FINAL

70007

Quality Assurance Project Plan

Hudson River Project Sampling and Analysis Program

General Electric Company Corporate Environmental Programs Albany, New York

Final Revision May 1993

FINAL

QUALITY ASSURANCE PROJECT PLAN

HUDSON RIVER PROJECT SAMPLING AND ANALYSIS PROGRAM

GENERAL ELECTRIC COMPANY CORPORATE ENVIRONMENTAL PROGRAMS ALBANY, NEW YORK

MAY 1993

O'BRIEN & GERE ENGINEERS, INC. 5000 BRITTONFIELD PARKWAY SYRACUSE, NEW YORK 13221

TABLE OF CONTENTS

SECTION 1 - PROJECT DESCRIPTION	1
1.01 General	1
1.02 Site History	1
1.03 Previous Studies	1 2 2 3
1.04 Project Description	2
1.05 Quality Assurance Project Plan Objectives	3
SECTION 2 - PROJECT ORGANIZATION AND RESPONSIBILITY	5
2.01 Project Organization	5
2.02 Project Officer	5 6
2.03 Project Manager	6
2.04 Field Program Coordinator	6
2.05 Data Management Coordinator	6
2.06 Quality Assurance Officer	6 7 7
2.07 Data Validator	
2.08 Site Geologists and Environmental Technicians	7
2.09 Laboratory Quality Assurance Coordinators	8
2.10 Laboratory Sample Custodians	8
SECTION 3 - DATA QUALITY OBJECTIVES	9
3.01 Objectives	9
3.02 Field Measurements, Analyses, and Sampling	11
3.03 Laboratory Analyses	12
3.04 Definitions	12
SECTION 4 - SAMPLING PROCEDURES	14
4.01 Objective	14
4.02 General Sampling Locations and Numbers	14
4.02.1 Water Column Sampling Locations	14
4.02.2 Float Survey Sampling Locations	15
4.02.3 High-Flow Water Sampling Locations	15
4.02.4 Suspended Solids Sampling Locations	15
4.02.5 Sediment Sampling Locations	16
4.02.6 Sample Numbering System	16
4.03 Sample Matrices	16

O'Brien & Gere Engineers, Inc.

weeks .

- •

TABLE OF CONTENTS (Continued)

SECTION 4 - SAMPLING PROCEDURES (Continued)

4.04	Field QA/QC Samples 4.04.1 Duplicate Samples 4.04.2 Matrix Spikes (MS) and Matrix Spike Duplicates	16 17
	(MSD)	17
	4.04.3 Field/Equipment Blanks	18
4.05	Sampling Procedures	18
	4.05.1 Surface Water Sampling Procedure	19
	4.05.2 Suspended Solids Sampling Procedure	20
	4.05.3 Sediment Sampling Procedure	21
4.06	Decontamination of Sampling and Field Laboratory	
	Equipment	. 27
4.07	Sample Preparation and Preservation	28
SECTION S	5 - SAMPLE CUSTODY	29
SECTION	6 - CALIBRATION AND FREQUENCY	33
	Analytical Laboratory Equipment Calibration	33
	Field Laboratory and Sampling Equipment Calibration	33
	Standards	34
	Records	35
6.05	Equipment	35
	6.05.1 General	35
	6.05.2 Testing	35
6.06	Calibration Records	36
SECTION 2	7 - ANALYTICAL PROCEDURES	37
	Laboratory Analytical Procedures	37
7.02	Field Analytical Procedures	38
SECTION 8	3 - DATA REDUCTION, VALIDATION, AND REPORTING	39
8.01	General	39
	Data Production, Handling, and Reporting	39
	8.02.1 Data Production, Reduction, and Transcription	39

TABLE OF CONTENTS (Continued)

Page

SECTION 8 - DATA REDUCTION, VALIDATION, AND REPORTING	39
8.02.1.1 OBG Laboratories, Inc. 8.02.2 Data Distribution 8.02.3 Reporting 8.03 Data Validation	39 41 42 43
SECTION 9 - QUALITY CONTROL CHECKS	48
 9.01 QC Checks 9.01.1 Laboratory 9.01.2 Field 9.02 Field Sampling Quality Control 	48 48 48 49
SECTION 10 - PERFORMANCE AND SYSTEM AUDITS	50
SECTION 11 - PREVENTIVE MAINTENANCE	51
SECTION 12 - DATA ASSESSMENT PROCEDURES	52
SECTION 13 - CORRECTIVE ACTION	56
SECTION 14 - QUALITY ASSURANCE REPORTS TO MANAGEMENT	58
REFERENCES	
TABLES	
 Primary Project Contacts Analytical Methods Containers, Preservation, and Holding Times 	

- 4 5
- Field QC Samples Laboratory Method Control Limits

TABLE OF CONTENTS (Continued)

FIGURES

- 1 Hudson River Project Personnel
- 2 OBG Laboratories, Inc. Personnel
- 3 Sample Label
- 4 TWCMP Field Sampling Logsheet
- 5 Float Survey Field Sampling Logsheet
- 6 High Flow Program Field Sampling Logsheet
- 7 Chain of Custody
- 8 Rogers Island Auto-Sampler Field Sampling Logsheet
- 9 Sediment Survey Field Sampling Logsheet
- 10 Sediment Survey Field Laboratory Logsheet
- 11 Sediment Survey Composite Logsheet

APPENDICES

- A Project Personnel Resumes
- B Standard Operating Procedure, Method NEA 608 CAP Northeast Analytical, Inc.
- C OBG Laboratories, Inc. QA/QC Policy and Programs

O'Brien & Gere Engineers, Inc.

SECTION 1 - PROJECT DESCRIPTION

1.01 General

This Quality Assurance Project Plan (QAPP) provides quality assurance/quality control (QA/QC) criteria for surface water sampling, sediment sampling and related analytical tasks conducted on the upper Hudson River by O'Brien & Gere Engineers, Inc. (O'Brien & Gere). This work was prompted by the PCB Reassessment Remedial Investigation and Feasibility Study (RRI/FS) being performed on the upper Hudson River by the U.S. Environmental Protection Agency (USEPA). The work being performed by USEPA in conjunction with the Hudson River RRI/FS is described in their Phase 1 Report (USEPA, 1991) and the Final Phase 2 Work Plan and Sampling Plan (USEPA, 1992).

1.02 Site History

The Hudson River originates in the Adirondack Mountains of Northern New York State and empties into the Atlantic Ocean at the Battery in New York City. The lower Hudson River, which stretches 150 miles from the upper New York harbor to the confluence of the Mohawk River, is a tidal estuary which is subject to periodic fluctuations in water level. The lower Hudson is maintained and regulated as a Federal waterway by the US Army Corps of Engineers to provide waterborne access to the Port of Albany and the New York State Barge Canal. The portion of the river located north of Troy is considered the upper Hudson River. The 30-mile portion of the river located between Troy and Fort Edward is part of the New York State

1

Barge Canal System and is maintained and regulated by the New York State Department of Transportation.

1.03 Previous Studies

Various studies conducted throughout the late 1970s and early 1980s led to: 1) a state-mandated ban on fishing in the upper Hudson River between Albany and Fort Edward and restrictions on commercial and recreational fishing in the lower Hudson; 2) the placement of the Hudson River on the National Priorities List in 1983; and 3) the issuance of a Record of Decision (ROD) by the EPA in 1984.

The ROD called for in place containment of the remnant deposits and noaction for the river sediments. The ROD also called for a periodic reassessment of the site in light of new data and emerging technologies. In 1989, the EPA decided to reassess the no-action alternative for the Hudson River. An RRI/FS is currently being conducted by the EPA. This QAPP addresses sampling and analysis activities associated with the 1991-1992 Site Investigation of the Hudson River to be conducted by O'Brien and Gere on behalf of the General Electric Company (GE).

1.04 Project Description

The Site investigation includes a number of programs requiring QA/QC oversight, including:

Temporal Water Column Monitoring Program

2

- Float Surveys
 - High-Flow Water Sampling and Analysis Program

O'Brien & Gere Engineers, Inc.

- Suspended Solids Transport Study
- Sediment Sampling Program

1.05 **Quality Assurance Project Plan Objectives**

This document is site-specific and has been prepared for the 1991-1992 Site Investigation of the upper Hudson River. It was prepared in accordance with US EPA guidelines (USEPA, 1980a).

The objectives of this QAPP are to provide sufficiently thorough and concise descriptions of the measures to be applied during the Site Investigation such that the data generated will be of a known and acceptable level of precision and accuracy. This QAPP provides comprehensive information regarding the project description and personnel responsibilities, and sets forth specific procedures to be used during sampling of relevant environmental matrices, other field activities, and analyses of data.

The following Quality Assurance (QA) topics are addressed in this plan:

- Data Quality Objectives (DQOs) for measurement of data, including precision, accuracy, completeness, representativeness and comparability,
- project organization and responsibility,
- sampling procedures,
- hydrological procedures,

• sample custody,

analytical procedures,

calibration procedures, references and frequency,

O'Brien & Gere Engineers, Inc.

3

- internal quality control (QC) checks and frequency,
- QA performance audits, system audits and frequency,
- QA reports to management,
- preventative maintenance procedures and scheduling,
- specific procedures to be used to routinely assess data precision, representativeness, comparability, accuracy and completeness,
- data validation, and
- corrective action.

SECTION 2 - PROJECT ORGANIZATION AND RESPONSIBILITY

2.01 Project Organization

While each person involved in the investigation and in the generation of data are implicitly a part of the overall project and quality assurance program, certain individuals have specifically designated responsibilities. Within O'Brien & Gere, these are the Project Officer, the Project Manager, the Quality Assurance Officer, the Data Validator, the Field Program Coordinator, the Data Management Coordinator, and the Site Environmental Technicians. OBG Laboratories, Inc. (Syracuse, New York) and Northeast Analytical, Inc. (Schenectady, New York), will provide analytical services for the investigation. Laboratory personnel with quality assurance/quality control responsibilities include the Laboratory Quality Assurance Coordinators and Laboratory Sample Custodians. Figure 1 illustrates key O'Brien & Gere project personnel. Table 1 contains the primary contacts for the project. Figure 2 illustrates OBG Laboratories, Inc. personnel. Appendix A contains project personnel resumes.

2.02 Project Officer

Dr. Edwin C. Tifft Ph.D. will serve as Project Officer for this project. As Project Officer, he will be responsible for the overall management of the investigation and for the completion of work specified in the contract. He will interface between regulatory agency personnel, the client, and O'Brien & Gere management staff. He will also be responsible for budget and administrative oversight.

5

2.03 Project Manager

James R. Rhea, Ph.D., will act as the Project Manager for this investigation. As Project Manager, Dr. Rhea will monitor the investigation's progress, regularly review the project schedule, and review major work elements prior to submittal. The Project Manager will oversee scheduling and budgeting, and serves as the primary contact with state, local and federal agencies.

2.04 Field Program Coordinator

Mark D. LaRue has been assigned the responsibilities of Field Program Coordinator. The Field Program Coordinator reports directly to the Project Manager and is immediately responsible for the day-to-day activities of O'Brien & Gere field personnel. In this capacity, the Field Program Coordinator is responsible for day-today quality assurance project activities and reports directly to the Project Manager concerning the maintenance of the QAPP.

2.05 Data Management Coordinator

Craig A. Gabrial has been assigned the responsibilities of Data Management Coordinator. The Data Management Coordinator reports directly to the Project Manager and is responsible for the storage and transfer of raw field and laboratory data generated by O'Brien & Gere in specific formats required by end users.

2.06 Quality Assurance Officer

Mr. Michael Caputo of O'Brien & Gere will serve as Quality Assurance Officer and is responsible for overall project quality assurance. Mr. Caputo will review project plans and revisions to the plans to maintain proper quality assurance throughout the investigation. In addition, Mr. Caputo will be responsible for performance and systems audits, data processing activities, data processing quality control, data quality review, and coordinating the efforts between O'Brien & Gere, OBG Laboratories, Inc., and Northeast Analytical, Inc.

2.07 Data Validator

Ms. Melissa Listman of O'Brien & Gere will be responsible for reviewing chemical data and validating laboratory analytical data.

2.08 Site Geologists and Environmental Technicians

Surface water and sediment sampling tasks required by this investigation will be conducted by experienced chemists, engineers, and/or environmental technicians. Their responsibilities will include the documentation of the proper sample collection protocols, sample collection, field measurements, equipment decontamination, and chain-of-custody documentation.

Each sampling team will be under the team leader. In addition to the responsibilities above, the team leaders' responsibilities include the initialing and accuracy verification of field notebooks, chain-of-custody records, sample labels, and other field-related documentation.

7

2.09 Laboratory Quality Assurance Coordinators

Ms. Colleen Burke of OBG Laboratories, Inc., and Mr. Robert Wagner of Northeast Analytical, Inc., will serve as Quality Assurance Coordinators for their respective laboratories and will be responsible for laboratory quality assurance and quality control activities associated with the project. The specific duties of the Laboratory Quality Assurance Coordinator include ensuring that analyses are conducted within the appropriate holding times and laboratory custody procedures are followed. Moreover, the Laboratory Quality Assurance Coordinator monitors daily precision and accuracy records, maintains detailed copies of all procedures, reschedules analyses based upon unacceptable data accuracy or precision, and identifies and implements corrective actions necessary to maintain quality assurance standards.

Ms. Burke and Mr. Wagner or their assignees will conduct initial validations and assessments of analytical results and report the findings directly to the Quality Assurance Officer.

2.10 Laboratory Sample Custodians

Ms. Anne Barnes of OBG Laboratories, Inc., and Ms. Tracy Bengston of Northeast Analytical, Inc., will serve as project Laborat ry Sample Custodians for their respective laboratories. The Sample Custodian's responsibilities include ensuring proper sample entry and sample handling procedures by laboratory personnel.

8

SECTION 3 - DATA QUALITY OBJECTIVES

3.01 Objectives

The objectives of this investigation are the following:

- to evaluate the short-term spatial and temporal variability in PCB concentrations and composition within the upper Hudson River,
- to evaluate sediment PCB concentration and composition within the upper Hudson River,
- to identify source areas which may be contributing PCBs to the water column,
- to define the impact of high-flow events on resuspension and transport of sediment containing PCBs in the upper Hudson River, and
- to evaluate the origin and fate of suspended solids within the Thompson Island Pool.

To achieve these project objectives, Data Quality Objectives (DQOs) were established in order to develop an analytical database of sufficient quality to support conclusions made as a result of this investigation. Therefore, requirements for data quality parameters such as: detection limits, accuracy, precision, sample representativeness, data comparability and c..ta completeness are specified in this document.

DQOs are quantitative and qualitative statements specifying the quality of the environmental data required to support the decision-making process. DQOs define the total uncertainty in the data that is acceptable for each specific activity during the investigation. This uncertainty includes both sampling error and analytical error. Ideally, zero uncertainty is the intent; however, the variables associated with the

O'Brien & Gere Engineers, Inc.

process (field and laboratory) inherently contribute to the uncertainty of the data. It is the overall objective to keep the total uncertainty within an acceptable range that will not hinder the intended use of the data.

Field and laboratory analyses will adhere to the DQOs described by the U.S. EPA (USEPA, 1987). For laboratory analyses, the following DQO levels will be achieved:

<u>Matrix</u> Surface Water	<u>Methodology</u> Total Dissolved Solids Total Suspended Solids Total Organic Carbon Dissolved Organic Carbon Alkalinity Specific Conductivity Total PCBs	DOO Level III
	Congener Specific PCBs	V
Sediment	Bulk Density Moisture Content Pore Water Total Organic Ca Total Organic Carbon Total PCBs	III urbon
	Congener Specific PCBs Pore Water Congener Specifi	V c PCBs

Field measurements and analyses will adhere to Level I DQOs. Level I implies the use of portable instruments for analysis of water elevation and velocity. The remainder of this QAPP describes the specific approaches that will be taken to achieve the required DQOs. Tables 2 to 5 list methods and method specific quality control criteria which will be adhered to during sample collection and analysis.

O'Brien & Gere Engineers, Inc.

Data collected during the field investigation will be of sufficient quality to meet these DQOs. In order to assess adherence to DQOs, O'Brien & Gere has developed the QA/QC program described in this QAPP. The U.S. EPA Contract Laboratory Program (CLP), states that the purpose of the QA/QC program "is the definition of procedures for the evaluation and documentation of sampling and analytical methodologies and the reduction and reporting of data. The objective is to provide a uniform basis for sample collection and handling, instrument and methods maintenance, performance evaluation, and analytical data gathering and reporting." This QAPP for sampling, analysis and data handling is consistent with the requirements set forth by the USEPA CLP and in the NYSDEC Analytical Services Protocol. Two types of analytical support will be utilized to achieve the DQOs necessary for this investigation: field analyses and laboratory analyses.

3.02 Field Measurements, Analyses, and Sampling

Field measurements will include water elevation and velocity. These field investigation activities do not require sample collection, but nonetheless involve measurements for which QA concerns are appropriate. Therefore, these activities will adhere to DQO Level I. The primary QA objective of activities such as these is to obtain reproducible measurements to a degree of accuracy consistent with the intended use of the measurements and to document measurement procedures.

The objective of field sampling procedures is to obtain samples that represent the environmental matrix being investigated. This will be accomplished through the use of proper sampling techniques and equipment as set forth by the U.S. EPA

11

(USEPA, 1980b). The appropriate sampling methods are presented in Section 4 of this QAPP.

3.03 Laboratory Analyses

To obtain data quality sufficient to meet the overall objectives of the 1991-1992 Site Investigation, listed above, laboratory procedures will be as follows:

- Congener specific PCB analytical methodologies will adhere to procedures outlined by Northeast Analytical, Inc. (NEA, 1990).
- Other laboratory analyses, analytical QA/QC and data reporting requirements will adhere to guidelines outlined by USEPA, NYSDEC, and Page (USEPA, 1983, 1986; NYSDEC, 1989; Page, 1982).

3.04 Definitions

The following is a brief description/definition of data quality parameters addressed in the QAPP.

Representativeness refers to the degree to which a sample taken from a site accurately represents the matrix at the site. Representativeness will be achieved by the use of U.S. EPA procedures for the collection and preservation of samples.

Comparability refers to the use of consistent procedures, reporting units, standardized methods of field analysis and standardized data format with document control. Adherence to standard procedures maximizes the probability that data generated from different laboratories can be validly compared to one another.

Completeness refers to the process of obtaining all required data as outlined in the Work Plan. Completeness is also defined as the percentage of measurements

O'Brien & Gere Engineers, Inc.

judged to be valid. On a nationwide basis, the U.S. EPA has found CLP data to be 80-85% complete. The completeness goal of this investigation is 90%.

Precision describes the reproducibility of results. It is defined as the agreement between the numerical values of two or more measurements that have made in an identical manner. Precision can be expressed in a variety of manners, including the absolute methods of deviation from the mean or median values, standard deviation and variance, or by relative methods, such as relative deviation from the mean or median. Precision will be determined through the analysis of duplicate samples and through duplicate analysis of the same sample.

Accuracy is a measure of closeness of an individual measurement or an average of a number of measurements to the true value, and is expressed in terms of absolute or relative error. Accuracy will be determined through analysis of spiked samples and through the analysis of standards with known concentrations.

13

SECTION 4 - SAMPLING PROCEDURES

4.01 Objective

The objective of this sampling section is to document the sampling procedures and practices that will be used in the field investigation of the upper Hudson River. Information will be obtained as to the location, amount, and vertical and horizontal distribution of PCBs in the water column and sediment of the upper Hudson River. The methods that will be used to carry out these activities are detailed in the following subsections.

4.02 General Sampling Locations and Numbers

4.02.1 Water Column Sampling Locations

Water samples will be obtained from eight stations on the river. Four of these stations will be located on the bridges utilized as the historical USGS sampling stations in Fort Edward, Schuylerville, Stillwater, and Waterford. Another station will be located on the abandoned Fenimore Bridge, adjacent to Bakers Falls (upstream of the remnant deposits), and another station will be located at the western end of the Thompson Island Dam. The samples will be collected from near the center of the channel off bridges at the stations, with the exception of the station located adjacent to the Thompson Island Dam, which will be sampled off the west wing wall of the dam (the center of the channel at this station is not accessible by land). Additionally, the Temporal Water Column Monitoring Program will include sampling of the

Hoosic River and Batten Kill, upstream of their confluence with the Hudson River.

4.02.2 Float Survey Sampling Locations

Water samples will be collected at approximately six evenly spaced stations within the reach of river extending from Baker's Falls to the Route 197 Bridge in Fort Edward, New York. The initial sample will be collected from Fenimore Bridge directly above Bakers Falls. The remaining samples will be collected by launching a small boat near Bakers Falls and drifting downstream with the current to the Route 197 Bridge in Fort Edward. The samples will be collected from mid-depth of the water column near the center of the main channel.

4.02.3 High-Flow Water Sampling Locations

The sampling stations established for the Temporal Water Column Monitoring Program will be utilized for the High-Flow Sampling Program (Section 4.02.1).

4.02.4 Suspended Solids Sampling Locations

This study will include the installation of Manning automatic samplers in the Thompson Island Pool. One sampler will be installed near Ft. Edward (on the northern tip of Rogers Island), and the other sampler will be installed on the western wing wall of the Thompson Island Dam. Samples will be collected during periods of high river flow.

O'Brien & Gere Engineers, Inc.

4.02.5 Sediment Sampling Locations

Sampling will include approximately 500 cores from the Thompson Island Pool (Reach 8) and 500 cores between Troy and the Thompson Island Dam (Reach 1-7). Sediment Sampling Stations will be based on sediment sample data gathered from previous studies.

4.02.6 Sample Numbering System

A sample numbering system will be used to identify each sample taken during the field investigation sampling program. This numbering system will be part of a tracking procedure to permit accurate retrieval of information regarding a particular sample and to designate a unique number for each sample. A listing of the sample identification numbers will be maintained by the sample team leader (an example sample label may be found on Figure 3).

4.03 Sample Matrices

Sediment, surface water, and sediment pore water will be sampled and analyzed as part of this investigation's sampling efforts.

4.04 Field QA/QC Samples

In order to evaluate data quality, the following QA/QC sample types will be collected during the field investigation. Table 4 lists the samples to be collected by matrix and analysis type and the rate of field QC sample collection.

4.04.1 Duplicate Samples

Collection of laboratory duplicate or matrix spike duplicate samples provides for the evaluation of the laboratory's performance by comparing analytical results of two samples from the same location. Field duplicate samples are collected to evaluate field sample collection procedures. Field duplicate samples are duplicate samples collected from one location and sent to the laboratory blind (with two different sample numbers). Field and laboratory duplicate samples are to be included for each matrix at a minimum rate of five percent (5%). If less then twenty samples are taken during a particular sampling episode, then one duplicate collection should be performed. The number of duplicate samples to be collected is listed in Table 4.

Duplicate water samples will be obtained by alternately filling sample containers from the same sampling device for each parameter.

4.04.2 Matrix Spikes (MS) and Matrix Spike Duplicates (MSD)

Matrix spike and matrix spike duplicate samples are essentially duplicate samples that have matrix spiking solutions added. The percent recovery of the spiked amount approximates the accuracy and efficiency of the analysis extraction as well as interferences caused by the matrix. Relative percent differences between duplicate spike samples (when collected) will indicate the precision of the data. Matrix spike and matrix spike duplicate (if applicable) samples are to be included for each matrix at a minimum rate of five percent (5%) each. If less than twenty samples are collected during a

particular sampling episode, then one MS and one MSD collection should be performed. The number of matrix spike and matrix spike duplicates to be collected is listed in Table 4.

4.04.3 Field/Equipment Blanks

Field/equipment blanks will consist of a sample of the distilled water that is used to rinse the decontaminated sampling equipment. These blanks will be collected at a frequency of at least one per twenty samples per matrix where sampling equipment is reused. These samples will be subjected to the same analyses as the environmental samples. The number of field/equipment blanks to be collected is listed in Table 4.

4.05 Sampling Procedures

Table 3 lists the sample containers and types of preservations that will be used for sample collection. Table 3 also presents holding times that will be met during sample collection and analysis.

4.05.1 Surface Water Sampling Procedure

Surface water samples will be collected in conjunction with the Temporal Water Column Monitoring Program, the Float Surveys, and the High-Flow Sampling Program. In general, when sampling from an open body of water, care must be exercised to collect a representative sample. The sample should cause as little disturbance to the water body as possible. Taking a sample of water which shows evidence of sediment, debris, or other material which may have been stirred up by the presence of the sampler will be avoided. Copies of the Water Sampling Field Logs have been included as Figures 4, 5 and 6. The surface water sampling protocol will be as follows:

- The samples will be collected from near the center of the channel off bridges, where possible. The station located adjacent to the Thompson Island Dam as well as the Float Survey and tributary monitoring stations are exceptions to this procedure. The center of the channel at these stations is not accessible by land.
- If possible, discrete sub-samples will be collected at three foot intervals throughout the water column. The sub-samples will then be composited into a single sample by pouring each subsample into a clean stainless steel vessel.
- Samples will be taken while facing upstream, away from the influence of the sampler on river flow.
- Collection will be accomplished by one of two methods. A clean, 1.2 liter, stainless steel Kemmerer sampler will be

19

O'Brien & Gere Engineers, Inc.

submerged to the desired depth, followed by the release of a weighted messenger. The messenger triggers the closure of the silicone stoppers. The sampler is then retrieved. Otherwise, a dedicated precleaned 1 gal jar will be submerged to the desired depth, allowed to fill, and retrieved.

Samples will then be placed in the proper containers, preserved and stored in coolers. Containers and preservatives are presented in Table 3. Pertinent information will be recorded on the field log, including sample date, time, location, and sample identification. Chain-of-custody forms will also be completed. An example chain of custody form is shown as Figure 7.

- Between sampling stations, the sampling equipment will be rinsed with acetone, rinsed with hexane, allowed to dry, and finally rinsed with distilled water.
- Field Filtration for DOC will be performed using a 0.45 μ m teflon filter and syringe.

4.05.2 Suspended Solids Sampling Procedure

Water Column Sampling for the Suspended Solids Transport Study will be accomplished by two Manning automatic samplers. Each sampler will be programmed to collect a water column sample at 6 hour intervals. The samplers will be serviced 3 times per week during operation. The field log for the automatic samplers is presented as Figure 8.

O'Brien & Gere Engineers, Inc.

4.05.3 Sediment Sampling Procedure

The vessel to be employed for the sediment sampling program is a customized 24 foot pontoon boat powered by a 50 HP outboard engine. The boat is equipped with front and rear spuds which anchor the boat when embedded in the river bottom and a 15 foot high tripod which facilitates sediment coring. Sediment sampling will involve the following:

- 1) location of the vessel at predetermined sampling sites,
- 2) boat anchoring,
- 3) sediment core collection, and
- 4) sediment core processing.

Vessel Location

The sampling vessel will be located at each predetermined core station using an IMC Hydro I automated range-azimuth positioning system. This laser-based system provides position accuracy of \pm 0.6 meters and will allow the boat driver to monitor the real time x-y position at one second intervals. The boat will approach each sediment station from downstream to minimize the effect of the craft on the sediment to be sampled.

Boat Anchoring

Once the boat has been positioned on a predetermined sampling station the front and rear spuds are lowered into the sediment with the assistance of mechanical winches. This anchors the craft and facilitates the collection of representative sediment samples.

Sediment Core Collection

Sediment core collection will follow the following standard operating procedure (SOP):

- 1) The depth to the sediment/water interface is determined manually or by using "Hummingbird" brand transducer. In dense sediment, a vibracorer is used to insert the core barrel into the sediment, otherwise the core barrel is manually inserted into the sediment. The following details use of the vibracorer:
 - a) the vibracorer is securely attached to the coring barrel using two chain-vises,
 - b) the core barrel is vibrated into the sediments to a penetration depth of 2 ft, and
 - c) the vibracorer is detached from the core barrel and the core barrel is physically retrieved using a rope and pulley attached to the tripod; if retrieval is too difficult, an electric winch will be employed.
- 2) The bottom of the core barrel is capped as soon as the core barrel is removed from the water using a plastic cap that firmly seals the end of the core barrel, as a precautionary measure the cap will also be taped to assure a sealed core is obtained.
- 3) The length of the core is measured and the water above the core is removed by hack sawing through the core barrel one inch above the core.

O'Brien & Gere Engineers, Inc.

22

- 4) The top of the core is then capped off, the core is then labeled and stored vertically until delivered to the field lab. A Field Sampling Log has been included as Figure 9.
- 5) Sediment cores collected during the day will be transported to the field laboratory in an upright position and logged in by the field lab manager.
- 6) A subsample of the surficial sediment will be removed and used to measure the bulk density (wet weight per volume). Each core will be visually classified as either COARSE or FINE.

The cut off between COARSE and FINE sediment will be established at 1.44 g/mL. FINE cores will be defined as those with a bulk density of 1.44 g/mL or less. COARSE cores will be defined as those with a density greater than 1.44 g/mL. The following procedure will then be used to determine the classification of sediment cores which are not able to be visually obtained.

- a) remove a small amount of sediment from the top 5 cm of each core,
- b) if the sediment is mostly clay (>80% by volume), the core will be classified at FINE without measuring its bulk density. If the sediment is mostly medium sand (or coarser), the core will be classified as COARSE,
- c) to classify sediment which is neither obviously FINE or
 COARSE (i.e., silty sand), a pre-weighted 5-ml crucible
 will be completely filled with sediment and leveled with

O'Brien & Gere Engineers, Inc.

23

a straight edge. The crucible will then be weighed to the nearest 0.1 gram, the weight will be recorded, and the process repeated once. If the average weight is 12.5 grams or less (<2.5 g (wet)/m (wet)), the core will be classified as FINE. If the average weight is greater than 12.5 (>2.5 g/wet)/m (wet)), the core will be classified as COARSE, and

- d) this information will then be recorded on the Field
 Laboratory Log Sheet (Figure 10).
- After the core classification procedure, the cores will be placed in a freezer overnight or until cores are frozen.

After overnight freezing, the sediment cores will be sectioned at 5, 10, 25 and 50 cm depths from the sediment-water interface. Core processing will proceed according to the following SOP:

- The cores will be removed from the freezer and placed in a clamping device. The aluminum core liner will be cut lengthwise from the top edge, down to the sediment-water interface using a router or other cutting tool.
- 2) The core liner while be cut at the interface using a pipe cutter and the top section removed by gently shearing the frozen core. The color and texture of the surficial sediment layer will be recorded on the sample log (Figure 10).
- 3) The total length of the core will be measured. The core will then be sectioned at 5, 10, and 25 cm depths using the pipe

O'Brien & Gere Engineers, Inc.

cutter method and extruded one at a time into separate 750-ml stainless steel centrifuge bottles. Between cuts the pipe cutter blade and all other tools coming in contact with sediment will be decontaminated (see Section 4.06).

- 4) Sediment within the centrifuge bottles will be thawed and mixed with an electric beater in preparation for sampling and composting. After mixing, the beater and ladel will be decontaminated. (Section 4.06) The color and texture of the inner core will be noted and described on the composite log (Figure 11).
- 5) Sediment not composited will be removed for archiving and placed into a precleaned 725-ml jar, properly labeled, and frozen. At the end of each work week the jars will be transported to a permanent freezer storage facility along with a chain of custody form.
- 6) Another small subsample will be removed and placed into one of ten stainless steel trays for compositing (see sediment compositing procedure below).

Pore Water Extraction

- .) Pore water will be extracted from the sediment remaining in the centrifuge bottles by centrifugation at 3500 rpm for twenty minutes using a Beckman Model GS-6 benchtop centrifuge equipped with a horizontal rotor.
- The resulting pore water will be decanted off and pressure filtered with high-purity (99.9999%) nitrogen through a 0.5
- O'Brien & Gere Engineers, Inc.

micron nylon membrane filter. The filter chamber will be decontaminated between samples.

- 3) Pore water extracted from 8 to 12 samples having the same texture and from the same depth will be composited. Equal volume aliquots of each subsample will be added to the same pre-cleaned sample container. Headspace will be minimized by judicious selection of sample container size.
- 4) Based on the amount of water needed to conduct the analyses on porewater, only those composite samples with at least 200 mls of porewater will be submitted to the lab for analysis.

Grain Size Analysis

- 1) An approximate 60 gram portion of the 0-5 cm composite will be wet sieved through a 63 μ m stainless steel sieve using tap water. The fines will be collected in a plastic bucket, transferred to a centrifuge container, and centrifuged to facilitate the settling of fine particles. Excess water will then be decanted.
- 2) The total wet weight of the sediment prior to wet sizing will be determined to the nearest 0.1 gram and recorded. Dry weights of fine particles and sands will be measured to determine percent water, percent sand, and percent silt. These fractions will then be spooned into 250-ml sediment jars and submitted separately for total organic carbon and percent moisture analysis.

3) Based on the wet weight and moisture content of each fraction, the percent sand and percent silt/clay of the 0-5 cm core section will be calculated on a dry-weight basis.

Sediment Compositing

- The sediment subsamples will be composited into separate stainless steel trays until 8 to 12 like samples have been combined. The solids will be mixed thoroughly until the sample appears homogeneous.
- 2) Subsamples of these composites will then be placed into 250-ml pre-cleaned jars, dropped into plastic bags, labeled, and stored in a 4°C cooler for transport to the analytical laboratory. Samples not being analyzed will not be composited, rather, they will be archived separately.
- Grab samples will be composited separately from core samples so as to maintain the vertical stratigraphy of PCB in composite cores. A logsheet for composite sampling is included as on Figure 11.

4.06 Decontamination of Sampling and Field Laboratory Equipment

Decontamination procedures will be applied to sampling and laboratory activities. Equipment which directly contacts sample material will be decontaminated between distinct sample contact. The field laboratory and sampling equipment cleaning and decontamination procedure will be as follows:

1) scrub with brush and river or tap water,

O'Brien & Gere Engineers, Inc.

- 2) wipe with clean paper towel containing acetone or rinse with acetone,
- 3) wipe with clean paper towel containing hexane or rinse with hexane,
- 4) allow to air dry, and
- 5) wipe with clean towel containing distilled water or rinse with distilled water.

Field decontamination wastes will be contained and transported to OBG Laboratories, Inc., for disposal according to applicable regulations.

4.07 Sample Preparation and Preservation

After collection and processing, samples will be transferred to properly labeled sample containers and properly preserved. Table 3 lists the container materials, volume requirements, and preservation needed for the site analyses. Water samples requiring refrigeration for preservation will be immediately transferred to coolers packed with ice and/or ice packs. These samples will be promptly shipped to the laboratory after sample collection. Sediment core samples will be held on the boat during the day and frozen overnight for processing in the Field Lab the next day. Proper chain of custody documentation will be maintained as discussed in Section 5. Samples will be analyzed within the holding times specified in Table 3.

SECTION 5 - SAMPLE CUSTODY

Chain of custody procedures will be instituted and followed throughout the study. These procedures include field custody, field laboratory custody, laboratory custody, and evidence files. Samples are physical evidence and will be handled according to strict chain of custody protocol. The Quality Assurance Officer must be prepared to produce documentation that traces the samples from the field to the laboratory and through the analyses, and long term storage. The National Enforcement Center of the US EPA has defined custody of evidence as follows:

- in actual physical possession,
- in view after being in physical possession,
- in a locked laboratory, and
- in a secure, restricted area.

Quality Assurance measures for this project will begin with the sample containers. Sample containers will be purchased from a U.S. EPA certified manufacturer and will be pre-cleaned (I-Chem series 200 or equivalent).

Chain of custody records will be created in the field when sample collection has been completed. This custody record will trace the sample from the field to long term storage. In the case of sediment samples, a new chain of custody record will be created in the field lab when the sample is split. The original form will stay with the archived portion of the sample. The new chain of custody form will reference the original sample and original chain of custody form. In the field log book, samplers will note meteorological data, equipment employed during collection, evacuation techniques and calculations and time of sample collection. Physical

O'Brien & Gere Engineers, Inc.

characteristics of sample, date, time of day and location, and any abnormalities noted during sampling will be recorded in the field log book and on the chain of custody form. A photographic record will be established for the sample processing procedure. Daily entries into the field-laboratory logbook will include: sample ID, date, list of sediment cores processed, visual description of each sample, bulk density, and pertinent laboratory information. In addition, a record of the vertical stratification of sediment color and texture will be obtained for sediment cores. A photographic record of the descriptors used in sediment color and texture assignments will be developed. The chain-of-custody forms will include sample description, date and time of collection sample matrix and type, number and size of sample containers filled, and the type of analysis requested. An example chain-of-custody form may be found in Figure 7.

The sampler will complete the custody form, package the samples including the custody form, and seal the package with evidence tape. Shipment may be made by commercial vendors, and their policy will be to document the transfer of the package within their organization. When the samples arrive at the laboratory, the sample custodian will sign the vendor's bill. The sample custodian's duties and responsibilities upon sample receipt will be to:

- document receipt of sample.,
- inspect sample shipping containers for the presence or absence of custody seals, locks, and evidence tape, and for container integrity,
- record condition of the shipping and sample containers in the log books,
- sign the appropriate forms or documents,

```
O'Brien & Gere Engineers, Inc.
```

- verify and record the agreement or disagreement of information on sample documents and if there are discrepancies, record the problem and notify the Quality Assurance Officer,
- label sample with laboratory sample number, and
- place samples in secure storage.

The hand-to-hand custody of samples in the laboratory will be maintained. The analyst will be required to log samples into and from storage as the analysis proceeds. Samples will be returned to secure storage at the close of business. Log sheets will incorporate options for multiple entries, so that several people can handle the samples throughout the analytical scheme. Written records will be kept of each and every time the sample changes hands. The laboratory records may also be used as evidence in enforcement proceedings. Care must be exercised, therefore, to properly complete, date, and sign the items needed to generate data. Copies of the following items will be stored:

- documentation of the preparation and analysis of samples, including copies of the analyst's notebooks,
- bench sheets, graphs, computer printouts, chromatograms, and mass spectra,
- copies of all QA/QC data,
- instrument logs showing the date, time, and identity of the analyst, and
- analytical laboratory sample tracking forms that record the date, time, and the identity of the analyst for each step of the sample preparation, extraction, and analysis will be maintained.
- O'Brien & Gere Engineers, Inc.

The sample custodian will log in samples on a log-in form and note the appropriate information, including sample identification and the condition of the samples. Copies of relevant portions of these log-in forms can be provided if necessary. Inconsistencies in paperwork or comments on the condition of the samples will be duly noted on the form and filed with the case.

The custody of each sample will be further documented in the sample preparation and extraction log book and the instrument log book. The chemist or technician will sign and date the appropriate forms when handling the samples. During the analyses, these forms will be maintained in a secure file. Following the completion of the analysis of a group of samples, appropriate forms and data sheets will be collected and stored in the files.

Upon completion of the analysis, the Quality Assurance Officer or his assignee will begin assimilating the field and laboratory notes. In this way, the evidence file for the project will be generated. The file will be chronologically arranged for ease of review. When the information has been gathered, the file will be inventoried, numbered, and stored for future reference.

O'Brien & Gere Engineers, Inc.

SECTION 6 - CALIBRATION AND FREQUENCY

6.01 Analytical Laboratory Equipment Calibration

Calibration of laboratory analytical instrumentation is essential for the generation of reliable data which meets project data quality objectives. Analytical instrument calibration is monitored through the use of control limits which are established for individual analytical methods. Analytical methods to be used during this project are located on Table 2, and corresponding control limits for those method are found in Table 5. Calibration procedures to be followed are specified, in detail, in the analytical methods. These procedures specify the type of calibration, calibration materials to be used, range of calibration, and frequency of calibration.

OBG Laboratories, Inc. and Northeast Analytical, Inc., will be responsible for the proper calibration and maintenance of laboratory analytical equipment. General calibration procedures are contained in OBG Laboratories, Inc. Quality Assurance/Quality Control Plan, September, 1992 (Appendix C) and Northeast Analytical, Inc. Standard Operating Procedure, June, 1990 (Appendix B).

6.02 Field Laboratory and Sampling Equipment Calibration

Field laboratory and sampling equipment used during this investigation, will be calibrated in a manner and at a frequency in accordance with the manufacturer's instructions. The equipment will also be operated in accordance with the manufacturer's instructions. Field laboratory and sampling equipment used during this project that is not covered by the standard operating procedures referenced herein will have a specific calibration and operation instruction sheet prepared for

O'Brien & Gere Engineers, Inc.

it by the personnel who will be using the equipment in the field. Calibration procedures undertaken involving field equipment will be recorded in a field notebook.

Generally, field laboratory and sampling equipment will be calibrated on a daily basis. The calibration range will be designed to bracket the concentrations of concern. The field laboratory balance will be checked for calibration by comparing the weight of the 5 ml crucible used to determine bulk density against the weight as determined by an analytical balance at OBG Laboratories, Inc. Crucible integrity will be checked daily.

6.03 Standards

Standards may be generally grouped into two classifications: primary and secondary. Primary standards include United States Pharmacopoeia (USP) drugs, National Institute of Science and Technology (NIST) and American Society of Testing Materials (ASTM) materials, and certain designated U.S. EPA reference materials. Other standards are to be considered secondary. No testing of primary standards is necessary. Primary standards should not be used if there is any physical indication of contamination or decomposition (i.e. partially discolored, etc.) or if they are expired. Secondary standards should be examined when first received, either by comparison to an existing primary standard or by comparing known physical properties to literature values. The less stable standards will be rechecked at appropriate intervals, usually six months to one year.

34

6.04 Records

A records book will be kept for each standard and will include:

- name and date received,
- source,
- code or lot number,
- stock concentration and initial concentration calculations,
- special storage requirements, and
- storage location.

These records will be checked periodically as part of the Laboratory Controls Review.

6.05 Equipment

6.05.1 General

- 1) Each major piece of analytical laboratory instrumentation that will be used on this project has been documented and is on file with the analytical laboratory.
- An equipment form will be prepared for each new purchase and old forms will be discarded when the instrument is replaced.

6.05.2 Testing

- Each equipment form will detail both preventive maintenance activities and the required QA testing and monitoring.
- 2) In the event the instrument does not perform within the limits specified on the monitoring form, the Laboratory Manager will be

O'Brien & Gere Engineers, Inc.

notified and a corrective action decision will be made. The corrective action procedure shall be documented in the instrument log.

3) If repair is necessary, an "out-of-order" sign will be placed on the instrument until repairs are effected. Repairs made to the instrument will be documented in the instrument log book. Required QA/QC testing and monitoring will be completed prior to the resumption of sample analysis.

6.06 Calibration Records

A bound notebook will be kept with each instrument requiring calibration in which will be recorded all activities associated with QA monitoring and repairs program. These records will be checked during periodic equipment review and internal and external QA/QC audits.

SECTION 7 - ANALYTICAL PROCEDURES

7.01 Laboratory Analytical Procedures

Control limits for analytical parameters are given in Table 5. The accuracy and precision of the data generated by the laboratory will be determined through analysis of duplicates, spiked samples, synthetic reference standard samples, and field and laboratory blanks analyzed along with each set of samples. Interferences will be identified and documented.

When matrix interferences are noted during sample analysis, actions will be taken by the laboratory to achieve the specified detection limits. Samples will not be diluted by more than a factor of five to reduce matrix effects. (Samples may diluted to a greater extent if analytes of concern generate responses in excess of the linear response of the instrument.) The laboratory will re-extract, re-sonicate, and/or use any of the clean-up methods presented in the NYSDEC Analytical Services Protocol (NYSDEC, 1989). In such cases, the Laboratory Quality Assurance Coordinator will assure that the laboratory demonstrates good analytical practices and that such practices are documented in order to achieve the specified detection limits.

In general, the methods accuracy and precision will be determined by spiking the sample matrix with the analyte. Percent recover...s of the spikes will be calculated and compared with control limits listed in Table 5. A measure of precision will be obtained through the relative percent difference (RPD) between matrix spikes and matrix spike duplicates for organic compounds and as the RPD between laboratory duplicates for metals. Sampling precision will be evaluated based on the relative percent difference of duplicate field samples. RPDs will be compared to those control limits listed in Table 5.

The data generated will, whenever possible, be input to the laboratory database management system. Analyst's work sheets will be filed for one year as a temporary record. When approved and signed, data reports and pertinent information will be reported to GE.

The following analyses will be performed on the Temporal Water Column Monitoring Program samples; total dissolved solids (TDS), conductivity, alkalinity, total suspended solids (TSS), total organic carbon (TOC), dissolved organic carbon (DOC), and PCBs. Analyses to be performed on the Float Survey samples include: TDS, conductivity, alkalinity, TSS, TOC, DOC, and PCBs; these analyses will also be performed on High-Flow Sampling Program samples. TSS will be performed on the Suspended Solids Study samples. Analyses to be conducted on the Sediment samples will include: bulk density, percent moisture, pore water TOC, pore water PCBs, solids PCBs, and solid TOC.

Complete descriptions of analytical procedures to be used in the field and laboratory are described by NYSDEC (NYSDEC, 1989). A list of the laboratory analytical procedures to be used is presented in Table 2.

7.02 Field Analytical Procedures

Field analytical procedures will follow the same general principles and practices as laboratory analytical procedures. The percentage of quality control samples to be taken per total number of samples will be the same as for laboratory analyses and is listed on Table 4.

O'Brien & Gere Engineers, Inc.

38

SECTION 8 - DATA REDUCTION, VALIDATION, AND REPORTING

8.01 General

OBG Laboratories, Inc. and Northeast Analytical, Inc., will be conducting analysis on collected samples in accordance with US EPA protocols. Data reduction and laboratory validation will be incorporated into the in-house effort for all parameters.

8.02 Data Production, Handling, and Reporting

The following data handling procedures will be followed at the laboratory.

8.02.1 Data Production, Reduction, and Transcription

OBG Laboratories, Inc. and Northeast Analytical, Inc., will be performing analyses on the environmental samples. The following data handling procedures are employed at OBG Laboratories, Inc. and Northeast Analytical, Inc.

8.02.1.1 OBG Laboratories, Inc.

OBC Laboratories, Inc. will perform analyses for PCBs, TDS, conductivity, alkalinity, TSS, TOC, and DOC. The following data handling procedures are employed by the laboratory for PCB analyses. The gas chromatography instrumentation consists of a Hewlett-Packard (HP) Model 5890S GC equipped with an Electron Capture Detector and a 7673A HP Auto injection system. This auto injection system is

O'Brien & Gere Engineers, Inc.

used for positive identification and quantitation of sample extracts. Output from the GC unit is processed for presentation in two forms: a real time chromatogram and a post-run integration report. The postrun integration report contains the following information:

- retention time,
- response factors, calculated form initial calibration curve,
- surrogate standard recoveries, and
- listing of all positively identified compounds. Quality Assurance/Quality Control data such as spikes, spike duplicates, method blanks and calibration curves are also processed and stored in post-integration reports.

The WSI Model 32 conductance meter is used by the lab for conductivity analyses. The Orion Model 5A 720 and Orion 8104 Ross Combination Probe is used for alkalinity analyses. TOC and DOC will be performed on a Rosemount Analytical Dohrmann DC-190 Carbon Analyses.

8.02.1.2 Northeast Analytical, Inc.

Northeast Analytical, Inc. will be performing analyses for congener specific PCBs, percent moisture, bulk density, and sediment TOC on environmental samples. The following data procedures are employed by the laboratory for these analyses. The gas chromatography instrumentation consists of a Varian Model 3400 GC equipped with capillary on-column injection, temperature programmable oven,

Model 8000 automatic sampler and fast time constant electron capture detector. A data system (Dynamic Solutions, Maxima Workstation) for chromatographic operations and integration of detector signal is interfaced to the GC. Output from the GC system is processed into a real time chromatogram and a sample specific report that includes peak identification, retention time, peak name, integrated peak area, amount of solution and sample amount. In addition, a PCB congener report and a PCB summary report are included in the data package. A separate QA/QC data summary report is also included with each package detailing QA/QC data for spikes, EPA check samples, duplicates and method blanks.

Northeast Analytical Laboratories, Inc., will use an A&D Model ER 1804 microbalance to perform bulk-density and percent moisture analyses. Sediment TOC analyses will be performed on a Dohrman Analyzer.

8.02.2 Data Distribution

Following final review by the appropriate Group Leaders, Quality Assurance Personnel and Manager of Analytical Services, a single copy of the results of the analytical determination will be shipped to O'Brien & Gere Engineers, Inc.

41

8.02.3 Reporting

Analytical data packages, which are fully validatable and document sample preparation, extraction, and analysis, will be provided for each analysis. Data report forms will be securely bound and all pages will be sequentially numbered.

The analytical data reports will include the following information:

- case narrative,
- date of sampling,
- case file,
- description of samples,
- description of sample extraction and clean-up procedures,
- indication of analytical method,
- analytical results of all samples plus trip blank, field blank, and method blank (including tentatively identified compounds, if applicable),
- analytical results of QA/QC sample analyses,
- summarized calibration data,
- detection limits for parameters analyzed,
- QA/QC data summaries (i.e. MS/MSD results and summaries),
- copy of completed chain-of-custody forms,
- notebook accountability record,
- appropriate raw instrument outputs (e.g. GC/MS spectral printouts), and
- example calculations for each analysis.
- O'Brien & Gere Engineers, Inc.

Review and cross checking procedures will be conducted according to standard operating procedures of the laboratory and will ensure that the raw data and calculation results are properly, completely, and accurately transferred to the reporting format used by the laboratories' CLP programs.

8.03 Data Validation

The laboratory validation process begins with the group leaders who will review the raw and reduced data for possible calculation and transcription errors. Additionally, the group leaders will check unusually high or low parameter values. The Laboratory QA Coordinator will perform a final laboratory validation of the data which will include a review of quality control sample analyses and data completeness. The laboratory report will then be reviewed and approved by the manager of analytical services prior to its release.

Prior to submittal of the data to the Project Manager for his review, data will be validated by O'Brien & Gere Engineers, NYSDEC-approved data validators. Data validation is a systematic process of evaluating analytical data quality by comparing the data generation process (sample collection through sample analysis) to quality control criteria established prior to the initiation of the field investigation. Data quality criteria are established based on the project data quality objectives which are, in turn, established based on the intended use of the data. A data validation report establishes data usability by determining the degree of adherence to quality control criteria. As a result, sample data is determined to be usable as is, approximate, or unusable for the particular use established by the project data quality

O'Brien & Gere Engineers, Inc.

43

objectives. A data validation report will be generated and incorporated into the summary reports, as required.

The requirements to be checked for the validation of congener specific and total PCB analyses data include the following:

- 1. Documentation Completeness
- 2. Holding Times
- 3. Instrument Performance
 - a. 2,2; 3,3' 4,4' 5, 6, 6' NCBP
 - b. Baseline Stability
 - c. Chromatographic Resolution
- 4. Calibration
 - a. Initial Calibration
 - b. Analytical Sequence Verification
 - c. Continuing Calibration Verification
 - d. Internal Standard Area Assessment
- 5. Blank Analysis
 - a. Method Blank
 - b. Field/Equipment Blank
- 6. Surrogate Recovery
- 7. Matrix Spike Analysis
- 8. Field/Laboratory Duplicate Analysis
- 9. Reference Standard Analysis
- 10. Spike Blank Analysis
- 11. Compound Identification and Quantitation

O'Brien & Gere Engineers, Inc.

44

12. Overall Data Assessment

The requirements to be checked for the validation of TDS and TSS analyses data include the following:

- 1. Documentation Completeness
- 2. Balance Calibration
- 3. Blank Analysis
 - a. Method Blank
 - b. Field/Equipment Blank
- 4. Laboratory Duplicate Analysis
- 5. Field Duplicate Analysis
- 6. Reference Standard Analysis
- 7. Sample Quantitation
- 8. Overall Date Assessment

The requirements to be checked for the validation of TOC analyses data include the following:

- 1. Documentation Completeness
- 2. Calibration
 - a. Initial Linearity Check
 - b. Continuing Calibration
- 3. Blank Analysis
 - a. Method Blank
 - b. Field/Equipment Blank
- 4. Matrix Spike Analysis
- 5. Laboratory Duplicate Analysis

O'Brien & Gere Engineers, Inc.

45

- 6. Field Duplicate Analysis
- 7. Reference Standard Analysis
- 8. Sample Quantitation
- 9. Overall Data Assessment

The requirements to be checked for the validation of specific conductance and alkalinity analyses data include the following:

- 1. Documentation Completeness
- 2. Calibration
- 3. Blank Analysis
 - a. Method Blank
 - b. Field/Equipment Blank
- 4. Laboratory Duplicate Analysis
- 5. Field Duplicate Analysis
- 6. Reference Standard Analysis
- 7. Sample Quantitation
- 8. Overall Data Assessment

The requirements to be checked for the validation of bulk density and percent

moisture data include the following:

- 1. Documentation Completeness
- 2. Balance Calibration
- 3. Laboratory Duplicate Analysis
- 4. Field Duplicate Analysis
- 5. Reference Standard Analysis

6. Sample Quantitation

7. Overall Data Assessment

O'Brien & Gere Engineers, Inc.

47

SECTION 9 - QUALITY CONTROL CHECKS

9.01 OC Checks

9.01.1 Laboratory

The numbers of QA/QC samples that must be taken for each sample matrix are listed in Table 4. Table 5 contains information regarding the audits, frequency and control limits for acceptability. Upon completion of analysis, the results of QA/QC data will be reviewed to verify compliance with the criteria listed. When results are reported to the Quality Assurance Officer, QA/QC data will be included in the package for review. Matrix spikes and surrogates will be used to monitor the methodology and recoveries will be compared to the QA/QC criteria presented in Table 5. Matrix spike duplicates and duplicate samples will be incorporated as an indicator of the precision of the sample results. The relative percent difference calculations will also be compared to the QA/QC criteria presented in Table 5.

Approximately ten percent of the congener specific sediment sample which are to be analyzed by Northeast Analytical Laboratories, will be analyzed in duplicate by OBG Laboratories. Ten percent of the Temporal Water Column Monitoring Program congener specific PCB samples will also be analyzed by both labs. This data will be used as a Quality Control check.

9.01.2 Field

Field instrument calibrations will be performed daily. Calibrations will be performed for equipment used in field activities according to manufactur-

O'Brien & Gere Engineers, Inc.

48

ers recommendations. The calibration range will be designed to encompass the sample readings. The standards used in the field will be checked and replaced with fresh standards as they expire. Instrument conditions and calibration procedures will be checked by the Sampling Team Leader.

9.02 Field Sampling Quality Control

Field sampling crews will always be under the direct supervision of a field sampling leader. Bound log books and appropriate data sheets will be used to document the collection of samples and data so that any individual sample or data set can be traced back to its point of origin, sampler and sampling equipment used. Sampling will be performed according to the methods provided in this document. Blind field duplicate samples will be collected by the sampling team. These samples will be sent to the laboratory for analysis in conjunction with the environmental samples. Field sampling precision will be evaluated through the relative percent difference (RPD) of the duplicate sample analyses results. Control limits for field duplicate precision have been established and may be found on Table 5. Decontamination of sampling equipment will be verified through the analysis of equipment blanks. Proper chain of custody protocols, as presented in this document, will be followed.

SECTION 10 - PERFORMANCE AND SYSTEM AUDITS

O'Brien & Gere has designated a Quality Assurance Officer as indicated in Table 1. A performance audit consisting of analysis of appropriate blanks, spiked samples, and standard solutions will be performed. The specific schedule for QA/QC auditing is presented in Table 5. O'Brien & Gere's Quality Assurance Officer will maintain a record of such audits. These audits will test not only the total system's response, but major measurement methods. O'Brien & Gere's Quality Assurance Officer will report to the Project Coordinator the result of the assessment of the accuracy, precision, and completeness of the data, results of the performance and system audits, and any problems encountered in the analytical procedures. The Quality Assurance Officer, and Data Validator, in conjunction with the Laboratory QA Coordinator, the analyst, analyst's supervisor, and Project Coordinator will formulate recommendations to correct any deficiencies in the analytical protocols or data. These corrective measures will be in accord with on-going good laboratory practices and the overall QA/QC Program.

A field performance audit consisting of an on-site QA/QC audit will be performed by O'Brien & Gere's Quality Assurance Officer at least once during the field program. The audit will evaluate the adherence of the field program to the QA program outlined in this QAPP. O'Brien & Gere's Quality Assurance Officer will maintain a record of such audits. O'Brien & Gere's Quality Assurance Officer will report the results of the audit to the Program Coordinator. The Quality Assurance Officer and the Program Coordinator will formulate recommendations to correct any deficiencies in the field program.

O'Brien & Gere Engineers, Inc.

50

SECTION 11 - PREVENTIVE MAINTENANCE

Preventive maintenance procedures will be carried out on field equipment in accordance with the procedures outlined by the manufacturer's equipment manuals. Field equipment used during this project will have a specific maintenance instruction sheet accompanying it. Maintenance activities involving field equipment will be recorded in a field log book.

A preventive maintenance schedule is followed and a maintenance log is kept for each laboratory instrument. Instrument downtime will be kept to a minimum, by maintaining service contracts on essential instrumentation and maintaining a supply of critical spare parts. OBG Laboratories, Inc. and Northeast Analytical, Inc., staff is experienced in cleaning, maintaining, and troubleshooting instrumentation. Maintenance, whether performed by laboratory or manufacturer personnel, is documented the appropriate instrument log. Log entries include the reason for maintenance, maintenance performed, date and initials of person in charge during maintenance.

O'Brien & Gere Engineers, Inc.

SECTION 12 - DATA ASSESSMENT PROCEDURES

The Laboratory Quality Assurance Coordinators and the Quality Assurance Officer will be responsible for data assessment. Data quality assessment will be based on instrument tuning criteria, calibration and performance, surrogate recoveries, blanks and the analysis of quality control samples. Procedures for data assessment will be consistent with those recommended by the NYSDEC Analytical Services Protocol for the U.S. EPA Contract Laboratory Program.

Precision and accuracy will be assessed utilizing control charts. Control charts will consist of bar-line graphs which provide a continuous graphic representation of the state of each analytical procedure. Control charts are utilized by OBG Laboratories and NEA Laboratories, to identify problems before corrective action procedures become necessary. For example, 6 to 7 points in succession below the mean may indicate deterioration of a reference standard or spiking solution. The reference or spiking solution can be remade and the next few data points assessed to determine if the trend was in fact due to deterioration of the solution. Trend analysis, is essential in assisting the laboratory QA Coordinator in pinpointing possible problems in the analytical procedure before an "out of control" situation develops. The analytical laboratory will also utilize war ling limits set at ± 2 standard deviations of the mean to assist in determining procedural problems before "out of control" situations develop. Reducing "out of control" situations is important to produce valid analytical data in a timely fashion, since reanalysis time is minimized.

In general, the accuracy of the methods will be determined by spiking the sample matrix with the analyte. The spiking levels will be selected to bracket the

O'Brien & Gere Engineers, Inc.

52

concentration of interest. Percent recoveries of the spikes will be calculated and compared to the limits presented in Table 5. The precision of the methods will be determined by the analysis of matrix spike and laboratory and field duplicate samples. The precision will be evaluated by calculating the relative percent difference (RPD) between the duplicates. Relative percent difference calculations will be compared to the limits presented in Table 5.

The definitions and equations used for the assessment of data quality are the following:

a. <u>Accuracy and Precision</u> - <u>Accuracy</u> is a measure of the nearness of an analytical result, or a set of results, to the true value. It is usually expressed in terms of <u>error</u>, <u>bias</u>, or <u>percent recovery</u> (%R).

Normally the term "accuracy" is used synonymously with "percent recovery". It describes either the recovery of a synthetic standard of known value, or the recovery of known amount of analyte (spike) added to a sample of known value. The percent recovery (%R) or "accuracy" can be calculated by using:

1. standards: %R = (observed value/true value) x 100

2. spikes:
$$\%R = (conc. spike + sample) - sample x 100$$

conc. spike

<u>Precision</u> refers to the agreement or reproducability of a set of replicate results among themselves without assumption of any prior information as to the true result. It is usually expressed in terms of the percent difference or relative percent difference.

53

- <u>Average</u> The average or <u>arithmetic mean</u> (X) of a set of n values
 (Xi) is calculated by summing the individual values and dividing by n:
 - $X = (\sum Xi_{i=1 \text{ to } n})/n$ n = number of values
- c. <u>Range</u> The range (R_i) is the difference between the highest and lowest value in a group. For n sets of duplicate values (X_2, X_1) the range (R_i) of the duplicates and the average range (R) of the n sets are calculated by:

$$\mathbf{R}_{\mathbf{i}} = \mathbf{X}_2 - \mathbf{X}_1$$

and

$$R = \sum Ri_{i=1 \text{ to } n}/n$$

d. <u>Standard Deviation and Variation</u> - The <u>standard deviation</u> (S) of a sample of n results is the most widely used measure to describe the dispersion of a data set. It is calculated by using the equation.

$$S = \sqrt{\frac{\sum (Xi - X)^2}{n^{i-1} \text{ to } n}}$$

where X is the average of the n results and Xi is the value of result <u>i</u>. Normally, $X \pm S$ will include 68% and $X \pm 2S$ about 95% of the data in a normal distribution curve.

The variance is equal to S^2 . The <u>percent relative standard de-</u> <u>viation</u> (%RSD) or <u>coefficient of variation</u> (CV) is the standard deviation divided by the mean and multiplied by 100, i.e,

$$CV = 100S/X$$

O'Brien & Gere Engineers, Inc.

The Laboratory QA Coordinator, with individual laboratory group leaders, will identify any data that should be rated as "unacceptable", based on the assessment of the QA/QC criteria.

O'Brien & Gere Engineers, Inc.

SECTION 13 - CORRECTIVE ACTION

Corrective action procedures will be implemented based on unacceptable audit results or upon detection of data unacceptability. Two types of audits will be performed during this investigation. The data generation process will be audited by assessing adherence to laboratory control limits specified in Table 5 and the field program will be audited by assessing adherence to the procedures outlined in this QAPP. If required, corrective action procedures will be developed on a case-by-case basis. The enacted corrective actions will be documented in the appropriate laboratory notebook, instrument log, or case file.

Generally, the following actions may be taken. When calibration, instrument performance, and blank criteria are not met, the cause of the problem will be located and corrected. The analytical system will then be recalibrated. Sample analysis will not begin until calibration, instrument performance, and blank criteria are met. When matrix spike, reference standard or duplicate analyses are out of control, samples analysis will cease. The problem will be investigated. Depending on the results of overall quality control program for the sample set, the data may be accepted with qualification or rejected. If the laboratory rejects data, those samples will be reprepared and reanalyzed. If matrix interferences are suspected, samples will be subjected to one or more of the clean-up techniques specified in the analytical methods. If QC criteria are met upon reanalysis, only the new results are to be reported. If quality control criteria are still not met upon reanalysis, both sets of sample results will be reported. The laboratory will make every reasonable effort to correct quality control excursions and to document the presence of matrix interfer-

O'Brien & Gere Engineers, Inc.

56

ences. In this way, unnecessary resampling of difficult matrices may be avoided. However, if matrix interferences are not documented resampling may be required.

Corrective actions for the field investigation program, if required, will generally involve altering the incorrect field procedure to match the guidelines set forth in this QAPP. If problems arise with procedures or guidelines set forth in this QAPP, the Quality Assurance Officer and the Project Manager will formulate a corrective action.

O'Brien & Gere Engineers, Inc.

SECTION 14 - QUALITY ASSURANCE REPORTS TO MANAGEMENT

The deliverables associated with the Tasks identified in the Work Plan will contain separate QA sections in which data quality information collected during the Task is summarized. Those reports will be prepared by the Project Manager and will include the Quality Assurance Officer Report on the accuracy, precision, and completeness of the data and the results of the performance and system audits.

O'Brien & Gere Engineers, Inc.

REFERENCES

New York State Department of Environmental Conservation. 1989. Analytical Services Protocol. September 1989.

Northeast Analytical, Inc. Method NEA-608CAP, Rev. 3.0, June 1990. (Includes guidelines set forth in *Quality Assurance Plan*, Green Bay Mass Balance Study, I. PCBs and Dieldrin. USEPA Great Lakes National Program Office. Prepared by Deborah L. Swackhamer, Quality Assurance Coordinator, Field and Analytical Methods Committees, University of Minnesota, December 11, 1987 (Appendix B)).

Page, A.L., ed. 1982. Methods of Soil Analysis. American Society of Agronomy. Madison, WI

U.S. Environmental Protection Agency. 1992. Final Phase 2 Work Plan and Sampling Plan. Hudson River PCB Reassessment RI/FS. Prepared by Tams Consultants, Inc. and Gradient Corporation for Region II. New York, NY.

U.S. Environmental Protection Agency. 1991. Phase I Report Interim Characterization and Evaluation. Hudson River PCB Reassessment RI/FS. Prepared by Tams Consultants, Inc. and Gradient Corporation for Region II. New York, NY.

U.S. Environmental Protection Agency. 1987. Data Quality Objectives for Remedial Response Activities. USEPA 540/G87/1003.

U.S. Environmental Protection Agency. 1986. Test Methods for Evaluating Solid Wastes. SW-846 Third Edition. November 1986.

U.S. Environmental Protection Agency. 1983. Methods for Chemical Analysis of Water and Wastes. USEPA-600/4-79-020. Revised 1983.

U.S. Environmental Protection Agency. 1980a. Interim Guidelines for Preparing Quality Assurance Project Plans. QAMS-005/80. December 1980.

U.S. Environmental Protection Agency. 1980b. A Compendium of Superfund Field Operations Methods. USEPA 600/2-80-018.

O'Brien & Gere Engineers, Inc.

May 28, 1993

319835

319836

1

.

Tables

General Electric Company Hudson River Project Sampling and Analysis Program

PRIMARY CONTACTS

Name and <u>Responsibility</u>	Organization and Address	Phone Number
John Haggard Manager - Hudson River Project	General Electric Company 1 Computer Drive South Albany, NY 12205	(518) 458-6619
Edwin Tifft, Ph.D. Project Officer	O'Brien & Gere Engineers, Inc. 5000 Brittonfield Pkwy Syracuse, NY 13221	(315) 437-6100
James R. Rhea, Ph.D. Project Manager	O'Brien & Gere Engineers, Inc. 5000 Brittonfield Pkwy Syracuse, NY 13221	(315) 437-6100
Michael A. Caputo Quality Assurance Officer	O'Brien & Gere Engineers, Inc. 5000 Brittonfield Pkwy Syracuse, NY 13221	(315) 437-6100
David Hill OBG Laboratories, Inc. Quality Assurance Coordinator	OBG Laboratories, Inc. 5000 Brittonfield Pkwy Syracuse, NY 13221	(315) 437-0200
Robert Wagner Northeast Analytical, Inc. Quality Assurance Coordinator	Northeast Analytical, Inc. 301 Nott Street Schenectady, NY 12305	(518) 346-4592

General Electric Company Hudson River Project Sampling and Analysis Program

ANALYTICAL METHODS TO BE USED AT THE HUDSON RIVER PCBs SITE

PARAMETER	METHOD NUMBER AND REFERENCE
WATER ANALYSES	
Filterable Solids (TSS)	160.1 (1)
Non-filterable Solids (TDS)	160.2 (1)
Total Organic Carbon (TOC)	415.1 (1)
Dissolved Organic Carbon (DOC)	415.1 (1)
Alkalinity	310.1 (1)
Specific Conductivity	205 (1)
Congener Specific PCB	NEA-608CAP (2)
SEDIMENT ANALYSES	
Bulk Density	(3)
% Moisture	(3)
Total Organic Carbon (TOC)	9060 (4)
Porewater TOC	415.1 (1)
Congener Specific PCB	NEA-608CAP (2)
Porewater Congener Specific PCB	NEA-608CAP (2)
Total PCB	8080 (4)
TCL Metals:	
ICAP	200.7 CLP-M (5)
Mercury	245.2 CLP-M (5)
Arsenic	206.2 CLP-M (5)
Selenium	270.2 CLP-M (5)
Thallium	279.2 CLP-1. (5)

- (1) USEPA, 1983
- (2) NEA, 1990
- (3) Page, 1982
- (4) USEPA, 1986
- (5) NYSDEC, 1989

General Electric Company Hudson River Project Sampling and Analysis Program

SAMPLE CONTAINERS, PRESERVATION AND HOLDING TIME REQUIREMENTS FOR ANALYSIS OF HUDSON RIVER PCBs SITE SAMPLES

PARAMETER	SAMPLE CONTAINER	PRESERVATION	HOLDING TIME
WATER ANALYSES			
TSS	500-ml plastic bottle	cool to 4 C	7 days
TDS	500-ml plastic bottle	cool to 4 C	7 days
тос	100-ml plastic bottle	cool to 4 C H ₂ SO4 to pH < 2	28 days
Congener Specific PCB	2-liter glass bottle with teflon lined cap	cool to 4 C	5 days to extraction 40 days to analysis
SEDIMENT ANALYSES			
% Moisture Bulk Density	8-oz wide-mouth glass jar with teflon lined cap	cool to 4 C	NA
Congener Specific PCB	8-oz wide-mouth glass jar with teflon lined cap	cool to 4 C	5 days to extraction 40 days to analysis
тос	8-oz wide-mouth glass jar with teflon lined cap	cool to 4 C	28 days
Total PCB	8-oz wide-mouth glass jar with teflon lined cap	cool to 4 C	5 days to extraction 40 days to analysis
TCL Metals	8-oz wide-mouth glass jar with teflon lined cap	cool to 4 C	6 months (except mercury 28 Days)

General Electric Company Hudson River Project Sampling and Analysis Program

NUMBER OF FIELD QUALITY CONTROL SAMPLES TO BE COLLECTED AT THE HUDSON RIVER PCBs SITE

PARAMETER	SAMPLES	MATRIX SPIKE	MATRIX SPIKE DUPLICATE	DUPLICATE	FIELD/EQUIPMENT BLANK
TSS	TBD	NA	NA	5%	5%
TDS	TBD	NA	NA	5%	5%
TOC	TBD	5%	NA	5%	5%
Congener Specific PCB	TBD	5%	NA	5%	5%
Bulk Density	TBD	NA	NA	5%	NA
% Moisture	TBD	NA	NA	5%	NA
Total PCB	TBD	5%	5%	5%	5%
TCL Metals	TBD	5%	NA	5%	5%

NOTES: TBD - To be determined Temporal Duplicates will be collected at a rate of 5% of total samples for the Source Characterzation program.

General Electric Company Hudson River Project Sampling and Analysis Program

LABORATORY CONTROL LIMITS Total PCB - U.S. EPA Method 8080

AUDIT	FREQUENCY	CONTROL LIMITS
S point initial calibration curve utlizing standards containing the compounds of interest	Prior to sample analysis and whenever continuing calibration criteria is exceeded	If %RSD <20% use average calibration factor for quantitation; If %RSD >20% use calibration curve for quantitation.
Continuing Calibration Verification	At the beginning of an analysis sequence and every 10 samples	%D < 15% for quantitation column
Method Blank Analysis	1 per matrix and every 20 samples of similiar matrix	Less than MDL for all compounds of interest, and peaks that would interfer with sample identification or quantitation must not be present
Surrogate Analysis (Decachlorobiphenyl)	All samples, blanks, duplicates, spikes and external check standards	Percent Recovery must be within those limits established by the analytical laboratory and retention time shift for decachlorobiphenyl must be within 2% for packed column analyses
Matrix Spike/Matrix Spike Duplicate Analysis	1 per matrix and every 20 samples of similiar matrix	Percent Recovery must be within those limits established by the analytical laboratory
Field Duplicate Analysis	1 per matrix and every 20 samples of similiar matrix; provided by sampling crew	%D for soil \leq 50% for values 5xMDL %D for waters \leq 35% for values 5xMDL When values are <5xMDL criteria is \pm MDL
External QC Sample	1 per matrix type and every 20 samples of similiar matrix, if available; must be prepared and analyzed in the same manner as samples	Within established recovery limits for a SOug/ml standard
Detection Limit	Not applicable	1ppm for sediment samples based on wet weight

TABLE 5 (continued)

General Electric Company Hudson River Project Sampling and Analysis Program

LABORATORY CONTROL LIMITS Congener Specific PCB: Northeast Analytical, Inc. Method NEA-608CAP

AUDIT	FREQUENCY	CONTOL LIMITS
3 Point Initial Calibration utilizing mixed Aroclor standard 1232,1248, and 1262	Prior to sample analysis and whenever Performance Standard for continuing calibration does not meet criteria	If %RSD <20% use average RRF for quantitation; If %RSD >20% use calibration curve for quantitation For congeners not found in standards, RRFs from Mullin et al, 1984 may be adjusted for specific data analysis and quantitation (see method Appendix B)
Continuing calibration utilizing Performance Standard of mixed Aroclors (1232/1248/1262)	At the beginning of an analysis sequence and every 10 samples	For congeners #6 and #205 %D between actual and expected value must be <30% For congeners #61,181,44 and 180 %D between actual and expected values must be <10%
Chromatographic Resolution	Evaluate with each analysis of the Performance standard	Resolution must be sufficient to separate congeners 17 and 18 into two peaks with a valley less than half the height of congener 17.
Matrix Spike Analysis	1 per matrix type and every 10 samples of similiar matrix	%Recovery must be within 70%-130%
Laboratory/Field Duplicate Analysis	1 per matrix type and every 10 samples for laboratory duplicates and every 20 for field duplicates samples of similiar matrix	%RSD <25% for PCB concentrations \geq 0.5ppm and %RSD \leq 50% for PCB concentrations < 0.5ppm
Retention Time Windows	Must be established prior to sample analysis with the analysis of three standards in a minimum of a 72 hour period and daily using the Performance Standard in the continuing calibration	Retention time window is defined as the absolute retention time of the continuing calibration standard \pm 3 x standard deviation determined from initial 3 standard analysis
Method Blank Analysis	1 per matrix type and every 20 samples of similiar matrix	Less than the MDL for all the compounds of interest and peaks that would interfere with compound identification and quantitation must not be present

TABLE 5 (continued)

General Electric Company Hudson River Project Sampling and Analysis Program

LABORATORY CONTROL LIMITS TSS: U.S. EPA Method 160.1 / TDS: U.S. EPA Method 160.2

AUDIT	FREQUENY	CONTROL LIMITS	
Drying time/temperature	Record drying time/temperature for each analytical batch	TDS: 103-105 C for 1 hour TSS: 180 C for 1 hour after evaporating at 103-105 C	
Laboratory Duplicate	Every 20 samples	%D ≤ 20%	
External Check Sample	Every 10 samples	%Recovery 80%-120%	
Method Blank Analysis	Every 20 samples	Less than the method detection limit (MDL)	

TABLE 5 (continued)

General Electric Company Hudson River Project Sampling and Analysis Program

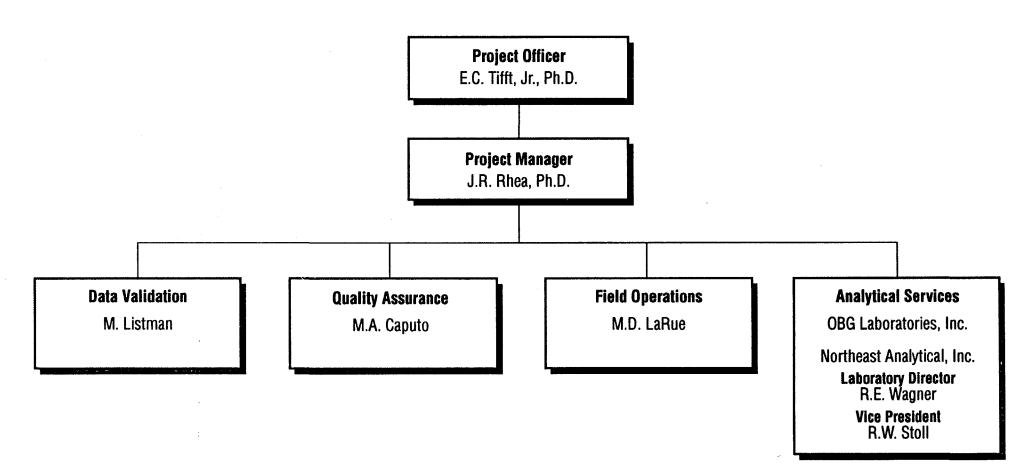
LABORATORY CONTROL LIMITS Total Organic Carbon: U.S. EPA Methods 415.1/9060

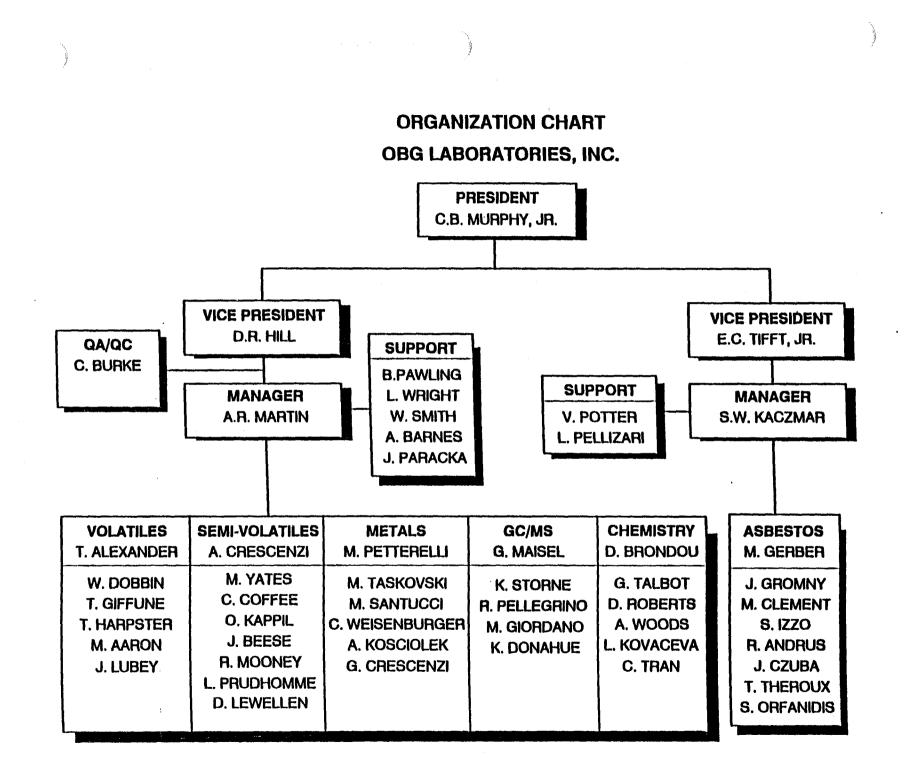
AUDIT	FREQUENCY	CONTROL LIMITS	
Continuing Calibration	Every 10 samples	Actual value must be within $+/-10\%$ of expected.	
3 Point Linearity Check	Daily	$RSD \leq 10\%$	
Laboratory Duplicate	1 per matrix and every 10 samples of similiar matrix	$\%D \le 20\%$ for waters $\%D \le 35\%$ for sediment/soils	
Matrix Spike	1 per matrix and every 10 samples of similiar matrix	% Recovery 75%-125%	
Sample Results	Every sample	Every sample will be run in duplicate, result reported with standard deviation of two runs.	
Method Blank	1 per matrix and every 10 samples of similiar matrix	Less than MDL	

TABLE 5 (continued)

General Electric Company Hudson River Project Sampling and Analysis Program

LABORATORY CONTROL LIMITS TCL Metals (sediment samples): U.S. EPA Methods 200.7/245.2/206.2/270.2/279.2


AUDIT	FREQUENCY	CONTROL LIMITS	
Initial Calibration	Each time the instrument is set-up (ICP with a minimum of 2 standards; furnace AA with 4 standards)	Calibration correlation coefficients for furnace $AA \ge 0.995$	
Continuing Calibration Verification	Immediately after initial calibration, every 10 samples and at the end of an analysis run	%Recovery 90%-110%	
Calibration Blank	Prior to sample analysis, every 10 samples and at the end of an analysis run (after every continuing calibration standard)	Less than CRDLs	
Preparation Blank	1 per matrix, 1 per digestion batch and every 20 samples of similiar matrix	Less than CRDLs	
CRDL Standard Analysis	ICP: at the beginning and end of analysis; AA: prior to sample analysis	%Recovery 80%-120%; except for mercury - CRDL not required	
Laboratory Duplicate Analysis	1 per matrix, 1 per digestion batch and every 20 samples of similiar matrix	%D \leq 35% for sediment analyses	
Matrix Spike Analysis	1 per matrix, 1 per digestion batch and every 20 samples of similiar matrix	%Recovery 75%-125%	
Laboratory Control Sample	1 per matrix, 1 per digestion batch and every 20 samples of similiar matrix	Values must be within those defined by EPA or EPA certified manufacturer of reference standard	
ICP Analysis	Interference Check Sample (ICS): at the beginning and end of analysis sequence Serial Dilution Analysis: for each matrix and for each sample delivery group whichever is more frequent	ICS: \pm 20% of true value Serial Dilution: %D <10% when sample concentration is \geq 50 x IDL	
Furnace Analysis	Every sample must be injected in duplicate and spiked; Method of Standard Additions is required when sample absorbance or concentration is $\geq 50\%$ of spike concentration and %recovery is not within 85%-115%	%RSD of duplicate injections ≤ 20% %Recovery of spikes 85%-115%	
Instrument Detection Limits	Quarterly	Must be at or lower than CRDLs	


Figures

I

ORGANIZATION CHART Hudson River Project Sampling & Analysis Program General Electric Company

FIGURE 1

FIGURE 3

SAMPLE LABEL

LABORATORIES, INC. Sample Description:	
	Initials:
Sample Date:	Sample Time:
Project No.:	Lab No.:
Date Received:	Time Received:
Preservation:	

11

GE HUDSON RIVER PROJECT SAMPLING AND ANALYSIS PROGRAM TEMPORAL WATER COLUMN MONITORING PROGRAM

FIELD LOG

SITE	DATE	TIME	DEPTH TO WATER LINE	NUMBER OF 3 FT. INTERVALS	WATER DEPTH	WATER TEMP.(C)	WATER VELOCITY	COMMENTS/ OBSERVATIONS
Bakers Falls Bridge								
Rt. 197 Bridge								
Thompson Island Dam								
Battenkill	л — <u>н</u>							
Rt. 29 Bridge								/
Stillwater Bridge								
Hoosic River								
Rt. 4 Bridge								·

Weather Data:

Temperature_____

Wind____

Precipitation_____

Sampled by:_____

11

SAMPLING LOG

1

•

Client	•	·
--------	---	---

Weather:_____

Sampled by :_____

-	I.D.	Date	Time	Type & Volume of Sample	рН	SPCOND	Temp.	Comments
		1	<u> </u>					
								. <u> </u>
`								
			[
	·							
_								
				·				
	······································							
				ł				
				ļ				
·····								
	-							

Sample Run #_____

GE HUDSON RIVER PROJECT HIGH FLOW WATER COLUMN MONITORING PROGRAM

CREW #1 FIELD LOG

SITE	DATE	TIME	DEPTH TO WATER LINE	NUMBER OF 3 FT. INTERVALS	WATER DEPTH	WATER TEMP.(C)	WATER VELOCITY	COMMENTS/ OBSERVATIONS
Rt. 197 Bridge								
Snook Kill								
Moses Kill					<u> </u>			
Thompson Island Dam								

Weather Data: Temperature_____

Wind Precipitation_____ Sampled by:_____

۰.

