Tra 01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	Held Labor mme Office Labor ravel and Per Diem puipment Aterial motos mans re-Construction Conference ffice Trailers morage Trailer morage Trailer metrical elephone bilets ruck Scales malth and Safety emeral Conditions	24.00 MON 24.00 MO 24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	684,881 360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	27,395 14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	106,841 56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	65,529 34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	884,646 465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	36860.27 5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.02 How 01.05 Tra 01.11 Equ 01.12 Mat 01.12 Mat 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	mme Office Labor ravel and Per Diem uppment sterial notos ans re-Construction Conference ffice Trailers corage Trailer scorage Trailer sectrical elephone bilets ruck Scales salth and Safety eneral Conditions	24.00 MON 24.00 MO 24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	684,881 360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	27,395 14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	106,841 56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	65,529 34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	884,646 465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	36860.27 5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.05 Tra 01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hes TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.34 Ele 02.35 Tel	ravel and Per Diem nuipment aterial motos mans re-Construction Conference ffice Trailers morage Trailer meetrical elephone bilets ruck Scales ealth and Safety emeral Conditions	24.00 MO 24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	360,528 92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	14,421 3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	56,242 14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	34,495 8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	465,686 120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	5001.22 753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.11 Equ 01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.34 Ele 02.35 Tel 02.36 Wat	Autorial Actorial Actions Anns Re-Construction Conference Effice Trailers Actorage Trailer Actorical Actentical Actentical Actentions Action Scales Action S	24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	92,925 13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	3,717 560 90 3,475 202 2,362 324 293 367 293 880 20,706	14,496 2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	8,891 1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	120,029 18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.12 Mat 01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hes TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	Aterial Notos Anns Re-Construction Conference Effice Trailers Acorage Trailer Acctrical Alephone Soilets Fuck Scales Bealth and Safety Ameral Conditions	24.00 MO 20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	13,993 2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	560 90 3,475 202 2,362 324 293 367 293 880 20,706	2,183 350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	1,339 215 8,312 482 5,649 775 702 877 702 2,105 49,528	18,075 2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	753.12 145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.13 Pho 01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hes TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	notos ans re-Construction Conference ffice Trailers torage Trailer ectrical elephone bilets ruck Scales ealth and Safety eneral Conditions	20.00 MO 1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA	2,246 86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	90 3,475 202 2,362 324 293 367 293 880 20,706	350 13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	215 8,312 482 5,649 775 702 877 702 2,105 49,528	2,901 112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	145.03 112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.22 Pla 01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.45 Tel 01.45 Tor 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	ans re-Construction Conference ffice Trailers corage Trailer ectrical elephone bilets ruck Scales ealth and Safety eneral Conditions	1.00 EA 1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA	86,878 5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	3,475 202 2,362 324 293 367 293 880 20,706	13,553 786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	8,312 482 5,649 775 702 877 702 2,105 49,528	112,219 6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	112218.61 6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.24 Pre 01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	re-Construction Conference ffice Trailers corage Trailer .ectrical elephone bilets ruck Scales ealth and Safety eneral Conditions	1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA	5,041 59,044 8,097 7,333 9,166 7,333 21,998 517,641	202 2,362 324 293 367 293 880 20,706	786 9,211 1,263 1,144 1,430 1,144 3,432 80,752	482 5,649 775 702 877 702 2,105 49,528	6,512 76,266 10,458 9,472 11,839 9,472 28,415 668,627	6511.72 76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.41 Off 01.42 Sto 01.44 Ele 01.45 Tel 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	fice Trailers corage Trailer ectrical elephone bilets ruck Scales ealth and Safety eneral Conditions	1.00 EA 1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA	59,044 8,097 7,333 9,166 7,333 21,998 517,641	2,362 324 293 367 293 880 20,706	9,211 1,263 1,144 1,430 1,144 3,432 80,752	5,649 775 702 877 702 2,105 49,528	76,266 10,458 9,472 11,839 9,472 28,415 668,627	76266.03 10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.42 Sto 01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	corage Trailer Lectrical Elephone Dilets Fuck Scales Ealth and Safety Emeral Conditions	1.00 EA 24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	8,097 7,333 9,166 7,333 21,998 517,641	324 293 367 293 880 20,706	1,263 1,144 1,430 1,144 3,432 80,752	775 702 877 702 2,105 49,528	10,458 9,472 11,839 9,472 28,415 668,627	10458.21 394.65 493.31 9471.59 28414.77 668626.99
01.44 Ele 01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	ectrical elephone bilets ruck Scales ealth and Safety eneral Conditions	24.00 MO 24.00 MO 1.00 EA 1.00 EA 1.00 EA	7,333 9,166 7,333 21,998 517,641	293 367 293 880 20,706	1,144 1,430 1,144 3,432 80,752	702 877 702 2,105 49,528	9,472 11,839 9,472 28,415 668,627	394.65 493.31 9471.59 28414.77 668626.99
01.45 Tel 01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	elephone bilets ruck Scales ealth and Safety eneral Conditions	24.00 MO 1.00 EA 1.00 EA 1.00 EA	9,166 7,333 21,998 517,641	367 293 880 20,706	1,430 1,144 3,432 80,752	877 702 2,105 49,528	11,839 9,472 28,415 668,627	493.31 9471.59 28414.77 668626.99
01.46 Toi 01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	bilets ruck Scales salth and Safety eneral Conditions	1.00 EA 1.00 EA 1.00 EA	7,333 21,998 517,641	293 880 20,706	1,144 3,432 80,752	702 2,105 49,528	9,472 28,415 668,627	9471.59 28414.77 668626.99
01.51 Tru 01.60 Hea TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tel 02.36 Wat	ruck Scales ealth and Safety eneral Conditions	1.00 EA 1.00 EA	21,998 517,641	880 20,706	3,432 80,752	2,105 49,528	28,415 668,627	28414.77 668626.99
01.60 Heat TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Te 02.36 Wat	ealth and Safety	1.00 EA	517,641	20,706	80,752	49,528	668,627	668626.99
TOTAL Ger 02 Mobili 02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat	eneral Conditions							
02 Mobili 02.02 Equ 02.21 Set 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Tei 02.36 Wat		1.00 EA	2,933,022	117,321	457,551	280,632	3,788,526	3788525.71
02.02 Equ 02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Te 02.36 Wat	lization							
02.21 Set 02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Te 02.36 Wat								
02.29 Tra 02.31 Fie 02.32 Sig 02.34 Ele 02.35 Te 02.36 Wat	quipment Rental-Mobilization	16.00 HR	6,046	242	943	579	7,810	488.11
02.31 Fie 02.32 Sig 02.34 Ele 02.35 Te 02.36 Wat	etup Trailers	1.00 EA	4,125	165	643	395	5,328	5327.77
02.32 Sig 02.34 Ele 02.35 Te: 02.36 Wat	ravel and Per Diem	1.00 EA	12,221	489	1,907	1,169	15,786	15785.98
02.34 Ele 02.35 Te 02.36 Wat	ield Labor	2.00 MO	87,993	3,520	13,727	8,419	113,659	56829.54
02.35 Te: 02.36 Wat	igns	2.00 EA	4,688	188	731	449	6,056	3027,76
02.36 Wat	lectrical Connection	1.00 EA	22,127	885	3,452	2,117	28,581	28581.02
	elephone Connection	1.00 EA	764	31	119	73	987	986.62
TOTAL Mol	ater Distribution	800.00 LF	18,332			1,754		29.60
	obilization	1.00 EA	156,296	6,252		14,954	201,885	201884.73
03 Site	Preparation							
03.11 Cl	learing and Grubbing	19.00 ACR	113,934	4,557	17,774	10,901	147,167	7745.61
03.12 Ea	arth Shaping	10000 CY	77,036	3,081	12,018	7,371	99,505	9.95
03.13 In	nstall/Remove Fence	1.00 EA	97,222	3,889	15,167	9,302	125,579	125579.07
03.15 Ra	ailroad Spur	1200.00 LF	444,461	17,778	69,336	42,526	574,101	478.42
	onstruct/Repair Road/Work Area	10000 SY	140,284	5,611	21,884	13,422	181,202	18.12
	lixing Sta. Containment Pad	1.00 EA	61,483		9,591			79415.9
			7,056		1,101			
	econtam Facil for Equi/Vehicle	11400 EA			469,896			
	-		-,,,	,				
	econtam Facil for Equi/Vehicle Thannel Dredging Surveying	1.00 EA	110,679	4,427	17,266	10,590	142,962	142951.81

Eff		RIVER PCB R/Re ver PCB R - Di ROJECT OWNER S	redging Only	/Rev12/14/		River to		Y PAGE 3
		QUANTY UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	
	04 Unloading Facility - Dock							
	04.01 Unloading Facility - Dock	1.00 EA	4,888,512	195,540	762,608	467,733	6,314,393	6314393.18
	TOTAL Unloading Facility - Dock	1.00 EA					6,314,393	6314393.18
	05 Water Treatment Plant							
	05.01 Water Clarification/Filtration						394,650	
	TOTAL Water Treatment Plant			12,221			394,650	
	06 Mechanical Dredging							
	06.01 Mob/Demob Dredge	4.00 EA	209,541	8,382	32,688	20,049	270,660	67665.03
		238000 CY						24.21
	06.03 Sediment Barrier Crew	20.00 MON	1,203,960	48,158	187,818	115,195	1,555,131	77756.55
	06.04 Boat Rental/Testing Crew	20.00 MON	551,177	22,047	85,984	52,737	711,944	35597.22
*	06.05 River Water Sampling	1.00 EA	50,471	2,019	7,874	4,829	65,193	65192.67
	TOTAL Mechanical Dredging	238000 CY	6,476,798	259,072	1,010,381	619,700	8,365,951	35.15
	07 Testing/Monitoring - River							
		20.00 MON	475 747	17 400	(7.07)	41 600	563 000	
	07.03 Boat Rental/Test Crew 07.05 Sample Analysis	20.00 MON 1.00 EA	435,713 977,550		67,971 152,498		562,802 1,262,681	
	or. of campie radified	1,000 111						1202001.51
	TOTAL Testing/Monitoring - River		1,413,263	56,531	220,469	135,221	1,825,483	
	08 Tug and Barges							
	08.01 Mob/Demob - 4 @	200.00 HR	181.324	7,253	28,286	17.349	234,212	1171.06
	08.02 Tug and Barges-Rental/Operation		3,596,250	143,850	561,015	344,089		
	TOTAL Tug and Barges	238000 CY					4,879,416	20.50
	09 Soil Stabilization							
	09.04 Soil Stabilization	238000 CY					10,653,878	44.7
	TOTAL Soil Stabilization	238000 CY					10,653,878	44.7
	10 Handling and Transportation							
	10 manazing and readportation							

Mon	14	Dec	1998
-----	----	-----	------

U.S. Army Corps of Engineers Eff. Date 01/01/98 PROJECT HUD-1A: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R - Dredging Only/Rev12/14/98

TIME 14:16:44

SUMMARY PAGE 4

** PROJECT OWNER SUMMARY - Feature **

	QUANTY UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT COS
10.02 Transport Cost	238000 CY	11,499,647	459,986	1,793,945	1,100,286	14,853,864	62.4
10.05 Rent RR Flat Cars	60.00 EA	1,310,732	52,429			1,693,047	28217.4
10.11 Mob/Demob Crane - 40	4.00 EA	113,659	4,546			146,811	36702.6
10.12 Unload Barge with Crane	20.00 MON	1,099,924	43,997			1,420,750	71037.4
10.13 Load RR Car with Crane	20.00 MON	1,099,924	43,997	171,588	105,241	1,420,750	71037.4
10.14 Container Handling		1,280,789	51,232	199,803	122,546	1,654,369	
10.15 Unloading Fee	238000 CY	727,166		113,438		939,266	3.9
TOTAL Handling and Transportation	238000 CY	19,514,990					105.9
11 Landfill Fees		,					
11.01 Landfill Fees - CECOS/Niagara F		9,074,300	362,972	1,415,591	868,229	11,721,092	
11.02 Landfill Fees-Wayne Dispoal, Mich	ı	14,640,712	585,628	2,283,951	1,400,823	18,911,114	
11.06 Sampling Soil & Sediment	270.00 EA	523,051		81,596			2502.2
TOTAL Landfill Fees	238000 CY			~		31,307,821	131.9
 Water Treatment 12.09 Free Water Removal 	16025000 GAL	419,446	16,778	65,434	40,133	541,790	0.
TOTAL Water Treatment	16025000 GAL	419,446	16,778	65,434	40,133	541,790	0.
13 Debris Handling	20.00 MON	76,383	3,055	11,916	7,308	98,662	4933.
14 Debris Disposal	10000 TNS	1,298,511	51,940	202,568	124,242	1,677,261	167.
15 Demob							
15.51 Removal of Temporary Facilities		13,769					17785.
15.52 Removal of Temporary Utilities		1,680					2170.
15.53 Demob of Construction Equip/Fac	1 1.00 EA	11,425				•	14757.
15.61 Site Restoration					2,923		
15.71 Misc Personnel		76,383	3,055	11,916		98,662	
TOTAL Demob		133,811	5,352	20,875	12,803	172,841	
16 Project Closeout							
16 Project Closeout 16.01 Project Closeout		30,553	1,222	2 4,766	5 2,923	39,465	

	n 14 Dec 1998		. Army Corps	-				TI	ME 14:16:44
Efi	f. Date 01/01/98 PROJECT HUD-1		ER PCB R/Rev				n River to		
		Hudson River			•			SUMMAR	Y PAGE 5
		** PROJEC	T INDIRECT S	SUMMARY - (Contract *	•			
		QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
	·····								
01	General Conditions	1.00 EA	1,919,944	287,992	176,635	59,614	488,837	2,933,022	2933021.89
02	Mobilization	1.00 EA	102,311	15,347	9,413	3,177	26,049	156,296	156296.24
03	Site Preparation	1.00 EA	2,660,479	399,072	244,764	82,608	677,385	4,064,308	4064307.99
04	Unloading Facility - Dock	1.00 EA	3,200,000	480,000	294,400	99,360	814,752	4,888,512	4888512.00
05	Water Treatment Plant		200,000	30,000	18,400	6,210	50,922	305,532	
06	Mechanical Dredging	238000 CY	4,239,686	635,953	390,051	131,642	1,079,466	6,476,798	27.21
07	Testing/Monitoring - River		925,116	138,767	85,111	28,725	235,544	1,413,263	
08	Tug and Barges	238000 CY	2,472,784	370,918	227,496	76,780	629,596	3,777,574	15.87
09	Soil Stabilization	238000 CY	5,399,159	809,874	496,723	167,644	1,374,680	8,248,079	34.66
10	Handling and Transportation	238000 CY	12,774,433	1,916,165	1,175,248	396,646	3,252,498	19,514,990	82.00
11	Landfill Fees	238000 CY	15,866,137	2,379,921	1,459,685	492,644	4,039,677	24,238,063	101.84
12	Water Treatment	16025000 GAL	274,568	41,185	25,260	8,525	69,908	419,446	0.03
13	Debris Handling	20.00 MON	50,000	7,500	4,600	1,553	12,731	76,383	3819.15
14	Debris Disposal	10000 TNS	850,000	127,500	78,200	26,393	216,419	1,298,511	129.85
15	Demob		87,592	13,139	8,058	2,720	22,302	133,811	
16	Project Closeout		20,000	3,000	1,840	621	5,092	30,553	
	HUDSON RIVER PCB R/Rev 12/14/98	238000 CY	51,042,209	7,656,331	4,695,883	1,584,861	12995857	77,975,141	327.63
•	Escalation							3,119,006	13.11
	SUBTOTAL						•.	81,094,147	340.73
	Contingency							12,164,122	51.13
	contringency								
	SUBTOTAL							93,258,269	391.84
	SIOH							7,460,661	31.3
	910u								52.5.

TOTAL INCL OWNER COSTS

100,718,930

423.19

Mon 14 Dec 1998		. Army Corps	-				TIM	1E 14:16:44	
Eff. Date 01/01/98 PROJECT HUD-1A:						River to	CIMMADA		
•	Hudson River	PCB R - Dred I INDIRECT SU					SUMMARY	PAGE 6	
		i indikici ot	Mandrad - P.C.	acure					
	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST	
01 General Conditions									None and
01.01 Field Labor	24.00 MO	691,200	103,680	63,590	21,462	175,986	1,055,919	43996.61	
01.02 Home Office Labor	24.00 MON	448,320	67,248	41,245	13,920	114,147	684,881	28536.69	
01.05 Travel and Per Diem		236,000	35,400	21,712	7,328	60,088	360,528		
01.11 Equipment	24.00 MO	60,828	9,124	5,596	1,889	15,487	92,925	3871.87	,
01.12 Material	24.00 MO	9,160	1,374	843	284	2,332	13,993	583.06	1
01.13 Photos	20.00 MO	1,470	221	135	46	. 374	2,246	112.28 86878.02	
01.22 Plans 01.24 Pre-Construction Conference	1.00 EA 1.00 EA	56,870 3,300	8,531 495	5,232 304	1,766 102	14,480 840	86,878 5,041	5041.28	
01.41 Office Trailers	1.00 EA	3,300	495 5,798	3,556	1,200	9,841	59,044	59044.06	
01.42 Storage Trailer	1.00 EA	5,300	795	488	165	1,349	8,097	8096.60	
01.44 Electrical	24.00 MO	4,800	720	442	149	1,222	7,333	305.53	
01.45 Telephone	24.00 MO	6,000	900	552	186	1,528	9,166	381.92	
01.46 Toilets	1.00 EA	4,800	720	442	149	1,222	7,333	7332.77	
01.51 Truck Scales	1.00 EA	14,400	2,160	1,325	447	3,666	21,998	21998.30	
01.60 Health and Safety	1.00 EA	338,846	50,827	31,174	10,521	86,274	517,641	517641.36	
	1					400 007		2022021 80	
TOTAL General Conditions	1.00 EA	1,919,944	287,992	176,635	59,614	488,837	2,933,022	2933021.89	
Escalation							117,321		
SUBTOTAL							3,050,343		
Contingency							457,551		
SUBTOTAL							3,507,894		
SIOH							280,632		
TOTAL INCL OWNER COCKE							3,788,526		
TOTAL INCL OWNER COSTS							3,100,520		
02 Mobilization									
02.02 Equipment Rental-Mobilization	16.00 HR	3,958	594	364	123	1,008	6,046	377.89	
02.21 Setup Trailers	1.00 EA	2,700	405	248	84		4,125	4124.68	
02.29 Travel and Per Diem	1.00 EA	8,000	1,200	736	248		-		
02.31 Field Labor	2.00 MO	57,600	8,640	5,299	1,788 95		•		
02.32 Signs	2.00 EA 1.00 EA	3,069	460 2,173	282	450		-		
02.34 Electrical Connection 02.35 Telephone Connection	1.00 EA	14,484 500			430				
02.36 Water Distribution	800.00 LF	12,000							
TOTAL Mobilization	1.00 EA	102,311	15,347	9,413	3,177	26,049	156,296	156296.24	
Escalation							6,252		
SUBTOTAL							162,548		
Contingency							24,382		ł
									1
SUBTOTAL							186,930)	

03.12 Earth Shaping 10000 CY 50,427 7,564 4,639 1,566 12,839 77,036 7.	ff. Date 01/01/98 PROJECT HUD-1A:	Hudson River ** PROJEC	PCB R - Drec T INDIRECT SU			8		SUMMAR	Y PAGE	
TOTAL INCL CAMER COSTS 201,885 03 Site Proparation 03.11 Clearing and drubbing 19.00 ACR 74,541 11,187 6,661 2,116 18,959 113,934 5996. 03.13 Install/Remove Fance 1.00 EA 63,641 9,646 5,855 1,975 16,624 97,022 97221 03.14 Construct/Repair Road/Work Aces 1000 EX 91,423 31,774 8,444 2,651 2,318 14,6264 14,645 03.43 Construct/Repair Road/Work Aces 1000 EX 91,423 31,774 8,444 2,551 2,318 14,6264 14,63 03.44 Mixing Road/Work Aces 10.00 EA 4,619 633 425 143 11,177 7,566 14,6264 14,63 03.44 Dicking Modify 1.00 EA 2,450 10,663 6,463 2,230 16,464 10,679. 03.45 Direging 1.00 EA 2,660,473 399,073 244,764 82,668 6777,338 4,684,930 464		QUANTY UOM	DIRECT	G&A						
TOTAL INCL CAMER COSTS 201,885 03 Site Proparation 03.11 Clearing and drubbing 19.00 ACR 74,541 11,187 6,661 2,116 18,959 113,934 5996. 03.13 Install/Remove Fance 1.00 EA 63,641 9,646 5,855 1,975 16,624 97,022 97221 03.14 Construct/Repair Road/Work Aces 1000 EX 91,423 31,774 8,444 2,651 2,318 14,6264 14,645 03.43 Construct/Repair Road/Work Aces 1000 EX 91,423 31,774 8,444 2,551 2,318 14,6264 14,63 03.44 Mixing Road/Work Aces 10.00 EA 4,619 633 425 143 11,177 7,566 14,6264 14,63 03.44 Dicking Modify 1.00 EA 2,450 10,663 6,463 2,230 16,464 10,679. 03.45 Direging 1.00 EA 2,660,473 399,073 244,764 82,668 6777,338 4,684,930 464	STOR							14 954		
0.3 Site Preparation 0.3.1 Clearing and Grubbing 19.00 ACR 74,581 11.167 6,661 2,316 13,999 113,934 5996. 0.3.12 Tatch Shaping 1000 CC 55,427 7,564 4,639 1.666 23,289 77,006 7,7 0.3.13 Tatch1/Remove Fance 1.00 EA 63,61 9,645 5,655 1,970 1443,461 300. 0.3.41 Construct/Repair Road/Work Area 1000 EX 91,232 12,774 5,449 2,1851 23,381 140,264 643 0.3.4 Mixing Sta. Containment Pad 1.00 EA 4,618 693 425 143 11,77 7,066 7,084 10,227 7,064 7,070 1443,614 10,679 13,071 1443,614 1445 11,0679 13,253 13,223 13,223 13,223 13,223 13,235 13,235 13,235 13,216 1443,614 116,679 13,5678 1456 11,0679 13,5578 1438 110,679 13,5678 1438 116,1679 13,5678 14,224,800 10,678 14,224,800 14,224,800 14,224,800 14,224,800 14,22										
0.11 Clearing and Grubbing 19.05 ACR 74,581 11.187 6,061 2.314 18,989 113,931 5996. 0.12 Barth Shaping 10000 CT 50,427 7,564 4,639 1.664 12,483 77,036 7. 0.13 Intuil/Kemove Pence 1.00 EA 63,641 9,546 5,855 1.976 16,204 37,722 97221 0.14 Construct/Repair Road/Work Area 10000 EY 91,939 13,744 6,444 2,851 23,361 140,244 130. 0.14 Mixing Sta. Containment Ped 1.00 EA 4,619 693 422 143 1,176 7,056 7055 0.3.5 Channel Dredging 11400 EA 1.972,744 295,762 181,400 61,423 502,026 3012,154 264 0.3.5 E Surveying 1.00 EA 2,660,473 399,072 244,764 82,608 677,385 4,064,308 4064307 SUBTOTAL 1.00 EA 2,660,473 399,072 244,764 82,608 677,385 4,064,302 2663,072 338,072 244,064 99,360 814,752 4,088,512 4898512								•		
0.11 2 Barch Shaping 10000 CY 50,427 7,544 4,639 1,564 12,633 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,036 77,037 12,00 DE 230,042 13,461 26,767 3,034 74,077 444,461 370 03.14 Construct/Regist Road/Work Area 1000 BY 91,282 13,774 8,448 2,351 140,284 140,284 140,284 140,284 140,284 140,284 141,233 10,174 7,056 7523 1144 120,775 144,461 100,77 10,02 1000 1162,154 124,075 126,020 1,01,21,54 124,075 126,030 1,01,21,54 124,075 126,030 1,01,21,54 124,075 126,030 1,01,21,54 124,075 126,050 1,01,21,54 124,075 126,050 1,01,21,54 1464,307 126,577 1167,540 126,051 126,577 1167,540 126,577 126,573 126,577 126,573 126,577 126,573 126,540,512 126,512 126,512<	3 Site Preparation									
0.1.3 Hatil/Amove Fence 1.00 EA 63.641 9.546 5.655 1.976 16.200 97.222 97221. 31.8 kalinoad Spur 1200.00 L7 320,042 43.641 26.767 9.034 77.077 444.640 370. 31.4 Construct/Repair Road/Mork Area 1.00 EA 40,246 6.037 3.703 1.250 10.247 61.483 64482. 31.4 Salinoad Pacil for Equi/Vehicle 1.00 EA 40,246 6.037 3.703 1.250 10.247 61.483 64482. 33.45 Salinoad Pacil for Equi/Vehicle 1.00 EA 4.019 633 425 1.433 1.176 7.06 7055. 35.55 Channel Dredging 1.00 EA 7.240 10.688 6.666 2.250 18.446 110.679 1.10678. TOTAL Site Preparation 1.00 EA 2.660,473 339.072 244.764 82.608 677.385 4.064.308 4064307. Escalation 1.00 EA 2.660,473 339.072 244.764 82.608 677.385 4.064.308 4064307. Escalation 1.00 EA 3.660,479 339.072 244.764 82.608 677.385 4.064.308 4064307. SUBTOTAL Site Dreparation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. 04 Unloading Facility - Dock 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.00 EA 3.200,000 480,000 294.400 99.360 814.752 4.888.512 4888512. Escalation 1.55.540 SUBTOTAL Sign 7.762.66 SUBTOTAL Sign 7.762.66 SUBTOTAL OWNER COSTS 6.304.373 7.762.762.762 SUBTOTAL Sign 7.762.763 SUBTOTAL Sign 7.764 7.733 SUBTOTAL Sign 7.774 7.774 7.	3.11 Clearing and Grubbing	19.00 ACR	74,581	11,187	6,861	2,316	18,989	113,934	5996.	
03.15 Railroad Spur 1200.00 LF 290,942 43,641 26,767 9.034 74,077 444,461 370. 03.41 Construct/Repair Road/Mork Area 1000 SY 91,829 13,774 8,444 2,851 23,81 120,81 120,244 14. 03.42 Mixing Sta. Containment Pad 1.00 EA 40,245 6.037 3,703 1,250 10,247 61,463 6448 03.45 Duroping 11400 EA 4,919 603 425 143 51,742 151,400 61,223 502,024 3,012,154 244 03.65 Duroping 1.00 EA 4,619 399,072 244,764 52,666 677,385 4,064,308 4064307. UNING MARE COSTS 162,572 162,572 SUBTOTAL 4,266,0479 399,072 244,764 52,666 677,735 4,064,308 4064307. Escalation 162,572 4,869,912 SUBTOTAL 4,226,880 Contingency 5,540,660 <td c<="" td=""><td>3.12 Earth Shaping</td><td>10000 CY</td><td>50,427</td><td>7,564</td><td>4,639</td><td>1,566</td><td>12,839</td><td>77,036</td><td>7.7</td></td>	<td>3.12 Earth Shaping</td> <td>10000 CY</td> <td>50,427</td> <td>7,564</td> <td>4,639</td> <td>1,566</td> <td>12,839</td> <td>77,036</td> <td>7.7</td>	3.12 Earth Shaping	10000 CY	50,427	7,564	4,639	1,566	12,839	77,036	7.7
03.41 Construct/Repair Road/Mock Area 1000 SY 91,223 13,774 6,448 2,851 23,381 140,284 14, 3.42 Mixing Sta. Constimment Pad 1.00 EA 4,246 6.037 3,703 1,250 10,247 61,483 61,483 61,483 61,483 63,482 63,405 63,425 143 1,776 7,056 7055, 30.55 Channel Dredging 1.400 EA 1,971,744 295,762 181,400 61,223 502,026 3,012,154 264, 30.55 Channel Dredging 1.00 EA 1,971,744 295,762 181,400 61,223 502,026 3,012,154 264, 30.55 Channel Dredging 1.00 EA 2,660,479 399,072 244,764 62,606 677,385 4,064,308 4064307. Escalation 1.00 EA 2,660,479 399,072 244,764 62,606 677,385 4,064,308 4064307. Escalation 162,572 4,226,880 Contingency 634,032 4,226,880 Contingency 634,032 4,226,880 Contingency 634,032 4,226,880 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. TOTAL UNCL OWER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 195,540 10,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 195,540 40,000 480,000 294,400 99,360 814,752 4,388,512 4,000 40,000 40,000 40,000 40,000 40										
03.42 Mixing Sta. Containment Pad 3.44 becontam Paci for Equi/Vehicle 3.46 becontam Paci for Equi/Vehicle 1.00 EA 4,619 693 425 143 1,176 7,056 7055. 3.55 Chamel Davedging 1.00 EA 72,450 10,666 6,665 3,250 18,446 110,679 110678. TOTAL Site Preparation 1.00 EA 2,660,479 399,072 244,764 82,608 677,365 4,064,309 4064307. Escalation SUBTOTAL Contingency 4,226,880 Contingency 5.204 4,860,912 388,673 TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Contingency 5.004 5.0	-									
03.44 Decontam Facil for Equi/Vehicle 1.00 EA 4.619 693 425 143 1.176 7.056 7055. 03.55 Channel Dredging 11400 EA 1.977,744 295,762 18,400 62,223 502,026 3.012,154 264. 03.56 Surveying 1.00 EA 72,450 10,665 2,280 677.385 4.064,308 4064307. TOTAL Site Preparation 1.00 EA 2,660,479 399.072 244,764 82,608 677.385 4.064,308 4064307. Suproma Sup										
03.55 Channel Dredging 11400 EA 1.971,744 295,762 181,400 61,223 502,026 3,012,154 264. 03.56 Surveying 1.00 EA 72,450 10,668 6,665 2,290 18,446 110,679 110678. TOTAL Site Proparation 1.00 EA 2,660,479 399,072 244,764 82,608 677,385 4,064,308 4064307. Escalation 1.22,572 4,226,880 4,064,308 4064307. 4,226,880 4,064,308 4064307. SUBTOTAL 4,226,880 4,660,312 4,660,312 4,660,312 4,660,312 4,660,312 4,660,312 4,660,312 4,660,312 5,249,785 5,249,785 5,249,785 5,249,785 5,249,785 5,249,785 5,249,785 5,249,785 4,868,512 4868512. 5,640, 652. 6,614,752. 4,868,512. 486										
03.56 Surveying 1.00 EA 72,450 10,868 6,665 2,250 18,446 110,679 110678. TOTAL Site Preparation 1.00 EA 2,660,479 399.072 244,764 82,608 677,385 4,064,308 4064307. Escalation 162.572 4,226,880 100,679 10,868 6,665 2,250 18,446 110,679 110678. SUBTOTAL 1.00 EA 2,660,479 399.072 244,764 82,608 677,385 4,064,308 4064307. SUBTOTAL SUBTOTAL 4,226,880 634.032 4,380,932 4,860,932 338,873 4,860,932 388,873 4,860,932 388,873 4,869,932 388,873 4,869,932 388,873 3,249,785 5,249,785 5,249,785 4,888,512 4888512. 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. S										
TOTAL Site Preparation 1.00 EA 2,660,479 399,072 244,764 82,608 677.385 4,064,308 4064307. Escalation 162,572 162,673 162,572 162,673 162,572 162,673 162,572 162,673					,					
SUETOTAL 4,226,880 Contingency 634,032 SUETOTAL 4,860,912 SIGN 386,873 TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 04.01 Unloading Facility - Dock 1.00 EA 04.01 Unloading Facility - Dock 1.00 EA 04.01 Unloading Facility - Dock 1.00 EA 05 Water Treatment Plant 5,084,660 05 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	TOTAL Site Preparation	1.00 EA	2,660,479						4064307.	
SUETOTAL 4,226,880 Contingency 634,032 SUETOTAL 4,860,912 SIGN 388,873 TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 04. Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 04. Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 04. Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 1.50,540 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4886512. SUETOTAL 5,044,052 5,044,052 5,044,052	Escalation							162,572		
Contingency SUETOTAL SUETOTAL SUETOTAL SIGN G4.012 CONTAL INCL OWNER COSTS G4.01 COTAL INCL OWNER COSTS G4.01 COTAL Unloading Facility - Dock O4.01 Unloading Facility - Dock O4.01 Unloading Facility - Dock COTAL COTAL Unloading Facility COTAL COTAL UNLOAU COTAL CO	010000AT									
SUETOTAL 4,860,912 SIGH 388,873 TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512 04.01 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512 TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 488512 TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 488512 Escalation 195,540								634,032		
SIGH 388,873 TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 04.01 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 195,540 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Contingency 762,608	STREOTAL.									
TOTAL INCL OWNER COSTS 5,249,785 04 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 04.01 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. 05 Water Treatment Plant 200,000 30,000 18,400 6,210 50,922 305,532										
04.01 Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 195,540 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. SUETOTAL SUETOTAL 5,044,052 762,608	TOTAL INCL OWNER COSTS									
TOTAL Unloading Facility - Dock 1.00 EA 3,200,000 480,000 294,400 99,360 814,752 4,888,512 4888512. Escalation 195,540 1.00 EA 1.00 EA <td>94 Unloading Facility - Dock</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	94 Unloading Facility - Dock									
Escalation 195,540 SUBTOTAL 5,084,052 Contingency 762,608 SUETOTAL 5,846,660 SUETOTAL 5,846,660 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	04.01 Unloading Facility - Dock	1.00 EA	3,200,000	480,000	294,400	99,360	814,752	4,888,512	4888512.	
SUBTOTAL 5,084,052 Contingency 762,608 SUBTOTAL 5,846,660 SIOH 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 200,000 30,000 18,400 6,210 50,922 305,532	TOTAL Unloading Facility - Dock	1.00 EA	3,200,000	480,000	294,400	99,360	814,752	4,888,512	4888512.	
Contingency 762,608 SUETOTAL 5,846,660 SIGH 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	Escalation									
Contingency 762,608 SUETOTAL 5,846,660 SIOH 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	SUBTOTAL							5,084,052		
SUETOTAL 5,846,660 SIOH 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	Contingency									
SIGH 467,733 TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	STRETOTAL.									
TOTAL INCL OWNER COSTS 6,314,393 05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532										
05 Water Treatment Plant 05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532										
05.01 Water Clarification/Filtration 200,000 30,000 18,400 6,210 50,922 305,532	TOTAL INCL OWNER COSTS							6,314,393		
	05 Water Treatment Plant									
	05.01 Water Clarification/Filtration		200,000	30,000	18,400	6,210	50,922	305,532		

	A: HUDSON RIVE Hudson River ** PROJECT		ging Only/	Rev12/14/9			SUMMARY	PAGE 8
	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
COTAL Water Treatment Plant		200,000	30,000	18,400	6,210	50,922	305,532	
Escalation							12,221	
SUBTOTAL							317,753	
Contingency							47,663	
SUBTOTAL							365,416	
SIOH							29,233	
TOTAL INCL OWNER COSTS							394,650	
· .								
5 Mechanical Dredging								
5.01 Mob/Demob Dredge	4.00 EA	137,165	20,575	12,619	4,259	34,924	209,541	52385.29
5.02 Mechanical Dredging	238000 CY	2,920,577	438,087	268,693	90,684	743,608	4,461,649	18.75
5.03 Sediment Barrier Crew	20.00 MON	788,107	118,216	72,506	24,471	200,660	1,203,960	60198.00
.04 Boat Rental/Testing Crew	20.00 MON	360,798	54,120	33,193	11,203	91,863	551,177	27558.85
5.05 River Water Sampling	1.00 EA	33,038	4,956	3,040	1,026		50,471	50471.23
FOTAL Mechanical Dredging	238000 CY	4,239,686	635,953	390,051			6,476,798	27.21
Escalation							259,072	1.09
SUBTOTAL							6,735,870	28.30
Contingency							1,010,381	4.25
concingency								
SUBTOTAL							7,746,251	32.55
SIOH							619,700	2.60
TOTAL INCL OWNER COSTS							8,365,951	35.19
7 Testing/Monitoring - River								
7.03 Boat Rental/Test Crew	20.00 MON	285,216	42,782	26,240	8,856	72,619	435,713	21785.6
7.05 Sample Analysis	1.00 EA	639,900	95,985	58,871	19,869			977549.6
TOTAL Testing/Monitoring - River		925,116	138,767	85,111	28,725		1,413,263	
Escalation							56,531	
							1,469,793	
SUBTOTAL							220,469	
Contingency								
SUETOTAL							1,690,262	
SIOH							135,221	
TOTAL INCL OWNER COSTS							1,825,483	

U.S. Army Corps of Engineers

TIME 14:16:44

Eff. Date 01/01/98

PROJECT HUD-1A: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R - Dredging Only/Rev12/14/98

SUMMARY PAGE 9

** PROJECT INDIRECT SUMMARY - Feature **

	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COS
08 Tug and Barges								
08.01 Mob/Demob - 4 @	200.00 HR	118,694	17,804	10,920	3,685	30,221	181,324	906.6
08.02 Tug and Barges-Rental/Operation	238000 CY	2,354,091	353,114	216,576	73,095	599,375	3,596,250	15.1
TOTAL Tug and Barges	238000 CY	2,472,784	370,918	227,496	76,780	629,596	3,777,574	15.8
Escalation							151,103	0.6
SUBTOTAL							3,928,676	16.5
Contingency							589,301	2.4
SUBTOTAL							4,517,978	18.9
SICH							361,438	1.5
TOTAL INCL OWNER COSTS							4,879,416	20.5
09 Soil Stabilization								
09.04 Soil Stabilization	238000 CY	5,399,159	809,874	496,723	167,644	1,374,680	8,248,079	34.6
TOTAL Soil Stabilization	238000 CY	5,399,159	809,874	496,723	167,644	1,374,680	8,248,079	34.6
Escalation							329,923	1.3
SUBTOTAL							8,578,002	36.0
Contingency							1,286,700	5.4
SUBTOTAL							9,864,702	41.4
SIOH							789,176	3.3

TOTAL INCL OWNER COSTS

10 Handling and Transportation

10.01 30 CY Containers 1,560,000 234,000 143,520 48,438 397,192 2,383,150 238000 CY 7,527,622 1,129,143 692,541 233,733 1,916,608 11,499,647 48.32 10.02 Transport Cost 60.00 EA 858,000 128,700 78,936 26,641 218,455 1,310,732 21845.54 10.05 Rent RR Flat Cars 4.00 EA 74,400 11,160 6,845 2,310 18,943 113,659 28414.65 10.11 Mob/Demob Crane - 4@ 20.00 MON 720,006 108,001 66,241 22,356 183,321 1,099,924 54996.19 10.12 Unload Barge with Crane 20.00 MON 720,006 108,001 66,241 22,356 183,321 1,099,924 54996.19 10.13 Load RR Car with Crane 838,399 125,760 77,133 26,032 213,465 1,280,789 10.14 Container Handling 71,400 43,792 14,780 121,194 238000 CY 476,000 727.166 3.06 10.15 Unloading Fee TOTAL Handling and Transportation 238000 CY 12,774,433 1,916,165 1,175,248 396,646 3,252,498 19,514,990 82.00

Escalation

SUBTOTAL

780,600 3.28

20,295,590 85.28

10,653,878

44.76

Mon 14 Dec 1998 Eff. Date 01/01/98 PROJECT HUD-1A:	HUDSON RIVI Hudson River		7 12/14/98 edging Only	 Dredging /Rev12/14/ 		n River to		ME 14:16:44 Y PAGE 10
	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
Contingency							3,044,338	12.79
SUBTOTAL							23,339,928 1,867,194	98.07 7.85
TOTAL INCL OWNER COSTS							25,207,122	105.91
ll Landfill Fees								
11.01 Landfill Fees - CECOS/Niagara F							9,074,300	
<pre>11.02 Landfill Fees-Wayne Dispoal,Mich 11.06 Sampling Soil & Sediment</pre>	270.00 EA	342,387	51,358	31,500	10,631	87,175	14,640,712 523,051	1937.23
TOTAL Landfill Fees	238000 CY						24,238,063	101.84
Escalation							969,523	4.07
SUBTOTAL.							25,207,586	105.91
Contingency							3,781,138	15.89
SUBTOTAL							28,988,723 2,319,098	121.80 9.74
SIOH							2,319,098	2.74
TOTAL INCL OWNER COSTS							31,307,821	131.55
12 Water Treatment								

12.09 Free Water Removal	16025000 GAL	274,568	41,185	25,260	8,525	69,908	419,446	0.03
TOTAL Water Treatment	16025000 GAL	274,568	41,185	25,260	8,525	69,908	419,446	0.03
Escalation							16,778	0.00
						-		
SUBTOTAL							436,224	0.03
Contingency							65,434	0.00
2						-		
SUBTOTAL							501,658	0.03
SIOH							40,133	0.00
5201						-		
TOTAL INCL OWNER COSTS							541,790	0.03
13 Debris Handling	20.00 MON	50,000	7,500	4,600	1,553	12,731	76,383	3819.15
Escalation							3,055	152.77
ESCALACION								-
SUBTOTAL							79,438	3971.92
Contingency							11,916	595.7
concerngency								1
SUBTOTAL					•		91,354	4567.70
SIOH							7,308	365.42
2100							• • • •	