319852

O'BRIEN & GERE
ENGINEERS, INC.

F	1	G	U	R	Ε	7
---	---	---	---	---	---	---

Job No. ____

CHAIN OF CUSTODY

Sheet of

Office:	

Address:_____

Phone: _____

CLIENT: LOCATION:		COLLECTED BY: (Signature)				
SAMPLE DESCRIPTION	Date	Time	Sample Matrix ¹	Sample _ype ²	No. of Containers	ANALYSIS REQUESTED
						· · ·

¹ Matrix = water, wastewater, air, sludge, sediment, etc.
 ² Type = grab, composite

1	Relinquished by:	Date	Time	Received by:	Date	Time
	of:			of:		
	Relinquished by:	Date	Time	Received by:	Date	Time
	of:			of:		
Ī	Relinquished by:	Date	Time	Received by:	Date	Time
	of:			of:		
The second s	Use this space if shipped via courier (e.g., Fed Ex) Retinquished by:	Date	Time	Courier Name:	Date	Time
	Retinquished by:			*Attach delivery/courier receipt to Chain of Custody		
-	Relinquished by:	Date	Time	Received by:	Date	Time
I	of:			of:		

ŧ,

GENERAL ELECTRIC COMPANY HUDSON RIVER PROJECT

Fall 1991

ROGERS ISLAND AUTO-SAMPLER FIELD LOG

Date	Sample Time	Comments
	·	
······································		

GENERAL ELECTRIC/HUDSON RIVER SEDIMENT SURVEY

.

...

Field Sampling Logsheet

Date____

Sample ID	E:	Co Targei N:	ordinates Actual E:	N:	Date Collected (mm/dd)	Time Collected	Water Depth (II.)	Boring Depth (II.)	Core Length (In.)	Basket (Y/N)	Comments
	· · · · · · · · · · · · · · · · · · ·										

Weather Conditions: _____

Date:_

Page:____

of

GENERAL ELECTRIC/HUDSON RIVER SEDIMENT SURVEY

Field Laboratory Logsheet

Sample ID	Date Collected (mm/dd)	Time Collected	Visual Sediment Classification	Bulk Density (g/ml)	Sediment Type (F/C)	Core Length (cm)	No. of Sections (1-4)	Composite Number	Comments
1						<u></u>			
	· · · · · · · · · · · · · · · · · · ·								
				·					
	· · ·		·						
		· · · ·							
· · · · · · · · · · · · · · · · · · ·									

· •

319856

Signed:__

FIGURE 11

GENERAL ELECTRIC/HUDSON RIVER SEDIMENT SURVEY COMPOSITE LOGSHEET

COMPOSITE NUMBER:_____ OVERALL VISUAL DESCRIPTION:_____

Dragona.

DATE COMPOSITED: / / TYPE: (circle) CORE / GRAB

0-5 cm 5-10 cm 10-25 cm >25 cm VISUAL PW VISUAL PW VISUAL VISUAL LOCATIONS PW PW # DESCRIPT. DESCRIPT. (ml) DESCRIPT. DESCRIPT. (ml) (ml)(ml) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SIZE FRACTIONATION (0-5 CM ONLY)

 BULK+CUP
 TOTAL WET WEIGHT

 -CUP
 -TOTAL DRY WEIGHT

 BULK WEIGHT
 WEIGHT OF WATER

 DRY SAND + FOIL
 MOISTURE CONTENT

 -FOIL WEIGHT
 MOISTURE CONTENT

 DRY SAND WEIGHT
 PERCENT SAND

-FOIL WEIGHT

319857

PERCENT SILT

Appendices

APPENDIX A

· · · ···

- مردر بندر

319859

O'Brien & Gere Engineers, Inc.

PROFESSIONAL PROFILE Education	Syracuse University, 1971, Ph.D./Chemistry University of Rochester, 1966, BA/Chemistry			
MANAGEMENT RESPONSIBILITIES	As Executive Vice President, Dr. Tifft directs the activities of five divisions comprising scientists and engineers from a variety of disciplines. These divisions are primarily engaged in:			
	 hazardous waste management environmental liability assessments and compliance audits environmental licensing and permitting 			
	These activities include remedial investigations/feasibility studies (RI/FS), RCRA facility investigations (RFI) and corrective action programs, hydrogeologic studies, health and safety audits, asbestos remediation, solid waste, and a broad range of issues relating to environmental toxicology.			
	Dr. Tifft has served as an expert witness in adjudicatory hearings ar lawsuits on behalf of the firm's clients. His strong sense of clie advocacy and credibility are recognized in both academic circles and the regulatory community, and his testimony has consistently led favorable decisions for these clients.			
	Dr. Tifft also serves as President of OBG Laboratories, Inc., and is member of the Board of Directors of several of the O'Brien & Ge companies.			
	As Chief Scientist, Dr. Tifft has responsibility for the technical qualit and oversight of the scientific endeavors of the Firm. His activitie include:			
	• Together with the Chief Engineer, development and implementation of the Firm's Total Quality Management (TQM) Program.			
	• Training in scientific matters and regulatory programs.			
	• Review and assistance in scientific projects and reports.			

EXPERIENCE

Expert Testimony

Dr. Tifft works in confidence with law firms, either as direct clients or on behalf of other clients. He has served as an expert witness in adjudicatory hearings and civil lawsuits. He has also presented testimony for direct and cross examination; prepared affidavits, depositions, and negotiation of consent decrees; and assisted in the development of litigation strategy.

Dr. Tifft's expert testimony has consistently resulted in favorable decisions for the firm's clients. Representative examples of his recent testimony include:

General Electric - Testimony in support of remedial alternatives other then dredging for the Hudson River.

Tompkins County, NY - Testimony in support of New York State permit under 6 NYCRR 360 for a landfill.

Onondaga County, NY - Testimony in support of the air and solid waste permits for a 980 ton per day waste-to-energy facility.

Hazardous Waste Management

Dr. Tifft has directed and performed a variety of services to characterize hazardous waste sites and evaluate remedial alternatives. He has directed over one hundred Superfund and RCRA investigations for public and private sector clients throughout the country. Dr. Tifft emphasizes the development of cost-effective work plans, and the successful negotiation, and implementation of these plans through the regulatory process.

Several of the projects Dr. Tifft has directed have successfully implemented innovative remediation technologies in spite of regulatory and public opposition. These technologies have included:

- natural biodegradation
- soil washing
- low temperature thermal desorption

A recent example is an RI/FS directed by Dr. Tifft at a disposal site in EPA Region V that contained wood tars from a former charcoal manufacturer. The Record of Decision (ROD) specified in-situ natural biodegradation for the ground water operable unit, in spite of strong opposition from the state agency. This decision led to savings of several million dollars for the PRPs. Dr. Tifft has also directed the ongoing

work in support of anaerobic dechlorination of PCBs at a site in EPA Region II.

Dr. Tifft's services on hazardous waste sites include RI/FS and corrective action programs. Projects have included ground water, surface water, soil, sediment, and air quality sampling, analysis, and hydrogeologic investigations, transport modeling, risk assessments, cost benefit analyses, and quality assurance/quality control plans, and have addressed

- low level radioactive waste
- PCBs

mixed wastesheavy metals

coal tar residues
 solvents

Dr. Tifft is conversant with prescribed New York State procedures for the remediation of inactive hazardous waste disposal sites (Environmental Conservation Law Article 27 and 6 NYCRR375), with assessment techniques required by the New York State Department of Environmental Conservation (NYSDEC) in both Phase I and Phase II investigations, and with the categories used for sites. He is cognizant not only of the existing regulations, but also of the manner in which they are applied, particularly through State-issued Technical Assistance Guidance Memoranda (TAGMs).

Dr. Tifft has conducted Phase II investigations, and has reviewed Phase II investigations performed by New York State personnel. This extensive experience provides the benefit not only of a comprehensive understanding of regulatory procedures, but also of established relationships with personnel in NYSDEC's Albany office and regional offices.

A recent example of Dr. Tifft's hazardous waste management experience in New York State is an RI/FS conducted at an inactive landfill that had received industrial and municipal waste for 25 years. The RI/FS Work Plan, Health and Safety Plan (HASP), and Quality Assurance Project Plan (QAPP) were approved by NYSDEC; project includes Interim Remedial Measures to reduce risk of exposure and minimize costs and public concern.

Other hazardous waste management programs directed by Dr. Tifft include:

Representative hazardous waste management projects with which Dr. Tifft has been involved recently include:

RI/FS at an inactive landfill in New York State that had received industrial and municipal waste for 25 years. The RI/FS Work Plan, Health and Safety Plan (HASP), and Quality Assurance Project Plan (QAPP) were approved by NYSDEC; project includes Interim Remedial Measures (IRMs) to reduce risk of exposure and minimize costs and public concern.

RI/FS at National Priority List (NPL) site in Wyoming; involved the study of a 60-acre residential subdivision surrounded by industrial development strip. Major consideration was ground water contamination originating from multiple industrial sources adjacent to the subdivision. The ROD released client from liability for one of the operable units.

RI/FS at Crab Orchard National Wildlife Refuge, Illinois, which was placed on NPL because of PCBs observed in lake sediments. Study includes evaluation of 33 sites adjacent to active and abandoned industrial operations.

RI/FS for a major chemical company and three responsible parties at a wood tar disposal site in Michigan; tar materials on ground and surface water at this National Priority List site contained PAHs.

RCRA Corrective Action program for an automobile manufacturing facility in EPA Region II. This site involved PCBs.

Environmental Liability Assessments

Dr. Tifft directs environmental liability assessments to determine if real property to be transferred carries liabilities that might compromise its value or future uses. He has directed environmental liability assessments for a broad range of clients, including legal firms, developers, and lenders. Properties have included underground storage tanks, asbestoscontaining building materials, electrical components with PCBs, hazardous wastes disposed of on the property, and other materials that compromise the marketability of the property. Projects have addressed historic use of the property, as well as potential contamination from adjacent properties.

Dr. Tifft performs both qualitative assessments ("Phase I") and quantitative assessments ("Phase II"), which include the estimated costs for remedial work. These cost estimates have been used in client negotiation. In addition, Dr. Tifft has given more than 75 presentations on environmental liability assessments to bankers, realtors, developers, and attorneys. Representative environmental liability assessments include:

Beveridge & Diamond, P.C. - Assessment of 26 facilities (agricultural chemical production and engineered products) in connection with submission of an SEC liability statement; performed to determine extent of present and potential environmental liabilities corporate-wide.

Clayton & Dubilier, Inc., NYC - Preacquisition assessment for purchase of major electronics firm's typewriter, keyboard, and business services division at an estimated cost of \$1.6 billion.

Assessment in conjunction with sale of microelectronics manufacturing facility in Boston, MA; focused on compliance with applicable environmental regulations and potential liability exposure from past and present site operations.

Assessment of four manufacturing/assembling facilities for electronics manufacturer, as part of corporate-wide survey for environmental compliance status.

Assessment of four trucking terminals; focused on review of RCRA regulations and their applicability to waste streams generated by the facility.

Environmental Licensing and Permitting

For both industrial and municipal clients, Dr. Tifft has developed environmental impact statements, siting studies, and permit and license applications. He has also presented testimony in support of these projects, which have involved complex and controversial issues such as dioxin emissions, wetlands, historic sites, and strong opposition from sectors of the public. This work has occasionally been challenged in state or federal court and has always been upheld.

The environmental licensing and permitting projects directed by Dr. Tifft were developed under numerous environmental regulations including 6 NYCRR 360 (New York State solid waste management), federal PSD requirements (Prevention of Significant Deterioration), Article 7 (transmission lines) of the New York Public Service Commission Law, the New York State Pollution Discharge Elimination System (SPDES), and regulations of the FERC (the Federal Energy Regulatory Commission). Many of the projects required a draft or final environmental impact statement, or both (DEIS and FEIS,) and other permits. Representative projects include:

Cogeneration Facility, Syracuse, NY - Prepared documentation that led to NYS DEC approval for 80 megawatt natural gas co-generation facility;

also required permits for gasoline and propane storage. Project included PSD permit, PSC Article 7 procedures for steam line, and DEIS-FEIS.

Seneca Meadows (Tantalo) Landfill, Waterloo, NY - Municipal landfill covering 250 acres. Project included 6 NYCRR 360 permit and DEIS.

Tompkins County Landfill, Ithaca, NY - 600-acre site with 130 acres for landfill and 50 to 60 acres for solid waste cells. Project included six NYCRR 360 permits and DEIS-FEIS.

Development Company, NY - Environmental impact statement and water supply plan for 400 room hotel and 300 unit condominium complex; included potential aesthetic impacts and conservation of sensitive natural resources. O'Brien & Gere Engineers, Inc.

~****~~

Alexan

PROFILE Education	Ph.D., Clarkson University, 1989, Civi MA, State University of New York, P BA, State University of New York, Science	lattsburgh, 1984, Biology
Professional Affiliations	American Chemical Society (Division Society of Environmental Toxicology American Society of Limnology and C International Association for Great L Water Environment Federation	and Chemistry Dceanography
PROJECT MANAGEMENT CAPABILITIES	Dr. Rhea joined O'Brien & Gere En Research and Development Program (Project Manager in 1991 and Senior P to O'Brien & Gere with 5 years of research involving laboratory experi- modeling of the fate and effects of po	Coordinator. He was promoted to roject Manager in 1992. He came academic experience in applied mentation, field verification and
	Dr. Rhea provides expertise in the ar	eas of:
	 fate and transport of chemicals in aquatic sediment chemistry bioremediation of organic compound water hazardous waste management 	-
	As Project Manager, he coordinates an multi-phase, multidisciplinary program clients, as well as for municipalities as listing of Dr. Rhea's clients includes:	ns for a broad range of industrial
· ·	Allied Signal, Inc. Chrysler Corp. General Electric Co. IBM Pittston Petroleum Rhone-Poulenc Union Carbide U.S. Army City of Utica, NY	Anheuser-Busch, Inc. Ciba-Geigy Hercules NL Industries Reichhold Chemicals, Inc. Rochester Gas & Electric U.S. Air Force U.S. Navy City of Niagara Falls, NY
EXPERIENCE	Chemical Fate and Transport	
Dr. Rhea's experience with fate and transport of c and terrestrial ecosystems has included bench-scal		

scale, and modeling studies focused on pollution mitigation and control strategies. Representative projects include:

Electronics Manufacturer - Designed and managed a field sampling and analysis program to identify and quantify a suspected source of PCB to a natural river system.

Industrial Manufacturing Firm - Designed and managed a field sampling and analysis program to monitor the spatial and temporal changes in PCB congener distribution within a natural aquatic system and isolate potential PCB sources.

Electronics Manufacturer - Managed a field sampling and analysis program designed to construct an accurate conceptual model of an aquatic food chain. Program involved the collection of water column, sediment, and biotic samples for analysis of PCB as well as stable isotopes of various elements.

Industrial Manufacturing Firm - Designed and managed a field sampling and analysis program to monitor the effect of seasonal high flow events on the fate and transport of PCB congeners in a natural river system.

Pesticide Research - Developed and conducted laboratory microcosm research evaluating the effects of Atrazine, a broad leaf herbicide, on aquatic ecosystem structure and functioning. Research supported by the U.S. Environmental Protection Agency.

Aquatic Effects Assessment Model - Conceived and developed a mathematical model describing the nutrient flux dynamics of aquatic ecosystems in response to chemical perturbations. Research supported by the State University of New York.

Effects of Acidic Deposition - Evaluated the direct and indirect effects of acidic precipitation on plant chemistry in green house experiments. Research focused on changes in chemical composition of plants exposed to different frequencies and strengths of acid precipitation. Research supported by the State University of New York.

Aquatic Sediment Chemistry

Dr. Rhea has extensive experience in aquatic sediment chemistry and modelling. His work has involved bench-scale and field-scale studies on the distribution and chemical composition of natural aquatic systems. Representative projects include:

Electronics Manufacturing Firm - Conceptualized, designed, and managed an intensive field sampling and analysis program designed to

evaluate the small-scale horizontal and vertical distribution of PCBs in a natural river system. Work included the application of state-of-the-art statistical techniques to evaluate data collected at close intervals using a rectangular grid system.

Chemical Manufacturer - Managed field program involving the collection and analysis of lake sediments for subsequent analysis for mercury and other compounds.

Electronics Manufacturing Firm - Directed the development of an innovative technique for size fractionation of sediment particles for subsequent analysis of PCB.

Industrial Lead Smelter - Evaluated the application of sediment quality criteria for the remediation of stream sediments containing lead from an industrial smelting operation.

Electronics Manufacturing Firm - Designed and managed an extensive field sampling and analysis program to determine the large-scale spatial distribution of PCB congeners in the sediments of a large river system. Data valuations included assessment of the spatial distribution of PCB reductive dechlorination processes.

Industrial Manufacturing Firm - Directed evaluations of sediment data for the purpose of identifying PCB and organochlorine sources to a natural aquatic system. Approach included evaluation of PCB congener distribution patterns to identify potential sources from historical usage.

Industrial Manufacturing Firm - Designed field sampling and analysis program to evaluate the magnitude and extent of PCB contamination in river sediments from an industrial manufacturer. Approach included congener specific PCB analytical techniques to differentiate multiple PCB sources to a major river system.

Sediment Transport Model - Conceived, developed, calibrated, and verified a mathematical model describing major chemical, biological, and physical reactions affecting alkalinity production and consumption within lake sediments. Research sponsored by the Electric Power Research Institute (EPRI) and the Empire State Electric Energy Research Corporation (ESEERCO).

Sediment Alkalinity Flux Assessment - Conceived, designed, and conducted field studies which measured calcite enhanced sediment alkalinity flux in three lakes located in the Adirondack Mountains of New York. Research sponsored by EPRI and ESEERCO.

Sediment Cation Exchange Reactions - Conceived, developed, and conducted bench-scale experiments evaluating calcium-hydrogen exchange reactions on sediment particles. Research sponsored by EPRI and ESEERCO.

Calcite Dissolution and Deactivation - Conceived, developed, and conducted bench-scale experiments exploring the magnitude and intensity of calcium carbonate dissolution and chemical deactivation within simulated sediment reactors. Research sponsored by EPRI and ESEERCO.

Bioremediation

Dr. Rhea's experience with bioremediation of organic compounds has involved the direction and management of bench-scale and field-scale studies evaluating the effectiveness of bioremediation of ground water, sediments, and soils. Work has included studies on the natural degradation of organic compounds *in situ* and within engineered treatment vessels.

Chemical Manufacturing Firm - Conceptualized, designed, and directed bench-scale studies to facilitate the design of a sequencing batch reactor system for treatment of a high-strength hazardous waste leachate containing volatile and semivolatile organic compounds and heavy metals.

Auto Manufacturer - Designed bench-scale studies to determine the rate and extent of biodegradation of volatile and semi-volatile organic compounds within an engineered bioventing cell.

Petroleum Company - Managed bench-scale testing designed to evaluate naturally occurring biodegradation of petroleum hydrocarbons at a former petroleum distillation and distribution center. Designed field-scale testing studies to evaluate the effect of nutrient enrichments on the ability of endogenous microflora to degrade petroleum hydrocarbons.

Electronics Manufacturing Firm - Directed the evaluation of the rate and extent of PCB biodegradation in a natural river system from congener specific PCB sediment chemistry data.

Utility - Conceptualized and designed experiments to evaluate the effect of photochemical pretreatment on the biodegradation of polynuclear aromatic hydrocarbons extracted from coal tar contaminated soils.

Hazardous Waste Management:

Dr. Rhea's experience in the area of hazardous waste management has included a variety of tasks in connection with the identification of technologies for the treatment of hazardous and industrial waste streams. These tasks involve detailed analysis and interpretation of data collected from ground water, surface water, and soils, as well as industrial processes, evaluation of pollutant transport and fate, and the application of specific technologies for the treatment of ground water, surface water, soils and industrial wastes. Representative projects include:

National Chemical Manufacturing Firm - Evaluated characterization data of concentrated wastestream to identify and experimentally evaluate appropriate treatment technologies.

Industrial Foundry - Evaluated soil, ground water, and surface water data from a contaminated disposal area and identified appropriate alternatives for site remediation.

Major Chemical Manufacturer - Evaluated the fate and effects of an accidental release of a concentrated volume of styrene into a POTW.

U.S. DOD Installation - Collected and analyzed data regarding hazardous waste production and identified appropriate hazardous waste minimization technologies and techniques.

Major Chemical Manufacturer - Evaluated the source and identified appropriate alternative for the monitoring and treatment of wastewater containing elevated concentrations of volatile organic compounds. O'Brien & Gere Engineers, Inc.

PROFESSIONAL PROFILE	Mr. LaRue joined O'Brien & Gere Engineers, Inc. in 1978 as a Research Technician. He was promoted to Senior Research Technician in 1982; to Researcher in 1987, and Project Designer in 1991.
Education	SUNY Agricultural & Technical College at Delhi, 1978, AAS/Civil Technology
Special Training	40 Hour OSHA Hazardous Waste Site Operation Course 8 Hour OSHA Hazardous Waste Operations Health and Safety Training Supervisor's Course
TECHNICAL EXPERTISE	 Hazardous waste site investigation work plan development Field investigation program design Pilot plant design and operation Municipal and industrial wastewater and solid waste treatability studies Combined sewer overflow investigations Remedial investigations/feasibility studies on suspected hazardous waste sites Ground water quality surveillance Water quality surveillance Interim remedial measure work plan development and design
REPRESENTATIVE PROJECTS	 HAZARDOUS WASTE SITE INVESTIGATIONS: Experience includes development of methodology for determination of extent of possible contamination. Design of field sampling plans. Supervision of on-site field operations. Data interpretation and presentation. Development and assessment of remedial alternatives. Representative projects include: Special Metals Corporation, New Hartford, NY - Coordinated on-site activities for remedial investigation at Ludlow Landfill site. Assisted in developing sampling plan for determining extent of contamination or soil, sediment, surface water and ground water surrounding an active landfill. Broome County Industrial Development Agency, Broome County, NY - Coordinated on-site activities for remedial investigation/feasibility study at the former Town of Conklin municipal landfill. Assisted in developing sampling plan aimed at quantifying extent of stream sediment, ground water and surface water contamination. Assisted in developing and screening appropriate remedial technologies. Data interpretation and

presentation.

Endicott-Johnson Corp., Endicott, NY - Coordinated on-site activities for remedial investigation/feasibility study at a former underground chemical storage facility. Activities included soil and ground water characterization, and investigation of ground water contaminants migrating along sewer bedding materials. Data interpretation and presentation.

Peter Cooper Industries, Inc., Gowanda, NY - Coordinated on-site activities for remedial investigations at two former solid waste disposal areas which contain industrial waste materials. Investigated the extent of contamination in ground water, surface water, soil and wetland sediments. Assisted in developing expanded phased investigation to correspond with feasibility study development. Assisted in data interpretation and presentation.

Crab Orchard National Wildlife Refuge, Marion, IL - Remedial investigation/feasibility study. Developed supplemental investigation plan to address informational needs generated by development of remedial technologies in the feasibility study. Data interpretation and presentation. Site was formerly used for munitions and other manufacturing and is on the National Priority List.

Harden Furniture, Inc., McConnellsville, NY - Development of Site Operations Plan for Interim Remedial Measures at a former municipal landfill. Design of on-site operations for the removal and management of drums buried in landfill.

Stauffer Management Co., Wilmington, DE - Development of Work Plan for Interim Remedial Measures at a former drum disposal site. Design of on-site operations for removal and management of drums buried in disposal trench adjacent to residential area.

Major Conglomerate, OH - Site inspection and subsequent design of sampling plan to evaluate extent of PCB contamination in plant-wide compressed air system.

Major Conglomerate, NY - Design of Field Sampling Plans for a reassessment Remedial Investigation performed in a major river system. Investigation tailored to data requirements of fate and transport modeling exercise for PCBs in sediments. Supervision of on-site activities including water column evaluation, sediment characterization, sediment transport evaluation, and hydraulic characterization. Development of sampling techniques and QA/QC procedures for the collection of water samples containing PCBs at low part per trillion concentrations. Data review and presentation.

WATER TREATMENT PILOT PLANT DESIGN AND OPERATION:

Experience includes various studies for treatment plant optimization, ozone disinfection, PCB removal, trihalomethane control, taste and odor control. Representative projects include:

IBM, Owego, NY - Assisted with design, construction and operation of 15,000 gpd ion-exchange pilot plant designed to develop treatment alternatives for industrial wastewater containing copper and chrome. Successful completion of this project led to approval for design and construction of a full scale ion-exchange wastewater treatment system.

Monroe County, NY - Design and operation of an ozone pilot plant at the Monroe County Water Authority Shoremont Water Treatment Facility. Evaluation of ozone disinfection on odor control and trihalomethane formation potential.

City of Watertown, NY - Development and operation of a 7,500 gpd pilot plant. Study included minimization of color, turbidity, and trihalomethane formation potential.

River Treatability Study, NY - Design, construction and operation of carbon pilot plant for research into the effectiveness of carbon treatment of PCB contaminated water.

City of Poughkeepsie, NY - Construction and operation of a pilot plant at the City of Poughkeepsie's water treatment facilities. Studies evaluated optimization of PCB removal through conventional and carbon treatment. O'Brien & Gere Engineers, Inc.

81 da

PROFESSIONAL PROFILE	Mr. Caputo joined O'Brien & Gere Engineers, Inc. in 1989 and presently works in the Environmental Toxicology Section. He was promoted to Project Scientist in 1991 and Senior Project Scientist 1992. Prior to joining O'Brien & Gere, Mr. Caputo worked for NUS Corporation, Boston, MA. His responsibilities included the coordination of EPA Contract Lab Program (CLP) activities and managing site assessment projects. Mr. Caputo validated data packages and reviewed validations, as well as instructed employees in CLP data validation protocols. He also authored guidelines for an abbreviated CLP data validation protocol.
Education	Hobart and William Smith Colleges, 1983, BS/Chemistry University of California at Davis, 1987, MS/Agricultural and Environmental Chemistry
Special Training	Hazardous Waste Operations Training, 40 Hour OSHA Certification Radiation Worker Training Red Cross Advanced First Aid New York State Department of Environmental Conservation Approved Data Validator
TECHNICAL EXPERTISE and	 Performing health hazard evaluations Preparing Quality Control/Quality Assurance Plans, Work Plans and Design Specifications for work to be undertaken at hazardous waste sites Environmental sampling protocols health hazard evaluations Performs data validations, interpretation and usability assessments to qualify analytical sample results according to various state and federal agency guidelines
REPRESENTATIVE PROJECTS	 HAZARDOUS WASTE MANAGEMENT: City of Utica, Borsert Site, Utica, NY - Served as Quality Assurance Officer for a remedial program at a former metal machining facility. The project involved the removal of PCB and mercury contaminated wastes and the decontamination of equipment. Confidential - Served as Quality Assurance Officer for a sampling and analysis program. The investigation involved river sediment and water sampling. The samples were analyzed for total and congener specific PCBs under strict quality control guidelines. Thaler and Thaler/Hinman, Howard and Kattell, Attorneys; Weitsman Site, Owego, NY - Served as Quality Assurance Officer for a Phase II investigation.

General Electric Company, GE Aircraft Engines, Cincinnati, OH -Served as Quality Assurance Officer for a USEPA RCRA facility investigation. The facility develops, assembles, and tests jet engines.

City of Utica - Primoshield Site, Utica, NY - Prepared a Work Plan for an RI/FS. The investigation involved a hydrogeological investigation and public health evaluation of a former metal plating facility. Served as Quality Assurance Officer for the investigation.

General Services Administration - Federal Property Resource Center, Watertown, MA - Acted as Site Health and Safety Officer for a site investigation which included monitoring well installation and field sampling. Project involved mixed radioactive/chemical waste personnel protective equipment and procedures.

RISK ASSESSMENT:

General Services Administration - Federal Property Resource Center, Watertown, MA - Prepared a Qualitative and Quantitative Health Risk Assessment Report pursuant to MGL Chapter 21E. The report addressed both chemical and radioactive waste materials.

Dewitt Landfill, Town of Dewitt, NY - Prepared a conceptual site model for the scoping of an RI/FS and Interim Remedial Measures.

HEALTH HAZARD EVALUATIONS:

US Air Force - Duluth International Airport, Site 7; Runway 13 Northeast - Prepared a Health and Safety Plan for the Stage 4, Interim Remedial Measure (IRM) to be performed in connection with the Installation Restoration Program. The IRM involved a subsurface investigation and a removal operation.

Erdle Perforating Company - Prepared a Site Safety and Health Plan for an RI/FS of a former underground tank farm.

Ashland Chemical Company - Prepared a Site Safety and Health Plan for a subsurface hazardous waste investigation at an active chemical manufacturing plant.

City of Niagara Falls, NY - Prepared a Site Safety and Health Plan for a subsurface investigation in connection with a utility and road reconstruction in an area surrounded by several chemical manufacturing plants.

QUALITY ASSURANCE/QUALITY CONTROL:

Town of Dewitt, NY - Prepared a Quality Assurance Project Plan for an RI/FS of a municipal landfill.

Confidential - River Sediments PCBs Evaluation, National Priorities List, Superfund Site - Prepared a Quality Assurance project plan for work conducted in connection with a site investigation. The work involved development of a CLP quality reporting and validation procedure for congener specific PCB analyses.

Public Service Electric and Gas - Prepared a Quality Assurance Project Plan for an RI/FS of a former coal degasification plant.

US Army Corps of Engineers - Metaltec/Aerosystems National Priorities List Superfund site -Prepared construction specifications for a Chemical Quality Control Plan and Site Health and Safety Plan.

National Chemical Company - Prepared a Quality Assurance Project Plan for an RI/FS of a former wastewater lagoon area.

US Army Corps of Engineers - D'Imperio Property Site, National Priorities List Superfund - Prepared a Chemical Data Acquisition Plan for a pre-design bench scale wastewater treatment facility.

DATA VALIDATION:

Mr. Caputo has seven years of experience working and teaching in inorganic and organic research labs, and has worked as a research biochemist in a hospital biomedical lab. His work involved high pressure liquid chromatography, gas chromatography/mass spectrometry, atomic absorption spectrometry and wet chemistry.

Representative Site Assessment EPA CLP data validation projects include: Annelli Property, Johnson Carlyle Machine Company, Posick Property, Wiremold Company, Highland Avenue Landfill, City of Lowell Landfill, J. and L. Vinagro Landfills, Washington Well #1, Nadeau Landfill and Wessner Landfill.

Alcan Aluminum Corporation, Site #828005 - Prepared a Data Validation/Data Usability Report for data collected in connection with a focused remedial investigation.

Confidential - Prepared a Data Validation/Data Usability Report for data collected in connection with a preliminary investigation of a metal machining facility.

Confidential - River Sediments PCBs Evaluation - National priorities list, Superfund Site. Prepared a Data Validation/Data Usability Report for data from the analysis of hundreds of sediment and water samples. The samples were analyzed for total and congener specific PCBs.

Amphenol Corporation, Richardson Hill Road Landfill Site, National Priorities List, Superfund Site - Prepared a Data Validation Report for data collected in connection with an RI/FS.

Stauffer Management Corporation, Maestri Site - Prepared a Data Validation/Data Usability Report for data collected in connection with a Supplemental Remedial Investigation.

Beveridge and Diamond - Performed a data quality review of gas chromatographic fingerprint analyses of petroleum contaminated soils collected in connection with the investigation of a former tank farm.

Smith Corona Corporation - Prepared a Data Validation Report for data collected in connection with the supplemental remedial investigation of a former manufacturing facility in Groton, New York. The field investigation involved the collection of approximately 350 water, soil, and sediment samples.

NL Industries, Inc., National Smelting of New Jersey Site - National Priorities List Superfund Site -Prepared a Data Validation/Data Usability Report for data from the analysis of approximately 400 samples collected in connection with an RI/FS.

US Army Corps of Engineers, Richards-Gebaur Air Force Base -Prepared a Quality Control Data Validation Summary Report for data collected in connection with an RI/FS.

Cliffs-Dow Site - Prepared a CLP Data Validation report for data collected for approximately 200 samples in connection with an RI prepared on behalf of a PRP.

Peter Cooper/Markham Site - Prepared a Data Validation/Data Usability Report for data collected in connection with a drum and contaminated soil removal project.

Ludlow Sanitary Landfill - National Priorities List Superfund Site -Prepared a Data Validation/Data Usability Report for data collected in connection with an RI/FS prepared on behalf of a PRP. O'Brien & Gere Engineers, Inc.

PROJECTS

PROFESSIONAL PROFILE	Ms. Listman joined O'Brien & Gere Engineers, Inc. in 1990 and presently works in the Environmental Toxicology section. Prior to joining O'Brien & Gere, Ms. Listman was employed by Upstate Laboratories, Syracuse, New York, as Quality Assurance Manager.
Education	Alfred University, 1984, BS/Chemistry
TECHNICAL EXPERTISE	 Quality Assurance/Quality Control Plans Data Validation Laboratory wet chemistry and gas chromatography
EXPERIENCE SUMMARY	Ms. Listman has six years experience working and teaching in a laboratory environment, including development and supervision of a Quality Assurance department. Her work ranged from laboratory analysis using classical wet chemistry techniques to analysis by gas chromatography. Ms. Listman is also experienced in performing data validation studies for Federal and State agencies and authoring Quality Assurance Reports for specific clients regarding ongoing site monitoring and RCRA requirements. Representative clients include IBM, General Motors and Xerox Corporation.
REPRESENTATIVE	Data Validation

City of Niagara Falls, NYPA 10 Acre Buffalo Ave. Site - Prepared a Data Validation/Data Usability Report for data collected to develop support for a petition to delist the site from New York State Hazardous Waste Site Registry. Validation of soil and ground water samples were performed in accordance with New State Department of Environmental Conservation Contract Laboratory Program.

Allied Signal Inc., Willis Avenue Site - Prepared a Data Validation/Data Usability Report for data collected in connection with a focused remedial investigation through New York State Department of Environmental Conservation.

Alcan Aluminum Corporation, Site #838005 - Prepared a Data Validation/Data Usability report for data collected in connection with a focused remedial investigation through New York State Department of Environmental Conservation, involving inorganic and organic analyses.

Confidential, River Sediments PCBs Evaluation - National Priorities List Superfund site. Prepared a Data Validation Report for total PCB data for over four hundred sediment samples.

NL Industries, Inc., National Smelting of New Jersey Site, National Priorities List Superfund Site -Prepared Data Validation/Data Usability Reports for two rounds of samples collected in connection with an EPA Region II RI/FS investigation.

Amphenol Corporation, Richardson Hill Road Landfill Site, National Priorities List Superfund Site - Prepared Data Validation Report for data collected in connection with an RI/FS investigation.

Stauffer Management Corporation, Maestri Site - Prepared a Data Validation/Data Usability Report for data collected with a supplemental Remedial Investigation through New State Department of Environmental Conservation.

Beveridge and Diamond - Performed a data quality review of gas chromatographic fingerprint analyses of petroleum hydrocarbon data involving petroleum contaminated soils collected in connection with former tank farm investigation.

Smith Corona Corporation - Performed a data quality review for data collected in connection with the supplemental remedial investigation of a former manufacturing facility in Groton, New York. Approximately 350 soil, sediment and water samples were collected for this investigation.

Ludlow Sanitary Landfill, National Priorities List Superfund Site -Prepared a Data Validation/Data Usability Report for data collected in connection with an RI/FS prepared on behalf of PRP.

Quality Assurance/Quality Control

U.S. Air Force - Prepared a Quality Assurance Project Plan for an RI/FS of a municipal landfill.

National Chemical Company - Semet Residue Ponds Site. Prepared a site history in connection with an RI/FS investigation of a former wastewater lagoon.

Upstate Laboratories, Inc. - Prepared and implemented a comprehensive Quality Assurance Program to monitor field and laboratory quality control procedures in accordance with various state and federal guidelines. In addition, prepared and reviewed laboratory standard operating procedures to verify compliance with various regulatory guidelines.

Training Seminars - Presented several training seminars on Quality Assurance/Quality Control Procedures and Guidelines; Blasland & O'Brien & Gere Engineers, Inc.

13753.

1 moren

Bouck & Lee, Syracuse, NY; Marcor, Rochester, NY; and SUNY Environmental School of Science and Forestry, Syracuse, NY.

APPENDIX B

••••••

NORTHEAST ANALYTICAL, INC. 301 NOTT STREET SCHENECTADY, NEW YORK 12305 (518) 346-4592

Ì

Ĺ.

STANDARD OPERATING PROCEDURE LABORATORY METHOD NEA-608CAP REVISION 3 (6/90)

TABLE OF CONTENTS

)

Ì

)

.....

Page Number

1.0	Scope	1
2.0	Summary of Method	2
3.0	Interference	2
4.0	Sample Archiving	3 · ·
5.0	Equipment and Apparatus	3
6.0	Reagents	4
7.0	Procedure	7
8.0	Quality Control	21
9.0	References	25

ì

Lab Method NEA-608CAP

Congener-Specific Polychlorinated Biphenyl (PCB) Analysis

Method for Congener-Specific Polychlorinated Biphenyl (PCB) Quantification and Identification by Capillary Column/Gas Chromatography with Electron Capture Detection

1.0 <u>Scope</u>

77.50

1.1 This method is applicable in the determination and quantification of Polychlorinated Biphenyls (PCB) in sediments and soils. congener-specific determination, employing a high resolution fused-silica capillary chromatographic column. The method includes guidelines set forth in the document: 'Quality Assurance Plan, Green Bay Mass Balance Study, I. PCBs and Dieldrin, US EPA Great Lakes National Program Office', prepared by Deborah L. Swackhamer, Quality Assurance Coordinator, Field and Analytical Methods Committees, University of Minnesota, December 11, 1987. document outlines quality assurance and quality control procedures to be followed by laboratories participating in the Green Bay Mass Balance Study. Where applicable, Northeast Analytical, Inc., will incorporate and utilize this information in quality control of data generated. conditions (Mullin, M.D., 1985, PCB Workshop, US EPA Large Lakes Research Station, Grosse Ile, MI, June.) cited in the Green Bay Mass Balance Study document will be refined to be applicable to an in-house data management software package.

1.2 This method will be applied specifically to the determination of PCBs by congener, in sediments. The results of these analyses will be used in studies related to biodegradation of PCBs. Highly sensitive techniques will generally not be required, since samples will contain appreciable quantities

Northeast Analytical, Inc. -2- NEA-608CAP Rev. 2.0 8/89

of PCBs. Capillary column methods will be used to effectively separate up to 117 or more peaks representing 187 PCB congeners.

2.0' Summary of Method

2.1 This method provides detailed instructions for gas chromatographic conditions, sample extraction, and sample clean-up techniques for analysis of PCBs by capillary gas chromatography.

2.2 This method utilizes a mixed Aroclor standard (1232/1248/1262 in the ratio of 25:18:18) for calibration. Method detection limit and practical quantitation limit will be established experimentally using the procedure in USEPA 40 CFR, Part 136, Appx. B.

2.3 in general, samples are first extracted with a pesticide-grade solvent. The extracts are further processed by concentrating or diluting, depending on the concentration of PCB, and carried through a series of clean-up gas chromatographic column and detected by direct liquid injection onto the This method should be performed by a skilled chemist or by an analyst trained in the quantification of trace organics by gas chromatography.

2.4 A key component of this method is the importance placed on the chromatographic separation that must be achieved for this congener specific technique. A total of 117 chromatographic peaks are detected, containing 187 PCB congeners in various ratios. This allows an almost complete profile of environmentally occurring PCBs.

2.5 Safe laboratory practices should be followed by the analyst at all times when conducting work in the lab. The analyst should refer to the reference file of material safety data sheets to familiarize himself with the hazards of handling the compounds used for standards and samples themselves.

3.0 Interierence

3.1 One of the major sources of interference in the analysis of PCBs is that organochlorine pesticides are coextracted from the samples. A few of these ECD responding pesticides can be separated cleanly from the PCB profile by the resolving characteristics of the capillary column. Several of the commonly found pesticides and degradation products (DDT, DDE, DDD) overlap the PCB profile envelope and co-elute with several of the minor PCB congeners found in environmental samples. The analyst must be careful in chromatographic pattern review and flag peaks that are suspected of being contaminated so that they are not included in total PCB values-generated.

3.2 There are several clean-up protocols available that can be used to tractionate PCBs from organochlorine pesticides found in environmental samples. These techniques and there effectiveness will be described in the

319885

ì

ann.

Northeast Analytical, Inc. -3- NEA-608CAP Rev. 2.0 8/89

sample preparation and clean-up section of this manual. Other separation and clean-up techniques will be included in the section describing procedures to handle samples that contain oil and grease, hydrocarbons, and elemental sulfur.

3.3 Laboratory contamination can occur by introduction of plasticizers (phthalate esters) into the samples through the use of flexible tubing. Samples and extracts should not be exposed to plastic materials. Phthalate esters give response on electron capture detectors, usually as late eluting peaks, and can interfere in PCB quantification.

4.0 Sample Archiving

4.1 Extracts and sediment samples will be retained after analysis. The solvent extracts will be stored in a freezer, while the dry sediment samples can be stored at room temperature, protected from the light.

5.0 Equipment and Apparatus

5.1 <u>Gas Chromatograph</u>: Complete system for high resolution, capillary column capability and all required accessories. Northeast Analytical, Inc. will use a Varian Model 3400 gas chromatograph, equipped with capillary oncolumn injection (Septum Programmable Injector), temperature programmable oven, Model 8000 automatic sampler, and fast time constant electron capture detector. A data system (Dynamic Solutions, Maxima Workstation) for chromatographic operations and integration of detector signal is interfaced to the gas chromatograph.

5.1.1 <u>Column</u>: The gas chromatograph column to be used for analysis will be a DB-1 (J&W Company), bonded polydimethylsilicone, 30 meter fused silica capillary column with an internal diameter of 0.25 mm and phase coating thickness of 0.25 microns. This column is capable of resolving 117 chromatographic peaks from the full spectrum of all PCB congeners that could be expected in an environmental sample. Refer to Appendix A and Appendix B for a complete description of PCB congeners identified in each GC chromatographic peak and achievable analytical separations.

5.2 <u>Chromatograph Data System</u>: A data system for measuring peak height and peak area. A Maxima 820 workstation (Dynamic Solutions), PCbased data system, will be employed to record detector response and digitally store the chromatographic information on the computer hard disk. This system will allow for chromatographic review of data from the gas chromatograph, electronic peak integration for precise calculations, data base structuring of the analytical information, and archival capabilities. Northeast Analytical, Inc. -4- NEA-608CAP Rev. 2.0 8/89

5.3 <u>Soxhlet Extractor</u>: Complete system for use in extracting PCBs from soils, and sediments. The soxhlet extractor consists of a water cooled condensor, a 250 mL, or 500 mL round bottom flask, soxhlet repetitive flushing unit, appropriate heating mantle and controller.

5.4 <u>Kuderna-Danish (K-D) apparatus</u>: Complete system to evaporate extraction solvent and concentrate sample extract. The K-D apparatus consists of a concentrator tube (10 mL), evaporation flask (500 mL), and 3-ball snyder column.

5.5 Boiling Chips: Solvent extracted, silicon carbide or equivalent.

5.6 <u>Volumetric Flasks</u>: 10, 25, 50, and 100 mL, ground-glass stopper. For standards and sample dilutions.

5.7 Microsvringe: 10, 25, 100, 250, 500 uL for standard preparation.

5.8 Vials: Glass, 10, and 20 mL capacity for sample extracts.

5.9 Bottles: Glass, 50 and 100 mL capacity for sample storage.

5.10 <u>Sample Concentrator</u>: An evaporator unit that utilizes a stream of purified nitrogen gas to gently evaporate solvent from samples.

6.0 <u>Reagents</u>

6.1 <u>Solvents</u>: Pesticide grade or nano-grade quality. Hexane, acetone, toluene, methylene chloride, methanol, diethyl ether, dimethylformamide, and pentane.

6.2 Magnesium Sulfate: Anhydrous, suitable for pesticide analysis.

6.3 <u>Sodium sulfate</u>: Anhydrous, suitable for pesticide analysis.

6.4 Sulfuric acid: Concentrated, ACS reagent grade.

6.5 Mercury: Triple distilled.

6.6 <u>Magnesium silicate (Florisil)</u>: 60-100 mesh, activated at 650 degrees C., reagent grade suitable for pesticide analysis.

6.7 Glass Wool: Silane treated, solvent washed to remove impurities.

319887

6.8 <u>Silica Gel</u>: 100-200 mesh, grade 923, Aldrich, deactivated to 7.5% with water.

6.9 <u>Potassium Hydroxide</u>: Pellets, reagent grade.

6.10 Octachloronaphthalene: Obtained from Ultra Scientific (Hope, RI), with a purity greater than 95%.

6.11 <u>Polychlorinated biphenvis</u>: Neet commercial material for standard preparation. These materials are multi-component mixtures of PCB congeners and are the actual materials that were used in products such as transformers and capacitors. Monsanto was the largest producer of PCB formulations and sold them under the tradename Arocior. These standards should be compared to EPA PCB reference materials to verify commercial materials, to be used as standards, have the same pattern and congener distribution.

6.12 Stock Standard Solutions:

6.12.1 Stock standards are prepared from individual Aroclor formulations by weighing approximately 0.025 g to the nearest 0.1 mg, and dissolving and diluting to volume in a 25 mL volumetric flask. This will give a stock concentration of 1,000 ppm.

6.12.2 The stock standard is transferred into screw-cap vials and stored in a freezer, protected from light. Stock standards should be checked at frequent intervals for signs of evaporation, especially just prior to preparing calibration standards.

6.12.3 Stock PCB standards must be replaced after one year, or sooner if comparison with EPA certified check standards indicate a

6.12.4 Stock standards for the following are prepared by the above procedure:

Arocior 1232 Arocior 1248 Arocior 1262

6.13 <u>Calibration Standard</u>: The calibration standard is prepared by combining Aroclor 1232, Aroclor 1248, and Aroclor 1262 in a 25:18:18 ratio with a final mixture concentration of 2.5 ug/mL, 1.8 ug/mL, and 1.8 ug/mL respectively (total = 6.1 ug/mL). The final concentration of the mixed standard may vary to accommodate instrument sensitivity or more closely represent sample concentrations, but the same ratio values must be maintained. These ratios are strictly maintained so that the percent composition data remains applicable, since it was developed for use under

6.13.1 Using a 500 uL microsyringe, accurately add 0.25 mL of stock Aroclor 1232 standard (1,000 ppm) to a 100 mL volumetric flask. Add 0.18 mL of stock Aroclor 1248 and Aroclor 1262 to the same 100 mL of stock volumetric flask. Add the internal standard to the 100 mL volumetric flask as outlined in Section 6.14, and make volume to the 100 mL mark with hexane.

6.13.2 Store calibration standard in the refrigerator at 4 degrees C. in a tightly capped bottle. Calibration standards must be replaced 319888

7/3/9:

ì

after six months, or sooner, if comparison with EPA check standards indicate a problem.

6.13.3 Since the instrument calibration is based on a single point calibration standard, concentration of PCBs in the sample extracts mustbe within a factor of five of the calibration standard value. Sample extracts that fall outside this range should be diluted or concentrated to be within the accepted concentration range. To facilitate in meeting the established concentration range for samples, sample extracts are to be screened by packed column gas chromatography with electron capture detection to determine their approximate concentrations. solution concentrations for this screening procedure will be calculated by using a mixed Aroclor standard (Aroclor 1242 and 1260) with instrument calibration based on the peak weight percent method of Webb and McCall. This concentration data is necessary so that the extract concentration can be adjusted to match (within a factor of five) the concentration of the three Aroclor calibration mixture. the PCB extract concentration, the packed column screen will supply information on possible contamination and interfering co-extractables which would indicate further sample clean-up is necessary.

6.14 Internal Standard: The internal standard used for capillary gas chromatography of PCBs will be octachloronaphthalene (OCN). Weigh, to the nearest 0.1 mg, solvent, quantitatively transfer the OCN using six successive 2 mL washings to a 50 mL volumetric flask. Be sure to rinse the 10 mL vial walls carefully so that all OCN is completely transferred to the 50 mL volumetric flask. Make the solution to volume using toluene and mix the internal standard solution by shaking the flask several times. This will give a concentration of OCN of 200 ppm. Calculate the exact concentration of OCN based on the amount weighed. Carefully transfer the internal standard solution to 10 mL vials, tightly cap, and store in a freezer.

6.14.1 The OCN internal standard is added to all calibration standards, performance check standards, blanks, samples, and QC samples at an amount to give the same concentration as the major PCBs found in standards and samples. In most cases this will be achieved by spiking 9 uL of OCN internal standard solution to 10 mL of standard or sample extract to give an concentration of 0.1818 ppm.

6.14.2 The internal standard will be added to calibration standards, sample extracts, blanks, and QC samples just prior to gas chromatographic analysis. Thus, the internal standard is used as a quantification spiking standard and will eliminate sample injection and instrument variations, but will not correct for analytical losses during sample preparation.

6.15 <u>Performance Check Standard</u>: A performance check standard is prepared from quality assurance/quality control standards obtained from the USEPA Environmental Monitoring and Support Laboratory (EMSL), Cincinnati, Ohio. The performance standard is a mixed Aroclor standard of Aroclor 1232, 1248, and 1262 in the fixed ratio used to prepare the calibration standard

7/3/90

Ĵ

1.20 m

and must be strictly adhered to. The performance standard is made to a concentration at the lower end of the range that sample PCB extract concentrations must fall into (a factor of five of the calibration standard).

6.15.1 The performance standard is composed of: 0.50 ug/mL Aroclor 1232, 0.36 ug/mL Aroclor 1248, and 0.36 ug/mL Aroclor 1262, a total of 1.22 ug/mL PCB. This mixture is prepared from a concentration of 5,000 ug/mL in isooctane. The USEPA standards are diluted to 50 ug/mL by pipetting 0.5 mL of standard into a 50 mL volumetric flask and diluting to volume with hexane.

6.15.2 Using a 500 uL microsyringe transfer 500 uL of 50 ug/mL Arocior 1232, 360 uL of 50 ug/mL Arocior 1248, and 360 uL of 50 ug/mL Arocior 1262 to a 50 mL volumetric flask. Using a 100 uL microsyringe, add 45 uL of OCN internal standard (final concentration of 0.1818 ug/mL). Dilute to volume with hexane and mix well by shaking and inverting flask several times. The prepared performance check solution will contain a total of 1.22 ug/mL PCB (0.5 ug/mL Arocior 1232, 0.36 ug/mL Arocior 1248, and 0.36 ug/mL Arocior 1262).

6.15.3 Transfer the performance check standard to 10 mL vials, cap tightly, and store in a freezer. A new performance check standard must be prepared every three months.

6.16 <u>Matrix Spike Standard</u>: The matrix spike standard is prepared in the same manner as the calibration standard outlined in Section 6.13. The only change is that the internal standard is <u>not</u> added to the matrix spike standard. The matrix spike standard is used in quality control to determine percent recoveries of the analytical sample procedures. The matrix spike standard is added at a concentration of the same magnitude as the concentrations exhibited by the samples.

6.16.1 Using the Arocior stock standards, prepare a stock matrix spike standard as follows. Accurately pipette 12.5 mL of 1,000 ug/mL Arocior 1232, 9.0 mL of 1,000 ug/mL Arocior 1248, and 9.0 mL of 1,000 ug/mL Arocior 1262 into a 50 mL volumetric flask. Dilute to 50 mL with hexane, and mix by inverting the flask several times. The matrix spike standard will contain a total of 610.0 ug/mL PCB (250 ug/mL Arocior 1232, 180 ug/mL Arocior 1248, and 180 ug/mL Arocior 1262).

6.16.2 Transfer the matrix spike standard to 10 mL vials, cap tightly, and store in a freezer. A new matrix spike standard must be prepared every six months, or sooner, if comparison with calibration standards indicate a problem.

7.0 Procedure

10.00

7.1 Calibration:

7.1.1 <u>Gas Chromatographic Operation Parameters</u>: Establish the gas chromatographic operation parameters as follows:

GC Column: DB-1 (J&W, bonded polydimethylsilicone), 30 meters, 0.25 mm internal diameter, 0.25 micron phase coating.

Oven Temperature Program: 50 degrees C. for 0.08 min hold time, 50 degrees C. to 220 degrees C: at 6.0 degrees C./min, hold at 220 degrees C. for 32 min.

GC Column Velocity: 30 cm/sec, Helium.

Detector: Electron Capture Detector (ECD), attenuation 1, range 10, autozero on.

Detector Temperature: 250 - 300 degrees C.

Injector Temperature Program: 45 degrees C. for 0.04 min hold time, 45 degrees C. to 250 degrees C. at 250 degrees C./min, hold at 250 degrees C. for 62.0 min.

Detector Make-up Gas: 30 mL/min, Nitrogen.

Auxiliary Temperature: 300 degrees C.

Autosampler: Multi-vial mode, 0.5 uL sample volume, Fast injection rate (4.0 uL/sec.), 0.0 min injection time, 3 purge pulses.

7.1.2 <u>Initial GC Calibration</u>: Prior to running samples the system must be calibrated and the system performance must be verified.

7.1.2.1 Establish the gas commatographic operation parameters outlined in Section 7.1.1 and prepare the calibration standard composed of a mixture of Aroclors 1232, 1248, and 1262 as outlined in Section 6.13.

7.1.2.2 Load the gas chromatograph autosampler with a vial containing the calibration standard, bracketed by 2 wash vials containing acetone and proceed with the chromatographic analysis. During the chromatographic analysis, GC data acquisition should be performed for future peak integration and data manipulation.

7.1.2.3 Our laboratory will use a computer based data acquisition workstation (Dynamic Solutions, Maxima 820 workstation), interfaced to the gas chromatograph. The workstation processes the detector signal, performs an analog to digital conversion, and stores the digitized chromatograms on the computer hard disk. All data

ì

ì

NEA-608CAP Rev. 2.0 8/89

analysis will be done on the computer specialized software package including peak integration, calculating calibration curves/response factors, report generation, chromatogram hardcopies, and archival of

Calculate the response factor for each separated and 7.1.2.4 identified peak. Appendix A identifies which congener and or congeners compose each resolvable GC peak in the calibration standard, along with the amount that each congener or co-eluting group of congeners are represented in the calibration standard. Throughout this document the IUPAC PCB numbering system will be used for congener identification, unless otherwise stated. B is an example of an acceptable chromatogram of the calibration standard, along with peak congener labels for cross reference to data in Appendix A. Chromatographic resolution should be sufficient so as to separate congeners 17 and 18 into two peaks with a valley less than half height of congener 17. Response factors are calculated relative to the internal standard by the following equation:

RRF = (Ax/Ais)x(Cis/Cx)

Where:

- RRF = Relative response factor of congener(s).
 - Ax = Area of peak for the cogener(s).
 - Ais = Area of peak for the internal standard.
 - = Concentration of the cogener(s).
- Cis = Concentration of the internal standard.

For congeners that are not found in the mixed Aroctor 7.1.2.5 standard and do not have amount values in the Appendix A table, the following calibration scheme will be employed. Response factors for these additional 19 chromatographic peaks will be adapted from the tabulated data of response factors and relative retention times of all the 209 PCB congeners found in Mullin et al, 1984 (see reference 9.10). These relative response factors will be adjusted for the specific data analysis and quantification employed in this document, based on the calculated response factors generated from the mixed Arocior standard used for instrument calibration.

7.2 On-going Calibration:

7.2.1 Chromatographic Resolution:

Chromatographic resolution should be sufficient so as 7.2.1.1 to separate congeners 17 and 18 into two peaks with a valley less than the half height of congener 17. If this separation is not met, install a new GC column or adjust instrument conditions to achieve

7.2.2 <u>Response Factors</u>:

7.2.2.1 The relative response factors calculated from the calibration standard will be verified on each working day by analyzing the performance standard, calculating the selected congener concentrations and comparing to their known concentration. A subset of six congeners will be used to verify the relative response factors before samples are processed. The six congeners include:

#6 and #205 - representing low level peaks in standard

#61 and #181 - representing medium level peaks in the standard #44 and #180 - representing high level peaks in the standard.

7.2.3 After the performance standard is analyzed, calculate the amount for these six congeners and compare those values to the known concentrations by the following equation:

Percent Difference = $[Amt(1)-Amt(2)]/Amt(2) \times 100$

Where: Amt(1)= Amount calculated for congener. Amt(2)= Known amount for congener.

7.2.4 A percent difference greater than $\pm 30\%$ for the two low level peaks (#6 and #205) indicates an instrument problem or unacceptable relative response factors. A percent difference greater than $\pm 10\%$ for the medium level (#61 and #185) and high level (#44 and #180) peaks also indicates an instrument problem or unacceptable relative response factors. If any of the evaluation congeners fail to meet the percent difference acceptance criteria, the calibration standard must be reanalyzed and new relative response factors generated.

7.2.5 The performance standard must be analyzed again and values calculated using the new relative response factors. If the performance standard fails to meet the percent difference criteria after re-calibration, sample analysis must not proceed until the problem is found and corrected (i.e., GC gas leak, autosampler lines plugged, broken injector liner).

7.3 Sample Preparation:

7.3.90

7.3.1 Soil and Sediment Samples:

7.3.1.1 To provide guidance to the analyst, as much information about the samples received for analysis should be obtained from the generator and included in the sample log-in records. This may provide information on the expected levels of components being determined and whether dilution of the sample will be necessary.

NEA-608CAP Rev. 3.0 6/90

7.3.1.2 Refer to Section 7.1 for gas chromatographic conditions before running any samples. The instrument calibration performance criteria must be met (see Section 7.2).

7.3.1.3 <u>Sample Preparation</u>:

7.3.1.3.1 Process the sample by first decanting water from the top of the sediment. Transfer the sample to a clean pyrex tray and remove any sticks, stones, and other foreign material, if present.

7.3.1.3.2 Allow the sample to dry at room temperature by placing in a chemical hood for 24 to 48 hours. Frequently mix the drying sample with a spatula and break up any clumps by crushing. The sample is ready for extraction when the sample has reached a free flowing consistency.

7.3.1.4 Extraction:

7.3.1.4.1 Weigh 5 to 20 grams of the air dried sample into a tared cellulose extraction thimble (Whatman 33 mm x 94 mm) and record the weight. Add a plug of silanized glass wool to the top of the thimble.

7.3.1.4.2 Add 200 mL of 1:1 mixture of Hexane and Acetone (1:1 Hexane/Acetone) to a 250 mL round bottom flask. Add several boiling chips to the round bottom flask.

7.3.1.4.3 Turn on the cooling water to the condenser units that will be used to condense the extraction solvent during the soxhlet extraction of the sample.

7.3.1.4.4 Place the sample filled thimble into the soxhiet extractor and attach the soxhiet to the 250 mL round bottom flask and condenser unit.

7.3.1.4.5 Place the 250 mL round bottom onto a heating mantle and set the controller to a value of 5 to 6. Once the solvent begins to boil, adjust the controller to achieve a solvent flushing action of once every two to three minutes.

7.3.1.4.6 Extract the sample overnight for a minimum of 16 hours. Turn the heating mantle off and allow the apparatus to cool to room temperature. Once cool, rinse the water cooled condenser with several disposable pipette volumes of hexane. Separate the condenser from the soxhlet extractor and rinse the ground glass joint with several disposable pipette volumes of hexane.

7/3.00

7.3.1.4.7 Move the soxhlet extractor and attached 250 mL round bottom flask into a chemical hood. Flush the remaining solvent from the soxhlet extractor by tipping the unit to facilitate the syphon action. Using forceps, remove the extraction thimble and allow residual solvent to drain into soxhlet chamber. Rinse the soxhlet chamber with several disposable pipette volumes of hexane, adding enough solvent to be able to flush the soxhlet extractor by tipping to start the siphoning action. Disconnect the soxhlet extractor from the 250 mL round bottom flask and rinse the ground glass joint with several disposable pipette volumes of hexane.

7.3.1.4.8 Add several fresh boiling chips to the round bottom flask and attach a 3-ball snyder condensing column to the round bottom flask. Prewet the snyder column with 2 mL of hexane.

7.3.1.4.9 Using a heating mantle, evaporate the solvent to approximately 5 mL. Make sure gentle boiling is taking place and that the snyder column sections are not becoming flooded with solvent. Once the extract reaches approximately 5 mL (do not go to dryness or loss of PCBs can occur), remove from heat source and quickly rinse the snyder column with 2 mL of <u>hexane</u>. Allow the glassware to cool to room temperature. Loosen the glass joint between the snyder column and 250 mL round bottom flask and rinse the joint into the

7.3.1.4.10 Quantitatively transfer the sample extract to a 20 mL vial with three 2 mL hexane rinses. After the sample has been transferred, rinse the disposable transfer pipette with 0.5 mL of hexane into the 20 mL vial.

7.3.1.4.11 Evaporate the solvent with a gentle stream of purified nitrogen gas using a Pierce Reacti-therm block equipped with a 9 port syringe needle gas manifold. Gentle heating can be applied (40-50 degrees C.) to facilitate solvent evaporation. The extract should be concentrated to 0.2 to 0.3 mL, but never allow extract to go to dryness (PCB losses can occur). This concentration step removes the final traces of acetone, which needs to be removed before clean-up procedures are performed.

7.3.1.4.12 At this point the sample can be processed in either of three ways:

1) If the sample is known to be free of interferences, the sample extract volume can be adjusted to 10 mL and and screened by the GC packed column qualitative analysis to determine PCB concentration and necessary sample extract dilution or concentration for final GC capillary quantification analysis.

S

σ

98

Ч

2) If the exact and nature of interfering co-extractables in the sample is unknown, the sample must be analyzed by the packed column qualitative procedure to appropriate clean-up procedures. determine sample extract is The adjusted to 10 mL and analyzed chromatography. After review of the chromatogram, the sample by column extract is processed using applicable clean-up techniques. sample clean-up the extract is re-analyzed by GC packed column chromatography to determine PCB concentration and necessary extract dilution or concentration for final GC capillary quantitative analysis.

3) If prior knowledge and information exists on what types of interfering substances will be co-extracted with the PCBs, proceed directly with the necessary clean-up procedures. After sample clean-up, the extract is adjusted to 10 mL and analyzed by GC packed column chromatography to determine PCB concentration for final GC capillary quantitative analysis.

7.3.1.4.13 Refer to Section 7.4 for sample extract clean-

7.3.1.4.14 After the sample extract has been analyzed by the GC packed column qualitative screening protocol, the sample is prepared for final analysis by capillary gas chromatography. Dilute or concentrate the sample extract so that the PCB concentration is within the established concentration range (see Section 6.13.3). Spike this sample extract with the internal standard (OCN) as close to the same level that it exists in the calibration standards (typically 0.1818 ug/mL). Place the sample into an autosampler vial and proceed with the capillary gas

7.3.1.4.15 Refer to Section 7.5 for the calculations of PCB concentration in the sample.

7.3.1.4.16 Section 8.0 outlines the necessary quality control (QC) samples to be included with each sample analysis sequence. QC samples are prepared and analyzed along with the samples being measured, and must meet defined acceptance criteria for the sample data to be valid. The QC data is tabulated or plotted on control charts and archived by the laboratory and is available for inspection by the individual requesting the analysis.

7.4 Sample Clean-up

į

7.4.1 Most extracts of environmental samples that are to be analyzed for PCBs by gas chromatography with electron capture detection

1

Ĵ

-14-

NEA-608CAP Rev. 2.0 8/89

have co-extracted xenobiotics and other interfering substances that must be removed before accurate quantification can take place.

7.4.2 Not all clean-up procedures need to be performed on every sample and several are sample matrix specific. It is the experience and knowledge of the analyst combined with the sampling site history that should guide the selection of which clean-up procedures are necessary.

7.4.3 <u>Hexane/Dimethylformamide partition:</u>

7.4.3.1 This procedure is similar to the hexane/acetonitrile partition procedure, but affords quantitative recover of PCBs. This clean-up technique effectively removes lipids and oils from the sample extracts. When necessary, this procedure should be carried out prior to Florisil clean-up.

7.4.3.2 Quantitatively transfer the sample extract to a 30 mL vial and adjust the sample volume to 15 mL with hexane. Extract the sample four times with 5 mL of dimethylformamide saturated with hexane.

7.4.3.3 Transfer each dimethylformamide extract to a 150 mL separatory funnel. Rinse the transfer pipette with a 0.5 mL of dimethylformamide saturated with hexane into the separatory funnel. Add 100 mL of water containing 2% sodium chloride to the separatory funnel.

7.4.3.4 Extract the dimethylformamide/water mixture with 20 mL of hexane. Allow the phases to separate for 5 minutes after vigorously shaking for 30 seconds.

7.4.3.5 Decant the dimethylformamide/water phase (lower) into a 250 mL beaker. Transfer the hexane phase to a column containing 3 inches of anhydrous sodium sulfate and elute hexane containing PCBs into a 250 mL round bottom flask.

7.4.3.6 Transfer the dimethylformamide/water fraction back to the 150 mL separatory funnel and extract a second time with 20 mL of hexane. Decant the dimethylformamide/water phase back into the 250 mL beaker and add the 20 mL hexane extract to the anhydrous sodium sulfate drying column.

7.4.3.7 Repeat Section 7.4.3.6 for a total of three hexane extractions.

7.4.3.8 Rinse the separatory funnel into the sodium sulfate column with several disposable pipette volumes of hexane. Rinse the column with several disposable pipette volumes of hexane. Eiute the column with an additional 50 mL of hexane to remove all the PCBs. Finally, rinse the drain tube of the column stopcock into the round bottom.

7.4.3.9 Add several boiling chips to the 250 mL round bottom flask and rinse the neck of the round bottom with several disposable pipette volumes of hexane. Attach a 3-ball snyder distilling column to the 205 mL round bottom flask and prewet the snyder column with 2 mL of hexane.

7.4.3.10 Using a heating mantle, evaporate the solvent to approximately 5 mL. Make sure gentle boiling is taking place and that the snyder column sections are not becoming flooded with solvent. Once the extract reaches approximately 5 mL (do not go to dryness or loss of PCBs can occur), remove from heat source and quickly rinse the snyder column with 2 mL of <u>hexane</u>. Allow the glassware to cool to room temperature. Loosen the glass joint between the snyder column and 250 mL round bottom flask with 2

7.4.3.11 Quantitatively transfer the sample extract to a 15 mL vial with three 2 mL hexane rinses. After the sample has been transferred, rinse the disposable transfer pipette with 0.5 mL of hexane into the 15 mL vial.

7.4.3.12 Evaporate the solvent with a gentle stream of purified nitrogen gas using a Pierce Reacti-therm heating block equipped with a 9 port syringe needle gas manifold. Gentle heating can be applied (40-50 degrees C.) to facilitate solvent evaporation. The extract should be concentrated to 0.2 to 0.3 mL, but never allow extract to go to dryness (PCB losses can occur).

7.4.3.13 Quantitatively transfer the sample to a 10 mL volumetric flask and proceed with the packed column GC analysis.

7.4.4 Sulfuric Acid Wash:

)

700

7.4.4.1 The concentrated sulfuric acid treatment removes hydrocarbons and other colored biogenic compounds which are coextracted with the environmental PCB residues. The sulfuric acid wash should be done first if a florisil clean-up is also being applied to the sample.

7.4.4.2 Quantitatively transfer the sample extract to a 20 mL vial and adjust the volume to approximately 5 mL.

7.4.4.3 Add 2 mL of concentrated sulfuric acid to the sample extract and shake vigorously for 30 seconds. Centrifuge samples on low speed (2) using a bench top centrifuge. Transfer the hexane upper layer to a 20 mL vial.

7.4.4.4 Wash the sulfuric acid three times with 2 to 3 mL of hexane. Shake each wash vigorously and centrifuge to aid in phase separation. Transfer all three hexane washes to the 20 mL vial.

`;

7/3/90

-16-

σ

80

σ

31

Make sure to rinse the transfer pipette with 0.5 mL of hexane into the 20 mL vial.

7.4.4.5 Evaporate the solvent with a gentle stream of purified nitrogen gas using a Pierce Reacti-therm heating block equipped with a 9 port syringe needle gas manifold. Gentle heating can be applied (40-50 degrees C.) to facilitate solvent evaporation. The extract should be concentrated to 0.2 to 0.3 mL, but never allow extract to go to dryness (PCB losses can occur).

7.4.4.6 If the sample is to be analyzed at this point, quantitatively transfer the extract to a 10 mL volumetric and proceed with the packed column GC screening analysis.

7.4.4.7 If the sample needs further clean-up, proceed to the next clean-up procedure.

7.4.4.8 <u>Caution</u> must be taken in performing the sulfuric acid wash when high amounts of lipid (i.e., fish samples) or water remain in the sample extract. These types of samples may produce excessive heat due to the exothermic reaction of the sulfuric acid with these materials. The rise in sample temperature can cause sulfonation of the lower chlorinated PCB congeners and therefore losses of PCB from the sample. If high amounts of lipids and water are suspected, cool the sample in an ice bath. Also cool the concentrated sulfuric acid in an ice bath before addition to the sample. Gently shake the sample extract and keep the sample in the ice bath while treating it with the sulfuric acid.

7.4.4.9 The pesticides dieldrin and endrin are destroyed by the sulfuric acid treatment. If these pesticides are to be measured they must be fractionated (i.e., silica column) from the PCBs.

7.4.5 Florisil Adsorption Chromatography:

7.4.5.1 The florisil chromatography separates PCBs and certain pesticides (i.e., DDT and analogs) from other co-extracted, polar compounds. The procedure outlined below is for collection of the fraction that contains PCBs and certain organochlorine pesticides only. Additional fractions, eluted by stronger polarity solvent mixtures can be collected if other pesticides are to be determined.

7.4.5.2 Adjust the sample extract volume to 0.2 to 0.3 mL, so that the sample is applied to the florisil column in a small chromatographic band.

7.4.5.3 Prepare a micro florisil column in the following manner. Cut the top of a 5 mL disposable pipette at approximately 1 inch from the end of the pipette. Insert a small plug of silanized glass wool into the pipette and position at the 9 mL mark. Dry pack the 5 mL pipette with 100% deactivated Florisil to make a column of 1 mL in height. Make sure the Florisil is well settled by tapping the column with a spatula. Rinse the micro column with 10 mL of hexane and after elution of the 10 mL, rinse the outside tip of the pipette column, with 1 mL hexane. Place a 20 mL vial under the micro column for collection of the elute.

7.4.5.4 Quantitatively transfer the sample extract to the Florisil micro column and rinse the sample container with 3 successive 0.5 mL hexane volumes. Rinse the disposable transfer pipette into the micro column with 0.5 mL of hexane. Carefully rinse the micro column with 1 mL of hexane and then elute the sample to a total volume of 20 mL with hexane. After collection of the sample rinse the outside tip of the micro column into the collection vial.

7.4.5.5 Evaporate the solvent with a gentle stream of purified nitrogen gas using a Pierce Reacti-therm heating block equipped with a 9 port syringe needle gas manifold. Gentle heating can be applied (40-50 degrees C.) to facilitate solvent evaporation. The extract should be concentrated to 0.2 to 0.3 mL, but never allow extract to go to dryness (PCB losses can occur).

7.4.5.6 If the sample is to be analyzed at this point, quantitatively transfer the extract to a 10 mL volumetric and proceed with the packed column GC screening analysis.

7.4.5.7 If the sample needs further clean-up, proceed to the next clean-up procedure.

7.4.6 Sulfur Removal:

7.4.6.1 Elemental sulfur is soluble in the extraction of solvents used for sediment and soil samples. It is almost always found as an interferant in these types of samples. Large amounts of sulfur can cause the electron capture detector to signal saturate for long periods during the elution envelope of PCBs. Even small amounts of sulfur can interfere with PCB measurement by co-eluting as a chromatographic peak with certain PCB congeners.

7.4.6.2 Sulfur removal clean-up should be routinely done on soil and sediment samples due to its ubiquitous nature. The sulfur removal should be done prior to sulfuric acid and column chromatography clean-up techniques.

7.4.6.3 Quantitatively transfer the sample extract to a 20 mL vial and adjust the volume to approximately 5 mL.

7.4.6.4 Add 0.3 to 0.5 mL of elemental mercury to the sample extract and vigorously shake for 1 minute. The sulfur is converted to mercuric sulfide and precipitates out of the sample extract.

7.4.6.5 Quantitatively transfer the sample extract to a 20 mL vial by using three successive 1.0 mL hexane rinses. Rinse the ---disposable transfer pipette into the vial with 0.5 mL of hexane.

7.4.6.6 The precipitated sulfur can be removed from the sample by performing a sulfuric acid clean-up or Florisil adsorption clean-up.

7.4.6.7 After removal of the sulfur precipitate by either method listed in section 7.4.6.6, quantitatively transfer the sample extract to a 10 mL volumetric flask and proceed with the packed column GC screening analysis.

7.4.6.8 If the sample needs further clean-up, proceed to the next clean-up procedure.

7.4.7 Silica Gel Adsorption Chromatography:

7.4.7.1 Co-extracted organochlorine pesticides can interfere with PCB identification and quantification. A separation of PCBs from organochlorine pesticides can be accomplished by silica gel adsorption chromatography, allowing the analysis of both PCBs and pesticides as separate fractions.

7.4.7.2 Adjust the sample volume to 0.2 to 0.3 mL with hexane. Prepare a column of 7.5% deactivated silica gel (100-200 mesh, Grade 923, Aldrich), packed with 11.5 g of the silica gel. Rinse the column with 50 mL of methylene chloride followed by 50 mL of pentane. Rinse the stopcock drain tube with 1.0 mL of pentane. Place a 250 mL round bottom under the column to collect the sample eluate.

7.4.7.3 Quantitatively transfer the sample to the silica column using three successive 0.5 mL pentane rinses. Rinse the disposable transfer pipette into the column with 0.5 mL pentane. Rinse the column walls vith several disposable pipette volumes of pentane. Elute the silica gel column with 50 mL of pentane. Rinse the stopcock drain tube with 1.0 mL of pentane. This fraction will

7.4.7.4 Place a 50 mL bottle under the silica gel column. Elute the silica gel column with 36 mL of 20% methylene chloride in pentane. This second fraction will contain the organopesticides and polychromatic hydrocarbons. This fraction can be stored in a refrigerator and analyzed at a later date if pesticide determination is requested.