	Mon 14 Dec 1998 Eff. Date 01/01/98 PROJECT HUD-1A:	HUDSON RIVEN Hudson River 1		12/14/98 - lging Only/	Dredging o Rev12/14/98		River to	TIN SUMMAR)	TE 14:16:44 (PAGE 11
	·····	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
	TOTAL INCL OWNER COSTS							98,662	4933.12
	14 Debris Disposal Escalation	10000 TNS	850,000	127,500	78,200	26,393	216,419	1,298,511 51,940	129.85 5.19
	SUBTOTAL Contingency							1,350,451 202,568	135.05 20.26
	SUBTOTAL SIOH							1,553,019 124,242	155.30 12.42
	TOTAL INCL OWNER COSTS							1,677,261	167.73
	15 Demob								
~	15.51 Removal of Temporary Facilities 15.52 Removal of Temporary Utilities 15.53 Demob of Construction Equip/Faci 15.61 Site Restoration	1.00 EA 1.00 EA 1.00 EA	9,013 1,100 7,479 20,000	1,352 165 1,122 3,000	829 101 688 1,840	280 34 232 621	2,295 280 1,904 5,092		13769.44 1680.43 11425.24
	15.71 Misc Personnel	-	50,000	7,500	4,600	1,553	12,731	76,383	
	TOTAL Demob		87,592	13,139	8,058	2,720	22,302	133,811	
	Escalation							5,352	
	SUBTOTAL Contingency							139,164 20,875	
	SUBTOTAL SIOH							160,038 12,803	
	TOTAL INCL OWNER COSTS							172,841	
	16 Project Closeout								
	16.01 Project Closeout		20,000	3,000	1,840	621	5,092	30,553	
	TOTAL Project Closeout		20,000	3,000	1,840	621	5,092	30,553	
	Escalation							1,222	
	SUBTOTAL Contingency							31,775 4,766	
```	SUBTOTAL							36,542	
-	TOTAL INCL OWNER COSTS							39,465	

· Markey services and a service and a service and a service of the service of the service of the service of the

Mon 14 Dec 1998 Eff. Date 01/01/98

U.S. Army Corps of Engineers PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R-Dredging/Cap-Rev 12/14/98

TIME 14:09:23

TITLE PAGE 1

HUDSON RIVER PCB R/Rev 12/14/98 Dredging of Hudson River to Remove PCB Contaminated Sediments

Designed By: Conceptual Idea Only - No Design Estimated By: PE-C

Prepared By: RCM

Preparation Date: 09/21/98 Effective Date of Pricing: 01/01/98 Est Construction Time: 540 Days

Sales Tax: 0.00%

This report is not copyrighted, but the information contained herein is For Official Use Only.

MCACES GOLD EDITION Composer GOLD Software Copyright (c) 1985-1994 by Building Systems Design, Inc. Release 5.30A

Mon 14 Dec 1998 PROJECT NOTES

#### U.S. Army Corps of Engineers

TIME 14:09:23

Eff. Date 01/01/98 PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R-Dredging/Cap-Rev 12/14/98

TITLE PAGE 2

----

HUDSON RIVER PCB REMEDIATION

Contract Loading is as follows:

General conditions (site overhead and home office support) are itemized as a direct item.

G&A	=	15%
Profit	=	8%
Bond	*	2.5%
Design Contingency	×	20%
Escalation	=	4%
Reserve Contingecy	=	15%
SIOH	=	8%

The base for the estimate is judged to be current with midpoint of construction in two years.

#### U.S. Army Corps of Engineers

TIME 14:09:23

#### Eff. Date 01/01/98 PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R-Dredging/Cap-Rev 12/14/98

SUMMARY PAGE 1

** PROJECT OWNER SUMMARY - Contract **

		QUANTY	UÔM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT COST
01	General Conditions	1.00		2,390,050	95,602	372,848	228,680	3,087,180	3087180.02
02	Mobilization	1.00		152,172	6,087	23,739	14,560	196,557	196556.96
03	Site Preparation	1.00	EA	4,064,308	162,572	634,032	388,873	5,249,785	5249785.35
04	Unloading Facility - Dock	1.00	EA	4,888,512	195,540	762,608	467,733	6,314,393	6314393.18
05	Water Treatment Plant			305,532	12,221	47,663	29,233	394,650	
06	Mechanical Dredging	172000	CY	4,738,239	189,530	739,165	453,355	6,120,289	35.58
07	Testing/Monitoring - River	1.00	EA	1,060,520	42,421	165,441	101,471	1,369,852	1369852.35
08	Tug and Barges	172000	CY	2,734,963	109,399	426,654	261,681	3,532,697	20.54
09	Soil Stabilization	172000	CY	5,976,174	239,047	932,283	571,800	7,719,305	44.88
10	Handling and Transportation	172000	CY	14,857,856	594,314	2,317,826	1,421,600	19,191,596	111.58
11	Landfill Fees	172000	CY	16,060,826	642,433	2,505,489	1,536,700	20,745,448	120.61
12	Water Treatment	11600000	GAL	306,196	12,248	47,767	29,297	395,507	0.03
13	Debris Handling	15.00	MON	57,287	2,291	8,937	5,481	73,997	4933.12
14	Debris Disposal	7500.00	TNS	973,883	38,955	151,926	93,181	1,257,946	167.73
15	Demob			133,811	5,352	20,875	12,803	172,841	
16	Project Closeout			30,553	1,222	4,766	2,923	39,465	
20	Aquablok Bentonite Cap	811000	SF	5,514,951	220,598	860,332	527,671	7,123,552	8.78
TOTAL	L HUDSON RIVER PCB R/Rev 12/14/98	172000	CY	64,245,835	2,569,833	10022350	6,147,041	82,985,060	482.47

e 01/01/		IVER PCB R/Re				River to		
		ver PCB R-Dre OJECT OWNER S			8		SUMMAR	Y PAGE
		QUANTY UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT CO
01 Gen	eral Conditions							
01.01	Field Labor	18.00 MO	791,939	31,678	123,542	75,773	1,022,932	56829.
01.02	Home Office Labor	18.00 MON	513,660	20,546	80,131	49,147	663,485	36860.
01.05	Travel and Per Diem	1.00 EA	332,724	13,309	51,905	31,835	429,773	429773.
01.11	Equipment	18.00 MO	69,694	2,788	10,872	6,668	90,022	5001.
01.12	Material	18.00 MO	12,160	486	1,897	1,163	15,707	872.
01.13	Photos	15.00 MO	2,246	90	350	215	2,901	193.3
01.22	Plans	1.00 EA	86,878	3,475	13,553	8,312	112,219	112218.
01.24	Pre-Construction Conference	1.00 EA	5,041	202	786	482	6,512	6511.
01.41	Office Trailers	1.00 EA	53,178	2,127	8,296	5,088	68,689	68688.
01.42	Storage Trailer	1.00 EA	6,263	251	977	599	8,090	8090.
01.44	Electrical	24.00 MO	5,500	220	858	526	7,104	295.
01.45	Telephone	24.00 MO	6,874	275	1,072	658	8,880	369.
01.46	Toilets	1.00 EA	5,500	220	858	526	7,104	7103.
01.51	Truck Scales	1.00 EA	21,998	880	3,432	2,105	28,415	28414.
01.60	Health and Safety	1.00 EA	476,395	19,056	74,318	45,581	615,349	615349.
TOTAL	General Conditions	1.00 EA	2,390,050	95,602	372,848	228,680	3,087,180	3087180.
02 Mot	pilization							
02.02	Equipment Rental-Mobilization	16.00 HR	6,046	242	943	579	7,810	488.
02.21	Setup Trailers	1.00 EA	4,125	165	643	395	5,328	5327.
02.29	Travel and Per Diem	1.00 EA	8,097	324	1,263	775	10,458	10458.
02.31	Field Labor	2.00 MO	87,993	3,520	13,727	8,419	113,659	56829.
02.32	Signs	2.00 EA	4,688	188	731	449	6,056	3027.
02.34	Electrical Connection	1.00 EA	22,127					28581.
02.35	Telephone Connection	1.00 EA	764	31	119	73	987	986.
02.36	Water Distribution	800.00 LF	18,332	733	2,860	1,754		29
TOTAL	Mobilization	1.00 EA		6,087			196,557	196556
03 Si	te Preparation							
03.11	Clearing and Grubbing	19.00 ACR	113,934	4,557	17,774	10,901	147,167	7745
03.12	Earth Shaping	10000 CY	77,036	3,081	12,018	7,371	99,505	9
03.13	Install/Remove Fence	1.00 EA	97,222	3,889	15,167	9,302	125,579	125579
03.15	Railroad spur	1200.00 LF	444,461	17,778	69,336	42,526	574,101	
03.41	Construct/Repair Road/Work Area	10000 SY	140,284	5,611	21,884	13,422	181,202	18
03.42	Mixing Sta. Containment Pad	1.00 EA	61,483	2,459	9,591	5,883	79,416	79415
03.44	Decontam Facil for Equi/Vehicle	1.00 EA	7,056	282	1,101	675	9,114	9113
03.55	Channel Dredging	11400 EA	3,012,154	120,486	469,896	288,203	3,890,740	341
03.56	Surveying	1.00 EA	110,679	4,427			142,962	

DII. Dat		RIVER PCB R/R iver PCB R-Dr ROJECT OWNER	edging/Cap-R	lev 12/14/9	-	. River to		Y PAGE
		QUANTY UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT CO
	04 Unloading Facility - Dock							
	04.01 Unloading Facility - Dock	1.00 EA	4,888,512	195,540	762,608	467,733	6,314,393	6314393.
	TOTAL Unloading Facility - Dock	1.00 EA	4,888,512	195,540	762,608		6,314,393	6314393.
	05 Water Treatment Plant							
	05.01 Water Clarification/Filtration						394,650	
	TOTAL Water Treatment Plant		305,532				394,650	
	06 Mechanical Dredging							
	06.01 Mob/Demob Dredge	3.00 EA	157,156	6,286	24,516	15,037	202,995	67665
	06.02 Mechanical Dredging	172000 CY	3,224,385	128,975	503,004	308,509	4,164,873	24
	06.03 Sediment Barrier Crew	15.00 MON	905,406	36,216	141,243	86,629	1,169,494	77966
	06.04 Boat Rental/Testing Crew	15.00 MON	413,383	16,535	64,488	39,552	533,958	35597
	06.05 River Water Sampling	1.00 EA	37,910	1,516	5,914	3,627	48,968	48967
	TOTAL Mechanical Dredging	172000 CY	4,738,239	189,530	739,165	453,355	6,120,289	35.
	07 Testing/Monitoring - River							
	07 02 Deet Deeta Maart Group	15 00 101	206 845	12 071	F0 070	33.967	400 101	
	07.03 Boat Rental/Test Crew 07.05 Sample Analysis	15.00 MON 1.00 EA	326,785 733,735	13,071 29,349				
		1.00 111						241750
	TOTAL Testing/Monitoring - River	1.00 EA	1,060,520	42,421	165,441	101,471	1,369,852	1369852
	08 Tug and Barges							
	08.01 Mob/Demob - 30	150.00 HR	135,993	5,440	21,215	13,012	175,659	1171
	08.02 Tug and Barges-Rental/Operation	172000 CY	2,598,971	103,959	405,439	248,670	3,357,038	19
	TOTAL Tug and Barges	172000 CY					3,532,697	20
	09 Soil Stabilization							
	09.04 Soil Stabilization	172000 CY	5,976,174	239,047	932,283	571,800	7,719,305	44
	TOTAL Soil Stabilization	172000 CY	5,976,174	239,047	932,283	571,800	7,719,305	44
	10 Handling and Transportation							
	10.01 30 CY Containers		2,383,150	95,326	371,771	228,020	3,078,267	

U.S. Army Corps of Engineers Eff. Date 01/01/98 PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to

TIME 14:09:23

		liver PCB R-Dr PROJECT OWNER			18		SUMMARY		
		QUANTY UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT COST	
		172000 CY					10,682,738		
	Rent RR Flat Cars	60.00 EA	983,049		153,356	•	1,269,785	21163.08	
	Mob/Demob Crane - 3@	3.00 EA 15.00 MON		3,410			110,108	36702.63	
					128,691		1,065,562	71037.48	
	Load RR Car with Crane	15.00 MON	824,943		128,691		1,065,562	71037.48	
	Container Handling		960,592				1,240,777		
10.15	Unloading Fee	172000 CY			81,980		678,797	3,95	
TOTAL	Handling and Transportation	172000 CY	14,857,856	594,314	2,317,826	1,421,600	19,191,596	111.58	
11 La	ndfill Fees								
11.01	Landfill Fees - CECOS/Niagara F	206000 TNS	6.923.355	276,934	1.080.043	662.427	8.942.759	43.41	
	Landfill Fee-Wayne Disposal, Mich								
	Sampling Soil & Sediment		399,256					2503.4	
TOTAL	Landfill Fees	172000 CY	16,060,826	642,433	2,505,489	1,536,700	20,745,448	120.6	
12 Wa	ter Treatment								
12.09	Free Water Removal	11600000 GAL	306,196	12,248	47,767		395,507	0.0	
TOTAL	. Water Treatment	11600000 GAL	306,196	12,248	47,767	29,297	395,507	0.0	
13 De	ebris Handling	15.00 MON	57,287	2,291	8,937	5,481	73,997	4933.1	
14 De	ebris Disposal	7500.00 TNS	973,883	38,955	151,926	93,181	1,257,946	167.7	
15 De	emob								
15.51	Removal of Temporary Facilities	1.00 EA	13,769	551	2,148	1,317	17,786	17785.7	
15.52	Removal of Temporary Utilities	1.00 EA	1,680	67	262	2 161	2,171	2170.9	
15.53	Demob of Construction Equip/Fac.	1 1.00 EA	11,425	457	1,782	2 1,093	14,758	14757,7	
15.61	Site Restoration		30,553	1,222	4,766	5 2,923	39,465		
15.71	Misc Personnel		76,383	3,055	11,916	5 7,308			
TOTAL	L Demob		133,811	5,352	20,875	5 12,803	172,841		
	· · ·								
16 Pi	roject Closeout								
			±						

30,553 1,222 4,766 2,923 39,465 16.01 Project Closeout 30,553 1,222 4,766 2,923 39,465 TOTAL Project Closeout 20 Aquablok Bentonite Cap

20.01 Aquablok Bentonite Cap 811000 SF 3,925,653 157,026 612,402 375,607 5,070,688 1,419,899 56,796 221,504 135,856 1,834,055 20.03 Barging for Capping

6.25

Mon 14 Dec Eff. Date		98 PROJECT		U.S. Ar HUDSON RIVER P Hudson River PC	CB R/Rev		- Dredging		River to	TIN	ME 14:09	:23
				** PROJECT				•				5
				QUANI	Y UOM	CONTRACT	ESCALATN	CONTINGN	SIOH	TOTAL COST	UNIT C	OST
		Storage Silo Silt Retrieval	Dredging	1000	0 CY	45,830 123,569	1,833 4,943	7,149 19,277	4,385	59,197 159,612	15	. 96
	TOTAL	Aquablok Benton	lite Cap	81100	0 SF	5,514,951	220,598	860,332	527,671	7,123,552	8	.78

#### U.S. Army Corps of Engineers Eff. Date 01/01/98 PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R-Dredging/Cap-Rev 12/14/98

TIME 14:09:23

SUMMARY PAGE 6

#### ** PROJECT INDIRECT SUMMARY - Contract **

		QUANTY		DIRECT	G&A			-	TOTAL COST	UNIT COS
)1	General Conditions	1.00		1,564,517	,		48,578	398,342	2,390,050	2390050.1
)2	Mobilization	1.00	EA	99,611	14,942		3,093	25,362	152,172	152171.9
)3	Site Preparation	1.00	EA	2,660,479				677,385	•	
)4	Unloading Facility - Dock	1.00	EA	3,200,000	480,000	294,400	99,360	814,752	4,888,512	4888512.0
)5	Water Treatment Plant			200,000	30,000	18,400	6,210	50,922	305,532	
6	Mechanical Dredging	172000	CY	3,101,632	465,245	285,350	96,306	789,707	4,738,239	27.5
)7	Testing/Monitoring - River	1,00	EA	694,212	104,132	63,868	21,555	175,753	1,060,520	1060519.9
8	Tug and Barges	172000	CY	1,790,296	268,544	164,707	55,589	455,827	2,734,963	15.9
9	Soil Stabilization	172000	CY	3,911,979	586,797	359,902	121,467	996,029	5,976,174	34.
0	Handling and Transportation	172000	CY	9,725,892	1,458,884	894,782	301,989	2,476,309	14,857,856	86.
1	Landfill Fees	172000	CY	10,513,351	1,577,003	967,228	326,440	2,676,804	16,060,826	93.
2	Water Treatment	11600000	GAL	200,434	30,065	18,440	6,223	51,033	306,196	0.
3	Debris Handling	15.00	MON	37,500	5,625	3,450	1,164	9,548	57,287	3819.
4	Debris Disposal	7500.00	TNS	637,500	95,625	58,650	19,794	162,314	973,883	129.
5	Demob			87,592	13,139	8,058	2,720	22,302	133,811	
6	Project Closeout			20,000	3,000	1,840	621	5,092	30,553	
0	Aquablok Bentonite Cap	811000	SF		541,510			919,159	5,514,951	6.
	HUDSON RIVER PCB R/Rev 12/14/98	172000	CY							373.
E	scalation								2,569,833	14.
	SUBTOTAL								66,815,668	388.
С	ontingency								10,022,350	58.
	SUBTOTAL								76,838,018	446
S	ТОН								6,147,041	35

TOTAL INCL OWNER COSTS

82,985,060 482.47

Mon	14	Dec	1998	

#### U.S. Army Corps of Engineers

TIME 14:09:23

## HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to

		· · · · · · · · · · · · · · · · · · ·						
Eff. Date 01/01/98 PROJECT HUD-A	A: HUDSON RIVE			• •				
х.	Hudson Rive:	r PCB R-Dred	ging/Cap-R	ev 12/14/98	8		SUMMAR	Y PAGE 7
	** PROJECT	INDIRECT ST	UMMARY - F	eature **				
	QUANTY UOM		G&A			-	TOTAL COST	
· · · · · · · · · · · · · · · · · · ·								
01 General Conditions								
of General Condicions								
01.01 Field Labor	18.00 MO	518,400	77,760	47,693	16,096	131,990	791,939	43996.61
01.02 Home Office Labor	18.00 MON	336,240	50,436	30,934	10,440	85,610	513,660	28536.69
01.05 Travel and Per Diem	1.00 EA	217,800	32,670	20,038	6,763	55,454	332,724	332724.35
01.11 Equipment	18.00 MO	45,621	6,843	4,197	1,417	11,616	69, <b>694</b>	3871.8
01.12 Material	18.00 MO	7,960	1,194	732	247	2,027	12,160	675.5
01.13 Photos	15.00 MO	1,470	221	135	46	374	2,246	149.7
01.22 Plans	1.00 EA	56,870	8,531	5,232	1,766	14,480	86,878	86878.03
01.24 Pre-Construction Conference	1.00 EA	3,300	495	304	102	840	5,041	5041.28
01.41 Office Trailers	1.00 EA	34,810	5,222	3,203	1,081	8,863	53,178	53177.84
01.42 Storage Trailer	1.00 EA	4,100	615	377	127	1,044	6,263	6263.43
01.44 Electrical	24.00 MO	3,600	540	331	112	917	5,500	229.15
01.45 Telephone	24.00 MO	4,500	675	414	140	1,146	6,874	286.44
01.46 Toilets	1.00 EA	3,600	540	331	112	917	5,500	5499.5
01.51 Truck Scales	1.00 EA	14,400	2,160	1,325	447	3,666	21,998	21998.3
01.60 Health and Safety	1.00 EA	311,846	46,777	28,690	9,683	79,399	476,395	476394.5
TOTAL General Conditions	1.00 EA	1,564,517	234,678	143,936	48,578	398,342	2,390,050	2390050.19

Escalation

95,602 -----SUBTOTAL 2,485,652 372,848 Contingency -----SUBTOTAL 2,858,500 SIOH 228,680 . . . . . . . . . . . . 3,087,180 TOTAL INCL OWNER COSTS

#### 02 Mobilization

02.02	Equipment Rental-Mobilization	16.00	HR	3,958	594	364	123	1,008	6,046	377.89
02.21	Setup Trailers	1.00	EA	2,700	405	248	84	687	4,125	4124.68
02.29	Travel and Per Diem	1.00	EA	5,300	795	4.88	165	1,349	8,097	8096.60
02.31	Field Labor	2.00	MO	57,600	8,640	5,299	1,788	14,666	87,993	43996.61
02.32	Signs	2.00	EA	3,069	460	282	95	781	4,688	2344.05
02.34	Electrical Connection	1.00	EA	14,484	2,173	1,333	450	3,688	22,127	22127.01
02.35	Telephone Connection	1.00	EA	500	75	46	16	127	764	763.83
02.36	Water Distribution	800.00	LF	12,000	1,800	1,104	373	3,055	18,332	22.91
TOTAL	Mobilization	1.00	EA	99,611	14,942	9,164	3,093	25,362	152,172	152171.56
02.35 02.36	Telephone Connection Water Distribution	1.00	EA LF	500 12,000	75 1,800	46 1,104	16 373	127 3,055	764 18,332	763. 22.

Escalation

SUBTOTAL Contingency

SUBTOTAL

403202

6,087

158,258 23,739

181,997

-----

-----

ff. Date 01/01/98 PROJECT HUD-AA:	HUDSON RIVI Hudson Rive: ** PROJEC	SUMMARY PAGE 8						
· · · · · · · · · · · · · · · · · · ·	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
SIOH							14,560	
TOTAL INCL OWNER COSTS							196,557	
Site Preparation								
11 Clearing and Grubbing	19.00 ACR	74,581				18,989	113,934	5996.54
.12 Earth Shaping	10000 CY	50,427	•			12,839	77,036	7.70
.13 Install/Remove Fence	1.00 EA	63,641		5,855		16,204	97,222	97221.50
.15 Railroad spur	1200.00 LF		43,641		9,034	74,077 23,381	444,461 140,284	370.38
.41 Construct/Repair Road/Work Area .42 Mixing Sta. Containment Pad	10000 SY 1.00 EA	91,829 40,245	6,037	8,448 3,703	2,851 1,250	10,247	61,483	14.03 61482.71
3.44 Decontam Facil for Equi/Vehicle		40,248	693	425	1,250	1,176	7,056	7055.79
3.55 Channel Dredging	11400 EA	1,971,744				502,026		264.22
3.56 Surveying	1.00 EA	72,450	10,868	6,665	2,250	18,446	110,679	
TOTAL Site Preparation	1.00 EA	2,660,479	399,072	244,764	82,608	677,385	4,064,308	4064307.99
Escalation							162,572	
or manon a t							4,226,880	
SUBTOTAL							634,032	
Contingency								
SUBTOTAL							4,860,912	
SIOH							388,873	
TOTAL INCL OWNER COSTS							5,249,785	
4 Unloading Facility - Dock								
4.01 Unloading Facility - Dock	1.00 EA	3,200,000	480,000	294,400			4,888,512	4888512.0
TOTAL Unloading Facility - Dock	1.00 EA	3,200,000	480,000	294,400				4888512.0
Escalation							195,540	
SUBTOTAL							5,084,052	
Contingency							762,608	
SUBTOTAL							5,846,660	
SIOH							467,733	
TOTAL INCL OWNER COSTS							6,314,393	
)5 Water Treatment Plant								
						FA 45-		
05.01 Water Clarification/Filtration		200,000	30,000	18,400	6,210	50,922	305,532	

Mon 14 Dec 1998 Eff. Date 01/01/98 PROJECT HUD-AA:	HUDSON RIVE Hudson River	-	12/14/98 · ging/Cap-Re	- Dredging ≥v 12/14/98		River to	TIN	1E 14:09:23 (PAGE 9
	** PROJECT	INDIRECT SU	UMMARY - Fe	eature **				
	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
TOTAL Water Treatment Plant		200,000	30,000	18,400	6,210	50,922	305,532	
Escalation							12,221	
SUBTOTAL							317,753	
Contingency							47,663	
SUBTOTAL							365,416	
SIOH							29,233	
TOTAL INCL OWNER COSTS							394,650	
06 Mechanical Dredging								
06.01 Mob/Demob Dredge	3.00 EA	102,874	15,431	9,464	3,194	26,193	157,156	52385.29
06.02 Mechanical Dredging	172000 CY	2,110,669	316,600	194,182	65,536	537,397	3,224,385	18.75
06.03 Sediment Barrier Crew	15.00 MON	592,675	88,901	54,526	18,403	150,901	905,406	60360.38
06.04 Boat Rental/Testing Crew	15.00 MON	270,599	40,590	24,895	8,402	68,897	413,383	27558.89
06.05 River Water Sampling	1.00 EA	24,816	3,722	2,283	771	6,318	37,910	37910.04
TOTAL Mechanical Dredging	172000 CY	3,101,632	465,245	285,350	96,306	789,707	4,738,239	27.55
Escalation							189,530	1.10
SUBTOTAL							4,927,769	28.65
Contingency							739,165	4.30
SUBTOTAL							5,666,934	32.95
SIOH							453,355	2.64
TOTAL INCL OWNER COSTS							6,120,289	35.5
07 Testing/Monitoring - River								
07.03 Boat Rental/Test Crew	15.00 MON	213,912	32,087	19,680	6,642	54,464	326,785	21785.6
07.05 Sample Analysis	1.00 EA	480,300	72,045	44,188	14,913	122,289	733,735	733735.1
TOTAL Testing/Monitoring - River	1.00 EA	694,212	104,132	63,868	21,555	176,753	1,060,520	1060519.9
Escalation							42,421	
SUBTOTAL							1,102,941	
Contingency							165,441	
SUBTOTAL							1,268,382	
SIOH							101,471	
TOTAL INCL OWNER COSTS							1,369,85 <b>2</b>	

Mon 14 Dec 1998 Eff. Date 01/01/98 PROJECT HUD-AA:	HUDSON RIVE Hudson River	PCB R-Dredg	12/14/98 - jing/Cap-Re	Dredging v 12/14/98		River to		E 14:09:23
• • • • • •	** PROJECT	INDIRECT SU	MMARY - Fe	ature **				
	QUANTY UOM	DIRECT	G&A	PROFIT		Dogign (	TOTAL COST	
						-		
08 Tug and Barges								
08.01 Mob/Demob ~ 3@	150.00 HR	89 020	13 353	8 190	2.764	22 665	135,993	906.62
08.02 Tug and Barges-Rental/Operation		1,701,276	-					15.11
TOTAL Tug and Barges	- 172000 CY	1,790,296	268,544	 164,707 [°]	55,589	455,827	2,734,963	15.90
Escalation							109,399	0.64
SUBTOTAL Contingency	<u>`</u>						2,844,362 426,654	16.54 2.48
contingency	~						420,034	4.30
SUBTOTAL							3,271,016	19.02
SIOH							261,681	1.52
TOTAL INCL OWNER COSTS							3,532,697	20.54
09 Soil Stabilization								
09.04 Soil Stabilization	172000 CY	3,911,979	586,797	359,902	121,467	996,029	5,976,174	34.75
TOTAL Soil Stabilization	172000 CY	3,911,979	586,797	359,902	121,467	996,029	5,976,174	34.75
Escalation							239,047	1.39
SUBTOTAL							6,215,221	36.14
Contingency							932,283	5.42
SUBTOTAL							7,147,504	41.56
SIOH							571,800	3.32
TOTAL INCL OWNER COSTS							7,719,305	44.68
10 Handling and Transportation								
10.01 30 CY Containers		1,560,000	234,000	143,520	48,438	397,192	2,383,150	
10.02 Transport Cost	172000 CY	5,413,784		498,068		1,378,404		48.08
10.05 Rent RR Flat Cars	60.00 EA	643,500	96,525	59,202			983,049	
10.11. Mob/Demob Crane - 30	3.00 EA	55,800					85,244	
10.12 Unload Barge with Crane	15.00 MON	540,004					824,943	
10.13 Load RR Car with Crane	15.00 MON	540,004					824,943 960,592	
10.14 Container Handling 10.15 Unloading Fee	172000 CY	628,799 344,000		57,850 31,648		87,586		
TOTAL Handling and Transportation	172000 CY						14,857,856	
Escalation	_,2000 CI	,,, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,,		/ / / / /		594,314	
escalation								
SUBTOTAL							15,452,171	89.84

	Dec 1998 ate 01/01/98 PROJECT HUD-AA	HUDSON RIV. Hudson Rive		7 12/14/98 - lging/Cap-Re	Dredging		a River to		ME 14:09:23 Y PAGE 11
		QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
Co	ntingency							2,317,826	13.48
	SUBTOTAL							17,769,996	103.31
	ОН							1,421,600	8.27
	TOTAL INCL OWNER COSTS							19,191,596	111.58
11 La	undfill Fees								
11.01	Landfill Fees - CECOS/Niagara F	206000 TNS	4,532,000	679,800	416,944	140,719	1,153,893	6,923,355	33.61
11.02	Landfill Fee-Wayne Disposal,Mic	h 52000 TNS	5,720,000	858,000	526,240	177,606	1,456,369	8,738,215	168.04
11.06	Sampling Soil & Sediment	206.00 EA		39,203		8,115		399,256	1938.13
TOTAL	. Landfill Fees	172000 CY						16,060,826	93.38
Es	scalation							642,433	3.74
	SUBTOTAL							16,703,259	97.13
Co	ontingency							2,505,489	14.57
	SUBTOTAL IOH							19,208,748 1,536,700	111.68
51									0.5
	TOTAL INCL OWNER COSTS .							20,745,448	120.6
12 Wa	ater Treatment					·			
12.09	Free Water Removal	11600000 GAL	200,434	30,065	18,440	6,223	51,033	306,196	0.03
TOTAL	L Water Treatment	11600000 GAL	200,434	30,065	18,440	6,223	51,033	306,196	0.03
Es	scalation							12,248	0.0
	SUBTOTAL							318,444	0.0
Co	ontingency							47,767	0.0
	SUBTOTAL							366,210	0.0
S	IOH							29,297	0.0
	TOTAL INCL OWNER COSTS							395,507	0.0
13 04	ebris Handling	15.00 MON	37,500	5,625	3,450	1,164	9,548	57,287	3819.1
	scalation		27,7000	5,025	5,120		.,	2,291	152.7
~	SUBTOTAL							59,579	3971.9
C	ontingency							8,937	595.7
	SUBTOTAL							68,516	4567.7

Mon 14 Dec 1998 Eff. Date 01/01/98 PROJECT HUD-AA:	HUDSON RIVE Hudson River		12/14/98 - ing/Cap-Re	Dredging o v 12/14/98 ature **			SUMMARY	
	QUANTY UOM	DIRECT		PROFIT		Design C	TOTAL COST	UNIT COST
TOTAL INCL OWNER COSTS							73,997	4933.12
14 Debris Disposal Escalation	7500.00 TNS	637,500	95,625	58,650	19,794	162,314	973,883 38,955	129.85 5.19
SUBTOTAL Contingency							1,012,839 151,926	135.05 20.26
SUBTOTAL SIOH							1,164,764 93,181	155.30 12.42
TOTAL INCL OWNER COSTS							1,257,946	167.73
15 Demob								
L5.51 Removal of Temporary Facilities L5.52 Removal of Temporary Utilities L5.53 Demob of Construction Equip/Facl	1.00 EA 1.00 EA 1.00 EA	9,013 1,100 7,479	1,352 165 1,122	829 101 688	280 34 232	2,295 280 1,904	1,680	13769.44 1680.43 11425.24
15.61 Site Restoration 15.71 Misc Personnel	-	20,000 50,000	3,000 7,500	1,840 4,600	621 _ 1,553	5,092 12,731	30,553 76,383	
TCTAL Demob		87,592	13,139	8,058	2,720	22,302		
Escalation							5,352	
SUBTOTAL Contingency							139,164 20,875	
SUBTOTAL SIOH							160,038 12,803	
TOTAL INCL OWNER COSTS							172,841	
16 Project Closeout							,	