7.4.7.5 To the round bottom flask containing the PCB fraction add several boiling chips and rinse the neck of the round bottom flask with several disposable pipette volumes of hexane. Attach a ì

3-bail snyder distilling column to the 250 mL round bottom flask and prewet the snyder column with 2 mL of hexane.

7.4.7.6 Using a heating mantle, evaporate the solvent to approximately 5 mL. Make sure gentle boiling is taking place and that the snyder column sections are not becoming flooded with solvent. Once the extract reaches approximately 5 mL (do not go to dryness or loss of PCBs can occur), remove from heat source and quickly rinse the snyder column with 2 mL of <u>hexane</u>. Allow the glassware to cool to room temperature. Loosen the glass joint between the snyder column and 250 mL round bottom flask and rinse the joint into the round bottom flask with 2 mL of <u>hexane</u>.

7.4.7.7 Quantitatively transfer the sample extract to a 15 mL vial with three 2 mL hexane rinses. After the sample has been transferred, rinse the disposable transfer pipette with 0.5 mL of hexane into the 15 mL vial.

7.4.7.8 Evaporate the solvent with a gentle stream of nitrogen gas using a Pierce Reacti-therm heating block equipped with a 9 port syringe needle gas manifold. Gentle heating can be applied (40-50 degrees C.) to facilitate solvent evaporation. The extract should be concentrated to 0.2 to 0.3 mL, but never allow extract to go to dryness (PCB losses can occur).

7.4.7.9 If the sample is to be analyzed at this point, quantitatively transfer the extract to a 10 mL volumetric and proceed with the packed column GC screening analysis.

7.4.7.10 If the sample needs further clean-up, proceed to the next clean-up procedure.

7.5 Calculations:

7.5.1 External Standard Calibration (Packed GC):

7.5.1.1 The packed column GC screening analysis will be done by the external standard calibration technique. Calibration and sample quantification will be performed by a commercial GC software package installed on a personal computer. The GC will be standardized by using Aroctor 1242 and Aroctor 1260. These two Aroctor formulations incorporate most environmental PCBs found in sample extracts and provide a good estimate of PCB amount for final dilution or concentration for capillary analysis. A multi-level standards. Weight percent data (Webb and McCall) will be used to generate standard peak amounts.

.

ì

-20-

The calibration curves for each calibrated PCB peak 7.5.1.2 will be calculated using the following formula:

Calibration factor= Amount (ug) of component Total area of analyte peak

The calibration curve will be fitted to the calculated calibration factors by a cubic equation to give the best line for all calibration

7.5.2 Sample Calculations (Packed GC)

7.5.2.1 The concentration of each identified PCB peak in a sample will be calculated based on the extract volume (not the sample weight or volume) to supply solution concentration values that show if the extract needs to be diluted or concentrated for final capillary GC analysis. The solution concentration of each standardized PCB peak in a sample is calculated as follows:

Concentration $(ug/mL) = (Ax) \times (CF)$

Where: Ax=Area of peak of interest in sample CF=Calibration factor from peak in standard.

7.5.3 internal Standard Calibration (Capillary GC)

The capillary column GC analysis will be done by the 7.5.3.1 internal calibration technique. Calibration and sample quantification will be performed by a commercial GC software package installed on a personal computer. The capillary GC will be standardized by using an Aroclor mixture that encompasses all the possible PCB congeners present in environmental samples. Refer to Section 6.13 for details on the calibration standard and Aroclor ratios.

7.5.3.2 Response factors for each separated and identified peak in the standard will be calculated using the following formula:

RRF = (Ax/Ais)x(Cis/Cx)

Where:

RRF = Relative response factor of congener(s). Ax = Area of peak for the congener(s).

- Ais = Area of peak for the internal standard. Cx = Concentration of the congener(s).
- Cis = Concentration of the internal standard.

For the 19 chromatographic peaks that_will utilize 7.5.3.3 response factors from tabulated data found in Mullin et at, 1984 (see Section 7.1.2.5), numbers will be manually entered into the peak calibration table used for calculations will proceed exactly as outlined above for peaks that quantification. All 3

9903 Ч

Ì

have response factors generated from amount information contained in Appendix A.

7.5.4 Sample Calculations (Capillary GC)

The concentration of each identified PCB peak in a 7.5.4.1 sample will be calculated based on the sample air dried weight.

The sample PCB concentration of each standardized 7.5.4.2 PCB peak is calculated as follows:

Concentration (ng/g)=<u>[(Ax)(Cis)(D)]</u> [(Ais)(RRF)(Ws)]

Where:

= Peak area for congener(s) being measured. Ax

- Cis = forgount of internal standard added to sample extract = Dilution factor, if sample was diluted prior to analysis.
- Ais = Peak area of added internal standard. RRF =
- Relative response factor for congener(s) being
- measured, as determined in Section 7.5.3.2. Ws = Air dried weight of sample.

The dilution factor (D) is based on a final extract volume of 1 mL. Typically, the sample is extracted with about 200 mL which is then cleaned up and concentrated to a final volume of 10 mL. further volume adjustment is required, then D=10. If no dilutions are required, the $D=10 \times (dilution \#1) \times (dilution \#2) \times ...$ If further

7.5.5 Data Output and Reporting Format:

7.5.5.1 Several specialized software routines developed for high resolution PCB analysis to aid the researcher in understanding and organizing the complex data generated from this extremely detailed analysis. Appendix C contains examples of the sample hard copy format that will be used in reporting sample

2

8.0 Quality Control

8.1 Table 3 lists the Quality Control requirements and required recording format that will be applied to the capillary gas chromatographic analysis of

1

Ĵ

....

-22-

NEA-608CAP Rev. 3.0 6/90

<u>Table</u> :	3 - Quality	Control	Requiremente
----------------	-------------	---------	--------------

<u>QC Sample</u>	Reporting Format	Frequency
Lab Blank	Tabulation	Daily, or with each sample analysis sequence (up to 20 samples).
Performance check	Tabulation	Performance check sample analyzed prior to each sample analysis sequence (up to 10 samples).
Duplicate Analysis	Tabulation	One duplicate analysis per 10 field samples, or monthly if less than 10 samples/month are analyzed.
Matrix Spike	_	One matrix spike per 10 field samples.

8.1.1 <u>Sample Records</u>: All samples that arrive at the lab should be accompanied by a chain of custody document. The following pertinent information should be documented for all samples:

- 1) Unique label that identifies sample.
- Location of sample collection site.
- 3) Date and time of collection.
- 4) Project name and/or ID number.
- 5) Field personnel at sampling.
- 6) Required analysis.

The sample information will be recorded in the Lab Log Books and each sample will be assigned a unique Lab ID Number. The sample analysis will be archived by computer using the Lab ID Number.

8.1.2 Laboratory Blank: The laboratory blank will monitor and assess if the contamination of excessive interference is occurring from laboratory solvents, reagents, and glassware used in processing samples for analysis. The laboratory blank is taken through the sample extraction and clean-up procedures to include all manipulations exposed to actual samples (required volume of solvents, concentration steps, clean-up procedures, etc.). If the laboratory blank is positive for PCB eliminated before samples can be processed and analyzed. If non-PCB be traced down and eliminated before proceeding with sample analysis.

The laboratory blank will consist of sandbox sand, purchased at a local hardware store, which has been baked at 250 degrees C. in a vacuum

-23-

NEA-608CAP Rev. 3.0 6/90

oven for 24 to 36 hours and allowed to cool and store in glass containers. This is the same procedure used to prepare material which is supplied to EPA's contract laboratories by EMSL/Cincinnvti, for use as clean solid matrix.

8.1.2.1 Samples analyzed after a positive laboratory blank should be considered unreliable. If a laboratory blank is positive for PCBs, the source of contamination shall be located and eliminated. If the contamination occurred during the extraction procedure, the samples will require re-extraction and re-analysis. If the contamination occurred after this step, then re-extraction is not appropriate and the existing extracts will be reanalyzed. Any aliquots of the extracts (i.e., injection vials) which could have become contaminated will be discarded.

8.1.3 <u>Performance Check Standard</u>: As outlined in section 7.2, a performance check standard will be analyzed on each working day prior to sample analysis and at an interval of one performance standard per each sample analysis sequence (up to 10 samples). The performance check standard must meet the acceptance criteria established in Section 7.2. If the performance check standard fails to meet the acceptance criteria, the calibration standard must ber(analyzed and new response

8.1.3.1 The performance check standard must be analyzed again and compared to the acceptance criteria. If the performance check standard fails to meet the acceptance criteria after recalibration, sample analysis must not proceed until the problem is corrected. A typical analytical sequence is as follows:

1)Performance check standard.2)Method blank.3 thru 11)Samples (including duplicates, MS).12)Performance check standard.13 thru 21)Samples (including duplicates, MS).22)Performance check standard.

8.1.3.2 All samples that were analyzed after the performance check standard exceeded established criteria must be re-analyzed.

8.1.4 <u>Duplicate Analysis</u>: Duplicate analysis of the same sample are performed to assess method precision. The percent relative standard deviation of the two measurements on the sample is calculated on total PCB concentration by the following equation:

RSD=(DUP1 - DUP2)/AVG x 100

1

Where:	DUP2	 Percent relative standard deviation. the greater of the measured values. the lesser of the measured values. average of the two analyses. 	
--------	------	---	--

8.1.4.1. The percent relative standard deviation must be less than or equal to 25% if the concentration of PCB in the sample is greater than or equal to 0.5 ppm. The percent relative standard deviation must be less than or equal to 50% if the concentration of the PCB in the sample is less than 0.5 ppm.

8.1.5 Spiked sample matrix data are analyzed to Matrix Spike: assess analytical accuracy. Thus the sample is spiked and carried through sample analytical procedures including extraction, clean-up, and GC analysis. Matrix spike duplicates are not required for this project.

If a sample matrix previously analyzed to be free of 8.1.5.1 PCB is available, spike this sample with matrix spike standard (see Section 6.16) at a concentration similar to sample concentrations. Extract and analyze this spiked sample following procedures used for actual sample analysis. Calculate the percent recovery of the matrix spike by the following:

 $P = A/T \times 100$

Where:

P=Percent recovery, %.

A=Concentration of analyte in the spiked sample aliquot.

T=Known true value of the spike concentration added to the sample aliquot.

If an uncontaminated sample is not available, the 8.1.5.2 matrix spike can be performed on a sample previously analyzed. There must be sufficient sample for re-analysis as a matrix spike and the sample must be homogeneous in PCB distribution for valid data to be produced. Preferably a sample of low level should be used in this case. Spike the sample with the matrix spike standard (see Section 6.16) concentration а concentrations. Extract and analyze this spiked sample following procedures used for actual sample analysis. Calculate the percent recovery of the matrix spike by the following:

 $P = (A-B)/T \times 100$

Where:

P=Percent recovery, %.

A=Concentration of analyte in the spiked sample aliquot.

T=Known true value of the spike concentration added to the

B=Background concentration of PCB in the unspiked sample

The percent recovery for a spiked matrix sample must 8.1.5.3 be greater than or equal to 70% and less than or equal to 130%, based on the total PCB concentration. If a matrix spike recovery sample does not meet the acceptance criteria the cause must be found and corrected. All data collected on samples after the spiked

319907

Ì

į

.....

-25-

NEA-608CAP Rev. 2.0 8/89

9908

31

recovery sample failed to meet the acceptance criteria should be considered unreliable and samples must be re-extracted and -analyzed. If additional sample is unavailable, then the data must be flagged as such.

8.1.6 <u>Retention Time Windows</u>

8.1.6.1 The GC system should be checked by the analyst to make sure it is functioning properly before establishing retention time windows. Make three analytical measurements of the standard mixture containing the compounds of interest of a minimum of a 72-

8.1.6.2 Calculate the standard deviation resulting from the variation in retention times for each component from three analytical

8.1.6.3 The retention time window is defined as plus or minus three times the standard deviation of the three retention time determinations.

8.1.6.4 If the standard deviation for a particular component is zero, substitute the standard deviation of a close eluting compound found in the standard solution.

8.1.6.5 Besides using the retention time window to assign peaks for quantification, the analyst should also rely on his experience in pattern recognition of multi-residue sample analysis.

8.1.6.6 After the daily performance check standard has been analyzed, establish the <u>daily</u> retention time window for each analyte from the retention time of the standard just analyzed. The daily retention time window equals the absolute retention time of the performance check standard (midpoint of the window for the day) plus or minus three times the standard deviation determined in Section 8.1.6.2.

8.1.7 <u>Qualitative Compound Identification/Confirmation</u>: The identification of specific congeners in a PCB mixture is done by comparing the retention time of each peak with the retention times of the peaks in a known standard. The standard, consisting of a specified mixture of three Aroclors (1232, 1248, and 1262), has been completely characterized by workers at EPA's Large Lakes Research Station (see Mullin, 1985). Repeated injections of the standard are used to establish noted, also, that the experience of the analyst plays a significant role in the recognition of PCB patterns. The Laboratory Director of Northeast performing congener-specific analysis of PCBs. Comparative studies using GC/MS and GC-HECD detector analytical techniques have confirmed the validity of this method.

-26-

NEA-608CAP Rev. 3.0 6/90

Potential interferences to the PCB analysis are minimized by a number of mechanisms. These include:

- 1. The EC detector is largely specific to chlorinated compounds.
- Rigorous clean-up steps are performed to remove specific interferants, including pesticides, sulfur, lipids and oils, hydrocarbons and biogenic matter. The analyst will strive to A

9.0 References

9.1 US EPA 40 CFR Part 136, "Guidelines Establishing Test Procedures for the Analysis of Pollutants", July, 1988.

9.2 Standard Methods for the Examination of Water and Wastewater, 16th Edition, Published by: American Public Health Association, American Water Works Association, Water Pollution Control Federation, 1985.

9.3 US EPA SW-846, "Test Methods for Evaluating Solid Waste; Volume 1B Laboratory Manual Physical/Chemical Methods", Office of Solid Waste and Emergency Response, 3rd Edition, 1986.

9.4 New York State Department of Health, "Environmental Laboratory Approval Program Certification Manual", Wadsworth Center for Laboratories and Research, 1988.

9.5 Mullin, M.D. 1985. PCB Workshop, US EPA Large Lakes Research Station, Grosse IIe, MI, June.

9.6 James L. Lake, Communication, Silica Gel S.O.P., US EPA Environmental Research Laboratory, Narragansett, RI, 1989.

9.7 G. Seidl, K. Ballschmiter, Isolation of PCBs from Vegetable Oils: Recovery and Efficiency of "Clean-up" Methods, Chemosphere, No. 5, pp 363-366, 1976.

9.8 M. Zell, K. Ballschmiter, Baseline Studies of the GLobal Pollution, III. Trace Analysis of Polychlorinated Biphenyls (PCB) by ECD Glass Capillary Gas Chromatography in Environmental Samples of Different Trophic Levels, Fresenius Z. Anal. Chem., 304, 337-349, 1980.

9.9 R.G. Webb, A.C. McCall, Quantitative PCB Standards for Electron Capture Gas Chromatography, J. CHem. Sci., Vol. II, 366-373, 1973.

9.10 M.D. Mullin, C.M. Pochini, S. McCrindle, M. Romkes, S.H. Save, "High-Resolution PCB Analysis: Synthesis and Chromatographic Properties of All 209 PCB Congeners", Environ. Sci. Technol., Vol. 18, No. 6, pp.468-476, 1984.

Appendix A

Congener Composition of Aroclor Calibration Mixture (6.1 ppm)

(Aroclors 1232, 1248, 1262 in a ratio of 25:18:18)

Peak <u>Number</u>	RRT	Amount (ng/mL)	Congener	
•		<u> </u>	TD	-
1 2 3 4 5 6 7	0.3243	430	001	
	0.3536	*	002	
د د	0.3540	260	003	
4	0.3685	28		
5	0.3887	22	• · · · · · · · · · · · · · · · · ·	
8	0.3941	42	007, 009 006	
7	0.3980	500		
8 9	0.4102	*	005, 008 014	
	0.4106	10	019	
10	0.4133	*	030	
11	0.4220	*	011	
12	0.4245	9.2		
13	0.4269	130	• • •	
14	0.4285	74	015, 018	
15	0.4339	8.8	017	
16	0.4389	131	024. 027	
17	0.4436	*	016, 032	
.18	0.4485	*	023	
19	0.4495	1.8	034, 054	
20	0.4517	23	029	
21	0.4530	10	026	
22	0.4564	166	025	
23	0.4573	214	031	
24	0.4631	168.5	028, 050	
25	0.4670	116.7	020, 021, 033, 053	
26	0.4707	27	022, 051	
27	0.4746	*	045	
28	0.4753	14	036	
29	0.4790	*	046	
30	0.4798	129.1	039 .	
31	0.4825	90	043. 052. 073	
32	0.4844	50	049	
33	0.4854	40	047	
34	0.4897	*	048, 075	
35	0.4915	*	062, 065	
36	0.4915	150	035	
37	0.4936	88	044, 104	
38	0.4990	163	037, 042, 059	
39	0.5026	*.	041, 064, 071, 072	
40 41	0.5041	*	000	
41	0.5031	33	096 _	
42	0.5085	*	040	
4 J	0.5094	5	057, 103	
		-	067, 100	

}

Peak <u>Number</u>	RRT	Amount (ng/mL)	Congener ID
44	0.55440	_	
45	0.5119	- 7.4	-058, 063
46	0.5145 0.5164	81	074, 094
47	0.5182	210	061, 070, 076
48	0.5227	272	066, 093, 095
. 49	0.5274	14	055, 091, 098
50	0.5308	180	056, 060
51	0.5324	43	084, 092, 155
52	0.5346	3	089
53	0.5337	48	090, 101
54	0.5421	23	099
55	0.5437	1.8	112, 119, 150
56	0.5472	3.6	083, 109
57	0.5500	19	086, 097, 152
58	0.5528	33.2	081, 087, 111, 115
59	0.5549	21	085, 116
60	0.5570	14	136
61	0.5630	71 *	077, 110
62	0.5637		154
63	0.5688	13	082
64	0.5714	57	151
65	0.5727	22	124, 135
66	0.5739	2.23	144
67	0.5770	3.3	107, 108, 147
68	0.5775		123
69	0.5833	145 *	106, 118, 149
70	0.5858		139, 140
71	0.5875	8.5	114, 134, 143
72	0.5945	0.91	122, 131, 133, 142
73	0.5975	16	146, 161
74	0.6001	68.04	105, 132
75	0.6100	147.96 *	153
76	0.6106		168
77	0.6121	52	141
78	0.6163	54.6	179
79	0.6193	2.5	130
80	0.6237	· 13.88	137, 176
81	0.6274	98 12	138, 160, 163, 164
82	0.6315	3	128
83	0.6379	34	129
84	0.6430	24 *	178
85	0.6439	6	166
86	0.6468	150	175
87	0.6497	4.7	182, 187
88	0.6529	77	128
89	0.6583	1.1	183
90	0.6651	22	
91 -	0.6724	110	
92	0.6778	57	174, 181
93	0.6838	36.9	177
			156, 171

•

.

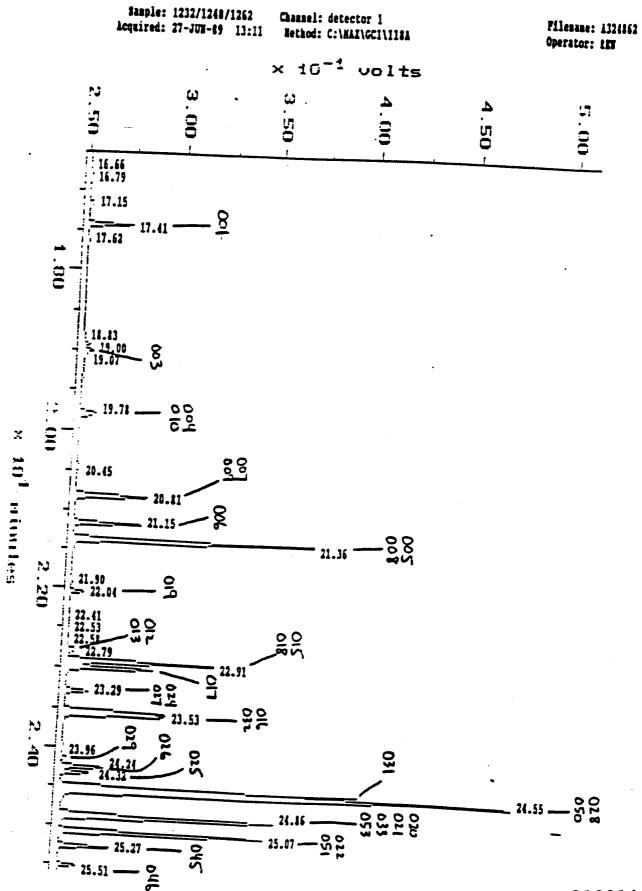
;

, ,

Peak <u>Number</u>	RRT	Amount (ng/mL)	Congener ID	
94 95	0.6889 0.6919	3.31	202	
96 97	0.6928	1.273 20.697	157 173 200, 204	
98 99	0.7045 0.7104	19.2 2.18	172, 192 197	
100 101 102	0.7141 0.7190 0.7251	240 14	180 193	
103 104	0.7323 0.7554	4.5 10 91.1	191 199 170	
105 106 107	0.7611 0.7677	29.9 0.4	190 169	
108 109	0.7779 0.7826 0.7036	6.7 150	198 201	
110 111	0.8171 0.8484	170 1.8 55.9	196,203 189 195	
112 113	0.8583 0.8774	24.9 4.8	208 207	
114 115 116	0.9058 0.9241	69 4	194 205	
117	1.0271 1.0838	42 0.95	206 209	

j

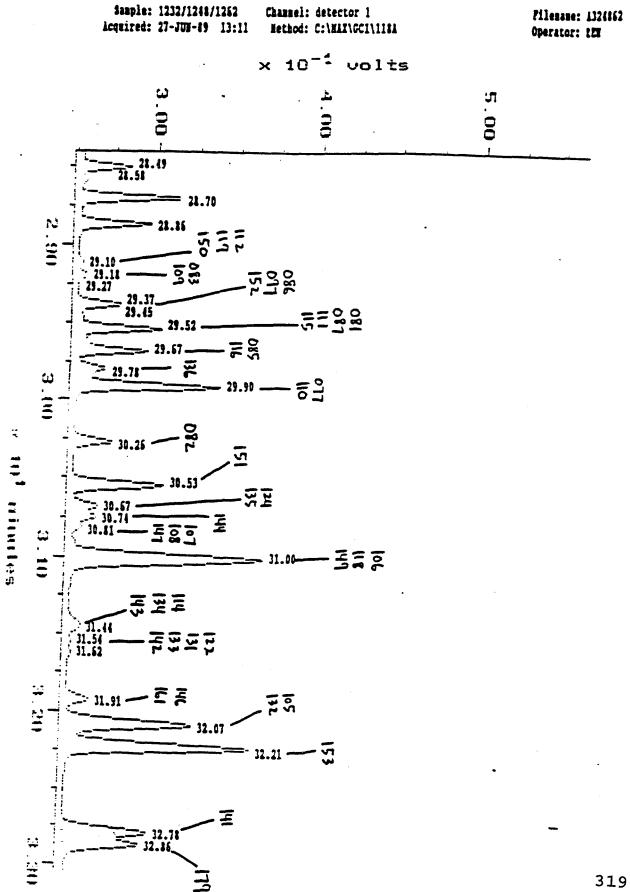
j


RRT= Relative Retention Time to internal standard OCN= 1.0000

* Refer to Section 7.125 for description of peak quantification for congeners with no amount values.

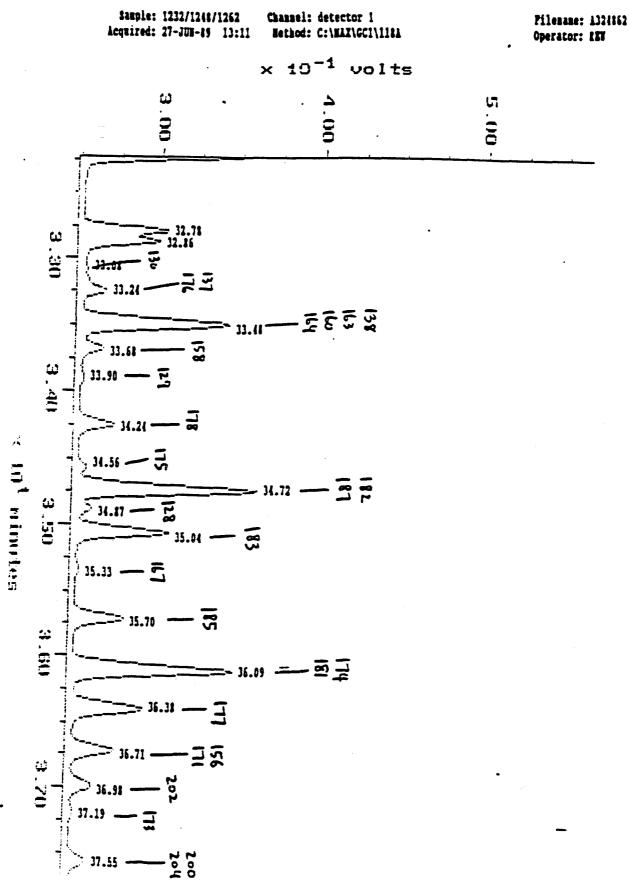
Appendix B

DB-1 Capillary GC Chromatogram of Aroclor Mixture (Aroclors 1232, 1248, 1262 in a ratio of 25:18:18)


}

!

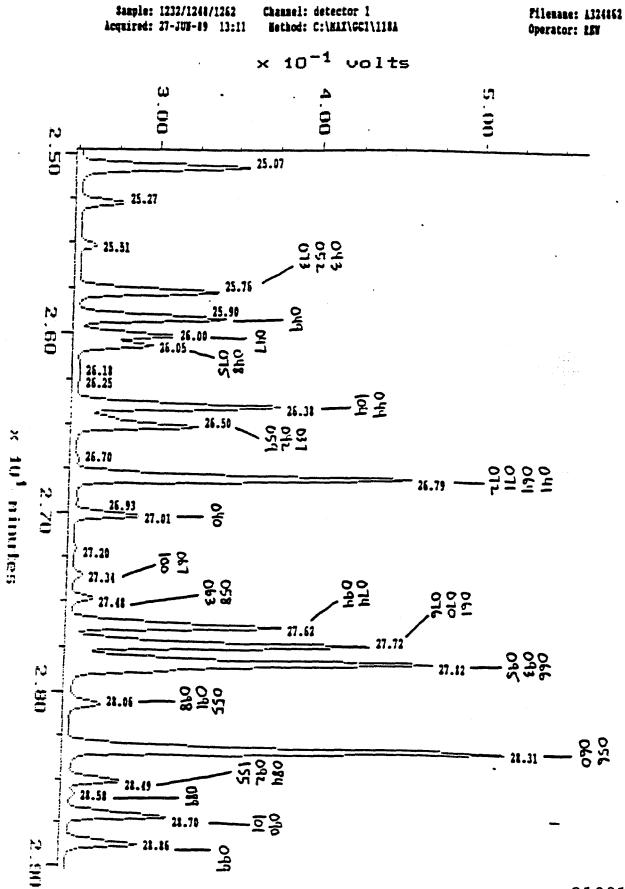
ì


j

ì

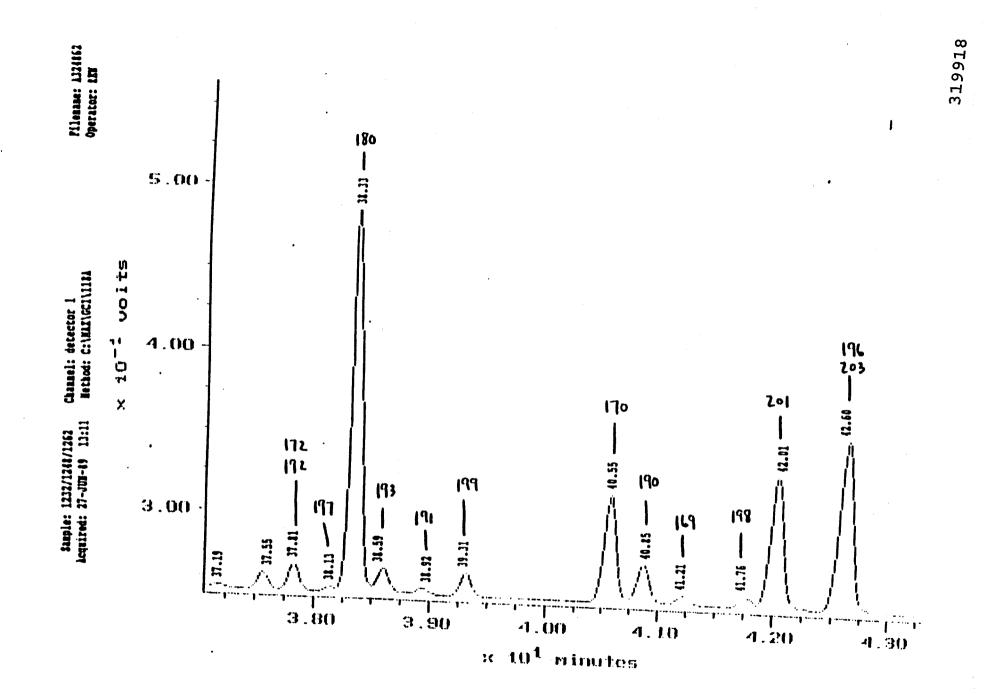
ì

319915

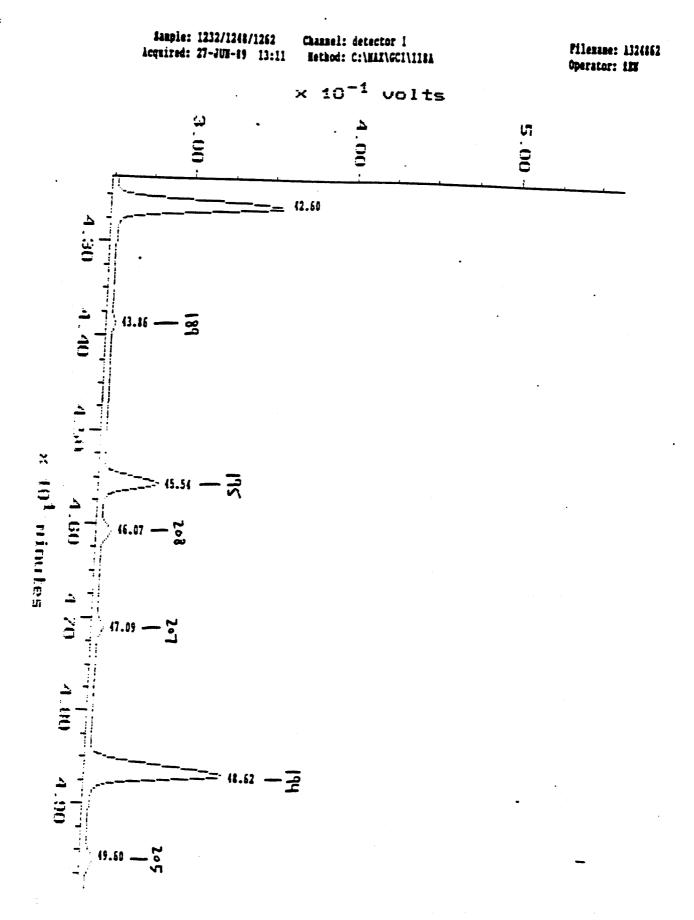


319916

}

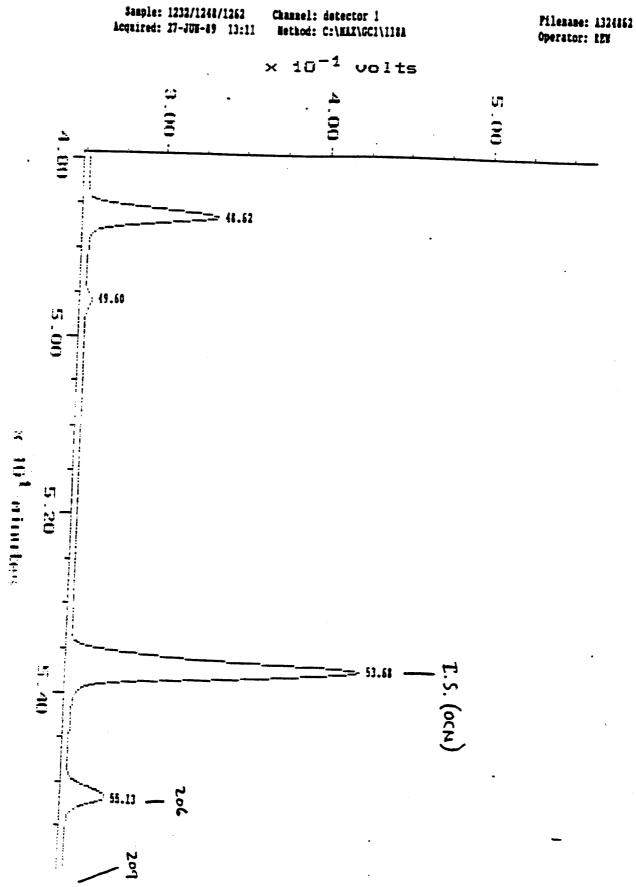

)

j



319917

j



319919

)

319920

Ì

Appendix C

)

J

Format of sample reports and specialized data handling and data reduction reports.

NALINA \$20 CUSTOM REPORT

Printed: 27-JUL-1989 15:31:58

SLUPLE SEDIMENT, SECTION 617 47 in Method: HIGH RES AROCLOR QUANT. ACQUIRED: 20-JUL-1919 10:34 Eate: 5.0 points/sec Duration: 70.000 minutes Operator: EEM

TTPE: UNER Instrument: GC2 FILENAME: 89091 Inder: Dist

Dilution: 4.167 Amount: 0.500

DETECTOE: detector 1

}

)

ł

ID‡	PX4	ETENTION TIME (Ributes)	fell sine (chlorine no.)	Peak Area	LHOURT SCULTION (ug/al }	Sinfle indu (ug/g
2	1	17.41	2 (1)	16822.5	0.052630+	
3	7	19.19	5 (4,10)	94056.9	0.154038!	0.(3862
5	9	20.33	6 (7,9)	4289.9		1.35709
1	10	21.24	7 (6)	9915.7	1.001725	8.91438
I	11	21.45	8 (5,8)	45470.5	8.00 <u>(17</u> 9 8.020305	0.03483
10	12	22.13	10 (19)	59987.6	0.020305	0.15922
14	13	23.02	14 (15,18)	21477.3	8.027093	0.22579
15	14	23.09	15 (17)	13372.2	0.011568	8_09624
16	15	23.38	16 (24,27)	62691.7	8.005714	8.04762
17	16	23.66	17 (16,32)	31481.6	0.013882	0.11569
19	17	24.06	19 (34,54)	5920.4	8.007599	0.05333
21	18	24.34	21 (25)	27177.1	0.001119=	0.00933*
22	19	24.42	22 (25)	21079.9	8.005958	0.04215
23	20	24.60	23 (31)	34627.1	0.004588	0.03824
24	21	21.54	24 (21,50)	37269.8	0.005147	0.05706
25	22	24.99	25(20.21.33.53)	37185.8	8.009023	0.07520
26	23	25.16	25 (22,51)	28349.4	8.008428	0.07024
27	24	25.37	27 [45]		0.003843	0.03203
29	25	25.61	29 (46)	4313.7 1770 1	0.001029	0.00858
31	26	25.16	31 (52,73)	3220.1 54010 5	8.001429	0.01191
32 .	27	26.01	32 (49)	54018.5	0.015520	0.12935
33	28	25.10	33 (47)	71911.7	4.015636	0.13031
- 37	29	26.49	33 (44,104) 37 (44,104)	98758.1	0.017025	0.14239
- 38	30	26.60		20673.3	8.003203	0.03165
39	32	26.19	38 (37, (2, 59) 38(4) 54 71 721	23516.2	0.005290	0.04409
41	33	27.03	39(41,54,71,72) 41 (46)	37428.5	0.004803	0.04003
42	34	27.11	41 (96) 42 (40)	\$237.6	0.002223*	0.01153*
(3	35	27.31	42 (40)	2516.7	8.000407	0.00339
ü	36	27.49	43 (57,103)	11719.7	0.002115+	0.01763*
45	37	27.59	44 (67,100) A5 (58,63)	10848.3	8.0019872	0.01655+
45	38	27.72	45 (58,63)	3222.5	4.000525+	0.00437*
4	40	27.12	46 (74,94)	13739.7	1.001839	0.01533
(9	41	28.17	48 (66,93,95)	35057.2	0.005017	8.84239
50		28.42	49 (55,91,98) 64 (65 64)	38865.8	0.007035	0.05863
51	43	28.62	50 (56,60)	10320.4	8.001376	0.01146
53	4		51 (84,92,155)	61161.2	0.010703	0.01920
54	45	28.82 28.91	53 (90,101)	119450.8	0.026868	0.22392
55	46	29.23	56 (99)	66132.0	0.011244	0.09371
- 55			55(112,119,150)	19896.4	0.002236=	0.01863*
57	41	29.50	56 (83,189)	8803.6	8.081829	e.01525
51	49		57 (86.97,152)	18519.2	0.002503	0.02086
59	50	29.55	58 (\$7,111,115)	27694.5	0.003021	0.02518
50	30 99	29.11	59 (85,116)	32063.9	0.002179	0.02399
	. ij	54.22	I.S. (OCH)	4566128.9	0.202000	V+66333
TOTAL				20278027.1	0.49676	4.14000

.

319922

HAXINA 420 CUSTON REPORT

Pristed: 27-JUL-1989 16:35:48

SAMPLE: SEDIMENT, SECTION 617 67 in Method: HIGH RES AROCLOR QUANT. ACQUIRED: 20-JUL-1989 10:34 Rate: 5.0 points/sec

Duration: 70.000 minutes Operator: 229 TTP2: UNEX Instrument: GC2 FILENINE: 49001 Index: Dist

Dilution: 4.157 Amount: 0.500

DETECTOR: detector 1

j

. •

ID t	? K ‡	ESTERTION TIRE (minutes)	PENE MARS {chloribe so.}	Peak Area	MOUNT SOULTION	SAMPLE ANOUR
—					(ug/al)	lug/g
1	51	29.92	68 (136)	(9734.7	A A1AA1A	
•	52	30.04	61 (77,110))	124172.2	8.010919	0.09100
i	53	30.39	62 (154)	13529.7	4.016898	0.14083
Ś	54 55	30.40	63 (82)	4784.6	8.002672*	8.020604
ŝ	55	30.69	64 (151)	131715.2	0.000469	0.00391
i	57	30.82	65 (124,135)	64105.4	8.020118	0.16767
10	57 58	30.96	67(107,101,147)	98570.7	8.007402	0.06169
12		31.17	69(106,118,149)	571825.7	\$.014373	0.11979
13	59	31.51	71(114,13(,143)	20598.9	8.088853	1.74051
14	60	31.79	72(122, 31, 33, 42	15905.4	0.002379	0.01913
15	61	32.09	73 (146,161)	92894.3	0.001914=	0.01595*
15	\$2	32.26	74 (105,132)	118195.4	8.013138	0.10949
	63	32.39	75 (153)	326473.3	8.009147	8.07523
18	64	32.97	77 (141)	117796.2	0.075166	0.63227
21	66	33.36	80 (137)	40671.6	0.007935	0.06614
22 23	57	33.44	81 (275)	32099.3	0.006651	0.05543
24	64	33.69	\$2(138,160,3,4)	404734.7	0.002073=	0.01728*
25	69	33.88	\$3 (158)	43052.2	0.060371	0.50313
26	70	34.11	\$4 (129)	7992.3	1.003625	0.03021
21	71	34.45	85 (178)	54400.3	0.000179	0.00733
29	72	34.78	87 (175)	12024.6	8.007313	8.05095
30	73	34.94	88 (182,187)	240682.9	0.002150=	0.01300*
31	74	35.10 -	89 (128)	39935.1	0.035214	0.29347
32	75	35.27	90 (183)	134422_3	0.002761	0.02301
33	76	35.57	91 (167)	14693.5	0_018141	0.15118
34	77	35.94	92 (125)	46459.0	0.00257	0.02231
35	71	36.34	93 (174,111)	247191.1	8.003893	0.03245
36	79	36.64	94 (177)	143527.1	0.029164	0.26305
31	11	35.97	95 (156,171)	107088.6	8.016853	0.14046
39	81 -	37.24	97 (157)	20714_4	0.009579	0.07913
40	12	37.45	98 (173)	5934.7	9-003229	0.02683
41	83	37.13	99 (200,206)	15595.0	8.000200=	8.001565
43	11	38.09	100 (172,192)	57179.2	0.001515*	9.01288=
44	15	31.62	102 (180)	567316.0	0.005713	0.04820
	85	38.89	103 (193)	32653.3	0.060907	0.50760
46	87	39.23	104 (191)	13196.5	0.001589+	0.01324=
47	11	39.62	105 (199)	22381.4	0.000639=	0.00533*
-44 -	89 • 94 • • • •	40.18	105 (170)	316544.6	0.001327+	0.01106=
6	· ››	- 41.18	107 (190)	73528.3	0.023393	0.19496
50	54 53	42.11	108 (198)	10419.1	8.084853	8.04045
51	33 94	42.37	109 (201)	147378.5	0.000479=	0.00400=
52	95 95	42.95	110 (196,203)	193149.4	0.011801	0.09835
53	55 56	44.24	111 (189)	11566.4	0.014278	0.11982
56	50 97	(5.96	112 (195)	\$2128.2	8.000379+	0.003164
57	91 91	(9.10	115 (194)	195965.6	0.005304	0.04420
51	99	50.10	115 (205)	7874.8	0.010702	0.08919
	<i>* 1</i>	54.22	I.S. (OCN)	4566128.9	0.000275* 0.202000	0.00229*

319923

•

NORTHEAST ANALYTICAL, INC.

•

301 NOIT SINGET SCHENECTADY, NY 12305 (518) 346-4592

PCE CONSENER AMOUNT and NANOMOLE REPORT

NER FILE NAME: 89001.MCL

١

1

CUSTOMER: J. EPA SAMPLE DESCRIPTION: SEDIMENT, SECTION 617 COMENT: SAMPLE SHORED ENVIRONMENTAL ALIGRATION

TYPE FOR MIXED PEAK DECONVOLUTION= S

PEAK NO.	NELDELLAR WT.	AMOUNT	Nancanoles/g(ml) Sample
2	188.70	0.43862	2.32443
5	223.10	1.36709	6.12770
6	223.10	0.01438	0.06446
7	223.10	0.03483	0.15612
8	223.10	0.16922	0.75849
10	257.50	0.22579	0.87585
14	249.00	0.09624	0.38651
15	257.50	0.04762	0.18493
16	257.50	0.11569	
17	257.50	0.06333	0.44928 0.24594
19	257.90	0.00933	0.03483
21	257.50	0.04215	0.16369
22	257.50	0.03824	0.14850
23	257.50	0.05706	0.22159
24	257.50	0.07520	0.29204
25	259.50	0.07024	0.27067
26	258.70	0.03203	0.12381
27	292.00	0.00858	0.02938
29	292.00	0.01191	0.04079
31 32	292.00	0.12935	0.44298
	292.00	0.13031	0.44627
33 37	292.00	0.14239	0.48764
38	292.00	0.03169	0.10853
39	272.40	0.04409	0.16186
41	292.00	0.04003	0.13709
42	326.40	0.01853	0.05677
43	292.00	0.00339	0.01161
44	298.90	0.01763	0.05898
45	298.90	0.01656	0.05540
46	292.00	0.00437	0.01497
48	292.00	0.01533	0.05250
49	293.50	0.04239	0.14443
5	324.70	0.05863	0.18057
	505 M	0 01245	6.02005

319924

NORTHEAST ANALYTICAL, INC.

- 301 NOTT STREET SCHENECTADY, NY 12305 (518) 346-4592

CONGENER WEIGHT and MOLE REPORT

NEA FILE NAME: 89001.MCL

1

)

CISTOMER: J. EPA SAMPLE DESCRIPTION: SEDIMENT, SECTION 617 COMMENT: SAMPLE SECTION ENVIRONMENTAL ALITERATION

TYPE FOR MIXED PEAK DECONVOLUTION= S

PEAK	RET. TIME	T-CL:0-CL	IUPACE	RRT	0.000	NEXCERT &	HILE &
2	17.48	1:1	001	.1544	2		
5 6 7 8	19.89	2:2	004 010		22'; 26	4.716	7.543
6	20.88	2:1	007 009		24 ; 25	14.697	19.885
7	21.24	2:1	006	.2709	23'	0.155	0.209
	21.45	2:1	005 008		23 ; 24'	0.374	0.507
10	22.13	3:3	019	.3045	22'6	1.819	2.451
14	23.02	3:2 2:0		.3387	22'5 ; 44'	2.427	2.845
15	23.09	3:2	017	.3396	22'4	1.035	1.254
-16	23.38	3:2	024 027		236 ; 23'6	0.512	0.600
17	23.66	3:2	016 032	.3625	22'3 ; 24'6	1.244	1.458
19	24.06	3:1 4:4	034 054	.3800	2'35 ; 22'66'	0.681	0.798
21	24.34	3:1	025	.3911	23'5	0.100	0.113
22	24.42	3:1	025	.3937	23'4	0.453	0.531
23	24.60	3:1	031	.4024	24*5	0.411	0.482
24	24.64	3:1 4:3	028 050	.4031	244' ; 22*46	0.613	0.719
25	24.99	3:1 4:3	021 033	.4170	233' ; 234 ; 22'55'	0.808	0.948
26	25.16	3:1 4:3	022 051		234' ; 22'46'	0.755	0.878
27	25.37	4:3	045	.4334	22'36	0.344	0.402
29	25.61	4:3	045	.4450	22'36'	0.092	0.095
л	25.86	4:2	052 073	.4554	2'5' ; 2'5'6	0.128	0.132
32	26.01	4:2	049	.4510	22'45	1.391	1.438
33 37	25.10	4:2	047	.4539	22'44'	1.401	1.448
37 38	26.49	5:4 4:2	104 044	.4832	22'466' ; 22'35'	1.531	1.582
39	25.50	3:0 4:2	037 042	.4870	344' ; 22'34' ; 233'6	0.341	0.352
41	26.89	4:2	064 071	.4990	23'34 ; 234'6 ; 23'4'6 +	0.474	0.525
42	27.03 27. <u>11</u>	5:4	096	.5057	22'365'	0.430 0.199	0.445
43	27.31	4:2	040	.5102	22'33'	0.036	0.184
-44	27.49	5:3 4:1	103 057	.5155	22'45'6 ; 233'5	0.190	0.038 LO 0.191 N
45	27.59	5:3 4:1	100 067	.5212	22'44'6 ; 23'4'5	0.178	
46	27.72	4:1	058 063	.5257	233'5' ; 234'5	0.047	0.130
48	21.12 21.97	4:1 5:3	074 094	.5340	244'5 ; 22'356'	0.165	0.049 H
49	28.17	4:1 5:3	066 095	.5447	23'44' ; 22'356 ; 22'35'6	0.455	A***
5	20.11	5:3 4:1	091 098	.5549	22'34'6 ; 22'3'46 ; 233'4	0 630	0.469

Section No. VII Revision No. 09/25/92 Page 6 24

place.

The sample custodian fill out a bin index card, which is submitted to the section leader responsible for the job. An example of a bin card is included as Figure VII-14. When the program is complete, the section leader signs the card and returns it to the sample custodian. The section leader states the method of disposal or whether the samples should be saved. One month after the receipt of the bin card the sample custodian disposes or archives the sample as stated on the card. Additional information on sample disposal can be found in Section VIII.

F. <u>Sample Transfer</u>

If analysis of the samples is not possible at OBG Laboratories, Inc., then the samples will be subcontracted to another approved laboratory. The samples will be packed in coolers at 4° C and be shipped by common carrier or delivered by OBG Laboratory personnel. A chain of custody listing OBG Laboratories sample number, sample preparation date and tests required will accompany the samples.

G. <u>Computer Services</u>

OBG Laboratories has a LIMS system in place. The system is currently only being used for scheduling analyses and generation of control charts. Client reports or other types of forms are not being computer generated.

The QA/QC officer is responsible for verifying that the QC data was input properly and that it is being calculated properly by the computer. Whenever control charts are printed or control limits generated, the information is checked for accuracy.

Each analyst has a unique sign on code and all QC data that they enter into the

53	28.82	5:2	101 090	.5814	22'34'5 ; 22'455' 22'44'5 22'34'66' ; 233'56 ; 23'44'6	2.407	2.225
54	28.98	5:2	099	.5880	22'44'5	1.007	0.932
55	29.23	6:4 5:2	150 112	.5969	22'34'66' ; 233'56 ; 23'44'6	0.200	0.185
56	29.31	5:2	083 109	.6029	22'33'5 ; 233'46	0.164	0.152
- 57	29.50		152 097		22'3566' ; 22'345 ; 22'3'45	0.200 0.164 0.224	0.207
58	29.66	5:2	087 111	.6175	22'34'66'; 213'56; 21'44'6 22'33'5; 233'46 22'3566'; 22'345; 22'3'45 22'345'; 233'55'; 2344'6 22'344'; 23456? 22'13'66' 33'44'; 233'4'6 22'44'56' 22'33'56'; 2'344'5 21'3'4'5; 233'45'; 22'34'55	0.271	
59	29.81		085 116		22'344' ; 234567	0.258	
60	29.92	6:4	136	.6257	22'33'66'	0.978	
ស	30.04	4:0 5:2	077 110		33'44' ; 233'4'6	1.514	
~62	30.30	6:3	154 .	.6349	22'44'56'	0.221	
63	30.40	5:2	154 - 082	.6453	22'33'4	0.042	0.039
64	30.69	6:3	151	.6499	22:355'6	1.803	
- 65		6:3 5:1		.6563	22'33'56' : 2'344'5	0.663	0.571
់ -ព	30.96	5:1 6:3			233'4'5 ; 233'45' ; 22'34'56	1.288	1.154
69	31.17	6:3 5:1			22'34'5'6 ; 23'44'5 ; 233'45	7.961	7.120
71	31.58	6:3 5:1			22'33'56' ; 22'3456'; 2344'5	0.213	
72	31.79	5:1 6:3	122 131	.6871	61771/E. 661771//.enters.		
73		6:2			22'34'55' · 233'45'6	1 177	0.154
74	32.26	6:3 5:1	132 105		22'33'AS' · 233'AA'	1-1//	0.384
75	32.39	6:2	153	.7036	22 33 40 , 233 44 271421551 .	6 707	0.711
77	32.97	6:2			201	0./3/	5.685
80		6:2			2'33'45; 22'33'46; 22'33'55'4 22'34'55'; 233'45'6 22'33'46'; 233'44' 22'44'55' 22'3455' 22'344'5 22'33'466' 22'344'5'; 233'4'56; +2 21'3'44'5	0.711	0.595
81		7:4		.7305	44 JEL J 9913314661	0.596	0.498
82	33.69	6:2			22 33 900 991344151 • 93314155 • 40	0.186	0.142
83	33.88	6:2	120	- 7400	22 341 5 ; 233 4 56 ; +2	5.409	4.524
84	34.11	6:2	102	. 1423		0.325	V-616
85	34.45	7:3		.7501	22-33-45	0.079	
87		7:3	1/8	./23/	22'34'5'; 23'4'56; +2 23'44'6 22'33'45 22'33'55'6 22'34'55'6; 22'344'56' 22'33'44'	0.655	0.500
85			175	.7611		0.194	0.148
89		7:3	187 182	.7603	22'34'55'5 ; 22'344'56'	3.155	2.409
90	35.27	6:2		.7761	22'34'55'5 ; 22'34'56' 22'33'44' 22'344'55' 21'44'55' 22'33'455'6 22'33'456' ; 22'344'56 22'33'4'56	0.247	0.207
91	35.27	7:3	183		22'344'5'6	1.625	1.241
92	35.57 35.94	6:1	167	.7814	21'4'5'	0.240	0.201
52 93	35.34 36.34	7:3	185	.7848	22'3455'6	0.349	0.257
73 04	30.34	7:3	174 181	.7965	22'33'456' ; 22'344'56	2.613	2.000
94	36.64	7:3	177		22'33'4'56	1.510	1.156
55	36.97 .		171 156	.8105	22'33'4'56 22'33'44'6 ; 233'44'5 233'44'5' 22'33'456	0.858	0.678
.97	37.24	6:1	157	.8184	233'44'5'	0.288	0.241
98	37.45	7:3			22'33'456	0.018	0.014
99	37.83	8:4	200 204	.8197	22'33'456 22'33'45'66' ; 22'344'566'	0.138	0.097
100	38.09		172 192	.8278	22'33'455'; 233'455'6	0.518	0.396
102	38.62	7:2	180	.8362	22'344'55'	5.457	4.167
103	38.89	7:2	193	.8397	233*4*55*6	0.142	0.109
104	39.23	7:2	191	.8447	213'44'5'6	0.057	0.044
105	39.62	8:4	199	.8494	22'33'4566'	0.119	0.064
106	40.88	7:2	170	.8740	22'33'44'5	2.096	1.600
- 107	41.18	7:2	190	.8740	233'44'55	0.435	0.332
108	42.11	8:3	198	.82 3	22'33'455'6	0.043	0.030
109	42.37	8:3	201	.8875	22'33'4'55'6	1.057	0.743
110	42.95	8:3	196 203	.8935	22'33'44'5'6 ; 22'344'55'6	1.288	0.905
111	4.24	7:1	189	.9142	233'44'55'	0.034	0.026
112	45.95	8:3	195	.9321	22'33'44'55	0.475	0.334
115	49.10	8:2	194	.9620	22'33'4'55'	0.959	0.673
116	50.10	8:2	205	.9678	233'44'55'6	0.025	0.017

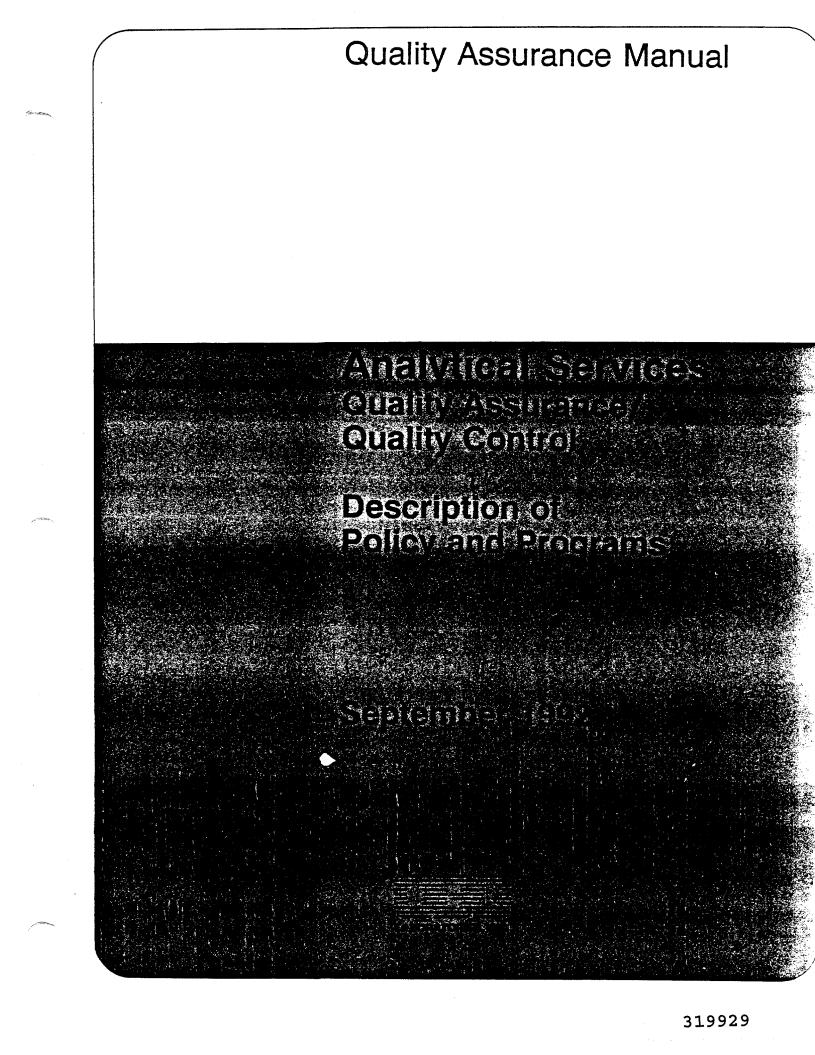
CONCENTRATION = 9.302

•

)

`--

TOTAL MICRONCLES = 0.0308 AVERAGE MOLECULAR WEIGHT = 301.8 NUMBER OF CALIERATED PEAKS FOUND= 88


٠

••••

• --

319927

APPENDIX C

Section No.	11	
Revision No.	1	
Date: 09/	25/92	
Page1	of	_5

Section		Page	Date	<u>Revision</u>
I.	Title Page	I-1	09/25/92	1
H.	Table of Contents	11-1	09/25/92	1
111.	Statement of Policy	111-1	10/01/91	0
IV.	Organization and Responsibility	IV-1	09/25/92	1
V.	QA Limits for Precision and Accuracy	V-1	09/25/92	1
VI.	Sampling Procedures	VI-1	09/25/92	1
VII.	Sample Custody	VII-1	09/25/92	1
VIII.	Analytical Procedures	VIII-1	10/01/91	0
IX.	Calibration Procedures and Frequency	IX-1	09/25/92	1
Х.	Preventive Maintenance	X-1	09/25/92	1
XI.	Quality Control Checks, Routines to	XI-1	09/25/92	1
	Assess Precision and Accuracy and			
	Calculation of Method Detection Limits			
XII.	Data Reduction, Validation and	XII-1	01/22/92	0
	Reporting			
XIII.	Corrective Actions	XIII-1	09/25/92	1
XIV.	Performance and System Audits	XIV-1	09/25/92	1
XV.	Quality Assurance Reports	XV-1	01/22/92	0
XVI.	Resumes	XVI-1	09/25/92	1

Section	No.	n	
Revision		1	
Date:	09,	/25/92_	_
Page _	2	of	5

LIST OF TABLES

Table		Page	Revision
V-1	Precision and Accuracy Limits	V-4	1
V-2	Sample Preparation Methods	V-39	1
VI-1	Sample Containers and Preservatives	VI-4	1
VIII-1	Table of Reagents and Chemicals	VIII-6	0
IX-1	Standards Source and Preparation	IX-11	1
IX-2	Standardization of Titrants	IX-16	1
X-1	Preventive Maintenance	X-3	1
X-2	Equipment Monitoring	X-6	1
XI-1	Laboratory QC Checks and Frequency	XI-12	1
XI-2	Procedures Used for Precision and Accuracy	XI-14	1
XIII-1	Corrective Actions	XIII-3	1

Section	No.	II	
Revision	No.	1	
Date:	09,	/25/92	
Page _	_3_	of	5

LIST OF FIGURES

<u>Figure</u>		Page	<u>Revision</u>
IV-1	Organization Chart	IV-4	1
V-1	Out-of-Control Log	V-40	1
V-2	Audit Log	V-41	1
VII-1	Chain of Custody	VII-8	1
VII-2	Sample Bottle Request Form	VII-9	1
VII-3	Sample Label	VII-11	1
VII-4	Case File Form	VII-12	1
VII-5	Sample Log-In Form	VII-13	1
VII-6	Laboratory Report Form	VII-14	1
VII-7	Sample Control Form - Part 1	VII-15	1
VII-8	Sample Control Form - Part 2	VII-16	1
VII-9	Work Schedule	VII-17	1
VII-10	Metals Digestion Log	VII-18	1
VII-1 1	GC/MS Extraction Log	VII-19	1
VII-12	TOC Analysis Log	VII-21	1
VII-13	NH3N Analysis Log	VII-22	1
VII-14	Bin Card	VII-23	1
VII-15	System History Log	VII-24	1

.

Section	No.		
Revision		1	
Date:	œ,	/25/92	
Page _	4	of	_5

LIST OF FIGURES

<u>Figure</u>		Page	Revision
X-1	GC/MS Maintenance Check List	X-7	1
X-2	ICP Maintenance Check List	X-8	1.
XI-1	MDL Worksheet	XI-17	· 1
XI-2	Precision Chart	XI-18	1
XI-3	Spike Recovery Chart	XI-19	1
XII-1	Shot Book Sheet	XII-10	0
XII-2	Injection Log Sheet	XII-11	0
XII-3	Flowchart of Sample Analyses	XII-12	0
XIII-1	Corrective Action Log	XIII-4	1

Section	No.	11		
Revision	1 No	1		
Date:	097	/25/92		
Page _	5		_5	

. سبر ا

••.•

APPENDIX

Appendix		
A.	Laboratory Safety Manuai	0
В.	Chain of Custody File	0
C.	Example Final Report	0

Section No.		
Revision No.	0	
Date:107	01/91_	
Page 1	of	_3

SECTION III. STATEMENT OF POLICY

OBG Laboratories, Inc. is located in the corporate headquarters of O'Brien and Gere Limited in Syracuse, New York. The firm is involved in the chemical and microbiological analysis of environmental contaminants in a variety of matrices. The ability of the laboratory to accurately identify and quantify these contaminants is of great importance. The decisions or conclusions based on these data are only as good as the documented quality of the data. The purpose of this manual is to document the procedures used to verify the high quality of analysis.

A. <u>Quality Assurance/Quality Control Program Objectives</u>

Quality control is the routine application of procedures used in the laboratory and in the field for controlling the measurement process. Quality assurance is the total program for assuring the reliability of field and analytical data.

The goal of the laboratory Quality Assurance/Quality Control (QA/QC) Program is to produce data of adequate quality and to provide the necessary documentation to verify these results. The data would have adequate quality if the data has consistency (precision) and the uncertainty is small when compared to specific requirements (accuracy). These objectives are accomplished through the use of quality control samples such as duplicates, spikes, blanks, surrogates, and reference samples. The lab also performs initial start up procedures to verify the accuracy and precision of the methods and to calculate MDLs (Method Detection Limits). Implementation of this program maximizes the validity of the data. Thus, the data can provide a reliable

Section No. Ш Revision No. Date: 10/01/91 3 Page of

foundation on which to base decisions.

A major effort of the QA/QC Program is to provide detailed control charts and control limits for monitoring the laboratory's daily performance and to plot trends over an extended period of time. These charts provide documentation that data collected, reported, or used by the laboratory are scientifically valid and of known precision and accuracy. The QA/QC activities performed at OBG Laboratories are carried out in accordance with established federal and state protocols.

B. <u>Lab Policy on QA/QC</u>

OBG Laboratories fully supports the QA/QC program outlined in this manual. This program has been implemented and is maintained to demonstrate that data reported by the laboratory are of known and documented quality. The technical and support personnel who contribute to any portion of the laboratory analyses follow the QA/QC procedures outlined in this manual.

The QA/QC manual is an integral part of routine laboratory practice. It is primarily intended to set control guidelines and direction for the chemical and microbiological measurements performed by the laboratory for non-CLP analyses. When NYSDEC or U.S. EPA CLP protocol is required, QA/QC procedures and documentation are done according to CLP guidelines. The contents of this manual will be re-evaluated and revised on a regular basis.

C. <u>Levels of QC</u>

Several different levels of QC and QA/QC documentation are available to a client utilizing OBG Laboratories' services. When clients submit samples for analysis, they can

Section No.	
Revision No	
Date: 1	0/01/91
Page 3	of3

receive only the sample results or they can request copies of any of the routine laboratory QC that was analyzed in the same batch as their group of samples. They may also request that specific QC be performed on their samples. As a last option, clients can request a full CLP package, which would include all QC and deliverables as required by NYSDEC or U.S. EPA CLP.

Section No.	N
Revision No.	1
Date: 0	9/25/92
Page1	of4

SECTION IV. ORGANIZATION AND RESPONSIBILITY

Any organization consists of a number of people whose skill and responsibilities determine the quality of the final product. The product of OBG Laboratories, Inc. is analytical services. The laboratory functions as a chemical laboratory only. All personnel have sufficient training in their appointed positions to contribute to the analysis and reporting of high quality data. The training is achieved through internal training, experience, and selected specialty courses.

Figure IV-1 is an organization chart of the laboratory staff.

The vice president's responsibilities involve the development and monitoring of the internal systems necessary to assure quality of the analytical data. His duties include the planning necessary to support methods development, review of QA/QC control information, review of proficiency sample results, and support necessary for the acquisition of personnel and instrumentation.

The day-to-day scheduling and coordination is handled by the manager of analytical services who reports to the vice president. The manager monitors the daily work load and redirects the section resources to complete project deadlines. The manager coordinates and distributes the project information to the section leaders and reviews the output to verify its completeness and technical acceptability. The manager also reviews QA/QC consistency between the laboratory sections.

The section leaders manage the day-to-day scheduling and operation of the individual analytical areas and report to the manager of analytical services. Their

Section No. Revision No. Date: 09/25/92 Page 2 of

responsibilities include monitoring of individual projects and project specific QA/QC, verification that analyses are conducted within contract holding times and implementing corrective action procedures recommended by the QA/QC officer. In addition, section leaders coordinate with the client or project manager to answer any questions related to the analytical requirements of the individual projects.

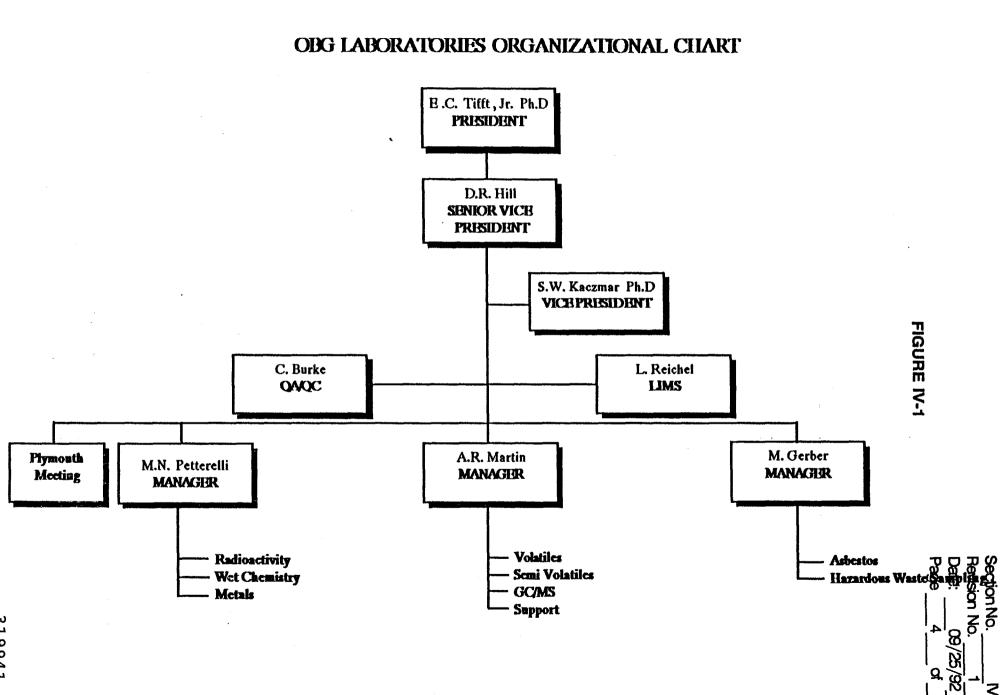
On a weekly basis the manager and section leaders meet to discuss the progress of in-house programs, staffing, the schedule of analytical programs, instrument problems, and analytical quality control. This information is also forwarded to the vice president for consideration and planning. The section leaders work with the QA/QC officer to keep the quality control procedures accurate and up to date. Together the section leaders and the QA/QC officer work on revisions of procedures applicable to their individual sections.

The QA/QC officer is responsible for the implementation, monitoring, and supervision of the Quality Control Program. The QA/QC officer reports directly to the vice president. The QA/QC officer verifies that the analyses are conducted in strict adherence to the procedures set forth in this manual. The QA/QC officer's duties include:

- Developing and implementing new QA/QC programs, including statistical techniques and procedures
- Conducting regular audits and inspections of analytical procedures and applications
- 3) Daily monitoring of analytical parameter accuracy and precision
- Discussing necessary corrective action procedures with laboratory manager and individual section leaders

Section No. N Revision No. Date: 09/25/92 3 Page 4 of

- 5) Generating control charts and setting control and warning limits on all parameters
- Advising management of the status of the QA/QC program and giving recommendations for improvement
- 7) Writing, submitting and updating Quality Assurance Plans.


 $\sigma/\sigma_{\rm c}$

· · · · · ·

-

The sample custodians, who are part of the support staff, are responsible for initiating chain of custody procedures. Upon receipt of samples, they verify that the samples have been properly preserved. After receipt of samples, they are responsible for keeping them in a secure and restricted location.

OBG Laboratories also has a safety officer who is responsible for the distribution of the safety manual and the scheduling of safety training sessions for all new employees. The safety manual outlines safety policies, procedures, and guidelines. The safety officer, the section leaders and the manager meet periodically to review the safety manual and update it as necessary. A copy of the laboratory safety manual is included as Appendix A in this document.

1-28 92

Section No.	\	/
Revision No.	1	
Date: 09/	25/92	
Page1	of	_41_

SECTION V. QA LIMITS FOR PRECISION AND ACCURACY

Table V-1 is a listing of the accuracy and precision limits, MRDLs (minimum reportable detection limits) and methods used in the laboratory. Table V-2 is a listing of all sample preparation procedures used in the laboratory and their applicable methods.

The accuracy and precision limits listed in the table are derived from in-house data. Sufficient points for several parameters were not available at the time the limits were set. For these parameters, the limits have been arbitrarily set based on previous lab experience or are limits taken from the applicable method. As more points are added to the data base, the laboratory limits for these parameters are reestablished. Limits that are not derived from laboratory data are flagged with an asterisk (*). All limits are updated yearly, at a minimum.

Laboratory QA/QC limits are included to give an indication of the laboratory capabilities. Method QA/QC limits will be used if they are more stringent then the laboratory limits. Limits included in the table may not be the must up to date limits, since they are being updated at deemed statistically necessary. The most recent QA/QC limits are available from the laboratory.

Minimum reportable detection limits are included in Table V. Minimum reportable detection limits are the routine detection limits that are reported. Lower detection limits can be achieved and are avialable upon request. MDL and IDL studies are available from the laboratory.

Completeness can be described as a measure of the actual amount of usable

Section	No	<u>\</u>	/
Revision	No.	1	
Date:	097	25/92	
Page _	_2_	of_	_41

data obtained from an analytical procedure to the expected amount. The goal of OBG Laboratories' QA/QC program is to maintain a 90% completeness rate.

All laboratory QC data are entered into the Laboratory Information Management System (LIMS). A statistical program on the LIMS generates control charts and computes control and warning limits. Charts are generated, by matrix and method, for each parameter analyzed in the lab. Control limits are generated once a year by taking the last 20 to 50 points, depending on the amount of data in the data base, from the previous year and calculating the mean, standard deviation, and warning and control limits for the current year. Control limits can be updated more frequently if deemed statistically necessary.

When QC data are entered, the computer automatically compares the results to the established control limits. If the QC data fall outside of these control limits, the analyst is prompted to provide an explanation. A password is required by the QC officer to enter the data into the data base. In addition, the analyst informs the section leader of an out of control situation and the section leader insures that the analyst takes corrective action. Sample results are not reported until QA/QC criteria has been met.

An out-of-control log can be printed daily listing all QC that failed to meet established criteria and the associated explanations that were entered by the analysts. The out-of-control log is reviewed weekly by the QA/QC officer. The QA/QC officer reviews the out-of-control log to verify that corrective measures are being taken and documented. The out-of-control log is used as a summary of the percentage of QC data that does not meet established criteria. An example of the out-of-control log is included

Section No. Revision No. 09/25/92 Date: 3 of 41 Page

as Figure V-1.

2. .

Whenever information in the QC data base is changed, an audit log is created listing who made the change, what was changed, and the date the change was made. Audit trails are noted even when typographical errors are made when entering the QC data. The audit log is used as evidence of changes that are made to the QC data base and helps prevent any unnecessary tampering with the data. An example of the audit log is included as Figure V-2.

TABLE V-1 ACCURACY, PRECISION AND MDLs

ANALYTE	MATRIX	<u>METHOD</u>	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Acidity as CaCO ₃	Water	305.1 ²	85.0-115.0*	0.0-20.0*	1. mg/L
Alkalinity as CaCO ₃	Water	310.1 ²	91.6-106.0	0.0-19.3	1. mg/L
Ammonia as N	Water Solid	350.1 ² 350.1 ²	86.3-119.1 91.8-111.4	0.0-24.2 0.0-7.3	0.05 mg/L 5. mg/kg
5-day BOD	Water	405.1 ²	82.1-116.6	0.0-23.3	1. mg/L
5-day CBOD	Water	507 ³	85.0-115.0*	0.0-20.0*	1. mg/L
COD	Water	410.4 ²	72.4-112.3	0.0-24.2	10. mg/L
Chloride	Water Solid	325.2 ² , 9251 ¹ 9251 ¹	82.6-116.5 82.1-125.6	0.0-28.0 0.0-11.3	1. mg/L 10. mg/kg
Chlorine, total residual	Water	330.5 ²	85.0-115.0*	0.0-20.0*	0.1 mg/L
Color	Water	110.2 ²	NA	0.0-29.3	5. C.P.U.
Cyanide, total	Water Solid	335.2 ² , 9010 ¹ 9010 ¹	80.3-118.1 82.5-112.5	0.0-34.3 0.0-34.3	0.01 mg/L 1. mg/kg
Cyanide, amenable to chlorination	Water Solid	335.1 ² , 9010 ¹ 9010 ¹	80.3-118.1 82.5-112.5	0.0-20.0* 0.0-20.0*	0.01 mg/L 1. mg/kg
Fluoride, total	Water Solid	340.2 ² 340.2 ²	72.0-139.8 90.4-109.1	0.0-39.5 0.0-23.1	0.1 mg/L 10. mg/kg
Hydrogen Ion (pH)	Water Solid	150.1 ² , 9040 ¹ 9045 ¹	+ /- 0.2 pH units + /- 0.2 pH units	0.0-20.0* 0.0-20.0*	

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3) 4)

1) 2)

1

Page ion No. ion No 4 8 ß g, 202

1

4

1

MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECSION <u>% RPD</u>	MRDL
Water	351.2 ²	75.3-122.3	0.0-20.1	0.1 mg/L
Solid	351.2 ²	89.5-105.7	0.0-10.2	1. mg/kg
Water	353.2 ²	79.1-116.6	0.0-10.3	0.05 mg/L
Solid	353.2 ²	80.0-120.0*	0.0-20.0*	5. mg/kg
Water	354.1 ²	90.2-117.2	0.0-20.0*	0.05 mg/i
Solid	354.1 ²	80.0-120.0*	0.0-20.0*	5. mg/kg
Water	Subtraction	80.0-120.0*	0.0-20.0*	0.05 mg/l
Solid	Subtraction	80.0-120.0*	0.0-20.0*	5. mg/kg
Water	140.1 ³	NA	0.0-20.0*	1. T.O.N.
Water	413.1 ² , 9071 ¹	62.6-99.5	0.0-31.0	1. mg/L
Solid	9071 ¹	54.8-112.8	0.0-47.7	100. mg/kg
Water	415.1 ²	91.5-105.1	0.0-14.7	1. mg/L
Water	. 360.1 ²	85.0-115.0*	0.0-3.9	0.1 mg/L
Water	420.1 ² , 9065 ¹	73.1-122.2	0.0-36.5	0.005 mg/L
Solid	9065 ¹	65.6-148.4	0.0-61.8	1. mg/kg
Water	365.4 ²	84.0-114.0	0.0-37.4	0.01 mg/L
Solid	365.4 ²	80.0-120.0*	0.0-20.0*	1. mg/kg
Water	160.3 ²	NA NA	0.0-7.1	1. mg/L
Solid	160.3 ²		0.0-4.5	1. mg/kg
Water	160.1 ²	79.8-111.8	0.0-18.1	1. mg/L
Water	160.2 ²	70.1-114.0	0.0-34.4	1. mg/L
Water	160.5 ²	NA	0.0-17.9	0.1 mg/L
Water	160.4 ²	NA	0.0-20.0*	1. mg/L
Solid	160.4 ²	NA	0.0-20.0*	1. mg/kg
	Water Solid Water Solid Water Solid Water Water Water Water Water Solid Water Solid Water Solid Water Solid Water Solid Water Solid	Water 351.2^2 Solid 351.2^2 Water 353.2^2 Solid 353.2^2 Water 354.1^2 Solid 354.1^2 WaterSubtractionSolidSubtractionWater 140.1^3 Water $413.1^2, 9071^1$ Solid 9071^1 Water 415.1^2 Water 360.1^2 Water 365.4^2 Solid 9065^1 Water 365.4^2 Solid 365.4^2 Water 160.3^2 Water 160.3^2 Water 160.1^2 Water 160.2^2 Water 160.5^2 Water 160.5^2 Water 160.4^2	MATRIX METHOD % RECOVERY Water 351.2 ² 75.3-122.3 Solid 351.2 ² 89.5-105.7 Water 353.2 ² 79.1-116.6 Solid 353.2 ² 80.0-120.0 ⁴ Water 354.1 ² 90.2-117.2 Solid 354.1 ² 90.2-117.2 Solid 354.1 ² 80.0-120.0 ⁴ Water Subtraction 80.0-120.0 ⁴ Water Subtraction 80.0-120.0 ⁴ Water Subtraction 80.0-120.0 ⁴ Water 140.1 ³ NA Water 140.1 ³ NA Water 413.1 ² , 9071 ¹ 62.6-99.5 Solid 9071 ¹ 54.8-112.8 Water 415.1 ² 91.5-105.1 Water 360.1 ² 85.0-115.0 ⁴ Water 365.4 ² 84.0-114.0 Solid 365.4 ² 84.0-114.0 Solid 365.4 ² 80.0-120.0 ⁴ Water 160.3 ² NA	MATRIX METHOD % RECOVERY % RPD Water 351.2 ² 75.3-122.3 0.0-20.1 Solid 351.2 ² 89.5-105.7 0.0-10.2 Water 353.2 ² 79.1-116.6 0.0-10.3 Solid 353.2 ² 80.0-120.0* 0.0-20.0* Water 354.1 ² 90.2-117.2 0.0-20.0* Solid 354.1 ² 90.2-120.0* 0.0-20.0* Water Subtraction 80.0-120.0* 0.0-20.0* Solid Subtraction 80.0-120.0* 0.0-20.0* Water Subtraction 80.0-120.0* 0.0-20.0* Water 140.1 ³ NA 0.0-20.0* Water 413.1 ² , 9071 ¹ 52.6-99.5 0.0-31.0 Solid 9071 ¹ 54.8-112.8 0.0-47.7 Water 415.1 ² 91.5-105.1 0.0-14.7 Water 360.1 ² 85.0-115.0* 0.0-3.9 Water 365.4 ² 84.0-114.0 0.0-37.4 Solid 365.4 ² 84.0-1

Revision No. /25/92 of

<

1} 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

3)

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Orthophosphate	Water	365.1 ²	92.4-104.0	0.0-13.4	0.01 mg/l
Silica	Water	370.1 ²	91.4-109.8	0.0-8.1	0.1 mg/L
Specific Conductanc e	Water	120.1 ²	92.4-102.1	0.0-7.2	1 umho/cm
Sulfate, as SO ₄	Water Solid	375.3 ² 375.3 ²	92.8-109.1 95.4-108.4	0.0-14.5 0.0-18.2	1. mg/L 100. mg/kg
Sulfide	Water	376.1 ¹	61.8-150.0	0.0-26.4	0.1 mg/i
Sulfite, as SO ₃	Water	377.1 ²	85.0-115.0*	0.0-20.0*	2. mg/L
Surfactants	Water	425.1 ²	70.9-126.2	0.0-16.4	0.1 mg/L
Temperature		170.1 ²			
Total Petroleum Hydrocarbons	Water Solid	418.1 ² , 9073 ¹ 9073 ¹	62.3-121.6 76.6-120.7	0.0-31.0 0.0-34.4	1. mg/L 100. mg/kg
Turbidity	Water	180.1 ²	81.7-110.9	0.0-31.0	0.02 NTU
Waste Ignitability	Water Solid	1010 ¹ 1010 ¹			
Waste Corrosivity	Water Solid	1110 ¹ 1110 ¹		·	
Waste Reactivity	Water Solid	9010 ¹ /9030 ¹ 9010 ¹ /9030 ¹			

3) 4)

1) **S**)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

Section No. Revision No. ge <u> a</u> ത 8 /25/92 4

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Aluminum	Water	200.7 ² , 6010 ¹	91.0-116.9	0.0-30.9	0.5 mg/L
	Solid	6010 ¹	78.6-112.8	0.0-43.9	50. mg/kg
Antimony - ICP Antimony - AA	Water Solid Water Solid	200.7 ² , 6010 ¹ 6010 ¹ 204.2 ² , 7041 ¹ 7041 ¹	84.4-106.7 63.3-120.4 71.4-115.3 80.0-120.0*	0.0-5.7 0.0-50.3 0.0-20.0* 0.0-20.0*	0.1 mg/L 10. mg/kg 0.01 mg/L 1. mg/kg
Arsenic	Water	206.2 ² , 7060 ¹	79.4-118.9	0.0-41.9	0.005 mg/L
	Solid	7060 ¹	78.0-114.5	0.0-32.0	0.5 mg/kg
Barium	Water	200.7 ² , 6010 ¹	89.4-108.6	0.0-45.1	0.5 mg/L
	Solid	6010 ¹	62.5-125.8	0.0-35.0	50. mg/kg
Beryllium	Water	200.7 ² , 6010 ¹	82.6-104.0	0.0-20.0*	0.05 mg/L
	Solid	6010 ¹	76.8-105.0	0.0-20.0*	5. mg/kg
Boron	Water	200.7 ² , 6010 ¹	80.6-131.1	0.0-20.0*	0.05 mg/L
	Solid	6010 ¹	80.0-120.0*	0.0-20.0*	50. mg/kg
Całcium	Water	200.7 ² , 6010 ¹	83.6-111.6	0.0-4.3	1. mg/L
	Solid	6010 ¹	79.3-115.5	0.0-40.7	1000. mg/kg
Chromium, hexavalent	Water	307B ³ , 7196 ¹	85.6-110.6	0.0-22.1	0.01 mg/L
	Solid	7196 ¹	85.3-109.1	0.0-20.0*	1. mg/kg
Chromium	Water	200.7 ² , 6010 ¹	91.7-106.2	0.0-16.1	0.05 mg/L
	Solid	6010 ¹	80.3-103.1	0.0-43.5	5. mg/kg
Cobalt	Water	200.7 ² , 6010 ¹	87.0-106.9	0.0-20.0*	0.05 mg/L
	Solid	6010 ¹	82.4-101.7	0.0-28.2	5. mg/kg
Copper	Water	200.7 ² , 6010 ¹	88.5-107.4	0.0-12.7	0.01 mg/L
	Solid	6010 ¹	80.2-104.6	0.0-44.6	1. mg/kg

319948

1

÷

1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4}

ge No. No. 8 1/25/92 of _____

i

.

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Cadmium - ICP	Water	200.7 ² , 6010 ¹	88.4-111.1	0.0-30.8	0.01 mg/L
	Solid	6010 ¹	50.5-99.8	0.0-35.6	1. mg/kg
Cadmium - AA	Water	213.2 ² , 7131 ¹	67.0-127.6	0.0-20.0*	0.001 mg/L
	Solid	7131 ¹	80.0-120.0*	0.0-20.0*	0.1 mg/kg
Hardness, total as CaCO ₃	Water	314B ³	85.0-115.0*	0.0-20.0*	1. mg/L
Iron	Water	200.7 ² , 6010 ¹	87.9-108.3	0.0-23.8	0.05 mg/L
	Solid	6010 ¹	86.4-105.6	0.0-68.6	5. mg/kg
Lead - ICP	Water	200.7 ² , 6010 ¹	86.2-112.8	0.0-13.2	0.05 mg/L
	Solid	6010 ¹	74.7-109.8	0.0-36.1	5. mg/kg
Lead - AA	Water	239.2 ² , 7421 ¹	87.1-114.1	0.0-32.2	0.005 mg/L
	Solid	74211	69.5-122.5	0.0-29.1	0.5 mg/kg
Magnesium	Water	200.7 ² , 6010 ¹	83.6-116.5	0.0-9.9	1. mg/L
	Solid	6010 ¹	80.8-105.0	0.0-61.5	1000. mg/kg
Manganese	Water	200.7 ² , 6010 ¹	90.4-109.3	0.0-20.4	0.05 mg/L
	Solid	6010 ¹	82.4-106.5	0.0-70.0	5. mg/kg
Mercury	Water	245.1 ² , 7470 ¹	69.5-117.7	0.0-41.5	0.0005 mg/L
	Solid	7471 ¹	47.6-147.8	0.0-41.7	0.5 mg/kg
Molybdenum	Water	200.7 ² , 6010 ¹	84.0-121.3	0.0-20.0*	0.5 mg/L
- -	Solid	6010 ¹	80.0-120.0*	0.0-20.8	50. mg/kg
Nickel	Water	200.7 ² , 6010 ¹	88.4-108.3	0.0-14.1	0.05 mg/L
	Solid	6010 ¹	80.5-102.5	0.0-46.9	5. mg/kg
Potassium	Water	200.7 ² , 6010 ¹	73.7-113.9	0.0-24.6	5. mg/L
	Solid	6010 ¹	60.4-103.5	0.0-43.9	5000. mg/kg

Page Dane: Vection No._____ ω 8 ß g, 100 < 4

;

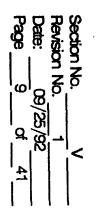
1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3}

 $\frac{1}{2}$ (1) $\frac{1}{2}$ (1)

4)


2

!

ŕ

the second s

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Selenium	Water	270.2 ² , 7740 ¹	77.4-123.8	0.0-32.0	0.005 mg/L
	Solid	7740 ¹	71.1-118.8	0.0-23.4	0.5 mg/kg
Silicon	Water	200.7 ² , 6010 ¹	85.0-115.0*	0.0-20.0*	1. mg/L
	Solid	6010 ¹	80.0-120.0*	0.0-20.0*	100. mg/kg
Silver	Water	200.7 ² , 6010 ¹	70.0-119.6	0.0-12.9	0.01 mg/L
	Solid	6010 ¹	61.6-109.3	0.0-39.3	1. mg/kg
Sodium	Water	200.7 ² , 6010 ¹	84.9-112.0	0.0-9.1	1. mg/L
	Solid	6010 ¹	83.2-121.1	0.0-17.2	1000. mg/kg
Thallium	Water	279.2 ² , 7841 ¹	72.5-127.7	0.0-20.0*	0.05 mg/L
	Solid	7841 ¹	50.1-127.0	0.0-20.0*	5. mg/kg
Vanadium	Water	200.7 ² , 6010 ¹	80.1-107.8	0.0-20.0*	0.05 mg/L
	Solid	6010 ¹	79.2-107.2	0.0-38.7	5. mg/kg
Zinc	Water	200.7 ² , 6010 ¹	90.7-107.8	0.0-39.0	0.01 mg/L
	Solid	6010 ¹	72.6-118.4	0.0-50.3	1. mg/kg

.]

1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	<u>% RPD</u>	MRDL
Chloromethane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	59.5-140.5*	0.0-25.0*	10. ug/L
	Solid	8010/8020 ¹	59.5-140.5*	0.0-25.0*	100. ug/kg
	Water	624 ⁴ , 8240 ¹	64.3-164.8	0.0-25.0*	10. ug/L
	Solid	8240 ¹	47.1-174.6	0.0-25.0*	10. ug/L
Bromomethane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	58.5-141.5*	0.0-25.0*	10. ug/L
	Solid	8010/8020 ¹	58.5-141.5*	0.0-25.0*	100. ug/kg
	Water	624 ⁴ , 8240 ¹	83.4-202.7	0.0-25.0*	10. ug/L
	Solid	8240'	76.6-180.2	0.0-25.0*	10. ug/kg
Vinyl Chloride	Water	502.1/503.1 ³	72.4-155.6	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	68.5-131.5*	0.0-14.8	1. ug/L
	Solid	8010/8020 ¹	68.5-131.5*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	79.8-181.1	0.0-25.0*	10. ug/L
	Solid	8240 ¹	99.5-166.7	0.0-25.0*	10. ug/kg
Chloroethane	Water	502.1/503.1 ³	52.6-140.7	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	77.0-123.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	77.0-123.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	67.6-195.0	0.0-25.0*	10. ug/L
	Solid	8240 ¹	70.4-186.6	0.0-25.0*	10. ug/kg
Methylene Chloride	Water	502.1/503.1 ³	50.1-140.7	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	77.5-122.5*	0.0-29.5	1. ug/L
(Dichloromethane)	Solid	8010/8020 ¹	77.5-122.5*	0.0-12.1	10. ug/kg
	Water	624 ⁴ , 8240 ¹	66.2-147.2	0.0-25.0*	5. ug/L
	Solid	8240 ¹	74.3-133.8	0.0-25.0*	5. ug/kg
Trichlorofluoromethane	Water	502.1/503.1 ³	34.7-141.3	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	66.5-133.5*	0.0-25.0*	1. ug/L
•	Solid	8010/8020 ¹	66.5-133.5*	0.0-25.0*	10. ug/kg
	Water	624 ⁴	70.6-116.0	0.0-25.0*	5. ug/L

319951

3}

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

Section No. Revision No. +te: 09// 125/92 д, < ъ

1

,

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	% RPD	MRDL
Acetone	Water	8240 ¹	59.6-180.2	0.0-25.0*	10. ug/L
	Solid	8240 ¹	39.4-186.7	0.0-25.0*	10. ug/kg
Carbon Disulfide	Water	B240 ¹	69.1-117.3	0.0-25.0*	5. ug/L
	Solid	8240 ¹	74.3-107.3	0.0-25.0*	5. ug/kg
1,1-Dichloroethene	Water	502.1/503.1 ³	44.6-145.0	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	63.0-137.0*	0.0-25.0*	1. ug/L
	Solid	8010/80201	63.0-137.0*	0.0-25.0*	10. ug/L
	Water	624 ⁴ , 8240 ¹	70.7-119.4	0.0-25.0	5. ug/L
	Solid	8240 ¹	73.5-117.3	0.0-12.8	5. ug/kg
1,1-Dichloroethane	Water	502.1/503.1 ³	57.9-132.7	0.0-20.0*	1. ug/L
-	Water	601/602 ⁴ , 8010/8020 ¹	84.0-116.0*	0.0-16.9	1. ug/L
	Solid	8010/8020 ¹	84.0-116.0*	0.0-20.4	10. ug/kg
	Water	624 ⁴ , 8240 ¹	57.9-137.1	0.0-25.0*	5. ug/L
	Solid	8240 ¹	72.6-115.5	0.0-25.0*	5. ug/kg
trans-1,2- Dichloroethe ne	Water	502.1/503.1 ³	54.9-124.0	0.0-20.0*	0.5 u g/L
1,2-Dichloroethene	Water	601/602 ⁴ , 8010/8020 ¹	64.0-136.0*	0.0-18.6	1. ug/L
(total)	Solid	8010/8020 ¹	64.0-136.0*	0.0-26.1	10. ug/kg
()	Water	624 ⁴ , 8240 ¹	60.7-112.5	0.0-25.0*	5. ug/L
	Solid	8240 ¹	64.7-109.5	0.0-25.0*	5. ug/kg
Chloroform	Water	501.1 ³	69.1-125.3	0.0-38.7	1. ug/L
	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	75.0-125.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	71.4-114.4	0.0-25.0*	5. ug/L
	Solid	8240 ¹	74.3-111.4	0.0-25.0*	5. ug/kg

319952

1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Page <u>a</u> Revision No. 1 8 /25/92 of <

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	<u>% RPD</u>	MRDL
1,2-Dichloroethane	Water	502.1/503.1 ³	55.0-111.3	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	71.5-128.5*	0.0-29.5	1. ug/L
	Solid	8010/8020 ¹	71.5-128.5*	0.0-17.6	10. ug/L
	Water	624 ⁴ , 8240 ¹	74.6-118.1	0.0-25.0*	5. ug/L
	Solid	8240 ¹	73.4-116.8	0.0-25.0*	5. ug/kg
2-Butanone	Water	8240 ¹	37.5-137.7	0.0-25.0*	10. ug/L
	Solid	8240 ¹	43.9-159.1	0.0-25.0*	10. ug/kg
1,1,1-Trichloroethane	Water	502.1/503.1 ³	44.9-145.3	0.0-20.0*	.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	71.0-129.0*	0.0-20.0	1. ug/L
	Solid	8010/8020 ¹	71.0-129.0*	0.0-15.2	10. ug/kg
	Water	624 ⁴ , 8240 ¹	71.3-121.5	0.0-25.0*	5. ug/L
	Solid	8240 ¹	62.9-119.5	0.0-25.0*	5. ug/kg
Carbon Tetrachloride	Water	502.1/503.1 ³	47.6-133.2	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	68.5-131.5*	0.0-19.7	1. ug/L
	Solid	8010/8020 ¹	68.5-131.5*	0.0-10.0	10. ug/kg
	Water	624 ⁴ , 8240 ¹	71.7-111.1	0.0-25.0*	5. ug/L
	Solid	8240 ¹	71.4-109.6	0.0-25.0*	5/ ug/kg
Vinyl Acetate	Water	8240 ¹	19.6-107.9	0.0-25.0*	10. ug/L
	Solid	8240 ¹	25.5-110.0*	0.0-25.0*	10. ug/kg
Bromodichloro-	Water	501.1 ³	68.6-124.7	0.0-36.8	1. ug/L
methane	Water	502.1/503.1 ³	48.8-129.0	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	76.0-124.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	76.0-124.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	63. 9 -113.8	0.0-25.0*	5. ug/L
	Solid	82401	70.5-107.0	0.0-25.0*	5. ug/kg
1,2-Dichloropropane	Water	502.1/503.1 ³	57.6-121.2	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	74.0-126.0*	0.0-26.0	1. ug/L
	Solid	8010/8020 ¹	74.0-126.0*	0.0-21.6	10. ug/kg
	Water	624 ⁴ , 8240 ¹	60.2-124.3	0.0-25.0*	5. ug/L
	Solid	8240 ¹	72.8-112.9	0.0-25.0*	5. ug/kg

1)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Ext. Initiation of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 2)

3)

4)

Page Date: ion No. ion No. 히 8 ß Q 20 < 4

4

j.

319953

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	<u>% RPD</u>	MRDL
cis-1,3-Dichloropropene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	64.0-136.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	64.0-136.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	50.2-119.2	0.0-25.0*	5. ug/L
	Solid	8240 ¹	67.2-100.6	0.0-25.0*	5. ug/kg
Trichloroethene	Water	502.1/503.1 ³	55.4-144.6	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	77.0-123.0*	0.0-23.2	1. ug/L
	Solid	8010/8020 ¹	77.0-123.0*	0.0-17.3	10. ug/kg
	Water	624 ⁴ , 8240 ¹	73.4-111.3	0.0-34.1	5. ug/L
	Solid	8240 ¹	73.2-109.2	0.0-17.2	5. ug/kg
	Water	MOD, 8020 ¹	75.0-125.0*	0.0-25.0*	1. ug/L
	Solid	MOD. 8020 ¹	75.0-125.0*	0.0-25.0*	10. ug/kg
Dibromochloro-	Water	501.1 ³	67.5-128.7	0.0-34.6	1. ug/L
methane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	65.5-134.5*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	65.5-134.5*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	61.7-116.8	0.0-25.0*	5. ug/L
	Solid	8240 ¹	70.2-110.1	0.0-25.0*	10. ug/kg
1,1,2-Trichloroethane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	78.5-121.5*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	78.5-121.5*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	64.0-116.8	0.0-25.0*	5. ug/L
	Solid	8240 ¹	64.5-115.7	0.0-25.0*	5. ug/L
Benzene	Water	502.1/503.1 ³	81.1-102.8	0.0-13.9	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	77.0-123.0*	0.0-17.4	1. ug/L
	Solid	8010/8020 ¹	77.0-123.0*	0.0-28.4	10. ug/kg
	Water	624 ⁴ , 8240 ¹	63.0-118.4	0.0-20.9	5. ug/L
	Solid	8240 ¹	69.1-113.3	0.0-12.4	5. ug/kg
	Water	MOD. 8020 ¹	78.9-108.0	0.0-18.6	1. ug/L
	Solid	MOD. 8020 ¹	77.9-117.4	0.0-17.3	10. ug/kg

1}

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 2) 3)

4)

ł

ţ

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
trans-1,3-	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
Dichloropropene	Water	601/602 ⁴ , 8010/8020 ¹	64.0-136.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	64.0-136.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	51.3-133.4	0.0-25.0*	5. ug/L
	Solid	8240 ¹	61.1-126.1	0.0-25.0*	5. ug/kg
2-Chloroethylvinyl ether	Water	601/602 ⁴ , 8010/8020 ¹	60.0-140.0*	0.0-25.0*	10. ug/L
	Solid	8010/80201	60.0-140.0*	0.0-25.0*	100. ug/kg
	Water	6244	23.5-121.3	0.0-25.0*	10. ug/L
Bromoform	Water	501.1 ³	62.6-130.1	0.0-38.6	1. ug/L
	Water	502.1/503.1 ³	19.5-105.9	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	73.5-126.5*	0.0-25.0*	10. ug/L
	Solid	8010/8020 ¹	73.5-126.5*	0.0-25.0*	100. ug/kg
	Water	624 ⁴ , 8240 ¹	54.3-124.4	0.0-25.0*	5. ug/L
	Solid	8240 ¹	74.2-108.3	0.0-25.0*	5. ug/kg
4-Methyl-2-pentanone	Water	82401	65.5 -116.6	0.0-25.0*	10. ug/L
	Solid	8240 ¹	70.3-125.8	0.0-25.0*	10. ug/kg
2-Hexanone	Water	8240 ¹	37.7-114.5	0.0-25.0*	10. ug/L
	Solid	8240 ¹	45.4-131.7	0.0-25.0*	10. ug/kg
Tetrachloroethene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	601/602 ² , 8010/8020 ¹	70.0-130.0*	0.0-18.5	1. ug/L
	Solid	8010/8020 ¹	70.0-130.0*	0.0-29.1	10. ug/L
	Water	624 ⁴ , 8240 ¹	70.9-114.5	0.0-25.0*	5. ug/L
	Solid	8240 ¹	73.1-113.2	0.0-25.0*	5. ug/kg
	Water	MOD. 8020 ¹	75.0-125.0*	0.0-25.0*	1. ug/L
	Solid	MOD. 8020 ¹	75.0-125.0*	0.0-25.0*	10. ug/kg
1,1,2,2-	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
Tetrachloroethane	Water	601/602 ⁴ , 8010/8020 ¹	49.0-151.0*	0.0-25.0*	1. ug/L
	Solid	8010/8020 ¹	49.0-151.0*	0.0-25.0*	10. ug/kg
	Water	624 ⁴ , 8240 ¹	57.6-123.6	0.0-25.0*	5. ug/L
	Solid	8240 ¹	63.9-122.0	0.0-25.0*	5. ug/kg

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 2) 3)

4)

ection No. tevision No. 09/ 4 /25/92 g,

1

. i

319955

1)

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	<u>% RECOVERY</u>	<u>% RPD</u>	MRDL
Toluene	Water	502.1/503.1 ³	71.9-110.4	0.0-6.3	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	77.5-122.5*	0.0-23.2	1. ug/L
	Solid	8010/8020 ¹	77.5-122.5*	0.0-14.7	10. ug/kg
	Water	624 ⁴ , 8240 [†]	73.6-109.7	0.0-25.6	5. ug/L
	Solid	8240 ¹	71.9-114.8	0.0-12.9	5. ug/kg
	Water	MOD. 8020 ¹	78.2-106.8	0.0-11.2	1. ug/L
	Solid	MOD. 80201	75.1-109.9	0.0-13.7	10. ug/kg
Chlorobenzene	Water	502.1/503.1 ³	43.2-128.1	0.0-6.5	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	80.5-119.5*	0.0-19.2	1. ug/L
	Solid	8010/8020 ¹	80.5-119.5*	0.0-15.1	10. ug/kg
	Water	624 ⁴ , 8240 ¹	78.8-106.2	0.0-23.1	5. ug/L
	Solid	8240 ¹	75.7-110.3	0.0-11.9	5. ug/kg
Ethylbenzene	Water	502.1/503.1 ³	58.9-122.1	0.0-20.0*	0.5 ug/L
•	Water	601/602 ⁴ , 8010/8020 ¹	63.0-137.0*	0.0-27.1	1. ug/L
	Solid	8010/8020 ¹	63.0-137.0*	0.0-31.3	10. ug/kg
	Water	624 ⁴ , 8240 ¹	76.7-115.1	0.0-25.0*	5. ug/L
	Solid	8240 ¹	72.9-116.4	0.0-25.0*	5. ug/kg
	Water	MOD. 8020 ¹	78.0-110.0	0.0-11.4	1. ug/L
	Solid	MOD. 8020 ¹	76.0-119.9	0.0-10.8	10. ug/kg
Styrene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	8240 ¹	83.5-121.6	0.0-25.0*	5. ug/L
	Solid	8240 ¹	75.9-125.6	0.0-25.0*	5. ug/kg
Xylene (total)	Water	601/602 ⁴ , 8010/8020 ¹	75.0-125.0*	0.0-22.0	3. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-20.0*	30. ug/kg
	Water	624 ⁴ , 8240 ¹	82.6-107.8	0.0-25.0*	5. ug/L
	Solid	8240 ¹	82.1-107.7	0.0-25.0*	5. ug/kg
	Water	MOD. 8020 ¹	72.5-110.8	0.0-14.7	1. ug/L
	Solid	MOD. 8020 ¹	31.4-147.4	0.0-21.0	10. ug/kg

1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Page Date: tion No. ion No. 더 8 В g, 102 < 4

į

÷.

ANALYTE	MATRIX	METHOD	ACCURACY % RECOVERY	PRECISION <u>% RPD</u>	MRDL
1,2-Dichlorobenzene	Water	502.1/503.1 ³	74.6-120.0	0.0-13.2	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	70.0-130.0*	0.0-20.5	5. ug/L
	Solid	8010/80201	70.0-130.0*	0.0-20.0*	50. ug/kg
	Water	624 ⁴	67.9-132.1	0.0-25.0*	5. ug/L
1,3-Dichlorobenzene	Water	502.1/503.1 ³	61.9-111.3	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	72.5-127.5*	0.0-20.0*	5. ug/L
	Solid	8010/8020 ¹	72.5-127.5*	0.0-20.0*	50. ug/kg
	Water	6244	51.1-150.3	0.0-25.0*	5. ug/L
1,4-Dichlorobenzene	Water	502.1/503.1 ³	69.7-110.0	0.0-20.0*	0.5 ug/L
	Water	601/602 ⁴ , 8010/8020 ¹	69.5-130.5*	0.0-20.0*	5. ug/L
	Solid	8010/8020 ¹	69.5-130.5*	0.0-20.0*	50. ug/kg
	Water	6244	67. 9 -135.3	0.0-25.0*	5. ug/L
Dichlorodifluoro-	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
methane	Water	601/602 ⁴ , 8010/8020 ¹	75.0-125.0*	0.0-25.0*	10. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	100. ug/kg
Benzyl chloride	Water	8010/8020 ¹	75.0-125.0*	0.0-25.0*	10. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	100. ug/L
Bromobenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	8010/8020 ¹	75.0-125.0*	0.0-25.0*	5. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	50. ug/kg
2-Chlorotoluene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	8010/8020 ¹	75.0-125.0*	0.0-25.0*	5. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	50. ug/L
4-Chlorotoluene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
	Water	8010/8020 ¹	75.0-125.0*	0.0-25.0*	5. ug/L
	Solid	8010/8020 ¹	75.0-125.0*	0.0-25.0*	50. ug/kg

1)

2)

2.11

1

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

action No. Newsion No. 16_ 125/92 g, <

ļ

Ì

 $\sum_{i=1}^{n}$

4

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Dibromomethane	Water Water Solid	502.1/503.1 ³ 8010/8020 ¹ 8010/8020 ¹	80.0-120.0* 75.0-125.0* 75.0-125.0*	0.0-20.0* 0.0-25.0* 0.0-25.0*	0.5 ug/L 10. ug/L 100. ug/kg
1,1,1,2- Tetrachloroethane	Water Water Solid	502.1/503.1 ³ 8010/8020 ¹ 8010/8020 ¹	80.0-120.0* 75.0-125.0* 75.0-125.0*	0.0-20.0* 0.0-25.0* 0.0-25.0*	0.5 ug/L 10. ug/L 100. ug/kg
1,2,3-Trichloropropane	Water Water Solid	502.1/503.1 ³ 8010/8020 ¹ 8010/8020 ¹	80.0-120.0* 75.0-125.0* 75.0-125.0*	0.0-20.0* 0.0-25.0* 0.0-25.0*	0.5 ug/L 10. ug/L 100. ug/kg
MTBE (tert-Butyl methyl ether)	Water Solid	MOD. 8020 ¹ MOD. 8020 ¹	76.6-121.8 79.9-109.3	0.0-14.0 0.0-14.8	1. ug/L 10. ug/kg
Volatile Petroleum Hydrocarbons	Water Solid	MOD. 8020 ¹ MOD. 8020 ¹	75.0-125.0* 75.0-125.0*	0.0-25.0* 0.0-25.0*	1. ug/L 10. ug/L
Bromochloromethane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
cis-1,2-Dichloroethene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
2,2-Dichloropropane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,1-Dichloropropane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,3-Dichloropropane	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,2-Dibromoethane	Water	502.1/503.1 ³ 504 ³	80.0-120.0* 80.0-120.0*	0.0-20.0* 0.0-20.0*	0.5 ug/L 0.02 ug/L
p-Xylene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
o-Xylene	Water	502.1/503.1 ³	80.0-120.0*	0.0-10.0	0.5 ug/L
m-Xylene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
Isopropylbenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L

319958

1}

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Section No._____ Revision No._____ 1 Pate:_____09/25/92____ 17_____df____

1

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	<u>MRDL</u>
N-Propylbenzene	Water	502.1/503.1 ³	89.3-111.3	0.0-20.0*	0.5 ug/L
tert-Butylbenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
sec-Butylbenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,3,5-Trimethylbenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
4-Isopropyltoluene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,2,4-Trimethylbenzene	Water	502.1/503.1 ³	85.0-106.1	0.0-20.0*	0.5 ug/L
N-butylbenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-12.3	0.5 ug/L
Hexachlorobutadiene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,2,4-Trichlorobenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
Naphthalene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L
1,2,3-Trichlorobenzene	Water	502.1/503.1 ³	80.0-120.0*	0.0-20.0*	0.5 ug/L

Page tion No. sion No. 09/ 6 ß G 502 < ᅀ

4

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

3)

4)

÷

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Phenol	Water	625 ⁴ , 8270 ¹	19.5-117.8	0.0-29.0	10. ug/L
	Solid	8270 ¹	24.2-133.1	0.0-35.0	330. ug/kg
Bis(2-chloroethyl)ether	Water	625 ⁴ , 8270 ¹	65.5-128.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	38.9-115.2	0.0-30.0*	330. ug/kg
2-Chlorophenol	Water	625 ⁴ , 8270 ¹	24.4-168.9	0.0-26.8	10. ug/L
	Solid	8270 ¹	40.9-125.4	0.0-16.6	330. ug/kg
1,3-Dichlorobenzene	Water	625 ⁴ , 8270 ¹	25.4-117.8	0.0-25.0*	10. ug/L
	Solid	8270 ¹	44.8-104.0	0.0-30.0*	330. ug/kg
1,4-Dichlorobenzene	Water	625 ⁴ , 8270 ¹	27.4-117.8	0.0-27.7	10. ug/L
	Solid	8270 ¹	44.5-104.6	0.0-19.6	330. ug/kg
Benzyl Alcohol	Water	8270 ¹	42.7-124.9	0.0-25.0*	10. ug/L
	Solid	8270 ¹	11.2-159.7	0.0-30.0*	330. ug/kg
1,2-Dichlorobenzene	Water	625 ⁴ , 8270 ¹	31.4-116.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	32.7-117.9	0.0-30.0*	330. ug/kg
2-Methylphenol	Water	8270 ¹	33.6-161.3	0.0-25.0*	10. ug/L
	Solid	8270 ¹	39.1-120.1	0.0-30.0*	330. ug/kg
Bis(2-chloroisopropyl)	Water	625 ⁴ , 8270 ¹	49.0-131.8	0.0-25.0*	10. ug/L
ether	Solid	8270 ¹	29.6-129.2	0.0-30.0*	330. ug/kg
4-Methylphenol	Water	8270 ¹	28.2-144.9	0.0-25.0*	10. ug/L
	Solid	8270 ¹	43.2-109.4	0.0-30.0*	330. ug/kg
N-Nitroso-di-n-	Water	625 ⁴ , 8270 ¹	73.1-132.2	0.0-34.3	10. ug/L
propylamin o	Solid	8270 ¹	27.1-122.2	0.0-28.0	330. ug/kg
Hexachloroethane	Water	625 ⁴ , 8270 ¹	10.5-117.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	40.2-110.8	0.0-30.0*	330. ug/kg

1)

1

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed, Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Page Date: sion No. ion No. 히 8 ß ġ, 8 < 4

÷ 4

.

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Nitrobenzene	Water	625 ⁴ , 8270 ¹	55.8-142.8	0.0-25.0*	10. ug/L
	Solid	8270 ¹	33.5-123.0	0.0-30.0*	330. ug/kg
Isophorone	Water	625 ⁴ , 8270 ¹	63.9-132.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	39.4-119.0	0.0-30.0*	330. ug/kg
2-Nitrophenol	Water	625 ⁴ , 8270 ¹	63.6-121.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	34.5-113.1	0.0-30.0*	330. ug/kg
2,4-Dimethylphenol	Water	625 ⁴ , 8270 ¹	38.9-123.6	0.0-25.0*	10. ug/L
	Solid	8270 ¹	12.3-120.1	0.0-30.0*	330. ug/kg
Benzoic Acid	Water	8270 ¹	20.1-117.7	0.0-25.0*	50. ug/L
	Solid	8270 ¹	44.7-138.9	0.0-30.0*	1600. ug/kg
Bis(2-chloroethoxy)	Water	625 ⁴ , 8270 ¹	70.8-117.5	0.0-25.0*	10. ug/L
methane	Solid	8270 ¹	42.1-113.0	0.0-30.0*	330. ug/kg
2,4-Dichlorophenol	Water	625 ⁴ , 8270 ¹	57.7-151.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	28.2-133.2	0.0-30.0*	330. ug/kg
1,2,4-Trichlorobenzene	Water	625 ⁴ , 8270 ¹	50.7-127.8	0.0-27.3	10. ug/L
	Solid	8270 ¹	48.1-113.5	0.0-27.9	330. ug/kg
Naphthalene	Water	625 ⁴ , 8270 ¹	51.3-126.0	0.0-25.0*	10. ug/L
	Solid	8270 ¹	36.6-105.1	0.0-30.0*	330. ug/kg
4-Chloroaniline	Water	8270 ¹	20.3-115.2	0.0-25.0*	10. ug/L
	Solid	8270 ¹	0.0-86.9	0.0-30.0*	330. ug/kg
Hexachlorobutadiene	Water	625 ⁴ , 8270 ¹	30.0-135.6	0.0-25.0*	10. ug/L
	Solid	8270 ¹	49.8-109.1	0.0-30.0*	330. ug/kg
4-Chloro-3-	Water	625 ⁴ , 8270 ¹	67.7-136.1	0.0-21.0	10. ug/L
methylphenol	Solid	8270 ¹	50.3-128.2	0.0-56.1	330. ug/kg

-1)

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Section No._____ Page 8 8 ß of /02 < 4

÷

1

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
2-Methylnaphthalene	Water	8270 ¹	22.0-184.1	0.0-25.0*	10. ug/L
	Solid	8270 ¹	25.6-133.3	0.0-30.0*	330. ug/kg
Hexachlorocyclopenta-	Water	625 ⁴ , 8270 ¹	18.8-133.6	0.0-25.0*	10. ug/L
diene	Solid	8270 ¹	26.4-110.7	0.0-30.0*	330. ug/kg
2,4,6-Trichlorophenol	Water	625 ⁴ , 8270 ¹	48.3-164.1	0.0-25.0*	10. ug/L.
	Solid	8270 ¹	42.2-126.9	0.0-30.0*	330. ug/kg
2,4,5-Trichlorophenol	Water	8270 ¹	50.7-184.0	0.0-25.0*	50. ug/L
	Solid	8270 ¹	59.7-111.9	0.0-30.0*	1600. ug/kg
2-Chloronaphthalene	Water	625 ⁴ , 8270 ¹	55.7-143.3	0.0-25.0*	10. ug/L
	Solid	8270 ¹	46.4-115.9	0.0-30.0*	330. ug/kg
2-Nitroaniline	Water	8270 ¹	27.4-190.9	0.0-25.0*	10. ug/L
	Solid	8270 ¹	26.4-143.9	0.0-30.0*	330. ug/kg
Dimethylphthalate	Water	625 ⁴ , 8270 ¹	19.0-119.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	43.5-118.4	0.0-30.0*	330. ug/kg
Acenaphthylene	Water	625 ⁴ , 8270 ¹	61.1-133.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	48.3-95.4	0.0-30.0*	330. ug/kg
2,6-Dinitrotoluene	Water	625 ⁴ , 8270 ¹	63.1-150.6	0.0-25.0*	10. ug/L
	Solid	8270 ¹	46.6-124.2	0.0-30.0*	330. ug/kg
3-Nitroaniline	Water	8270 ¹	17.3-141.6	0.0-25.0*	50. ug/L
	Solid	8270 ¹	22.6-88.3	0.0-30.0*	1600. ug/kg
Acenaphthene	Water	625 ⁴ , 8270 ¹	64.9-130.3	0.0-23.2	10. ug/L.
	Solid	8270 ¹	41.2-103.2	0.0-25.7	330. ug/kg
2,4-Dinitrophenol	Water	625 ⁴ , 8270 ¹	17.0-156.8	0.0-25.0*	50. ug/L
	Solid	8270 ¹	31.3-121.8	0.0-30.0*	1600. ug/kg

319962

3)

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

ij B tion No. '<u>N</u> 8 a 125/92 < 4

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
4-Nitrophenol	Water	625 ⁴ , 8270 ¹	17.5-90.2	0.0-27.2	50. ug/L
	Solid	8270 ¹	22.1-147.1	0.0-29.2	1600. ug/kg
Dibenzofuran	Water	8270 ¹	59.6-145.9	0.0-25.0*	10. ug/L
	Solid	8270 ¹	35.8-129.5	0.0-30.0*	330. ug/kg
2,4-Dinitrotoluene	Water	625 ⁴ , 8270 ¹	69.0-151.8	0.0-8.5	10. ug/L
	Solid	8270 ¹	44.0-131.8	0.0-30.5	330. ug/kg
Diethylphthalate	Water	625 ⁴ , 8270 ¹	67.7-123.7	0.0-25.0*	10. ug/L
	Solid	8270 ¹	39.4-119.6	0.0-30.0*	330. ug/kg
4-Chlorophenyl-	Water	625 ⁴ , 8270 ¹	58.7-151.1	0.0-25.0*	10. ug/L
phenylether	Solid	8270 ¹	43.8-109.1	0.0-30.0*	330. ug/kg
Fluorene	Water	625 ⁴ , 8270 ¹	54.4-156.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	42.9-108.0	0.0-30.0*	330. ug/kg
4-Nitroaniline	Water	8270 ¹	32.4-183.3	0.0-25.0*	50. ug/L
	Solid	8270 ¹	35.7-122.7	0.0-30.0*	1600. ug/kg
4,6-Dinitro-2-	Water	625 ⁴ , 8270 ¹	36.8-177.6	0.0-25.0*	50. ug/L
methylphenol	Solid	8270 ¹	33.0-123.4	0.0-30.0*	1600. ug/kg
N-Nitrosodiphenyl-	Water	625 ⁴ , 8270 ¹	41.5-160.9	0.0-25.0*	10. ug/L
amine	Solid	8270 ¹	22.9-148.4	0.0-30.0*	330. ug/kg
4-Bromophenyl-	Water	625 ⁴ , 8270 ¹	53.1-173.7	0.0-25.0*	10. ug/L
phenylether	Solid	8270 ¹	47.9-124.7	0.0-30.0*	330. ug/kg
Hexachlorobenzene	Water	625 ⁴ , 8270 ¹	54.7-164.0	0.0-25.0*	10. ug/L
	Solid	8270 ¹	29.8-125.9	0.0-30.0*	330. ug/kg
Pentachlorophenol	Water	625 ⁴ , 8270 ¹	36.9-179.9	0.0-15.6	50. ug/L
	Solid	8270 ¹	20.3-129.4	0.0-47.1	1600. ug/kg

319963

1) 2) 3)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

•

4)

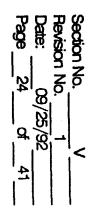
Section No. Revision No. Page ß /25/92 of < ъ

.

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Phenanthrene	Water	625 ⁴ , 8270 ¹	54.6-145.0	0.0-25.0*	10. ug/L
	Solid	8270 ¹	47.4-102.3	0.0-30.0*	330. ug/kg
Anthracene	Water	625 ⁴ , 8270 ¹	61.7-147.1	0.0-25.0*	10. ug/L
	Solid	8270 ¹	53.8-105.3	0.0-30.0*	330. ug/kg
Di-n-butylphthalate	Water	625 ⁴ , 8270 ¹	65.5-154.8	0.0-14.5	10. ug/L
	Solid	8270 ¹	42.4-127.7	0.0-36.4	330. ug/kg
Fluoranthene	Water	625 ⁴ , 8270 ¹	60.0-146.6	0.0-25.0*	10. ug/L
	Solid	8270 ¹	53.4-99.6	0.0-30.0*	330. ug/kg
Pyrene	Water	625 ⁴ , 8270 ¹	58.3-142.4	0.0-18.0	10. ug/L
	Solid	8270 ¹	57.1-110.8	0.0-48.9	330. ug/kg
Butylbenzylphthalate	Water	625 ⁴ , 8270 ¹	56.4-153.0	0.0-25.0*	10. ug/L
	Solid	8270 ¹	35.2-156.9	0.0-30.0*	330. ug/kg
3,3'-Dichlorobenzidine	Water	625 ⁴ , 8270 ¹	41.9-155.4	0.0-25.0*	20. ug/L
	Solid	8270 ¹	27.4-134.1	0.0-30.0*	660. ug/kg
Benzo(a)anthracene	Water	625 ⁴ , 8270 ¹	58.8-146.8	0.0-25.0*	10. ug/L
	Solid	8270 ¹	57.8-109.4	0.0-30.0*	330. ug/kg
Chrysene	Water	625 ⁴ , 8270 ¹	65.4-135.5	0.0-25.0*	10. ug/L
	Solid	8270 ¹	45.3-129.3	0.0-30.0*	330. ug/kg
Bis(2-ethylhexyl)	Water	625 ⁴ , 8270 ¹	56.0-163.7	0.0-25.0*	10. ug/L
phthalate	Solid	8270 ¹	48.8-139.5	0.0-30.0*	330. ug/kg
Di-n-octylphthalate	Water	625 ⁴ , 8270 ¹	40.9-184.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	26.8-168.4	0.0-30.0*	330. ug/kg
Benzo(b)fluoranthene	Water	625 ⁴ , 8270 ¹	51.6-159.1	0.0-25.0*	10. ug/L
	Solid	8270 ¹	37.0-133.0	0.0-30.0*	330. ug/kg

4)

ŋ 2) 3)


<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

Section No. Revision No. ge 8 /25/92 of 4

ł

.

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	<u>% RECOVERY</u>	<u>% RPD</u>	MRDL
Benzo(k)fluoranthene	Water	625 ⁴ , 8270 ¹	54.3-161.0	0.0-25.0*	10. ug/L
	Solid	8270 ¹	47.4-114.2	0.0-30.0*	330. ug/kg
Benzo(a)pyrene	Water	625 ⁴ , 8270 ¹	42.6-141.8	0.0-25.0*	10. ug/L
	Solid	8270 ¹	47.2-115.3	0.0-30.0*	330. ug/kg
Indeno(1,2,3-cd)pyrene	Water	625 ⁴ , 8270 ¹	48.4-158.4	0.0-25.0*	10. ug/L
	Solid	8270 ¹	45.5-113.5	0.0-30.0*	330. ug/kg
Dibenz(a,h)anthracene	Water	625 ⁴ , 8270 ¹	44.1-157.2	0.0-25.0*	10. ug/L
	Solid	8270 ¹	33.3-124.0	0.0-30.0*	330. ug/kg
Benzo(g,h,i)perylene	Water	625 ⁴ , 8270 ¹	35.7-172.6	0.0-25.0*	10. ug/L
	Solid	8270 ¹	21.5-111.9	0.0-30.0*	330. ug/kg
1,2-Diphenylhydrazine	Water	625⁴	36.4-143.0	0.0-25.0*	10. ug/L
				0.0-30.0*	0,
Benzidine	Water	6254	0.0-43.3	0.0-25.0*	50. ug/L
N-Nitrosodimethyl- amine	Water	6254	23.2-90.2	0.0-25.0*	10. ug/L

1

1),

2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

3)

a-BHC Water Solid 608 ⁴ , 6080 ¹ 54.9123.9 65.4155.8 0.0-61.2 0.05 ug/L 8. ug/kg v-BHC Water Solid 608 ⁴ , 6080 ¹ 65.4155.8 0.0-32.9 8. ug/kg v-BHC Water Solid 608 ⁴ , 6080 ¹ 46.8-113.5 0.0-37.3 0.05 ug/L s-BHC Water Solid 8080 ¹ 13.6142.0 0.0-55.2 0.05 ug/L s-BHC Water Solid 8080 ¹ 13.6142.0 0.0-55.2 0.05 ug/L b-BHC Water Solid 8080 ¹ 16.3125.0 0.0-19.2 0.05 ug/L b-BHC Water Solid 608 ⁴ , 6080 ¹ 25.5135.6 0.0-63.1 0.05 ug/L b-BHC Water Solid 608 ⁴ , 6080 ¹ 25.5135.6 0.0-63.1 0.05 ug/L b-BHC Water Solid 608 ⁴ , 6080 ¹ 25.5135.6 0.0-63.1 0.05 ug/L b-BHC Water Solid 608 ⁴ , 6080 ¹ 33.8141.8 0.0-42.7 8. ug/kg b-BHC Water Solid 608 ⁴ , 6080 ¹ 33.8141.8 0.0-45.6 0.05 ug/L b-Bud	ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Solid 8080 ¹ 65.4-155.8 0.0-32.9 8. ug/kg Y-BHC Water Solid 608 ¹ , 8080 ¹ 46.8-113.5 0.0-37.3 0.05 ug/L 8-BHC Water Solid 608 ¹ , 8080 ¹ 13.6-142.0 0.0-57.2 8. ug/kg Heptachlor Water Solid 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L A-BHC Water Solid 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L Heptachlor Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-62.7 8. ug/kg Aldrin Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L H						
y-BHC Water Solid 608 ⁴ , 6080 ¹ 46.8-113.5 27.0-153.2 0.0-37.3 0.0-30.6 0.0-y/L 8. ug/kg s-BHC Water Solid 606 ⁴ , 8080 ¹ 60.2-153.1 0.0-55.2 0.05 ug/L s-BHC Water Solid 608 ⁴ , 8080 ¹ 60.2-153.1 0.0-57.2 8. ug/kg Heptachlor Water Solid 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L s-BHC Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L s-BHC Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 26.5-125.9 0.0-24.7 8. mg/kg Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-42.9 8. ug/kg 4.4-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L Solid 8080 ¹ 34.3-130.4 0.0-41.8 8. mg/kg <	α-BHC					
Solid 8080 ¹ 27.0-153.2 0.0-30.6 8. ug/kg s-BHC Water Solid 608 ⁴ , 8080 ¹ 60.2-153.1 0.055.2 0.05 ug/L Heptachlor Water Solid 608 ⁴ , 8080 ¹ 13.6-142.0 0.0-57.2 8. ug/kg <i>k</i> -BHC Water Solid 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L <i>k</i> -BHC Water Solid 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L <i>k</i> -BHC Water Solid 8080 ¹ 26.5-125.9 0.0-24.7 8. ug/kg <i>k</i> -BHC Water Solid 608 ⁴ , 8080 ¹ 18.2-115.8 0.052.7 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-41.8 8. mg/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L Solid 8080 ¹ 30.80 ¹ 31.8-141.8 0.0-41.8 8. mg/kg Endosulfan I		Solid	8080.	65.4-155.8	0.0-32.9	B. ug/kg
Solid 8080 ¹ 27.0-153.2 0.0-30.6 8. ug/kg s-BHC Water Solid 608 ⁴ , 8080 ¹ 60.2-153.1 0.055.2 0.05 ug/L Heptachlor Water Solid 608 ⁴ , 8080 ¹ 13.6-142.0 0.0-57.2 8. ug/kg <i>k</i> -BHC Water Solid 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L <i>k</i> -BHC Water Solid 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L <i>k</i> -BHC Water Solid 8080 ¹ 26.5-125.9 0.0-24.7 8. ug/kg <i>k</i> -BHC Water Solid 608 ⁴ , 8080 ¹ 18.2-115.8 0.052.7 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-41.8 8. mg/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L Solid 8080 ¹ 30.80 ¹ 31.8-141.8 0.0-41.8 8. mg/kg Endosulfan I	Y-BHC	Water	608 ⁴ , 8080 ¹	46.8-113.5	0.0-37.3	0.05 ug/L
Solid 8080 ¹ 13.6-142.0 0.0-57.2 8. ug/kg Heptachlor Water 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L 6-BHC Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-52.7 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 18.2-115.8 0.0-52.7 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Heptachlor Epoxide Water 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L Endosulfan I Water 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L Solid 8080 ¹ 14.5-82.2 0.0-28.8 8. ug/kg 4,4'-DDE Water 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water 608 ⁴ , 8080 ¹ 31.1-1		Solid	8080 ¹	27.0-153.2	0.0-30.6	8. ug/kg
Solid 8080 ¹ 13.6-142.0 0.0-57.2 8. ug/kg Heptachlor Water 608 ⁴ , 8080 ¹ 16.3-125.0 0.0-19.2 0.05 ug/L 6-BHC Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-52.7 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 18.2-115.8 0.0-52.7 0.05 ug/L Aldrin Water 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Heptachlor Epoxide Water 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L Endosulfan I Water 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L Solid 8080 ¹ 14.5-82.2 0.0-28.8 8. ug/kg 4,4'-DDE Water 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water 608 ⁴ , 8080 ¹ 31.1-1	8-BHC	Water	608 ⁴ , 8080 ¹	60.2-153.1	0.0-55.2	0.05 ug/L
Solid 8080 ¹ 42.4-146.9 0.0-27.8 8. ug/kg 6-BHC Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 26.5-125.9 0.0-22.7 8. mg/kg Aldrin Water Solid 608 ⁴ , 8080 ¹ 18.2-115.8 0.0-52.7 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-41.8 8. ug/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L 4.4'-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4.4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L		Solid		13.6-142.0	0.0-57.2	
Solid 8080 ¹ 42.4-146.9 0.0-27.8 8. ug/kg 6-BHC Water Solid 608 ⁴ , 8080 ¹ 25.5-135.6 0.0-63.1 0.05 ug/L Aldrin Water Solid 608 ⁴ , 8080 ¹ 26.5-125.9 0.0-22.7 8. mg/kg Aldrin Water Solid 608 ⁴ , 8080 ¹ 18.2-115.8 0.0-52.7 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-41.8 8. ug/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-45.6 0.05 ug/L 4.4'-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4.4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L	Heptachlor	Water	608 ⁴ , 8080 ¹	16.3-125.0	0.0-19.2	0.05 ug/L
Solid 80801 26.5-125.9 0.0-24.7 8.mg/kg Aldrin Water Solid 608 ⁴ , 80801 18.2-115.8 0.0-52.7 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 80801 33.8-141.8 0.0-40.0 0.05 ug/L Heptachlor Epoxide Water Solid 608 ⁴ , 80801 33.8-141.8 0.0-40.0 0.05 ug/L Endosulfan I Water Solid 608 ⁴ , 80801 22.0-128.8 0.0-45.6 0.05 ug/L 4,4'-DDE Water Solid 608 ⁴ , 80801 24.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 80801 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 80801 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 80801 36.3-136.3 0.0-20.5 0.1 ug/L Endrin Water Solid 608 ⁴ , 80801 35.3-136.3 0.0-20.5 0.1 ug/L 4,4'-DDD Water 608 ⁴ , 80801 53.7-176.7 0.0-25.0* 0.1 ug/L	•	Solid		42.4-146.9	0.0-27.8	
Aldrin Water Solid 608 ⁴ , 8080 ¹ 18.2-115.8 43.2-128.9 0.0-52.7 0.0-25.9 0.05 ug/L 8. ug/kg Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 900 ¹ 0.0-40.0 0.05 ug/L 8. ug/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 8080 ¹ 0.0-45.6 0.0-28.8 0.0-45.6 8. ug/kg 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 8080 ¹ 0.0-62.5 0.0-28.8 0.1 ug/L 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 20.4-179.2 0.0-23.4 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 31.1-137.7 0.0-26.3 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 0.1 ug/L 16. ug/kg 4,4'-DDD Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 0.1 ug/L 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 0.1 ug/L 16. ug/kg	δ-BHC	Water	608 ⁴ , 8080 ¹	25.5-135.6	0.0-63.1	0.05 ug/L
Solid 8080 ¹ 43.2-128.9 0.0-25.9 8. ug/kg Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 34.3-130.4 0.0-41.8 8. mg/kg 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-28.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L		Solid	8080 ¹	26.5-125.9	0.0-24.7	8. mg/kg
Solid 8080 ¹ 43.2-128.9 0.0-25.9 8. ug/kg Heptachlor Epoxide Water Solid 608 ⁴ , 8080 ¹ 33.8-141.8 0.0-40.0 0.05 ug/L Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 34.3-130.4 0.0-41.8 8. mg/kg 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-28.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-26.3 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L	Aldrin	Water	608 ⁴ , 8080 ¹	18.2-115.8	0.0-52.7	0.05 ug/L
Solid 8080 ¹ 34.3-130.4 0.0-41.8 8. mg/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L 0ieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-23.4 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 16.3-118.0 0.0-19.4 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 51.1-150.8 0.0-25.0 0.1 ug/L		Solid	8080 ¹	43.2-128.9	0.0-25.9	
Solid 8080 ¹ 34.3-130.4 0.0-41.8 8. mg/kg Endosulfan I Water Solid 608 ⁴ , 8080 ¹ 22.0-128.8 0.0-45.6 0.05 ug/L 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-62.5 0.1 ug/L 0ieldrin Water Solid 608 ⁴ , 8080 ¹ 34.0-133.8 0.0-23.4 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 16.3-118.0 0.0-19.4 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 51.1-150.8 0.0-25.0 0.1 ug/L	Heptachlor Epoxide	Water	608 ⁴ , 8080 ¹	33.8-141.8	0.0-40.0	0.05 ug/L
Solid 8080 ¹ 14.5-82.2 0.0-28.8 8. ug/kg 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 34.0-133.8 20.4-179.2 0.0-62.5 0.0-23.4 0.1 ug/L 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 16.3-118.0 31.1-137.7 0.0-26.3 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 35.3-136.3 51.1-150.8 0.0-20.5 0.0-25.0 0.1 ug/L 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L		Solid		34.3-130.4	0.0-41.8	8. mg/kg
Solid 8080 ¹ 14.5-82.2 0.0-28.8 8. ug/kg 4,4'-DDE Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 34.0-133.8 20.4-179.2 0.0-62.5 0.0-23.4 0.1 ug/L 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 16.3-118.0 31.1-137.7 0.0-26.3 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 35.3-136.3 51.1-150.8 0.0-20.5 0.0-25.0 0.1 ug/L 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L	Endosulfan I	Water	608 ⁴ , 8080 ¹	22.0-128.8	0.0-45.6	0.05 ug/L
Solid 8080 ¹ 20.4-179.2 0.0-23.4 16. ug/kg Dieldrin Water Solid 608 ⁴ , 8080 ¹ 16.3-118.0 31.1-137.7 0.0-19.4 0.1 ug/L 0.0-26.3 Endrin Water Solid 608 ⁴ , 8080 ¹ 35.3-136.3 51.1-150.8 0.0-20.5 0.1 ug/L 0.0-25.0 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L		Solid		14.5-82.2 ·	0.0-28.8	8. ug/kg
Dieldrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 16.3-118.0 31.1-137.7 0.0-19.4 0.0-26.3 0.1 ug/L 16. ug/kg Endrin Water Solid 608 ⁴ , 8080 ¹ 8080 ¹ 35.3-136.3 51.1-150.8 0.0-20.5 0.0-25.0 0.1 ug/L 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L	4,4'-DDE	Water	608 ⁴ , 8080 ¹	34.0-133.8	0.0-62.5	0.1 ug/L
Solid 8080 ¹ 31.1-137.7 0.0-26.3 16. ug/kg Endrin Water 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Solid 8080 ¹ 51.1-150.8 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L		Solid	8080 ¹	20.4-179.2	0.0-23.4	16. ug/kg
Endrin Water 608 ⁴ , 8080 ¹ 35.3-136.3 0.0-20.5 0.1 ug/L Solid 8080 ¹ 51.1-150.8 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L	Dieldrin	Water	608 ⁴ , 8080 ¹	16.3-118.0	0.0-19.4	0.1 ug/L
Solid 8080 ¹ 51.1-150.8 0.0-25.0 16. ug/kg 4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L		Solid	8080 ¹	31.1-137.7	0.0-26.3	16. ug/kg
4,4'-DDD Water 608 ⁴ , 8080 ¹ 53.7-176.7 0.0-25.0* 0.1 ug/L	Endrin	Water	608 ⁴ , 8080 ¹	35.3-136.3	0.0-20.5	0.1 ug/L
		Solid	8080 ¹	51.1-150.8	0.0-25.0	16. ug/kg
Solid 8080 ¹ 48.0-126.0* 0.0-30.0* 16. ug/kg	4,4'-DDD	Water	608 ⁴ , 8080 ¹	53.7-176.7	0.0-25.0*	0.1 ug/L
		Solid	8080 ¹	48.0-126.0*	0.0-30.0*	16. ug/kg

319966

4)

1) 2) 3)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

Section No. Revision No. Ate: 09// /25/92 cf < 4

Ş

H

2

<u>^</u>

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Endosulfan II	Water	608 ⁴ , 8080 ¹	34.9-172.2	0.0-25.0*	0.1 ug/L
	Solid	8080 ¹	22.0-171.0*	0.0-30.0*	16. ug/kg
4,4'-DDT	Water	608 ⁴ , 8080 ¹	51.0-126.8	0.0-44.9	0.1 ug/L
	Solid	8080 ¹	27.8-173.0	0.0-68.8	16. ug/kg
Endosulfan sulfate	Water	608 ⁴ , 8080 ¹	44.9-137.5	0.0-49.9	0.1 ug/L
	Solid	8080 ¹	11.1-111.9	0.0-24.4	16. ug/kg
Endrin Aldehyde	Water	608 ⁴ , 8080 ¹	37.6-190.9	0.0-55.0	0.1 ug/L
	Solid	8080 ¹	79.8-137.7	0.0-68.5	16. ug/kg
Methoxychlor	Water	608 ⁴ , 8080 ¹	38.1-143.9	0.0-26.7	0.5 ug/L
	Solid	8080 ¹	21.4-157.9	0.0-27.5	80. ug/kg
Endrin Ketone	Water	608 ⁴ , 8080 ¹	50.0-150.0*	0.0-25.0*	0.1 ug/L
	Solid	8080 ¹	50.0-150.0*	0.0-30.0*	16. ug/kg
Chlordane	Water	608 ⁴ , 8080 ¹	55.2-108.6*	0.0-25.0*	0.5 ug/L
	Solid	8080 ¹	55.2-108.6*	0.0-30.0*	80. ug/kg
Toxaphene	Water	608 ⁴ , 8080 ¹	55.6-111.2*	0.0-25.0*	1. ug/L
	Solid	8080 ¹	55.6-111.2*	0.0-30.0*	160. ug/kg
PCB-1016	Water	608 ⁴ , 8080 ¹	66.5-103.2	0.0-25.0*	0.5 ug/L
	Solid	8080 ¹	42.7-134.6	0.0-27.2	80. ug/kg
PCB-1221	Water	608 ⁴ , 8080 ¹	21.1-133.4	0.0-65.2	0.5 ug/L
	Solid	8080 ¹	44.2-150.4*	0.0-30.0*	80. ug/kg
PCB-1232	Water	608 ⁴ , 8080 ¹	29.4-131.3	0.0-35.7	0.5 ug/L
	Solid	8080 ¹	54.9-138.6	0.0-9.8	80. ug/kg
PCB-1242	Water	608 ⁴ , 8080 ¹	24.5-115.1	0.0-26.7	0.5 ug/L
	Solid	8080 ¹	27.7-127.3	0.0-38.3	80. ug/kg

319967

3)

4}

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

Section No. Revision No. Page Date: 8 8 /25/92 of 4

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
PCB-1248	Water	608 ⁴ , 8080 ¹	34.4-119.3	0.0-38.9	0.5 ug/L
	Solid	8080'	66.8-138.3	0.0-18.1	80. ug/kg
PCB-1254	Water	608 ⁴ , 8080 ¹	38.7-116.3	0.0-20.1	1. ug/L
	Solid	8080 ¹	36.1-138.8	0.0-30.4	160. ug/kg
PCB-1260	Water	608 ⁴ , 8080 ¹	41.8-121.6	0.0-33.0	1. ug/L
	Solid	8080 ¹	52.3-1 27.1	0.0-27.6	160. ug/kg

1)

2) 3)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

Page Section No. Revision No. Ŋ 8 < 4

٠,

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Diethyl ether	Water	8015 ¹	50.0-150.0*	0.0-50.0*	1. ug/L*
	Solid	8015 ¹	50.0-150.0*	0.0-50.0*	10. ug/kg*
Ethanol	Water	8015 ¹	50.0-150.0*	0.0-50.0*	1. ug/L*
	Solid	8015 ¹	50.0-150.0*	0.0-50.0*	10. ug/kg*
Methyl ethyl ketone	Water	8015 ¹	50.0-150.0*	0.0-50.0*	1. ug/L*
	Solid	8015 ¹	50.0-150.0*	0.0-50.0*	10. ug/kg*
Methyl isobutyl ketone	Water	8015 ¹	50.0-150.0*	0.0-50.0*	1. ug/L*
	Solid	8015 ¹	50.0-150.0*	0.0-50.0*	10. ug/kg*
Acrolein	Water	8240 ¹	75.0-125.0*	0.0-25.0*	20. ug/L*
	Solid	8240 ¹	75.0-125.0*	0.0-25.0*	20. ug/kg*
Acrylonitrile	Water	8240 ¹	75.0-125.0*	0.0-25.0*	20. ug/L*
	Solid	8240 ¹	75.0-125.0*	0.0-25.0*	20. ug/kg*
2-sec-Butyl-4,6-	Water	8040 ¹	50.0-150.0*	0.0-25.0*	1. ug/L*
dinitrophenol	Solid	8040 ¹	50.0-150.0*	0.0-25.0*	1. mg/kg*
4-Chloro-3-	Water	8040 ¹	56.7-113.4*	0.0-25.0*	1. ug/L*
methylphenol	Solid	8040 ¹	56.7-113.4*	0.0-25.0*	1. mg/kg*
2-Chlorophenol	Water	8040 ¹	54.1-110.2*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	54.1-110.2*	0.0-25.0*	1. mg/kg*
Cresols	Water	8040 ¹	50.0-120.0	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	50.0-120.0	0.0-25.0*	1. mg/kg*
2-Cyclohexyl-4,6-	Water	8040 ¹	50.0-150.0*	0.0-25.0*	20. ug/L*
dinitrophenol	Solid	8040 ¹	50.0-150.0*	0.0-25.0*	20. mg/kg*
2,4-Dichlorophenol	Water	8040 ¹	59.7-103.3*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	59.7-103.3*	0.0-25.0*	1. mg/kg*

-477.0-

1)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 2)

3)

4)

Page		Revisio	Section
8	60	n No	No.
ੇਰ 	1/25/92		
4 4			<

1

.

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
2,6-Dichlorophenol	Water	8040 ¹	40.0-120.0*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	40.0-120.0*	0.0-25.0*	1. mg/kg*
2,4-Dimethylphenol	Water	8040 ¹	50.4-100.0*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	50.4-100.0*	0.0-25.0*	1. mg/kg*
2,4-Dinitrophenol	Water	8040 ¹	31.7-125.1*	0.0-25.0*	15. ug/L*
	Solid	8040 ¹	31.7-125.1*	0.0-25.0*	15. mg/kg*
2-Methyl-4,6-	Water	8040 ¹	42.4-123.6*	0.0-25.0*	20. ug/L*
dinitrophenol	Solid	8040 ¹	42.4-123.6*	0.0-25.0*	20. mg/kg*
2-Nitrophenol	Water	8040 ¹	56.6-103.8*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	56.6-103.8*	0.0-25.0*	1. mg/kg*
4-Nitrophenol	Water	8040 ¹	22.7-100.0*	0.0-25.0*	5. ug/L*
	Solid	8040 ¹	22.7-100.0*	0.0-25.0*	5. mg/kg*
Pentachlorophenol	Water	8040 ¹	56.7-113.5*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	56.7-113.5*	0.0-25.0*	1. mg/kg*
Phenol	Water	8040 ¹	32.4-100.0*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	32.4-100.0*	0.0-25.0*	1. mg/kg*
Tetrachlorophenol	Water	8040 ¹	40.0-120.0*	0.0-25.0*	50. ug/L*
	Solid	8040 ¹	40.0-120.0*	0.0-25.0*	50. mg/kg*
Trichlorophenol	Water	8040 ¹	40.0-120.0*	0.0-25.0*	10. ug/L*
	Solid	8040 ¹	40.0-120.0*	0.0-25.0*	10. mg/kg*
2,4,6-Trichlorophenol	Water	8040 ¹	60.8-110.4*	0.0-25.0*	1. ug/L*
	Solid	8040 ¹	60.8-110.4*	0.0-25.0*	1. mg/kg*
Benzyl butyl phthalate	Water	8060 ¹	57.0-110.0*	0.0-25.0*	15. ug/L*
	Solid	8060 ¹	57.0-110.0*	0.0-25.0*	15. mg/kg*

319970

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Page Date: Section No. Revision No. 8 8 /25/92 of <

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	% RPD	MRDL
Bis(2-ethylhexyl)	Water	8060 ¹	2.4-111.8*	0.0-25.0*	20. ug/L*
phthalate	Solid	8060 ¹	2.4-111.8*	0.0-25.0*	20. mg/kg*
Di-n-butyl phthalate	Water	8060 ¹	41.2-118.4*	0.0-25.0*	14. ug/L*
· ·	Solid	8060 ¹	41.2-118.4*	0.0-25.0*	14. mg/kg*
Diethyl phthalte	Water	8060 ¹	7.6-133.6*	0.0-25.0*	31. ug/L*
	Solid	8060 ¹	7.6-133.6*	0.0-25.0*	31. mg/kg*
Dimethyl phthalate	Water	8060 ¹	5.2-142.0*	0.0-25.0*	19. ug/L*
	Solid	8060 ¹	5.2-142.0*	0.0-25.0*	19. mg/kg*
Di-n-octyl phthalate	Water	8060 ¹	0.0-100.0*	0.0-25.0*	31. ug/L*
	Solid	8060 ¹	0.0-100.0*	0.0-25.0*	31. mg/kg*
N-Nitrosodimethyl-	Water	8070 ¹	50.0-150.0*	0.0-25.0*	0.15 ug/L*
amine	Solid	80701	50.0-150.0*	0.0-25.0*	0.15 mg/kg*
N-Nitrosodiphenyl-	Water	8070 ¹	50.0-150.0*	0.0-25.0*	0.46 ug/L*
amine	Solid	8070 ¹	50.0-150.0*	0.0-25.0*	0.46 mg/kg*
N-Nitrosodi-n-	Water	80701	50.0-150.0*	0.0-25.0*	0.81 ug/L*
propylamine	Solid	8070 ¹	50.0-150.0*	0.0-25.0*	0.81 mg/kg*
lsophoron e	Water	8090 ¹	8.0-100.0*	0.0-25.0*	15.7 ug/L*
	Solid	8090 ¹	8.0-100.0*	0.0-25.0*	15.7 mg/kg*
Nitrobenzene	Water	8090 ¹	25.7-100.0*	0.0-25.0*	13.7 ug/L*
	Solid	8090 ¹	25.7-100.0*	0.0-25.0*	13.7 mg/kg*
2,4-Dinitrotoluene	Water	8090 ¹	18.0-114.0*	0.0-25.0*	0.02 ug/L*
	Solid	8090 ¹	18.0-114.0*	0.0-25.0*	0.02 mg/kg*
2,6-Dinitrotoluene	Water	8090 ¹	19.0-115.0*	0.0-25.0*	0.01 ug/L*
	Solid	8090 ¹	19.0-115.0*	0.0-25.0*	0.01 mg/kg*

319971

-1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

÷.

.

. .

3

			ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	% RECOVERY	% RPD	MRDL
Dinitrobenzene	Water	8090 ¹	50.0-100.0*	0.0-25.0*	20. ug/L*
	Solid	8090 ¹	50.0-100.0*	0.0-25.0*	20. mg/kg*
Naphthoquinone	Water	8090 ¹	50.0-150.0*	0.0-25.0*	20. ug/L*
	Solid	80901	50.0-150.0*	0.0-25.0*	20. mg/kg*
Acenaphthene	Water	8100 ¹	0.0-105.7*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	0.0-105.7*	0.0-25.0*	10. mg/kg*
Acenaphthylene	Water	8100 ¹	22.1-112.1*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	22.1-112.1*	0.0-25.0*	10. mg/kg*
Anthracene	Water	8100 ¹	11.2-112.3*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	11.2-112.3*	0.0-25.0*	10. mg/kg*
Benzo(a)anthracene	Water	8100 ¹	31.0-116.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	31.0-116.0*	0.0-25.0*	10. mg/kg*
Benzo(a)pyrene	Water	8100 ¹	2.0-110.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	2.0-110.0*	0.0-25.0*	10. mg/kg*
Benzo(b)fluoranthene	Water	8100 ¹	18.0-138.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	18.0-138.0*	0.0-25.0*	10. mg/kg*
Benzo(j)fluoranthene	Water	8100 ¹	50.0-150.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	50.0-150.0*	0.0-25.0*	10. mg/kg*
Benzo(k)fluoranthene	Water	'8100 ¹	0.0-140.0*	0.0-25.0*	10. ug/L*
•••	Solid	8100 ¹	0.0-140.0*	0.0-25.0*	10. mg/kg*
Benzo(g,h,i)perylene	Water	8100 ¹	0.0-107.0*	0.0-25.0*	10. ug/L*
1997 - 1997 - 19	Solid	8100 ¹	0.0-107.0*	0.0-25.0*	10. mg/kg*
Chrysene	Water	8100 ¹	0.0-175.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	0.0-175.0*	0.0-25.0*	10. mg/kg*

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

the second se

۱.

4)

.

1)

2) 3)

Section No. ĝ မျှ 8 25/92 Ġ, <

.

÷.

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Dibenz(a,h)acridine	Water	8100 ¹	3.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	3.0-100.0*	0.0-25.0*	100. mg/kg*
Dibenz(a,j)acridine	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
Dibenzo(a,h)anthra-	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
cene	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
7H-Dibenzo(c,g)	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
carb azole	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
Dibenzo(a,e)pyrene	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
Dibenzo(a,h)pyrene	Water	8100 ¹	1.2-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	1.2-100.0*	0.0-25.0*	100. mg/kg*
Dibenzo(a,i)pyrene	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
Fluoranthene	Water	8100 ¹	27.0-111.0*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	27.0-111.0*	0.0-25.0*	10. mg/kg*
Fluorene	Water	8100 ¹	0.0-119.0*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	0.0-119.0*	0.0-25.0*	10. mg/kg*
Indeno(1,2,3-cd)pyrene	Water	8100 ¹	12.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	12.0-100.0*	0.0-25.0*	100. mg/kg*
3-Methylcholanthrene	Water	8100 ¹	0.0-100.0*	0.0-25.0*	100. ug/L*
	Solid	8100 ¹	0.0-100.0*	0.0-25.0*	100. mg/kg*
Naphthalene	Water	8100 ¹	21.5-100.0*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	21.5-100.0*	0.0-25.0*	10. mg/kg*

3)

•

1} 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

Revision No. gge မ္တု /25/92 of <

1

1

		METHOD	ACCURACY	PRECISION	MDDI
ANALYTE	MATRIX	METHOD	<u>% RECOVERY</u>	% RPD	MRDL
Phenanthrene	Water	8100 ¹	8.4-133.7*	0.0-25.0*	1. ug/L*
. · · · · ·	Solid	8100 ¹	8.4-133.7*	0.0-25.0*	10. mg/kg*
Pyrene	Water	8100 ¹	14.0-121.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	14.0-121.0*	0.0-25.0*	10. mg/kg*
1-Methylnaphthalene	Water	8100 ¹	20.0-120.0*	0.0-25.0*	10. ug/L*
	Solid	8100 ¹	20.0-120.0*	0.0-25.0*	10. mg/kg*
2-Methylnaphthalene	Water	8100 ¹	20.0-120.0*	0.0-25.0*	1. ug/L*
	Solid	8100 ¹	20.0-120.0*	0.0-25.0*	10. mg/kg*
Bis(2-chloroethoxy)	Water	8110 ¹	40.0-120.0*	0.0-25.0*	0.5 ug/L*
methane	Solid	8110 ¹	40.0-120.0*	0.0-25.0*	0.5 mg/kg*
Bis(2-chloroethyl)ether	Water	8110 ¹	40.0-120.0*	0.0-25.0*	0.3 ug/L*
	Solid	8110 ¹	40.0-120.0*	0.0-25.0*	0.3 mg/kg*
Bis(2-chloroisopropyl)	Water	8110 ¹	40.0-120.0*	0.0-25.0*	0.8 ug/L*
ether	Solid	8110 ¹	40.0-120.0*	0.0-25.0*	0.8 mg/kg*
4-Bromophenyl phenyl	Water	8110 ¹	40.0-120.0*	0.0-25.0*	2.3 ug/L*
ether	Solid	8110 ¹	40.0-120.0*	0.0-25.0*	2.3 mg/kg*
4-Chlorophenyl phenyl	Water	8110 ¹	40.0-120.0*	0.0-25.0*	3.9 ug/L*
ether	Solid	8110 ¹	40.0-120.0*	0.0-25.0*	3.9 mg/kg*
2-Chloronaphthalene	Water	612 ⁴ , 8120 ¹	29.5-126.9*	0.0-25.0*	0.94 ug/L*
	Solid	8120 ¹	29.5-126.9*	0.0-25.0*	0.94 mg/kg*
1,2-Dichlorobenzene	Water	612 ⁴ , 8120 ¹	23.5-145.1*	0.0-25.0*	1.14 ug/L*
	Solid	8120 ¹	23.5-145.1*	0.0-25.0*	1.14 mg/kg*
1,3-Dichlorobenzene	Water	612 ⁴ , 8120 ¹	7.2-138.6*	0.0-25.0*	1.19 ug/L*
	Solid	8120 ¹	7.2-138.6*	0.0-25.0*	1.19 mg/kg*

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3) 4)

Page action No. Aevision No. te: 09// /25/92 g, <

.1

		NETHOD	ACCURACY	PRECISION	
ANALYTE	MATRIX	METHOD	<u>% RECOVERY</u>	<u>% RPD</u>	MRDL
1,4-Dichlorobenzene	Water	612 ⁴ , 8120 ¹	22.7-126.9*	0.0-25.0*	1.34 ug/L*
	Solid	8120 ¹	22.7-126.9*	0.0-25.0*	1.34 mg/kg*
Hexachlorobenzene	Water	612 ⁴ , 8120 ¹	26.0-148.0*	0.0-25.0*	0.05 ug/L*
	Solid	8120 ¹	26.0-148.0*	0.0-25.0*	0.05 mg/kg*
Hexachlorobutadiene	Water	612 ⁴ , 8120 ¹	0.0-127.0*	0.0-25.0*	0.34 ug/L*
	Solid	8120 ¹	0.0-127.0*	0.0-25.0*	0.34 mg/kg*
Hexachlorocyclo-	Water	612 ⁴ , 8120 ¹	50.0-150.0*	0.0-25.0*	0.1 ug/L*
hexane	Solid	8120 ¹	50.0-150.0*	0.0-25.0*	0.1 mg/kg*
Hexachlorocycio-	Water	612 ⁴ , 8120 ¹	0.0-104.0*	0.0-25.0*	0.4 ug/L*
pentadiene	Solid	8120 ¹	0.0-104.0*	0.0-25.0*	0.4 mg/kg*
Hexachloroethane	Water	612 ⁴ , 8120 ¹	24.0-123.0*	0.0-25.0*	0.03 ug/L*
	Solid	8120 ¹	24.0-123.0*	0.0-25.0*	0.03 mg/kg*
Pentachloroethane	Water	612 ⁴ , 8120 ¹	50.0-150.0*	0.0-25.0*	0.1 ug/L*
	Solid	8120 ¹	50.0-150.0*	0.0-25.0*	0.1 mg/kg*
Tetrachlorobenzene	Water	612 ⁴ , 8120 ¹	50.0-150.0*	0.0-25.0*	0.1 ug/L*
	Solid	8120 ¹	50.0-150.0*	0.0-25.0*	0.1 mg/kg*
1,2,4-Trichlorobenzene	Water	612 ⁴ , 8120 ¹	20.2-133.7*	0.0-25.0*	0.05 ug/L*
	Solid	8120 ¹	20.2-133.7*	0.0-25.0*	0.05 mg/kg*
Azinophos methyl	Water	8140 ¹	50.0-150.0*	0.0-25.0*	1.5 ug/L*
	Solid	8140 ¹	50.0-150.0*	0.0-25.0*	1.5 mg/kg*
Bolstar	Water	8140 ¹	50.0-150.0*	0.0-25.0*	0.15 ug/L*
	Solid	8140 ¹	50.0-150.0*	0.0-25.0*	0.15 mg/kg*
Chlorpyrifos	Water	8140 ¹	50.0-150.0*	0.0-25.0*	0.3 ug/L*
	Solid	8140 ¹	50.0-150.0*	0.0-25.0*	0.3 mg/kg*

3) 4)

1) 2)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

Page Date: ation No. avision No. 09/1 \mathfrak{A} 05/92 <

3

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Coumaphos	Water	8140 ¹	0.0-120.0*	0.0-25.0*	1.5 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	1.5 mg/kg*
Demeton-O	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 mg/kg*
Demeton-S	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 mg/kg*
Diazinon	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.6 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.6 mg/kg*
Dichlorvos	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 mg/kg*
Disulfoton	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.2 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.2 mg/kg*
Ethoprop	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 mg/kg*
Fensulfothion	Water	8140 ¹	0.0-120.0*	0.0-25.0*	1.5 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	1.5 mg/kg*
Fenthion	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 mg/kg*
Merphos	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.25 mg/kg*
Mevinphos	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.3 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.3 mg/kg*
Naled	Water	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 ug/L*
	Solid	8140 ¹	0.0-120.0*	0.0-25.0*	0.1 mg/kg*

1) 2)

÷

7

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984. 3)

4)

Page Date: Section No. မ္ဟု 8 ß g, 20 < 4

Э

7

י ר

ANALYTE	MATRIX	METHOD	ACCURACY <u>% RECOVERY</u>	PRECISION <u>% RPD</u>	MRDL
Dichloroprop	Water	615 ⁴ , 8150 ¹	60.0-125.0*	0.0-25.0*	0.65 ug/L*
	Solid	8150 ¹	60.0-125.0*	0.0-25.0*	0.65 mg/kg*
Dinoseb	Water	615 ⁴ , 8150 ¹	60.0-125.0*	0.0-25.0*	0.07 ug/L*
	Solid	8150 ¹	60.0-125.0*	0.0-25.0*	0.07 mg/kg*
МСРА	Water	615 ⁴ , 8150 ¹	60.0-125.0*	0.0-25.0*	249. ug/L*
	Solid	8150 ¹	60.0-125.0*	0.0-25.0*	249. mg/kg*
MCPP	Water	615 ⁴ , 8150 ¹	60.0-125.0*	0.0-25.0*	192. ug/L*
	Solid	8150 ¹	60.0-125.0*	0.0-25.0*	192. mg/kg*

1)

2) 3)

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

4)

Section No. Revision No. Date: 09/ Page 37 /25/92 of <

Section	No.	V	/
Revision	n No	1	
Date:	097	25/92	
Page _	_38_	of	_41

SURROGATE

ANALYTE	MATRIX	METHOD	% RECOVERY
Trifluorotoluene	Water	601/602 ⁴ , 8010/8020 ¹	60.2-126.5
	Solid	8010/8020 ¹	61.8-127.5
	Water	MOD. 8020 ¹	77.7-111.5
	Solid	MOD. 8020 ¹	49.0-149.3
Bromochloromethane	Water	601/602 ⁴ , 8010/8020 ¹	72.6-117.5
	Solid	8010/8020 ¹	70.6-123.7
2-Bromo-1-chloropropane	Water	601/602 ⁴ , 8010/8020 ¹	68.9-426.5
	Solid	8010/8020 ¹	63.7-119.2
Bromofluorobenzene	Water	624 ⁴ , 8240 ¹	89.1-110.7
	Low Soil	8240 ¹	68.9-118.4
	Med Soil	8240 ¹	88.1-117.7
1,2-Dichloroethane-d4	Water	624 ⁴ , 8240 ¹	85.1-114.7
	Low Soil	8240 ¹	62.8-122.1
	Med Soil	8240 ¹	80.1-126.0
Toluene-d8	Water	624 ⁴ , 8240 ¹	91.2-108.4
	Low Soil	8240 ¹	81.7-124.2
	Med Soil	8240 ¹	71.7-128.1
2-Fluorophenol	Water	625 ⁴ , 8270 ¹	42.9-8 0.4
	Solid	8270 ¹	28.1-117.0
2,4,6-Tribromophenol	Water	625 ⁴ , 8270 ¹	70.2-130.5
	Solid	8270 ¹	24.6-144.1
Nitrobenzene-d5	Water	625 ⁴ , 8270 ¹	32.2-123.5
	Solid	8270 ¹	37.7-99.4
2-Fluorobiphenyl	Water	625 ⁴ , 8270 ¹	16.4-112.6
	Solid	8270 ¹	36.2-120.1
Terphenyl-d14	Water	625 ⁴ , 8270 ¹	38.7-140.5
	Solid	8270 ¹	44.7-154.2
Phenol-d6	Water	625 ⁴ , 8270 ¹	11.6-74.0
	Solid	8270 ¹	29.8-114.7
Octadecane	Water	608 ⁴ , 8080 ¹	47.0-128.3
	Solid	8080 ¹	21.7-151.7
Pentadecane	Water	608 ⁴ , 8080 ¹	50.0-150.0*
	Solid	8080 ¹	50.0-150.0*
2,4,6-Tribromophenyt	Water	608 ⁴ , 8080 ¹	61.2-112.5
	Solid	8080 ¹	20.3-131.7
Dibutylchlorendate	Water	608 ⁴ , 8080 ¹	50.8-143.8
	Solid	8080 ¹	35.1-153.1
Decachlorobiphenyl	Water	608 ⁴ , 8080 ¹	43.2-136.4
	Solid	8080 ¹	38.2-157.4

1) Test Methods for Evaluating Solid Waste, SW-846, Third Edition. 2)

Methods for Chemical Analysis of Water and Wastes, U.S. EPA-600/4-79-020, Revised 1983. Standard Methods for the Examination of Water and Wastewater, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

3)

4)

Section	No.	\	/
Revisio	n No.	1	-
Date:	09,	25/92	
Page [–]	39	of	_41

TABLE V-2 SAMPLE PREPARATION METHODS

SAMPLE PREP. METHOD NUMBER	DESCRIPTION	MATRIX	SAMPLE PREP. FOR THESE METHODS
3010¹	Acid digestion	Water	200.7, 6010
3020'	Acid digestion	Water	204.2, 7041, 7131, 7421, 7841
3050 ¹	Acid digestion	Solid	7041, 7131, 7421, 7841, 6010
1310 ¹	EPTOX	Solid	
13111	TCLP	Solid	
35401	Soxhlet extraction	Solid	9071
5030'	Purge and Trap	Water & Solid	8010/8020, MOD 8020, 8240
3510 ¹	Liquid-Liquid	Water	8080, 8270, 8040, 8060, 8070, 8090, 8100, 8120, 8140, 8150
3520'	Continuous Extraction	Water	8270
3550 ¹	Sonication	Solid	8080, 8270, 8040, 8060, 8070, 8090, 8100, 8120, 8140, 8150
36401	GPC	Water & Solid	8080, 8270, 8040, 8060, 8070, 8090, 8100, 8120, 8140, 8150

<u>Test Methods for Evaluating Solid Waste</u>, SW-846, Third Edition. <u>Methods for Chemical Analysis of Water and Wastes</u>, U.S. EPA-600/4-79-020, Revised 1983. <u>Standard Methods for the Examination of Water and Wastewater</u>, APHA, AWWA, WACF, 16th Ed. Federal Register, 40 CFR Part 136, Appendix C, October 1984.