16.01 Project Closeout		20,000	3,000	1,840	621	5,092	30,553	
TOTAL Project Closeout		20,000	3,000	1,840	621	5,092		
Escalation							1,222  31,775	
Contingency							4,766	
SUBTOTAL SIOH							36,542 2,923	
TOTAL INCL OWNER COSTS							39,465	

## U.S. Army Corps of Engineers

TIME 14:09:23

Eff. Date 01/01/98 PROJECT HUD-AA: HUDSON RIVER PCB R/Rev 12/14/98 - Dredging of Hudson River to Hudson River PCB R-Dredging/Cap-Rev 12/14/98

SUMMARY PAGE 13

** PROJECT INDIRECT SUMMARY - Feature **

	QUANTY UOM	DIRECT	G&A	PROFIT	BOND	Design C	TOTAL COST	UNIT COST
20 Aquablok Bentonite Cap								
20.01 Aquablok Bentonite Cap	811000 SF	2,569,717	385,457	236,414	79,790	654,276	3,925,653	4.8
20.03 Barging for Capping		929,460	139,419	85,510	28,860	236,650	1,419,899	
20.04 Storage Silo		30,000	4,500	2,760	932	7,638	45,830	
20.05 Silt Retrieval Dredging	10000 CY	80,888	12,133	7,442	2,512	20,595	123,569	12.30
TOTAL Aquablok Bentonite Cap	811000 SF	3,610,065	541,510	332,126	112,093	919,159	5,514,951	6.8
Escalation							220,598	0.2
SUBTOTAL							5,735,549	7.0
Contingency							860,332	1,0
SUBTOTAL							6,595,882	8.1
SIOH							527,671	0.6
TOTAL INCL OWNER COSTS							7,123,552	8.7

#### ITEM: Disposal at non-hazardous waste landfill

DESCRIPTION: Disposal of sediments w/ PCB concentration <50 ppm at CECOS landfill in Niagara Falls, NY (across from outlet mall). Landfill has direct rail access (CONRAIL). Landfill will only accept material w/ at least 20% solids concentration by weight (no standing liquid). Nick Morreal said that waste transporters will typically carry binding agents (cement, bentonite) that they can add to bind water that may become separated from the material during transport. If further stabilization is required prior to disposal, the landfill would hire an outside contractor to perform the stabilization and increase the disposal cost. The landfill will require sediments to be sampled and analyzed for TCLP metals, SVOCs, VOCs, Herbicides & Pesticides, and PCBs. Rate of sampling will be one sample per 1000 tons material.

INFORMATION SOURCE: Nick Morreal, CECOS landfill - phone: 716 614 3391, cell phone: 716 866 0289, pager: 716 629 4255

PRICE: Tipping fees: \$22/ton for disposal (assuming disposal of total volume of 100,000 cy over two 6-month seasons). There are no taxes on disposal fees if the material to be disposed is delivered to the landfill. If the landfill is to provide transportation to the landfill, then a 7% tax is added to the transportation and disposal fees.

ITEM ITEM: Disposal at hazardous waste landfill

DESCRIPTION: Disposal of sediments w/ PCB concentration greater than 50 ppm at Environmental Quality (EQ) - Wayne Disposal landfill in Belleville, Michigan. The Wayne Disposal landfill currently does not have direct rail access. The closest rail access is 10 miles away at EQ Michigan Recovery facility. EQ can provide trucking service from the Michigan Recovery facility to the landfill for \$15/ton. A new rail spur is being extended directly to the Wayne Disposal landfill by CONRAIL (Lee Fulton, CSX Transportation, 9/16/98). The new rail spur will be ready for operation by October 1999 (Barren 1998).

There is no specific solids concentration required for incoming material. However, no free standing liquid is allowed. Currently, the landfill does not have the capability to treat free liquids which may become separated from the waste material during transportation, EQ may have that capability in one year (Barren 9/16/98).

One sample analyzed for PCBs and one paint filter test is required from the landfill for disposal.

INFORMATION SOURCE: Environmental Quality/Wayne Disposal Landfill, Marc Barren 734 697 2200

PRICE: Tipping fees: \$65-\$75/ton Landfill tax: \$27.50/ton State tax: \$10/ton

Total: \$102.50-\$112.50/ton

## ITEM: Water Treatment

DESCRIPTION: The water decanted during gravity settling of the dredged material and water from the mechanical dewatering process will be treated by settling in a clarifier and followed by gravity sand filtration. Provisions for addition of flocculating chemicals in the clarifier(s) will be included. An estimated volume of 100,000 gallons/day of water will require treatment. (The estimated volume was calculated assuming a total of 100,000 cubic yards of dredged material w/ in-place solids concentration of 50%, dredged solids concentration of 30%, and dewatered solids concentration of 70%, with a total of 200 days of operation). Information on a packaged plant for treating 150,000 gallons/day was also requested.

Water will be pumped from the dewatering process to the gravity clarifiers which will be 12' x 12' x 16.5' (width x length x height) hoppers. A box will be provided on the clarifiers to minimize turbulence in the entering pumped flow. A valve is provided at the bottom of the hopper for withdrawing sludge. Depending on the amount and type of flocculant used which will determine the rate of sludge formation, the valve can be automated to open on a timed schedule, mechanically opened as required, or left continuously open. Sludge is pumped out and returned to the dewatering process. Water decanted from the clarifier will be gravity fed to the filter. The sand filters (sized as appropriate for the design flow) will consist of a minimum of two cells. This will enable continuous operation during filter backwashing. Backwash water will return to the water treatment process.

During the winter between operating seasons, the treatment units and particularly all piping should be completely drained. The filter can be protected by covering up with a walkway grating with insulation slipped between the gratings. All pumps should also be insulated for protection.

The treatment units are sized for: clarifier: 4 hour settling time sand filter: 1 gpm/sf

For 100,000 gpd: Two 12' x 12' x 16.5' hoppers One 12' x 40' x 12' sand filter

For 150,000 gpd: Three 12' x 12' x 16.5' hoppers One 12' x 55' x 12' sand filter

#### INFORMATION SOURCE: Water Inc. - Jerry Serame: 615 264 0060

PRICE: will be provided by 9/25/98

ITEM: Capping technology - Aquablok bentonite cap

DESCRIPTION: This technology which is developed by New Waste Concepts involves applying a bentonite/gravel mix material to form a cap. The material are pellets consisting of gravel encapsulated in a clay/bentonite layer. The pellets can be manufactured on-site if the raw materials (gravel, clay, proprietary polymers) are available. The material can be applied from a barge, a conveyor, or even from a helicopter. As the material is released to water, it hydrates, expands and forms a continuous layer. A layer of pellets can expand to twice its initial thickness when hydration is achieved. In an inundated area, hydration of the cap is typically achieved in 1-2 days; thicker layers may take up to 7 days or more to hydrate. The material can withstand erosion in water with velocity up to 6 fps. The thickness of the layer depends on requirements for diffusion control, burrowing depth, and erosion control. Typical thicknesses for past applications range from 4" to 8". The permeability of the cap is approximate 10⁻⁹ to 10⁻⁸ cm/s. No preparation of subgrade, no cover material, and no anchoring are required for the bentonite layer.

Some resuspension of sediment will occur when the Aquablok material is applied. Extent of resuspension depends on depth of water, rate of application, and grain size of sediments. In environments with low velocity flows, some of the resuspended material will be incorporated into the cap as the Aquablok material hydrates. A layer of sand ( $\sim 0.5$  cm) can be placed on top of the sediments prior to applying Aquablok if resuspension is a particular concern.

The Aquablok material has been tested extensively in the laboratory. The material has been shown to withstand freeze-thaw cycles. Cracks that do develop during freezing typically rehydrate and reseal during thawing. The material is sensitive to dessication and cracking is a problem if the cap is exposed for extended of time.

This technology has been used in Alaska at Fort Richardson. A 1-acre area in an estuarine/wetland environment contaminated with white phosphorus was covered with the Aquablok material in 1994. A 4" layer was applied from a helicopter (because of concerns about live ordnance in the area) over a period of 3 days. The cap effectively sealed the area and made the white phosphorus unavailable to ducks living in the area which were getting sick from eating the white phosphorus.

A pilot study demonstration is currently being planned in the Ottawa River in Ohio. Three 1acre areas will be capped with: 1) Aquablok, 2) Aquablok w/ geotextile, and 3) Aquablok w/ geotextile and layer of stones, respectively. The Aquablok will be applied using a barge, by helicopter, and a conveyor which spans the width of the river to assess the best method of application. The area to be capped is in 2' to 9' water.

INFORMATION SOURCE: Hull & Associates- John Hull and Joe Jersak: 419 385 2018; New Waste Concepts - Tom Nachtman: 800 359 2783, ext 110

PRICE: \$150-200/ton of Aquablok material; for 6" layer: 9-10 lbs/sf, for 8" layer: 13-14 lbs/sf. Using \$150/ton: \$0.68-\$0.75/sf for 6" layer, \$0.98/sf-\$1.05/sf for 8" layer

Using \$200/ton: \$0.90-\$1.00/sf for 6" layer, \$1.30/sf-\$1.40/sf for 8" layer Installation cost: \$10,000/acre (or \$0.23/sf). Rate of installation: estimated 2 acres/day from barge/conveyor (potentially higher if operating from land).

According to Tom Nachtman, quotes from John Hull for the material does cover the cost of bringing the product to the site; providing that there is a quarry not too far from the site where the raw material to manufacture Aquablok can be obtained.

#### ITEM: Transportation by rail

DESCRIPTION: Transportation of dredged material from dewatering/treatment facility (closest town is Fort Edward) to landfill by rail. The closest rail station (probably at Fort Edward) would provide freight rates for transport (by getting costs from all stations along route). The closest rail line to site may is a Delaware & Hudson line which has been bought out by Canadian Pacific (Fulton 1998).

Two modes of transport by rail: intermodal containers and gondola car. Each intermodal container holds ~20 tons of material. Four containers can go on a flat car, so that each flat car can hold ~80 tons of material. The containers can be transferred onto a truck flatbed for truck hauling if a landfill does not have direct rail access. A container can be unloaded through a backgate or if the equipment is available at a landfill, the container can be dumped by turning it upside down. A gondola car can hold ~90 tons of material. The gondola car would be covered by a tarp during transportation. A loader with clamshell bucket can be used to load and unload a gondola car. Another option for loading a gondola car, particularly at a site that does not have direct rail access, is to provide a ramp that can be hooked up to the gondola car to load truckloads of material onto the car (Fulton 1998).

For a round trip distance of approximately 700 miles (Fort Edward to Niagara Falls and back), 50 to 60 gondola cars should be leased to haul 500 cubic yards of dredged material per day. The number of cars required depends on the time it takes to make a round trip (Fort Edward to Niagara Falls and back). (Rich Hartzell of Canadian Pacific estimated 3 days travel from Fort Edward to Niagara Falls). The capacity of each car is 2,743 cubic feet (~100 cy). A loop of cars should be operating at any one time: one group of cars loading at the site, one group unloading at the landfill, one or more group(s) traveling from the site to the landfill, and one or more group(s) traveling from the landfill back to the site. The railroad would be notified when a group of cars is ready to be transported (Quinn 1998).

Flat cars used for transporting containers are not as available as gondola cars. Flat cars are typically leased for 5 years; so that leasing rates for shorter periods of time may be substantially higher. A 90-days notification is typically required to make containers and flat cars available. Availability of intermodal containers and flat cars may be a problem, particularly during summer months (Frazer 1998, Dyson 1998).

Rail transport is not highly dependent on distance, unlike truck hauling. So if a landfill farther away than the Niagara Falls area with rail access can be identified that will accept the dredged material for lower tipping fees, disposal there may be an option (Fulton 1998).

INFORMATION SOURCE:	
Rail transportation -	Lee Fulton, CSX Transportation, 610 388 9639.
	Rich Hartzell, Canadian Pacific, 630 990 6993
Ramp to load gondola car -	Exodus Logistics: Ronny Knight 800 441 1153

#### Railcar/gondola car leasing - GATX: Paul Dyson 800 405 2555 DJ Joseph: Neil Quinn 513 621 8770 Herzog: Jim Frazer 816 233 9001

PRICE: \$500/month to lease 1 gondola car (Quinn 1998)
\$550/month to lease 1 flat car, based on a 5-year lease (Quinn 1998)
\$435/month to lease 1 gondola car, plus \$1.24/car/mile for transport from Missouri (where the cars are located) to site, plus insurance, taxes, and maintenance (Frazer 1998). Mr. Frazer suggested 2-year lease (or 1.5 year lease) may be more appropriate than two 6-month leases as it would assure that the cars would be available when needed. The cars may be leased out during the 6-month period when dredging is not conducted.

\$1,722/gondola car per round trip from Fort Edward to Niagara Falls (3 days trip per way) (Hartzell 1998)

\$12/container/day - short term lease of 25-cy container (Dyson 1998)
\$300/container/month - 6-month lease of 25-cy container (Dyson 1998)
\$1,000/flatcar/month - (4 containers/flatcar) (Dyson 1998)

Freight rates for a gondola car from Ft. Edward to Wayne Disposal in Michigan and freight rates for a flat car w/ containers from Ft. Edward to Buffalo, NY (for transfer to Model City) will be provided by CSX.

T	AMS	INTEROFFI	CE CORRESPONDENCE
To	Bruce Fidler	Location	Date Sep 16, 1998
From	Mark Moese	Location	Job No.
Subject	Hudson Early Action Assessment- Draft Proposed Monitoring Plan	Reference	

This memo is a Draft monitoring plan which needs to be included in the development of the dredging/capping alternatives. This effort is exclusive of any monitoring of the land based sediment handling operations and health and safety monitoring.

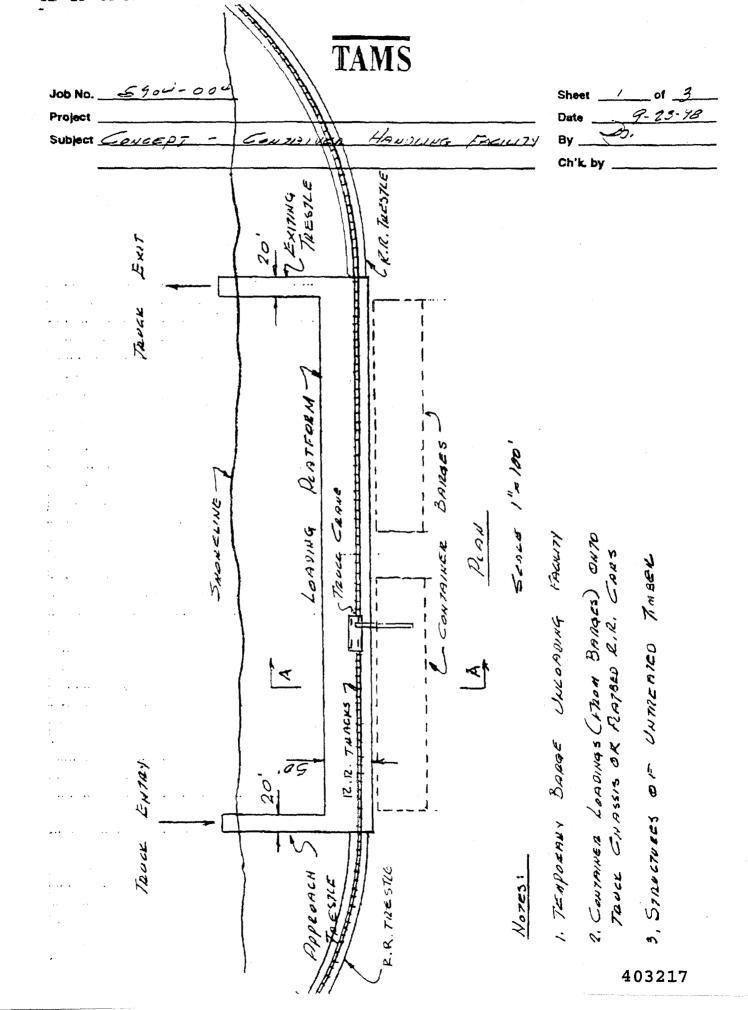
#### PROPOSED MONITORING PLAN

• PCB/TAL Metals Water Sampling

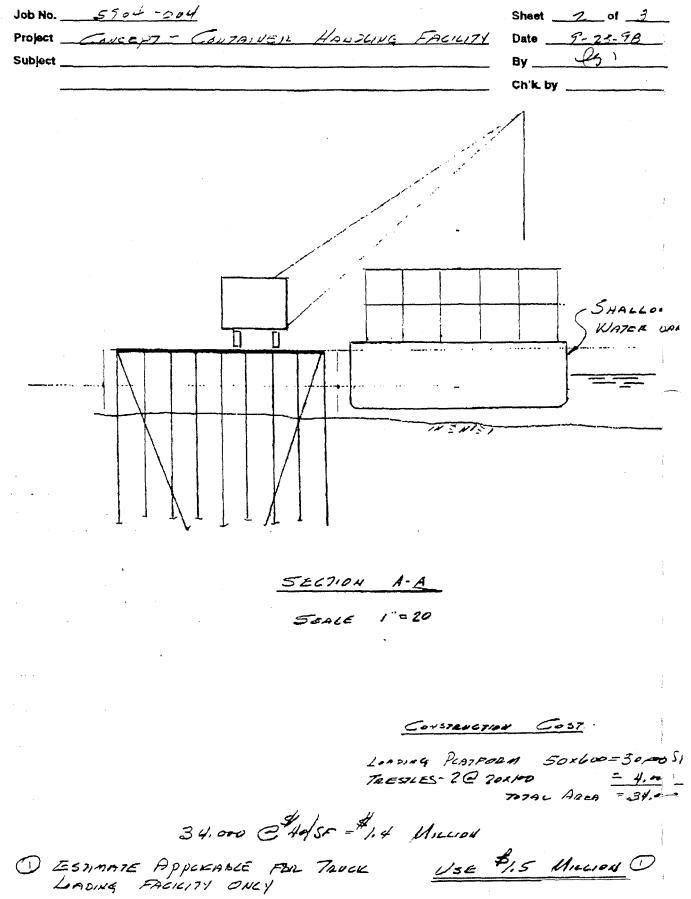
Collect 24 hour composites at both the Thompson Island Dam and in Schuylerville for PCBs and TAL Metals in whole water and dissolved fractions. Sampling will be performed every other day with analysis turnaround in 24 hours. Estimated analytical costs are: \$320.00(low level PCBs) and \$270.00(TAL Metals) X 15 samples/month X 2 locations = \$17,700.00/month.

• Fish Tissue Sampling

Collect samples once per month from the Thompson Island Pool and Schuylerville for PCB and TAL Metal whole body analysis. Three species of fish should be sampled with three samples per fish per location per event. The three suggested fish species are: yellow perch, large mouth bass, and pumpkinseed. PCB congener specific analysis is preferable. Estimated cost associated with these analyses is: 3 fish X 3 samples /event X 2 locations X \$420.00/sample(PCB) + \$370.00/sample (TAL Metals) = \$14,220.00/month.


• Monitoring of Suspended Sediment

This effort will require daily monitoring 100 feet down river of the silt curtains or the dredge for total suspended sediments. This effort can be undertaken in an on-site laboratory with the purchase of \$1,500.00 of capital equipment (drying oven. scale, buchner funnels etc.) and trailer rental.


It is anticipated that the sampling and analytical effort would require the presence of two laboratory/sampling technicians during the dredging activities.

#### TAMS Consultants, Inc.

300 Broadacres Drive 3rd Floor Bloomfield, NJ 07003 (973) 338-6680 Fax (973) 338-1052 ł







TAMS

Job No. <u>59</u>	04-004	<b></b> _			Sheet	7
Project	100-17- C	CONTRINER.	Handung	FACILITY	Date <u>P</u>	2
Subject					Ву	5
					Ch'ir hy	

_of __' <u>8-78</u>

CONSTRUCTION COST ESTIMATE ITEM SITE 1)417 COST -057 \$40/55 BASIC LOADING PEATFORD GROCKS OND 1,200,000 30,000 SF \$ 40 /SF 4,000 SF 160,000 TROCK TRESZLES \$ 300 / LF CANVERT LP TO ACCOMMONTE R.R. CAN 600 LF. 300,000 1200 /LF 800 L.F. 960,000 R.R. TRESTLES 2.620,000 : <u>.</u>. CONTINGENCIES-SAY 15% 393,000 A3,013,000 . . . . . . · · · · 3.200,000 · •••••• Usê · · · · · · 2 ESTIMATE APPLICABLE FOR FACILITY THAT GAN ACCOMMODATE BOTH, TAUCE Losomes & R.R. CAR LOADINGS

ł

	5904	•····											
ect	Hud son	n Rive	Ý					<u></u>		_ Date		10/198	
ject	Volum	e Day	deed for	<u>Ace</u>	255 (	Chame	el			_ By _	l	. Thai	
			1							_ Ch'i	с. by		
Volu	ine Dri	edged	For A	ccess	Cb	annel	to D	ockin	g. Fac	ility_		x	····
							,		J	. 1			
	Want	water	alper	<b>л U</b> Л	ana	nnel		<u>.</u>					
	Ave	oa 3'.	69'-	Or 8	.5' d	opth.	aug -	dred	e 0.	5' to c	71		
	·	$\frac{1}{2}$ (12)	5 + 17	+5') x	50	1 × 0.	5' =	3750	cf	·			
		4										• •	
	Aye	2a 6'-	tas' -	or 7	" def	oth a	1127 -	drede	e 2'	to 9'			
		$\frac{1}{2}$ (65	D! x 12	oʻ.) >	( 2'	= 78	3,000 0	if J					
		<u> </u>								•			
	Av.	2a 4' +	0 6'	<i>O</i> V	5' de	eath a	wa_	dreda	re. 4'	to 9'			
	·····	ea 4'th 650'	X 40'	x.4'	=1	64,00	olf		]-		• •		
											,		
····		ea z' 1650' x	to 4	 	5 6 79.	soo ci	ang	_ are	age c	5 07			
	AND	D			· · · ·					· ·		<b>.</b>	 
	AND	D			· · · ·					· ·		ved for	cantam.
	AND	D			· · · ·					· ·		ved for = <b>43</b> ,	cantam. 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	ved for = <b>+3</b> ,	canlam, 750Cf
	Ave	D	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	· ·	vemo * 7'	ved for = <b>43</b> ,	cantam. 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	ved for = <b>43</b> ,	cantam. 7504
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	ved for = <b>43</b> ;	canlam, 750 cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for = <b>+3</b> ;	cantami, 750 A
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	ved for = <b>13</b> ,	contam, 750 cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for = <b>43</b> ,	cantam, 7504
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for = <b>43</b> ;	contarm, 750 cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	contarm, 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for , = <b>+3</b> ,	contarm, 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for, = <b>43</b> ;	contarm, 750df
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for, = <b>43</b> ;	contarm, 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for ,	contarm, 750cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	vcd for, = <b>43</b> ;	contarm, 750 cf
	Ave	a D 31,192 Avg d Area	sf d epth needed	to be	ed 1 Neec rem	for to ved	Contar remov to 9'd		t lem $d'l$ $\frac{1}{2}$ (25	10vzl  (after 1' 0'× 50)	vemo * 7'	xcd for , , ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	contarm, 7504

τ	7	7	ε	0	Þ
---	---	---	---	---	---

	·····
	1
	•~
	- •• ••••
	• • • • •
solomos 2F = pit * 1.0	•••••
Assume 10% ave sent to laboratory	
Towns/15 000S	
saidwas +17 = 11 * JE EEI'EHZ'E = 59 gwas wants pp4 to #	- 
Total surface area dredded = 3,243,133 sf Total surface area dredded = 3,243,133 sf	
HERMIE I SUMPLE WERE I 2,000 to have unputerest	
Assume : somple every 5,000 st plus 10% dupucates	^
fundanes voyeuryang	
<u> </u>	
# of confirmation samples at predict surface Chik by	
et Auontities for lost Estimotes - Alt D.1 By LIng:	əļq

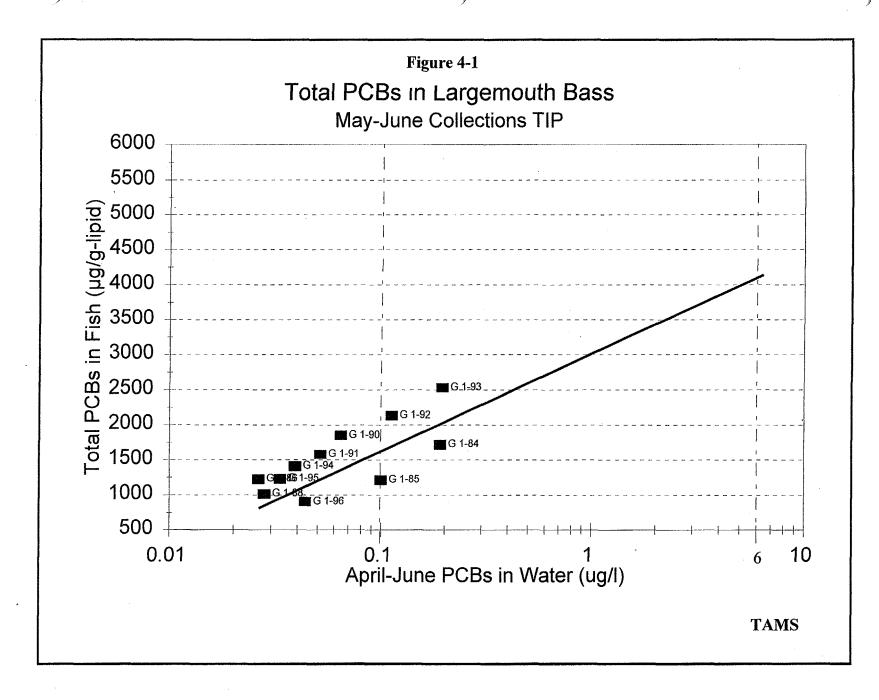
Job No. 590 4 Sheet / of / Hudson River TIP Farly Action 9/98 Project Date __ By le Tha Number of containers and flat cars required Subject for transport of sediment to landfill Ch'k. by Dredginy 60,000 cy / yr =) 5 mos at 20 days/mo => 600 cy / day____ if assume 1.5 T/ey => 600 x 1.5 = 900 T/d according to if each container can hold ~ 35 Toxs (Brian Larson, = 900 = 26 containers par day 35 if assuming 2 containers per flat car => 26 = 13 flat cans/day 13 × 5 = 65 flat cars/week ease 65 flat can's for # of months doing diedping assume I week nound trip to land fill need 26 containers x 5 d x 2 wks. 260 contai day. 1 wk loading I we travelle

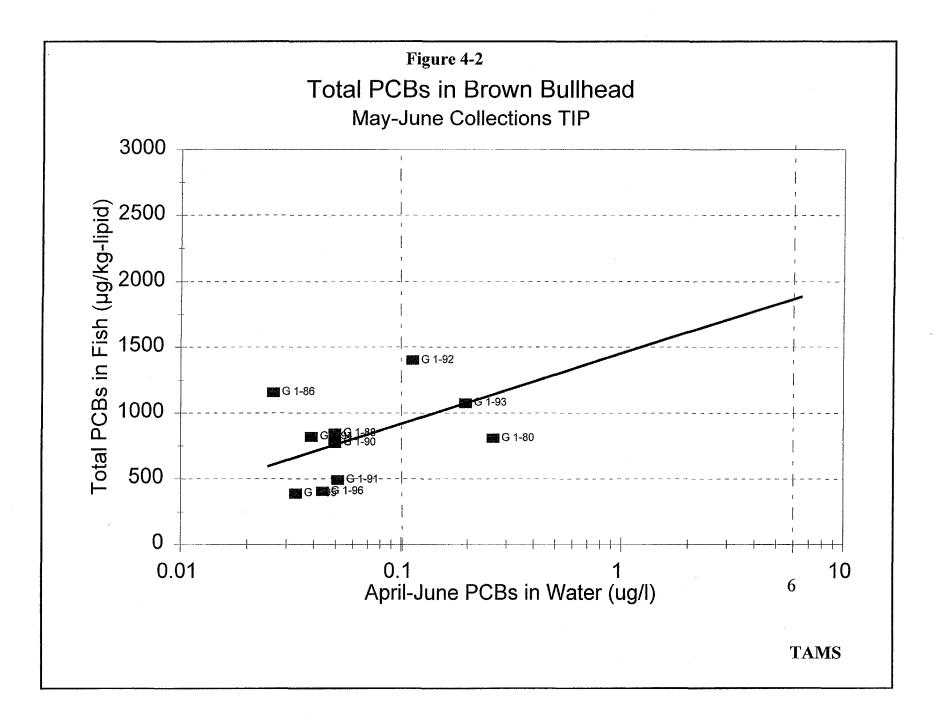
	io																							-					t				!	1	
oje	ect _	t	tuc	150	212	R	iV	er	-	TIF	<u> </u>	ar	4	A	chi	m										-	D٤	ate	ئە 	7/9	8				
ib)	ect _		Vc	<u>u</u>	n	ا <del>ت</del>	0	£	ωı	ate	<u>y</u>	fo	<u>r</u>	tr	201	fm	en	<u>t -</u>	- <u>A</u>	lt	D	-1				_	By	1	2	TH	1a				
	_																									-	Cł	1 <b>'k</b> .	by						
		:		• • • • •	••••	~~~~		*****			****						~~~~				••••										~~*				•••
} ;	To	ta.	L	Jol	u	ne	• • • •	of	5	èd	in	201	nts		Dre	da	ed			2	38	.00	20	.су							•		• • •		
																								. •											
	_/£	k	25	۶ų	m	e		iol	Ш <b>л</b>	ne		оf	w	ate	¥	er	tra	ain	ed		S	apt	2.00	x		3%	áš	π.	.va	w	n.€				
		<b></b>		of .	dr.	ed.	pe	d.	se	di	m	en	ts	, (	ie	fo	V	ea	ch.	ы	ick	et	r	em	00	ed	, , , .	75	%.	νc	lec.	me		· ·	• •
				<u>`</u> S	sec	٢Ŭ	'n	en	t.	. <b>,</b> . 4	25	%	is.	_u	ate	<u>b)</u>	- <b>)</b>	an	de	255	su	ni	ng	de	a	n.t	inq	? <i>L</i>	റ`പ	L		••••			
			. 1	(er.	no	ve	• · ·	al	U.	ω	at	ev	. L	nt	V.ai	<u>ne</u> c	1. (	ſΨ	ίμ.	5	ď	ed	qëi	en de				·	· · •	· .		••••			-
								~						****		·····								04	• • • • •			* * * * *				***			
			••••					~								<b></b> .	• • • •		·····		 1.	023	3	730	 7 Z	aal				•••••		_ <u></u>	<b>f</b>		
		•••••				•	• • •				• •		•			· .		•	-	ł	æ)	1	7 ) 7	730		بمر	•			•••	-				
					••••		-			• •					••••		• • • •	• •			• •				• •		•••								• ·
																						•													
																																-			
				<b></b>			• • •	• • • • • •					· · · · •						• • •													. <b></b>		<b></b>	
			•••										•																		<b>.</b>	···	••••		
·····					• • • •		• - •	• •								•		-				-						· - · ·			<b>.</b> . <b>.</b> .				
					•••••	•••									• • •																	• •			
					•		• • •	17 ar bennik b								• • • • •		• ••											• • • • •			•••••			
	÷					• • •	-	• ·	•		••									•											- ·				•••
				• • • • •	• • • • • •		••••• :			••••				• • • • •				••																	•••
																					••••	• •													
																		ww										•				····			
	ļ		<u>}</u>													·····	<b>.</b>											•	<b></b>						<b>.</b>
				•	•											<b>.</b>	<b></b>		•••									· · · ·							
				:			~					• • • • •				***		<b>.</b>				• • • •	<b>.</b>										•••		
	+-				;				•	• • •	• • •	• • • •	• • • •		<b></b> .		<b>.</b>	••••		• •				••••••			•		• • • • • •				•		
			<u> </u>		i		-		ì			i i						 !				• :				• - • • •							:	•~~~~	• • •
	1		<u> </u>	 {					<u>ب</u> ۔۔۔۔ :			<u>+</u>	·		;	1	<b>.</b>			<u>.</u>	-,	÷				;	***								
	1		÷		••••••   	1	-	•••• : :						:		1	;	;				;		:		• ·	:	1	~ <b>-</b>			•••••• {	1	:	
							- 4- -		i														····	- p		•••••••	· · · · · · · ·		:			•		* ; ;	
						1										[				;						 						;	:	i • • • • • •	
~~~~	-			:			, ,				• •	·······															•			•					
	ļ			: 							<b>.</b>			••••	• ••	· • · ·	• - •	-						···· <b>·</b>	• • •		<b></b>	•			•	·····		···	·
			<u>.</u>				- <b></b> -					·	••••					• • • •		<b></b>	. <b></b> .					• • • • •	•		•••••	•					•
		;		~	· • · ·				•••	•		<b>.</b>		•		• •			•					•	• • • •	• • • • •		- <b>-</b>		• • • • • •		••••			•••
	+		÷	<b></b>	• • • •					<u>.</u>										••••						•••		••••	•••		••••			•••••	***
	÷	÷	÷				- • -			•••	••••	•	•••	•••		. •	· • · ·	· • · · - ·		• •	••		• • •		•••		•••			•••••	• · ·				****
		<b>.</b>	 :				• ••• •	~~ - * *		•••		••••						····-				••••						· •		•	•	~ ~ - •	• • • • •		
	~ <u>~</u> ~~~	*	-;				••••			• • • •	•••	••••	•••••	· · · · · ·		• • • •				•		* "	• • •		****	••••	• • • •					· • ·			