٠

1)

2) 3) 4)

.

			j.
OUT OF CONTROL LOG LIBITING FILT, HOW 16, 1990, 10:03			PAGE 04
OUT OF CONTROL LOG	LOG	•	
fettal fett	e - Rei Griteria G		
901102 1334 VEZ3 SMATER 20.0 1.4 7.0000	< 73.3190	los reference due to overhandling	F
901102 1139 VD6 SMAILER 28.0 11.9 39.3000	< 67.6300	LON REFERENCE ME TO OVERVINILING OF HEATOND IN VOLUMETRIC FLASK	
901102 1338 EDB SHATER 28.8 14.0 70.0000	< 72.3460	les reference due te everhandling	
901102 1330 VIN SIATER 20.0 14.0 70.0000	(77.7740	los handling due te overhandling	1
901102 1339 VB12 SHATER 29.8 13.7 68.3000	< 70.3370	law reference due to overhandling	
1330 VA23 SHATER 20.0 13.6	< 71.1199	Lou reference due to overhandling	
901102 1330 WB26 SHATER 20.9 13.1 63.3900	< 73.3039	< 73.3059 Low reference due to overhandling	
12.0	60.0000 < 72.7230 1	los reference due to overhandling	
901102 1330 VENI SMATER 20.0 15.5 77.5000	< 17.1780	LOW REFERENCE DUE 10 OVERSIAMILING OF HIN 1000 IN VOLUNEIRIC	HE A
901106 1402 FIRLEESUATER 1.00 0.092 09.2	89.2000 · S. 8499		· · · · · · · · · · · · · · · · · · ·
901106 1178 VBJ SHATER 20.0 29.3 146.	146.3000 > 138.8869		
901106 (1120 VUZ SMATER 20.0 22.0 114.	114.000 > 107.6490		
901106 1138 Stift Statter 20.0 26.2 131.	131.0000 > 120.9370		
901104 1041 Pare Estita 1.0 0.044 84.6	11. 0001 (PT. 1000) II		instruction Dege E
901107 1307 OP ENATER 0.500 0.509 101.	101.2000 > 100.9710		:
1120 W10 SIATE 30.0 46.9	ada (94.7730		
911 CP SUATER 0.2 0.15	900 < \$1.944 <i>0</i> \$17		₹ 26/ <u>⊊</u> 2
756 tr-7 maile 0.047 0.451			L7 -
319980	:		

WALTY CONTROL AUDIT TRAIL FRI, NOV 16, 1990; 9:50 AM

Category Category Title

FRPD F RELATIVE % DIFFERENCE

			NEW V	ALUES			ORIGINAL	VALUE	8
-	Date				!	l .			i
Parameter	Hodified	Date	Actual	Found	Analyst	•		Found	Analyst
Fluoride	90/05/31	90/04/20	0.05	0.05	CCB	90/04/20	0.1	0.18	LK

Category Category Title

FS F 8PIKE X RECOVERY

		ORIGINAL VALUES ORIGINAL VALUES							81
Parameter	Date Modified	Date	Actual	Found	Analyst) Date	Actual	Found	Analyst
Fluoride	90/05/31	90/05/07	1.	0.72	CCB	90/05/07	0.70	1.49	LK
Fluoride	90/05/31	90/05/31	1.	0.91	CCB	90/05/31	1.	0.1	LK
Fluoride	90/05/31	90/05/17	1.	0.97	CCB	90/05/17	1.	0.09	LK

Category Category Title.

VI3SPK BROMODICHLOROHETHANE % RECOVERIES FOR THM

Parameter	Date	NEW VALUE8			ORIGINAL VALUES				
	Hodified	Date	Actual	Found	Analyst	Date	Actual	Found	Analyst
BRONODICHLOROMETHANE	90/06/01	90/01/09	20.0	22.6	ERN	90/01/09	20.0	24.5	T8H
BROMODICHLOROMETHANE	90/06/01	90/01/09	20.0	23.6	ERN	90/01/09	20.0	25.5	TBH
BROHODICHLOROMETHANE	99/06/01	90/01/16	20.0	21.4	ERN	90/01/16	20.0	22.3	TSH
BROHODICHLOROMETHANE	\$0/06/01	90/01/16	20.0	21.2	ERN	90/01/16	20.0	22.1	TSH
BROHODICHLOROMETHANE	90/06/01	90/01/18	20.0	22.7	ERN	90/01/18	20.0	23.8	TSH
BROHODICHLOROMETHANE	90/06/01	90/01/18	20.0	22.9	ERN	90/01/18	80.0	24.0	TSH
BROHODICHLOROMETHANE	90/06/01	90/01/29	20.0	24.6	ERN	90/01/29	20.0	85.4	T8H
BROHODICHLOROHETHANE	90/06/01	90/01/29	20.0	24.0	ERN	90/01/29	20.0	24.8	TSH
BROHODICHLOROMETHANE	90/06/01	90/02/20	20.0	20.2	ERN	90/02/20	20.0	25.5	TSH
BROHODICHLOROMETHANE	90/06/01	90/02/20	20.0	21.9	ERN	90/02/20	20.0	27.2	TSH
BROHODICHLOROMETHANE	90/06/01	90/02/23	20.0	22.7	ERN	90/02/23	20.0	29.8	T8H
BROHODICHLOROMETHANE	90/06/01	90/02/23	20.0	22.1	ERN	90/02/23	20.0	29.2	TSH
BROHODICHLOROMETHANE	90/06/01	90/04/20	20.0	19.6	ERN	90/04/20	20.0	24.1	TBH
BROHODICHLOROMETHANE	90/06/01	90/04/20	20.0	19.3	ERN	90/04/20	20.0	23.8	T8H

Category Category Title

319981

VI4HSD 1,2-DICHLOROPROPANE BY GC - WATER RPD'8

			NEU V	ALUES			ORIGINAL	. VALUE	8	1
·	Date	1			1	1			1	ł
Parameter	Hodified	Date	Actual	Found	Analyst	Date	Actual	Found	Analyst	1
						********				-
1,2-DICHLOROPROPANE	90/06/25	90/06/13	105.0	103.0	JL	90/06/13	92.0	89.0	JL	
• • • • • • • • • • • • • • • • • • • •										

FIGURE V-2

ì

Section No.	V	
Revision No.	1	
Date: 09/	/25/92	
Page1	of	8

SECTION VI. SAMPLING PROCEDURES

A critical concern in any project, especially those where a large number of samples and analyses of multiple parameters are required, is the maintenance of sample integrity. A sample is physical evidence of a situation in the environment at a specific place and time. Therefore, an essential part of all sampling projects is proper collection and handling of the samples. Representative samples of environmental matrices are collected through well defined protocols. The client performs the majority of the sampling and thus assumes responsibility for properly obtaining, handling, preserving, and shipping the sample. OBG Laboratories, Inc. provides sampling kits to the client upon request. These sampling kits contain sampling instructions, properly labeled sample containers and chain of custody forms. If OBG Laboratories, Inc. is requested to collect samples, a well defined sampling protocol is followed. This sampling protocol includes the following elements:

- 1) Sampling team members are competent and qualified
- Proper sampling methods are used in the collection of a representative sample
- 3) Equipment is accurately calibrated
- 4) Samples are properly handled to prevent contamination from outside sources or cross contamination between samples
- 5) Samples are preserved in the proper manner
- 6) Samples are properly identified

Section	No.	M	
Revision	No.	<u> </u>	
Date:	097	25/92	
Page 🧾	_2		8

 Samples analyzed are actually the samples collected under reported conditions.

OBG Laboratories, Inc. does not routinely provide sampling services. The lab will give recommendations on proper sampling plans. Sampling will be sub-contracted out and a sampling plan will be provided at that time.

A. <u>Sample Containers</u>

When the laboratory sends out sample containers, the containers will already contain the proper preservative agents, if requested by the client. The containers are labeled with the type of preservative added. The client is responsible for verifying that the proper containers were received.

Each sample is collected in a new, precleaned container to minimize contamination with the exception of bacteriological samples. For these samples sterilized plastic bottles are used. I-Chem 300 precleaned containers are purchased on a project by project basis and their use is documented in the Case Narrative and identified on the sample bottle request form.

B. <u>Holding Times and Preservatives</u>

OBG Laboratories adheres to the holding time requirements outlined in the method being utilized. When CLP analyses are required, the holding times specified in the CLP protocol are adhered to. Holding times vary depending upon matrix, protocol, and regulatory requirements. Expedient delivery and scheduling are paramount to obtain compliance with holding times. The LIMS assists in the monitoring of holding times by incorporating a due date on the schedule queue. The analysts, when reviewing their

Section	No.	V	
Revision	NO.	1	
Date:	09,	/25/92	
Page _	3	of	8

schedule, are aware not only of the workload but also of holding time requirements.

If samples are received over their holding times, the client is notified so resampling can be scheduled.

Preservation is the clients responsibility. We can and have provided at the clients request the appropriate preservative in the sample containers. This practice is noted on the sample request form. When preservatives are added, ACS grade reagents are used. As an example, Trace Metals nitric acid from Baker Scientific is added to pint plastic containers and used for metals analysis. All samples for organic analyses have sodium thiosulfate added to them whether residual chlorine is present or not. The sodium thiosulfate does not affect the sample analysis if residual chlorine is not present.

If the client requires additional preservatives, the amount requested will be put into a two ounce container at the same time the sample containers are prepared and shipped with the sample containers. A list of sample containers, preservatives and holding times are included as Table VI-1.

Sample containers are shipped in coolers to the clients by common carrier or are picked up at the lab by the client. Glass bottles are wrapped in styrofoam to prevent breakage. VOA vials are put into a vial holder to minimize breakage. All containers are put into plastic zip-lock bags to prevent cross contamination or leakage in case one of the containers should break during shipment. When the samples are shipped back to the lab, they are repacked into the coolers in the same manner in which they were shipped and crushed ice is added.
 TABLE VI-1

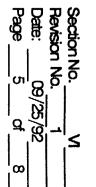
 SAMPLE CONTAINERS AND PRESERVATIVES

ORGANICS DRINKING WATER

<u>PARAMETER</u> THM	<u>CONTAINER/PRES.</u> 40ml vial/NA ₂ S ₂ O ₃ (Sodium Thiosulfate)	HOLDING <u>TIME</u> 14 days	VOLUME <u>REQUIRED</u> 40ml(2)	COMMON NAMES EPA 501.2	COMMENTS Cool 4º C
Pesticides	Glass Liter/none Teflon Liner	7 days	1L	PESTICIDES	Cool 4* C
Herbickles	Glass Liter/none Teflon Liner	7 days	1L	HERBICIDES	Cool 4º C
Volatile Organic Chemicais	40 ml vial/1:1 HCl Ascorbic Acid	14 days	40 ml (3)	EPA 502.1/503.1	Cool 4° C
			ANICS NUS WASTE		
		HOLDING	VOLUME	0000000000000	001415150
<u>PARAMETER</u> Volailles (waler)	<u>CONTAINER/PRES.</u> 40ml vials/1:1 HCl Teflon Lined Septum	<u>TIME</u> 14 days	<u>AEQUIRED</u> 40mt(2)	<u>COMMON NAMES</u> 601/602, 8010/ 8020	COMMENTS Cool 4* C
Volatilės (soli)	4 oz glass/none Tefion Lined Cap	14 days	30g	8010/8020	Cool 4º C
Volatiles (water)	40ml viais/1:1 HCl Tefton Lined Septum	14 days	40mi(2)	624, 8240	Cool 4º C
Volatiles (soli)	4 oz glass/none Tetion Lined Cap	14 days	30g	8240	Cool 4° C
Volatiles (CLP)	40ml vials/1:1 HCl Tefion Lined Septum	5 days	40ml(2)		Cool 4º C
AE/BN (water)	Giass Liter/none Tefion Liner	7 days	1L.	625, 8270	Cool 4º C
AE/BN (soll)	Sed. Jar/none Tefion Liner	14 days	200g	8270	Cool 4º C

Section No. Revision No. Date: 09/ Page 4 Page /25/92 < 00

1


1 :

ORGANICS HAZARDOUS WASTE

PARAMETER Volatile Petroleum Hydrocarbons (soli)	<u>CONTAINER/PRES.</u> 4 oz Glass/none Teflon Lined Cap	HOLDING <u>TIME</u> 14 days	VOLUME <u>REQUIRED</u> 30g	COMMON NAMES 8020 (mod.)	COMMENTS Cool 4° C
Volalile Petroleum Hydrocarbons (water)	40ml Vlal/1:1 HCl Teilon Lined Septum	14 days	40ml(2)	8020 (mod.)	Cool 4° C
PCB (water)	Giass Liter/none Tefion Liner	7 days	1L	PCB	Cool 4° C
PCB (soll)	Sed. Jar/none Teflon Liner	14 days	500g	РСВ	Cool 4° C
Pesticides (water)	Glass Liter/none pH of 5-9	7 days	1L	8080, 608	Cool 4° C
Pesticides (soli)	Sed. Jar/none	7 days	500g	8080	Cool 4° C
тох	8oz Glass/H ₂ SO ₄ Tefion Lined Septum	28 days	200ml(2)	тох	Cool 4° C

<u>PARAMETER</u> Trace Melais	<u>CONTAINER/PRES.</u> Plastic/1ml HNO ₃ pH<2	HOLDING <u>TIME</u> 6 months	VOLUME <u>REQUIRED</u> 200ml 200ml 100ml	<u>COMMON NAMES</u> DISSOLVED SUSPENDED TOTAL	COMMENTS - - -
Chromlum-Hexavalent	P or G/none	24 hours	200ml	CR-HEX	Cool 4º C
Mercury	P or G/1ml HNO ₃ pH<2	28 days	100ml	HG	Filter, add HNO ₃ 0 to pH <2

TRACE METALS

j

ł

.

																Se Re Da Pa		No.	19/25,	1 of	8	
	COMMENTS Cool 4° C	Cool 4° C			•••	Cool 4° C	,	Cool 4* C	Cool 4 C	Cool 4* C	Cool 4° C	Cool 4* C	Cool 4* C	Cool 4° C	Cool 4° C	Cool 4° C		Cool 4* C	Cool 4* C			
	COMMON NAMES TACID	TALK	BR	ರ	Chlorine Demand Chlorine Residual	O.	Ľ	NEHN	TKN	NO ₂ NO ₃	Non	PO	٩.	SIO ₂	s0,	Ø	so ₃	BOD5, BOD28	COD-M			
INORGANIC NON-METALLICS	VOLUME <u>REQUIRED</u> 100ml	100ml	100ml	Somt	200ml	500ml	300mi	400ml	Sooml	100mi	100ml	50ml	500ml	100ml	100ml	500ml	100ml	1000ml	100ml			
INORGANIC N	HOLDING <u>TIME</u> 14 days	14 days	28 days	28 days	Artalyze Immedialely	28 days 24 hours If S [°] present	28 days	28 days	28 days	28 days	48 hours	28 days	28 days	28 days	28 days	7 days	Analyze Immedialety	48 hours	28 days			
	<u>CONTAINER/PRES.</u> P or G/none	Glass/none Tefton Lined Septum	P or G/none	P or G/none	P or G/none	Plastic/1ml NAOH ph>12	P or G/none	P or G/1ml H ₂ SO ₄ ;pH<2	P or G/1mi H ₂ SO ₄ ;pH<2	P or G/1ml H ₂ SO ₄ ;pH<2	P or G/none	P or G/none	P or G/1mi H ₂ SO4;pH,2	Plastic Only/none	P or G/none	P or G/1ml ZnAC + NaOH to pH>9	P or G/none	P or G/none	P or G/1ml H ₂ SO ₄			
	<u>Patrameter</u> · Acidity	Alkaiintty	Bromide	Chloride	Chlorine	Cyanides	Fluoride	Nitrogen Ammonia	Kjeldahi, Tolai	Nitrite plus Nitrate	Nitrite	Phosphale	Total Phosphorous	Silica	Sulfate	Suttide	Sulfite	BOD	COD			

TABLE VI-1 - continued

TABLE VI-1 - continued

INORGANIC NON-METALLICS

COMMENTS Cool 4° C	Cool 4* C	Cool 4* C	Cool 4* C	Cool 4° C	Cool 4* C	Cool 4. C	Cool 4 C	Cool 4* C	
COMMON NAMES O&G	TOC	PHENOL	Ю	MBAS	418.1	C2H6O2	BF4	-	
VOLUME REOUIRED 1000ml	100ml	500ml	100ml	100ml	1000ml	20ml	.50ml	100ml	
HOLDING <u>TIME</u> 28 days	28 days	28 days	48 hours	48 hours	28 days	28 days	28 days	28 days	
<u>CONTAINER/PRES.</u> 1 Gass Quart/ 1ml H ₂ SO ₄ ;pH<2 Tefton Liner	P or G/1ml H ₂ SO ₄ ;pH<2	Glass Ct./1ml H ₂ SO ₄ pH<2;Teflon Liner	P or G/none	P or G/none	Glass Quart/HCI	Glass/HCI	P or G/none	P or G/none	
PARAMETER Oil and Grease	Total Organic Carbon	Phenolics	Orthophosphate	MBAS	Нат	Ethylene Glycol	Fluoroborate	lodide	

Section No. _____V Revision No. __1___ Date: ___09/25/92 Page ___7 ___of ___ 8

TABLE VI-1 continued

, seen

1

PHYSICAL PROPERTIES

PARAMETER Color	CONTAINER/PRES. Plasiic/none	HOLDING <u>TIME</u> 48 hours	VOLUME <u>REQUIRED</u> 100ml	COMMON NAMES COLOR	COMMENTS Cool 4° C
Conductance	Plastic/none	28 days	100ml	SPCOND	Cool 4* C
Hardness	Plastic/HNO3 to pH <2	6 months	100mł	HARD(CA+MG)	Cool 4ª C
Odor	Glass/none	24 hours	200ml	ODOR	Cool 4º C
рН	P or G/none	Analyze Immediately	100mi	рН	
Residue	Plaslic/none	7 days	500mi	Filterable, Total, Non- fitterable, Volatile	Cool 4º C
Settable Solids	P or G/none	48 hours	1000mi	SETTS	Cool 4° C
Temperature	P or G/none	Analyze Immediately	100ml	ТЕМР	
Turbidity	P or G/none	48 hours	100mi	TURB	Cool 4* C

BIOLOGICAL PROPERTIES

PARAMETER Total Coliform	<u>CONTAINER/PRES.</u> Plastic 4 oz Sterilized/ Na ₂ S ₂ O ₃	HOLDING <u>TIME</u> 24 hours	VOLUME <u>REQUIRED</u> 120ml	COMMON NAMES T-Coli	COMMENTS Cool 4° C
Escherichia Coli	Plastic 4 oz Sterilized/ Na ₂ S ₂ O ₃	24 hours	120ml	E-Coll	Cool 4* C Page Section
Fecal Coliform	Plastic 4 oz Sterilized/ Na ₂ S ₂ O ₃	6 hours	120ml	F-Coll	
Fecal Streptococcus	Plastic 4 oz Sterilized/ Na ₂ S ₂ O ₃	6 hours	120mi	F-Strep	
Standard Plate Count	Plastic 4 oz Sterilized/ Na ₂ S ₂ O ₃	24 hou rs	120ml	SPC	
Sultablity	Plastic/none	28 days	1500ml	Suitability	

319989

Section No.	VI	
Revision No."	1	
Date: 09	725/92	
Page1_	of	_24

SECTION VII. SAMPLE CUSTODY

A. <u>Chain of Custody Procedures</u>

The laboratory follows a chain of custody procedure. This procedure creates an accurate and legally defensible document that can be used to trace possession of a sample from its collection through analysis and final disposal. The chain-of-custody form is signed by all handlers of the sample. For CLP analyses, sample custody and handling are performed as required by NYSDEC and U.S. EPA CLP protocol. An example of a chain of custody is included as Figure VII-1.

A sample is considered in custody if it is:

- 1) In actual physical possession
- 2) In view after being in physical possession
- 3) In a locked repository
- 4) In a secure restricted area.

Formal custody begins with the shipment of precleaned properly preserved containers. The client contacts a section leader for sample bottles and the section leader submits a form requesting the proper containers to the sample custodian. An example of the sample bottle request form is included as Figure VII-2. After the request is completed and signed, the form is filed in a binder and kept in the sample tagging room for future reference.

Chain of custody forms are shipped with all sample bottles. The field sampler/client is responsible for filling in the sample location, date and time sampled,

Section No.	V	I
Revision No.	1	
Date: 0	9/25/92	
Page2_	of_	_24

sample matrix, and analysis required on the chain of custody. The field sampler signs the chain of custody when relinquishing custody and includes the form with the sample containers. Any comments that the sampler has is also listed on the chain of custody form. The field sampler is also responsible for filling in the sample labels that are present on every sample bottle. An example of a sample label is included as Figure VII-3.

Samples are shipped to the laboratory by common carrier or are delivered by the firm performing the sample collection in coolers packed with crushed ice to maintain the temperature at 4° C. Jars are wrapped in styrofoam sheets and put in plastic bags to help prevent breakage and cross-contamination.

B. <u>Control of Incoming Samples</u>

OBG Laboratories employs several sample custodians who are responsible for verifying the receipt of samples. When samples are received, the sample custodians follow the steps outlined below.

- 1) Coolers are checked to verify that the samples listed on the chain of custody were actually received. A notation is made of any missing samples.
- Samples are checked and a notation is made of any samples that were received broken or damaged.
- 3) The Chain of Custody is signed and dated to verify time of sample receipt.
- 4) The sample custodian records the temperature of the cooler when received and verifies the proper preservation for the parameters requested by checking and recording the pH of each sample with the exception of volatile samples.

No.	VII				
No.	1				
097	25/92				
3	of	_24			
	No. 09/	No. 1 09/25/92	No. 1 09/25/92		

- 5) Coolers are checked for low level radiation with a geiger counter.
- 6) Each sample is assigned a unique laboratory identification number to make tracking of samples easier. Numbers are assigned sequentially. Each project is also assigned a unique project number that contains the client ID and job number.
- Laboratory report forms are filled out and distributed to the appropriate laboratory personnel.
- Samples are logged into the LIMS and the analyses are scheduled from the laboratory report form.

The observations of the sample custodians and any comment that they have are noted on the case file form. An example of the case file form is included as Figure VII-4. Samples are not routinely rejected by the laboratory. When problems arise the client is notified of the deficiency and a decision is made to continue or resample. Whatever the decision is, it is noted on the final report. If samples are improperly preserved, the client will be notified and the samples will be rejected if the client so desires.

The sample custodian tags each sample with a unique laboratory sample number which is input into the computer and recorded onto the sample log-in form. An example of the sample log-in form is included as Figure VII-5. The sample log-in form is filed in a three ring binder and functions as a sample receipt log book. The sample custodian fills out a laboratory report form which is copied and distributed to the section leaders. An example of a laboratory report form is included as Figure VII-6. The laboratory report contains the date the samples were collected, the date the samples were received, the

VII Section No. Revision No. Date: 09/25/92 Page 4 24 сf

client sample description, the laboratory sample number and all tests that are required.

The chain of custody effort is intensified at the request of the client. The intensified procedure starts with the use of red evidence tape in the field. Each container is sealed with the tape at the sampling site and shipped in sealed coolers to the laboratory. When the samples are received by the laboratory, the condition of the sealed containers is recorded on part one of the sample control record and the laboratory numbers are assigned. An example of part one of the sample control record is included as Figure VII-7. Samples with red evidence tape must be signed in and out of the locked secured cooler using part two of the sample control record. An example of part two the sample control record is included as Figure VII-8.

The field chain of custody form, case file form, sample control record, and original laboratory report form are kept on file outside the walk-in cooler. All samples are stored in a secured, locked walk-in cooler.

Any errors made while completing the chain of custody forms are corrected by deleting the entry with one line through it, correcting the error, and dating and initialing the correction.

A complete chain of custody file is included as Appendix B.

C. <u>Schedulina</u>

The purpose of scheduling is to notify the manager, section leaders, chemists and technicians of the arrival of a sample and the tests to be performed.

Analyses are scheduled on the LIMS by the sample custodians from the laboratory report forms. A work schedule is printed every morning listing sample

Section	No.	VI					
Revision No1							
Date:	09/	25/92					
Page _	5	of	24				

numbers, tests required, due date, days left until the holding time expires, and bin number where the samples are located. An example of the work schedule is included as Figure VII-9. The analysts use the work schedule to identify what samples they are required to analyze. The section leaders review the work schedule with the analysts to ensure priorities and holding times are being met.

D. <u>Sample Tracking</u>

- 19

.

Our tracking system relies on project numbers and sample numbers. Therefore, laboratory sample numbers and client ID numbers are recorded on all raw data and preparation logs. Examples of the sample prep and analysis logs are included as Figures VII-10, VII-11, VII-12, and VII-13. Samples are primarily tracked using the laboratory sample numbers. Project status is tracked using project numbers and sample numbers.

E. Location and Disposal

All samples are stored in a locked walk-in cooler. Chain of custody samples are signed in and out of the cooler by the analyst performing the analysis. Sample extracts or digestates are stored in refrigerators in the appropriate lab section. Standards are stored in separate refrigerators in the appropriate lab section.

A separate system is used to help the chemists and technicians locate samples in the cooler. The system also gives direction on the ultimate disposal of the samples. The system has been termed the bin system. After the chain of custody record is processed, the samples are placed in a bin in the cooler. Each bin has a unique number which is transcribed on the sample bottles, the laboratory report form and in the computer. The number helps the chemists locate the sample and return it to the correct

VII Section No. Revision No. Date: 09/25/92 6 Page

place.

The sample custodian fill out a bin index card, which is submitted to the section leader responsible for the job. An example of a bin card is included as Figure VII-14. When the program is complete, the section leader signs the card and returns it to the sample custodian. The section leader states the method of disposal or whether the samples should be saved. One month after the receipt of the bin card the sample custodian disposes or archives the sample as stated on the card. Additional information on sample disposal can be found in Section VIII.

F. <u>Sample Transfer</u>

If analysis of the samples is not possible at OBG Laboratories, Inc., then the samples will be subcontracted to another approved laboratory. The samples will be packed in coolers at 4° C and be shipped by common carrier or delivered by OBG Laboratory personnel. A chain of custody listing OBG Laboratories sample number, sample preparation date and tests required will accompany the samples.

G. <u>Computer Services</u>

OBG Laboratories has a LIMS system in place. The system is currently only being used for scheduling analyses and generation of control charts. Client reports or other types of forms are not being computer generated.

The QA/QC officer is responsible for verifying that the QC data was input properly and that it is being calculated properly by the computer. Whenever control charts are printed or control limits generated, the information is checked for accuracy.

Each analyst has a unique sign on code and all QC data that they enter into the

VII Section No. Revision No. 09/25/92 Date: 24 of

data base is associated with their sign on. A password has to be entered in order to gain access to the data base. System management also has several passwords that need to be entered in order to gain access to programs that allow changes to be made to the data base.

A full backup of the data base is done weekly and a partial backup is done daily in order to protect against data lose in case of a system failure.

All software documentation is kept in a notebook provided by the software manufacturer. All software updates and any failures and the action required is documented in the system history log. An example of the system history log is included as Figure VII-15. Whenever software updates are done, several sets of trial data are run through the system and checked for the appropriate results.

CHAIN OF CUSTODY RECORD

FIGURE VII-1

Section	No.	VII				
Revision	NO.	1				
Date:	097	25/92				
Page -	8	of	24			

SURVE	SURVEY:			SAMP	LED BY	_			
LOCATI	ON:			ORGA	NIZATIO	DN:			
STATION NUMBER	SAMPLE LOCATION	DATE COLLECTED	TIME COLLECTED	SAMPLE MATRIX	COMP. OR GRAB	NO. OF Containers		ANALYSIS REQUIRED	
								- - -	
Relinquished	d By:	DATE	TIME	Received	By:			DATE	TIME
Relinquished	d By:	DATE	TIME	Received	By:			DATE	TIME
Relinquished	d By:	DATE	TIME	Received	by Laborato	ry:	<u></u>	DATE	TIME

COMMENTS:

METHOD OF SHIPMENT:

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200

-	ABORATORIES, INC.		FIGURE V	/11-2				
I	ROGRAM INFORMAT	TION						
	Client/ Affiliate: Program or	Company Name Project Eng. Program Title				D:	iv	-
	Survey:	Name of Sampler	•					
	Level of QC Document- ation	I II III	CLP	ASPCLP		(circ)	Le one)	
lo;	AMPLE BOTTLE PR	REPARATION			······································			
	Samples:	Sites Ma	trix		<u>Analysi</u>	s Requi	red	
	Bottles:		. of ttles	Size of Bottle	Glass o: <u>Plastic</u>		eservat	tive
	Bottle	Sta	ndard	I C	hem (C	Check Or	e)	
	Type:	(more	informat	ion requir	ed on bac	ck)		
		- -					319998	

Shipping and Bill	ling Information	Section No Revision No1 Date:09/25/92
Address:	Shipping	Bil Page 10 of 24
Person	·	
Company		-
Street		
City/St./Zip		
Telephone #		
P.O. / Job #		
Method of Shipment & Due Date	Pickup Regular 2 Day Date:	Overnight
Who will Pay Freight ?	OBG Laboratories, Inc. Client (record client job # under shipping address)	(any method of freight other than routine mail is paid by the Client)
Secondary Contain- ment ?	YesNo	(check one)

a	bora	atory	Approva.	ls and	i si	igna [.]	cures	
							Contraction of the local division of the loc	

5 8 -1-	Submitted	By:		Date	Submitted	•
	Approved	By:		OBG	Project No	:
	Prepared	By:	' . 	Date	Sent:	

.

Section	1 No. 💷		1
Revisio	n No.	1	
Date:	097	25/92	
Page _		of	_24

÷

;

FIGURE VII-3

LABORATORIES, INC.	
Sample Description:	
Sample Date: Project No.: Date Received: Preservation:	Initials: Sample Time:

		Section	No	IN
•	CASE FILE	Revision		
		Date: Page	09/2	5/92
Survey:	EIGURE VIL Pate Collected:	Page	_12	_or2
sampler:	Date Received:	- <u> </u>		
Client Name and Ref. #: _				
CONDITION OF SHIPMENT:		······································		
<u></u>				
ADIOACTIVITY SCREENING*:	were screened for radioactivit		 2 	
ADIOACTIVITY SCREENING*: The sample cooler(s) handling.		y and foun	d saf	
ADIOACTIVITY SCREENING*: The sample cooler(s) handling.	were screened for radioactivit a safe source and do not need to	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling.	were screened for radioactivit	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling.	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling.	were screened for radioactivit a safe source and do not need to	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen linator	d saf ed.	e for
RADIOACTIVITY SCREENING*: The sample cooler(s) handling.	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen linator	d saf ed.	e for
ADIOACTIVITY SCREENING*: The sample cooler(s) handling. The samples come from	were screened for radioactivit a safe source and do not need to Signed: Sample Coord	y and foun be screen linator	d saf	e for

~

.....

na stru

 $2 m_{\rm p}$

**Samples are disposed of four (4) weeks after a typed report is signed and mailed to the client. The routine method of disposal is: water samples are filtered through carbon to a sanitary sewer, solid samples are sent to a sanitary landfill.

CENT. SAMPLE LOG PRESERVATION CHECKS SAMPLES RECEIVED NUTRIENTS DEMANDS METALS CYANIDE HARDNESS OIL A GREASE PHENOLICS SULFIDE PESTICIDES PAGE NO. _____ OF___ 붛 CLIENT PROJECT No. PROJECT LAB SITE COLLECTION BIN SCTN PARANCTERS NAME DESCRIPTION NUMBER NO. DESCRIPTION DATE TIME NO. LDR FIGURE ₹ da Section No. VI Revision No. 1 Date: 09/25/92 Page 13 of ≦

ł

22

	SECTION LEADE	ER:		-	Section No.	M
	LEVEL OF REPO	DRT:		_	Revision No.	1
LABORATORIES, INC.	DATE SCHEDULE	D: FIGURE VI	-6	-	Date:09/2 Page14	5/92
CLIENT				_ JOB NO		
DESCRIPTION				MATRIX:	tan and Amerikan and a diffet filter of the State S	
	DATE COLLEC	CTED			′ED	
		1	ł	I	1	
n na sana ang ang ang ang ang ang ang ang ang	() and the sume	ي من ال	- 1			1. 1
en e	· · ·		• •			
		o no teo de pr <u>a</u>	n nga kara pa	en e		
·	ang a ng		· · · · ·		• • •	· . •
	an a	-	an a ta	•		**
n. State of the state of	andra Andra an taon ang ang ang ang ang ang ang ang ang an	• •			······································	
an a	n Angele and an angele and an Angele and an angele an Angele an		e de la composition de la comp			- •
		· • •				
n an	a page an					
a a constant a constant A constant a constant a A constant a		n Na Start Start		•		· .
n na standar an	en al francés de la companya de la c		i na serie serie serie na serie serie serie series		n in the second se	· · · · · ·
ાય અને અને પ્રાપ્ય કરવાય છે. - જ્રિટ્સિટ જ્વિટ વ્યવસ્થી આવ્ય છે	a ang ang ang ang ang ang ang ang ang an					nan na

Comments:

1000

......

. موروب کې

Certification No.:

Units:

320003

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200 Authorized: ____

Date:

1 ³ .)]		· · · · · ·	
Sample Custo	dian Signature		<u></u>		Client Name:		_
ate of Samp	le Login:		·	and a support of the support	Project No.:		
\irbill Numb	er:				Bin Number :_		
	-		<u>Circle</u> Th	ne Appropriate R	esponse:		
32	1)	Custody Seal		esent/Absent tact/Not Intact	4) Sample Ta	ag #'s Listed/Not Listed	1
0004	2)	Chain-of-Cust	ody Pre	esent/Absent	5) SMO Form	s Present/Absent	
H7	3)	Sample Tags	Pre	esent/Absent			
Date Rec'd.	Time Rec'd.	Chain-of Custody Record #	SMQ Sample Numbers	<u>CORRE</u> Sample Tag Numbers	SPONDING Assigned Lab Numbers	Does Information On Custody Forms Traffic Reports & Sample Tags Agree ?	Remarks FI G C R E
							IRE
							VII-7
							ange af de la faire a la fair de la faire de la faire de
	•						<u>ግ ግ ግ ግ የ</u>
							Section No. Revision No Date: 0 Page 15
							Section No. Revision No. Date: 0 Page 15
				· · · · · · · · · · · · · · · · · · ·			9/25
					· · · · · ·		
					• •		2
				······································			

SAMPLE CONTROL RECORD

DATE REC'D:

BIN NUMBER:

 $\sum_{i=1}^{n}$

CLIENT:

JOB ∦:

DATE AND TIME REASON DATE AND TIME REMOVED LABORATORY RETURNED REMOVED SAMPLE NUMBER BY FIGURE V 2 . ÷ Section No. VI Revision No. 1 Date: 09/25/92 Page 16 of **`**≦ 2 .

320005

, NOV 20, 1990, 12:15 AM	3200	06)		<i>i</i> <u>i</u>) - 1
	**********		•••••	***********	OBG Laboratories, Inc	*****
Department: WET CHEMISTR	Y (WETCHM)				Work Schedule	*
Jorkstation: DAN ROBERTS	(008)					•
			· · · · · · · · · · · · · · · · · · ·			+
******	********	***************		***********		*******
1		,				
HETER: CL VATER	Chloride	·	UNITS: (mg/L)	SIGNIFIC	CANT DIGITS: 6	
Samplet Company Harre	Quate Result	Project# Site/Cust-IB	III. Samplate Sampline Due Date La	st Result Locator	Loudate	
000012-3877	2313	2313002317	17 90/11/09 00:00 90/12/03	118	90/11/19	
000012-3390	3057	3057002517	20 90/11/12 00:00 90/11/27	56	90/11/13	
000012-3878	2313	2313002517	00/00/00 00:00 . 90/12/03	118	90/11/19	
PTTO, NUTH ON ID	Annania Mita	•		810NIE1	PANT DIRITO. A	
<u>1ETER: NH3N SOLID</u>	Ammonia Nitr	yen	UNITS: (mg/kg)	SIGNIFIC	CANT DIGITS: 4	
Samplet Company Name	Cust# Result	Project# Site/Cust-I#	III. SampBate SampTime Due Bate La	st Result Locator	Logdate	
000012-3389 HILLER BREHING COMPANY	1669	1669041317	00/00/00 00:00	. 58	90/11/13	IGU
METER: NH3N WATER	Ammonia Nitrog	jen	UNITS: (mg/L)	SIGNIFIC	CANT DIGITS: 4	 ד ר
Samplet Company Have	Cust@ Result	Project# Site/Cust-Il	MR. Samplete Sampline Due Bate La	est Result Locator	Logdate	
000012-3319	3254	3254006520	16 90/11/08 00:00 90/11/26	11	90/11/13	9
000012-3789	1163	1163061517	23 90/11/15 00:00 90/11/29	27	90/11/16	·
000012-3790	1163	1163061517	23 90/11/15 00:00 90/11/29	27	90/11/16	
000011-7360	1163	1163061517	00/00/00 00:00 90/08/19	13	90/08/08	
000011-7674	1163	1163061517	00/00/00 00:00 90/08/30	21	90/08/15	
000011-7979	1163	1163061517	00/00/00 00:00 90/09/10	11	90/08/21	
000011-0911	1163	1163061517	00/00/00 00:00 90/09/19	47	90/09/05	
000011-9238	_1669	1669041517	00/00/00 00:00 90/09/21	45	90/09/07	
000012-0686 000012-3320	3068 3254	3068029517 3254006520	00/00/00 00:00 90/10/12 00/00/00 00:00 90/11/26	11	90/10/18 90/11/13	
TETER: NO2N SOLID	Nitrite Nitrog	100	UNITS: (mg/kg)	SIGNIFIC	CANT DIGITS: 4	
	-					P Date: ge sige
Samplet Company Name	Cast# Result	Projects Site/Cust-IS	MML SampBate SampTime Due Date La	st Result Locator	Logdate	
000012-3389 /	1669	1669041517	00/00/00 00:00 90/11/13	58	90/11/13	
e ne ne e men						17 o S
ETER: NO2NO3SOLID	Nitrite - Nitr	ate Nitrogen	UNITS: (mg/kg)	SIGNIFIC	CANT_DIGIT8: 4	8.5
						
Sample® Concern Have 600012-3268	<u>Custë Result</u> 2439	Project# Site/Cust-IB	NHL Samplate Sampline Due Date La			
vvvi (* 3699	66753	3435001170	17 90/11/09 00:00 90/11/19	2	90/11/09	
METER: NO2NOJVATER	Nitrita - Nitr	ate Nitrogen	UNITS: (mg/L)	SIGNIFIC	CANT DIGITS: 4	

			INDUCTIVE	77/ L7 COUPLED	ce refils Plasm solu	s digestion	106	Revisio	n No n No	1
								Date.	09/25/	32
Sample	dat a	,	FIGU Bin f	Initi	al Final	Color Sefore		Color After	Tertire Artifacto	Nerceris
344014			1				<u> </u>	~~ 48		
	1									
	1		1				T			
				· ·		1			1	
				+		+	+			
			·							
						1			<u> </u>	
	1	·				<u> </u>				<u> </u>
L	1					<u> </u>			1	
								<u> </u>		ļ
I		•								
						1				1
										1
	1						1			
	1			1						
		j					1			
	1	1	• •	1			1			i i
					1 1		1			İ
	1	1		<u> </u>			[
	1				1 1					1
	1									
	1									
 	1									i
					<u> </u>			<u> </u>		
	[
							_			
			1							
		1	1			ł		1		1
-									•	
Respents:										
		P+	examed by:				Come	rt3:		
							~~~~			
	/				<u> </u>					
·c= /		3at	en /	<u> </u>	· · · · · ·	`				

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittontield Parkway / Suile 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200

~

$\mathbf{i}$										en D	- *	<b>`)</b>
Project I	Project	Sa ple	GC/MS : Da		REPARATION A	ND EXTRA	CTION LOG	BOOK - Vol.	SOILS	Final	Extract	
Client Job WI	Title	Number	Rec'd.	Ext'd.	Analysis	Method	Ext'd.	Surr.	pH	Vol.	Solvent	Comments
												· ·
			·									
												<u>n</u>
· · · · · · · · · · · · · · · · · · ·								1				FIGURE VII-11
												<u></u>
						<u> </u>						
									·			
· · · · · · · · · · · · · · · · · · ·							1	1				
· · · · · · · · · · · · · · · · · · ·												Revisio Page
					·							
									·			19 09
Notes	32000	)8					Extra	to P	6 ₇ :			

	e																		 	Sec Rev Dati Pag	<b>isio</b> e:	n No n No 2	o. 097	•	<b>VII</b> 192 f	_24	
			•		•	•												•	<b></b>	,	•					]	
		f Conc.	Ni crogram Spk. Added										-	Microgram			••••										•
. San		с и х са	JUNE DE LE D	•	•							, T		Cone. W/ml													
SUMDATES STADUARS	•	AL SS Conc.	Valume 25 Stack Used		•			-		NG/NGD STANDARDS	• •	ALC	•	Velume KS/KSD Stock Used						:							
	DIAL CT	Surrogates Stack Solution	Surrogate		1.	I.4.4-Tribromophenol	Ni trobenzene 4-5	2-fluoroki pheny l	Terphenyl 4-14		MAS CLP	MS/MSD Stack Selucion		Spite Compound	Pentachi orophenol	Phenol	2-Chiorophasel		4-Mi trophenal	1.2.4-Trichlerobenzene	Acers prichase	Z. 4-U ini trataluane	: •mLL	N-altrose-di-e-propylanine	l.4-dickjorabenzene	di-a-buty Inhtha late	
•	·			•	•							1999	•						I		<u>*</u>		· <b></b>	<u>*  </u>		3	

.....

. • :

320009

۰.

÷.

·##### 1+

Section No.

VI

Test	mont and C		_ Ana	lyst _			Datejate	No. 1 09/25/92
Instr	ment and C	alibrat. —	<b>FIGUR</b>	20/Ibd	zion			0
	Project#						(TC-IC)	
*	••••••••••••••••••••••••••••••••••••••						-	<u></u>
	·····	· · · · · · · · · · · · · · · ·	······································				·	
······································		· · · · · · · · · · · · · · · · · · ·	······································					
						<del></del>		• • • • •
	······································							
	•							
			<del></del>					
							· · · · · · · · · · · · · · · · · · ·	
						«		-
			·····					

بضع

Signature

320010

.

_			
Ξ	السنيفينيات		
-			
_			
LAB	ORAT	ORIES	i, INC.

# Section No. VI Revision No. 1 Date: 09/25/92 Page 22 of 24

#### FIGURE VII-13

•

AMMONIA NITROGEN METHOD: 350.1

GINNING AN	ALYSIS TIME:			:ENOI	NG AMALYSI	S TIME:			
V : TRUE		FOUND	7.R	: IC8_		CC31	CC32		
V1:TRUE		FOUND		:CC33		CCS4			
V2:TRUE		FOUND	X	:REF#	ī	·		28	
V3:TRUE		FOUND	<u>x</u> R			EFFICIENT :			
THIY CRIVE	- 211N #		SOURCE:			······································			
IKIN JEING	-755111 T.		/		1004		· · · · · · · · · · · · · · · · · · ·		
-		SAMPLE A	/.	05518 T.			X100% =	•	
PLICAIS: A	un 7								
RUN #	PROJECT	Ø SAMPLE I	≠ ABS.	INITIAL CONC. (PPM)	OF	FINAL CONC. (PPM)		CONH.	
					فسنجيبه				
			•						
			• •••••••••••••••••••••••••••••••••••••	<u></u>	<del></del>				
			•						
		_							
		 -							_
-									_
	•						······································		-
									_
		-		ن میں ایک میں ایک میں ایک میں میں ایک میں					_
									_
		· <u> </u>				·	•		_
				······			· · · · · · · · · · · · · · · · · · ·		•
	·								•
NT AND/OR						-		<u></u>	•
m Phenoiat m Hypechio	:e		ANALYED BY:		·····				
·F	sside		REVIEWED BY:	e			<u></u>		
(1.000 pp Stock (10	m)								

i i

. .

Section	1 No	VII	
Revisio	n No.	1	
Date:	097	25/92	
Page _		of	_24

### FIGURE VII-14

.

-,-

. . . .

CLIENT	BIN#
PROJECT#	DATE REC'D
SAMPLE#(s)	
SAMPLE#(s) CONTAINERS(s)	
NITIAL(s)	···
DISPOSAL COMMENTS	
INITIAL	DATE



Į١

3

:

:

ŷ

, 9

1

TO BE COMPLETED BY USER				TO BE COMPLETED BY HP					
Date of Entry	System Operator	HP Notified Date/Time	CE On Site Date/Time	Customer Service Order (RO) Number	Down Time	HP Customer Engineer			
Malfunction Descript	l ion:	<u> </u>	Action Requ	l ired and Comm	l	<u> </u>	****		┥
÷••						n et det ma		· • •	
								П	
unit								IGU	
idev serial #								FIGURE VII-	
	••••••••••••••••••••••••••••••••••••••	1			••••••••••••••••••••••••••••••••••••••			the second se	
								G	
						<u> </u>			4
Malfunction Descript	lion:		Action Requ	uired and Comm	ients:				
								Page	Hevision No.
unit				•					
ldev						~			<u></u>
seriai #								09/25/92	
47041-12			<b>.</b>						≝¦≦
								'N	1

320013

1

Section No.	VIII	
Revision No.	0	
Date: 10/0	01/91	
Page1	_of_	25

#### SECTION VIII. ANALYTICAL PROCEDURES

#### A. <u>Analytical Methods</u>

A list of analytical methods used in the laboratory is included in Table V-1. Method numbers are cited from the following manuals:

- U.S. EPA. Methods for Chemical Analysis of Water and Wastewater.
   Revised March 1983. EPA 600/4-79-020.
- U.S. EPA. Test Methods for Evaluating Solid Waste. 3d Ed. November 1986. EPA SW-846.
- APHA, AWWA, WPCF. Standard Methods for the Examination of Water and Wastewater. 16th Ed.

Detection limits are listed for guidance only. The required limits vary depending upon the governing regulation and matrix. For CLP analyses, the methods and detection limits specified in the NYSDEC or U.S. EPA CLP are followed.

B. <u>Method Modifications</u>

Method 8020 was modified for the Volatile Petroleum Hydrocarbon analysis. The modification was the use of a capillary column instead of a packed column. Method validation is available upon request.

All other methods are not modified.

#### C. <u>Waste Disposal</u>

Laboratory workers are trained to be cautious when handling samples, spent chemicals, toxic, or dangerous materials. OBG Laboratories has a hazardous waste

VIII Section No. Revision No. 10/01/91 Date: 25 2 Page

officer who is responsible for coordinating and overseeing the disposal of waste and the cleanup of any accidental spills. The laboratory has a hazardous waste room where waste is stored in DOT- approved 55-gallon drums until disposal. Solvent wastes are currently separated into four categories: chlorinated, non-chlorinated, PCB (liquid) and PCB (solid). Solvent waste is collected in chemically resistant plastic coated bottles and stored in a well ventilated area until it is transferred to the appropriate 55-gallon drum. Mineral acid wastes are collected in a polyethylene DOT-approved 55-gallon drums. Laboratory hazardous wastes are manifested and disposed off-site at NYSDEC- and U.S. EPA-approved disposal facilities. Sample extracts and sample digestates are handled in the same manner as solvent and acid wastes.

0

The method of sample disposal depends on the analytical data generated. The results are compared to RCRA criteria and local disposal ordinances and a decision is made in connection with the hazardous waste officer to the means of disposal. If the sample is classified as hazardous, it is placed in the appropriate drum in the hazardous waste room. Upon filling the drum, the hazardous waste officer manifests the drum, arranges for disposal and files the disposal logs.

#### D. <u>Cleaning of Glassware</u>

The method of glassware cleaning is adopted to both the substances that are to be removed and the determinations to be performed. Class A volumetric glassware is not baked.

1. Organic Glassware

a. Volatile Analysis

Section No	o. Vil	1
Revision No	o. 0	
Date:	10/01/91	
Page 🥂 🕄	3of	_25

Glassware used for volatile analysis is cleaned in a soapy Alconox solution and then rinsed four times with carbon column water. The glassware is then rinsed with methanol and baked at 180° C overnight. Glassware for volatile analysis is stored in drawers in the volatile organics lab.

b. Semi-volatile Analysis

Glassware is prerinsed in solvent and then washed with an Alconox solution and rinsed with DI water. The glassware is allowed to drain and is then rinsed with nanograde acetone and a final rinse with the nanograde solvent used in the extraction procedure. Glassware is wrapped in foil and stored in the appropriate drawers.

2. Metals Glassware

Metals glassware is washed in an Alconox solution and then rinsed with 1:1 HCl, followed by a DI water rinse. The glassware is then soaked in 1:1  $HNO_3$  for about 4 hours and a final rinse is done with DI water. Glassware is stored inverted in the metals digestion lab in the appropriate drawer. Pipets and volumetric flasks are stored in the metals lab.

3. Inorganic Glassware

The glassware is cleaned in an Alconox solution. It is then rinsed with tap water followed by DI water and allowed to dry. Glassware is stored inverted in drawers or a cabinet in the wet chemistry lab. Glassware for phosphorous analysis is washed separately from other inorganic glassware. It is rinsed in an HCl solution and then rinsed with distilled water and

Section No.	VIII	
Revision No.	0	
Date:10	/01/91	
Page 4	of	25

allowed to dry. It is stored inverted in the appropriate drawer in the wet chemistry lab.

#### D. <u>Quality of Lab Water</u>

Distilled and deionized (DI) water with a conductivity of less than 1.5 micromho/cm is used to prepare all reagents and for final rinses of glassware. The conductivity and pH are measured and recorded daily. A standard plate count is performed monthly along with the chlorine residual test. Suitability and heavy metals are tested on a yearly basis. The results of all tests on the DI water supply are documented in a laboratory notebook.

The lab also uses organic free water in the preparation of samples for organic analysis. Distilled and deionized water is passed through a carbon column to remove organic compounds. The water is tested daily for any contamination and the results are documented in a laboratory notebook.

#### E. <u>Reagents/Solvents and Standards</u>

Reagents/solvents for quantitative purposes are ACS grade or better. All reagents are discarded after a set interval which has been established and recorded in the standards logbook. The date a prepared reagent is made is entered into the standards logbook and initialed by the preparer. Therefore, the results which may have been affected by a contaminated or otherwise improper reagent can be determined. Reagent bottles are also dated and initialed when a new reagent is prepared. These procedures are followed for all (even daily) preparations.

A listing of all reagents and chemicals stored in the laboratory is included as

Section I	No		
Revision	No.	0	
Date:	107	01/91	
Page	5	of	25

Table VIII-1.

Section I	NO.	VIII	
Revision	No.	0	
Date:	10	/01/91	
Page	6	of	25

## TABLE VIII-1

Jet chemical areas

Chemical Name - /		CAS Number	Hanufacturer	Date	Weight (Units)	Amount Lef
Double Door Cool	er					
	• •					
Hydrogen peroxide	t	7722-84-1	Fisher		500 mi	0.75
			Fisher	• •	62500 mi	unopened
White Fridge						
**********						
Sodium sulfite no	onshydrate	1313-84-4	Aldrich	10-27-87	500 g	0.75
Large Wall Cabine	2 <b>t</b>					
	••					
Acetic Acid, Glad	ial .	64-19-7	Malling.		500 mi	0.25
Mercuric Oxide Re	d	21908-53-2	Mallinc.	2-21-72	221/4 15.	0.75
N-(1-Naphthyl)eth	vlene-diamine	1465-25-4	Kodak	4-20-81	100 g	fuli
Dihydrochloria	ie		MCS		100 g	0.25
Phenoi (liquified	i)	108-95-2	Mailinc.		5 pints	empty
Potassium Nitrate	2	7757-79-1	Mallinc.	8-7-86	125 g	0.75
			Mailinc.	8-7-86	500 g	0.75
Potassium Phospha	te Monobasic	7778-77-0	Halling.	6-28-84	500 g	0.75
Sodium Nitrate		7631-99-4	HCB		1 Lb.	0.75
Sulfanilamide		63-74-1	Fisher	1-20-88	100 g	0.25
amell Wall Cabine	t		•			
*************	•					
Ammonium Holybdat	e	12054-85-2	Fisher		500 g	0.5
Untimony Potassiu	m Tartrate	28300-74-5	Fisher	2-21-72	1 lb.	fuil
Silver Nitrate	-	7761-88-8	Anachemia	2-1-77	1 quart	0.25
Silver Nitrate St	andard Sol.		Fisher		1 líter	0.75
arious Places in	Wet Chem					
unmonium Hydrogen	•	7783-28-0	Morton Thickol	11-4-88	500 g	0.75
amonium Phosphate	E UIDASIC	7783-28-0	Fisher	1-20-88	500 g	full
enzoic Acid		65-85-0	Parr Instrument		30 g	full
uffer Solution p	4.00	X/A	Fisher	3-3-89	500 mi	0.5
			Fisher	3-3-89	500 mi	0.125
**			Fisher	3-3-89	22500 mi	unopened
luffer Solution ph	1 7.00	N/A	Fisher	3-3-89	500 mL	0.125
			Fisher	3-3-89	500 mi	unopened
Suffer Solution ph	10.00	NZA	Fisher	3-3-89	500 mL	0.75
			Fisher	3-3-89	500 mi	0.75
			Fisher	3-3-89	2 <b>2500</b> mi	unopened

Assorted A.A.S. Standards

Assorted Atomic Absorption Standards

Section No. VIII	
Revision No. 0	
Date:10/01/91	
Page 7 of	

Microbiology room

٠.

Chemical Name - As Labelled	CAS NO.	Manufacturer	Date	Veight (Units)	Amount Left
******	*******	***********		************	**********
fridge					
Sromothymol Slue	76-59-5	Mailinckrodt	8-14-84	1 liter	full
Rosolic Acid	603-45-2	HCB	4-1-77	25 g	0.5
		Mailinc.	6-17-74	5 g	0.25
		Matline.		25 g	0.75
Cabinets & Countertops					
Amyi Alcohoi	71-41-0	Mailinc.	2-6-76	1 pint	fuil
		Mallinc.	2 <del>-6-</del> 76	1 pint	unopened
Anilin Blue	28631-66-5	Eastman		25 g	0.25
L-Arginine	74-79-3	Sigma		100 g	fuil
Crystal Violet	548-62-9	HCB	10-19-73	100 g	0.75
p=0imethylaminobenzaldehyde	1 <b>00-</b> 10-7	Mallinc.	6-23-72	25 g	full
Fluoride Standard - 100 ppm		Banco		500 mL	0.5
Flouride Standard - 10 ppm		Banco		1 liter	0.5
Formaldehyde solution	50-00-0	Meiling.	10-4-74	1 pint	unopened
Glycerol	56-81-5	Mallinc.	2-21-72	1 pint	0.5
Hexane	110-54-3	Fisher	4-14-89	4 liter	0.75
* Malachite Green Oxalate	2437-29-8	Mallinc.	3-26-75	25 g	unopened
Methanoi	67-56-1	Fisher		4 liter	0.5
Methyl Red	493-52-7	Matlinc.	2-21-72	1 ounce	0.5
Hethyl Violet	8004-87-3	Mallinc.	5-10-82	100 g	0.5
L-Ornithine Hydrochloride	3184-13-2	Sigme		25 g	0.5
Rosolic Acid	603-45-2	MCB		25 g	minimal
		MCB	8-17-78	25 g	0.5
* Safranin O	477-73-6	MCB	1-6-76	100 g	0.75
2,3,5,-Triphenyl-2H-tetrazolium chloride	298-96-4	HCB		25 g	0.25

* Have expired.

Section No.	VIII	
Revision No.	0	
Date: 10	)/01/91	
Page 8	of	_25

#### Waste Room

Chemical Name - As Labelled	CAS No.	Manufacturer	Date	Weight (Units)	Amount Left
***************************************			******	************	**********
Acetonitrile	75-05-8	Nallinc.	3-13-86	1 gal	full
Alumina Acid	1344-28-1	ICN		50 kg	
Chloroform	67-66-3	Fisher		500 mL	unopened
Cyclohexane	110-82-7	Mallinc.		4 liter	unopened
		Mailinc.		4 liter	unopened
		Mallinc.		4 liter	fuil
Hanganese Sulfate	10034-96-5	Mallinc.		1 liter	full
		Mallinc.		1 liter	full
		Nallinc.		1 liter	fuil
N-Propyl Alcohol	71-23-8	Mallinc.		4 liter	unopened
Silica Gel	7631-86-9	ICN		25 kg	
1,1,1-Trichloroethane	71-55-6	Fisher	6-26-89	20 liter	unopened

#### Cases

----

Acetic Acid, Glacial - 5/6 case	64-19-7
Acetone - 6 cases	67-64-1
Ammonium Hydroxide - 1.5 cases	1336-21-6
Chioroform - 1 case	110-82-7
Hexane - 5 cases	110-54-3
Hexanes - 1 case	73513-42-5
Hydrochloric Acid - 1 + 2/6 cases	7647-01-0
Iso-Octane - 1.75 cases	540-84-1
Methanol - 3.75 cases	67-56-1
Methylene Chloride - 8.5 cases	75-09-2
Nitric Acid - 1 case	76 <b>97-3</b> 7-2
Phosphoric Acid - 5/6 case	7664-38-2
Sodium Thiosulfate Solution - 3.5 cases	10102-17-7
Sulfuric Acid - 1 case	7664-93-9
Toluene - 1 case	108-88-3

Section N	0.		
Revision N	10.	0	
Date:	10/	/01/91	
Page	9_		_25

# Acids stored in acid cabinet

Chemical Name	CAS Number	Hanufacturer	Date	Weight (Units)	Amount Left
	********		******	***********	*******
Acetic Acid, Glacial	64-19-7	Fisher		500 mi	0.5
Hydrochloric Acid	7647-01-0	Fisher		2.5 liter	0.5
Hydrofluoric Acid	7664-39-3	Hallinckrodt		1 lb.	full
Nitric Acid	7697-37-2	J.T. Baker		500 mi	minimal
		J.T. Baker		500 mi	0.25
		Fisher	6-28-89	500 mi	minimat
		Fisher		500 mi	0.125
		Mallinc.		500 mL	0.75
- Perchloric Acid	7 <b>601-9</b> 0-3	Mellinc.		5 lb.	0.5
Phosphoric Acid	7664-38-2	Mailinc.		8 lb.	0.75
		Mallinc.		8 lb.	0.75
Sulfuric Acid	7664-93-9	Fisher	6-20-89	2.5 liter	0.125
		Fisher		2.5 liter	minimal

#### Hetals Prep - Wet Chem

Chemical Name

Chemical Name - As Labelled	CAS Number	Manufacturer	Date	Weight (Units)	Amount Left
	*********	*********			**********
monium Hydroxide	1336-21-6	Melling.,	9-11-86	500 mi	minimal
propyl Alcohol	67-63-0	Mallinc.		4 liter	full
Hethanol	67-56-1	Fisher		4 liter	0.75
		Mallinc.		4 liter	0.75
otassium lodide	7681-11-0	Fisher		500 g	0.125
Sodium Thiosulfate Solution	10102-17-7	Fisher		1 liter	0.5

CAS Number Manufacturer Date Weight (Units) Amount Left

•

.•

***************	********			**********	*****
olids Area					
******					
arbituric Acid	67-52-7	Fisher		100 g	minimal
Lelite	61790-53-2	Fisher		500 g	0.5
		Fisher	9-12-88	300 g	0.5
odium Chloride	7647-14-5	Fisher		1 <b>000</b> g	unopened

#### Hetals Area

----

#### cetelyne - 2 tanks ייייססח - 2 liquid tanks 7440-37-1 את - 2 gas tanks 7440-37-1

A Knowns

-

· •

.....

Section No. _____VIII____ Revision No. _____ Date: ____10/01/91____ Page ____10 ____cf ___25

	STOREROOM INVENTORY			Page 10 of 25		
Chemical Name	CAS Number	Nanufacturer	Date	Veight	Amt. Left	
Acetic Acid	64-19-7	Mallinc.		5 lb.	0.75	
		Mellinc.		5 lb.	0.75	
Acetic Anhydride	108-24-7	HCB	4-25-76	1 kg.	full	
Allylthiourea (thiosinamine)	109-57-9	Aldrich	10-6-75	250 g	full	
Alumina, Activated	1344-28-1	HCE		1 Lb.	0.25	
		HCS		1 lb.	0.5	
Alumina, Basic	1344-28-1	Fisher	12-26-79	500 g	0.5	
Aluminum Chloride	7784-13-6	Mallinc.	2-22-72	1 lb.	0.5	
Aluminum Hydroxide	1336-21-6	Mailing.	2-22-72	1 15.	0.5	
Aluminum Oxide	1344-28-1	American Optical Corp.		250 g	fuil	
		VWR Scientific	3-19-74	1 kg		
		VWR Scientific	-	1 kg	0.25	
Aluminum Potassium Sulfate	7784-24-9	Halling.	6-17-74	1 lb.	0.75	
		Halling.	6-17-74	1 lb.	0.75	
		Nellinc.	6-17-74	1 lb.	0.5	
Aluminum Sulfate	10043-01-3	Matlinc.	7-19-78	1 lb.	0.125	
		Matlinc.	7-19-78	1 Lb.	0.5	
		Halling.	7-12-74	1 15.	minimal	
Amberlite XAD-2	9060-05-3	Mallinckrodt		1 15.	0.75	
Amberlite IRN-77	1128-94-2	Rohm & Haas			0.5	
4-Aminoantipyrine	83-07-8	Fisher	7-5-88	100 g	0.25	
2-Amino-2-(hydroxymethyl)-	77-86-1	NCB	11-4-74	100 g	full	
1.3-propanediol						
Varino-Nachthol-Sulfonic Acid	116-63-2	Hartman-Leddon Co.		5 <b>a</b> 15.4 g each	fuil	
Ammonium Acetate	631-61-8	Mailing.	2-21-72	1 lb.	sininel	
Ammonium Bisulfate	7803-63-6	NCS	2-21-72	1 Lb.	0.5	
Ammonium Carbonate	506-87-6	Mallinc.	7-25-79	1 lb.	0.75	
Ammonium Chloride	12125-02-9	Mallinc.	8-13-82	1 lb.	0.25	
		Nallinc.	8-13-82	1 15.	0.75	
		Halling.	9-27-82	5 lb.	0.125	
Azmonium Citrate Dibasic	3012-65-5	Mallinc.	6-20-72	1 Lb.	0.75	
Ammonium Fluoride	12125-01-8	Fisher	0-69-76	1 15.	0.5	
Autoritation Province	1212-01-0	Fisher	2-21-72	1 lb.	0.5	
		Fisher	2-21-72	1 lb.	0.5	
		Fisher	2-21-72	1 lb.		
termenter Unionstate	1774-31-4	Fisher	2-21-72	3 2500 mt each	0.5 fuil	
Ammonium Hydroxide Ammonium Metavanadate	1 <b>336-</b> 21-6 7803-55-6	Pfaitz & Bauer		500 g	0.5	
Ammonium Molybdate	1 <b>2054-</b> 85-2	Fisher		500 g	full	
Ammonium Nitrate	6484-52-2	Mailinc.		500 g	0.75	
Annonium Oxalate	6009-70-7	Mallinc.	2-21-72	1/4 lb.	0.75	
Ammonium Persulfate	7727-54-0	Mallinc.	2-21-12	5 lb.	0.25	
Ammonium Phosphate Dibasic	7783-28-0	Halling.	11-8-85	500 g	0.25	
Ammonium Phosphate Dibasic	7722-76-1	Mallinc.	6-16-72	1 lb.	0.5	
	1166-10-1	Nellinc.	6-16-72	1 lb.	0.5	
Ammonium Pyrrolidinedithiocarbamate	51 <b>08-96-</b> 3	K & K Labs	2-21-72	10 g		
Amonium Sulfate	7783-20-2			500 g ·	full	
restation autidle	77W-60-6	Meilinc. Meilinc.	11-30-72 11-30-72	500 g	0.5 0.5	
		Hailing.	8-1-85	500 g	0.75	
aller" .		Malling.	8-1-85	500 g	0.75	
unnonium Thiocyanate	1762-95-4	Mailing.	7-17-72	1 lb.	0.5	
Aniline	62-53-3	Fisher	9 - 18 - FG	500 mi	u.s full	
Antimony Pentachloride	7647-18-9	Mailinc.	6-8-78	1 lb.	full	
And there is a construction of the	r₩+7 1₩ ⁻ 7	- ?		1 lb.	?	
		· •			:	

				Section No. Revision No. Date: 10	VIII 0 0/01/91
	STOR	ROOM INVENTORY		Page11	
Antimony Potassium Tartrate	28300-74-5	Fisher	2-21-72	1 Lb.	full
Antimony Trioxide	1309-64-4	Halling.	11-26-84	1 lb.	0.75
Arabinogalactan	9036-66-2	Aldrich	10-8-81	100 g	0.75
Ascarite	81133-20-2	Arthur H. Thomas Co.		1 Lb.	0.75
Aurintricarboxylic Acid	569-58-4	Eastman Organic Chemicals	2-21-72	25 g	0.5
Annonium Salt					

.

•

· · · .

.