#### 4. **PREDICTION OF IMPACTS TO FISH**

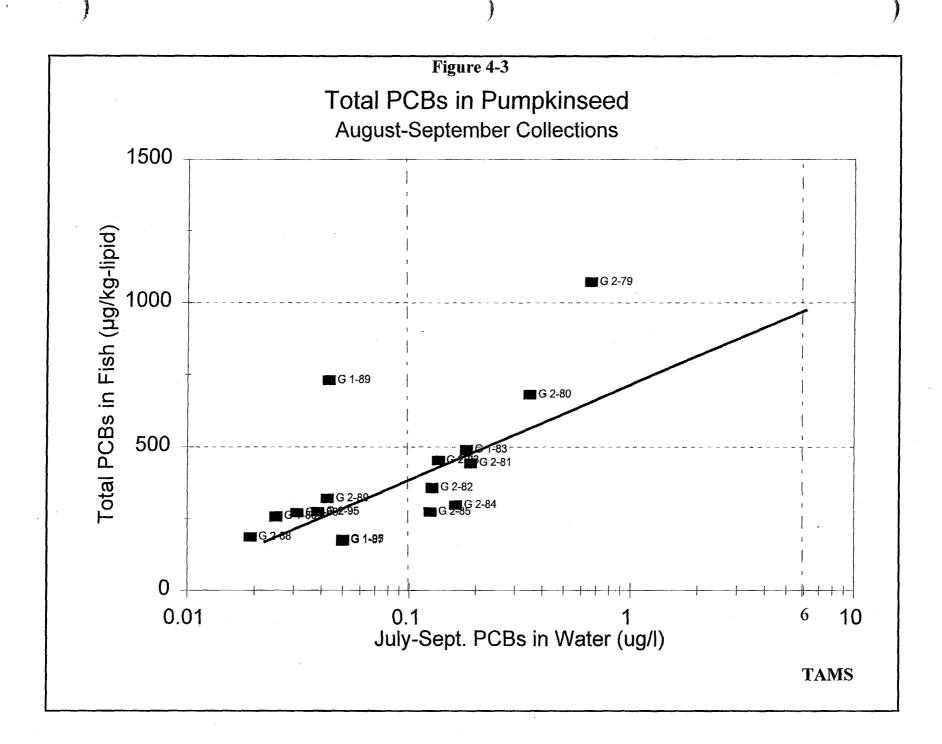
One of the major ecological issues involved with the proposed early action alternatives (*i.e.*, dredging and combined capping/dredging) is the potential increase in PCB water concentrations and subsequent bioaccumulation in and impact to fish in the TIP. This analysis is primarily based on the release of contaminants during dredging activities as a worst case example because resuspension of sediment during capping should be minimal. As noted in Chapter 3 above, the most important means of controlling sediment resuspension are the use of appropriate equipment and conducting the dredging operations in a controlled manner.

As the first part of this analysis we examined total PCB water concentrations versus fish tissue concentrations during previously performed consistent sampling series and coincidental sampling periods. These data are presented in the attached figures. Each point on the graph represents an arithmetic average of lipid normalized total PCB concentrations. Each point is labeled to show the location and year; *e.g.*, G1-88 indicates the TIP for 1988. While a trend may be evident, caution must be taken as to the true power of these relationships as a predictive tool. The relationship as originally presented in the data are more consistently compared. Water column concentrations appropriate for each station were estimated from USGS observations at Stillwater, where TIP concentrations were adjusted up from the Stillwater data in accordance with the Preliminary Model Calibration Report (or PMCR, USEPA, 1996) procedure.


As a conservative estimate a simple trend analysis was undertaken to evaluate impacts at the dredge location for the pumpkinseed, brown bullhead, and largemouth bass. Based on a visual interpretation, a line was placed to estimate the potential trend in the data to predict what average concentration may occur in fish tissue if, based on the dredging impact analysis, the estimated maximum water concentration at the dredge increased to 6.0 ug/l total PCB during the dredging. (A description of the early action scenarios involving dredging is provided in Section 3.2.)


For the pumpkinseed, the database did not provide sufficient data in the TIP, so Stillwater data were included. The trend for the brown bullhead is less apparent due to the variability in the data. While for the largemouth bass the trend indicates that fish tissue concentrations may increase above the 1993 average which occurred during the May to June time frame, any projected increase in tissue concentration at the dredging location does not appear to be significant. Using an average lipid concentrations of 3.3% (pumpkinseed), 2.9% (brown bullhead), and 1.4% (largemouth bass) (USEPA, 1991), increases in tissue concentrations at the dredge were calculated (Figures 4-1 to 4-3). In the vicinity of the dredge, the largemouth bass tissue concentration may increase to 57 mg/kg, for the pumpkinseed, tissue levels may increase to 31 mg/kg, and brown bullhead concentrations may reach a maximum of 55 mg/kg.

For the second set of analyses, a simple calculation was performed to estimate the average daily mass loading which may occur in the TIP from the dredging activities assuming that dredging operations lose roughly two percent of the total sediment dredged (Tavolaro, 1984). This sediment loss coupled with the cumulative PCB mass removed, the estimated volume of sediment removed, the size of the bucket, and the number of buckets per day yields the potential total mass of PCBs released to the TIP on a daily basis. The results indicate that during the implementation of Alternative D-1 the average daily mass loading of PCBs during years 1, 2, 3, and 4 of the dredging


operations would be 0.92, 0.71, 0.89 and 1.00 lbs of PCB per day to the TIP, respectively. For Alternative D-2, the first year of dredging would release an average of 1.14 lbs per day, while the expected average losses for the second year of dredging could be approximately 1.27 lbs of PCB per day. The calculated average daily mass loss of PCBs to the TIP for Alternative D-3 is 1.57 lbs per day. Therefore, depending on the actual final dredging sequence the estimated PCB loading to the TIP may range between 0.71 and 1.57 lbs per day. This incremental increase in PCB loading may increase the PCB water levels an additional 0.050 ug/l within the TIP. Using the 1996 data which indicate a water-column concentration of around 0.04 ug/l, the additional load from the dredging activities would result in a total water-column concentration of approximately 0.1 ug/l. This concentration is within the range of historical averages for the April to June time frame. In addition it is expected that the actual loss per bucket removed should be below the two percent estimated by Tavolaro (1984) for larger clamshell buckets, based on the use of a smaller environmental bucket and the projected slower dredging rate.

In conclusion, one can anticipate that there will be an increase in fish tissue PCB concentrations in the TIP and down-river of any action involving dredging. The magnitude of this increase may not be adequately forecasted by the trend analysis, since fish dietary exposure or other factors may play an important role in determining any increase in PCB tissue concentrations. Based on this analysis, however, it can be expected that the average fish tissue concentration increase at the dredge should not approach the levels found in the late 1970's except for the brown bullhead for which limited data exist for that time period (USEPA, 1991). This analysis is supported by previous investigations on the potential for contaminant impacts during dredging activities. Work by Peddicord and McFarland (1978) found that even in documented cases where tissue accumulation occurred, the resultant fish tissue concentrations were only a few times higher than in control organisms. While the levels of PCBs in fish may temporarily rise in the vicinity of a dredging operation, they will likely drop quickly back to pre-dredging levels. This is clearly illustrated by examining the increase and decrease in fish tissue PCB concentrations after the release at Allen Mill in the fall of 1991.





)



#### 5. EVALUATION OF ECOLOGICAL IMPACTS OF ACTION ALTERNATIVES

#### 5.1 Dredging Impact Analysis

I

Based on the technology selected for the dredging alternatives, an approximately 2 cu. yd. bucket with a closing lid, the following impact analysis is a conservative estimate of potential impacts because it is based on available information concerning dredging using a larger clamshell dredge. The use of a small bucket, a slow rate of dredging, and potential use of silt barriers will result in a loss rate of sediments that would be low. The vast majority of sediments that do escape are expected to resettle in the vicinity of the dredging site. In addition, potential impacts are expected to occur only during the dredging season, *i.e.*, May through November, thereby allowing some recovery to take place during the remaining months of the year.

The potential direct or indirect effects of dredging target areas in the TIP include:

- Physical disruption of the bottom;
- Changes in bottom topography;
- Suspension of sediment;
- Alteration of water quality; and
- Release of sediment-bound contaminants.

Dredging causes damage directly by the physical disturbance involved in removing sediment. The deepening of the water habitat can alter its stability by adjusting the bed geometry and hydraulic regime. This may reduce current velocity and accelerate sediment deposition (Kennish, 1992).

The principal effect of dredging on water quality relates to increases in turbidity, nutrients and contaminants. Most organisms are not seriously affected by suspended sediment conditions created in the water column by dredging operations. Organisms normally associated with muddy environments are highly tolerant of sediment suspensions. Dredging-induced turbidity may have effects on local community function such as photosynthesis but these effects are transitory. Laboratory experiments by O'Connor et al. (1977) on the sublethal effects of suspended sediments on estuarine fishes showed that white perch exposed to 0.65 g/L of Fuller's Earth for five days resulted in respiratory function impairment. O'Connor et al. (1977) also determined 24 hour LC₅₀ concentrations of suspended sediment for several fish species including: killifish (38.18 g/L), mummichog (39 g/L), and white perch (less than 10 g/L). Hematological analysis on striped bass at exposure concentrations of 1.5 to 6 g/L of natural uncontaminated muds for six days caused no detectable impact. However, when exposed to suspended contaminated sediment striped bass (Morone saxatillis) survived only a few hours at 0.5 g/L suspended sediment, a condition representing a worst case of turbidity generation associated with a dredging operation. Such exposures are very unlikely to occur in the field where motile organisms may escape turbidity maxima, and where currents disperse sediments as they settle out of the water column.

Dredging analyses performed by the USACE Waterways Experiment Station (WES) on clamshell buckets indicate that within 100 feet of the dredge the maximum water column suspended sediment concentration is approximately 0.3 g/L (WES 1986) with an average concentration of 0.1 g/L (Barnard, 1978). During dredging activities in Haverstraw Bay, using a bucket dredge with no suspended sediment engineering controls in place, WES (1989) analyzed total suspended sediment (TSS) concentrations near the dredge and at locations within the Bay at the surface, mid-depth, and bottom layers of the water column. They showed that at the surface and mid-depth, the average TSS value was 0.026 g/l while at the bottom the TSS value was 0.14 g/l. Bay-wide, the suspended sediment concentration during the dredging work resulted in a mean turbidity level of 8.4 NTU or slightly under the 0.026 g/l value at the dredge. This bay-wide suspended sediment level may be higher than what would be encountered in the TIP since Haverstraw Bay is subject to tidal cycles which would move the suspended sediment both up and down river, the dredge was not an environmental dredge, and no suspended sediment engineering controls were implemented during those dredging activities. Once dredging ceased however, turbidity increased due to fine grained materials on the disturbed bottom. This elevated turbidity can continue for a time after dredging until the bottom stabilizes. In the TIP, once dredging has ceased the increase in turbidity will be less of a concern due to the lower PCB concentrations expected in the destabilized sediment.

The resuspension of bottom sediment releases nutrients and remobilizes contaminants affecting water quality and water chemistry. The role of anthropogenic pollutants associated with dredged materials is difficult to assess because sediments containing high levels of pollutants do not necessarily release them into the water column during dredging (Kennish, 1992). Chemical analysis of sensitive species for metals, PCBs, and pesticides indicate uptake will occur but none were accumulated to levels which appeared to be sufficient to influence the survival of the exposed organisms (Peddicord and McFarland, 1978). Even in documented cases where tissue accumulation occurred, the concentrations were only a few times higher than in control organisms (Peddicord and McFarland 1978).

Potential impacts resulting from sedimentation during dredging operations is expected to be localized and temporary. The contaminants in the TIP sediments were deposited from chemical releases from upstream sources. Because there are no sources of chemicals at the dredging sites, dredging activity does not contribute any new quantities of contaminants to the aquatic environment. The disturbance and loss of small amounts of contaminants during dredging may result in a redistribution of these contaminants. Because there is widespread contamination in the Hudson River sediments, the redistribution of a small quantity of contaminants would not appreciably alter the exposure levels of benthic aquatic life to these contaminants. In 1989 USEPA performed extensive biomonitoring during the New Bedford Harbor Pilot Dredging Project. This monitoring program was developed to ease public concerns that dredging the PCB contaminated sediments would significantly affect aquatic plants and animals in the harbor. Several dredging technologies were tested coupled with an extensive biomonitoring field program to determine the potential impacts of dredging shallow water areas. After extensive testing no acute or chronic biological effects were observed from dredging the PCB contaminated sediment.

In 1977 during dredging activities near Fort Edward, monitoring data were collected by NYSDEC for PCB water content and suspended sediments (Brown, 1981). This report determined that during flow conditions averaging 1,240 cfs PCB levels at the dredge were found to be 0.29 ug/L resulting in a transport of 1.94 lbs/day. Assuming a maximum sediment concentration of 234 mg/kg in the

TIP sediments projected for removal under this action and a TSS value of 0.026 g/l, then the expected worst case incremental water concentration at the dredge could approximate 6.0 ug/l. Any potential water column concentrations will be highly dependent on how rapid the sediments settle out of the water column, and the amount of mixing that will occur based on river flow at the time of dredging.

The evaluation of mass loading which may occur in the TIP from the dredging alternatives was calculated assuming that dredge operations lose roughly two percent of the total sediment dredged (Tavolaro, 1984). The results indicate that during the implementation of Alternative D-1 the average daily mass loading of PCBs during years 1, 2, 3, and 4 of the dredging operations would be 0.92, 0.71, 0.89 and 1.00 lbs of PCB per day to the TIP, respectively. For Alternative D-2, the first year of dredging would release an average of 1.14 lbs per day while the expected average losses for the second year of the dredging could be approximately 1.27 lbs of PCB per day. The calculated average daily mass loss of PCBs to the TIP for Alternative D-3 is 1.57 lbs per day. Therefore, depending on the actual final dredging alternative and sequence, the estimated PCB loading may range between 0.71 and 1.57 lbs per day, which may incrementally increase the water levels by approximately 0.05 ug/L, depending on the total river flow at the time of dredging.

Ecological recovery of the dredged locations in the TIP may occur slowly with opportunistic pioneering species initially recolonizing the site and later being supplanted by organisms in a successional pattern. The life cycle activity of the benthic fauna present within the project area is generally limited to the top several centimeters of bottom sediment. Dredging will result in temporary loss of benthic habitat, therefore bottom feeding predators would suffer a temporary loss of prey until the area is repopulated. This recovery process may require one to two years since many benthic species have distinct peaks of reproduction and recruitment, and benthic recovery is temporally and spatially variable. Lateral migration of organisms and larval recruitment from upriver areas will play important roles in recolonizing dredged locations in the TIP. Dredging will be performed in small sections over a one- to four-year period, depending on the alternative chosen, instead of one large area. This approach will promote recovery time and minimize potential impacts to the system.

It will be ecologically advantageous in areas where dredging may only remove the top one to two feet of contaminated material that no backfilling take place using clean material so that natural sediments remain for the biota to recolonize. In areas where more than two feet of contaminated material is being removed and it is determined that a hydrologic requirement for recontouring must be undertaken, then fine natural sand/silt should be used in those areas. Any effects in these areas due to the change in sediment grain size should be minimal. WES (1996) showed that based on a 10 day bioassay using benthic organisms that survival of the amphipod *Hyalella azteca*, survival, reproduction and growth of the oligochaete *Lumbriculus variegatus* and survival of the midge *Chironomus tentans* were unaffected by sediment grain size. This review also stated that chironomids may perform better in sandy sediments and that grain size effects on habitat selection may actually be the result of hydrodynamic forces not the result of changes in grain size. It will also be important to recreate a varied benthic habitat once dredging is completed to promote greater species diversity. In addition to the placement of sand/silt during any recontouring requirement and the areas where natural sediment will be exposed, any rock above six inches in diameter should be replaced in the dredged hot spot as a type of gravel/rock bar habitat to promote habitat diversity.

#### 403231

I

It is fully recognized that bioaccumulation of PCBs may occur in fish downstream of the dredging operation due to increases in water column concentrations. They are however, anticipated to decrease following cessation of dredging much like the trend in fish tissue concentrations associated with the release of PCBs from the Hudson Falls GE facility in the early 1990's. Based on an estimated total PCB maximum concentration of 6.0 ug/l in the TIP at the dredge as a worst case, the largemouth bass tissue concentrations may increase to an average of 57 ug/kg, pumpkinseed tissue levels may increase to 31 mg/kg, and brown bullhead concentrations may reach a maximum of 55 mg/kg. (Figures 4-1 to 4-3).

As indicated by the mass loading calculation, the water concentrations are expected to increase incrementally by approximately 0.05 ug/l, which would keep the total PCB concentrations within historical averages. Based on this analysis, concentrations in the largemouth bass and pumpkinseed will not exceed the historical averages in the TIP, whereas tissue concentrations in the brown bullhead may exceed historic levels in the TIP (USEPA, 1991). Any increase in PCB fish body burden may incrementally increase impacts on the health of both aquatic and terrestrial piscivorous species over what is currently occurring. However, once dredging is completed, the resultant decrease in PCB exposure will reduce PCB effects on the aquatic and terrestrial receptors that inhabit the site area. The ecological effects of suspended sediment conditions in the water column typically created by dredging operations are minimal, transient and do not cause irreversible ecological impacts (Stern and Stickle, 1978).

In addition, since dredging will occur along the river shoreline, the potential exists for requiring the implementation of shoreline stabilization measures. If shoreline stabilization is required, bioengineering controls should be implemented. Examples include stone, rock, or log revetments for toe protection, coupled with brush mattressing or brush layering for shoreline stabilization.

At the present time no seasonal restrictions to dredging are anticipated as they relate to environmental concerns. In order to minimize the potential dredging impacts the following items should be included in the dredging operation:

- Dredge used, if a mechanical type, should employ an enclosed bucket with well-controlled movements to reduce sediment resuspension;
- No barge overflow should be permitted, as this contributes to increased suspended sediment concentrations;
- Suspended sediment 100 ft down-river of the dredge should not exceed 0.5 grams per liter;
- Dredging schedule should be from the northernmost (*i.e.*, farthest upstream) target area to the southernmost (*i.e.*, farthest downstream) target area for any scenario;
- Silt barriers should be deployed as a secondary measure where feasible to further reduce total PCB water concentrations;
- No backfill is required if only dredging one to two feet in depth, since maintenance of natural sediment is preferred to sand;

For dredging depths greater than two feet, recontouring with fine sand may be conducted if hydraulically necessary;

- Large rocks (*i.e.*, greater than six inches in diameter) removed from target areas must be returned when dredging is completed to enhance fish habitat; and
- Bioengineering controls should be implemented for shoreline protection.

#### 5.2 Capping and Dredging Alternative Impact Analysis

I

This analysis will be confined solely to addressing the impacts from capping contaminated sediments. The impacts associated with dredging, which would also apply to the combined capping and dredging alternatives, are discussed in detail above in Section 5.1.

Capping may be defined as the process where by a layer of clean material is deposited atop contaminated sediments so as to reduce the loss of contaminants to the water column and to isolate the contaminated deposits from biota.

Considerations in the evaluation of the feasibility of capping include water depth, bottom topography, currents and capping material characteristics. Capping has been successfully implemented to isolate contaminated material as a means of offsetting the potential harm of contaminated material.

The potential direct and indirect environmental effects of capping are similar to dredging impacts:

- Physical disruption of the bottom burial of organisms or communities, alteration of habitat;
- Bottom topography effects changed hydraulics, changed sedimentation patterns;
- Suspension of sediments lethal or sublethal effects due to smothering;
- Alteration of water quality effects on dissolved oxygen; and
- Release of contaminants expected to be minimal due to low incidence of bottom disturbance.

Based on the type and thickness of the cap proposed it can be assumed that all organisms below the cap will be lost during implementation of the action. Changes in or loss of habitat may be significant since the loss of habitat results in loss of benthic organisms, which further results in loss of bottom-feeding predators. A significant determinant of the potential impacts will be the percent of the shallow water habitat which is lost. Based on the estimated area to be capped vs. the total fine-grained sediment area in the TIP as a whole and the area below NYSDEC *Hot Spot* 9, the percentage of near-shore habitat lost will amount to 12.8 and 17.8 percent respectively. Changes in hydraulics due to the addition of approximately 20 inches of capping material may directly impact recruitment

of new populations to repopulate both the cap and areas around the cap as well as sedimentation rates. This loss of this shallow water habitat may require mitigation measures to be implemented.

Water column turbidity created by capping operations is seldom an ecological problem since minimal contaminated sediment is resuspended and the capping material settles quickly. This is however contingent on the means and speed by which the cap is placed over the contaminated sediment. All capping operations must be performed in such a manner that resuspension of sediments is kept to a minimum. The use of equipment or placement rates that might result in capping material displacing or mixing with the contaminated material must be avoided. During the capping operation best management practices should be employed to minimize the resuspension of contaminated sediment. Resulting resuspension and release of contaminants is expected to be minimal and should not impact local biota.

In conclusion, the primary environmental impact with the capping portion of these alternatives will be the burial of sediment dwelling organisms, and loss of shallow water habitat. Some overall benefit from the capping and dredging alternatives will occur due to the reduction in exposure and resultant impacts associated with PCB-contaminated sediments. In order to minimize any impacts, compensation for loss of benthic habitat may be required by the U.S. Fish and Wildlife Service based on their Mitigation Policy 501 FW 2 established in accordance with the Fish and Wildlife Act of 1956 (16 U.S.C. 742(a) -754), the Fish and Wildlife Coordination Act (16 U.S.C. 661-667(e)), the Watershed Protection and Flood Prevention Act (16 U.S.C. 1001-1009), and the National Environmental Policy Act (42 U.S.C. 4321-4347).

#### 403234

5-6

#### 6. ALTERNATE WATER TREATMENT COST ANALYSIS

I

Monthly averages of flow rate data from a USGS gage located at Fort Edward on the Hudson River were used to obtain flow rates at Thompson Island Dam (TID). Based on historical data, a factor of 1.05 was applied to flows from Fort Edward to represent the increase in flows due to the two main tributaries between Fort Edward and TID. The resulting flows for Thompson Island Dam were plotted as averages for the years 1995 through 1997. PCB water concentration (1996 - 1997 data) and total suspended solids (TSS) concentration at TID (1991 - 1997 data) are presented on the same plots (Figures 6-1 and 6-2).

From the plots, base flow and average PCB and TSS concentrations in the water were estimated for use in the water treatment plant design and cost estimating purposes. A base flow of approximately 3,090 cfs or 2,000 MGD was selected as the design plant flow rate to represent the minimum plant size required; for purposes of this analysis, it was assumed that excess water during periods of higher flow would be allowed to pass over the dam without treatment. The average PCB concentration in the water at TID is historically less than the MCL, so this is not a feasible reference point for treatment effectiveness. Because most of the PCBs in the water are associated with suspended matter, the plant concept was developed to remove TSS in order to remove the PCBs.

A conventional water treatment process which includes coagulation with alum, flocculation, sedimentation, and filtration was selected as the most appropriate process for TSS removal. This treatment scheme is similar to that used at the Waterford Water Works (WWW) treatment plant, except for a rapid mix process which precedes flocculation at the WWW. The Waterford treatment plant is the nearest public water system on the Hudson River downstream of the TID which uses the Hudson River as the source water.

For the development of the water treatment plant concept, it was assumed the Thompson Island Dam would be raised three feet to capture the water for treatment. This is the approximate head on the top of the dam during base flow conditions. During periods of higher flow, excess water would be allowed to simply flow over the dam without treatment. The plant would operate primarily by gravity flow. Sludge produced from treatment processes was assumed to be dewatered using belt filter presses and disposed offsite at a non-hazardous waste landfill. Treatment units were sized based on typical design criteria (JMM, 1985). The land requirement for the treatment plant is estimated to be approximately 75 to 80 acres.

Construction and annual O&M costs were estimated for the major treatment plant processes. The estimated construction costs shown on Table 6-1 include material and equipment purchase and installation, and subcontractor's overhead and profit. The estimated construction costs do not include: special site work; general contractor overhead and profit; engineering; land; legal, fiscal, and administrative costs; and interest during construction. If these costs were included, the estimated construction costs could increase by as much as a factor of two. The estimated O&M costs shown on Table 6-2 include energy requirements, labor, and maintenance materials.

Two possible discounted present values were calculated for the project's construction and O&M costs. The calculations are shown on Table 6-3. The two values were calculated for a 30-year design life using: 1) an interest rate of 6% (fixed over 30 years), an inflation rate of 3%, a discount

rate of 5%, and, 2) an interest rate of 7% (fixed over 30 years), an inflation rate of 3%, a discount rate of 4.5%.

Completion time for the project, excluding site selection but including engineering design, permitting and licensing, and construction of the plant is estimated to be five years. The concept developed would produce water of essentially potable quality. As a frame of reference, assuming a typical generalized water supply requirement of 150 gallons per person per day, the plant would produce sufficient potable water for a population of over 13 million people. The site selected for such a treatment plant must be located at or adjacent to the southern end of the TIP in order to serve its purpose. Given its location, Thompson Island would be an obvious choice. However, at approximately 47 acres, it has only about half of the land area needed to contain the plant. Any site proposed will contend with many of the same issues as a site for long-term disposal of dredge spoils, as well as being subject to the possibility of flooding during high flow conditions.

### TABLE 6-1 WATER TREATMENT PLANT ESTIMATED CONSTRUCTION COSTS

ITEM	EST. CONSTRUCTION COSTS ⁽¹⁾
Dam Raise and Headworks	\$5M
Flocculation Basins	\$35M
Clarifiers	\$85M
Filters	\$170M
Belt Filter Presses	\$28M
Buildings, Misc. Tanks, Small Structures, Electrical, etc.	\$200M
Total Estimated Construction Costs	\$523M

NOTE:

⁽¹⁾ Est. construction costs do not include: special sitework; general contractor overhead & profit; engineering; land; legal, fiscal, and administrative costs; and interest during construction.

#### TABLE 6-2

#### WATER TREATMENT PLANT ESTIMATED ANNUAL O&M COSTS

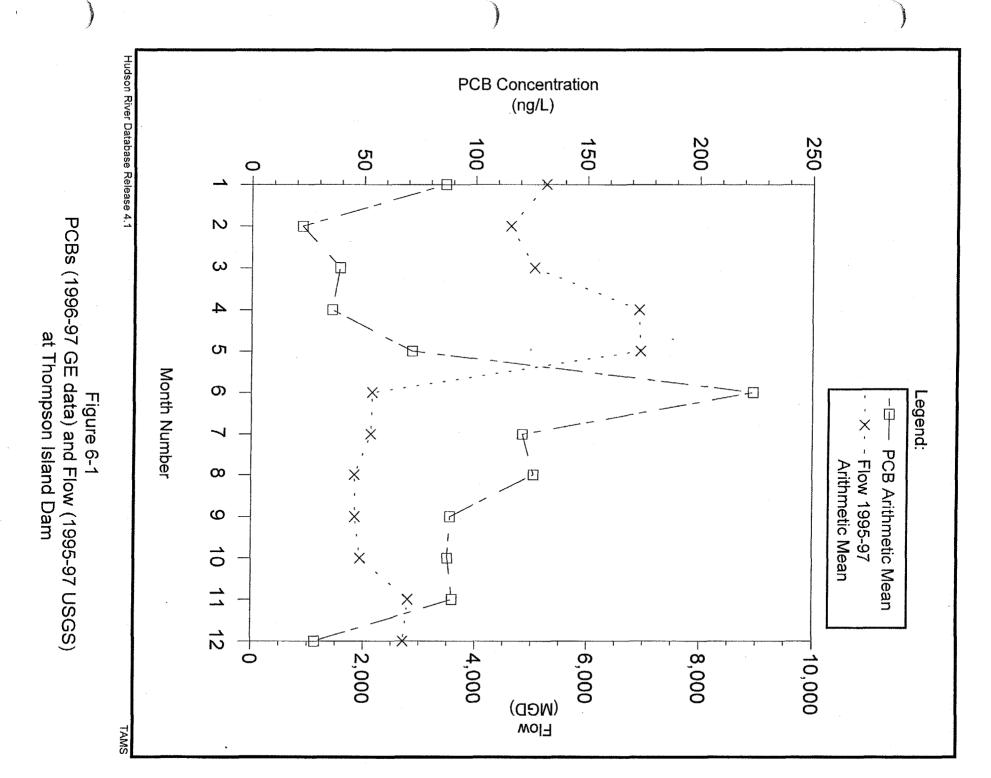
ITEM	EST. ANNUAL O&M COSTS ⁽¹⁾
Flocculation Basins	\$1.5M
Clarifiers	\$1.2M
Filters	\$10.4M
Sludge Dewatering	\$2.3M
Sludge Disposal	\$4.8M
Total Estimated Annual O&M Costs	\$20.2M

NOTE:

 $\ensuremath{^{(1)}}$  Estimated O&M costs include energy requirements, labor, and maintenance materials.