1.1030

-----

 Section No.
 VIII

 Revision No.
 0

 Date:
 10/01/91

 Page
 12
 of
 25

Themical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Barbituric Acid	67-52-7	Fisher		100 g	0.125
Barium Chloride	10361-37-2	Fisher	6-89	500g	0.125
		Fisher	6-89	500 g	unopened
		Fisher	6-89	500 g	unopened
		Mallinc.		5 lb.	minimal
Barium Diphenylamine Sulfonate	6211-24-1	Pfaitz & Sauer	11-19-75	10 g	unopened
Barium Hydroxide Anhydrous	12230-71-6	Helling.	2-21-72	1 ЦБ.	full
Benzal dehyde	100-52-7	Mallinc.	7-21-75	1 pt.	0.75
Benzidine Sulfate	531-66-2	Alfred Bader Library	1-14-75	5 g	minimel
Benzoic Acid	65-85-0	Matlinc.	8-3-73	1/4 Lb.	fuil
Senzotriazole	95-14-7	Kodak		500 g	0.5
3,3',4,4'-Biphenyltetraamine	7411-49-6	HCB	7-27-76	1 g	0.125
Tetrahydrochloride		NCB	7-27-76	1 g	0.125
Bismuth (III) Nitrate Pentahydrate	10035-06-0	Aldrich		100 g	unopened
Boric Acid	10043-35-3	Mailinc.		1 lb.	0.25
		Fisher	2-21-72	1 lb.	0.5
Boron Trifluoride (liquid)	7637-07-2	Allied		2 oz.	0.5
Boron Trifluoride (solid)	7637-07-2	Allied		5 lb.	0.75
Bromine	7726-95-6	Fisher		50 mi	full
a-Bromo-2,3,4,5,6-Pentafluorotoluene	1765-40-8	Aldrich		5 g	0.125
Bromophenol Blue	115-39-9	Kodak		10 g	0.5
Bromothymol Blue	76-59-5	Mallinc.	1-24-77	5 g	0.25
		Harieco	6-20-74	1 g	0.125
Grucine Sulfate	4845-99-2	HCB,	2-21-72	25 g	0.25

 Section No.
 VIII

 Revision No.
 0

 Date:
 10/01/91

 Page
 13
 of
 25

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Cadmium (Metal Sticks)	7440-43-9	Halling.	2-21-72	1 15.	full
Cadmium	7440-43-9	HCE	2-21-72	1 15.	fuii
· · · •		<b>BI Labs</b>		1 kg	?
Cadmium Chioride	10108-64-2	HCB	2-21-72	4 oz.	0.5
		Allied		1 lb.	0.5
		Mellinc.	2-21-72	5 lb.	0.25
Calcium Chloride Anhydrous	10043-52-4	Mellinc.	2-21-72	5 lb.	0.25
	<u> </u>	Mailing.	2-21-72	5 lb.	0.75
Calcium Hydroxide	1305-62-0	Mailinc.	1-83	1 lb.	0.5
Calcium Nitrate	10124-37-5	Mailinc.	8-20-73	1/4 Lb.	0.25
Calcium Oxide	1305-78-8	HCB	10-6-72	1 lb.	full
		HCE	10-6-72	1 Lb.	0.25
Calcium Sulfate	10101-41-4	Mallinc.	2-21-72	1 Lb.	0.75
		Mailinc.	2-21-72	1 lb.	0.75
Carmine	1390-65-4	Mallinc.		5 g	0.5
Chloral Hydrate	302-17-0	J.T. Baker	2-21-72	1 lb.	full
Chloramine-T	127-65-1	Fisher	1-20-88	250 g	0.5
2-chloro-6-trichloromethyl pyridir	ne 1929-82-4	Dow		5 g	unopened
Chromium Chloride	10025-73-7	HCB	1-7-76	1/4 Lb.	fuil
		Mellinc.		1/4 Lb.	0.5
Chromium Sulfate	10101-53-8	Mailine.	2-21-72	1 lb.	0.75
Chromium Trioxide	7738-94-5	Mailinc.		1 lb.	0.5
Citric Acid	77-92-9	Nallinc.	3-4-80	1 lb.	0.25
- Chloride	7646-79-9	Nallinc.		1 lb.	0.5
		HCE	5-14-81	1 lb.	· full
Cobalt Nitrate	10026-22-9	Mailinc.	2-21-72	1 lb.	full
Copper (powder)	7440-50-8	J.I. Saker		3 at 500 g each	unopened
		Fisher		5 at 500 g each	unopened
		Fisher		500 g	full
Copper Chloride	1344-67-8	ROC/RIC	2-21-78	2 lb.	full
18-Crown-6	17455-13-9	Aldrich		25 g	unopened
Cupferron	135-20-6	J.T. Baker	2-21-72	1 oz.	full
Cupric Acetate	142-71-2	Mailinc.		1 lb.	0.75
Cupric Chloride	1344-67-8	J.T Baker	2-21-72	1/4 lb.	0.75
Cupric Oxide	1 <b>317-39-</b> 1	Mallinc.	2-21-72	1/4 Lb.	0.75
Cupric Sulfate	7758-98-7	Mattinc.	5-20-80	1 lb.	0.25
Cupric Sulfate Anhydrous	7758-98-7	Meilinc.	2-21-72	1 Lb.	full
Cuprous Chloride	7758-89-6	Hellinc.	6-22-77	1 Lb.	0.5
Curcumin	458-37-7	Eastman	9-4-74	10 g	0.5

- •

 Section No.
 VIII

 Revision No.
 0

 Date:
 10/01/91

 Page
 14
 of
 25

	Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
	Dextrose	60-99-7	Mallinc.	9-26-73	1 lb.	0.125
			Mailinc.	3-26-80	1 lb.	0.75
			88L		1 lb.	full
	Diacetone Alcohol	123-42-2	Strathmore Paint		1 pint	
	trans-1,2-Diaminocyclohexane-	87095-89-4	Mallinc.	7-18-84	100 g	0.25
	N,N,N',N'-tetraacetic acid		Mallinc.	6-15-87	100 g	0.5
	monohydrate	1.000 1.00 1.00 1.00 1.00	Mailinc.	6-22-87	100 g	unopened
	2,6-Di-tert-Butyl-4-methylphenol	128-37-0	Aldrich	-	500 g	unopened
	p-0ichlorobenzene	106-46-7	Mallinc.	7-20-76	1 kg	full
	1,2-Dichloroethane	107-06-2	HCB		500 mi	full
	2,4-0ichlorophenol	120-83-2	MCB	8-2-75	250 g	has crystallized
	Diethanolamine	111-42-2	Mallinc.	7-17-72	1 pint	full
	N,N-Diethyl-p-phenylenediamine	93-05-0	MCB	2-21-72	25 g	futl
	N,N-Diethyl-p-phenylenediamine Oxalate	62637-92-7	Eastman	2-21-72		0.25
	4,5-0 ihydroxy-2,7-naphthalene	5808-22-0	Anachemia	3-85	25 g	0.25
	disulfonic acid practical		Anachemia	12-18-84	25 g	0.5
	4,5-0 ihydroxy-3-(p-suifophenyiazo)-	23647-14-5	Eastman	11-26-73	25 g	0.5
	2,7-naphthalene-disulfonic acid trisodium salt				•	
	p-0 imethyl-amino-benzaldehyde	100-10-7	Mallinc.	11-29-78	25 g	0.125
	· · · · · · · · · · · · · · · · · · ·		Mallinc.	9-25-81	100 g	0.75
	5-(p-0imethylaminobenzylidene)-	536-17-4	Eastman	2-21-72	10 g	0.75
n.,	rhodanine		HCB		10 g	full
	2,4-Dimethylaniline	121-69-7	Kodak		100 g	unopened
	2,5-Dimethylaniline	121-69-7	Kodak		100 g	unopened
	2,6-Dimethylaniline	121-69-7	Kodak		100 g	full
	3,4-Dimethylaniline	121-69-7	Kodak		250 g	unopened
	N,N-Dimethylaniline	121-69-7	Uniabeled	Uniabeled	Uniabeled	
	3,3'-Dimethyl-1,1'-diphenyl[4,4'-bi-	7477-67-0	Eastman	10-22-74	25 g	0.5
	2-pyrazoline]-5,5/-dione					
	Dimethylglyoxime	15-45-4	Mailinc.	2-21-72	1 oz.	0.5
	2,9-Dimethyl-1,10-phenanthroline	484-11-7	G. Frederick Smith	2-21-72	1 g .	0.25
	hemihydrate (Neo-cuproine)		G. Frederick Smith	2-21-72	1 g	0.125
			G. Frederick Smith	2-21-72	1 g	unopened
	N,N-Dimethyl-p-phenylenediamine oxalate	62778-12-5	Kodak	3-83	100 g	fuii
	N,N-Dimethyl-p-phenylenediamine sulfate	6219-73-4	Eastman	2-21-72	100 g	0.5
	Dimethyl sulfoxide (DMSO)	67-68-5	Sigma	7-29-81	500 ml	unopened
	(also labelled as methyl sulfoxide)		Sigma		500 mi	fuil
			Mellinc.		† pint	full
			Hallinc.		1 pint	0.75
1	s-Diphenyl carbazide	140-22-7	Fisher		25 g	0.5
1	Dithizone	60-10-6	J.T. Baker	2-21-72	10 g	0.75

••

Section No.	VIII
Revision No.	0
Date: 10	0/01/91
Page15_	

Themical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Eicosane	112-95-8	MCS		25 g	0.75
l-Ephedrine	299-42-3	ICN	11-23-77	10 g	0.5
		ICN	11-23-77	2 2 10 g each	unopened
Eriochrome Black T*	1787-61-7	Halling	2-12-85	25 g	0.5
Eriochrome Cyanine R	3564-18-9	HCB	2-21-72	25 g	0.75
		J.T. Baker	8-3-84	100 g	fuil
(Ethylenedinitrilo)-	60-00-4	Mallinc.	8-16-83	500 g	0.75
tetraacetic acid		NCB	11-4-75	500 g	0.5
Ethylene glycol	107-21-1	Fisher	2-21-72	1 pint	0.75
		Fisher	2-21-72	1 pint	full
		Fisher	2-21-72	1 pint	full
		Will Corp.	2-21-72	1 quart	0.75

* Also labelled as Superchrome Black TS

1:000

•

÷.,

Chemical Name	CAS Number	Hanufacturer	Date	Veight	Amt. Left
Ferric Chloride	7705-08-0	Helling.		1 Lb.	0.5
Ferric Nitrate	10421-48-4	Halling.	3-30-83	1 Lb.	0.5
		Mailinc	5-22-86	500 g	0.125
		Fisher	11-3-87	500 g	fuil
Ferric Sulfate	10028-22-5	Mallinc.	2-21-72	1 15.	0.125
		Mallinc.	2-21-72	1 15.	0.25
Ferroin Indicator	N/A	Mallinc.		100 mi	0.75
Ferrous Ammonium Sulfate	10045-89-3	Mailinc.	9-12-86	2.5 kg	0.25
Ferrous Chloride	7758-95-3	Mallinc.	2-21-72	1 Lb.	0.75
Ferrous Sulfate	7720-78-7	Mallinc.	5-14-80	1 lb.	0.5
Fluorescein	2321-07-5	MCB		500 g	0.25
Formaldenyde solution	50-00-0	Mailing.	3-83	500 mt	0.75

CAS Number	Hanufacturer	Date	Veight	Amt. Left
492-62-6	Sigma		5 kg	
56-86-0	Matlinc.	12-13-76	500 g	0.5
	MCB	2-21-72	100 g	0.125
27082-31-1	Eastman	4-20-76	25 g	unopened
56-81-5	Mallinc.	2-21-72	1 pint	0.25
9000-01-5	Will Corp.	2-21-72		
	492-62-6 56-86-0 27082-31-1 56-81-5	492-62-6 Sigma 56-86-0 Mailinc. MCB 27082-31-1 Eastman 56-81-5 Mailinc.	492-62-6         Sigma           56-86-0         Mallinc.         12-13-76           MCB         2-21-72           27082-31-1         Eastman         4-20-76           56-81-5         Mallinc.         2-21-72	492-62-6       Sigma       5 kg         56-86-0       Mallinc.       12-13-76       500 g         MCB       2-21-72       100 g         27082-31-1       Eastman       4-20-76       25 g         56-81-5       Mallinc.       2-21-72       1 pint