#### TABLE 6-3

#### Water Treatment Plant Present Value Calculation (in \$MM)


Capital Cost Annual O&M \$ 523 MM \$ 20 MM

Scenario 1 Financing Cost of 6%/Yr fixed 30 years O&M inflating @ 3% /Yr PV discount rate of 5%

[		i		
Yr	Interest	O&M	Total	<b>Discounted PV</b>
1	\$31.38	\$20.20	\$51.58	\$51.58
2	\$31.38	\$20.81	\$52.19	\$49.70
3	\$31.38	\$21.43	\$52.81	\$47.90
4	\$31.38	\$22.07	\$53.45	\$46.17
5	\$31.38	\$22.74	\$54.12	\$44.52
6	\$31.38	\$23.42	\$54.80	\$42.94
7	\$31.38	\$24.12	\$55.50	\$41.41
8	\$31.38	\$24.84	\$56.22	\$39.96
9	\$31.38	\$25.59	\$56.97	\$38.56
10	\$31.38	\$26.36	\$57.74	\$37.22
11	\$31.38	\$27.15	\$58.53	\$35.93
12	\$31.38	\$27.96	\$59.34	\$34.70
13	\$31.38	\$28.80	\$60.18	\$33.51
14	\$31.38	\$29.66	\$61.04	\$32.37
15	\$31.38	\$30.55	\$61.93	\$31.28
16	\$31.38	\$31.47	\$62.85	\$30.23
17	\$31.38	\$32.42	\$63.80	\$29.23
18	\$31.38	\$33.39	\$64.77	\$28.26
19	\$31.38	\$34.39	\$65.77	\$27.33
20	\$31.38	\$35.42	\$66.80	\$26.44
21	\$31.38	\$36.48	\$67.86	\$25.58
22	\$31.38	\$37.58	\$68.96	\$24.75
23	\$31.38	\$38.71	\$70.09	\$23.96
24	\$31.38	\$39.87	\$71.25	\$23.20
25	\$31.38	\$41.06	\$72.44	\$22.46
26	\$31.38	\$42.29	\$73.67	\$21.76
27	\$31.38	\$43.56	\$74.94	\$21.08
28	\$31.38	\$44.87	\$76.25	\$20.42
29	\$31.38	\$46.22	\$77.60	\$19.79
30	\$31.38	\$47.60	\$78.98	\$19.19
C	CO 41 40	EDC1 02	\$1,000,40	\$071.40
Sum	\$941.40	\$961.02	\$1,902.42	\$971.42
Capital Cost	\$523.00		PV	\$121.02
			Total PV	\$1,092.44

Scenario 2 Financing Cost of 7%/Yr fixed 30 years O&M inflating @ 3% /Yr PV discount rate of 4.5%

Yr	Interest	0&M	Total	<b>Discounted PV</b>
1	\$36.61	\$20.20	\$56.81	\$56.81
2	\$36.61	\$20.81	\$57.42	\$54.94
3	\$36.61	\$21.43	\$58.04	\$53.15
4	\$36.61	\$22.07	\$58.68	\$51.42
5	\$36.61	\$22.74	\$59.35	\$49.76
6	\$36.61	\$23.42	\$60.03	\$48.17
7	\$36.61	\$24.12	\$60.73	\$46.63
8	\$36.61	\$24.84	\$61.45	\$45.16
9	\$36.61	\$25.59	\$62.20	\$43.74
10	\$36.61	\$26.36	\$62.97	\$42.37
11	\$36.61	\$27.15	\$63.76	\$41.05
12	\$36.61	\$27.96	\$64.57	\$39.79
13	\$36.61	\$28.80	\$65.41	\$38.57
14	\$36.61	\$29.66	\$66.27	\$37.40
15	\$36.61	\$30.55	\$67.16	\$36.27
16	\$36.61	\$31.47	\$68.08	\$35.18
17	\$36.61	\$32.42	\$69.03	\$34.13
18	\$36.61	\$33.39	\$70.00	\$33.12
19	\$36.61	\$34.39	\$71.00	\$32.15
20	\$36.61	\$35.42	\$72.03	\$31.21
21	\$36.61	\$36.48	\$73.09	\$30.31
22	\$36.61	\$37.58	\$74.19	\$29.44
23	\$36.61	\$38.71	\$75.32	\$28.60
24	\$36.61	\$39.87	\$76.48	\$27.79
25	\$36.61	\$41.06	\$77.67	\$27.01
26	\$36.61	\$42.29	\$78.90	\$26.25
27	\$36.61	\$43.56	\$80.17	\$25.53
28	\$36.61	\$44.87	\$81.48	\$24.83
29	\$36.61	\$46.22	\$82.83	\$24.15
30	\$36.61	\$47.60	\$84.21	\$23.50
			1	
Sum	\$1,098.30	\$961.02	\$2,059.32	\$1,118.42
Capital				
Cost	\$523.00		PV	\$139.64
			Total PV	\$1,258.06



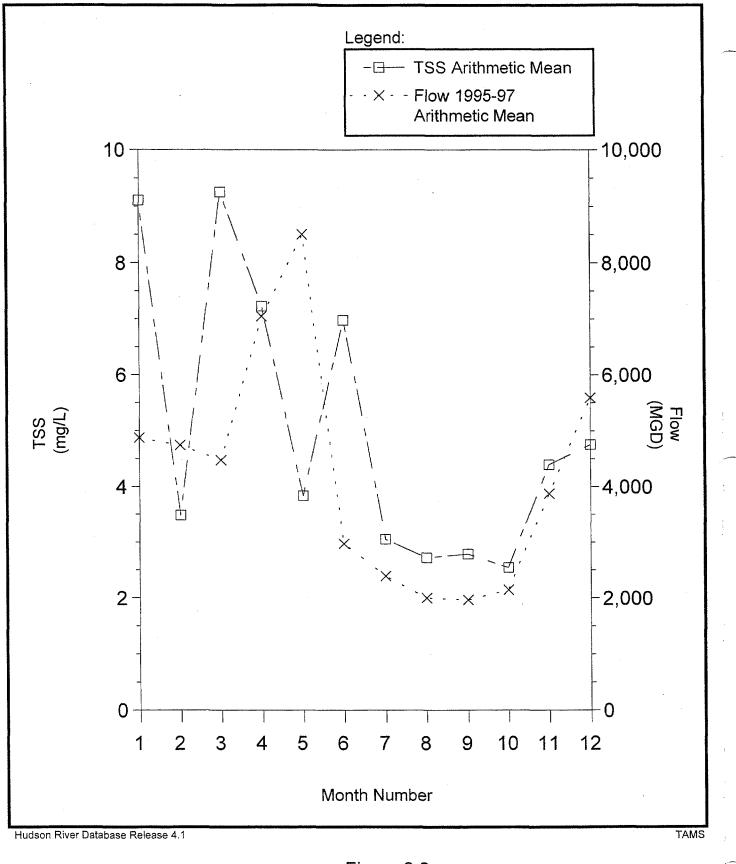



Figure 6-2 TSS (1991-97 GE data) and Flow (1995-97 USGS) at Thompson Island Dam

TAMS

. .

5904 Sheet ____ of 7 Job No. Project Hudson Riven Date _ 9/22/93 subject Water Treatment Cost - Clarifier The By _ MP 9/30/92 Ch'k, by ZOOOMGD 2000,000,000 gal - 1,389,000 gal Table's & Figures from EPA's Estimating Water Treatment Cost EPA 600/2-77-1620 Aug. 1979, except where specified JMM which is Water Trint: by James: M. Monthomeny 1985 ed. Clarifier Surface loading rate = 1. gpm/fiz Area required = 1,389,000 ft2 Circular tanks - 200 ft diam. 31416 5F area 1,389,000 sf = 45 clasifiers 31,416 St/tant Construction cost per clarifier (10/73 estimate) = \$900,000 (Table 44 Using ENR construction Cost Index (CCI) 10/73 .CCI = 2851 9/93 CCI = 5.963 per clasifier (9/98 estimate)= \$900,000 x 5963 = \$1,882,400 2851 cost for 45 clasifiers (9/93 col.) = [\$ 84.7 M = 200 × 200 × 45= 1,800,000 sf = 41,3 acres Allowing room between clarifiers= 220 x 220 x 45 = 50 acris per 200 ft diam, clarifier (Table 45) eray requirement (fernic - alum studge) + 11. Jobkwhr/yr - Toop by Kup main tenance matelial - \$4,100 + 2.09 - \$8600 /42 (9/93 bit 45 clarifiers far 45 × 11,100 kuh 499 500 hu hr energy rea 6 hor - 45 + 1500 br = 22,500 hrs at assumed 135/br tra - 5122 Maintenance mat 1 -: 45 * \$ 3600 - \$ 387.000/un Sed. tanks Total Oc M/ur = \$ 39,960 + 4,787,500 + \$387,000 = 191,214,460

⁴⁰³²⁴¹ 

xh/2110791\$ The callot my oral FECZ + SIZ, 0 d Fizz / M 20 Later my Hallon 201 ~B/00+,58+2 = 20,005,02+23 = 11400-1000 2150925 = 11/002'EEEE = 1/525 70 19060 + 8 = 000 . 1 ma/ 20 d = 72 1, 188, 300 ku hr = 9,506,400 ku hr 24 \$ p.04 hprans SUPSO 10 000 10001 -194 (172 51/6) Jh/002(09 \$ = 60'2 * 098' 52\$ = 1,70W JUTOW hhy 0661 = 1,700 th/24-m7 002'88' = 0 188'300 Km - 41/hr (En 7901) unog 70000001 und 750 W 30 W t 72\$ = 60' 7 * 8 * St tto 2 = ( 100 86/6) SU2509 8 20+ 7500 7500) (07 1901) OSF, FF0, S = SUNSOG \$ 000'000'1 - 8 POSN J2 092 (+25, 't = +'A5+'50 000+095(55 Amound 20 minutes we want time + 2 stades דנסכעונסטיסה דשכינניאן CH.K PA W 6/30/65 Ву ... i'on[7 tocculotte **Subject** Project 86/22/6 Date And roubult Sheet 2 of 7 7965 .oN dol

**SMAT** 

I

Job No	5904	Sheet <u>3</u> of <u>7</u>
Project	Hudson River	Date9/22/93
Subject	Filter	By74ai
		Ch'k by <u>M1 9/30/98</u>
Grav	ity Filtration	
F	m Table 52	· · · · · · · · · · · · · · · · · · ·
112	201). Jaule 22	
	Plant flow = 200 mgd	
	Total filter Area = 28.000SF	
	22 Filters at 1,2755f for each dual-c	elled filter
	Construction cost (10/78 est.) for 28,000	2 SE of filler - \$5 6A2 AZA
		······································
4	So for plant flow = 2000 nigel Total filter area = 280,000 sf	
	Total filter area = 280,000 sf	
	220 Filters at 1,275 st each dual -ce	lled filks
	а. 	• •
	Construction cost (10/78 est.) = \$56,0	) 20, 300
	Const. Cost (9/93 est.) = \$56,020,030	(2,09) = \$117,082,400
		$\simeq [\$117.1M]$
	Housing requirement = 40,000.5f for Area regid = 440,000 sf = 10.1 acres	22 - 12755F Filters
	Area regia = 440,000 SF = 10.1 aous	
	0 2 in cost - per 28,000 st filter are	a (Table 54)
	Bide energy reg = 4, 123, 490 ku	
	J = J = J = J = J	4r
	labor = 18,000 hr/yr	
	Maintenance matil = \$36,700	* 2,09 + \$76.700 (9/90 et)
	For 230,000 sf filter area	
	energy req. = 10 * 4,123,490 kw-m	r = 41,234,900 kubr at \$ 908
	<u> </u>	ur
		= 53,293,792
	$abor = 10 \times 18,000 \text{ hr} = 180,000$	$\frac{1}{2} \ln s = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{1} \ln r = \frac{1}{2} \frac{1}{2} \frac{1}{1} $
	Maint Mat ( = 10 x\$76,700 = \$	767.000/15
Filtro	1000 Total 0= M = \$3,293,792+ \$ 6,30	0,000/+4767,000/4r
++++		
	(= \$10,365,792,44 M-	

W 211,5 = 00 2 × 26 + 015 HT2\$ 2021 (9,98 eat) for 92 backworth Backine FSUG ad \$ 256' CC . 26 2,100,000000 m him ma hangsen pog to vogunity 2 0 00V (20126, 2026 for 22,950 grad in 200 backward in (12) 75, 22) Looune halffillers are backwathed at one time Funding copacity regit = 15 200,000 + 280,000 triging (WVII) Addunate mare design rate to backwash = 15 your (21-12 792 קססקרחס צע לחעשירוא בדר ורארכר Filtration media W05\$ = 60'Z * 008'21E h\$ = Const. Lost for 280,000 st bad oren (2000 mgd) (9/98 edl. 008 218 7 = (20127 COSE for 280,000 st bed ones (2000 mgd) (10/78 ed) Construction cost for 28,000 5t bed, (200 mgd) (10/38 est) Aquerra dual redice filter (coat - sand) Ditration media CH.K PA N 0/22/0 ≞ уа Subject icht 12011 414 **toelor9** 978Q HUDLES RIVER 66/82/6 Æ to Sheet ON dol 4 6069 SMAT

Job No.	5904	Sheet	<u>5</u> of <u>7</u>
	Hudson River librer Treatment		1/29/90
Subject .	Eludge Dewatening & Disposal		
		Ch'k by	M 11 09/30/98
Est	inate of total sludge produced Flow = 2000 MGD Suspended solids conc.: 5 mg/L Assume add alum at 20 mg/L (from JMM Water Trint - p. 237 > 0.33 dry solids basis produced per pound al		
	FLOW = 2000 MGD		
i National Angle (Constraint)	Suspended solide conc.: 5 mell		• •
s general of the set	Assume add allim at 10 mg/L	2 11 Stud	12. 02
(para a serima annana e e s )	dry solids basis produced per pound as	(um)	
مر ۱۰ ۱۰۰۰ پریندستیند	Total sludge = Sludge from susp. solido + Sludge From a	lum	
	and the second	· .	2000 41 - 0 22)
•=•-···	= (5 mg/ + 8.34 1/2 + 2000 mgd) + (20 mg/ *	0.57 <u>12</u> 7	
•.• ·	$= 83,400 + 110,088 lb/d = 193,488 lb/ \sqrt{Typ}. \text{ soluds cone. for Alunt of 1% solids sludge is 1.0}Assume expectific quartity of 1% solids sludge is 1.0\frac{193,483 lb/d}{(0.01 \times 1.0 \times 62.4 lb/q)^3}$	'd	,
1. 1.	, Typ. Solids cone. For Alum C	Coag. (JMM	Table 13-4)
	Assume specific gravity of 1% solids studge a 1.0	, volume	of 1% 8000ds
	Subje $D = 110, 400 le/a = 510, 0.000$	$\frac{7.7}{d} = \frac{7.7}{d}$	2, 51, 575 gas
	(0.01 × 1.0 × 62.46/F13)	=	1610 gal
			min
:		• • •	
T T	rom EPA water Trint Cost Document - Table 160		
	Assume will need 4 installed machine capacities a	of 450 an	om.
	where each installed machine capacity of 4	50 gpm.	includes
	Assume will need 4 installed Machine capacities of where each installed machine capacity of 4 12 units w/ belt width of 3 m	<i></i>	
	Construction cost for each installed machine capaci	. /	•
;	- \$3,2912,153 (1979 Math	1	ال
	Construction costs for 4 installed machine capacity	ies of 450	9pm in 1998
	Construction costs for 4 installed machine capacity = \$3,290,150 * 4 * 2.09 = (\$	27,5 M	J
	From Table 162 - OEM Costs per year		
	Energy Requirement = 4 * 2,711,000 kw hr +\$0.	09/kwhr =	\$817,520
	a second		
	labor Requirement = 4 × 12,000 hrs + \$35/hr	= \$ 1,6	8.0,000
			والمحافظ والمراجع فالمتعاول والمحافظ والمتعاوية
	Maintenance Mat'l = 4 × \$30,000/yr +2.09	Y I.V ;	
· · · · · · · · · · · · · · · · · · ·	Total, OEM for Belt Files Press = \$ 867,52	20+\$1,69	0,000+\$250,80
	Annual		
	= \$2,286,3	520	•
•			
			•••

Job No	5904			Sheet	6 of
	Hudson K	ire		Date	9/20193 1 Two: by MT 09/3010/
	Studje Dr:			Ву	1 Tus
	/	t		Ch'k	by <u>M1 09/2010</u>
	_yaar a a in an	а та та по пола мака ва селиние става.			
Volu	me of Sludge	- Produced af	ter dewate	ring	ual is 30% (p.297 JMM)
	- Assume .	Solution conc. 16	my we of al	watered Mate	ual 6 5070 (p.247 Jim)
	weight of	Sudge for a	disposal	60.06 = 232, day = 116,	19ELCA Har
		193,488.00/2	= = 644,9	$\frac{60.00}{4av} = 202;$	100,000 005
	-	0.30		= 116,	093 Ton/gr
					s, Niagara Falls, NY)
		sal Fee = \$			
				adala can ana t	<b>x</b> ,' a
		ontarion rec. Where	each gond	mdola can per t Iola can can t	rold~90 Tons
		· · ·			
1 	· · · · · · · · · · · · · · · · · · ·			nsport à Dispos	
		= 116,093	T * \$ 22	+ 116,093 T * <u>1</u> yr 9	$\frac{can}{can} * \frac{1722}{can}$
					(\$ 4,775,300)
	* This I	cost does not	include n	naterial handle cans)	ing casts (ic
		bading E. un	loadery rait.	Carlo J	_1
	and a second		· ·	• •	
		ni An ann an Ann			
				с, <u>ск</u> ., <u>с</u> , , , , , , , , , , , , , , , , , , ,	
					ана и страна страна и страна и страна страна страна страна страна и страна и страна и страна и страна и страна Прими и страна и стран
				·	
		·····			and a second
{		· · · · · · · · · · · · · · · · · · ·	· · .	• • • • • • • • • • •	• • •
				· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	and the second s	······································			• • • • •
	····		••••		<b>.</b> .
					403246

I

	5904	Sheet _	. 1	of _7
Project _	Hudson R.V.		9/29	
Subject _		-	Thoi	
	-	Ch'k, by	y MG	9/30/9
1	- Head work: == = = = = = = = = = = = = = = = = =			
<u> </u>	Floculation 534.7 M. 2			
zee )	Chriftens \$84.7 M \$ \$119.4 M ~ 22% of tot	al const. C	ost	
Hau	Filters \$117.1 M 7 Filt Media \$9.0 M 7 \$167.3M ~ 32% of tot	-1 court	e	<b></b>
able	Filt Backwash \$ 41.2 M)	al Const. 1	<u>,                                    </u>	
25-1	Belt Filter \$ 27,5 } \$ 27,5 M ~ 5 % of tot	al Const. 1	Cost	
MN	Operations & Admin Bldos 7			
NY	Electrical É'telemetry ( assume remaini	19 40°6 0	f Const	ruction
	Misc, tank's, mall structures) ~\$200.	4	·····	سونیہ دیت میں
L			مملحه مرجاد	····
	ال المراجع الم المراجع المراجع	<b>4</b> - · · ·		
	These costs are not included		***********	
	- Special Sitework			
	- General contractor over head & p	Mofit		
	- Eugineering			
	- land		· · ·	
	- legal, fiscal, é administrative c	lasts		
		osts		
	- legal, fiscal, é administrative c	osts	· · · · · · · ·	
	- legal, fiscal, é administrative c	osts	- · · · · · · · · · · · · · · · · · · ·	
	- legal, fiscal, é administrative c	osts		
	- legal, fiscal, é administrative c - interest during construction	osts		
	- legal, fiscal, é administrative c - interest during construction	osts	· · · · · · · · · · · · · · · · · · ·	
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	os£s		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	os£s		
	- legal, fiscal, é administrative c - in terest during construction	osfs		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	os£s		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	osts		
	- legal, fiscal, é administrative c - in terest during construction	os£s		
	- legal, fiscal, é administrative c - in terest during construction			

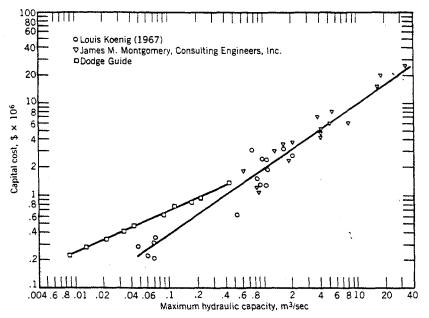



FIGURE 25-4. Conventional water treatment plant cost (adjusted to ENR CCI of 1000).

#### Component Cost Approach

Separation of a water treatment project into its major component parts enables the estimator to accumulate cost data for the components actually involved in a specific project. Some degree of variability remains in the basic data due to such things as the imperfect methods of adjusting historic data to other places and times or due to difference in construction methods and efficiencies. However, it is usually possible to obtain reliable average volume for construction costs for various processes that would be incurred under average conditions. Table 25-1 presents a breakdown of percentages of total capital cost that might be expected in major components of a water treatment plant. Several items normally included in a project were not included because of their highly variable costs. These items were general site and civil work such as excavation, paving, and yard piping, low and high service pumping facilities, and the finished water storage reservoir.

It is essential for the estimator to review the derivation of any unit of cost estimates he might use to avoid mistakes in application of data. A number of the components discussed below may or may not be included in the basic unit process cost data obtained from any particular reference.

Woter Treatment Processes. Data for construction costs of specific water treatment components are normally obtained from one of two sources: either a series of typical detailed designs is made and detailed cost estimates are prepared for each design or historic data for actual construction of project components are adjusted to obtain comparable values. Each method in general will produce values satisfactory for most preliminary estimating needs.

A series of typical construction cost curves for eight representative water treatment unit operations

# TABLE 25-1. Percent of Total Cost Attributed to Components

Water Treatment Plant Components	Percent of Total Construction Cost
Flocculation and sedimentation basins	20-40 assume 25°%
Filters and appurtenances, back- wash water storage and pump- ing, washwater reclamation	20-40 assume 35%.
Operations and administration building	10-307 assume 40%
Electrical and telemetry Miscellaneous chemical tanks, small structures	10-20

SOURCE: James M. Montgomery, Consulting Engineers, Inc.

# TAMS

I

	Hudson River - Water Trmt	Sheet c Date <u>9/22/</u> 4
Subject	Land Area Requirement for Treating Water	By
-	Land Area Requirement for Treating Water Pumped from Hudson River	Ch'k. by
Ŧ	For Table 25.2 - JMC: Wate Troit Text	,
· ·		
	Assume Area dequires for conventional tre includes : Caugulation, flocculation, sedin	atment (waren
	U Contraction Section Statements Section	uncaran, nuraila
	for 570 MGD - land required = 16 acres	
	It we have 2000 MGD - assume ~ 4 DMes	land required = G
	IF we have 2000 MGD - assume ~ 4 times plue associated to assume 75-80 ac	ucache - runda - 14
		···· ··· · · · · · · · · · · · · · · ·
	ter and the second s	·····
	· · · · · · · · · · · · · · · · · · ·	
;		
÷		
,		

ot administrative and other treatment plant buildings are generally obtained by determining space requirements and applying unit building costs. Administration building costs can cover a wide range depending on the intended use by the owner. It is not uncommon among water utilities to find operations buildings that are impressive or even majestic, an expensive manifestation of community pride. While structures of that stature are rarely built today, water plants are popular destinations for school field trips and civic organizations, and the administration or operations building should be a model of efficiency and cleanliness. Unit costs for various classes of buildings are readily obtained Some consideration must also be given to the shape and slope of land since arrangement of treatment process units can influence other project costs. The data in Table 25-2 were obtained from measurements of land areas occupied by structures of actual operating water treatment plants.