Section No	oVIII	
<b>Revision</b> N	0. 0	
Date:	10/01/91	
Page1	6of	_25

~~~	Chemical Name	CAS Number	Hanufacturer	Date	Weight	Amt. Left
	dEH		Handmade	5-28-81		0.75
	Keptoxime		llach Chem.	2-21-72	5 g	0.25
	Hexamethylene-tetramine	100-97-0	HCB	10-25-72	500 g	0.25
	Hydrazine Sulfate	10034-93-2	Mailinc.	5-7-84	500 g	0.75
			Halling.	6-7-84	500 g	0.75
	Hydroquinone	123-31-9	Aldrich		100 g	unopened
	Hydroxylamine hydrochloride	5470-11-1	Mallinc.	3-2-87	500 g	minimat
	Hydroxylamine sulfate		Fisher	5-12-89	500 g	0.25
		¥*	Fisher -	5-12-89	500 g	unopened
			Unlabeled	?	?	
	8-Hydroxyquinoline	148-24-3	Matlinc.	6-20-72	1/4 lb.	full
	Hydrozine hychate (Hydrazine hydrate)	10217-52-4	Handmade	5-28-81		0.75

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left		
Iceland Spar	13397-26-7	Will Corp.	2-21-72	1 lb.	full		
		Will Corp.	2-21-72	1 lb.	0.75		
2,2'-Iminodiethanol	111-42-2	Eastman	2-21-72	500 g	0.5		
Indicator pH 5-6	. N/A	Mailinc.		25 g	full		
	7440-74-6	EN Science	,	25 g	2 chunks		
dine	7553-56-2	Mailinc.	4-22-83	500 g	0.5		
		Mallinc.	2-21-72	1 lb.	0.75		
😳 Iron wire	7439-89-6	Mallinc.	2-21-72	1/4 Lb.	fuil		
Isopentyi alcohol	123-51-3	Mallinc.	5-31-72	1 pint	fuil		
Isopropyl ether	108-20-3	Aldrich	6-3-88	100 mi	0.75		
÷.		Hallinc.	7-17-72	1 ib.	0.5		

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Caolin	1332-58-7	Mallinc.	2-21-72	1 Lb.	0.5
Karl Fischer Reagent	N/A	Mallinc.		1 pint	0.75
		Anachemia	7-7-75	1 lb.	0.75

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
anthanum nitrate	10099-59-9	Mailinc.	1 -5-87	100 g	full
anthanum oxide	1312-81-8	Fisher	5-20-87	250 g	0.5
ric acid	143-07-7	NCB	6-12-74	500 g	0.75
d acetate	301-04-2	Mallinc.	3-27-72	1 15.	0.5
ead chloride	7758-95-4	Hallinc.		1 lb.	0.5
Lead nitrate	10099-74-8	Mallinc.	6-2 0-72	1/4 15.	full

.

Section N	0.	VIII	
Revision N	lo	0	
Date:	_10/	01/91	
Page 1	7	of	25

Y**294	hemical Name	CAS Number	Nanufacturer	Date	Veight	Amt. Left
	Magnesium Carbonate	39409-82- 0	Mallinc.	4-13-76	1 lb.	0.5
			Mallinc.	3-27-72	1 15.	0.25
-	Magnesium Chloride	7786-30-3	Fisher		3 at 500 g each	unopened
		-	Fisher		500 g	fuil
	Magnesium Nitrate	10377-60-3	Fisher	4-7-87	500 g	0.5
	Nagnesium Oxide	1309-48-4	Mallinc.	6-20-73	1/4 15.	0.75
	·		Mallinc.	6-20-73	1/4 Lb.	0.75
			Mallinc.	6-20-73	1/4 lb.	unopened
	Magnesium Perchlorate	10034-81-8	Fisher	6-22-89	4 at 500 g each	unopened
	Magnesium Sulfate	7587-88-9	Mallinc.	2-26-80	1 lb.	0.25
			Fisher	5-20-81	1 lb.	0.5
	Nalonic Acid	141-82-2	Eastman	2-21-72	100 g	full
	Menthyl Salicylate	89-46-3	Pfaitz & Bauer	1-83	100 g	0.5
	Mercaptoacetic Acid	68-11-1	Eastman	2-21-72	100 g	0.75
	2-Mercapto-benzothiazole	149-30-4	HCB	2-21-72	250 g	
			R.I. Vanderbilt		500 g	0.75
	Mercaptopropionic Acid	79-42-5	Evans		2 at 1/4 lb. each	full
	Mercuric Chloride	7 487- 94-7	Fisher		500 g	0.5
	Mercuric Iodide	7774-29-0	Mailinc.	2-21-72	1 lb.	0.75
	Mercuric Nitrate Monohydrate	1 0045- 94-0		8-15-85	500 g	unopened
	Mercuric Oxide Red	21908-53-2	Mallinc.	2-21-72	1 lb.	full
			Mallinc.		1/4 15.	minimal
	Mercuric Sulfate	7783-35-9	GFS Chemical	1-25-85		full
- MI			- GFS Chemical	1-25-85		unopened
		·	GFS Chemical			0.25
	Mercuric Thiocyanate	592-85-8	HCB	2-24-76	2 at 1/4 lb. each	0.75
	2-(2-Methoxyethoxy)-ethanol	111-77-3	Eastman	4-12-74	500 g	unopened
	Hethylamine	74-89-5	MCB	3-8-73	500 g	fuil
	Methylcyclohexane	108-87-2	Fisher		1 pint	0.75
	Methylene Blue	61-73-4	Mallinc.	2-21-72	1 lb.	0.25
	4,4'-Methylene-dianiline	107-77-9	Kociak	7-13-84	100 g	unopened
	Methyi Ethyi Ketone	78-93-3	Malling.		1 pint	0.5
	4,4,4 ⁿ -Methylidynetris	603-48-5	Eastman	1-16-79	100 g	full
	Methyi Isobutyi Ketone	108-10-1	Mallinc.	2-21-72	1 pint	fuil
	· · · · · · · · · · · · · · · · · · ·		Mailinc.	2-21-72	1 pint	0.25
	N-Methyl-N-nitrso-p-toluenesulfonamide	60858-95-9	Kodak		100 g	0.5
	Methyl Grange (powder)	547-58-0	Mallinc.		1 ounce	0.5
	Methyl Grange (liquid)	547-58-0	Fisher		1 pint	0.75
	3-Methyl-1-phenyl-2-pyrazolin-5-one	89-25-8	Eastman	10-3-74	100 g	0.5
			Eastman	11-30-77	100 g	full
	Methyl Sulfoxide *	67-68-5	Mallinc.		1 pint	0.5
	Mineral oil	8020-83-5	Squibb		1 quart	unopened
			Pennex		1 quart	0.5
	Molybdenum Trioxide	1313-27-5	Mallinc.	2-21-72	1 lb.	0.75
	Monopersulfate compound (Oxone)	37222-66-5	duPont			full
	Murexide	3051-09-0	J.T. Baker	2-21-72	1 g	0.125

Also labelled as Dimethyl sulfoxide

· ·

lo	VIII	
NO	0	
_107	01/91	
18	of	_25
	NO. _10/	No. 0 10/01/91

	Chemical Name	CAS Number	Hanufacturer	Date	Weight	Amt. Left
	Naphthalene	91-20-3	Mellinc.	7-21-75	1 Lb.	0.75
	1-Naphthol	90-15-3	HCB	7-12-72	. 250 g	0.75
•.•	1-Naphthylamine	134-32-7	HCE	2-21-72	100 g	0.5
·.	Nickel Nitrate	13138-45-9	Mailing.	12-22-80	1 lb.	0.5
			Mattinc.	4-19-78	1 lb.	Contamineted
	Nickel Sulfate	7786-81-4	Mailinc.	2-21-72	1/4 Lb.	0.75
1.14	Nicotinic Acid	59-67-6	HCB.	7-26-76	100 g	full
	p-Nitrophenol	100-02-7	Eastmen	2-21-72	100 g	0.75

9. A

.

Chemical Name	CAS Number	Hanufacturer	Date	Weight	Amt. Left
2-Octanol	4128-31-8	NCS	2-21-72	500 g	0.75
Oxalic Acid	144-62-7	Mallinc.	7-22-80	1 lb.	0.25
		Mallinc.	12-18-86	500 g	unopened

٢

320031

. •

r

. .

Section No. VIII Revision No. 0 Date: 10/01/91

Page ____

				•	
Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Paraformaldehyde	30525-89-4	HCB	10-81	500 g	0.75
Para Nonyi Phenol (samples)	25154-52-3	•	7-20-87	2 at 1/4 lb. each	
Pararosaniline	529-61-9	Sigme		5 g	0.25
			3-10-87	10 g	0.5
Perchloric Acid	7601-90-3	Hallinc.		8 lb.	0.75
1,10-Phenan-Throline-Monohydrate	66-71-7	Mallinc.	10-26-83	5 g	0.25
		Mallinc.	2-3-87	5 g	0.5
Phenol	108-95-2	Fisher	10-23-87	500 g	0.5
Phenoldisulfonic Acid	96-77-5	Harleco	2-21-72	1 ib.	
		Unlabeled	2-21-72		
		Hellige	2-21-72	1 15.	
Phenolphthalein	77-09-8	Mailinc.	2-21-72	1/4 15.	0.25
Phenol Red	143-74-8	MCB		5 g	0.5
2-Phenoxyethanol	122-99-6	Eastman	6-7-72	100 g	minimal
		HCB	6-16-72	250 g	0.75
		MCB	5-3-74	2 at 250 g each	full
Phenylhydrazine Hydrochloride	59-88-1	Eastman		500 g	0.5
Phosphomolybdic Acid	11104-88-4	Mailinc.	2-21-72	1/4 lb.	0.75
		Mailinc.	1-26-76	1/4 lb.	unopened
		Mailinc.	1-30-76	1/4 lb.	full
Picric Acid	88-89-1	Fisher		1/4 lb.	
Platnium Chloride	10025-65-7	Mailinc.	2-21-72	1/8 ounce	0.25
Platnium-Cobalt Color Standard	N/A	Will Corp.		1 quart	0.5
Potasssium Acid Phthalate	877-24-7	Mallinc.	5-20-80	1 tb.	0.5
otassium Bijodate	13455-24-8	-Mailinc.	3-14-77	100 g	0.5
		Fisher		2 at 1 quart each	full
Potassium Borchydrate	13762-51-1	MCB	2-28-75	25 g	full
Potassium Bromate	7758-01-2	Matlinc.		1 lb.	0.75
Potassium Bromide	7758-02-3	C.P. Baker	1968	1 Lb.	0.5
		Fisher	1968	1 lb.	0.75
Potassium Carbonate	584-08-7	MCB	4-25-76	1 15.	0.75
Potassium Chloride	7447-40-7	Mallinc.	3-25-86	500 g	0.5
		Mailinc.	3-25-86	500 g	unopened
Potassium Chloroplatinate	16921-30-5	MCB	10-18-83	10 g	0.125
		MCB		10 g	0.125
Potassium Chromate	7789-00-6	Mallinc.		1 lb.	0.5
Potassium Cyanide	151-50-8	J.T. Baker	3-1-72	1/4 lb.	0.5
		Mallinc.	6-20-72	1 L b.	full
Potassium Dichromate	7778-50	Mallinc.		500 g	0.5
		Mallinc.	12-24-87	500 g	unopened
		Anacheaía	11-74	100 g	0.25
Potassium Ferricyanide	13746-66-2	Fisher		500 g	full
		Merck		1 lb.	
Potassium Fluoride Dihydrate	7789-23-3	Aldrich		100 g	0.75
Potassium Hydroxide	1310-58-3	Fisher		500 g	0.125
		Fisher		500 g	unopened
Potassium Iodate	7758-05-6	Mailinc.	6-20-72	1/4 lb.	full
Potassium lodide	7681-11-0	Fisher		2 at 500 g each	unopened

de Canada

.....

Section No. _____VIII____ Revision No. _____ Date: ___10/01/91____ Page ___20___ of ___25_

						· • • • • • • • • • • • • • • • • • • •
200-1	Potassium Nitrate	7757-79-1	Mallinc.		1 lb.	0.5
	Potassium Oxalate	583-52-8	Fisher	7-26-88	500 g	full
	Potassium Periodate Heta	7790-21-8	Mallinc.		1/4 Lb.	full
	Potassium Permanganate	7722-64-7	Fisher		500 g	0.5
			Fisher		500 g	unopened
	Potassium Persulfate	7727-21-1	Fisher	6-23-89	500 g	0.5
			Fisher		500 g	unopened
	Potassium Phosphate Dibasic	7758-11-4				
	Granular		Mallinc.	6-28-84	1 lb.	0.5
			Mailinc.	7-18-84	500 g	unopened
	Anhydrous		Mallinc.	8-17-81	1 Lb.	0.25
	Crystals		Mallinc.	7-18-84	500 g	0.5
			Helling.	7-18-84	500 g	unopenad
	Potassium Phosphate Monobasic	7778-77-0	Mallinc.	6-28-84	500 g	0.5
			Mailinc.	7-18-84	500 g	0.5
			Hallinc.	7-18-84	500 g	unopened
			C.P. Baker		1 15.	0.5
	Potassium Sulfate	7778-80-5	Neilinc.	8-27-86	2.5 kg	0.25
	Potassium Thiocyanate	333-20-0	Mallinc.		1/4 lb.	full
	Propylene Glycol	57-55-6	Fisher	12-13-82	1 quart	fuil
	Pyridine	110-86-1	Fisher		-	0.125
	Pyrrolidine	123-75-1	Eastman	1-14-77	500 g	0.75
					-	

Section	NO.		
Revision	1 No.	0	
Date:	107	01/91	
Page _	_21	_of_	_25_

Chemical Name	CAS Number	Nanufacturer	Date	Weight	Amt. Left
Resorcinol	108-46-3	Hellinc.	7-17-74	1/4 15.	fuli
Rhodamine 8 Base	81-88-9	HCB	3-27-72	· 25 g	0.5

- **...**

----**,**

- '**.**

Section No. VIII Revision No.

Date: _____10/01/91 Page ____22____of

0

25_

Chemical Name	CAS Number	Nanufacturer	Date	Weight	Amt. Left
Acid Salicylic	69-72-7	Mallinc.		1 Lb.	0.5
Selenium Dioxide	7446-08-4	HCB	10-12-78	1 15.	minimal
		HCB	10-12-78	1 Lb.	0.25
Silica Gel	7631-86-9	HCS		1 kg	0.5
		SMI		500 g	0.75
Silicic Acid	7699-41-4	Mailinc.	10-6-72	1 lb.	unopened
		Mallinc.		1 tb.	unopened
Silver Diethyldithiocarbamete	7470-61-7	Mellinc.	8-9-72	25 g	0.125
Silver Sulfate	10294-26-5	Fisher	6-16-88	2 at 25 g each	unopened
Soda Ash - Light	497-19-8	Allied			
Soda Ash - Dense	497-19-8	Allied			
Sodium Acetate	127-09-3	Fisher		3 kg	full
Sodium Aluminate	1302-42-7	MCB		1 lb.	full
Sodium Ammonium Phosphate	7783-13-3	Mallinc.		1 lb.	0.5
		Mallinc.	2-26-80	1 lb.	0.75
Sodium Arsenite	7784-46-5	Mallinc.		1 lb.	0.25
		Mailinc.		1 lb.	full
Socium Azide	2 6628- 22-8	J.T. Baker		100 g	0.25
		MCB	4-21-76	500 g	0.25
		MCB	4-21-76	500 g	fuil
Sodium Bicarbonate	144-55-8	Mallinc.	6-28-84	500 g	0.5
		Arm & Hammer		64 ounces	0.25
Socium Bisulfate	7681-38-1	Mailinc.		1 t b.	0.75
		Mallinc.		500 g	0.5
Jodium Bisulfite	7631-90-5	C.P. Baker	1968	1 lb.	0.75
Sodium Borohydride	16940-66-2	Mailinc.	7-18-84	25 g	unopened
		Kodak		100 g	0.25
		Mailinc.	1-6-82	100 g	0.75
Sodium Bromide	7647-15-6	Mailinc.	5-17-84	1 lb.	full
Sodium Carbonate Anhydrous	497-19-8	Mallinc.		1 lb.	0.25
(soda ash)		Fisher	7-87	500 g	0.25
Sodium Chloride	7647-14-5	Fisher	1989	3 at 1 kg each	unopened
Sodium Chlorite	7758-19-2	NCB	10-6-72	1 L b.	0.25
Sodium Chromate	7775-11-3	C.P. Saker	3-1-72	1 lb.	0.75
Sodium Citrate	68-04-2	Mallinc.	2-11-87	500 g	0.5
		Mallinc.	3-9-79	1 lb.	0.5
Sodium Dichromate	10588-01-9	Mailinc.	7-20-82	1 lb.	0.5
Sodium Ferrocyanide	1 3601 - 19-9	EH Science	5-6-88	500 g	full
Sodium Fluoride	7681-49-4	Fisher		1 lb.	0.75
Sodium Formate	141-53-7	Mailinc.	3-14-77	1 lb.	0.75
		Mallinc.	3-14-77	1 lb.	full
Sodium Hexametaphosphate	5 0813- 16-6	MCB	2-23-72	1 kg	full
Sodium Hydroxide	1 310-7 3-2	Fisher		3 at 3 kg each	unopened
		Fisher		3 kg	fuil
Sodium lodide	7681-82-5	Mallinc.	8-9-83	1 lb.	minimal
		Fisher		2 at 500 g each	unopened
Sodium Metabisulfite	7681-57-4	Mailinc.	3-2-87	500 g	0.5
Sodium Molybdate (VI) Dihydrate		HOLL IING.	3-2-01		0.5

Section No. VIII Revision No. 0 STOREROOM INVENTORY 10/01/91 Date: Page 23 25 đ 7631-99-4 3-1-72 1 Lb. J.T. Baker full Mallinc. 1/4 15. 0.5 1/4 Lb. 13755-38-9 HCR. 1-10-77 full 62-76-0 Mallinc. 1 lb. 0.5 7558-79-4 Fisher 1 kg 0.5 7558-80-7 Fisher 500 a 0.25 54-21-7 8-20-84 2.5 kg Mailinc. 0.25 7757-82-6 Mailinc. 8-8-86 500 g 0.125 مم من الم 3 kg Fisher 0.5 868-18-8 Mallinc. 1972 1 Lb. 0.125 Mallinc. 7-21-80 1 lb. 0.25 7772-98-7 Mallinc. 3-17-78 5 lb. 0.25 3-1-72 13472-45-2 Mailinc. 1 lb. 0.75 7772-99-8 6-8-89 500 a Fisher empty Fisher 8-1-89 500 g 0.75 Fisher 8-1-89 500 g unopened 7488-55-3 Mailinc. 1-5-87 500 g minimal Fisher N/A 4 liter 0.5 Fisher 2 at 4 liter each unopened 9005-25-8 Mailinc. 2-21-72 5 Lb. 0.25 5329-14-6 Mailinc. 8-6-74 100 g 0.25 63-74-1 Mallinc. 1 Lb. 0.75

3-1-72

3-1-72

2-21-72

6 at 1/4 lb. each

18 at 1/4 lb. each

1 Ib.

1 pint

full

0.75

full

0.5

unopened

 Comparison
 7704-34-9
 McKesson & Robbins

 Julfuric Acid Solution
 7664-93-9
 Eisher

 Superchrome Black TS *
 1787-61-7
 Allied

121-57-3

Mallinc.

Mallinc.

* Also labelled as Eriochrome Black T

\odium Nitrate

Sodium Oxalate

Sodium Salicylate

Sodium Tartrate

Sodium Thiosulfate

Sodium Tungstate

Stannous Chioride

Stannous Sulfate

Starch Potato

Sulfamic Acid

Sulfanilamide

Sulfanilic Acid

Starch Indicator Solution

Sodium Nitroferricyanide

Sodium Phosphate Dibasic

Sodium Sulfite Anhydrous

Sodium Phosphate Monobasic

Section No. VIII Revision No. 0 Date: 10/01/91 Page 24 of 25

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Acid Tannic	1401-55-4	Nallinc.		1/4 Lb.	0.75
Tartaric Acid	133-37-9	Mattinc.	6-20-72	1 Lb.	0.125
Thioglycolic Acid	68-11- 1	Evans		1/4 lb.	full
Thymol Blue	76-61-9	HCE	7-19-72	5 g	0.5
o-Tolidine Dihydrochloride	612-82-8	NCE		1/4 lb.	0.75
		Mallinc.	2-7-78	1/4 15.	0.75
Tolylene-2,4-diisocyanate	584-84-9	Aldrich		250 g	unopened
Tricaprylyl Hethyl Ammonium Chloride	5137-55-3	HcKerson Corp.		2 at 1 pt each	full
2,3,5-Triphenol-2H-tetrazolium Chloride	298-96-4	MCS	3-26-79	25 g	0.5
Tungsten Hetal Powder	7440-33-7	GTE Sylvania		500 g	

Chemical Name	CAS Number	Manufacturer	Date	Weight	Amt. Left
Urea	57-13-6	MCB	3-1-72	ī t b.	0.75

- .-

Chemical Name	CAS Number	Hanufacturer	Date	Weight	Amt. Left
Xylenol Grange Indicator	1611-35-4	Mallinc.		5 g	0.25

Chemical Name	CAS Number	Hanufacturer	Date	Weight	Amt. Left
Zinc	7440-66-6	Halling.	12-29-77	1 Lb.	0.5
Zinc Acetate	557-34-6	Mallinc.	1-15-76	1 lb.	0.125
Zinc Chloride	7646-85-7	Mattinc.	1 973	1 lb.	0.75
Zincon	135-52-4	J.T. Saker	3-1-72	1 g	unopened
Zirconyl Chloride	15461-27-5	Fisher		1/4 lb.	0.5
	cr 13520-92-8			•	

Section	1 No	VIII	
Revision	n No.	0	
Date: _	107	01/91	
Page _	_25	_of_	25

Chemical Name	Xanufacturer	Date	Weight	Amt. Left
Conductivity Calibrator Solution	YSI, Inc.			unopened
Hengar Granules	Hengar Co.		. 500 g	0.5
	Hengar Co.		500 g	full

2 vials of Mercury waste

- 1878 (ma

A 15 20 4

Assorted painting chemicals

Box of chemicals labelled "Flammable - Explosive"

.

Section No.	IX
Revision No.	1
Date: 03	9/25/92
Page1_	

SECTION IX. CALIBRATION PROCEDURES AND FREQUENCY

A. Instrumentation

OBG Laboratories maintains state-of-the-art instrumentation. The following equipment is currently in use:

- One Hewlett Packard 5995 GC/MS system and one Hewlett Packard 5970A GC/MS system for semi-volatile analysis. The GC/MS's are connected to a HP1000 RTE-6 Series Computer.
- 2) One Hewlett Packard 5970 GC/MS system and one Hewlett Packard 5987A GC/MS system for volatile analysis. The GC/MS's are connected to a HP1000 RTE-6 Series Computer.
- Three Tracor 540 GCs with Tracor PID and HECD detectors and one Tracor 565 GC with Tracor PID and HECD detectors for volatile analysis.
- 4) Two Hewlett Packard HP5890 and two Hewlett Packard HP5880 GC's and six Hewlett Packard ECD detectors and two Hewlett Packard FID detectors for semi-volatile analysis. Also one Hewlett Packard 19304 nitrogen-phosphorous detector.
- 5) One Thermo Jarrell Ash ICAP-61, 29 channel 0.75 meter direct reading simultaneous spectrometer for metals analysis.

Section	No.	IX	
Revision	No.	1	
Date:	097	25/92	
Page _	2	of	16

- 6) One Perkin-Elmer 5100-PC Atomic Absorption Spectrometer, Zeeman system with an optical interface for metals analysis.
- 7) One Thermo Jarrell Ash Smith-Hieftje 22 Atomic Absorption Dual Channel Spectrometer for metals analysis.
- One Perkin-ElmerModel 3100 Atomic Absorption
 Spectrometer, used predominately for flame atomic absorption
 and cold vapor atomic absorption techniques.
- One Lachat QuikChem AE multi-channel analyzer for automated determination of nutrients and other inorganic parameters.
- 10) One Rosemont Analytical Dohrmann DC-190 for TOC analysis.
- 11) One ABC model 1002B GPC with UV detector.
- 12) Eight continuous one-step liquid-liquid extractors.
- 13) Balances, pH meter, specific conductivity meter and other supporting equipment.

B. <u>Calibration</u>

Accurately calibrated instruments are a major concern at OBG Laboratories, Inc. A brief explanation of the calibration procedures used at OBG Laboratories, Inc. is summarized below.

1) <u>Instruments</u>

All automated analytical instruments are calibrated daily using a curve consisting of two to seven points. The calibrations are verified at the time that they are run to

 Section No.
 IX

 Revision No.
 1

 Date:
 09/25/92

 Page
 3
 of

confirm that they meet certain QC requirements. The information is recorded in the laboratory logbook that is set up for each analysis. A copy of the calibration data, if available is also put into a laboratory notebook. The logbook is kept near the instrument. If the calibration does not meet established QC requirements, then the problem is located, corrected and a new curve analyzed.

2) <u>Thermometers</u>

Thermometers used in the lab are calibrated against an NIST-certified thermometer on site once a year. They are checked at the freezing point, boiling point, and the temperature at which they are used. Correction factors for each thermometer are calculated and the thermometers are tagged listing the thermometer number and the correction factors. Correction factors, date calibrated, temperature calibrated at, and actual temperature with reference to the thermometer number are documented in a laboratory notebook.

3) <u>Balances</u>

Analytical balances are professionally calibrated and cleaned once a year. When the balances are professionally calibrated, a document stating the specific balance model and serial number and the date calibrated is provided by the company doing the calibration. The balances are checked daily with Class S weights. The weights must read within 0.02% of the true value. If the weight is out of the control limits, it will be professionally recalibrated. The analyst performing the check, the date the balance was checked and the weights the balance was checked at are recorded in a laboratory notebook.

Section No. IX Revision No. Date: 09/25/92 Page 4 16 of

4) <u>pH Meter</u>

A two-point calibration bracketing the pH of the samples analyzed is done daily on the pH meter. The calibration is then verified with a third pH buffer. The calibration date, analyst's initials, calibration data and pH of verification buffer are recorded in a laboratory notebook.

C. <u>Standards and Calibration Procedures</u>

Reference standards are obtained from third party sources. Primary, intermediate and working standards are traceable back to a known source such as NIST or EPA through the use of the standards logbook. Each laboratory section has its own standards logbook which is kept in a convenient location in the lab. The analyst preparing the respective standards is responsible for entering the lot number, date received, date opened, date standards are prepared, expiration date, concentrations, and any intermediate calculations into the standards logbook. Stock standard solutions, intermediate standards and working standards are stored at 4° C, protected from light and periodically checked for signs of degradation or evaporation. Standards are prepared to meet the requirements set forth in the methods. A table of standard sources and storage is included as Table IX-1.

1. <u>GC/MS</u>

GC/MS stock standard solutions are prepared from pure standard materials along with being purchased as certified solutions from either Supelco, Accustandard, or Chem Service. All standard preparations are recorded in the standards logbook. The standards are combined to contain specific compounds and are diluted to concentrations necessary

Section No. IX Revision No. 09/25/92 Date: Page 5 of 16

for calibration. New standards are prepared if comparison with check standards indicate a problem or after one month. One standard source is used as a reference and the other is used as the calibration standards. This system provides an external check on the standards. All standard preparation and usage is documented in the standards logbook.

Before the GC/MS is calibrated, it is first autotuned and then tuned with PFTBA. Then the mass calibration and resolutions of the instruments are verified by either a 50 nanogram injection of BFB (4-bromofluorobenzene) for volatiles or a 50 nanogram injection of DFTPP (decafluorotriphenylphosphine) for semi-volatiles. The tune must meet the ion abundance criteria listed below taken from the U.S. EPA CLP Statement of Work. The system must be retuned every 12 hours of analysis and when the instrument performance check solution fails to meet criteria. After retuning, the performance check solution is reanalyzed. No samples are analyzed until tuning criteria is met.

BFB KEY IONS AND ABUNDANCE CRITERIA

MASS	ION ABUNDANCE CRITERIA
50	15.0 - 40.0 percent of the base peak
75	30.0 - 60.0 percent of the base peak
95	base peak, 100 percent relative abundance
96	5.0 - 9.0 percent of the base peak
173	less then 2.0 percent of mass 174
174	greater than 50.0 percent of the base peak
175	5.0 - 9.0 percent of mass 174
176	greater than 95.0 percent but less than 101.0 percent
	of mass 174
177	5.0 - 9.0 percent of mass 176

DFTPP KEY IONS AND ABUNDANCE CRITERIA

MASS	ION ABUNDANCE CRITERIA
51	30.0 - 60.0 percent of mass 198
68	less than 2.0 percent of mass 69

IX Section No. Revision No. Date: 09/25/92 Page 16 6

æ

A continuing calibration standard is analyzed at the beginning of every 12-hour period. This standard must meet specific QC limits listed in the method to ensure that the initial five point calibration is still valid. The continuing calibration standard is matrix specific (i.e. water, low soil, medium soil). The concentration of the continuing calibration is 250 ng for volatiles and 50 ng for semi-volatiles.

An initial five-point calibration is done whenever system specifications change or if the continuing calibration acceptance criteria have not been met. A different calibration curve is generated for each matrix (i.e. water, low soil, medium soil). The initial five point calibration is performed prior to the analysis of samples and blanks. The relative response factors and percent relative standard deviation of specific compounds must meet established criteria as specified in the method. If these parameters fail to meet criteria, the initial calibration must be repeated.

2. <u>GC Volatiles</u>

GC stock standard solutions are prepared from pure standard materials and also purchased from Supelco and Chem Service, Inc. Spiking solutions are received from EPA. All standards are logged into the reagent logbook. The standards are mixed to

Section No.	DX	ζ
Revision No.	1	
Date: 097	25/92	
Page7	of _	_16

contain specific compounds and are diluted to the concentrations necessary for calibration. New working standards are made every 28 days. A reference standard which is prepared from an independent source is used to check the calibration.

The GCs are calibrated with a 3 to 5 point standard curve monthly or whenever the calibration check standard is not within established criteria. The instrument is also recalibrated whenever instrument conditions change. For methods 601/602 and 501.1, three calibration standards are analyzed to calibrate the instrument and to define linearity. One of the standards is at a concentration near but above the detection limit. The other standards reflect the concentration range of the samples to be analyzed or the working range of the detector. If the ratio of response to concentration (calibration factor) is constant over the working range (10% relative standard deviation), linearity through the origin can be assumed and an average calibration factor can be used in place of a calibration curve.

For methods 8010/8020 and volatile petroleum hydrocarbons, five calibration standards are analyzed to calibrate the instrument. One of the standards is at a concentration at but above the detection limit. The other standards reflect the concentration range of the samples to be analyzed or the working range of the detector. The ratio of the response to the amount injected (calibration factor), can be calculated for each analyte at each standard concentration. If the percent relative standard deviation (%RSD) of the calibration factor is less than 20% over the working range, linearity through the origin can be assumed, and the average calibration factor can be used in place of a calibration curve.

IX Section No. Revision No. 09/25/92 8 Page 16 сf

For methods 502.1 and 503.1, a one point calibration method is used. Standards are prepared from standard stock solutions at concentrations to give responses within 20% of expected sample responses.

A reference sample is run at a frequency of ten percent to verify calibration. The reference sample is run at a concentration of 20 ppb. Acceptance criteria is from the method Table 2 (Table 3 for 8010/8020).

3. <u>GC Semi-volatiles</u>

Standards solutions are prepared from pure standard materials or purchased as certified solutions from either Chem Services, Accustandard, or Supelco. All standards are logged into the standards logbook. Stock solutions are replaced every six months to one year. Working standards are replaced at the most every six months. A calibration check sample from a different source is run to verify the concentration of the standards.

In accordance with Method 608-Organochloride Pesticides and PCBs, the gas chromatographic system is calibrated using standards at a minimum of three concentrations. For Method 8080, five concentration levels are used to generate the calibration curve and demonstrate linearity. One of the standard concentrations should be close to but above the MDL and the other concentrations should correspond to the expected concentrations found in real samples. The peak heights or area responses are tabulated against the amount injected, and response factors are generated. If the response factors are constant over the working range (the relative standard deviation is less than 10%), linearity through the origin can be assumed and an average response factor can be used for calculations.

Section No.	DX	<
Revision No.	1	
Date: 097	25/92	
Page 9	of	_16

The response factors are verified on each working day by the analysis of a check standard. If the response for any parameter exceeds 15% of the expected value, the analysis must be repeated using a new calibration standard. The check standard is run at a level at the mid point of the calibration range. Calibration check standards are also analyzed at a frequency of ten percent throughout the analytical sequence.

4. Metals

Standards used for ICP analysis are received from Environmental Resources Associates or Leeman Labs on a monthly basis. Stock solutions are mixed to contain specific elements and are diluted to obtain working standards. Standards for furnace analysis are received from Alfa Johnson Matthey. Working standards are made fresh daily. All standards are logged into the reagent logbook.

Instrument calibration for metals analysis is performed daily. A two-point calibration curve for ICP, a four-point curve for graphite furnace and a five-point curve for mercury analysis are generated. The calibration curves must have correlation coefficients greater then or equal to 0.995. Calibration verification is monitored by analyzing a reference solution after the initial calibration and every ten samples. The calibration verification must meet the recovery criteria specified in the individual methods. For ICP and furnace analysis, the recovery must be between 90% and 110%. For mercury analysis, the recovery must be between 90% and 110%. For mercury analysis, the recovery must be between 90% and 110%. For mercury analysis, the recovery must be between 85% and 115%. The calibration verification is run at the mid point of the calibration curve. If it fails to meet this criteria, then the instrument is recalibrated and the reference standard reanalyzed to verify calibration.

Detection limits, Interelement Correction Factors and Linear Ranges are

Section	No.	IX		
Revision	n No.	1		
Date:	_09/	25/92		
Page _	10	of	_16_	
<u> </u>				-

determined at a frequency based on the QA/QC requirements of the individual methodologies. An interference check sample is run at the beginning and end of every ICP run and must have a recovery of $\pm 20\%$.

5) <u>Wet Chemistry</u>

There are many different types of analyses handled by the wet chemistry section. The wet chemistry section performs potentiometric, colorimetric, and titrametric analysis. The QC requirements vary from test to test. For colorimetric analyses, there is a standard curve consisting of 5 to 7 points, depending on the test. The correlation coefficient of the standard curve must be greater then or equal to 0.995. A standard is run at the detection limit to verify accuracy at that level. A reference sample and a blank are analyzed at the beginning of each run to ensure the method is in control. In addition, continuing calibration standards are run at a 5% frequency to ensure calibration is maintained throughout the analytical sequence. The continuing calibration check is generally analyzed at a level at the mid point of the detection limit.

Titrating solutions are standardized once per month or whenever the titrant is prepared. The procedures outlined in *Standard Methods, 16th Edition* are followed. The acidity titrating solution is standardized against a potassium hydroxide phthalate solution and the alkalinity titrating solution is standardized against a sodium carbonate solution. The standardization is written up by the analysts in their lab notebook, and are checked by the group's section leader. A reference standard is analyzed each analysis day to verify the concentration of the standard titrant.

TABLE IX-1 STANDARD SOURCES AND PREP

È

ີສ

:

 $||\cdot| \in \{$

¥Į.

INSTRUMENT GROUP	STANDARD TITLE	SOURCE	SOURCE STORAGE	PREP. FROM SOURCE	LAB STOCK STORAGE	FREQ. OF PREP	
GC Semi-Volatiles	Calibration Stock Standards	Chem Service	Freezer	Working Calibration Stds.	Freezer	Every 6 months or as needed	
	Surrogate Stock Standards	Chem Service	Freezer	Surrogate Spiking Solution	Freezer	Every 6 months or as needed	
	MS/MSD Spiking Solution	EPA or EPA CRADA RTHM std.	Freezer			Every 6 months or as needed	
PCBs	Calibration Stock Standard	Chem Service, Ultrascientific, or Accustandard	Freezer	Calibration Working Standards	Freezer	Every 6 months or as needed	
	Surrogate Stock Standard	Accustandard	Freezer	Surrogate Spiking Solution	Freezer	Every 6 months or as needed	
	MS/MSD Spiking Solution	EPA or EPA CRADA RTHM std.	Freezer			Every 6 months or as needed	
Pesticides and Herbicides	Calibration Stock Standards	EPA or EPA CRADA RTHM std.	Freezer	Working Calibration Standards	Freezer	Every 6 months or as needed	
	Surrogate Stock Standards	Ultrascientific or Accustandard	Freezer	Surrogate Spiking Solution	Freezer	Every 6 months or as needed	
	MS/MSD Spiking Standard	Ultrascientific or Accustandard	Freezer			Every 6 months or as needed	
GC/MS Semi-Volatile	Calibration Stock Standards	Chem Service	Freezer	Working Calibration Standards	Freezer	Every 6 months or as needed	Section Revision Page
	Spiking Standards	Accustandard	Freezer	Working Spike Solution	Freezer	Every 6 months or as needed	Section No. Revision No. Date: 0 Page 11
	Surrogate Stock	Chem Service	Freezer	Surr. Spike Solution	Freezer	Monthly	11 09/25/92 04/25/92 04

INSTRUMENT GROUP	STANDARD TITLE	SOURCE	SOURCE STORAGE	PREP. FROM SOURCE	LAB STOCK <u>Storage</u>	FREQ. OF PREP
	Reference	Accustandard	Freezer	Working Standards	Freezer	As needed
GC/MS Volatiles*	Calibration Stock Standards	Chem Service	Freezer	Calibration Working Standards	Freezer	Every month or as needed Gases every week
	Spiking Standards	Accustandard	Freezer	Working Spike Solution	Freezer	Every month or as needed
	Surrogate Stock	Chem Service	Freezer	Surr. Spike Solution	Freezer	Monthly or as needed
	Reference	Accustandard	Freezer	Working Standards	Freezer	Monthly or as needed
GC - 8010/8020 and 601/602*	Calibration Stock Standards	Chem Service, Supelco, Ideal Gas, Matherson, or Aldrich	Freezer	Calibration Working Standards	Freezer	Every 4 weeks
	Reference Standard	Supelco	Freezer	Working Reference Standard	Freezer	Every 4 weeks
	Spiking Standard	EPA	Freezer	Working Spike Solution	Freezer	Every 4 weeks
GC - THM*	Calibration Stock Stendards	Chem Service	Freezer	Calibration Working Standards	Freezer	Every 4 weeks
	Reference Standard	Chem Service	Freezer	Working Reference Standard	Freezer	Every 4 weeks
	Spiking Standards	Chem Service	Freezer	Working Spike Solution	Freezer	Every 4 weeks
GC - 502.1/503.1*	Calibration Stock Standards	Chem Service or Supelco	Freezer	Calibration Working Standards	Freezer	Every 4 weeks
	Reference Standard	Chem Service or Supelco	Freezer	Working Reference Standard	Freezer	Every 4 weeks
:	Spiking Standards	EPA	Freezer	Working Spike Solution	Freezer	Every 4 weeks

* All volatile standards are mixed from neat standards at the indicated frequency, but are prepared daily to dilution required for use.

Section No. IX Revision No. 1 Date: 09/25/92 Page 12 of 16

:

1

i

INSTRUMENT GROUP	STANDARD TITLE	SOURCE	SOURCE STORAGE	PREP. FROM SOURCE	LAB STOCK STORAGE	FREQ. OF PREP	
GC - MOD. 8020*	Calibration Stock Standards	Chem Service	Freezer	Calibration Working Standards	Freezer	Every 4 weeks	
	Reference Standards	Chem Service	Freezer	Working Refernece Standard	Freezer	Every 4 weeks	
	Spiking Solutions	Chern Service	Freezer	Working Spike Solution	Freezer	Every 4 weeks	
GC - Volatiles (all methods)*	Surrogate Spiking Solution	Chem Service	Freezer	Working Standard	Freezer	Every 4 weeks	
ICP	Calibration stds.	Commercial	Room Temperature	Working Standard	Room temp.	Monthly or as needed	
	Spike Solution	Commercial	Room Temperature	Working Standard	Room temp.	Yearly or as needed	
	LaL, Control Sample	Commercial	Room Temperature	Working Standard	Room temp.	Yearly or as needed	
AA	Calibration stock stds.	Commercial	Room Temperature	Working Calibration Stds.	Room temp.	Daily	
	Spike Solution	Commercial	Room Temperature	Working Standard	Room temp.	Yearly or as needed	
· · · · ·	Lab. Control Sample	Commercial	Room Temperature	Working Standard	Room temp.	Yearly or as needed	
Hg	Calibration	Commercial	Room Temp.	Working Standard	Room temp.	Each batch	ς
	Spike Solution	Commercial	Room Temp.	Working Standard	Room temp.	Yearly or as needed	Page
	Lab. Control Sample	Commercial	Room Temp.	Working Standard	Room temp.	Yearly or as needed	ដ

* All volatile standards are mixed from neat standards at the indicated frequency, but are prepared daily to dilution required for use.

-]

320050

ł

. .

.'

INSTRUMENT GROUP	STANDARD TITLE	SOURCE	SOURCE STORAGE	PREP. FROM SOURCE	LAB STOCK STORAGE	FREQ. OF PREP
Cr-Hex	Stock Cr ⁺⁸ soln.	Commercial	Shelf	Working Soln.	N/A	Daily
Ethylene Glycol	Stock Soln.	Commercial	Refrigerature	Working Soln.	N/A	Daily
MBAS	Stock LAS Soln.	Commercial	Refrig. at 5° C.	Working Soln.	N/A	Daily
ТРН	Stock Standard	Commercial	Refrig.	Working Soln.	Refrig.	Monthly
Total Phosphorus	Stock ^o hosphate	Commercial	Refrig.	Working Soln.	N/A	Daily
ТКМ	Stock Standard	Commercial	Tightly Stoppered	Working Standard	Tightly Stoppered in Refrig.	15 days
Silica	Stock Standard	Commercial	Shelf	Working Standard	N/A	Daily
lodine	Stock Soln.	Commercial	Shelf	Working Standard	N/A	Daily
Bromide	Stock Soln.	Commercial	Shelf	Working Standard	N/A	Daily
COD	Stock Soln.	Commercial	Refrig.	Working Standard	N/A	Daily
Cyanide	Stock Soln.	Commercial	Refrig.	Working Soln.	Refrig.	Monthly
тос	Stock Standard	Commercial	Refrig. at 4 C.	Working Standard	Refrig.	14 days
Sulfate	Sulfate Stock	Commercial	Refrig. at 4 C.	Working Standard	Refrig at 4°C	Every 6 months
BOD	Glucose-Glutamic Acid Std.	Commercial	Shelf	200 ppm Working Standard	Refrig.	Monthly
Chloride	CI Stock	Commercial	Refrig.	Working Standard	Refrig.	Monthly
Orthophosphate	Stock	Commercial	Refrig.	Working Standard	Refrig.	Monthly
Total Phosphate	Stock	Commercial	Refrig.	Working Standard	Refrig.	Monthly

Section No. IX Revision No. 1 Date: 09/25/92 Page 14 of 16

ţ

ì

i

.

. 1

INSTRUMENT GROUP	STANDARD TITLE	SOURCE	SOURCE STORAGE	PREP. FROM SOURCE	LAB STOCK STORAGE	FREQ. OF PREP
Nitrate & Nitrite	,tock	Commercial	Refrig.	Working Standard	Refrig. with 2ml CHCl ₃	Monthly
Nitrite	Stock	Commercial	Refrig.	Working Standard	Refrig. with 2ml CHCl ₃	Monthly
Ammonia	Stock	Commercial	Refrig.	Working Standard	Refrig.	15 days
Flouride	Stock	Commercial	Shelf	Working Standard	N/A	Daily
рН	Buffer	Commercial	Room temp.			6 months
Total Alkalinity	Stock H ₂ SO ₄	Commercial	Room temp.	1.N H ₂ SO ₄ 0.1N and 0.02N H ₂ SO ₄	Room temp.	6 months Monthly
	Stock Reference	Commercial	Refrigerator	Working reference	Room temp.	2 months
	Standardization Titrant	Commercial	Room temp.	0.05N Na ₂ CO ₃ standardization titrant	Room temp.	Daily
Turbidity	Stock Solution	Commercial	Refrigerator	400 NTU std.	Room temp.	Monthly
				40 NTU std from 400 std	Room temp.	Daily
				4 NTU std from 400 std .4 NTU std from 400 std	Room temp. Room temp.	Daily Daily
Phenol	Stock Solution	Commercial	Refrigerator	Reference std. Working std. Calibration std. from working std.	Refrigerator Refrigerator Room temp.	6 months 6 months Daily
	Buffer Solution	Commercial	Room temp.			2 months

.

Section No. IX Revision No. 1 Date: 09/25/92 Page 15 of 16

ł

. 1

1

.

Revision No. 1	
Date: 09/25/92	
Page 16 of 16	

TABLE IX-2 **STANDARDIZATION OF TITRANTS**

TITRANT

STANDARDS USED

FREQUENCY

H₂SO₄ (1N; 0.1N; 0.02N) NaOH (1N; 0.1N; 0.02N) Na₂S₂O₃ (0.005N) Na₂S₂O₃ (0.025N)

0.05N Na₂CO₃ Monthly 0.05N Potassium Biphthalate As needed Monthly or as needed 0.005N Patassium Bi-lodate Potassium Iodine Potassium Bi-lodate

Monthly or as stock is changed

Section No. Revision No. Date: 09/25/92 8 Page of

SECTION X. PREVENTIVE MAINTENANCE

A. Instrument Maintenance

A preventive maintenance schedule is followed and a maintenance log is kept on all instruments. The prevention of instrument failure is important to laboratory operation. The laboratory needs to meet certain analytical schedules and holding times and this can only be accomplished by keeping instrument downtime to a minimum. Instruments are cleaned and maintained on a regular basis to help limit downtime.

The lab has maintenance contracts on all major pieces of equipment. If the lab experiences a problem with an analytical instrument, a service call is made, and a certified technician is sent to correct the problem. The analysts are also trained in troubleshooting their instruments to determine if outside assistance is needed.

Routine maintenance as outlined by the manufacturers are followed on all pieces of laboratory instrumentation. A list of routine maintenance is included as Table X-1.

In the event of equipment failure, in most cases there is an alternate piece of equipment that can be substituted. If there is no alternate equipment available, the sampling will be delayed if possible, or samples will be subcontracted to an alternate approved laboratory.

B. <u>Maintenance Log</u>

Maintenance logs are kept on every instrument in the lab. The logs are located near their respective instruments. Maintenance, whether performed by laboratory personnel or by professional maintenance personnel, is documented as an entry in the

Section	No.	X	(
Revision		1	
Date:	09,	/25/92	
Page _	_2_	of	8

appropriate log book. Entries include the reason for maintenance, maintenance that was performed, individual performing the maintenance, the date of maintenance, and the initials of the analyst in charge during the maintenance.

A maintenance check list is also completed each day on each major piece of analytical equipment. Two examples of the maintenance check lists are included as Figures X-1 and X-2.

C. Equipment Monitoring

The operating temperatures of all ovens, incubators, water baths, refrigerators, coolers and freezers are checked daily and recorded in a laboratory notebook. A specific analyst is assigned the responsibility to perform and record these temperature checks. The analysts initials, date, time performed and temperature reading are recorded for all ovens, refrigerators, etc. A table of the types of equipment that is monitored and the frequency that it is monitored is included as Table X-2.

Section	NO.	X	<u> </u>
Revision	NO.	1	
Date:	097	25/92	
Page _	3	of	8

TABLE X-1PREVENTIVE MAINTENANCE

Instrument	Activity	Frequency
Atomic Absorption - Furnace	Clean furnace windows	Daily
	Check plumbing connections	Daily
	Change graphite tube	As needed
	Check gases	Daily
	Check autosampler and tubing	Daily
CAP	Clean filters	Monthly
	Check gas flow	Daily
	Change tubing	Weekly
	Clean nebulizer	As needed
×.	Check autosampler and tubing	Daily
Gas Chromatograph - Volatiles	Check Hall propanol flow	Daily
	Check Hall furnace temp.	Daily
	Check PID sensitivity	Daily
	Change lamp	As needed
	Rinse purge devices	Daily
	Bake purge devices	Daily
	Check carrier gases	Daily
	Change carrier gases	As needed
	Check column flows	Daily
	Check for gas leaks	At each column change
	Replenish electrolytic conductivity detector solvents	As needed
	Clean transfer lines	As needed
Gas Chromatograph - Semi-	Change septum	Every 100 shots or as needed
/olatiles	Check carrier gas	Daily
	Change carrier gas	When pressure reaches 250 ps
	Change in-line filters	Every 6 mos. or as needed
	Remove first foot of capillary column	As needed
. · · · · · · · · · · · · · · · · · · ·	Clean ECD	As needed
	Clean Nitrogen-Phosphorous Detector	As needed
	Check system for gas leaks	At each column change
	Replace column	As needed
	Clean FID	As needed
	Replace capillary injection port liner	At column change or as needed
	Replace capillary injection port seal	As column change or as needed
	Measure gas flow	After changing column
	Check syringe	Daily
	Change syringe	As needed

the first

Section No. Revision No. 09/25/92 Date: 4 8 Page of

TABLE X-1 - continued

Instrument

Gas Chromatograph/ Mass Spectrometer

Lachat Quikchem AE

TOC

GPC

<u>Activity</u>

Change septum Check carrier gas Change carrier gas Change gas filters Change gas filters Change trap on Tekmar Change GC column Clean MS source Check pump oil leaks Leak check septum Check gas flows Clean VOA purge glassware Cut capillary column Replace liner Replace BNA seal

Dry and clean random access sampler Clean sample boats Coat rollers of pump with silicon spray Replace pump tubes Replace flares at port of valve module Clean unions of the valve Replace O-rings Clean each port of the valve Clean fitting of manifolds

Replace water in IC Chamber Clean-IC chamber Clean underside of IC inlet valve Check combustion tube Repack quartz wool in comb. tube Check TC inlet valve Clean TC inlet valve Refill acid bottle

Change seals and oil motor on positive displacement pump Repack column

Check system pressure Replace mesh at column effluent/influent Check calibratio, pressure and solvent flow

Frequency

Monthly/as needed Daily When pressure reaches 100 ps Semi-annually/as needed As needed/poor sensitivity As needed/poor sensitivity Monthly As needed/when leak suspectec As needed As needed As needed As needed As needed As needed As needed/contamination susp.

Daily Daily Every 2500 samples Monthly Every 25000 samples Every 25000 samples When necessary Weekly Every 25000 samples

Weekiy As needed Daily As needed Daily As needed .'hen 2/3 empty

Ever 1500-2000 hours of use

When column flow is restricted ot operating pressure increases Check daily when operating Replace if torn or wrinkled

Check weekly

Section N	IO .	X		
Revision	No.	1		
Date:	09	/25/92		
Page	5	of	8	

TABLE X-1 - continued

Instrument

Electrodes

IR Analyzer

Spectronic 21

pH Meter and Electrodes

Flouride Ion Specific

<u>Activity</u>

Clean electrode Flush and replace filling solution

Replace electrodes Flush and replace filling solution Condition in buffered distilled water

Clean and inspect quartz tubes

Clean, dry and inspect set of matched curvettes

Frequency

Weekly Weekly

Every nine months With each use With each use

With each use

With each use

Section	No.	X	ζ.
Revisior	1 No.	1	
Date:	097	/25/92	
Page _	6	of	8

TABLE X-2 EQUIPMENT MONITORING

~

Equipment Type	Activity	Frequency
Ovens	Temperature monitoring	Twice daily
Refrigerators	Temperature monitoring	Twice daily
Incubators	Temperature monitoring	Twice daily
Walk-in Cooler	Temperature monitoring	Twice daily

.

....

MAINTENANCE CHECK LIST - GC/MS SEMI-VOLATILES

·

Instrument:

												<u>.</u>					
		REMOV	INJ E & CLEAN	I. PORT (RC) OR I	EPLACE	(RE)		C	OLUMN		CLEANING		C	IIANG E GASE	8		
DATE	SEPTA	LINER	0-RING	FERR	SYR	71L	OTHER	cur	LENGTH	INJ. PORT	SOURCE	other	LIQ NIT	HELIUM	AIR	HP PM	MISCELLANEOUS
			·····														FIGUR
																	I m
										·							<u> </u>
																<u> </u>	
								 				 		 			<u>کی م</u>
					 									<u> </u>	<u> </u>		% ال
					<u> </u>]	_	۲ - ۲ - ۲ - ۲ - ۲ - ۲ - ۲ - ۲ - ۲ - ۲ -
				 						_		. 	 				
													ļ			 	
													<u> </u>				,
3200	60																_

MAINTENANCE CHECK LIST - ICAP-61

 $(x_1, \dots, y_n) = (x_1, \dots, x_n, \dots, x_n$

DATE	INITIALS	CLEAN FILTERS	CHECK GAS *LOW	CHANGE PERISTALIC PUMP TUBING	CLEAN NEBULIZER	CHECK AUTOSAMPLER AND TUBING	CHANGE LIQUID ARGON TANK	COMMENTS	
-								<u> </u>	
				······································					
								— — — — — — — — — — — — — — — — — — —	
								· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·			
		· ·		**************************************					
					· · · ·			age is	Heve
					•				Hevision No.
									1
	20061	I	<u> </u>	I	<u>l</u>	<u> </u>	<u> </u>	<u> </u> ¦∞	

Section No.	XI
Revision No	. 1
Date:0	9/25/92
Page1	of20

SECTION XI. QUALITY CONTROL CHECKS, ROUTINES TO ASSESS PRECISION AND ACCURACY, AND CALCULATION OF METHOD DETECTION LIMITS

When analyzing samples, the accuracy and precision of the data generated are determined through the analysis of replicates, spiked samples, reference standards, and laboratory blanks with each set of samples. Results of QC samples are charted against control limits established for the current year.

A. <u>Method Detection Limits</u>

Method detection limits (MDLs) are calculated for each instrument in the lab. They are calculated following the procedures outlined in 40 CFR Part 136, Appendix B. An example of the MDL worksheet is included as FIgure XI-1. Seven replicate measures are used to determine the method detection limits. MDLs are calculated as part of the initial demonstration of precision and accuracy, that is done when an instrument is first received. MDLs are continually verified by running a standard at a concentration near but above the MDL value each time a calibration curve is generated.

B. <u>Method Accuracy and Precision</u>

Method accuracy is the ability to determine that the measurement of a known reference standard will be acceptably close to the defined true value. This is measured by the analysis of an external reference standard. The analytical method accuracy and matrix effects are determined by spiking a known amount of analyte into a sample. The percent recoveries are then calculated. The amount of analyte recovered from the sample reflects matrix effects upon the accuracy of the method. A trend over time indicates a

XI Section No. Revision No. 09/25/92 Date: 2 20 Page of .

lack of control of accuracy. A trend could be described as five or more points on the same side of the mean or points gradually approaching warning or controlling limits.

Method Precision is the ability to limit the spread of replicate measurements relative to their average in a manner which approximates the bell-shaped normal distribution. The analytical method precision is determined by analyzing equal amounts of a split sample. Ideally, the analytical results will be identical; however, differences occur due to variations in the procedure. A quantitative measure of these differences is assessed by calculating the relative percent differences between duplicate results for each analyte.

C. Intralaboratory QA/QC Program

One of the main goals of this QA/QC manual is to establish guidelines for intralaboratory QC (QC that is performed within the laboratory). In addition, this manual provides a mechanism where QC procedures can be documented for review.

A quality control program is a systematic attempt to maintain the precision and accuracy of analyses by detecting and preventing the recurrence of errors. By identifying the sources of errors, confidence in the precision and accuracy of analytical results can be established, and improvements in the analytical methods can be made.

In general, OBG Laboratories quality control program incorporates the concepts of: a) calibration to attain accuracy, b) replication to establish precision limits, and c) use of synthetic standards and spikes to confirm accuracy.

Table XI-1 contains a list of all laboratory QC checks and the frequency at which they are done. If method QC requirements are more stringent than the routine measures

XI Section No. Revision No. Date: 09/25/92 20 Page 3 of

typically followed, the method QC requirements will be followed.

Table XI-2 is a list of the procedures used to determine the accuracy and precision levels in Table V-1. Low level is defined as concentrations from the minimum detection limit to a level five times the MDL. Mid level is defined as the mean level between the minimum detection level and the upper end of the linear range. High level is defined as the concentration at the upper end of the linear range.

1) <u>Definitions of Basic Terms</u>

There are some basic terms that are frequently used when discussing QA/QC. Below are the definitions of some of the common terms.

a) Method Blank - The method or preparation blank is an aliquot of distilled and deionized water, organic free water, or organic reagents used in the analysis of samples. The method blank for inorganic analyses consists of distilled and deionized tap water. The method blank is passed through the entire analytical procedure (including all glassware and other materials that come into contact with the samples). These blanks are analyzed along with the samples to verify that: a) no false positives occur, and b) concentrations are accurate and do not reflect contamination.

b) Trip Blank - Trip blanks are water blanks sent from the laboratory to the sampling site and are returned to be analyzed in the same manner as the samples. They are treated in the same manner as the field samples during sampling. If the samples are to be analyzed for purgeable organics, the analysis of trip blanks provides a check on possible contamination of the samples by permeation of volatiles through the septum seal. At least one trip blank for each volatile organic method will be prepared and analyzed for

Section No. XI Revision No. 09/25/92 Date: 20 4 of Page

each cooler used to transport the volatile samples.

75

c) Matrix Spike - Spikes are the result of the addition of a known amount of analyte to a sample or blank. The analytical results yield a quantitative measure of accuracy (spiked blanks) or percent recovery (spiked samples). The spike percent recovery reflects matrix effects upon the analytical method accuracy. Matrix spikes are used to calculate spike recovery limits.

d) Duplicates - Duplicates are the result of splitting a field sample into equal amounts and treating them as two unique samples throughout the analytical procedure. The results of duplicate analyses provide information on overall precision of the analytical methodology. Quantitative results are obtained by calculating the relative percent difference (RPD) for each analyte in the sample matrix. RPDs can only be calculated if both the sample and duplicate have results above the detection limit. Duplicate samples are used to calculate the precision limits listed in Table V-1.

e) Matrix Spike Duplicates - Matrix Spike Duplicates are the result of splitting a field sample into three parts and adding the same known amount of analyte into two of them. One is used as the matrix spike and the other is used as the matrix spike duplicate. The RPD is calculated on the two percent recoveries. The advantage of doing a matrix spike duplicate is that there will always be a calculable RPD since there should never be a result less then the detection limit. Matrix spike duplicate samples are also used to calculate the precision limits listed in Table V-1.

f) Surrogate Spike - Surrogate spikes consist of the addition of known amounts of standards to every sample prior to the analysis of some organic methods.

Section No. X Revision No. 09/25/92 Date: 20 Page 5 of

The standards are chemically similar to the compounds of interest. For GC/MS analysis, deuterated compounds are often used. The analysis of surrogate spikes provide quality control on every sample by constantly monitoring unusual matrix effects. Surrogate spikes added to every sample are used to calculate the surrogate spike recovery limits listed in Table V-1.

g) Internal Standard - An internal standard is a solution added to all samples for GC/MS analysis. Internal standards are used as the basis for quantitation of the target compounds.

h) Reference Standard - A reference standard is analyzed on every run or with each batch of samples to verify calibration. The type of standard used is an external reference standard solution obtained from a source different then the source of the calibration standards. The external reference samples are used for monitoring the complete analytical method. Reference standards are used to calculate the accuracy limits listed in Table V-1.

calibration throughout the analytical sequence. They are analyzed at a frequency of 10%.

j) Performance Evaluation Samples - A set of samples sent to the laboratory by a certifying agency to be analyzed. The laboratory is unaware of the concentration of the compounds in the samples and the results must fall within certain limits. Approximately four sets of Performance Evaluation samples are analyzed per year. If P.E. sample analysis is unacceptable, results will be reported in a QA report if required.

2) <u>Analytical Errors</u>

. .

Section	No.	X		
Revision		1		_
Date:	<u>0</u> 97	25/92		_
Page _	6	of	_20	_

The laboratory is dedicated to minimizing errors that cause inaccurate results. There are three types of errors: determinate, indeterminate, and systematic. Determinate errors are caused by improper technique such as glassware contamination, dirty hands, etc. Indeterminate errors are those in which no cause can be assigned. Systematic errors are a bias common to a sequence or batch of results frequently induced by an indeterminate or determinate error in a standard or in the use of a standard.

QC data is plotted on a daily basis and results are compared to established criteria to minimize out of control situations and analytical errors. The analysts are familiar with the methods they are running, and can detect when calibration standards and QC checks are not providing the proper results.

Errors are reduced by properly training the analysts and having written standard operating procedures for the analysts to use. The analysts are trained in good laboratory practices. Every effort is made to keep contamination to a minimum. Blanks are run with every group of samples to check for contamination from glassware or standards.

D. <u>Statistical Quality Control</u>

Statistical calculations form the basis of the QA/QC program. They are the foundation for the generation of control charts and the setting of warning and control limits. The definitions of some of the widely used statistical terms follows.

 Mean - The average of n values is calculated by taking the sum of n values and dividing by n.

Section N	0.	X		
Revision I	No.	1		
Date:	œ,	/25/92		_
Page	7_	of	_20_	

$$\overline{x} = \frac{\sum_{i=1}^{n} x_{i}}{n}$$

 <u>Standard Deviation</u> - A parameter used to measure the dispersion of a data set. It is calculated by the following:

$$s = \sqrt{\frac{\sum_{i=1}^{n} (\overline{x} - x_i)}{n-1}}$$

The relative standard deviation (RSD) or coefficient of variation (CV) is the standard deviation divided by the mean and multiplied by 100.

$$CV = \frac{s}{\overline{x}} * 100$$

3) <u>RPD</u> - The relative percent difference of two numbers is calculated by dividing the absolute value of their differences by the average of the two numbers.

RPD =
$$\frac{|x_1 - x_2|}{((x_1 + x_2)/2)} *100$$

4) <u>Percent Recovery</u> - Percent recovery is calculated by dividing the spike sample result by the spike added for blank spikes or by dividing the spike sample result minus the sample by the spike added.

Section	No.	X	l
Revision	NO.	1	
Date:	097	25/92	
Page _	8	of	_20

$$R = \frac{SS}{SA} * 100$$

$$R = \frac{SS-S}{SA} * 100$$

Where: SS = Spike sample SA = Spike added S = Sample

E. <u>Control Charts</u>

· · .

Control charts provide the necessary tools for detecting quality variations in the various analytical methodologies used. They are a continuous graphic indication of the state of an analytical procedure with respect to quality. Control charts indicate when corrective action procedures are necessary and often assist in defining what corrective action procedures should be taken.

The control limits on QC charts set the criteria for assessing the significance of variations in the analytical results. When the plotted QC data fall within these limits, the analytical methodologies are considered under control. If a data point falls outside of the control limits, there is an indication that some assignable cause is present which has thrown the system out of control.

Control limits can be considered action limits. They enable the laboratory to detect significant deviations in analytical procedures and to take corrective action before producing erroneous results. Warning limits are used as a warning that the analytical

Section N	0.	X		_
Revision 1	VO.	1		_
Date:	097	/25/92		_
Page	9_	of	_20	_

system is approaching "out of control" conditions and that the cause should be investigated and corrected before the system is out of control.

Warning limits (WL) are set at \pm 2 standard deviations and control limits (CL) at \pm 3 standard deviations of the mean. The WLs and CLs correspond, respectively, to the 95% (2s) and 99.7%(3s) confidence limits of a normal distribution curve.

1) <u>Precision QC Charts</u>

Precision QC charts are used for graphing the RPDs of duplicate samples. The charts are developed using up to fifty data points, depending on how often the parameter is analyzed by a particular method. Once these data points have been collected, the warning and control limits on the QC charts are calculated by using the following method:

a) For each pair of duplicate samples calculate the RPD.

- b) Calculate the mean RPD by summing all the RPDs and divide by the total number (n) of duplicate sets.
- c) Calculate the standard deviation (s).
- d) Calculate the warning and control limits.

 $UCL = \overline{RPD} + 3s$ $UWL = \overline{RPD} + 2s$ $LWL = \overline{RPD} - 2s$ $LCL = \overline{RPD} - 3s$

The LWL is often equal to the LCL which is usually zero, since it is impossible to have a negative RPD. See Figure XI-2 for an example of a precision QC chart. Due to a problem in the statistical program used to generate control charts, negative numbers are

Section No. XI Revision No. Date: 09/25/92 10 Page 20

printed on the precision control charts, but they are not used.

2) Accuracy QC Charts

Accuracy QC charts are used for graphing the percent recoveries of reference standards. The charts are developed using up to fifty data points, depending on how often the parameter is analyzed. The warning and control limits are calculated by using the following procedures:

- a) For each reference standard, calculate the percent recovery (%R).
- b) Calculate the mean %R by taking all the %Rs and dividing by the total number (n) of %Rs.
- c) Calculate the standard deviation (s) of the percent recoveries.
- d) Set the warning and control limits by the following:
 - $UCL = \frac{\overline{R}R}{\overline{R}} + 3s$ $UWL = \frac{\overline{R}R}{\overline{R}} + 2s$ $LWL = \frac{\overline{R}R}{\overline{R}} 2s$ $LCL = \frac{\overline{R}R}{\overline{R}} 3s$

3) Matrix Spike Recovery QC Charts

Matrix spike recovery QC charts are used for graphing the percent recoveries of spiked samples. The charts are developed using up to fifty data points, depending on how often the parameter is analyzed. The warning and control limits are calculated by using the following procedures:

- a) For each spiked sample, calculate the percent recovery (%R).
- b) Calculate the mean %R by taking all the %Rs and dividing by the total

Section	NO.	_X	I	
Revisio	n No.	1		
Date:	097	25/92		
Page [–]	11	of	20	

number (n) of %Rs.

- c) Calculate the standard deviation (s) of the percent recoveries.
- d) Set the warning and control limits by the following:
 - $UCL = \overline{\$R} + 3s$ $UWL = \overline{\$R} + 2s$ $LWL = \overline{\$R} 2s$ $LCL = \overline{\$R} 3s$

See Figure XI-3 for an example of a spike recovery chart.

Section	No.	X	
Revision	n No.	1	
Date:	097	/25/92	
Page _	_12	of	_20

TABLE XI-1 LABORATORY QC CHECKS AND FREQUENCY

LABORATORY SECTION

••••

QC SAMPLE

FREQUENCY

GC/MS	Reference Standard BFB or DFTPP Continuing Cal. Check Matrix Spike Matrix Spike Duplicate Reagent Blank Surrogates Internal Standards P.E. Samples	5% Every 12 hours After BFB or DFTPP 5% 5% Daily or every batch Every sample Every sample Semi-annually
GC Volatiles	Reference Standard Continuing Cal. Check Matrix Spike Matrix Spike Duplicate Reagent Blank Surrogates P.E. Samples	10% 10% 10% Daily Every sample Semi-annually
GC Semi-volatiles	Reference Standard Continuing Cal. Check Matrix Spike Matrix Spike Duplicate Extraction Blank Surrogates P.E. Samples	5% 10% 5% 5% 10% Every sample Semi-annually
Metals	Reference Standard Continuing Cal. Check Matrix Spike Duplicate Preparation Blank P.E. Samples	5% 10% 5% 5% 5% Semi-annually

Section	NO.	X]	
Revisio	n No.	1		
Date:	09,	25/92		
Page _	_13	of_	_20	

TABLE XI-1 - continued

LABORATORY SECTION

Wet Chemistry

÷.

QC SAMPLE

FREQUENCY

Reference Sample Continuing Cal. Check Matrix Spike Duplicate Blank P.E. Samples

5% 10% 5% 5% 5% Semi-annually

Section	No.	X	1
Revision	n No.	1	
Date:	097	25/92	
Page _	14	of	_20

TABLE XI-2 PROCEDURES USED FOR PRECISION AND ACCURACY

- *-

2255

OC PROCEDURE	PURPOSE	CONC. LEVEL	METHOD
Reference	Accuracy	Low	410.4, 420.1, 9065
Matrix Spike	Matrix Accuracy	Low	410.4, 420.1, 9065
Duplicate	Precision		410.4, 420.1, 9065
Reference	Accuracy	Mid	310.1, 350.1, 410.4, 325.2, 9251, 330.5, 335.2, 9010, 335.1, 340.2, 150.1, 9040, 351.2, 353.2, 413.1, 9071, 415.1, 365.4, 375.2, 180.1
Matrix Spike	Matrix Accuracy	Mid	350.1, 410.4, 352.2, 9251, 330.5, 335.2, 9010, 335.1, 340.2, 351.2, 353.2, 413.1, 9071, 415.1, 365.4
Duplicate	Precision		310.1, 350.1, 410.4, 325.2, 9251, 330.5, 335.2, 9010, 335.1, 340.2, 150.1, 9040, 351.2, 353.2, 413.1, 9071, 415.1, 365.4, 375.2, 180.1
Reference	Accuracy	High	405.1, 120.1
Duplicate	Precision		405.1, 120.1
Duplicate	Precision		305.1, 110.2, 140.1, 160.3, 160.1, 160.2, 160.5, 160.4, 377.1
Reference	Accuracy	Mid	All metals methods
Matrix Spike	Matrix Accuracy	Low	All metals methods
Duplicate	Precision		All metals methods

Section	No.	X		
Revision	n No.	1		
Date:	_ 09,	/25/92		
Page _	15	of	_20_	

TABLE XI-2 - continued

QC PROCEDURE	PURPOSE	CONC. LEVEL	METHOD
Reference	Accuracy	Mid	601/602, 8010/8020
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	601/602, 8010/8020
Reference	Accuracy & Precision	Low	502.1/503.1
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	502.1/503.1
Reference	Accuracy	Mid	501.1
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	501.1
Reference	Accuracy	Mid	MOD. 8020
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	MOD. 8020
Reference	Accuracy	Low	608,8080
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Low	608, 8080
Reference	Accuracy	Mid	608 PCB only 8080 PCB only
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	608 PCB only 8080 PCB only
Reference	Accuracy	Mid	8040, 8060, 8100, 8110, 8120, 8015, 8070, 8090
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Mid	8040, 8060, 8100, 8110, 8120, 8015, 8070, 8090
Reference	Accuracy	Low	8140, 8150
Matrix Spike/Matrix Spike Duplicate	Accuracy & Precision	Low	8140, 8150

Section	NO.	X]
Revision	ר No.	1	
Date:	097	25/92	
Page _	16	of	20

TABLE XI-2 - continued

- .

-05-4

QC PROCEDURE	PURPOSE	CONC. LEVEL	<u>METHOD</u>
Matrix Spike	Accuracy	Low	624, 625, 8240, 8270
Matrix Spike Duplicate	Accuracy & Precision	Low	624, 625, 8240, 8270
Duplicates	Precision	Low	624, 625
Reference	Accuracy	Low	624, 625, 8240, 8270
Surrogates	Accuracy	Low	624, 625, 8240, 8270

Section	NO.	Х		
Revisio	n No.	1		
Date:	09,	25/92		
Page [–]	17	of_	20	

FIGURE XI-1

----,

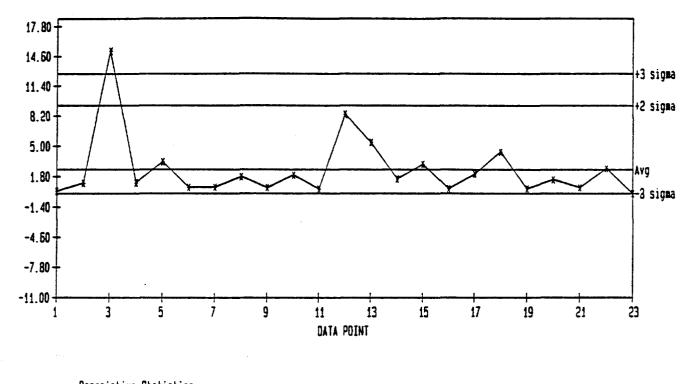
•

Table ____

Method Detection Limit Worksheet

Parameter		· · · · · · · · · · · · · · · · · · ·
Estimated Det	tect	ion Limit
Concentration Us	sed	in this Study
Trial #	# 1	
Trial #	# 2	
Trial #	† 3	
Trial #	‡ 4	
Trial #	ŧ 5	
Trial #	ŧ 6	
Trial #	ŧ 7	

Standard Deviation	
3.143 x Standard Deviation	
Method Detection Limit	
Laboratory Detection Limit	
Units	


Date Analyzed	
Signature	
Reviewed	·

.-

FIGURE XI-2

Section	No.	X		
Revision	n No.	1		
Date:	097	/25/92		
Page _	_18	_of_	_20_	

CU BY ICP - WATER RPD'S

AVERAGE UPPER WARNING LIMIT	:	2.503 9.273	STANDARD DEVIATION LONER WARNING LINIT	:	3.385 0.000 (_)c
UPPER CONTROL LINIT	:	12.658	LOHER CONTROL LIMIT	:	0.000

DATA POINT	DATE	SAMPLE		<u>220</u>	ENTERED RY
1	91/01/15	0.437	0.438	.22	NT
2	91/01718	0.181	0.183	1.09	HT
3	91/02/04	0.128	0.149	15.18	NT
4	91/02/04	0.529	0.535	1.12	NT
5	91/02/28	0.352	0.364	3.35	NT
5	91/03/12	0.969	0.963	.62 .55	HT
7	91/03/25	0.152	0.151	.65	MT
8	91/04/02	0.159	0.172	1.75	NT
9	91/04/09	0.325	0.328	.51	ЯT
10	91/04/09	1.53	1.55	1.94	HT
11	91/04/10	0.218	0.219	. 45	HT
12	91/05/09	0.287	0.264	8.34	HT
13	91/06/06	0.649	0.615	5.37	HT
14	91/07/12	0.328	0.323	1.53	HT
15	91/08/20	0.329	0.319	3.08	HT
15	91/09/19	0.612	0.609	. 49	NI
17	91/09/19	1.93	1.97	2.05	HT
18	91/09/26	0.155	0.162	4.41	HT
19	91/10/11	0.391	0.393	.51	HT
20	91/10/17	0.899	0.885	1.45	HT
21	91/10/29	0.160	0.159	.62	HT
22	91/11/26	1.87	1.92	2.63	NT
23	91/12/18	1.42	1.42	.00	CVT

601

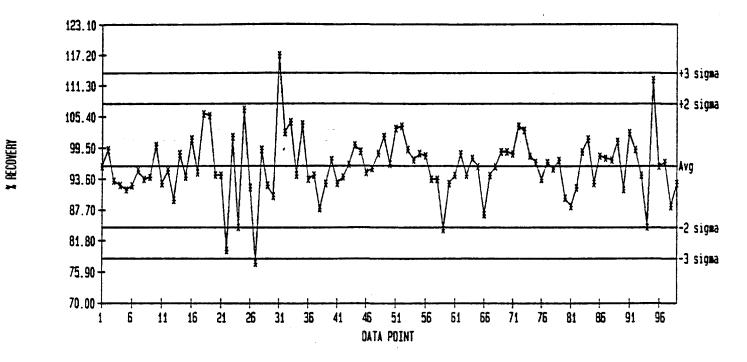

....

FIGURE XI-3

. . . .

Section	NO.	Х	
Revision	n No.	1	
Date:	097	25/92	
Page _	_19	of	_20

CU BY ICP - WATER SPIKE % RECOVERY

Descriptive Statistics					· · · · · · · · · · · · · · · · · · ·	
AVERAGE	:	96.089	STANDARD DEVIATION	:	5.872	
UPPER WARNING LIWIT	•	107.833	LOWER WARNING LIMIT	: 8	4.345	J.
UPPER CONTROL LINIT	:	113.705	LOWER CONTROL LIMIT	: 7	8.473	0.

DATA POINT	DATE '	ACTUAL	FOIND	I RECOVERY	- ENTERED RY	
1	91/01/02	0.250	0.24	96.00	HT	
2	91/01/02	0.25	0.24B	99.20	NT	
3	91/01/03	0.25	0.233	93.20	НŢ	
4	91/01/08 91/01/15	0.250 0.25	0.231 0.229	92.40 91.50	NT NT	
, ,	91/01/15	0.25	0.231	92.40	NT .	
7	91/01/18	0.25	0.238	95.20	NT	
8	91/01/19	0.25	0.234	93.60	NT	
8 9	91/01/24	0.25	0.235	94.00	HT	
10	91/01/24	1.0	1.0	100.00	HT	
11	91/01/25	0.25	0.232	92.80	NT	
12 13	91/02/04	0.25	0.236	95.20	HT	
13	91/02/04 91/02/13	0.25 0.25	0.224 0.245	89.50 98.40	NT NT	
14 15	91/02/14	0.25	0.235	98.40 94.00	NT .	
16	91/02/15	0.25 0.25 0.25	0.235 0.253	101.20	HT	
16 17	91/02/15 91/02/19	0.25	0.237	94.80	NT	
18	91/02/25	0.25	0.255	105.00	NT	
19	91/02/27 91/03/05	0.25	0.264	105.60	HT	
20	91/03/05	0.25	0.236	94.40	HT	
21	91/03/05	0.25	0.236	94.40	MT	
20 21 22 23	91/03/11 91/03/12	0.25 0.25 0.25 0.25	0.2 0.254	80.00 101.60	NT Nt	
	91/03/12	0.25	0.211	84.40	NT	
24 25 26	91/03/13	0.25	0.267	105.80	ŇŤ	
26	91/03/18	0.25	0.23	92.00	NT	
27	91/03/19	0.25	0.194	77.60	NT	
28 29	91/03/22	0.25	0.248	99.20	NT	
29	91/03/25	0.25	0.231	92.40	¥T coc	
30	91/03/25	0.25	0.225	90.40	600	320

CU BY ICP - WATER SPIKE % RECOVERY

.

Section No.____ Revision No.____ XI 1 Date: 09/25/92 Page _______ of ____ 20

			(Con	tinued)			
	DATA POINT	DATE	ACTUAL	FDIND	I RECOVERY	ENTERED BY	
	31 32 33 34	91/04/01	0.25	0.293	117.20	HT	
	32	91/04/02	0.25	0.256	102.40	SOC	
	33	91/04/02	0.25	0.251 0.236	104.40 94.40	GDC GDC	
	34	91/04/02 91/04/03	0.23	0.230	104.00	NT	
- .	35 36	91/04/09	0.25	0.26 0.234	93.50	GDC	
	37	91/04/09	0.25	0.236	94.40	GOC	
	38	91/04/09	0.25	0.22	88.00	500	
	39	91/04/10	0.25	0.22 0.232	92.60	HT	
	40	91/04/10	0.25	0.243	97.20	NT	
-	41	91/04/10	0.25	0.232 0.235	92.80	NT	
	42	91/04/16	0.25	0.235	94.00	MT	
	43	91/04/24	0.23	0.241 0.25	95.40 100.00	NT NT	
	44 45	91/05/02 91/05/06	0.20	0.247	98.80	MT	
	46	91/05/08	0.25	0.237	94.80	NT	
	47	91/05/08	0.25	0.239	95.60	MT	
	48	91/05/08 91/05/09	0.25	0.245	98.40	ЖT	
	49	91/05/10	0.25	0.254	101.50	NT	
	50	91/05/10	0.25	0.241	95.40	HT	
	51 52	91/05/10 91/05/17 91/05/20	0.25	0.258	103.20	MT	
	52 53	91/05/20	0.23	0.259 0.248	103.60 99.20	NT NT	
•	54	91/05/23	0.20	0.243	97.20	MT	
	55	91/05/29 91/05/31	0.25	0.246	98.40	NT	
	55 56 57	91/05/31	0.25	0.245	98.00	MT	
	57	91/06/04	00000000000000000000000000000000000000	0.234	93.60	MT	
	58	91/06/05 91/06/05	0.25	0.234	93.60	NT	
	59 60	91/05/05	0.25	0.21 0.232	84.00	NT	
	50	91/06/17	0.25	0.232	92.80	HT	
	61 62	91/06/19 91/06/25	0.25	0.236 0.246	94.40 98.40	NT NT	
	63	91/06/25	0.25	0.236	94.40	MT	
	54	91/06/26 91/07/03	0.25	0.244	97.60	MT	
	65	91/07/09	0.25	0.24	96.00	ŃŤ	
	65	91/07/12	0.25	0.217	85 .80	NT	
	67	91/07/29	0.25	0.236	94.40	HT	
	68	91/07/31	0.25	0.240	96.00	MT	
	- 69	91/08/01	0.25	0.247	98.80	MT NT	
	70 71	91/08/01 91/08/05	0.25	0.247 0.246	98.80 98.40	MT MT	
	72	91/08/09	n 25	0.259	103.60	MT	
	73	91/08/20	0.25	0.257	102.80	ЙŤ	
	74		0.25	0.245	98.00	HT	
	75	91/08/21 91/08/22	0.25	0.242	96.80	HT	
	75 76 77	91/08/22	0.25	0.234	93.60	MT	
· •	11 .	91/08/22 91/09/04 91/09/18	0.25	0.242	95.80	MT	
	. 78 79	91/09/04	0.25	0.239 0.243	95.60 97.20	MT MT	
	80	91/09/10	0.25	0.225	90.00	NT .	
	81	91/09/18 91/09/19	0.25	0 221	88,40	HT	
	82	91/09/19	0.25	0.221 0.23 0.247	92.00	MT	
	83	91/09/19 91/09/20	0.25	0.247	98.80	MT	
	84	91/09/25	0.25	0.255	101.20	MT	
	85	91/09/26 91/09/26	0.25	0.232	92.80	NI	
	85	91/09/25	0.25	0.245	98.00	MT	
	87	91/10/04 91/10/04 91/10/08	0.23	0.244	97.60 97.20	HT HT	
	88 89	91/10/04	0.25	0.243 0.252	100.80	HT	
	90	91/10/08	0.25	0.229	91.60	ŇŤ	
		91/10/08 91/10/08	0.25	0.255	102.40	HT	
	91 92 93	91/10/11	0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25	0.248	9 9.20	MT	
	93	91/10/15	0.25	0.235	94.40	ht	
	94	91/10/16	0.25	0.211	84.40	MT	
	95	91/10/1/	0.20	0.281	112.40 95.00	MТ	
	96 97	91/10/17 91/10/24 91/10/26	0.20	0.240 0.242	96.80	MT MT	
	98	91/10/26	0.25 0.25 0.25	0.221	88.40	MT	
	<u>99</u>	91/10/29	0.25	0.221 0.232	92.80	MT	32008
	-						52000

320081

Section No.	XII	
Revision No.	0	
Date: 0 ⁻	1/22/92	
Page1_	of	12_

SECTION XII. DATA REDUCTION, VALIDATION AND REPORTING

A. <u>Data Reduction</u>

Data is generated from several different sources (scientific equipment, manual calculations, or computer generated). Most of the raw data is stored in hardcopy form and calculations are done to generate a final result. In several instances, the bench chemist performs calculations in a laboratory notebook and transfers the final result onto the client report form.

Calculations are either done manually or by computer programs. Calculations are done according to the method employed. They are based on sample matrix, method detection limits and dilutions or concentrations that may have been done. A brief description of some of the calculations used follows.

1. <u>Response Factors for GC/MS</u>

$$RRF = \frac{A_x}{A_{is}} * \frac{C_{is}}{C_x}$$

Where:

 A_x = Area of characteristic ion for the compound to be measured.

 A_{is} = Area of characteristic ion for the specific internal standard.

 C_{is} = Concentration of the internal standard.

 C_x = Concentration of the compound to be measured.

2. Final Concentration for GC/MS

Concentration(ug/L) =
$$\frac{(A_x)(I_s)}{(A_s)(RRF)(V_s)} *2$$

Section No.	XII	
Revision No.	0	
Date: 01	/22/92	
Page2_	of	_12_

Where:

 A_x = Area of characteristic m/z for the parameter or surrogate standard to be measured.

 A_s = Area of the characteristic m/z for the internal standard.

 I_s = Amount of internal standard added to each extract.

 $V_s =$ Volume of water extracted.

3. Response Factor for GC

Response Factor = (Area)_{std} (Concentration)_{std}

4. Final Concentration for GC

Sample conc. = (Area) sample Response Factor * Extract Volume Sample Size

5. <u>Alkalinity Concentration</u>

Alkalinity mg $CaCO_3/L = \frac{A * N * 50000}{ml. sample}$

Where:

A = ml. acid used

- B = Normality of acid
- 6. <u>Total Solids</u>

Section No.	XII
Revision No.	0
Date: 01	/22/92
Page3_	of12

Total solids
$$mg/L = \frac{(A-B)*1000}{ml. sample}$$

Where:

A = Weight of dried residue and dish

B = Weight of dish

7. Sulfate Concentration

Sulfate mg/L =
$$\frac{(A-B)*1000}{ml. sample}*0.41*1000$$

Where:

A = Weight of filter and residue B = Weight of filter

8. BOD Concentration

BOD mg/L O₂ =
$$\frac{(A-B) - (C-D) * F}{G}$$

Where:

A = Initial D.O. sample

B = Final D.O. sample

C = Initial D.O. seed control

D = Final D.O. seek control

F = Ratio of seed in sample to seed in control

G = ml. sample/300

9. <u>Specific Conductivity</u>

Section No.	XII
Revision No.	0
Date: 01	/22/92
Page4	of12

Specific Cond. µmho/cm = Cond. Reading * Cell Constant

10. Cell Constant for Conductivity

Cell Constant =
$$\frac{1413}{A}$$

Where:

A = Conductivity of 0.0100 N KCl at 25° C

All other calculations performed in the laboratory are similar in nature.

All GC/MS data is computer calculated using internal standards. All GC data is hand calculated. All metals data is computer calculated except for Mercury data. All wet chemistry data is hand calculated with the exception of the parameters that are analyzed on the autoanalyzer. Linear regressions done in the inorganic labs are performed by computer. Temperature compensations are done automatically.

All raw data is labeled with the sample number and date analyzed. A shot book sheet serves as a table of contents for each analytical GC run. An example of a shot book sheet is included as Figure XII-1. Each sample and standard is identified on the shotbook sheet and on each chromatogram. An injection log sheet serves the same purpose for the inorganic analytical runs. An example of an injection log sheet is included as Figure XII-2.

All data reduction and chromatogram identification is done by the analysts. Analysts identify GC peaks and patterns based on retention times from the integrator, and

XI	
0	
22/92	
of	_12_
	22/92

manually convert the area or peak height for these peaks into reportable values using response factors generated from calibration standards.

The analysts are responsible for transcribing the final results onto the laboratory report forms for the test parameters that they analyze and documenting the analyses in the appropriate logbooks. The analysts are also responsible for inputting their QC information into the LIMS.

When the analysts enter their QC into the LIMS, it is automatically checked to see if it meets QC criteria. If the QC fails criteria, the section leader or QA/QC officer is notified. All QC data that is entered into the LIMS is reviewed by the QA/QC officer.

B. <u>Data Validation</u>

As stated in Section III, the lab provides several different levels of QC and QC documentation. Each level of QC has different validation and reporting requirements.

In general, the data on the laboratory report form is checked by the section leader in charge of the laboratory section that generated the data. The section leader checks calculations, chromatograms, raw data, calibration curves, QC samples, and holding times. Any errors detected are reviewed with the analyst who made the error.

A flow chart outlining data validation procedures performed at OBG Laboratories, Inc. has been included as Figure XII-3.

C. <u>Data Reporting</u>

The section leader in charge of the project collects all of the laboratory report forms, checks them for completeness, compiles them into report format, and submits them into typing. After typing, the report is checked for typographical errors and these

Section No.	XII
Revision No.	0
Date: 0*	1/22/92
Page6_	of12

are corrected if necessary. The report is then reviewed by the manager of analytical services.

An example of a final report, without raw data, is included as Appendix C.

As a general rule, results are reported to two significant figures. Normal rounding rules are followed. That is, if the number to the right of the digit to be kept is greater than five, the number is rounded up. If the number to the right of the digit to be kept is less than five, the number is rounded down. If the number to the right is equal to five and there are no numbers to the right of the five, then the number is rounded up if is odd or rounded down if it is even.

All QC data is input into the LIMS system. The QA/QC officer is responsible for checking that information is input into the LIMS properly.

D. <u>Data Storage</u>

A copy of the final laboratory report is retained by the laboratory. All laboratory reports are filled by client ID number and project number. This allows for all data belonging to a specific client and project to be filed together. All reports are kept at the laboratory for one year and are then stored at a access-restricted warehouse.

The original chain of custody forms and case file forms are filed with the final report. If the client requested specific QC be performed, copies of the QC will also be filed with the report.

All QC data is input into the LIMS. At the end of every year, all QC data is copied onto tape and is printed out. Hardcopy data is stored in parameter and date order and is maintained by the quality control officer. Tapes are labeled with the year and the

Section No. XII Revision No. 01/22/92 Date: 12

contents and are kept by the quality control officer. Hardcopy data and tapes are kept for five years.

Following is a section by section breakdown of how raw data is maintained.

1. <u>GC/MS</u>

All GC/MS data is computer generated. When a group of samples is completed, the data is down loaded onto tapes. Information on the tapes includes calibration data, batch QC data, tuning data and sample data. A file log is created for each tape that contains the file ID numbers of all the files on the tape. The file ID number corresponds to the file number that is recorded in the injection logbook at the time of sample analysis. Tapes are stored for five years in the GC/MS lab.

Extractions, if applicable, are written up in extraction logbooks. Extraction logs include sample #'s, weights/volumes used, surrogates added, spikes added, date extracted and analyst comments. Extraction logs are kept for five years.

Data for specific clients and projects are identified by a unique project number. Raw data is identified on shotbook sheets and extraction sheets, if applicable, by project number, sample number and date.

2. <u>GC Volatiles</u>

Records are stored on integrator printer paper filed by dates analyzed in three ring binders. Each contains a shotbook sheet that identifies injections by sample number and client number and list the injection response. All batch QC and calibration information is stored with the raw data. Each instrument has a maintenance log that is also kept in a three ring binder.

X11
0
/22/92
of12

Raw data are organized by date and instrument and kept in the GC lab for 6 months. It is then stored in the warehouse for up to five years.

Data for specific clients and projects are identified by a unique project number. Raw data is identified on shotbook sheets by project number, sample number and date.

3. <u>GC Semi-volatiles</u>

All chromatograms, shotbook sheets and copies of data reduction sheets are stored in three-ring binders, organized by instrument and date analyzed. All batch QC and claibration information is included with the raw data. Copies of extraction sheets are kept in a separate three-ring binders, by date extracted. Each instrument maintenance log is a spiral notebook kept with the particular instrument. Each chemist of technician has their own personal lab notebook for original extraction or data reduction sheets.

Raw data are organized by date and instrument and kept in the GC lab for 18 months. It is then stored in the warehouse for up to five years.

Data for specific clients and projects are identified by a unique project number. Raw data is identified on shotbook sheets and extraction sheets by project number, sample number and date.

4. <u>Metals</u>

All ICP and furnace data is computer generated. Computer printouts are stored in binders by instrument and parameter chronologically. Mercury data is in the form of strip charts which are also filed in a binder chronologically. Batch QC and calibraiton information is stored with the raw data. All data is filed in the lab for one year and in the warehouse for five years. Each instrument has a maintenance log which is kept in the

Section No. XII Revision No. 01/22/92 Date: 9 Page

lab.

Digestions are written up and kept in a bound laboratory notebook. Digestion logs include sample #'s, date digested, weights/volume used, spikes added, sample description, type of digestion and any analyst comments. Digestion logs are stored in the lab for one year and kept in the warehouse for five years.

Data for specific clients and projects are identified by a unique project number. Raw data is identified on injection log sheets and digestion log sheets by project number, sample number and date.

5. <u>Wet Chemistry</u>

Three ring binders are set up for every type of analysis performed in the wet chemistry section. A copy of all data is filed in the three ring binder. Included in this data are sample #'s, calculations, dilutions, QC data including RPD's and percent recoveries, standard curves if applicable, strip charts if applicable, and any data that is computer generated. Data is stored in the wet chemistry lab for one year and in the warehouse for up to five years.

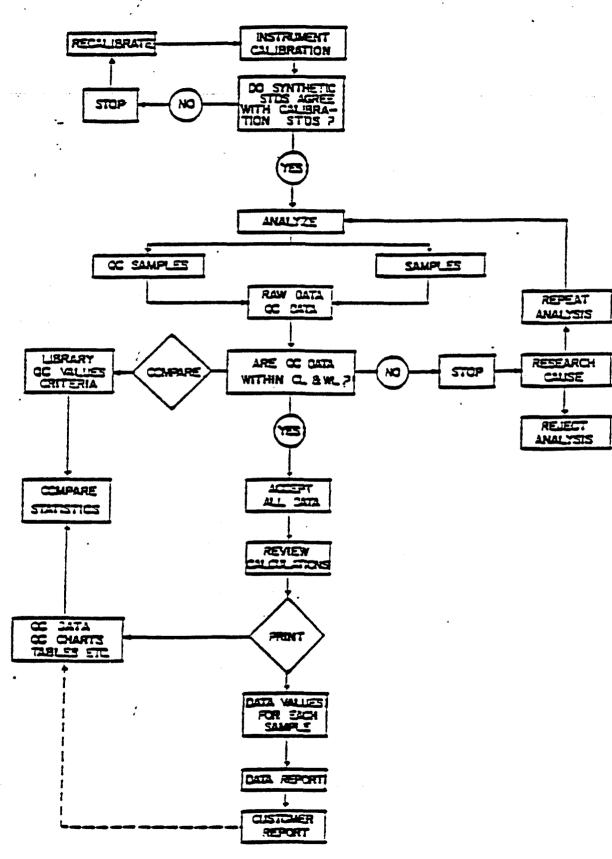
Data for specific clients and projects are identified by a unique project number. Raw data is identified by project number, sample number and date.

-		_		FIGURE X		Section DETECTOR/MC Revision Date: DETECTOR TE Page	No No 01/22/92 _10of12
TEMP P INITIA	ROGRAM: L HOLD _ TS:	Oveno	C TOO		πin	FURNACE TEMP SOLVENT/FLOW CARRIER FLOW GAS 1/FLOW GAS 2/FLOW	ml/min ml/min ml/min ml/min
	Pro		Sample #	Sample Description	Inj.	Conductivity Attenuation	1
- - -							
						· · · · · · · · · · · · · · · · · · ·	
	0.			SIGNATUPE			

Section No.	XI	
Revision No.	0	
Date: 01	/22/92	
Page 11	of	12

FIGURE XII-2

ICAP-61 SUMMARY SHEET


\$

DATE:	METHOD:	PROFILE BE	GIN:
REAGENT :	SAMPLE # : SAMPLE D	ESCRIPTION : DE :	COMMENTS
:		; ; ; ; ,,,,,;	
:	:	: :	
	، هو هو بين مي بين ا د د		همه میه خانه بین جنه های بین ها ها ها جنه بین
		; ; ; ;	مینه براید برای از این داران داران این این این این این این این این این ا
		;;;	وہ چہ ہے کہ 201 کے توریقہ کہ اندرانہ بزند ہوا ہے ا
	• • • • • • • • • • • • • • • • • • •	ii	***
·····		• • • • • • • • • • • • • • • • • • •	ی ورد دی زند کرد که که این که که این این این این این این
	:	: :	
	••••••••••••••••••••••••••••••••••••••		
	***************************************	[:] [:]	ینه جوید بینه، بینه مینه این
		; ;	
· • • • • • • • • • • • • • • •	* * **********************************		یون چین بروان واله واله فاله واله واله این ویت ویت بروان این ا
: :	:	: : : : :	•
:	:	: :	
	الله منه منهم منهم منهم منهم منهم منهم من	••••••••••••••••••••••••••••••••••••••	یون ہے۔ سے والد کرت کالہ کرد کا کر میں اور
	** white and a set of		
			یون برور برای این این می این این این این این این این این این ای
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		بجه بيد حد باه به جو به موجه مرد مرد مرد مرد مرد م
;;;;	:;	· · · · · · · · · · · · · · · · · · ·	
V = CONT I = CONT V = INIT B = INIT S-A = INTE S-AB = INTER	INUING CALIBRATION BE INUING CALIBRATION VE RACT REQUIRED DETECTINN IAL CALIBRATION VERIFICAL CALIBRATION BLANK REFERENCE CHECK SAMPLE REFERENCE CHECK SAMPLE TION FACTOR	RIFICATION S = MA ON LIMIT L = SE TICATION A = PO A A AB	TRIX SPIKE RIAL DILUTION

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Section No. XII Revision No. 0 Date: 01/22/92 Page 12 of

FIGURE XII-3

Section N	NO.	XIII	
Revision	No.	1	
Date:	097	25/92	
Page 🧾	1_	of	4

SECTION XIII. CORRECTIVE ACTIONS

All QC samples must meet established criteria. If they fail to meet these criteria, corrective actions are taken. If the calibration data fail to meet QC criteria, the problem is located and corrected and the system recalibrated. Samples cannot be analyzed until the calibration meets the QC criteria. If matrix spikes or duplicates are out of control, the data may be rejected and the samples reanalyzed or reextracted. Alternatively, the sample data may be accepted, depending upon many circumstances, including sample matrix, level of analytes, etc. The client is notified if QC data fails criteria and ultimately makes the decision on whether or not to accept the data. If the data are accepted, they are marked with qualifiers to document that the QC did not meet established criteria.

The analyst who is responsible for running the samples is the first to assess the quality of the data. If a problem is detected, the section leader is immediately notified. The quality of the data is also checked by the section leader, the project leader and the laboratory manager. If samples need to be reanalyzed or reextracted, the section leader is first consulted, and then the procedure is rescheduled. The analyst will compare the new result with the old one and note any differences. The results are then discussed with the section leader. If the new results meet the QC criteria, the results are then reported. If QC criteria still are not met, the results are reviewed with the project manager, the vice president, and the client. A decision is then made to accept the data or to resample. The decision-making process varies depending on the type of project and the ultimate use of the data.

No.	XIII	
No.	1	
097	25/92	
2		_4
	No. 09/	No. 1 09/25/92

There are certain corrective actions that are routinely followed by the laboratory. A list of the common QC activities, acceptance criteria, and corrective actions are included as Table XIII-1. Any corrective actions recommended by the client or a state certifying agency will also be implemented.

If QC data fails any of the limits, a corrective action log is filled out by the analyst and signed by the section leader and the Quality Control Officer. A copy of a corrective action log is included as Figure XIII-1. The corrective action logs are then filed in a binder and kept in the laboratory.

Section No.	XIII	
Revision No.	1	
Date: 09	9/25/92	
Page 3	of4	

TABLE XIII-1 CORRECTIVE ACTIONS

QC Activity	Acceptance Criteria	Corrective Action
Calibration Standard	Must be within limits set by the method	Prepare new standards Recalibrate instrument
Calibration Check Standard	Must be within limits set by the method	Rerun standard Prepare new standard Recalibrate instrument
Matrix Spike	Must be within laboratory QC limits or method limits	Investigate problem, document and qualify data
Lab Duplicate	Must be within laboratory QC limits or method limits	Investigate problem, document and qualify data
Method Blank	Must be less then the detection limit	Investigate problem and reextract or reanalyze
Surrogate Recoveries	Must be within laboratory QC limits or method limits	Investigate problem and reextract or reanalyze
Internal Standards	Must be within a factor of 2 of the area of the internal std. of the calibration std.	Investigate problem and reextract and reanalyze
Result over highest std.	All results must be within range of the instrument	Dilute and reanalyze
P.E. Samples	Results must be within pre- established limits	Investigate problem and write an explanation
Field Duplicate	Must be within laboratory QC limits or limits specified by client	Notify client
Field Blank	Must be less then the detection limit	Notify client

FIGURE XIII-1

Section	No.	XIII	
Revision	No.	1	
Date:	09,	/25/92	
Page	4	of	4

CORRECTIVE ACTION LOG

Date:	Lab. Section:	
Analyst:	Instrument:	

Excursion:

Associated Samples:

Corrective Action:

Reviewed by:

Section Leader

QA/QC Officer

Section No	. XI	V
Revision N	o1	
Date:	09/25/92	2
Page	1of	2

SECTION XIV. PERFORMANCE AND SYSTEMS AUDITS

A. Internal System Audits

An internal audit is performed monthly on each section of the laboratory for overall adherence to the guidelines and procedures outlined in this manual. Laboratory notebooks are checked to verify signatures and dates. Calibration curves and QC samples are checked for the proper frequency and compliance with established control limits. Procedures are reviewed to verify compliance with specific methods and SOP's.

The QA/QC officer is responsible for scheduling each audit. The results of the audit are discussed with the section leaders and the vice president. Changes or updates are implemented as needed.

B. <u>External System Audits</u>

External system audits are performed yearly by several certifying agencies including New York State Department of Health, New Jersey Department of Environmental Protection, and Pennsylvania Department of Environmental Regulation. Some audits are unannounced, while others are scheduled in advance. The laboratory will allow audits, either planned or unplanned, during normal business hours.

C. <u>Performance Audits</u>

The laboratory also participates in the analysis of Performance Evaluation (P.E.) Samples. These are sent out semi-annually by either the U.S. EPA or a certifying state agency. Results must fall within certain limits in order to be acceptable. It is by successfully completing the P.E. sample analysis that the laboratory obtains certification

Section	No.	XIV	·
Revision	1 No.	1	
Date:	097	25/92	
Page _	_2_	of	_2

to perform sample analysis. The P.E. sample analysis also serves as a means of comparison with other laboratories performing similar work. The laboratory participates in the following P.E. studies:

- New York State Department of Health for air emissions, potable water, wastewater and hazardous waste
- New York State Department of Environmental Conservation State Superfund
- 3) U.S. EPA water pollution and water supply studies for Pennsylvania, New Jersey, Massachusetts, Connecticut, Rhode Island and North Carolina
- 4) Corps of Engineers Project specific approval
- 5) U.S. EPA Project specific approval

All data related to the P.E. sample analysis and the results of the analysis are maintained by the lab and filed in binders according to agency administering the P.E. samples. If any parameters are failed, the problem is investigated and an explanation is written up and filed with the P.E. sample results.

XV Section No. Revision No. 01/22/92 Date: Page of

SECTION XV. · QUALITY ASSURANCE REPORTS

The quality control officer is responsible for making periodic reports to management concerning QA activities. These reports serve to document lab personnel cooperation with QA requirements and to go over any updates or changes necessary to the QC program. There are informal oral reports and formal written reports. Oral reports are given weekly during a meeting with the vice president. Formal written reports are given periodically and contain results of section audits and review of control charts. The QA/QC officer keeps a copy of all quality assurance reports, whether informal or formal.

Any significant trends in the QC data, such as data points running significantly above or below the average, are discussed with management and section leaders to detect any possible problems before data gets out of control.

External QA reports will be submitted to state or federal agencies at the frequency required by contract. Reports will be submitted at least quartelry, depending on the type of project being performed. They will contain results of internal system audits, performance evaluation sample results, review of control charts and control limits, any QA/QC problems that were detected and the results of any corrective actions related to these problems. If no project audits were performed and no major QA/QC problems were detected, a letter stating this will be submitted instead of a QA report.

Section No.	. XV	l
Revision No	D. 1	
Date:	09/25/92	
Page 1	of	_23

SECTION XVI. RESUMES

Resumes of key personnel follow.

Rection N Revision Date:		David R. Hill Vice President
	PROFESSIONAL PROFILE	Mr. Hill joined O'Brien & Gere Engineers, Inc. in 1971 and was promoted to Manager of Analytical Services in 1981. In 1985, he became General Manager of OBG Laboratories, Inc., and in 1987 was promoted to Vice President.
	Education	Clarkson University, 1971, BS/Chemistry Syracuse University, 1979, MS/Sanitary Science
	Professional Affiliations	 American Chemical Society American Water Works Association Member, Subcommittee on Phosphorus, Standard Methods for the Examination of Water and Wastewater, 16th edition. Member, Subcommittee on Method 514, Purge and Trap and Method 506, TOX, Standard Methods for the Examination of Water and Wastewater, 17th edition New York State Department of Health - Environmental Laboratory Accreditation Program - Advisory Board New York State Association of Approved Environmental Laboratories - Board of Directors
	TECHNICAL EXPERTISE	 Hazardous waste analytical protocol development Chain-of-custody procedures QA/QC, data validation, and expert testimony Water and wastewater analysis Gas chromatographic analysis of organic compounds Project coordination and interpretation of analytical data
	REPRESENTATIVE PROJECTS	Responsible for financial and market efforts of analytical services; also for the supervision, coordination, scheduling and evaluation of data analyzed by a staff of over 40 scientists. Mr. Hill's experience includes the supervision of projects dealing with the following: Organic characterization of a chemical waste pond for a chemical manufacturer; a ground water m nitoring program for the analysis of hazardous wastes, volatile halogenated organics and aromatic hydrocarbons for a major manufacturer; analytical programs to support RCRA compliance; provision of analytical support for the identification of hazardous waste material for a metal manufacturer; and analysis of

Mr. Hill designed OBG Laboratories and purchased instrumentation to provide the following capabilities: Gas chromatography/mass spectroscopy, automated instrumentation, microbiology, virology, atomic absorption, wet chemistry, specific ion electrode chemistry, NMR, ESR, quality control, methods development, infrared and ultraviolet

water, sediment and biological tissue samples for PCBs.

Section	No.	X	1
Revision	No.	11	
Date:	097	25/92	
Page	3	of	23
OBG Labor	atories	L Inc.	

spectroscopy, X-ray crystallography, electron microscopy; interpretation and review of analytical results; oversee a co-op program with area community colleges; oversee analysis of drinking water, wastewater, and industrial effluents; assist in the design of a computerbased laboratory data system; quantitative and qualitative analysis of chlorinated hydrocarbons; fingerprinting organics via liquid partioning and gas chromatographic analysis; proficient in analytical techniques for wastewater analysis.

In addition, he has directed the following specific projects:

Confidential - Ground water monitoring program to assess the extent of volatile halogenated organic contamination. Generation of 40-60 samples per week for three years.

USEPA - Supervise a contract laboratory program (CLP) for the analysis of dioxin samples from throughout the US.

Sangamo Weston, Inc. - Oversee the analytical portion of a remedial investigation at a USEPA Superfund site. Program generated over 500 samples for priority pollutants and dioxin analysis.

General Electric Company - Supervised the development of congener specific PCB analysis.

Gibbs & Hill, Inc. - Supervise data validation of analytical program associated with a state-wide Phase II hazardous waste investigation into potential abandoned site.

Blasland & Bouck Engineers - Oversaw a large analytical program that required 48 hour generation of 200 PCBs per day.

Blasland & Bouck Engineers - Provide data validation services for TCL analysis.

Blasland & Bouck Enginee... - Performed laboratory audit to verify the subcontractor's ability to provide analytical support on a hazardous waste program.

Schenectady Chemical, Schenectady, NY - Oversee analytical program for RCRA Part B permitting documentation.

Harter Secrest & Emery Attorneys, Rochester, NY - Direct analytical program in response to state marshall's investigation of alleged improper hazardous waste disposal.

Section	NO.	XV	1	
Revision	No.	1		
Date:	097	25/92		
Page _	4	_of_	23	
ם	avid R	. Hill		

New York State Department of Environmental Conservation - Spill prevention program - involves the fingerprinting of petroleum products in surface waters and potable water supplies to determine the possible source.

Confidential - Oversee hazardous waste analytical program which is on New York State Superfund list. Initially, indicator parameter will be analyzed to determine extent of contamination followed by more extensive characterization of soil and ground water from the site.

Department of Environmental Conservation, Syracuse, NY - Characterization of hazardous waste at fire demolition site. Immediate response needed due to public health concern.

Department of Environmental Conservation, Waterford Pilot Plant, Albany, NY - Analysis of water samples from the pilot plant for the treatment of halogenated organics, including PCBs, using granular activated carbon, macroreticular resins and filtration.

Monsanto Company - Collaborative testing program for evaluation of methods to analyze purgeable halogenated aliphatic and aromatic hydrocarbons. Methods 60l, 602, 50Ll and 50L2.

Southwest Research Institute - Collaborative testing program for evaluation of methods for phthalate ester compounds. Method 606.

Onondaga County, NY - Combined sewer overflow characterization analysis; Onondaga Lake and Creek Monitoring analysis; Onondaga County Industrial Waste Study Analysis.

PUBLICATIONS & MANUSCRIPTS

Manuscripts

Evaluation of New York Bight Lobsters for PCBs, DDT, Petroleum Hydrocarbons, Mercury and Cadmium. Hill, David R., Roberts, Alan E., Tifft, Edw... C. Jr., Bulletin of Environmental Contaminations and Toxicology 29, 711-718 (1982).

Studies of Certain Inorganic Nutrients in Cazenovia Lake. (Thesis) Hill, David R., Syracuse University, December 1979.

Publications

Characterization of Industrial Wastes by Evaluating BOD, COD and TOC. Hill, David R., Spiegel, Stuart J., Journal Water Pollution Control Federation, Vol. 52II, November 1980.

David R. Hill	OBG Laboratories, Inc.
	Page5 of23
	Date:09/25/92
	Revision No1
	Section NoXVI

Loss of Polychlorinated Biphenyl Homologues During Chromium Trioxide Extraction of Fish Tissue. Hill, David R., Spiegel, Stuart J., Szelewski, Michael J., Tifft, Edwin C., Jr., Analytical Chemistry, 51:14, December 1979.

BOD, TOC and COD in Industrial Wastes. Hill, David R., Spiegel, Stuart J., Industrial Wastes, 21, November/December 1979.

A General Nutrient Evaluation of Cazenovia Lake. Hill, David R., 1977, (Lake Report 2), p. 80-88, Effler, S.W., Rand, M.E. (eds) Cazenovia Lake Study, 1 - Initiation Department of Civil Engineering, Syracuse University.

Section No Revision N Date:	lo1 _09/25/92	
°age	6 of 23 OBG Laboratories, Inc.	A. Robert Martin Manager of Analytical Services
	PROFESSIONAL PROFILE	Mr. Martin joined O'Brien & Gere companies in 1982 after working for seven years in the field of analytical chemistry. He managed the Trace Organics Section for seven years and in 1988 was promoted to Manager of Analytical Services. In this role he manages the day-to-day operations of the laboratory.
	Education	Northeastern University, 1977, BA/Biology
	TECHNICAL EXPERTISE	• The analysis of environmental samples for organic and inorganic chemicals using analytical methods developed by EPA in support of the Safe Drinking Water Act, Clean Water Act, RCRA and Superfund. Special emphasis in the areas of gas chromatography.
	REPRESENTATIVE PROJECTS	As Manager of Analytical Services, Mr. Martin's responsibilities include the supervision of thirty-one chemists, technicians and clerical staff, the coordination of analytical activities and the review of reports.
	-	Mr. Martin's accomplishments during his seven years as group leader for the Trace Organics Section included the introduction of CLP pesticide analysis to the group, the incorporation of capillary chromatography to the 600 series methods, the development of petroleum analytical methods, and the recent introduction of VOC testing under the Safe Drinking Water Act.
		Before joining the firm, Mr. Martin supervised a wastewater chemistry laboratory in New Jersey. There he introduced trace metal and gas chromatography capabilities to the operation and organized the documentation of the wet chemical section to meet state requirements. Typical programs include the measurement of waste treatment performance, the determination of lake deterioration in local communities and industrial pretreatment programs.
· .		Between 1978 and 1980 Mr. Martin directed a gas chromatography laboratory in Virginia. Typical programs included: the monitoring of sediment and water samples from across the country for organochlorine pesticides and triazine herbicides, the measurement of PCBs in oils, sludges, soils and water collected under PCB compliance programs, and the validation of analytical methods for the measurement of PCBs in transformer oil, hydraulic fluids, capacitor fluids and waste oils.
		Representative recent and current programs include:
and a second s		Department of Environmental Conservation - Provide sampling and analytical services for the oil spill response program for the past nine

Section N	NO.	XV	1
Revision	No.	1	
Date:	097	25/92	
Page	7	of	23
OBG Laboratories, Inc.			

years. Laboratory services include fuel oil identification, ground water and soil testing for petroleum products.

Confidential Industrial Client - Supervised the analytical portion of a large ground water monitoring and remediation program. Analyses focuses primarily on volatile organics and chemicals in more than 180 ground water monitoring wells and 16 activated carbon treatment systems. OBG Laboratories has satisfied this client for over ten years.

Blasland and Bouck Engineers, P.C. - Oversee and supervise analytical programs in support of PCB investigations, underground tank removals, RI/FS programs and ground water monitoring.

Woodward-Clyde Consultants - Provide PCB, cyanide, flouride and PNA analytical services to this environmental consulting firm and their client, a major aluminum manufacturer. Programs include soil and sediment investigations and quarterly ground water monitoring. Laboratory data packages are prepared in a validatable format.