Site Work. While most cost curves for treatment components include costs of site preparation for the individual units, it is sometimes necessary to add a separate estimate for an assortment of items constructed at the site as part of the overall project. This group would consist of such things as general site clearing, grading, intercomponent piping, and

#### TABLE 25-2. Approximate Minimum Water Treatment Plant Land Requirements

Process	Maximum Hydraulic Capacity													
	ML/d 45	mgd 11	ML/d 90	mgd 22	ML/d 180	mgd 45	ML/d 360	mgđ 90	ML/d 900	mgd 230	ML/d 1700	mgd 460	ML/d 2000	mgd 570
Conventional treat- ment ^a														
Hectares	0.6		0.8		1.2		1.9		3.2		5.0		6.5	
Acres		1.5		2.0		3.0		4.7	<b></b>	7.9	_	12.4		16.0
Direct filtration ^b														
Hectares	0.4		0.6	_	0.8		1.2		2.0		3.2		4.0	
Acres		1.0		1.5	_	2.0		3.0		5.0		7.9		10.0
Conventional treat- ment with sludge- drying beds									••					
Hectares	0.9		1.9	_	3.7		7.7							
Acres		2.2		4.7		9.1		19.0						
Direct filtration with sludge-drying beds													•	•
Hectares	0.8		1.5		3.0		6.5							
Acres		2.0		3.7		7.4		16.0						

* Coagulation, flocculation, sedimentation, filtration, disinfection.

^b Chemical conditioning, filtration, disinfection.

SOURCE: James M. Montgomery, Consulting Engineers, Inc.

## 7. **REFERENCES**

I

Barnard, W. D. 1978. *Prediction and Control of Dredged Material Dispersion Around Dredging and Open Water Pipeline Disposal Operations*. Technical Report DS-78-13. U.S. Army Engineer Waterways Experiment Station, CE, Vicksburg, Mississippi.

Brown, M. P. 1981. PCB Desorption from River Sediments Suspended During Dredging: An Analytical Framework. New York State Department of Environmental Conservation, Bureau of Water Research, Albany, New York.

Engineering News-Record (ENR). 1998. Construction Cost Index History (1907-1998).

Fulton, Lee. 1998. CSX Transportation. Personal Communication. September 1998.

James M. Montgomery (JMM), Consulting Engineers, Inc. 1985. Water Treatment - Principles & Design. John Wiley & Sons, Inc.

Kennish, M. J. 1992. Ecology of Estuaries: Anthropogenic Effects. CRC Press, Boca Raton, Florida. 494 p.

O'Brien & Gere Engineers, Inc. 1998. Data Summary Report. Hudson River Project 1996-1997 Thompson Island Pool Studies. February 1998.

O'Connor, J. M., D. A. Neumann and J. A. Sherk Jr. 1977. Sublethal Effects of Suspended Sediment on Estuarine Fish. Technical Paper 77-3. U.S. Army Corps of Engineers, Coastal Engineering Research Laboratory, Fort Belvoir, Virginia.

Peddicord, R. K. and V.A. McFarland. 1978. *Effects of Suspended Dredged Material on Aquatic Animals*. Technical Report D-78-29. U. S. Army Engineer Waterways Experiment Station, C.E., Vicksburg, Mississippi.

Stern, E. M. and W. B. Stickel. 1978. *Effects of Turbidity and Suspended Material in Aquatic Environments, Literature Review*. Technical Report D-78-21. U. S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi.

Tavolaro, J. F. 1984. A Sediment Budget Survey Study of Clamshell Dredging and Ocean Dep. Act. In the New York Bight. Env. Geo. and Water Science, (6) 3.

U. S. Army Engineer Waterways Experiment Station. 1986. *Guide to Selecting a Dredge for Minimizing Resuspension of Sediment*. Environmental Effects of Dredging Technical Notes, EEDP-09-1.

U. S. Army Engineer Waterways Experiment Station. 1989. *Predicting and Monitoring Dredge Induced Dissolved Oxygen Reduction*. Environmental Effects of Dredging Technical Notes, EEDP-06-9.

403251

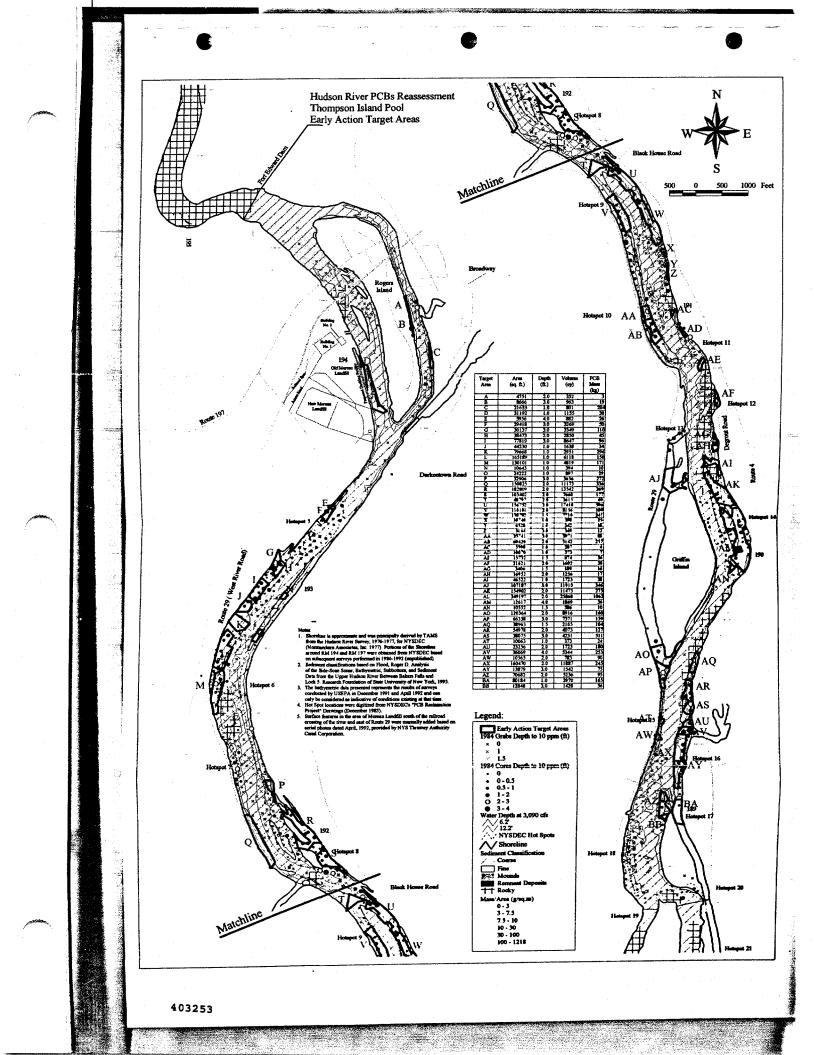
U. S. Army Engineer Waterways Experiment Station. 1996. *Grain Size and Total Organic Carbon Effects on Benthic Organisms*. Environmental Effects of Dredging Technical Notes, EEDP-01-37.

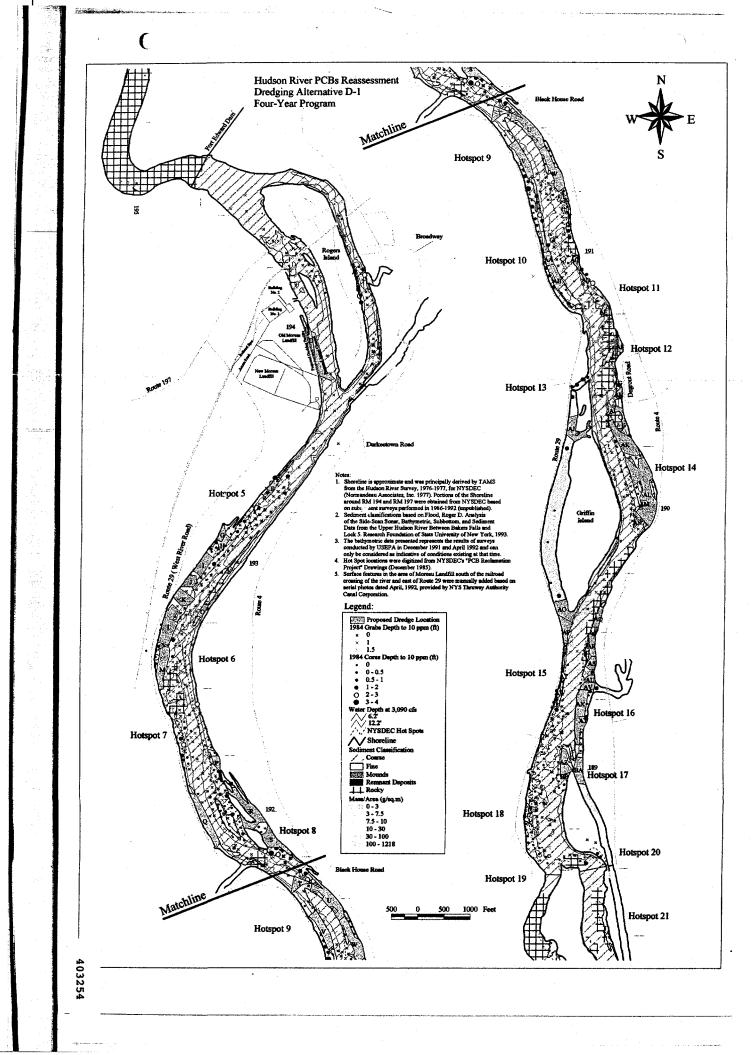
U. S. Army Engineer Waterways Experiment Station. 1998. Personal Communication with Daniel Averette. December 10, 1998.

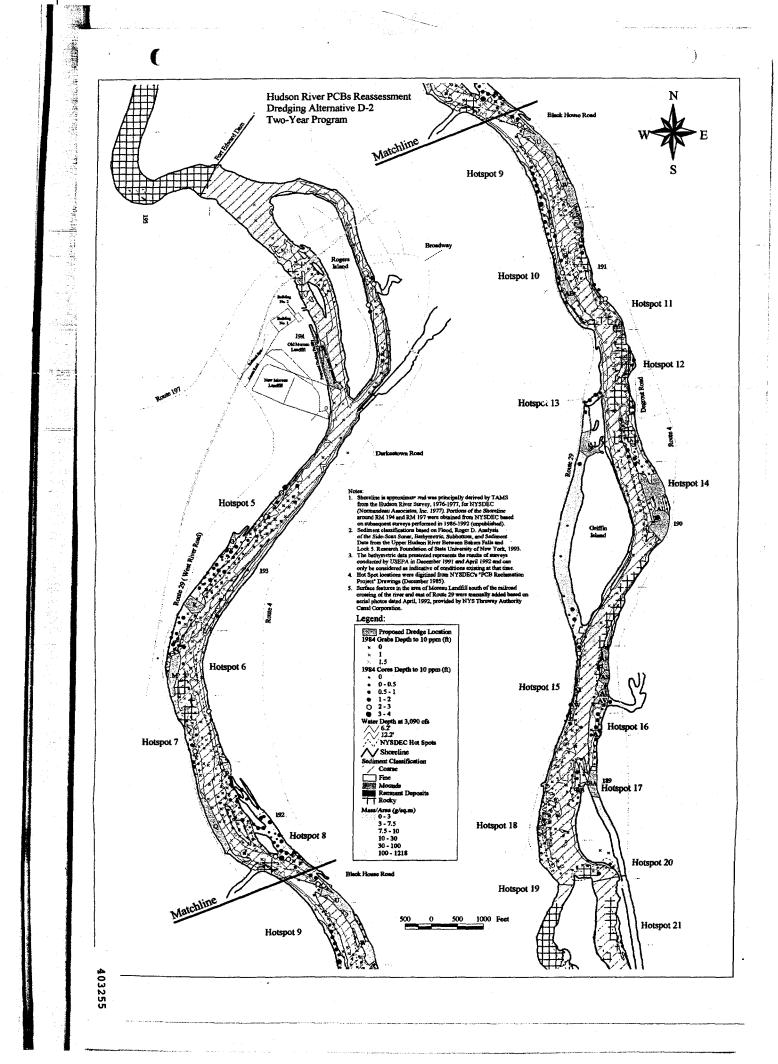
U. S. Environmental Protection Agency. 1979. Estimating Water Treatment Costs-Vol. 2, Cost Curves Applicable to 1 to 200 MGD Treatment Plants. EPA-600/2-79/162b. August 1979.

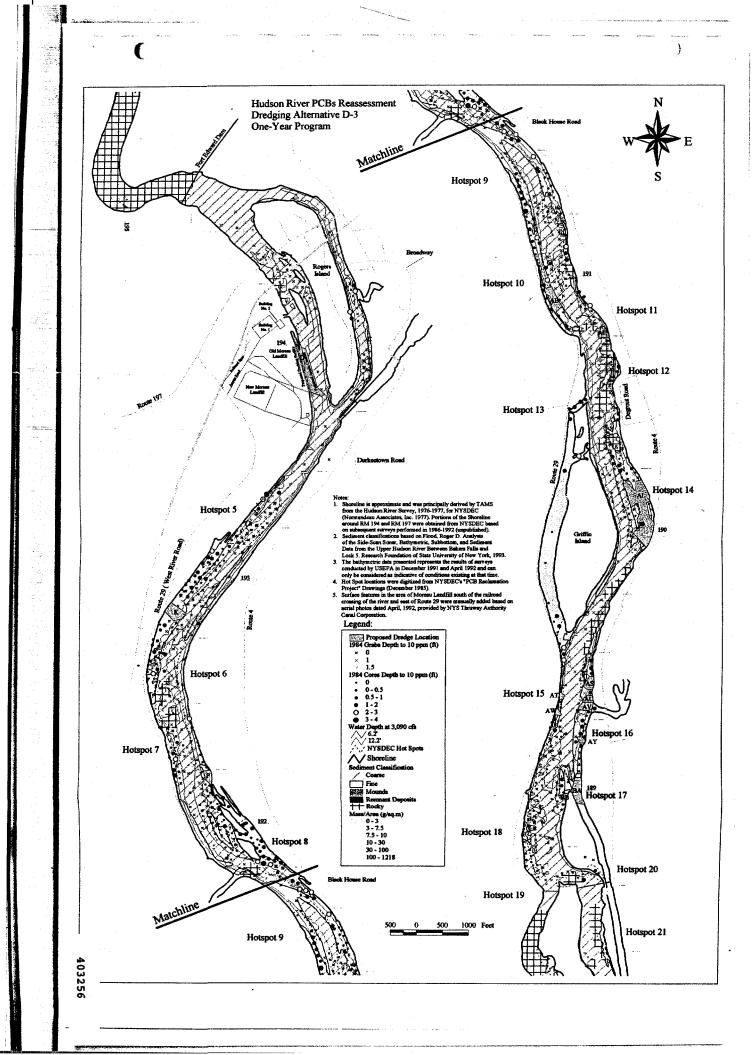
U. S. Environmental Protection Agency. 1991. *Phase 1 Report - Review Copy, Interim Characterization and Evaluation. Volume 1. Hudson River PCBs Reassessment RI/FS.* Prepared by TAMS Consultants, Inc., and Gradient Corporation, August 1991.

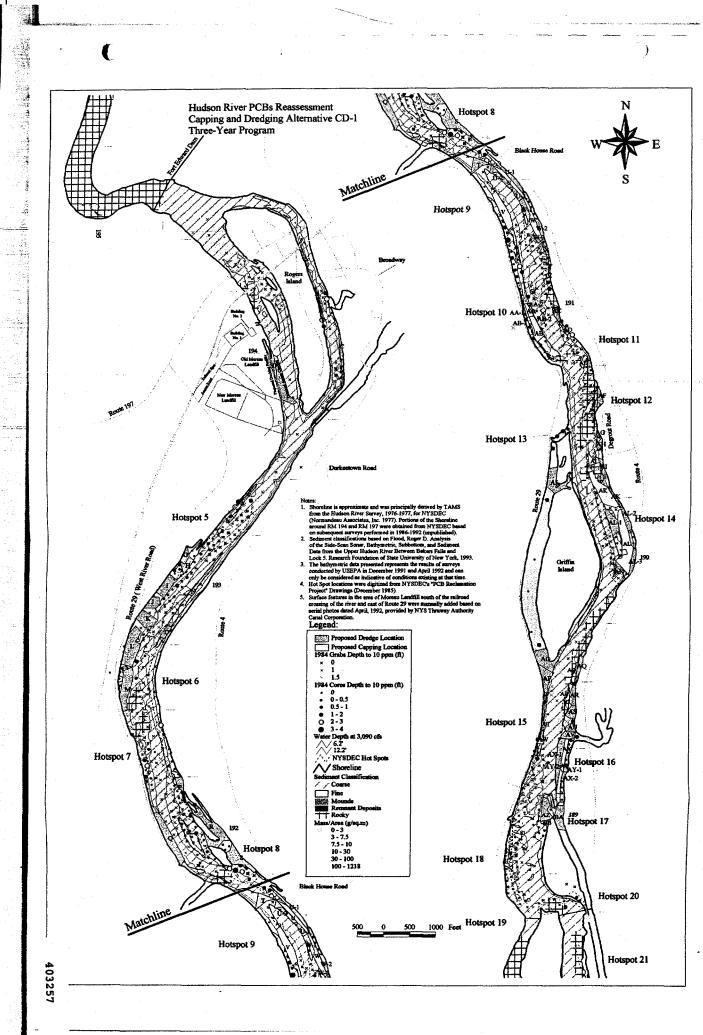
U. S. Environmental Protection Agency. 1996. Phase 2 Report - Review Copy, Further Site Characterization and Analysis. Volume 2B. Preliminary Model Calibration Report. Hudson River PCBs Reassessment RI/FS. Prepared by Limno-Tech, Inc., Menzie-Cura & Associates, Inc. and The Cadmus Group, Inc., October 1996.

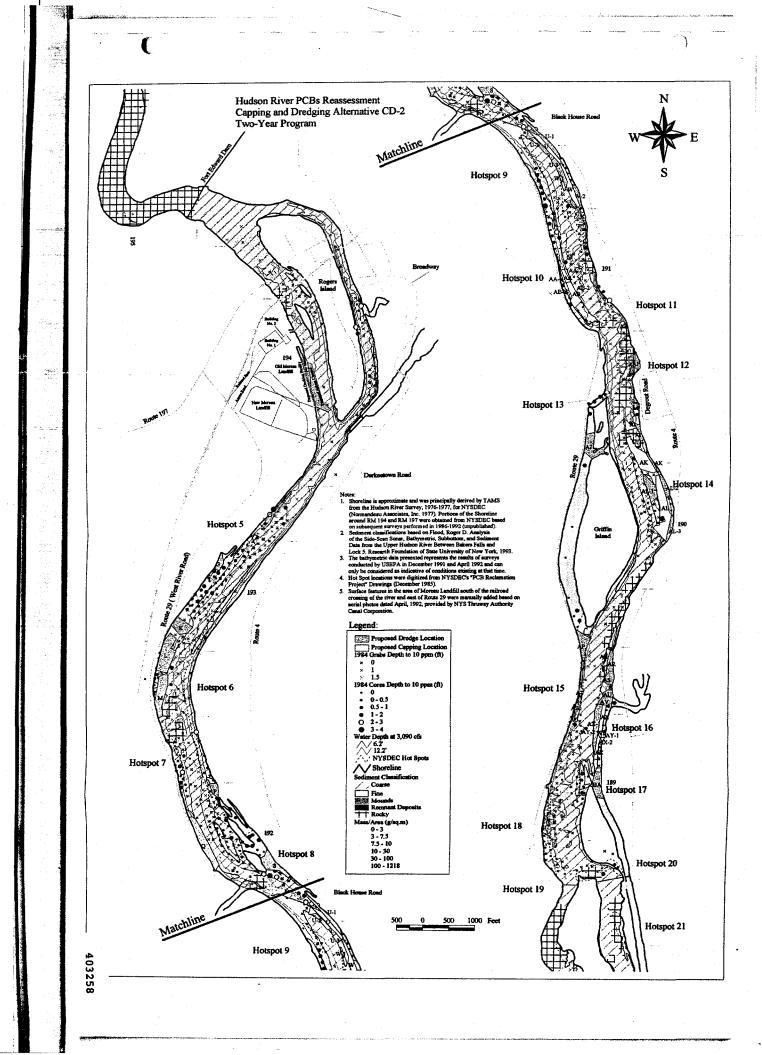

U. S. Environmental Protection Agency. 1997a. *Phase 2 Report - Review Copy, Further Site Characterization and Analysis. Volume 2C. Data Evaluation and Interpretation Report. Hudson River PCBs Reassessment RI/FS.* Prepared by TAMS Consultants, Inc., and Gradient Corporation, February 1997.

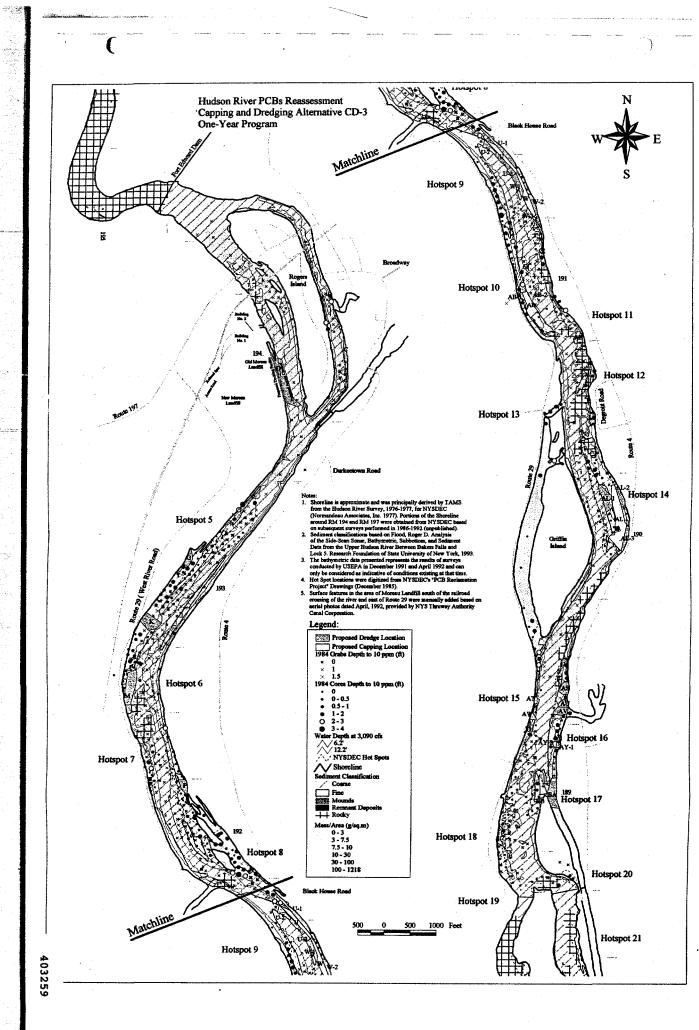

U. S. Environmental Protection Agency. 1997b. Landfill/Treatment Facility Siting Survey. Hudson River PCBs Reassessment RI/FS. Prepared by TAMS Consultants, Inc., February 1997.


U. S. Environmental Protection Agency. 1998. Phase 2 Report - Review Copy, Further Site Characterization and Analysis. Volume 2C-A. Low Resolution Sediment Coring Report. Addendum to the Data Evaluation and Interpretation Report. Hudson River PCBs Reassessment RI/FS. Prepared by TAMS Consultants, Inc., and Gradient Corporation, July 1998.


### 403252


7-2














تتفف كالغنا والتنكيم وسأكس والدرار