CECOS International - Manage the analytical portion of PCB and ? investigation and remediation program. Hundreds of soils were analyzed for PCBs and HCB by EPA Method 8080. Full evidence report packages were prepared and found acceptable by NYSDEC.

Special Metals Corp. - Sanitary landfill investigation for potential hazardous waste contamination. Surveys included PCB testing, volatile organic testing and full priority pollutants.

Monsanto Company - Provide analytical services for a ground water remediation program. Services included priority pollutants, total organic halogens and formaldehyde testing.

Safe Drinking Water Act - Analysis of municipal water supplies for volatile organic compounds (VOCs) by EPA 500 methodologies.

Alcan Corporation - Analysis of process water, oils, sediments and concrete for PCB compliance.

Maestri Site - Site investigation and development of interim remedial measures, requiring NYSDEC ASP CLP.

Evans Chemetics - Industrial landfill investigation requiring full NYS DEC ASP CLP.

Date: _ 'age	09/25/92 8of23	Michael N. Petterelli
1999 - Carlos Ca	OBG Laboratories, Inc.	Manager of Analytical Services
	PROFESSIONAL PROFILE	Mr. Petterelli joined the O'Brien & Gere companies in 1983. In 1989 he became Section Leader of the Trace Metals section and in 1992 was promoted to Manager of Analytical Services.
	Education	Alfred University, 1982, BA/Chemistry Principles and Applications of ICP Spectroscopy, Thermo Jarrell Ash Corporation, 1988 Environmental Analytical Chemistry, ACS Short Course, Pittsburgh Conference, 1989
	TECHNICAL EXPERTISE	 CLP and NYSDEC ASP Inorganic Analyses Quality Assurance/Quality Control Analysis of industrial wastewater, ground water, sediments, sludges, extracts, air and other matrices for inorganic parameters using a variety of classical and instrumental methods
- Alan	REPRESENTATIVE PROJECTS	As Manager of Analytical Services, Mr. Petterelli's responsibilities include the supervision of chemists and technicians, the coordination of analytical activities, the development of analytical methodologies, data validation, data reduction, project management, marketing of services, and the review and reporting of analytical data.

Mr. Petterelli's experience has included the direction and supervision of an inorganic chemistry laboratory with varying capabilities. His responsibilities have involved the purchase, incorporation, operation and maintenance of atomic absorption, atomic emission, AutoAnalyzer, and inductively coupled plasma systems. Other responsibilities have included analytical protocol development, inorganic CLP deliverables report preparation, CLP data validation, on-site sampling, and quality control review.

Participation in various projects has provided experience with EP Toxicity and TCLP analysis, drinking water analysis, ground water monitoring programs, air monitoring programs and hazardous waste analysis.

Representative projects include:

Special Metals Corp. - Investigation of sanitary landfill for potential hazardous waste contamination. The study involved analysis of soil borings and ground water samples for full priority pollutants.

Remington Arms Co. - Program involving SPDES permit testing and analysis of ground water from a hazardous waste site.

Michael N. Petterelli

Section No. ____XVI____ Revision No. ___1 Date: ___09/25/92____ Page ___9 __of ___23___

OBG Laboratories, Inc.

PPG Industries, OH - Hydrogeologic study of several sites to provide data for waste disposal site assessment.

Woodward-Clyde Consultants - Ground water investigation of a hazardous waste site. Services included analysis for mercury, TOX, TOC, TKN, and phosphorus. Contract laboratory protocol was followed.

Electronics Manufacturer - Analysis of a variety of environmental samples including water, air, oil, sediment, and sludge for priority pollutants.

J.T. Baker Inc. - Analysis of soil samples for priority pollutants.

Amperex Electronics Corporation - Analysis of soil and ground water samples for the USEPA target compound list.

Peter Cooper Corporation - Analysis of ground water, surface water, and soil samples for a variety of organic and inorganic parameters.

Westchester County, NY, City of Jamestown, NY, City of Schenectady, NY, City of Poughkeepsie, NY - Analyze influents, effluents, and sludge samples for priority pollutants. Results were used to develop contaminant mass balance throughout the treatment plant processes.

Onondaga County, NY - Industrial-municipal effluents analyzed for priority pollutants.

Rhino Trust, Brooklyn, NY - Supervised the analysis of soil samples for heavy metals and base neutral organics in order to characterize subsurface conditions and define the environmental quality of the site.

Envirocomp, Westfield, MA - Coordinated the analysis of ground water samples for volatile and semivolatile organics.

Richards-Gebaur AFB, MO - Supervised analytical services associated with spill and burn pit areas. Heavy metals and petroleum hydrocarbons were both quantified and qualified.

Sair Aviation, Syracuse, NY - Coordinated sampling and analysis of samples for volatile organics analysis in order to fulfill NPEDES requirements.

Confidential - Involved in an analytical program to support RCRA compliance. Program included EP toxicity and TCLP extraction of solid and semi-solid matrices with subsequent analysis for trace metals.

Iron and Steel Manufacturer - Ground water monitoring program for a hazardous waste disposal site.

Organic Chemical Manufacturer - Characterization of lagoon cores for appropriate disposal alternatives. Analyses included EP Toxicity characterization for possible hazardous waste classification.

Energy Answers Corporation - Preparation and analysis of EPTOX and TCLP extracts.

Transit America Corporation - Analysis of water, air, soil, and EP Toxicity extracts for a variety of parameters.

Fairfax County, VA - Managed the analysis of bottom and fly ash for EPTOX and TCLP metals in order to characterize the ash stream from a resource recovery facility.

Confidential - Managed the analysis of ash residue from resource recovery facilities to characterize ash streams according to RCRA. Analytical procedures included Extraction Procedure (EP) Toxicity, Toxicity Characteristic Leaching Procedure (TCLP), Distilled Water (DI) Extraction, and carbon dioxide saturated DI water extraction followed by trace metals and wet chemistry analyses.

NL Industries, Inc. - Analysis of soil and water samples from a national Superfund site. Complete CLP deliverables were provided.

Confidential - Analysis of soil samples for the New York State Hazardous Substance List using USEPA Contract Laboratory Protocols.

Amphenol Corporation - Soil, water, and air samples from a landfill site analyzed for the hazardous substance list compounds in accordance with CLP procedures.

Edward Allen Landfill, NY - Analytical services project manager for analyses performed according to NYSDEC ASP requirements.

Confidential - Supervised analysis of particulates and sulfur dioxide as required by a resource recovery facility's air permit.

Newman Crosby Steel, Inc. - Directed the analysis of workplace air samples for Trace Metals and PCBs.

Pitney Bowes, Inc. - Directed the analysis of air samples for trace metals.

Hoechst-Celanese, Inc. - Supervised the analysis of air pollution samples for lead, cadmium, zinc, and copper.

Michael N. Petterelli

 Section No.
 XVI

 Revision No.
 1

 Date:
 09/25/92

 Page
 11

OBG Laboratories, Inc.

Occidental Chemical Corp. - Analysis of ground water samples from a landfill containing hazardous wastes. All work was performed under CLP protocols.

General Motors Corp. - Involved in a ground water monitoring program.

US Army Corps of Engineers - Supervised laboratory analysis related to a comprehensive water quality survey.

Reynolds Metals, Inc. - Analysis of ground water samples for trace metals and various inorganic parameters.

Moog Automotive, Maryville, MO - Supervised the analysis of a quarterly ground water monitoring program for trace metals.

Gibbs & Hill Consultants - Provided data validation on analytical data performed according to NYSDEC CLP protocols.

Blasland & Bouck Engineers, P.C. - Coordinated the on-site audit of an environmental laboratory for compliance with the requirements outlined in the NYSDEC Analytical Services Protocols (ASP), September 1989.

Wehran, NY, Inc. - Prepared a data validation report for samples analyzed according to NYSDEC ASP Inorganic Superfund requirements.

Section Revision Date:		
Page		Coleen C. Burke
, cettistinen,	OBG Laboratories, Inc.	QA/QC Coordinator
	PROFESSIONAL PROFILE	Ms. Burke joined OBG Laboratories, Inc. in April 1989 as QA/QC Coordinator. Her previous experience includes the generation of EPA

Coordinator. Her previous experience includes the generation of EPA CLP reports for inorganic analytes.

SUNY Geneseo, 1987, BA/Mathematics, minor Computer Science

Quality control supervision

Data validation

REPRESENTATIVE PROJECTS

TECHNICAL

EXPERTISE

Education

Ms. Burke's responsibilities at OBG Laboratories, Inc. include overseeing the Quality Control (QC) program and verifying that all daily QC is being performed. She is also responsible for generating Quality Control charts and updating control limits for all parameters analyzed by the laboratory.

Ms. Burke has participated in the on-site laboratory inspections from the states of New York and Pennsylvania. She has pursued laboratory certification in the states of Florida, Massachusetts, Tennessee and North Carolina.

She helped develop the statistical portion of the LIMS in order to be able to generate control charts showing warning and control limits. Control limits can be easily updated yearly or whenever statistically deemed necessary.

Ms. Burke performs data validation on analytical packages generated by other laboratories. The data is monitored for contract compliance and deficiencies as required by both the NYSDEC and USEPA CLP deliverables.

She has also trained as a sample custodian to receive and tag samples for CLP work, prepped containers for sample collection making sure the proper container and preservative is used and has checked to verify samples are stored properly after receipt at the lab.

She has worked on preparing disk deliverables for NYSDEC-ASP proficiencies for pesticide/PCB data using the Terwilliger software.

Ms. Burke has put CLP reports together for clients and for certification purposes. She has prepared case narratives to go along with these reports.

Rection	No.	XVI	
evisio	n No.	1	
Date:	09,	/25/92	
`age _	13	of	_23

...,

OBG Laboratories, Inc.

PROFESSIONAL PROFILE

Education	Post-Doctoral Research Fellow in Physics Clarkson University, 1981, Ph.D./Chemistry - Emphasis in Inorganic Solution Kinetics and Thermodynamics Clarkson University, 1978, MS/Chemistry Clarkson University, 1976, BS/Chemistry
Professional Affiliations	Chairman, Binghamton Section, American Chemical Society Sigma Xi, Honorary Research Fellowship Association of Official Analytical Chemists American Institute of Chemical Engineers Cum Laude Society
PATENTS	"Monitoring Deflocculated Particles in a Suspension", B.R. Jennings, H.H. Trimm, T.W. Webb and D.J. Watson, European Patent Application 10730 (1984).
	"Monitoring Deflocculated Particles in a Suspension", B.R. Jennings, H.H. Trimm, T.W. Webb and D.J. Watson, U.S. Patent Application (1984).
EXPERIENCE	Consultant, Dunning Analytical Laboratories, in the area of forensic, environmental, and health issues related to chemical exposure.
	Radiation Safety Committee Member, Broome Community College, Binghamton, New York.
	Expert witness testimony for environmental and forensic matters.
	Chairman and Analytical Professor, Broome Community College.
	Right-To-Know Resource Person, Broome Community College.
	Analytical consultant for Thompson Anodizing, Universal Instruments and New York State Electric and Gas Company.
a a constante de la constante d	Consultant, English China Clays Ltd.
	Research Fellow in Electro-Optics, Brunel University, Uxbridge, Middlesex, England.
	Research Associate in Fast Reaction Kinetics, Clarkson University, Potsdam, New York.
	Radiochemical Research Assistant, Brookhaven National Laboratories.

 Section No.
 XVI

 Revision No.
 1

 Date:
 09/25/92

 Page
 14
 of

 23

OBG Laboratories, Inc.

PUBLICATIONS AND PRESENTATIONS

Publications

"A Thermodynamic Study of Magnesium (II) Interactions with Mono and Dinucleotides", H.H. Trimm and R.C. Patel, Inorganica Chimica Acta, 35 (1979) 15-21.

"Thermodynamic Analysis of a Coupled Chemical Reaction", H.H. Trimm, R.C. Patel, and H. Ushio, J. Chm. Ed., 56 (1979) 762-766.

"Simultaneous Determination of Kinetic and Thermodynamic Parameters from Fast-reaction Kinetic Measurements", H.H. Trimm, H. Ushio, and R.C. Patel, Talanta, 28 (1981) 753-757.

"Thermodynamic Parameters of Coupled Chemical Reactions from Temperature Jump Relaxation Amplitudes", H. Ushio, H.H. Trimm, R.C. Patel, and M.D. Zemany, J. Sol. Chem. 10 (1), (19811) 39-50.

"Determination of Proteoglycan Dimer Geometry by Electric Birefringence", H.H. Trimm, and B.R. Jennings, Int. J. Biol. Macromol., 4 (6), (1981) 370-371.

"The Study of Proteoglycan Interactions by Electro-Optics", H.H. Trimm and B.R. Jennings, Croatia Chimica Acta, 56 (4), (1983) 803-808.

"Study of Hyaluronic Acid Flexibility by Electric Birefringence", H.H. Trimm and B.R. Jennings, Biochem. J., 213 (1983) 671-677.

"Electric Birefringence, a Simple Apparatus for Determining Physical Parameters of Biological Macromolecules", H.H. Trimm, K. Parslow, and B.R. Jennings, J. Chem. Ed., 61 (12), (1984).

"The Transient Kerr Effect", H.H. Trimm, B.R. Jennings, and K. Parslow, Eur. J. Phys. 5 (1984) 88-93.

"A Fibre-optics Sensor for Flocculation Detection by Electric Field Light Scattering", H.H. Trimm, B.R. Jennings, and K. Parslow, Optics and Laser Technology, December 1985.

"Determination of 1,1-Dimethylhydrazine in Apple Juice" (given at the Toronto ACS meeting, 1988) P. Beauseigneur, H.H. Trimm, and M.J. Costello.

Presentations

Third Chemical Congress, ACS, Toronto, 1988 Analytical Colloquium, SUNY, Binghamton, 1984 British Connective Tissue Society, Southampton, UK, 1982

Section No.		XV	1
Revision No.		1	
Date:	097	25/92	
Page _	15	of	_23_

OBG Laboratories, Inc.

1.

, —,

Harold H. Trimm, Ph.D.

The Dielectric Society, Cambridge University, UK, 1982 Colloid and Surface Institute, Cavtat, Yugoslavia, 1982 ACS National Meeting, Washington, D.C., 1979 NERM 10, Clarkson University, 1978

Section No. XVI Revision No. 1 Date: 09/25/92 Page 16 of 23	
OBG Laboratories, Inc.	Thomas A. Alexander Section Supervisor
PROFESSIONAL PROFILE	Mr. Alexander joined OBG Laboratories, Inc. in 1980 as a Senior Laboratory Technician. He was promoted to Chemist in 1984, Senior Chemist in 1987 and to Section Supervisor in 1989.
Education	St. Lawrence University, 1977, BS/Biology
TECHNICAL EXPERTISE	 Gas chromatographic analysis of industrial wastewater Municipal drinking water Ground water, sediments, sludges, and solvents for organic hydrocarbons Toxicity characteristic leaching procedure (TCLP)
REPRESENTATIVE PROJECTS	Mr. Alexander is responsible for the supervision of three chemists and two senior laboratory technicians. His experience with the firm includes the supervision of projects dealing with ground water monitoring, lagoon closure, petroleum spill response, CLP characterization, potable water monitoring, RCRA compliance, tank removal and RI/FS. His supervision includes reviewing quality assurance project plans, supervising the analytical work of his section, compilation of the analytical work of other sections and formatting the results into a data report format.
	Mr. Alexander has participated in the following projects:
	Confidential - An ongoing ground water and industrial wastewater monitoring program to assess the extent of volatile halogenated organic contamination.
	Confidential - Involved in an analytical program to support RCRA compliance.
	Monsanto Company - Collaborative testing program for the evaluation of methods to analyze purgeable halogenated aliphatic and aromatic hydrocarbons. Method 601, 602, 501.1 and 501.2.
	Poughkeepsie, NY - Analytical portion of current process optimization study for the removal of trihalomethanes.
	Westchester County, NY - Involved in an industrial pretreatment program.
general contraction of the second sec	Gunlocke Company - Analysis for specific organics at a possible State Superfund site.
C .	

Englehard Corp., NJ, ECRA program - Analysis of water samples for organics.

TRW - Analysis of samples from a hazardous waste disposal site.

New York State Department of Environmental Conservation Spill Prevention Program - The qualitative and quantitative analysis of samples containing petroleum products resulting from petroleum spills.

Sangamo Weston, Inc. - Analysis of samples from a national Superfund site.

Remington Arms, New York - A hazardous waste investigative site. Analysis required under a SPDES Permit.

Cornell University, NY - Ground water monitoring program for specific volatile organics.

Major Organic Chemical Manufacturer - Ground water investigation of a hazardous waste site following a contract laboratory protocol.

Confidential - RI/FS for volatile and semivolatile organics.

Smith Corona Corporation - TCL-CLP hazardous characterization program and a supplemental remedial investigation program.

Empire State Electric Energy Research Corp. - A wood preservative mobility study.

IBM Corp. - Volatile organic analysis according to NYS TCL-CLP specifications to support tank closure and removal.

Ordnance Products Inc. - Site assessment evaluation for volatile and semivolatile organics.

Dow Chemical - Supervision of the extraction and analysis of soil samples using the TCLP methodology.

U.S. Army Corps of Engineers - Site assessment evaluation of drinking water for principal organic contaminants.

Allied-Signal, Inc. - NYSDEC-ASP investigation program.

Section	No.	XV	l	
Revisio	n No.	1		
Date:	097	25/92		
Page _	18	of	_23	_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	OBO	J Labor	atories, I	Ínc.

Anthony Crescenzi GC Semivolatile Section Leader

PROFESSIONAL PROFILE	Mr. Crescenzi joined O'Brien & Gere Engineers, Inc. in 1980, was promoted Senior Chemist in 1987, and to Section Leader in 1989.
Education	SUNY College of Environmental Science and Forestry, 1980 BS/Biology
TECHNICAL EXPERTISE	<ul> <li>Gas chromatographic analysis of environmental and industrial waste matrices for semivolatile organic compounds</li> </ul>
REPRESENTATIVE PROJECTS	Mr. Crescenzi supervises a staff of six chemists and technicians in the Gas Chromatograph section which is responsible for trace level organic analysis of surface water, ground water, hazardous waste, industrial waste, sediments, air, and biological tissues. He has been involved with programs which have included the analysis of various matrices for organochlorine pesticides, PCBs, chlorophenoxyacid herbicides, polyaromatic hydrocarbons, phthalates, phenols, and petroleum hydrocarbons.
	He is also experienced with USEPA contract laboratory protocol for quantitating compounds on the target compound list. This includes sample documentation, chain-of-custody, sample processing, analysis, and reporting of data.
	Other laboratory experience includes wet chemistry analysis of various anion and cation concentrations by gravimetric, titrimetric, potentiometric, spectrophotometric, and colormetric techniques. Representative projects include:
·	Beveridge & Diamond - Analysis of over 400 samples for pesticides, PCBs, AE/BN screen for a site remediation under the superfund program. Samples prepared and analyzed by CLP for possible use in litigation.
	Evans Chemetics - Analysis for substances of concern and those on the hazardous substances list utilizing the contract lab protocol.
	Transformer Oil Reclaimer - Measurement and identification of over 200 transformer oils for PCBs under the PCB compliance program.
	Englehard Corp ECRA program; conducted pesticide and PCB analysis of water and soils.
	Alcan Aluminum Corp Coordinated and supervised a 10-day/24-hr. PCB wipe program consisting of over 750 samples.
Č. S	

*.* .

Dow Chemical Corp. - Conducted PCB, pesticide and AE/BN screens for industrial landfill. Continued chemical characterization and monitoring of contaminants originally found.

Union Carbide Corp. - Monitoring ground water for PNA's to determine impact of disposal.

FMC Corp. - Analyzed waters to determine impact of agricultural pesticides on ground water contamination.

Westchester County, NY - Conducted pesticide and PCB analysis of wastewater for an industrial pretreatment program.

TRW - Analysis of PCBs from a hazardous waste disposal site.

Shering-Plough Corp. - Conducted ground water monitoring for organic solvents.

Limnotech - Analyzed a paper manufacturer's landfill and surrounding area for PCBs to a level of part per trillion. Matrices included water, soil and fish.

Special Metals Corp.- Analyzed soil and water from a sanitary landfill investigation for PCBs.

Singer Company - Supervised CLP PCB extraction and analysis of soil and wipe samples.

GM, Massena, NY - Air monitoring for organic solvents utilizing FID.

USEPA - Successfully completed a USEPA Contract Laboratory Program proficiency evaluation for pesticides and PCBs.

ectio	n NoXVI on No1	
Date:	09/25/92	
'age _		Donald R. Brondou
~~.	OBG Laboratories, Inc.	Wet Chemistry Group

Mr. Brondou joined O'Brien & Gere companies in 1969 as a field PROFESSIONAL PROFILE technician. He entered the laboratory in 1972 and was promoted to Chemist in 1975. After serving as Quality Control Officer for the laboratory he became a Senior Chemist in 1980. He presently serves as group leader for the laboratory's Wet Chemistry Section. State University College of New York at Morrisville, 1969 AS/Water Education Resource Management TECHNICAL Analytical services, review and reporting of data EXPERTISE REPRESENTATIVE As manager of the laboratory's Wet Chemistry Section Mr. Brondou is responsible for the supervision of a staff of six chemists and technicians, PROJECTS coordination of analytical activities, review and reporting of analytical data. Various projects have provided experience with limnological studies, public drinking water analysis, ground water monitoring programs, and hazardous waste analysis. Representative projects include: Westchester County, NY - Industrial pretreatment study. Two-year

westchester County, NY - Industrial pretreatment study. Iwo-year program involving analysis of industrial waste steams, sanitary influents, sanitary effluents, and sludges to determine the source and impact of toxic chemicals on several sewage treatment plants.

Special Metals Corp. - Investigation of sanitary landfill for potential hazardous waste contamination. The study involved analysis of soil borings and ground water samples for full priority pollutants.

Remington Arms Co. - Ongoing program involving SPDES permit testing and analysis of ground water from hazardous waste location.

Sangamo-Weston, Inc. - Hazardous waste investigation involving the analysis of 500 sediment samples collected at a USEPA Superfund site.

PPG Industries, OH - Hydrogeologic study of several sites to provide data for waste disposal site assessment.

Occidental Chemical Corp. - Analysis of ground water samples from landfill containing hazardous wastes. All work was done under CLP protocol.

Donaid R. Brondau	OBG Laboratories, Inc.
	Page 21 of 23
	Date:09/25/92
	Revision No1
	Section NoXVI

Woodward Clyde Consultants - Ground water investigation of a hazardous waste site. Services included analysis for mercury, TOX, TOC, TKN and phosphorous. Contract laboratory protocol was followed.

Section I Revision Date:	No1 09/25/92	
age	_22of23	Lee Reichel
- main and a second	OBG Laboratories, Inc.	System Analyst
	PROFESSIONAL PROFILE	Mr. Reichel joined O'Brien & Gere Engineers, Inc. as a Programmer/ Analyst in 1974 and in 1987 became System Coordinator for the firm, responsible for management of all CADD and microcomputer systems. In 1991 he joined OBG Laboratories, Inc., an affiliate of O'Brien & Gere Engineers, Inc., as a System Analyst.
	Education	Syracuse University, 1971, BS/Mathematics
	Professional Affiliations	Society for Industrial and Applied Mathematics American Mathematical Society Association for Computing Machinery Special Interest Group on Numerical Mathematics Special Interest Group on Symbolic & Algebraic Manipulation
· . 	TECHNICAL EXPERTISE	• CADD and microcomputer systems
jan -	REPRESENTATIVE PROJECTS	Developed a database for a Laboratory Information Management System (LIMS) using Oracle software. The system includes sample tracking, quality control, report generation and client invoicing functions.
		Developed a variety of computer applications involving data handling. Representative projects include programs to:
		- Perform finite element analysis of structural designs.
		- Three dimensional analysis of 200' stiff leg clearance crane.
		- Static, dynamic and response spectrum analysis of 330' high Madrigal Dam, D.R.
		- Conduct computer highway and earth work design, including multi-span bridge girder analysis.
		- Computerize results of sewer system evaluation surveys and infiltration/inflow analyses for the cities of Washington, DC, Boston, Philadelphia and Syracuse and for the County of Westchester.
		<ul> <li>Monitor precision and accuracy of analytical procedures in environmental chemistry.</li> </ul>
an and an		- Perform dynamic routing of stormwater flows through major storm drainage systems for the cities of Washington, DC, Boston, Syracuse, Rochester, Poughkeepsie and Charlotte.

.

-

	Section No. XVI
	Revision No. 1
	Date: 09/25/92_
	Page 23 of
Lee Reichel	OBG Laboratories, Inc.

- Computerize the logging, updating and tracking of shop drawings.
- Perform digital plotting of laboratory, highway, infiltration/inflow, hydraulic and hydrologic data.
- Write engineering and scientific programs on PC's using the C programming language.
- Write programs to convert and transfer CAD drawing files between different computer platforms
- Design and implement a client/server, distributed Laboratory Information Management System (LIMS) using Oracle software on PC's.

Section N	NO.	F	۱
Revision	No.	0	
Date:	10/	01/91	
Page	1	of	_17_

# APPENDIX A

Section N	10.	F	۹
Revision	No.	0	
Date:	107	01/91	
Page	2	of	17

# OBG LABORATORIES, INC.

# **EMPLOYEE SAFETY PROGRAM**

November 1989

Section No.	Α	
Revision No.	0	
Date:1(	0/01/91	
Page 3	of17	

### TABLE OF CONTENTS

General Policies	3
Eye and Face Protection	4
Glove Use and Selection	5
Respiratory Protection	7
Chemical Handling, Storage and Distribution	10
Chemical Disposal	.11
Emergency Procedures and Equipment	12
Review and Inspection	14
Medical Surveillance	15
Training and Information Sessions	16

November, 1989

Section I	No.	A	
Revision	No.	0	
Date:	107	01/91	
Page _	4	of	_17

#### GENERAL POLICIES

### PURPOSE

Health and safety protection is everyone's concern. Providing the training, facilities and equipment to best assure the health and safety of employees is one of the most important obligations of an employer. Federal, state and local laws and regulatory compliance make it a legal requirement.

Safety in the laboratory can only be achieved through good judgement by informed, conscientious employees who learn to work with and to accept the responsibility of working with hazardous materials. It is the responsibility of every employee to utilize the provided training and understand the proper methods of safely handling hazardous materials which he or she may come in contact with in the laboratory environment.

The purpose of this manual is to outline the general policies and guidelines associated with health and safety for employees of OBG Laboratories.

### APPROACH

Good laboratory practice requires mandatory safety rules and programs. These rules and/or codes should reflect the hazards that are present and must be based on both the participation of both employees and management. The program must include regular safety inspections, training sessions, safe disposal procedures of waste chemicals, and regular monitoring of all environmental controls, such as ventilation systems, and safety equipment.

In order to adequately inform employees, a formal, amendable document has been developed to provide guidance to all laboratory workers so that they can perform their work safely. Each employee has the responsibility to read and understand this manual. Should questions arise during the reading of this document or while performing one's tasks, immediately ask your supervisor, Safety Officer, Lab Manager or Vice President.

It is a prudent practice to avoid working in the laboratory alone. Arrangements shall be made by the Group Leader for the assignment of a "buddy" system. Alternatively, the building security guard shall be asked to check on those workers present during off working hours.

In order to eliminate the potential for accidental ingestion of hazardous materials in the workplace, eating, drinking and smoking are not permitted in work areas in which hazardous materials are present, and employees are strongly encouraged to wash their hands thoroughly prior to eating, drinking, or smoking elsewhere.

Currently, the "key players" in the Safety Program are:

Vice President - David R. Hill Lab Manager - A. Robert Martin Safety Officer - Cheryi M. Coffee Hazardous Waste Officer - Russeil J. Peilegrino

November, 1989

3 -

Section No.	Α	
Revision No.	0	
Date:10	/01/91	
Page 5_	of1	17

### EYE AND FACE PROTECTION

### PURPOSE

The primary goal of proper safety equipment and practices is to prevent or minimize injuries to personnel or damage to facilities. Eye protection is required and supplied to all laboratory personnel who work in locations where chemicals and samples are either stored or handled.

### APPROACH

SAFETY GLASSES used in the laboratory will comply with the American National Standard for Occupational and Educational Eye and Face Protection ANSI(Z87.1). This standard specifies a minimum lens thickness of 3mm, impact resistance requirements flammability test, and lens retaining frames. OBG Laboratories supplies, at the corporation's expense, safety glasses that meet the above requirements to all employees and visitors.

GOGGLES are intended for wear when there is danger of chemical splashes or flying objects. Goggies are required to be worn where chemicals are being transferred or handled in bulk.

FACE SHIELDS which protect the face and neck should be worn when maximum protection from flying particles and splashing liquids is needed. Face shields are intended for acid digestion areas.

CONTACT LENSES should not be worn in the laboratory. Gases and vapors can be concentrated under the lens and cause permanent eye damage. In the event of a chemical splash into the eye, it is often nearly impossible to remove the contact lens from the eye because of involuntary spasms of the eye lid. Persons who must wear contact lenses under the care of an opthamologist should consult with the Laboratory Manager and Safety Officer.

All protective eye and face equipment should be kept in a clean well-maintained manner. Employees should see the safety officer for assistance in the supply and selection of safety eye wear.

November, 1989

Section No.	Α
Revision No	). <u> </u>
Date:	10/01/91
Page6	of 17_

### GLOVE USE AND SELECTION

### PURPOSE

Effective personal protection is essential for any person who may be exposed to potentially hazardous substances. Skin contact is a potential source of exposure to toxic materials. Thus, it is important to take the proper steps to prevent such contact.

### APPROACH

Wearing the appropriate gloves will protect your hands from injuries, shock, or chemical contact, as well as freezing and burns. When selecting gloves, there are several performance factors to consider:

PENETRATION - the flow of a liquid through seams, pores, or imperfections in the material.

DEGRADATION - the reduction in one or more physical properties of a glove due to chemical contact. This is especially critical where the potential for sample contamination exists.

**PERMEATION** - the process by which a chemical can pass through a protective film without going through visible openings.

Gloves are located in the supply stock room as well as throughout the lab. Specific questions on glove fit, selection or use should be directed to the Safety Officer and the Section Leader.

Available gloves in stock are:

POWDERED VINYL - protects against a variety of chemicals, contaminants, and irritants. They are suitable for most laboratory applications.

LATEX - nonsterile gloves made from surgical grade latex

POLYETHYLENE - low-cost, light-duty hand protection

NITRILE - tough finish nitrile that resists punctures, cuts, and water permeability

NEOPRENE-NATURAL LATEX - skid proof tread that provides a sure gri, for safety (orange)

NEOPRENE-100% NATURAL LATEX - neoprene over 100% natural latex that provides excellent dexterity combined with heavy duty chemical, abrasion, puncture and tear resistance (blue)

November, 1989

Section No.	Α
Revision No	0. 0
Date:	10/01/91
Page7	of17

#### GLOVE USE AND SELECTION (continued)

STANZOIL - PCB tested neoprene that provides maximum protection against PCBs

ZETEX - High tensile material that conducts heat radially, enabling it to withstand temperatures up to 1100F

As always, conscienceous personal hygiene and frequent hand washing will help in minimize potential contact hazards.

The following table lists several commonly used solvents and the recommended glove.

#### CHEMICAL

. .:

#### RECOMMENDED GLOVE

Acetic Acid Acetone	neoprene, latex, nitrile latex
Ammonium Hydroxide	neoprene, latex, nitrile
Asbestos	neoprene, latex, nitrile
Benzene	neoprene, latex, nitrile
Carbon Disulfide	neoprene, latex, nitrile
Chloroform	neoprene, latex, nitrile
Freen	neoprene, latex, nitrile
Fuel Oils	nitrile
Gasoline	nitrile
Hexane	latex
Methanol	neoprene, latex, nitrile
Methylene Chloride	neoprene, latex
Mercury	neoprene, latex, nitrile
Nitric Acid	neoprene
PCB/Pesticides/Herbicides	latex
Propanol	nitrile
Sodium Hydroxide	neoprene, latex, nitrile
Sulfuric Acid	neoprene, latex, nitrile
Toluene	neoprene, nitrile

November, 1989

Section	No.	F	4
Revision	ı No.	0	
Date:	107	01/91	
Page	_8	_of_	_17_

#### RESPIRATORY PROTECTION

#### PURPOSE

Provisions for the use of respiratory protection are provided here. Normally, engineering (facility) controls and appropriate employee work practices will negate the need for routine use of respirators as a means of employee protection. Respirators are not routinely required for typical work efforts and conditions.

However, under specific conditions or in special situations, additional employee protection in the form of negative pressure, air purifying respirators (half- or full-face) may be needed. Such conditions would include handling open volatile materials (e.g. wastes containers) in an enclosed area, or during operations involving close handling of such materials while a hood is temporarily inoperational.

#### APPROACH

In accordance with OSHA's standard practices, and as specifically designated in 29 CFR 1910.134, engineering (facility) controls and work practice controls are established as a priority over the use of respirators. Engineering controls include general ventilation, local and adjustable ventilation exhaust systems, and standard fume hoods. Work practice controls include activities such as proper materials handling, storage, employee training and awareness, and the proper uses and regular inspection of hoods.

Should conditions develop which would require the use of respirators, the Safety Officer is to be contacted. She will evaluate the conditions and select the appropriate respirator.

All aspects of 29 CFR 1910.134 would be adhered to, including the following aspects of a minimally acceptable Respiratory Protection Program:

#### 1. Written Standard Operating Procedures on Selection and Use

Half-face, negative pressure respirators shall be used in the laboratory, when deemed necessary by the Safety Officer. This would be only under conditions of a high potential for inhalation exposure of toxic vapors, gases, fumes, dusts, mists or other particulates. Each respirator will be worn snugly to the face, with straps tightened appropriately over the head and behind the neck. Each respirator must be fit-checked (with positive and negative pressure) upon donning.

Cartridges are to be changed (and "old" ones discarded) following a total of 12 hours use.

November, 1989

).	A	1
10.	0	
107	01/91	
9	of	_17
	lo. _10/	lo. 0 10/01/91

#### **RESPIRATORY PROTECTION (continued)**

#### 2. Selection Based on Hazard of Exposure

Cartridges for the respirators will be selected and properly inserted into the respirators, as follows:

Hazard	Cartridge(s)
organic vapors	organic vapor
sodium hydroxide	HEPA filters
acid gases (H ₂ SO ₄ , HCl, etc.)	acid gas
dusts, fibers, etc.	HEPA filters
mists, fumes, etc.	HEPA filters

#### 3. Training on Use and Limitations

Training on respirator use and limitations will take place during new employee orientation, and during designated training sessions.

#### 4. Cleaning and Disinfecting After Each Use

All surfaces of all respirators will be cleaned immediately following use in the laboratory. Outside surfaces must be cleaned with a mild detergent to remove any residual materials. All inside surfaces must be wiped clean with a disinfectant solution.

#### S. Storage Protocols

Clean, sanitary, convenient facilities are needed for storing respirators. This area is the duty of the Safety Officer. They consist of a cabinet, with ample space for the respirators to lay flat, plastic covers to prevent dust accumulation, and cleaning supplies/solutions and necessary maintenance equipment, spare cartridges, etc.

#### 6. Inspection and Maintenance During Cleaning

All personnel will inspect the respirators for integrity, wear, damage, etc. during cleaning. Should maintenance of any portion of the respirator be needed, as noted during inspection, this must be brought to the attention of the Safety Officer.

7. Surveillance of Employee Exposure and/or Stress: and 8. Regular Inspection and Evaluation of the Program

The Safety Officer, Lab Manager and Vice President must regularly review the use of and observe, in practice, employee use of respirators. Problems, difficulties, potential overexposures or stress must be corrected upon discovery. This may involve the assistance of an O'Brien & Gere Engineers, Inc. Industrial Hygienist.

, A	۱
0	
01/91	
of _	_17_
	· ·

#### **RESPIRATORY PROTECTION (continued)**

#### 9. Medical approval

Medical approval for employees for negative-pressure respirator use is incorporated into the Medical Surveillance portion (Section 9).

#### 10. Only NIOSH/MSHA Approved Respirators Are To Be Used

All respirators purchased and/or used by OBG Laboratories must have NIOSH/MSHA approval. For consistency, these should all be of the same brand and model, whenever possible. Suggested brands include 3M and Willson.

#### 11. Fit-Testing

All OBG Laboratory employees that wear a respirator will be fit-tested by an O'Brien & Gere Engineers Industrial Hygienist prior to using the respirator. A qualitative fit test will be conducted and results recorded by the Safety Officer.

Section	No.	F	4
Revision		0	
Date:	107	01/91	
Page _	11	_of_	_17_

#### CHEMICAL HANDLING, STORAGE, AND DISTRIBUTION

#### PURPOSE

The achievement of safe handling and use of hazardous substances is important for all those involved with it. Material safety data sheets, which give physical property data and toxiological information, are readily available to each employee to aid in the understanding of the safe handling and use of each chemical in the workplace. These are available as part of the existing Hazard Communication Program. The Safety Officer and Lab Manager can provide more details on the Haz Comm Program.

#### APPROACH

It is necessary that all substances be received at the chemical stockroom prior to distribution. No container of chemical or compressed gas cylinder should be accepted for use in the laboratory that does not have an identifying label.

There is a wide range of issues associated with appropriate chemical storage. Insufficient or inappropriate storage of incompatible chemicals and poor housekeeping can create hazards.

Stored chemicals should be examined at periodic intervals. Those kept beyond their shelflife or those that may have deteriorated should be safely disposed of. Any employee who sees any container in poor or inappropriate condition should notify the Safety Officer.

Centralized storage of bulk quantities provides the best method of minimizing the impacts of potential hazards. Storage of chemicals on bench tops is undesirable. They are unprotected against fire and the containers are more readily knocked over. The analyst should return all chemicals to the proper storage at the end of the day or following completion of a specific analysis. Flammable liquids shall be stored in cabinets designed for flammable storage. Acids and bases shall be stored in trays made of polyethylene contained in designated cabinets.

Laboratory refrigerators are to be used for chemical storage only. All containers shall be properly labeled and food must never be placed in them. All food items should be stored in the refrigerators provided in the lounge or the designated food refrigerators in the lab.

November, 1989

10

Section I	No.	A	
Revision	No.	0	
Date:	107	01/91	
Page	12	of	_17
	_		

#### CHEMICAL DISPOSAL

#### PURPOSE

It is the responsibility of all employees to follow the OBG Laboratories procedures for the proper disposal of chemical wastes. Waste should be transferred in a manner that is safe and acceptable to disposal operations.

#### APPROACH

All persons using chemicals in the laboratory should be generally aware of the toxic properties of the substance, through a review of the applicable MSDS. Generally, there are local regulations about permissable discharges down the drain. In general, only dilute watersoluble substances may be disposed of in the laboratory sink. Strong acids and bases should be diluted before they are poured into the sewer system. Toxic, malodorous, or lachrymatory (eye irritating) chemicals should not be disposed of down the drain. It is unlawful to discharge these materials due to local regulation. In addition, as laboratory drains are often interconnected, a substance that goes down one sink may well come up as a vapor in another.

Separated, well-defined wastes are easier to dispose of and are less expensive than combined wastes. Segregation of two or more types of wastes is required. Four types of solvent wastes are currently segregated: chlorinated (methylene chloride), non-chlorinated (acetone and hexane), PCB (liquid, or "solid free") and PCB (solid). Because chlorinated solvents form hydrogen chloride upon combustion, they must be segregated from other wastes destined for incineration. Currently, solvent waste is collected into chemically- resistant plastic coated safety containers and stored in a ventilated safety cabinet prior to transfer to an appropriate DOT-approved 55 gallon drum prior to disposal, which are stored in the Hazardous Waste Room. Alternatively, all mineral acid wastes are collected in a polyetylene DOT approved 55 gallon drum.

Should questions arise please contact the Hazardous Waste Officer, Section Leader, Lab Manager or Vice President.

November, 1989

Section No.	Α
Revision No.	0
Date: 10	/01/91
Page13	f17

#### EMERGENCY PROCEDURES AND EQUIPMENT

#### PURPOSE

A system should be established to ensure that accidents or emergencies are reported promptly. Accident reporting is required by OSHA on the "OSHA Form 200 Log" to help uncover laboratory hazards. In addition, established procedures and available equipment allow for employees to be best prepared for and able to respond to emergency situations. To this end, the following general procedures are to be followed. The available emergency response equipment, tabled along with locations, are also listed below.

#### APPROACH

All accidents resulting in medical treatment or medical observation will be recorded. A written accident investigation report to the responsible group leaders and division Vice President stating the cause, effect, and recommendation for remedial efforts regarding the accident will be made and retained by the Safety Officer as part of the safety program and reviewed at the next safety meeting.

FIRES AND EXPLOSIONS: In the case of a fire, alert personnel and send someone for assistance. If there is any doubt whether the fire can controlled, the following action should be taken:

- 1) Notify the fire department and activate alarms
- 2) Confine the fire, if possible, and if not presenting a safety hazard
- 3) Call for medical assistance
- 4) Proceed with follow-up measures appropriate to the situation

CHEMICAL SPILLS: For most small scale laboratory spills, there are supplies and equipment on hand to deal with the spill. Paper towels and sponges may be used, but should be used with caution. When flammable solvents are absorbed with vermiculite.or sand, the resultant solid is highly flammable. Commercial spill kits are also available in the Wet Chemistry and Extraction Labs. If a spill should occur, the following procedures should be followed:

- 1) Attend to any persons who may have been contaminated
  - 2) Evacuate personnel from the immediate area
  - 3) Turn off ignition sources
- 4) Use a respiratory to avoid breathing vapors, if necessary
- 5) Proceed safely with the cleanup
- 6) Notify immediate supervisor or safety officer

OVEREXPOSURE OR PERSONAL ILLNESS/INJURY: If an employee is overcome by accidental exposure, or suddenly feels ill or is injured, the person should immediately be assisted, as follows:

1) Take the person away from instruments and chemicals to fresh air

2) Give the person first aid, as necessary

3) Proceed with follow-up measures appropriate to the situation

Section	No.	F	4
Revisio	n No.	0	
Date:	107	01/91	
Page _		_of_	_17_

### EMERGENCY PROCEDURES AND EQUIPMENT (continued)

### LIST OF AVAILABLE EMERGENCY RESPONSE EQUIPMENT

FIRE EXTINGUISHERS				
TYPE	<u>ADVANTAGES</u>	DISADVANTAGES	COMMENT	
Dry Chemical	good on oil and grease	possible equip- ment damage	compatible with other agents	
Carbon Dioxide	good visibility thermal damage	heavy vapor toxic	second choice to halon	
Halon	good visibility reaches hidden fires	expensive	most common for electrical fires	
EYEWASH/SHOWER: immediate first aid drenching; delivers a continuous flow of water				
FIRST AID KIT:	assortment of supplies	of general use first ai	d	
BURN KIT:	supplies nee burns	ded to effectively trea	IT	
SPILL PILLOWS:	absorbes 102	am like sand sorbent tha ( its weight in solvents acids for spills up to		
SPILL ABSORBANT:	SorbaSet in a larger spills	3.5 gallon spill box for	r -	
MERCURY SPILL K		ded to clean up small s and prevent toxic vapor 1		
Hg ABSORB POWDE	R: converts ele metal/mercur easy clean up	mental mercury into y amaigam for safe and -		

November, 1989

13 -

Section	No.	F	۱
Revision	No.	0	
Date:	107	01/91	
Page _	_15	of	_17_

#### **REVIEW AND INSPECTION**

#### PURPOSE

The designated Safety Officer must be committed to the attainment of a high level of safety and must work with the individual managers to develop and implement policies and practices appropriate for safe laboratory work.

#### APPROACH

It is the responsibility of the Safety Officer to routinely monitor current operations and practices, see that mandated compliance audits are conducted, and to constantly seek ways to improve the existing safety program. This will include a weekly inspection of all operational safety equipment, updating of safety files, and hood monitoring. The Safety Officer also has the responsibility for providing for regular weekly safety and housekeeping inspections and to make recommendations for improved facilities, equipment, and training which may be necessary.

Weekly Group meetings within the OBG Labs staff should allow a direct avenue for employees to discuss health and safety concerns. Where this is not achievable, direct contact with the Safety Officer should be made to resolve any health and safety issues.

Monthly meetings between the Management and the Safety Officer play an important role in the regular review and inspection process, providing for direct transfer of information and updating of the safety program. The monthly agenda should include items such as employee suggestions, accident reports, violations of rules or policies, observations by any involved party, management updates, and any pertinent special topic.

Quarterly meeting with the staff are held to update the general staff on pertinent developments, changes, additions, etc. Where appropriate, these are included as part of the regular training sessions (See "Training and Information Sessions").

November, 1989

14

Section	NO.	F	4
Revision	n No.	0	
Date:	107	01/91	
Page _	16	_of_	_17_

#### MEDICAL SURVEILLANCE

#### PURPOSE

Any person whose work involves regular and frequent handling of materials that are acutely or chronically toxic should consult a physician prior to and throughout such employment. This is intended to assure a level of health and fitness appropriate to job duties and conditions, as well as to set a base-line condition to monitor for signs or symptoms of potential exposure.

#### APPROACH

OBG LABORATORIES requires and provides medical suveillance testing with an local, independent qualified physican on a yearly basis for all employees. This service is provided by Industrial Medical Associates (IMA), unless an employee prefers to use a personal physician.

The medical surveillance includes a hazardous waste questionnaire, urinalysis, CBC/blood chemistry profile, negative-pressure respirator use approval (asbestos personnel), general review and physician consultation.

The physican reviews the employees test results and comments in writing to that employee of any irregularity. The communication is discreet and unknown to the employer. However, if the physican feels that there is a common phenomena among employees, the employer will be notified to help determine the common cause.

Further information on this aspect of the safety program can be obtained from the Manager or the Vice President.

15

Section	No.	Α				
Revisio	n No.	0				
Date:	107	01/91				
Page _	_17	_of_	_17			

#### TRAINING AND INFORMATION SESSIONS

#### PURPOSE

Training classes and information sessions, such as new-employee orientation, are designed to:

- increase awareness of potential hazards in the laboratory
- increase the respect for hazard potential, thereby adding a level of safety to daily activities
- develop a unified "team" approach to health and safety in the laboratory

#### APPROACH

Several phases of training and information sessions are planned. These are:

- Orientation Sessions for New Employees.

These will last approximately 3 - 4 hours, providing introductory information about the lab, layout, functions, personnel, the Health & Safety Program, location of pertinent information (such as MSDS file) and emergency equipment, a Hazard Communication Program presentation and follow-up.

- Quarterly Sessions on Pertinent Health & Safety Topics

Topics will vary, and are intended to represent topics of current concern, or general topics pertinent to the operations of the laboratory. These sessions will include multi-media presentations and "guest lecturers" from outside OBG Laboratories, representing specific areas of knowledge and information.

Specific topics for the quarterly sessions may include:

- evacuation procedures and information for "team leaders"
- respiratory protection
- spill clean-up procedures
- respiratory protection
- waste disposal procedures
- chemical handling and storage

November, 1989

Section No.	B
Revision No.	0
Date:1	0/01/91
Page1	of18

## APPENDIX B

SAMPLE CONTROL RECORD

CLIENT:		DATE REC'D:	9-24-91
JOB #:	3.95.021:512	BIN NUMBER:	100 4101

1

,

DATE AND TIME REASON DATE AND TIME REMOVED LABORATORY RETURNED REMOVED SAMPLE NUMBER BY 10:00 AM 60 9/25/4/ U2649-54,2659 U264-2610,2675 Republick Extraction . • . å . , 10, 10, 0 N ႖ၟၜႝႍၜ ω Ø

SAMPLE CONTROL RECORD

CLIENT:

DATE REC'D: 9-24-51

JOB 1: 3195.021.517

BIN NUMBER: 100 4161

DATE AND TIME REASON DATE AND TIME REMOVED LABORATORY RETURNED REMOVED BY SAMPLE NUMBER ۰. ۰. . ٠. age **B** Š ωl ω 8

Sa	mple Custod	ian Signature:	Auro D	arus.		Client Name:	· · · · · · · · · · · · · · · · · · ·	
Da	ite of Sample	e Login: MPS	9-24-91			Project No.:	345.021.517	
Ai	rbill Numbe	rt	929576	4- 1598	EDEX.	Bin Number :	1002101	
		OMEN PACKAGE TRACKING NUMBER	15768937 I-PULUP PURPLETAB Custody Seal	(cp	The Appropriate Re resent Absent ) ntact/Not Intact	esponse: 4) Sample Ta	ag #'s Listed Not Liste	đ
		2) (	Chain-of-Cust	tody P	resent/Absent	5) SMO Form	s Present Absent	)
- <u></u>		3)	Sample Tags	P	resent/Absent		·	
	Date Rec'd.	Time Rec'd.	Chain-of Custody Record #	SMO Sample Numbers	CORRI Sample Tag Numbers	ESPONDING Assigned Lab Numbers	Does Information On Custody Forms Traffic Reports & Sample Tags Agree ?	Remarks
-4	9-24-91 7-20-	09.30		!	X925W	N2649	See Case file	
					X9D5E	1.50		
			_/		X9DI	51	^ °	ļ_/
			<u>   </u>		X9Die	52		
					XPDZW	53		
					X9D3	54		
-			<u> </u>	<u>_</u>	X-1	55		
		·			8-2	570		
ω			<u>                                      </u>		X-3	.57		<u>    ≤  </u>
320144					X-4	58		
14		·			13B5	N2659		
		)	-  <i> </i>	//	13B5-m5	N-21159-5	/	

)					•	·	)
Sample Custod	lian Signature: <u>(</u>	In De	BULS :		Client Name:		d. 999
Date of Sampl	e Login:	9-24-91			Project No.:	395.021.512	
Airbill Numbe	er: 92957689	7214937 -	FEDE	X	Bin Number :	100 0 101	
			Circle	The Appropriate Re	sponse:		
	1)	Custody Seal	P I	resent/Absent) ntact/101 Intact	4) Sample T	ag "'s Listed/Not Liste	ed
	2)	Chain-of-Cust	tody P	resentAbsent	5) SMO Form	s Present Absent	).
	3)	Sample Tags	Р	resent/Absent			
Date Rec'd.	Time Rec'd.	Chain-of Custody Record #	SMO Sample Numbers	<u>CORRE</u> Sample Tag Numbers	SPONDING Assigned Lab Numbers	Does Information On Custody Forms Traffic Reports & Sample Tags Agree ?	Remarks
4-24-91	0930	·		Trip Blk	NZLeLes	See Case file	
F			<u></u>	Fuild BIK.	61		
				TSIAL	62		· /
				TSAZW	63		
				TBATE	64		
				TSATIO	105		<u> </u>
		<u> </u>		TEDIE	(elo	\	Page
				T8B5	67	\	
<u>ب</u>				TPAZ	. 68	\	
32014				TBRIN	69		-  <u>\</u> ¥ @   \$ -
А		/		TBBIE	10		
	<u>.</u>		/	T-2	. , 7/		

		• •		).	•		
Sample Custod	lian Signature: <u>(</u>	In Ba	skes		Client Name:_		
Date of Sampl	e Login:	24-91			Project No.:_	3195.021.577.	
Airbill Numbe	er: 929.576	9214937	-FED	EX_	Bin Number :	1004/01	
			<u>Circle</u>	The Appropriate Re	sponse:		
	1)	Custody Seal	P: 1	resent/Absent	4) Sample Τε	ag #'s Listed/Not Liste	d
	2)	Chain-of-Cus	tody P	resent)Absent	5) SMO Form:	s Present Absent	3
	3)	Sample Tags	P	resent Absent		ı l	and and the second s
Date Rec'd.	Time Rec'd.	Chain-of Custody Record #	SMO Sample Numbers	CORRE Sample Tag Numbers	SPONDING Assigned Lab Numbers	Does Information On Custody Forms Traffic Reports & Sample Tags Agree ?	Remarks
9-24-91	0930	•••••••		T=4	Naco 23	See Case File	
		$\int$		τ=1	<u>(74</u>		
				W8C5	25		
				WSCILE	7/1		
				WSCIE	77		
				WSC.6W	,78		
		<u>                                     </u>		WYCLEE	N2679		Page
		· · · ·		in SCLOE- MS			
ω					N2679-MSD		
320146				WSC.TW	N2680		
ф б				W8CIW	81.		
				WRCZE	82		

		•					
·		Client Name:_		asues.	Qui B	ian Signature:_	Sample Custod:
	3195-021:577.	Project No.:_	-	/	9-24-9	e Login:	Date of Sample
	1002/01	Bin Number :	EX	37-12	76892149	r: <u>9295</u>	Airbill Number
		esponse:	he Appropriate R	Circle 1			•
d .	g "'s Listed)Not Listed	4) Sample Ta	resent/absent ? itact/fot Intest		Custody Seal	1)	
,	Present Absent.	5) SMO Forms	resent/Absent	tody (Pr	Chain-of-Cust	2)	
			resent Absent	P	Sample Tags	3)	
Remarks	Does Information On Custody Forms Traffic Reports & Sample Tags Agree ?	SPONDING Assigned Lab Numbers	CORRI Sample Tag Numbers	SMQ Sample Numbers	Chain-of Custody Record #	Time Rec'd.	Date Rec'd.
	Lee Case file	NZ684	W-1	7		9:30	9-24-91
$\bigcap$	C	685	10-2				(
		86	W-3				
D.		87	w-4				
ን ሮ ም የ			1.				
			· · · · · · · · · · · · · · · · · · ·				
7 10/01/							
							320147

SECTION LEADER: **Caboratory** LEVEL OF REPORT: Date: Res DATE SCHEDULED: 9-24-9 >Page 8 LABORATORIES, INC. BIN #: 100010 JOB NO. 3195.021.577 CLIENT, <u>Scrapyasa</u> DESCRIPTION MATRIX: 9-23 -91 9-24-91 DATE COLLECTED DATE RECEIVED Sample Res RS Pb RIB £ NA ( NG . . . . E. 44 1.25 0 -2 **n** - 2-1 . . ----.... _ -Nalag N . 1 F-XIAN 0 6 --311 -----·= 1. COPY CHECK: TAA /ARM /AC /MNP × /DRB Cartification No.: Comments: Tunarover - WEEK Authorized:

OBG Laboratories, inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

SECTION LEADER: AC. Sora LEVEL OF REPORT: 777 DATE SCHEDULED: 9-24-91 72.20 9 - BIN ·Page ōf LABORATORIES, INC. JOB NO. 3195.071.577 CLIENT. 1 Ľ DESCRIPTION 7 / くへいん MATRIX: DATE RECEIVED 9-24-91 9-22-91 DATE COLLECTED R Æ RTS. Ph 7-80 ÷. NILoble · · · · · 16 ------. * TRRS 1 - . . . . . TSBIW A TISIE -ويسور ------7-2 · · · · · T=4 23 · · · · · • . 71 .7-/ ۰. W 8C3 ٠., ------TASCIL. WSCIE WSC low -. . . W9C6E WSCGE MS ..... NZIOTA V2679-44 はをししせ ÷, わるこフレ NALEC WCZW COPY CHECK: TAA /ARM 'AC /MNP /DRB Comments: Cartification No.: 1- WEEK TURNAROUN

Authonzeo

Date:_

LABORATORIES, INC.	LEVEL OF I	EADER: <u>7</u> REPORT: <u>7</u> DULED: <u>9-</u>	Section No. Deporter Revision No. Deport Revision No. Deport Bage 10,00000000000000000000000000000000000				
	DATE COLLI		1-70.7		IVED <u>9-2-</u>		
		Zimple Z	PCB	<i>A</i> 5	76	PETS.	
(08A5W)		12683					
10-1		- 84 					
10-2	andres and an a state of the second state of t	E FI				-	
			- Jose				
			-				
			5				
					••••••••••••••••••••••••••••••••••••••		
COPY CHECK: TAA/ARM_COMMENTE:	/AC/M	NP/DRB_		ion No.:			

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200 Authorized: ___

Date: _

## CHAIN OF CUSTOR B



LABORATORIES, INC.

 Revision No.
 0

 Date:
 10/01/91

 Page
 11
 of
 18

SURVEY	•		SAMPLED BY: Don WARTWOOL / SEFF Comme							
LOCATIC	DN:	•			ORGANIZATION:					
STATION NUMBER	SAMPLE LOCATION		OATE COLLECTED	TIME COLLECTED	SAMPLE MATRIX	COMP. OR GRAB	NO. OF		ANALYSIS REQUIRED	
BLANK	cecus - Scrap		1/23/91	1010	4	6	. /	PCB, P	Ъ, АЗ ^с	
FIELD BLANK	14		11	1015	SAND	6	Z	it	12 11	
BAL	FOLTGON T	0.6.	11	1035	50;L	C	Z	PCB		
BAZW	:1	ţ	11	1010	II.	11	Z	it		
TEATE	. (		11	10+5	17	11	Z	11		
TBATW	× į		4	1055	4	10	2	11		
TBDIE	<i>i</i>		L,	1100	4	•(	2	tt name		
7885	ę i		- le	1105	11	11	2	¥1		
TBA3	ž I		4 ( T	1115	Nr.	~1	Z	£}		<u></u>
BBIW			и	11Z0	۰r	14	2	1		·
TBBIE	11		11	1125	11	11	Z	(1		
7-2 7	TRAC, TAHLE TAHTE			1050	14		7	Pb		
	THIN TEDIE, TOBS			1110	"	- 10	Z	Pb		
Betinquished E	78.43, 78314, 7931. Ar.		$\frac{11}{1000000000000000000000000000000000$	1130 TIME 1530	Received E	hy:	Z	Рв	DAGE	TIM
Relinquished E	Jy:		DATE	TIME	Received 8	hy:	<u></u>		DATE	TIM
Relinguished B	)y:	İ	DATE	TIME	Reperved b	y Laborator		us	9/21/E	TIM

ASPP.

ATTW. T. BULD - CB+6 =1

Cooler

1 c F 4

METHOD OF SHIPMENT: FED Ex

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200



# CHAIN OF CUSTODY RECORD B

 Revision No.
 0

 Date:
 10/01/91

 Page
 12
 of
 18

SURVE	EY:		-	SAMPLED BY Don WARTINGER / JEFF Court						
LOCATI	ION:				ORGANIZATION:					
STATION NUMBER	SAMPLE LOCATION		DATE COLLECTED	TIME	SAMPLE MATRIX	COMP. OR GRAB	NO. OF CONTRUMERS		ANALYSIS REDUIRED	
T-1	TBASE, TBAI, TBAZE	0-6"	1/23/9,	1135	Seil	C	Z	Pb		
WBCS	POLIBON W	1 :	11	1140	11		Z	PCB		
wijiciwi	÷ i		4	1145	11	14	Z	• • •		
BCIE	<i>t1</i>		1	115=	4		Z	. 4		
టరింబ	1		"	1200	4	u .	Z	11		
956E	11		- 17	1205	. ii		2	+ #		
2628				12:5	<u> </u>		2	" ms	IMSO	
-8076	17		ų	1210	17	10	Z	11		
	4		L1	1720	11	18	2	11	· .	
UBCZE	. 4		4	1225	13	4	Z	)(	······································	
	٤J		17	iZ30	iy .	4	Z	11		
ji	wacs, wacıcı, wacıe	1	" .	1155	'1	14	z	#Pb, As		
z	wecow, wecoe, wec 7w		11	1215	.,	4	2	Pb, As		·
	weczw, wacze, woasw		11	1235	4	ι,	Z	РЪ, AS		
~-4	wiic3, wiic7E	L	"	1240	43	•1	Z	Pb, As		
Belinguisned	By:	-	- DATE 7/23/7,	TIME 1530	Acceived E	By:			DATE	TIME
Relinguished	1 By:		DATE	TIME	Received B	dy:			DATE	TIME
Relinguished	l By:		DATE	TIME	Rectives b		y: ZSHLO		ghul ki	TIME 197
COMME	<u>NTS:</u> PLasse تصریب ددیروی سوورن جسر سز تموه	<b>خ.</b>	2 <b>:</b> ~		عنتنه	es t Buic	сı S	من <b>بو</b> م مەن زەمچىر	602	
2cF4										

METHOD OF SHIPMENT: FEO Ex.

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200



CHAIN OF CUSTODY RECORD B

 Revision No.
 0

 Date:
 10/01/91

 Page
 13
 of
 18

LABORATORIES, INC.

SURVE	īY:	<u></u>	SAMPLED BY: Dow WARTINGER / JEFF CONTING							
LOCATI	ION:			ORGANIZATION:						
STATION NUMBER	SAMPLE LOCATION	DATE	TIME		COMP. OR GRAB	NO. OF		ANALYSIS REQUIRED		<u></u>
X905W	Polybon X Orb	" 7/23/9	1215	Scil	C	2	PCB			·····
X905E	11	τι	1250	L.	4	Z	L,			
X901	17	ч	1255	Ly.	4	2	4			
X906		4	1305	~	11	2	- 1			
X90ZW	τ.	Łį	1310	-1	LE	2	4			
×903	<i>در</i>	4	1315	L,	ų	S	LE			
x-1	X90510, X905E, X901	Ч	1300	k e	4	Ν	As			
X-2	X906, X702W, X703	ч	1320	ч	•4	2	As			
X-3	X902F, X9BEW	4.	1325	4	ų	Ν	As			
X-4	X907W, X907E, X908	· 7	1330	4	••	2	As			·
1385	Quad 13	4	1435	4	4	2	PCB	ms	Im	50
	· · · · · · · · · · · · · · · · · · ·									•
	By:	9/DATE 23/4,	TIME (530	Received (	Received By:					TIME
Relinguished	l By:	DATE	TIME	Received (	By:			0	ATE	TIME
Relinquished	l By:	DATE	TIME	Received to	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second sec	F.Bas	Kes	g/2	ATE A	TIME
COMME	NTS: Plense Contact w	Smit	h ir	L.			ward	when		
	Arrive Return G	mle-s	1			•		- 	,	
C	T. Bold-OB-G	(ASAP)	. F.11	with	h Ju	is Bue	king, for	am, cct	· /	TTP

METHOD OF SHIPMENT: FED EY

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300 / PO Box 4942 / Syracuse, NY 13221 / (315) 437-0200

San	nple Bottle	Reques	t Form	- Section No	. В
				Revision N Date:	o. 0 10/01/91
Client:				Page1	40f18
Billing Information: Name: Address: City/State: Telephone #: Client Job or P.O. #: OBG Lab Job #:		ud Kia a 1-a 25:03			с1 . 304- 034
Program Information: Program Description:	# Sites		<u>Matrix</u>		lysis Required
Sample Bottles:	<u># Botties</u> G - Ca Paca	Size ases kienq C.O.C.	Ive - Sec & Rub bag	Pres. es ul cab berbanc aces.	Analysis bels lo —
Quality Control:	(Circle One):	I	П	<u> </u>	CLP
Shipping Information: Due Date: Method Of Shipment: Shipping Address:	(Circie One): 754	Pickup ke Gl	Overnight	2 Day	Kegular
OVERNIGHT BU A> OBG Laboratori <b> Client will pay fr 1. Unit Price 2. Cost Plu Frandard BOTTLES I CHEM BOTTLES</b>	eight via: e Invoice		) A	ubmitted By: Date: Approved By: Prepared By: Date Sent:	10/9/ /9/ 202 2+0-9/

#### CASE FILE

		Section No.	В	3
		Revision No.	0	
Survey: Stycal -	·Date Collected:	Bate 3 - 9/107	01/91	
Sampler: DUNAtimon / T. Con	Hno Date Received: _	Page 15		_18
Client Name and Ref. #:	BiBriend Gure	Enq.		
OBG Laboratory Client #:	195.021.577.			
CONDITION OF SHIPMENT: <u>Trip</u> <u>portion</u> poured BA <u>proper container un</u>	Blk requests 7	b d G5		
Ontion poured at	a glass of	unto		
proper container un	the p corrict p	resonative		
done in Lab.	k /			

#### RADIOACTIVITY SCREENING":

X The sample cooler(s) were screened for radioactivity and found safe for handling.

The samples come from a safe source and do not need to be screened.

Signed: aris Sample Coordinator

____

**********

DISPOSAL PROCEDURE**:

Signed:

Date:

"The radioactivity screen is performed to alert our employees of unexpected radioactivity at hazardous waste sites.

**Samples are disposed of four (4) weeks after a typed report is signed and mailed to the client. The routine method of disposal is: water samples are filtered through carbon to a sanitary sewer, solid samples are sent to a sanitary landfill.

Section No. В ABORATORIES, INC. Revision No. n 10/01/91 Data: SUBJECT 514667 CAT 167 Pége 6 QUESTIONS? CALL 800-238-5355 TOLL FREE AIRBILL a.1.5:// 2752274454 PACKAGE TRACKING NUMBER 792274454 1.AV. 2859 - ----RECIPIENT'S COPY .... 9/23/91 21.31 rom (Your Name) Please Prvs To (Recovers's Name) Please Print 2 IL.B BOLD EDY (7.1 Department/Floor No. Company ( ) Company Department/Poor No. CERTER & GERE LABORATORIES 1997 Carrie بذرية بالشرابة Street Accress Exact Street Accress (We Canner Dates at P.O. Bases of P.O. Zo Cann.) 5000 BRITTCHPTELES PARKWAY . City ZIP Required City SYRACUTE NY 13221 YOUR INTERNAL BILLING REFERENCE INFORMATION (First 24 chara IF HOLD FOR PICK-UP, Print FEDEX Actinus Have a set access on mouth. 🐃 Dr K Street 13 MERIT 1 2 Bill Sender 2 Bill Proceser's Feder Acct. No 3 Bill 3rd Perry Feder Acct. No. 4 City -TP Peop 200 CO. 2522 5 C Sm 710 105 -----~ ~ DELIVERY AND SPECIAL HANDLING SERVICES 1-1500 B Emo. No. 1 Date Federal Express Use (Check only one box) Check services required). Can Pecan Base Charges Priorite Overnight | Stendard Commigne ~ C Peaum Sh HOLD FOR PICK-UP +++ 10 :0 The Park Che To Hat Deciared value Starce SI 700# DELIVER WEEKDAY 2 <u>e</u>l-Sime Accress DELIVER SATURDAT - Sun ch יום 🗍 המובי גבודופו אין אם 🗍 המוביג גבודופו י (_____ Ciner ' ; 12 7800X MAK . 52 🔲 FEDEX MAX • 4 DANGEROUS GOODS (Emp Ĉ State Ζю Total Ciner 2 Total 13 🗌 FEDEX BOX 53 🗍 FEDEX BOX 15 🔲 14 🦳 FEDEX TUBE Received By. 6 🗌 2MY ICE Total Charges Y Two-Ci Ē6 N LY Х 7 OTHER SPECIAL SERVICE DOM SHIPMENT IC Date/Time Reca TODEX EMONONE NUMBER ABABION GATE 4/91 PANT #137204 NCREC 7731 30" 🚺 5236087 8 2010 -SATURDAY PER-UP 9 5.74 280 11 50 10 -OVERNIGH 30 THO-DAY " PONTED 1 Same HOLIDAY DELIVER 1235. ------'2 🔲 ·.a

.

.

		:													- come		
SAMPLES RECEIVED 9-3	491	•		SAMPLE LOG			F	·····	P	RES	-		N CH	1	5	]	
PAGE NO OF	5				•			E s			SS	EASE	3	ដ្ឋ			
CLIENT NAME	PROJECT DESCRIPTION	PROJECT NUMBER	LAB NO.	SITE DESCRIPTION	COLLECT DATE		BIN NO.	DEMANDS	METALS	CYANIDE	HARDNESS	OIL & GR	SULFIDE	PESTICIDES		SC LD	R
	UST-BL-COL HAMANA Solutione Wastebeds	XST. W. 511	22	- (17A - (17A - (17A - (17A - (19A - (19A - (19B - (19B - (19B - (19B - (133 - (133	9-24-91 9-24-91 9-24-91 9-23-52	n/A · 1005											

			:	•				,								
SAMPLES RECEIVED	1-24-91	•	٠	SAMPLE LOG				P	RES	ERVA	TION	CHE	KS			
PAGE NO. <u>5</u> OF	5						ENTS		W	ESS	PHENOLICS	u i	20			- -
CLIENT NAME	PROJECT DESCRIPTION	PROJECT NUMBER	LAB NO.	SITE DESCRIPTION	COLLECTION DATE TIM		NUTRIENTS	METALS	CYANIDE	HARDN	PHENOLICS	SULFID	PESTICIDES			IDR
		395.011.57	NZLAY	TRATE	9.13-91	100	$\left  - \right $		$\left\{ -\right\}$							C
		f	/ lele	TSDIE							1_		1			Z
		/	62	TYBS	-{		┨─┨╴					┠─┠				<u> </u>
			49	T8BIW		101		-1-							-11	
			70	TSBIE		_/								11		
			7/	7-2 7-3	<u>├</u>		┨╼┨╴			┠──┠		$\left\{ -\right\}$				<b>}</b>
			72	7=4			╂╼╂			╏──╏	-{-	╂╼╂				<del>\</del>
6.2db	•		74	7-1												1
1.5			75	10805	┨		╂╼╂			┠━┠			+	╾╂╾╂		
			77	WSCIE	<b>}</b>		╊╼╊	_	╉	╂╼╂		╏╼┨	-+-	╧╂━╂		
I MA.			1 78	W8CGW												
1 471			77	WSCLEE MS, N	\$D		┨╼┨			┞╌┨	_ _					
				108C7W	·····		┼╌┼			┼╌┨		┨╼┨		╾╂╾╂		
				W8C2E	1		┼─┼	-	+-			1-1				
			183	WSASW												
		/		- 40-1	_/ _		-			$\left  \right $			┝╼┠╴			
			86	W-2 W-3	-/		┼─┨						┝╼╊╸			{
		6	V 87	11.11										-1-1		1
	A. Conselly Parisk, NY:	588.00.577	N2688.	Hitchin Kap . . Comp.	9-24-91 10	:00									Ţ	223
	Farisk. ny!	3069 001:577	WZL89	· Comp.	$\left  - C \right  $	101	é _		_ _				┟──┠	- 19		
		<u> </u>	V 70	Grab.			╶┨╼-┨		-		┝╌┨╌		┠─╊			Sedion No.
												1				ZŚ
															10/01/	<u> </u>
				·····	-		-	┝╌┠				-	┨╼┛┨	<u> </u>	3	
							- -	┝╼╊	-†-	-}	$\vdash$	-	$\left  - \right $		<u>ig</u>	
														5		

Section No	<b>D.</b>	C	)
Revision N		0	·
Date:	_107	01/91	
Page	1	of	_53_

## APPENDIX C

LAE	ORATO	TRIES.	INC.

Section No	D (	2
<b>Revision</b> N	lo. 0	
Date:	10/01/91	
Page	2 of	53

# Volatile Organics Method 8240

				MATRIX:	Water	
DATE COLLECTED 7-24-91	DATE RE		7-24-91	DATE ANALI	ZED7	-26-91
DESCRIPTION:	Trib SA Surface	Trib 5A Mid Depth	Trib 5A Bottom 16'	Trib 5A -State Fain Blvd. 8"	Trib SA Crucible	Trib SA RR Bridge mUpstream 20
SAMPLE NO .:	M8628	M8629	M8630	M8631	M8632	M8633
Chloromethane	<10.	<10.	<10.	<10.	<10.	<10.
Bromomethane						
Vinyl chloride						
Chloroethane						
Methylene chloride	<5.	<5.	<5.	<5.	<5.	<5.
Acetone	<10.	<10.	<10.	<10.	<10.	<10.
Carbon disulfide	<5.	<5.	<5.	<5.	<5.	<5.
1,1-Dichioroethene						
T.1-Dichloroethane	-					
1,2-Dichloroethene (total)			<b>v</b>			
Chloroform	14.	14.	16.	14.	19.	<5.
1,2-Dichloroethane	<5.	<5.	<5.	<s.< td=""><td>&lt;5.</td><td>&lt;5.</td></s.<>	<5.	<5.
2-Butanone	<10.	<10.	<10.	<10.	K10.	<10.
1,1,1-Trichloroethane	<5.	<5.	<5.	<5.	<5.	<5.
Carbon tetrachloride	<5.	<5.	<5:	<5.	<5.	<5.
Vinyl acetate	<10.	<10.	<10.	<10.	<10.	<10.
Bromodichloromethane	<5.	<5.	<5.	<5.	<5.	<5.
1,2-Dichloropropane						
cis-1,3-Dichloropropene						
Trichloroethene						
Dibromochloromethane						
1,1.2-Trichloroethane						
Benzene	30.	31.	33.	34.	110.	

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

_				
فتتنف				
-				
. A E	ORATO	19135.	INIC.	

 Section No.
 C

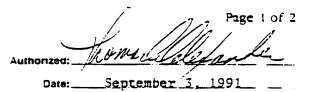
 Revision No.
 0

 Date:
 10/01/91

 Page
 3
 of

Volatile Organics Method 8240

				MATRIX:	Water	
DATE COLLECTED7-24-	-91 DATE RI		7-24-91	DATE ANAL	YZED 7-2	26-91
DESCRIPTION:	Trib 5A Surface	Trib 5A Mid Depth 8"	Trib 5A Bottom 16"	Trib 5A State Fai Blvd. 8"	Trib 5A r Crucible Mid Stream	Trib 5A RR Bridge Upstream 26
SAMPLE NO .:	M8628	M8629	M8630	M8631	M8632	M8633
trans-1,3-Dichloropropene	ৎহ.	<5.	<5.	<5.	<5.	<5.
Bromotorm	<5.	<5.	<5.	<5.	<5.	<5.
4-Methyl-2-pentanone	<10.	<10.	<10.	<10.	<10.	<10.
2-Hexanone	<10.	<10.	<10.	<10.	<10.	<10.
Tetrachioroethene	· <5.	<5.	<5.	<5.	<5.	<5.
1,1,2,2-Tetrachioroethane					<5.	
Toluene					16.	
Chlorobenzene					<5.	
Ethylbenzene						
Styrene						
Xylene (total)			•	•		
-						
<b>-</b>						
×						
- ·						
•						
-						
mments:			Method		r 1986, 3rd Edition	ly 8240, SW-846
			Certific		155	
			Units:	μg	/1	7 Bran 3 - 6 3
				· /	<u> </u>	7 Page 2 of 2
			Author	ized: Man	ull 4	and


OBG Laboratories, inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

September 3, 1991

Date: ___

LABORATORIES, INC.	Sectio Revisio Date: Page	on No10/0	C 0 1/91 of53	-	i <b>le Organics</b> Method 8240
CLIENT				JOB NO116	3.061.525
DESCRIPTION	• .•				
DATE COLLECTED 7-24-91	DATE RE	CEIVED	7-24-91	MATRIX: Wat	er 7-26.27.29-91
DESCRIPTION:	Trib 5A RR Bridge Upstream	Field Blank	Field Blank for Sed.	OC Trip Blank	
SAMPLE NO .:	26" Dup M8634	M8635	M8640	M8641	
- Chloromethane	<10.	<10.	<10.	<10.	
Bromomethane					
Vinyl chloride					
Chioroethane			V V		
Methylene chloride	<5.	<5.	<5.	<5.	
Acetone	<10.	<10.	<10.	<10.	
Carbon disulfide	<5.	<5.	<5.	<5.	
1,1-Dichloroethene					
1.1-Dichloroethane		-			
1,2-Dichloroethene (total)					
Chloroform					
1,2-Dichloroethane		$\downarrow$			
2-Butanone	<10.	<10.	<10.	<10.	
1.1.1 - Trichloroethane	<5.	<5.	<5.	<5.	
Carbon tetrachioride	<5.	<5.	<5.	<5.	
Vinyi acetate	<10.	<10.	<10.	<10.	
Bromodichloromethane	<5.	<5.	<5.	<5.	
1,2-Dichloropropane					
cis-1,3-Dichloropropene					
Trichloroethene					
Dibromochloromethane					
1,1,2-Trichloroethane					
Benzene					

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200



ABORATORIES, INC.	Revis Date:	on No ion No 5			e Organic lethod 824
LIENT				JOB NO1163	.061.525
ESCRIPTION				a a construction de la construction	
				MATRIX: Water	
ATE COLLECTED 7-24-9	DATE RE		7-24-91	DATE ANALYZED	7-26,27,29-9
ESCRIPTION:	Trib SA RR Bridge Upstream 26" Dup	Field Blank	Field Blank for Sed.	QC Trip Blank	
AMPLE NO.:	M8634	M8635	M8640	M8641	
trans-1,3-Dichloropropene	<5.	<5.	<5.	<5.	
Bramoform	<5.	<5.	<5.	<5.	
4-Methyl-2-pentanone	<10.	<10.	<10.	<10.	
2-Hexanone	<10.	<10.	<10.	<10.	
Tetrachioroethene	<5.	<5.	<5.	<5.	
1,1.2.2-Tetrachloroethane					
Toluene	-				
Chlorobenzene		ľ			
Ethylbenzene	2 · · · ·				
Styrene				••	
Xylene (total)		Ļ			
-					
_			•		
-					
mments:				ology: EPA Target Compo November 1988, 3 ation No.: 10155 ug/1	
					11/16 / 16

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Date: September 3, 1991

٠

		-	
LAE	ORATI	JRIES	, INC.

Section No.		С		
Revision No.		0		
Date:	_10,	/01/91		
Page	6	of	53	

# Volatile Organics Method 8240

JOB NO. 1163.061.525

CLIENT_____

MATRIX: Solid 7-24-91 7-24-91 _ DATE RECEIVED _ 7-26.27.29-91 DATE COLLECTED. DATE ANALYZED _ Trib 5A Crucible Trib 5A Trib 5A Trib 5A **DESCRIPTION:** Upstream Upstream State Fair Midstream Blvd. Duplicate SAMPLE NO .: M8636 M8637 M8638 M8639 Chioromethane <12. <14. <2900. <13. Bromomethane Vinyi chloride Chloroethane Methylene chloride <6. <7. <1400. <6. Acetone 56. 53. <2900. 20. Carbon disulfide <6. <7. <1400. <6. 1,1-Dichloroethene St,1-Dichloroethane 1,2-Dichloroethene (total) Chioroform 1,2-Dichloroethane <12. <14. <2900. 2-8utanone <13. 1.1.1 - Trichloroethane <6. <7. <1400. <6. Carbon tetrachioride <6. <7. <1400. <6. Vinyl acetate <12. <14. <2900. <13. Bromodichloromethane <6. <1400. <7. <6. 1.2-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochioromethane 1,1,2-Trichloroethane 19,000. Benzene

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Page 1 of 2 L Authorized: Date: September_3, 1991

LABORATORIES, INC.	Date: Page		0 /91 of53	-   -	Method 824	
2.IENT		•	JOB NO116	JOB NO		
DESCRIPTION		·				
	MATRIX: Solid			.d		
DATE COLLECTED 7-24-91	DATE RE		7-24-91	DATE ANALYZED	7-26,27,29-9	
DESCRIPTION:	Trib 5A Upstream	Trib SA Upstream Duplicate	Trib SA Crucible Midstream	Trib SA State Fair Blvd.		
SAMPLE NO .:	M8636	M8637	M8638	M8639		
trans-1,3-Dichloropropene	<6_	<7.	<1400.	<6.		
Bromoform	<6.	<7.	<1400.	<6.		
4-Methyl-2-pentanone	<12.	<14.	<2900.	<13.		
2-Hexanone	<12.	<14.	<2900.	<13.		
Tetrachioroethene	<6.	<7°-	<1400.	<6.		
1,1,2.2-Tetrachioroethane			<1400.			
Toluene			8500.			
Chlorobenzene	-		<1400.			
m Ethylbenzene	Pr/					
Styrene						
Xylene (total)	J.	+	6200.			
Other Analysis:						
Percent Total Solids	71.	67.	43.	67.		
. <b>_</b> .	-					
	<u></u>					
· · · · · · · · · · · · · · · · · · ·						
	ł					
mmenta:			Method	ology: EPA Target Con November 1986	pound List By 8240, SW-846 3rd Edition	
			Cartifici		10155	
			Units:	µg/kg	dry weight	
					Page 2 of	
				Human	/ shile - h	

AND THE A

1 - Carring

-9

-	_		
		_	
=			
I AR	ORAT	TRIES	INC

#### Revision No. 0 Date: 10/01/91 Page 8_ of

-

Section No.

С

53

### Volatile Organics Method 8240

DESCRIPTION

CLIENT_

COLTA-

				MATRIX:	Water		
DATE COLLECTED 7-24-91	DATE R		7-25-91	DATE ANAL	DATE ANALYZED 7-27.30-91		
DESCRIPTION:	MW-SC	MW-5B	MW-5A	MW-9A	MW-9B	MW-90	
AMPLE NO .:	M8659	M8660	M8661	M8662	M8663	M8664	
Chloromethane	<10.	<50.	_<10.	<50.	<10.	<10.	
Bromomethane							
Vinyl chloride							
Chloroethane							
Methylene chloride	<5.	<25.	<5.	<25.	<5.	<5.	
Acetone	<10.	470.	<10.	<50.	<10.	<10.	
Carbon disulfide	<5.	<25.	<5.	<25.	<5.	<5.	
1,1-Dichloroethene						İ	
1,1-Dichloroethane		-					
1,2-Dichloroethene (total)	-	•					
Chloroform							
1,2-Dichloroethane	•						
2-Butanone	<10.	57.	<10.	<50.	<10.	<10.	
1.1.1 - Trichloroethane	<5.	<25.	<5.	<25.	<5.	<5.	
Carbon tetrachioride	<5.	<25.	<5.	<25.	<5.	<5.	
Vinyl acetate	<10.	<50.	<10.	<50.	<10.	<10.	
Bromodichloromethane	<5.	<25.	<5.	<25.	<5.	<5.	
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1.2-Trichloroethane							
Benzene				580.			

Page 1 of 2 Authorized:_ Date: September 3, 1991

diam'r a start a start a start a start a start a start a start a start a start a start a start a start a start		and the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division	
		and the owner where the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the party is not the	
		And the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owner whether the owne	
-			
	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	and the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second divisio	Name of Street, or other Designation of the local division of the
		_	

Section N	10.	(	
Revision	No.	0	<u> </u>
Date:	10/	/01/91	
Page	9	of	53

### Volatile Organics Method 8240

CLIENT_____

	MATRIX: Water						
DATE COLLECTED 7-24-91	DATE I		7-25-91	DATE ANAL	YZED7-2	7,30-91	
DESCRIPTION:	MW-SC	MW-5B	MW-5A	MW-9A	MW-9B	MW-9C	
AMPLE NO.:	M8659	M8660	M8661	M8662	M8663	<b>M8</b> 664	
	<5.	<25.	<5.	<25.	<5.	<5.	
Bromoform	<5.	<25.	<5.	<25.	<5.	<5.	
- 4-Methyl-2-pentanone	<10.	<50.	<10.	<50.	<10.	<10.	
2-Hexanone	<10.	<50.	<10.	<50.	<10.	<10.	
Tetrachioroethene	<5.	<25.	<5.	<25.	<5.	<5.	
1,1,2,2-Tetrachloroethane	1						
Toluene							
Chlorobenzene							
Ethylbenzene							
Styrene							
Xylene (total)							
omments:				November ation No.: 10	er Compound List r 1986, 3rd Edition 155		
IC I shoretones toc∵ an O'Brien & Gare ( imit@			Units: Author	Hg	i f./	Page 2 o	

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

September 3, 1991

Date: ____

		t ang the state	
	Contraction of the local division of the loc		
	Contraction of the local division of the loc		
The state of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the second version of the secon		Statement of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local	and the second division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local divisio

Section No. C Revision No. 0 Date: ____10/01/91 Page 10 of 53

### Volatile Organics Method 8240

DESCRIPTION

CLIENT_

	MATRIX: Water						
DATE COLLECTED 7-24-91	DATE R	ECEIVED	7-25-91	DATE ANAL	YZED7-2	9,30-91	
DESCRIPTION:	MW-2A	MW-7A	MW-7B	MW-7C	MW-3A	MW-3B	
SAMPLE NO .:	M8665	M8666	M8667	M8668	M8669	M8670	
Chloromethane	<10.	<10.	<250.	<10.	<10.	<500.	
Bromomethane							
Vinyl chloride							
Chloroethane							
Methylene chloride	<5.	<5.	<120.	<5.	<5.	<250.	
Acetone	<10.	17.	580.	<10.	16.	<\$00.	
Carbon disulfide	<5.	<5.	<120.	<5.	<5.	<250.	
1,1-Dichloroethene							
tt-Dichloroethane							
1,2-Dichloroethene (total)		÷					
Chloroform							
1.2-Dichloroethane							
2-Butanone	<10.	<10.	<250.	<10.	<10.	<500.	
1,1,1 - Trichloroethane	<5.	<5.	<120.	<5.	<5.	<250.	
Carbon tetrachloride	<5.	<5.	<120.	<5.	<5.	<250.	
Vinyl acetate	<10.	<10.	<250.	<10.	<10.	<500.	
Bromodichloromethane	<5.	<5.	<120.	<5.	<5.	<250.	
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzene		160.	3700.	100.	45.	6400.	

ge 1 of 2 ß Authorized:

Date: September 3, 1991

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

-		
		 فتستعيب
	The second second second second second second second second second second second second second second second s	
-		

Section	NO.	(	2	
Revisio	n No.	0		
Date:	107	01/91		
Page _	11	of	53	

### Volatile Organics Method 8240

JOB NO. 1163.061.525

CLIENT_____

_____ JUB NU. _____

		·	·····	MATRIX:	Water	
ATE COLLECTED 7-24-91	91 DATE RECEIVED		7-25-91	DATE ANALYZED 7-29,30-91		
ESCRIPTION:	MW-2A	MW-7A	MW-7B	MW-7C	MW-3A	MW-3B
AMPLE NO .:	M8665	M8666	M8667	M8668	M8669	м8670
trans-1,3-Dichloropropene	<5.	<5.	<120.	<5.	<5.	<250.
Bromoform	<5.	<5.	<120.	<5.	<5.	<250.
4-Methyl-2-pentanone	<10.	<10.	<250.	<10.	<10.	<500.
2-Hexanone	<10.	<10.	<250.	<10.	<10.	<500.
Tetrachioroethene	<5.	<5.	<120.	<5.	<5.	<250.
1,1,2.2 - Tetrachioroethane		<5.	<120.			
Toiuene		6.	240.			
Chiorobenzene		<5.	<120.		75.	560.
Ethylbenzene	-	1 - 1			<5.	<250.
Styrene						
Xylene (total)						
•	¥	•	•	<b>₩</b>	¥	T
•••						
		ľ				
ļ		i	i	l		I
mments:			Metho		et Compound List r 1986, 3rd Editior	
			Certific		155	•
			Units:	ug	/1	

1A Authorized: September 3, 1991 Date: ____

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

-	_		
	<b>Contractions</b>		
_			
LAB	ORATO	RIES.	INC.

# Section No. C Revision No. 0 Date: 10/01/91 Page 12 of 53

### Volatile Organics Method 8240

DESCRIPTION _

CLIENT_

- <u> </u>	MATRIX: Water							
DATE COLLECTED 7-24-91	DATE		7-25-91	DATE ANALYZED	7-29.30-91	<u>8-1-</u> 91		
DESCRIPTION:	MW-3C	Equipment Blank	Blind Dup.	QC Trip Blank				
SAMPLE NO .:	M8671	M8672	M8673	M8674				
Chloromethane	<10.	<10.	<250.	<10.				
Bromomethane								
, Vinyi chloride								
Chloroethane								
- Methylene chloride	√ <5.	<5.	<120.	<5.				
Acetone	<10.	<10.	650.	<10.				
Carbon disulfide	<5.	<5.	<120.	<5.				
1,1-Dichloroethene								
t,1-Dichloroethane		-						
1,2-Dichloroethene (total)								
Chloroform								
1,2-Dichloroethane	Ļ							
2-Butanone	<10.	<10.	<250.	<10.				
1.1.1 - Trichloroetnane	<5.	<5.	<120.	<5.				
Carbon tetrachioride	<5.	<5.	<120.	<5.				
Vinyi acetate	<10.	<10.	<250.	<10.				
Bromodichloromethane	<5.	<5.	<120.	<5.				
1,2-Dichloropropane								
cis-1,3-Dichloropropene								
Trichloroethene								
Dibromochloromethane								
1,1.2-Trichloroethane								
Benzene			3900.					

OBG Laboratones, inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

		بدوريجه ومشتعيناتهم	
_			
			-
-			
-			
the second second second second second second second second second second second second second second second s	and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s		
		بديريه النتينا الم	

Section No	). (	C
<b>Revision N</b>	o. <u>0</u>	
Date:	10/01/91	
Page 1	3 of _	53

### Volatile Organics Method 8240

JOB NO. 1163.061.525

CLIENT____

DESCRIPTION MATRIX: Water DATE ANALYZED 7-29,30-91, 8-1-91 7-24-91 7-25-91 DATE RECEIVED DATE COLLECTED QC Trip Blank MW-3C Equipment Blind Dup **DESCRIPTION:** Blank M8672 M8674 M8671 M8673 SAMPLE NO .: trans-1,3-Dichloropropene <5. <5. <120. <5. Bromotorm <5. <5. <120. <5. 4-Methyl-2-pentanone <250. <10. <10_ <10. 2-Hexanone <10. <10. <250. <10. Tetrachioroethene <120. <5. <5. <5. 1,1,2,2-Tetrachioroethane <120. Toluene 260. Chlorobenzene <120. . . Ehylbenzene ..... Styrene Xyiene (total) Methodology: EPA Target Compound List By 8240, SW-846 Comments: November 1986, 3rd Edition Certification No.: 10155 µg/] Units: Page 2 of 2

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

1991

Sin

September 3

L

Authonzed:

Date:_

			_
LAE	ORAT	ORIES,	INC.

Section	No.	(	0
Revisior	No.	0	
Date:	107	01/91	
Page	_14	of	_53_

### **Volatile Organics** Method 8240

JOB NO. 1163.061.525

CLIENT.

DESCRIPTION

	MATRIX: Water						
DATE COLLECTED 7-25-91	DATE R	ECEIVED	7-26-91	DATE ANALYZED7-31-91, 8-1,2-			
DESCRIPTION:	MW-6B	MW-6A	MW-6C	M₩-4B	MW-4A	MW-4C	
SAMPLE NO .:	M8743	M8744	M8745	M8746	M8747	M8748	
Chloromethane	<1000.	<10.	<50.	<250.	<500.	<100.	
Bromomethane							
Vinyl chloride							
Chloroethane							
Methylene chloride	<500.	<5.	<25.	<120.	<250.	<50.	
Acetone	<1000.	27.	<50.	1800.	<\$00.	1100.	
Carbon disulfide	<500.	<5.	<25 -	<120.	<250.	<50.	
1,1-Dichloroethene							
		-					
1,2-Dichloroethene (total)		-					
Chloroform							
1,2-Dichloroethane							
2-Butanone	<1000.	<10.	<50.	<250.	<500.	<100.	
1,1,1 - Trichloroethane	<500.	<5.	<25.	<120.	<250.	<50.	
Carbon tetrachloride	<500.	<5.	<25.	<120.	<250.	<50.	
Vinyl acetate	<1000.	<10.	<50.	<250.	<500.	<100.	
Bromodichloromethane	<500.	<5.	<25.	<120.	<250.	<50.	
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzene	15,000.	64.	410.		4000.		

.

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Page 1 of 2 llopen Authorized: September 3, 1991 Date:_

		_	
		-	
-			•

Section	No.		C
Revisior	n No.	0	
Date:	107	01/91	
Page _	_15	of	_53

### **Volatile Organics** Method 8240

1163.061.525 JOB NO.

CLIENT_

DESCRIPTION MATRIX: Water 7-26-91 7-25-91 7-31-91, 8-1,2-91 DATE RECEIVED DATE ANALYZED DATE COLLECTED. MW-6B MW-6A MW-6C MW-4B MW-4A MW-4C **DESCRIPTION:** M8743 M8744 M8745 M8746 M8747 M8748 SAMPLE NO .: trans-1,3-Dichloropropene <500. <5. <25. <120. <250. <50. Bromotorm <500. <5. <25. <120. <250. <50. 4-Methyl-2-pentanone <1000. <250. <10. <50. <500. <100. 2-Hexanone <10. <50. <250. <500. <100. <1000. Tetrachioroethene <25. <120. <50. <500. <5. <250. 1,1,2,2-Tetrachioroethane <\$00. <5. <250. Toluene 1100. 87. 450. Chloropenzene <250. <500. <5. Ethylbenzene - 14-Styrene **(5**. Xylene (total) 330 -EPA Target Compound List By 8240, SW-846 Comments: Methodology: November 1986, 3rd Edition 10155

**Certification No.:** 

 $\mu g/1$ Units: Page 2 of 2 Authorized: 1991 September ٦ **Date:** 

		-	
distant in the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local distance of the local d			-
-		-	_
			_
			_
			_
the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon			-

# Section No. C Revision No. 0 Date: 10/01/91 Page 16 of

### Volatile Organics Method 8240

JOB NO. 1163.061.525

CLIENT_

DESCRIPTION _____

MATRIX: Water

DATE COLLECTED 7-25-91	DATE I		7-26-91	DATE ANAL	YZED	91. 8-1.2-91
DESCRIPTION:	Equipment Blank	MW-8B	MW-8A	MW-8C	Blind Dup.	QC Trip Blank
SAMPLE NO .:	M8749	M8750	M8751	M8752	M8753	M8754
Chioromethane	<10.	<4000.	<40.	<50.	<500.	<10.
Bromomethane						
Vinyl chloride						
Chloroethane						
Methylene chloride	<5.	<2000.	<20.	<25.	<250.	<5.
Acetone	<10.	<4000.	<40.	<50.	<500.	<10.
Carbon disulfide	<5.	<2000.	<20.	<25.	<250.	<5.
1,1-Dichloroethene						
t,t-Dichloroethane						
1,2-Dichloroethene (total)		-				
Chloroform						
1,2-Dichloroethane						
2-Butanone	<10.	<4000.	<40.	<50.	<500.	<10.
1,1,1 - Trichloroethane	<5.	<2000.	<20.	<25.	<250.	<5.
Carbon tetrachloride	<5.	<2000.	<20.	<25.	<250.	<5.
Vinyl acetate	<10.	<4000.	<40.	<50.	<500.	<10.
Bromodichloromethane	<5.	<2000.	<20.	<25.	<250.	<5.
1,2-Dichloropropane						
cis-1,3-Dichloropropene						
Trichloroethene						
Dibromochloromethane						
1,1,2-Trichloroethane						
Benzene		46,000.	440.	640.	4500.	

tor 1 of ? la . Date: _____September 3____1991 __

LAF	ORIES.	INC
	distant and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s	the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s

Section	No.		
Revisio	n No.	0	
Date:	107	01/91	
Page	17	of	53

### Volatile Organics Method 8240

JOB NO	 116	3.0	61.	525

DESCRIPTION _

CLIENT_

ATE COLLECTED 7-25-91	DATE R		7-26-91	DATE ANAL			
ESCRIPTION:	Equipment Blank	MW-8B	M₩-8A	M₩-8C	Blind Dup.	QC Trip Blank	
MPLE NO .:	M8749	M8750	M8751	M8752	M8753	M8754	
trans-1,3-Dichloropropene	<5.	<2000.	<20.	<25.	<250.	<5.	
Bromotorm	<5.	<2000.	<20.	<25.	<250.	<5.	
4-Methyl-2-pentanone	<10.	<4000.	<40.	<50.	<500.	<10.	
2-Hexanone	<10.	<4000.	<40.	<50.	<500.	<10.	
Tetrachioroethene	<5.	<2000.	<20.	<25.	<250.	<5.	
1,1,2,2-Tetrachloroethane		<2000.		<25.	<250.		
Toluene		3800.		80.	490.		
Chiorobenzene		<2000.		<25.	<250.		
Ehvibenzene	in a second	-					
Styrene							
Xylene (total)		L .		Ļ			
•	-						

Comments:

	A Target Compound List By 8240, SW-846 rember 1986, 3rd Edition
Cartification No.:	10155
Units:	page 2 of 2

Date: ____September 3, 1991 ____

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Section No. Revision No. Date:10/ Page18		tile Organics Method 8270
		JOB NO	53.061.525
	•		
MW-8B		MATRIX: Wa	
SAMPLE NO. M8750		7-25-91 DATE RECEIVE	
	DATE EXTRACTED	7-29-91 DATE ANALYZ	ED8-23-91
Phenol	11,000.	4-Chloro-3-methylphenol	<1000.
Bis (2-chloroethyl) ether	<1000.	2-Methyinaphthalene	
2-Chiorophenol		Hexachlorocyclopentadiene	
1,3-Dichlorobenzene		2,4,6-Trichlorophenol	
1,4-Dichlorobenzene		2,4,5-Trichlorophenol	<5000.
Benzyl alcohol		2-Chloronaphthalene	<1000.
1,2-Dichlorobenzene		2-Nitroaniline	<5000.
2-Methylphenol		Dimethylphthalate	<1000.
Bis (2-chloroisopropyl) ether		Acenaphthylene	
4-Methylphenol	1000.	2.6-Dinitrotoluene	
N-Nitroso-di-n-propylamine	<1000.	3-Nitroaniline	<5000.
- Hexachioroethane		Acenaphthene	<1000.
Nitrobenzene		2,4-Dinitrophenol	<5000.
Isophorone		4-Nitrophenol	<5000.
2-Nitrophenol		Dibenzofuran	<1000.
2,4-Dimethylphenol		2.4-Dinitrotoluene	
Benzoic acid	< <b>5000.</b> (3000.)	Diethylphthalate	
Bis (2-chloroethoxy) methane	<1000.	4-Chlorophenyi-phenyiether	
2,4-Dichlorophenol		Fluorene	
1,2,4-Trichlorobenzene		4-Nitroaniline	<5000.
Naphthalene		4,6-Dinitro-2-methylphenol	<5000.
4-Chloroaniline		N-Nitrosodiphenylamine	<1000.
Hexachlorobutadiene	↓	4-Bromophenyl-phenylether	<1000.
	•	1	

Page 1 of 2 Authorized: Thoras 40

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Section No Revision No. Date:10 Page19_	^C <b>Semivolat</b> //01/91 of53	ile Organics Method 8270
CLIENT		JOB NO116	3.061.525
MW-8B		MATRIX: Wat	er
SAMPLE NO. M8750	DATE COLLECTED	7-25-91 DATE RECEIVED	7-26-91
	DATE EXTRACTED	7-29-91 DATE ANALYZE	8-23-91
Hexachiorobenzene	⁻ <1000.	Benzo (a) anthracene	<1000.
Pentachiorophenol	<5000.	Chrysene	
Phenanthrene	<1000.	Bis (2-ethylhexyl) phthalate	
Anthracene		Di-n-octyiphthalate	
Di-n-butyiphthalate		Senzo (b) fluoranthene	
Fluoranthene		Benzo (k) fluoranthene	
Pyrene		Benzo (a) pyrene	
Butylbenzylphthalate	J.	Indeno (1,2,3-cd) pyrene	
33'-Dichlorobenzidine	<2000	Dibenz (a,h) anthracene	
		Benzo (g.h.i) perylene	Ļ
Comments:		Methodology: EPA Target Compound List By November 1986, 3rd Edition	9 8270, SW-846
Values in parenthes		Certification No.: 10155	
detected but below limits.	the quantitation	Units: µg/1	

Page 2 of 2 ome Authorized; September 3, 1991 Date: _

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

limits.

_			
Ξ			
LAE	ORATO	PRIES,	INC.

Section Revision		rgar	Ìochlo	orine	Pesticide / P	СВ
Date:	107	/01/91			Method 80	ารก
Page _						500

CLIENT	. (		JOB NO1163.0	61.525	
DESCRIPTION	·				
MW-2A	A		MATRIX: Water		
SAMPLE NO	DATE COLLECT	ED 7-24-91	DATE RECEIVED	7-25-91	
	DATE EXTRACT	ED 7-30-91	DATE ANALYZED	8-17-91	

e-BHC	<0.05	4.4'-DDT	<0.10
y-BHC		Endosulfan sulfate	
β-BHC		Endrin aldehyde	Ļ
Heptachior		Methoxychior	<0.50
&-BHC		Endrin ketone	<0.10
Aldrin		Chiordane	<0.50
Heptachlor epoxide		Toxaphene	<1.0
Endosulfan I	$\downarrow$	PC8-1221	<0.50
4,4'-DDE	<0.10	PC8-1232	
Dieldrin		PCB-1016/1242	
Endrin	-	PCB-1248	3.2
4,4'-0DD		PCB-1254	<1.0
Endosultan II	Ļ	PCB-1250	<1.0

Comments:

Methodology: USE	PA.SW-846, November 1986, 3rd Edition
Certification No.:	10155
Units:	µg/1

Ma Authorized: Date: September 3, <u>í991</u>

OBG Laboratones, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Section Revisior Date: Page		91			ratory leport
CLIENT				JOB NO	1163_061_52	5
DESCRIPTION				MATRIX: 1	later	
	DATE COLLE	CTED7-2	24-91	DATE RECEN	VED7-24	-91
	Sample #	TOTAL MAGNESIUM	TOTAL SODIUM	TOTAL CALCIUM	TOTAL POTASSIUM	TOTAL IRON
Trib 5A Surface	M8628	14.	150.	100.	<5.	0.76
Trib 5A Mid Depth 8"	M8629	14.	150.	100.	5.	0.82
Trib 5A Bottom 16" Trib 5A State Fair Blvd. 8"	M8630 M8631	14.	150. 150.	100. 89.	6. <5.	0.86 0.55
Trib 5A Crucible Midstream	M8631 M8632	14.	130.	84.	<s.< td=""><td>0.33</td></s.<>	0.33
Trib 5A RR Bridge Upstream 26"	M8633	10.	380.	100.	76.	0.34
Trib 5A RR Bridge Upstream 26"D	-	4	370.	100.	76.	0.37
Field Blank	M8635	<1.	<1.	<1.	<5.	<0.05
Comments:			Certifica Units:	ntion No.: 10; mg		,

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

<u>August 28, 1991</u>

them

Authonzed:

Date: ____

ABORATORIES, INC.	Section Revision Date: Page		Laboratory Repor				
CLIENT	***			JOB NO	1163.061.5	25	
		······································		MATRIX: W	ater		
	DATE COLLECTED7-25-91 DATE RECEIVED7-						
	Sample	# TOTAL MAGNESIUM	TOTAL SODIUM	TOTAL CALCIUM	TOTAL POTASSIUM	TOTAL IRON	
MW-2A	M8730	3.	310.	30.	<5.	0.09	
MW-5A	M8731	8.	250.	300.	9.	1.4	
MW-5B	M8732	<100.*	11,000.	19,000.	100.	210.	
MW-5C	M8733	120.	4600.	3200.	59.	25.	
MW-9A	<b>M873</b> 4	160.	98.	350.	<5.	6.6	
<b>MW-9B</b>	M8735	54.	43.	170.	<5.	0.73	
MW-9C	M8736	110.	2000.	650.	12.	3.9	
<b>MW-</b> 3A	M8737	K10.*	55.	960.	70.	<0.5*	
MW-3B	M8738	21.	4000.	230.	120.	1.2	
MW-3C	M8739	81.	2400.	1900.	66.	11.	
MW-7A	M8740	<1.	80.	540.	<5.	<0.05	
MW-7B	M8741	K10.*	930.	1400.	43.	0.6	
MW-7C	_ <b>M87</b> 42	120.	9900.	12,000.	180.	36.	

Comments: * Elevated detection limits due to matrix complexity and/or interferences.

Certification No.: 10155 Units: mg/1 Authorized: _____OMU______

Date: _____August_28, 1991 __

OBG Laboratories, inc., an O'Bren & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Section Revision Date: Page	No10/01/	C 91 f53	•		ratory Report
CLIENT			. <u></u>	JOB NO	1163.061.5	25
				MATRIX:	Water	
	DATE COLLI	ECTED7	-25-91	DATE RECEI	VED7-26-	-91
	Sample	# TOTAL MERCURY	TOTAL SODIUM	TOTAL CALCIUM	TOTAL POTASSIUM	TOTAL IRON
MW-6A	M8793	<1.	80.	550.	8.	0.10
MW-6B	M8794	100.	2800.	2800.	130.	56.
MW-6C	M8795	130.	11,000.	13,000.	180.	82.
MW-8A	M8796	20.	160.	550.	21.	<0.05
MW-8C	<b>M87</b> 97	110.	3600.	3900.	60.	1.3
MW-8B	M8798	<100.*	9600.	14,000.	190.	140.
MW-4B	M8799	k100.*	13,000.	19,000.	580.	150.
MW-4C	M8800	K100.*	13,000.	21,000.	320.	240.
<b>M₩-4A</b>	M8801	K10.*	52.	890.	72.	<0.5*
, Mari						
·						
Comments: *Elevated detection complexity and/or			( Certifica Unita:	 ntion No.: 10 . mg	 155 /1 <i>,1,</i> 7	

Authonzed: August 28, 1991

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse. NY 13221 / (315) 437-0200

.

				_	
			-		
	the support of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the local division of the loc	-	-	_	
			-	_	
			-		
	-				
				_	
LAF	<u>ne/</u>		-11-3	5 8	NC

CLIENT_

Section	No	С				
Revisio		0				
Date:	107	01/91				
Page	24	of	53			



			MATRIX:	Water			
DATE COLLE(	DATE COLLECTED 7-24-			DATE RECEIVED7-24-91			
	Sample #	SULFATE	CHLORIDE	CARBONATE	BICARBONA		
Trib 5A Surface	M8628	72.	230.	<1.0	140.		
Trib 5A Mid Depth 8"	M8629	75.	240.	<1.0	140.		
Trib 5A Bottom 16"	M8630	71.	230.	<1.0	140.		
Trib 5A State Fair Blvd 8"	M8631	75.	220.	<1.0	130.		
Trib 5A Crucible Midstream	M8632	88.	230.	<1.0	130.		
Trib 5A RR Bridge Upstream 26"	M8633	170.	510.	<1.0	170.		
Trib SA RR Bridge Upstream 26" Dup	M8634	160.	400-	<1.0	170.		
Field Blank	M8635	<1.0	<1.0	<1.0	1.9		
•							
-							
1	1			· · ·			
nments:			tion No.: 101				
		Units:	mg/				
		Authori	- it ild.	(1. G.a.	de-		
3 Laboratories, Inc., an O'Brien & Gere Limited Company	(315) 437-0200	Autoon		cember 6, 1			

LENT				JOB NO	1163.061.5	25
ESCRIPTION		<u></u>		MATRIX:	Water	<u> </u>
	DATE COLL	ECTED 7-2	25-91	DATE RECEI		-91
		Sample #	SULFATE	CHLORIDE	CARBONATE	BICARBONA
MW-2A		M8730	120.	280.	88.	92.
MW-5A		M8731	280.	330.	<1.	230.
MW-5B		M8732	1300.	11,000.	্ব.	220.
MW-SC		M8733	200.	95,000.	<1.	57.
MW-9A		M8734	1300.	260.	<1.	390.
MW-98		M8735	360.	120.	<1.	300.
MW-9C	-	M8736	1500.	·3200.	<1.	480 -
MW-3A		M8737	37.	570.	<1.	<1.
MW-3B		M8738	980.	9500.	<1.	1100.
MW-3C		M8739	740.	8000.	<1.	240.
M <b>W-7</b> A		M8740	96.	160.	<1.	<1.
MW-7B		M8741	1400.	5400.	360.	<1.
MW-7C	-	M8742	810.	38,000.	<1.	36.

Comments:

Certification No.: 10155 Units: mg/l Authorized: Grifficher Contraction Date: September 6, 1991

LABORATORIES, INC.	Section Revision Date: Page		91	- -	Labo F	ratory Report
CLIENT				JOB NO	1163.061.5	25
DESCRIPTION				·····		
				MATRIX:	Water	
· · · ·	DATE COLLE	CTED7-2	5-91	DATE RECEI	VED7-26	-91
		1	1	1	1	1
		Sample #	SULFATE	CHLORIDE	CARBONATE	BICARBONA
MW-6A		M8793	70.	140.	ব.	<₁.
MW-6B		M8794	<1.	11,000.	<1.	93.
MW-6C		M8795	790.	37,000.	<1.	93.
MW-8A		M8796	1300.	260.	52.	<1.
MW-8C		M8797	710-	13,000.	<1.	32.
MW-8B		M8798	22.	41,000.	<1.	140.
MW-4B	•	M8799	1.	64,000.	<1.	290.
MW-4C		M8800	340.	66,000.	<1.	160.
<b>MW-</b> 4A		M8801	5.	77.	<1.	<1.
			ł			
	1					
omments:			Certific	ation No.: 1015		
			Units:	mg/l	•	
		a		- . /	1.	
			Author	ized:	en Selle	1 rd
BG Laboratories. Inc., an O'Brien & Gere ( 000 Brittonfield Parkway / Suite 300, Box 4		/ (315) 437-0200	1	Date: Ser	otember 6,	1991

LABORATORIES, INC.			C  1/91 of53	Volatile Organi Method 82		
CLIENT				JOB NO1163_0	61_525	
DESCRIPTION				······································		
			-	MATRIX: Water		
DATE COLLECTED	DATE RE	CEIVED	<u> </u>	DATE ANALYZED	7-26-91	
DESCRIPTION:	REE	ERENCE SAL			1	
· · · · · · · · · · · · · · · · · · ·	True Value	Value Found	Recovery			
SAMPLE NO .:						
		<b>7</b> 0				
Chloromethane	20.	30.	150.			
Bromomethane		24.	120.			
Vinyi chloride		27.	135.			
Chloroethane		25.	125.			
- Methylene chloride		26.	130-			
Acetone		10.	50.			
Carbon disulfide		20.	100.			
1,1-Dichloroethene		21.	105.			
,t,1-Dichloroethane		- 24-	120.			
1,2-Dichloroethene (total)	-	20.	100.			
Chloroform		22.	110.			
1,2-Dichloroethane		20.	100.			
2-Butanone		10.	50.			
1,1,1-Trichloroethane		22.	110.			
Carbon tetrachloride		21.	105.			
Vinyi acetate		9.	45.			
Bromodichloromethane		19.	95.			
1,2-Dichloropropane		21.	105.			
cis-1.3-Dichic poropene	30.	25.	83.			
Trichloroethene	20.	21.	105.			
Dibromochloromethane		18.	90.			
1.1.2-Trichloroethane		18.	90.			
Benzene		21.	105.			

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Page 1 of 2 Diner د. a za Authorized: Date: August 29. 1991

LABORATORIES, INC.			C 0 1/91 of53		e Organics lethod 8240 quality CONTROL
CLIENT	<u></u>			JOB NO1163	.061.525
DESCRIPTION					
Quality Contr			-	MATRIX: Water	
DATE COLLECTED	DATE RI	ECEIVED		DATE ANALYZED	7-26-91
DESCRIPTION:	RE	FERENCE SA	MPLE		
SAMPLE NO .:	True Value	Value Found	Recovery		
trans-1,3-Dichloropropene	10.	10.	100.		
Bromoform	20.	17.	85.		
4-Methyl-2-pentanone		17.	85.		
2-Hexanone		12.	60.		
Tetrachloroethene		22.	110.		
1,1,2,2-Tetrachloroethane		17.	85.		
Toluene		20-	100.		
Chlorobenzene		19.	95.		
* Ethylbenzene		- 20-	100.		
Styrene .		22.	110.		
Xylene (total)	40_	41.	102.		
·· ·					
	-				
omments: RS Stock Solution	# V172		Method	Blogy: EPA Target Compo November 1988, 3	bund List By 8240. SW-846 rd Edition
			Certifics	ntion No.: 10155	
			Units:	µg/1	
					Page 2 of 2
			Authori	zed: Thomas !!	leansie
BG Laboratories, Inc., an O'Brien & Gere Limite 200 Brittonfield Parkway / Suite 300, Box 4942 /		221 / (315) 437-02(			30, 1991

LABORATORIES, INC.	Revis	on No ion No 10/0 29	01/91	- Volatile Organ - Method 82		
CLIENT]				_ JOB NO163	.061.525	
DESCRIPTION	ı Sv					
Quality Cont	rol Summary:	Reference	Sample	MATRIX: Soli	d	
	DATE RE			DATE ANALYZED	7-26-91	
DESCRIPTION:	REI	ERENCE SAL	MPLE	1	*****	
••••	True	Value				
SAMPLE NO .:	Value	Found	3		-	
Chioromethane	20.	45.	225.			
Bromomethane		28.	140.			
Vinyl chloride		39.	195.			
Chloroethane		31.	155.			
Methylene chloride		21.	105.			
Acetone		44.	220.			
Carbon disulfide		17.	85.			
1,1-Dichloroethene		18.	90.			
1,1-Dichloroethane		- 18.	90_			
1,2-Dichloroethene (total)		16.	80.			
- Chloroform		17.	85.			
1,2-Dichloroethane		18.	90.			
2-Butanone		28.	140.			
1,1,1 - Trichloroethane		18.	90.			
Carbon tetrachloride		17.	85.			
Vinyl acetate		12.	60.			
Bromodichloromethane		17.	85.			
1,2-Dichloropropane		18.	90.			
cis-1,3-Dichloropropene	26.	24.	92.			
Trichloroethene	20.	18.	90.			
Dibromochloromethane		18.	90.			
1.1,2-Trichloroethane		18.	90.			
Benzene		17.	85.			

Page 1 of 2 Authorized: Tilemen 1 £ UU, Date: August 30, 1991

OBG Laboratories, inc., an O'Brien & Gere Limited Company 5000 Brittontield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Revisi Date:	on No. on No. 10/0 30	C 0 1/91 of53	Volatile Organica Method 824			
CLIENT				_ JOB NO1163	.061.525		
DESCRIPTION							
Quality Contr	ol Summary:	Reference	e Sample	MATIRX: Soli	d		
DATE COLLECTED	DATE RE	ECEIVED		DATE ANALYZED _	7-26-91		
DESCRIPTION:	REF	ERENCE SAM	RLE	1			
SAMPLE NO .:	True Value	Value Found	Recovery %				
trans-1,3-Dichloropropene	14.	9.	64.				
Bremotorm	20.	18.	90.				
4-Methyl-2-pentanone		21.	105.				
2-Hexanone		23.	115.				
Tetrachiorcethene		18.	90.				
1,1,2,2-Tetrachioroethane		18.	90.				
Toluene		18.	90-	-			
Chlorobenzene		19.	95.				
Ethylbenzene		18_	90-				
Styrene	-	20.	100.	· · · ·			
Xylene (total)	•	18.	90.				
	•						
Comments: RS Stock Solution	#V172		Methodo		ound List By 8240, SW-846		
			Certificat	November 1986. 3 No.: 10155	Ira Edition		
			Units:		dry weight		
					. Page 2 of 2		
			Authoriz	ed: Inmal	Meden a		

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

•

- -----

August 30, 1991

Date: ___

.

LABORATORIES, INC.	Revisi Date:	on No. on No. 10/0 31	1/91	•	e Organics Aethod 8240 QUALITY CONTROL
CLIENT				JOB NO1163	.061.525
DESCRIPTION					
Quality Con	trol Summary:	Reference	Sample	MATRIX: Wate	T
DATE COLLECTED	DATE R			DATE ANALYZED	7-30-91
DESCRIPTION:	RE	ERENCE SA	MPLE		
SAMPLE NO .:	True Value	Value Found	Recovery		
Chloromethane	20.	32.	160.		
Bromomethane		24.	120.		
Vinyt chloride		28.	140.		
Chioroethane		26.	130.		
Methylene chloride		26.	130.		
Acetone		13.	65.		
Carbon disuifide		22.	110.		
1,1-Dichloroethene		22.	110.		
1,1-Dichloroethane		- 26 -	130.		
1,2-Dichloroethene (total)		22.	110.		
Chloroform		23.	115.	-	
1,2-Dichloroethane		21.	105.		
2-Butanone		6.	30.		
1,1,1 - Trichloroethane		22.	110.		
Carbon tetrachloride		22.	110.		
Vinyl acetate		9.	45.		
Bromodichloromethane		19.	95.		
1,2-Dichloropropane		22.	110.		
cis-1,3-Dichloropropene	30.	24.	80.		
Trichloroethene	20.	20.	100.		
Dibromochloromethane		17.	85.		
1,1;2-Trichloroethane		17.	85.		
Benzene		21.	105.		

Page 1 of 2 Authorized: The Ind Date: August 30, 1991

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittontield Parxway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Revisi Date:	on No. on No. 10/0 32	C 0 1/91 of53	•	e Organics lethod 8240 quality CONTROL
CLIENT	1			_ JOB NO1163	.061.525
DESCRIPTION					
Ouality Cont	rol Summary:	Referenc	<u>se Sample</u>	MATRIX: Water	
	DATE R			DATE ANALYZED	7-30-91
DESCRIPTION:	RE	FERENCE SA	MPLE		
SAMPLE NO .:	True Value	Value Found	Recovery %		
trans-1,3-Dichloropropene	10.	9.	90.		
Bromotorm	20.	16.	80.		
4-Methyl-2-pentanone		18.	90.		
2-Hexanone		12.	60.		·
Tetrachloroethene		22.	110.		
1,1,2,2-Tetrachloroethane		17.	85.		
Toluene		20_	100.		
Chiorobenzene		19.	95.		
Ethylbenzene		. 20.	100.		
Styrene		21.	105.		
Xyiene (total)	40.	41.	102.		
• <b></b>					
	1		1	, I	
Comments: RS Stock Solution	n #V172		Methodo	logy: EPA Target Compo November 1988, 3n	
			Certificat	tion No.: 10155	
			Units:	µg/1	<b>.</b>
				1	
			Authoriz	and Thamark	lileton Si
OBG Laboratories, Inc., an O'Brien & Gere Lim 5000 Brittonfield Parkway / Suite 300, Box 494		21 / (315) 437-020		/	30, 1991

.

· · 2

- 15

~*****

LABORATORIES, INC.	Revisi	on No. ion No. 10/01 33	1/91	Volatile Organics Method 8240 QUALITY CONTROL			
CLIÉNT				JOB NO	1163.061.5	25	
DESCRIPTION							
Quality Cont	rol Summary:	Reagent Bl	anks	MATRIX:	Water		
DATE COLLECTED	DATE RI	ECEIVED	*	DATE ANAL	YZED See	Below	
	WBI K072601	VBI 1072701	VBI 1072001	URI 2072002	VBLK073002	UPT KOZZIOI	
DESCRIPTION: Date	BERG/2001	V BLKU/ 2/01		V 5LK07 2902		BLAU/SIUI	
SAMPLE NO.: Analyzed	7-26-91	7-27-91	7-29-91	7-29-91	7-30-91	7-31-91	
Chloromethane	<10.	<10.	<10.	<10.	<10.	<10.	
Bromomethane							
Vinyi chloride							
Chloroethane							
Methylene chloride	<5.	<5.	<5.	<5.	<5.	<5.	
Acetone	<10.	<10.	<10.	<10.	<10.	<10.	
Carbon disulfide	<5.	<5.	<5.	<5.	<5.	<5.	
1,1-Dichloroethene							
1,1-Dichloroethane		•					
1,2-Dichloroethene (total)							
Chloroform							
1,2-Dichloroethane			-	$\downarrow$	J	$\downarrow$	
2-Butanone	<10.	<10.	<10.	<10.	<10.	<10.	
1.1.1 - Trichloroethane	<5.	<5.	<5.	<5.	<5.	<5.	
Carbon tetrachloride	<5.	<5.	<5.	<5.	<5.	<5.	
Vinyl acetate	<10.	<10.	<10.	<10.	<10.	<10.	
Bromodichloromethane	<5.	<5.	<5.	<5.	<5.	<5.	
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzene						$\downarrow$	

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

LABORATORIES, INC.	Section NoC Volatile Orga Revision No0 Date:10/01/91 Page34 of53 QUALITY C					
CLIENT			<u>-</u>	JOB NO	1163.061.5	25
DESCRIPTION						
	trol Summary:			MATRIX: V		Polou
	DATE RE	CEIVED		DATE ANALY	ZED	DEIOW
DESCRIPTION:	VBLK072601	VBLK072701	VBLK072901	VBLK072902	VBLK07300	2 VBLK073101
Date SAMPLE NO.: Analyzed	7-26-91	7-27-91	7-29-91	7-29-91	7-30-91	7-31-91
trans-1,3-Dichloropropene	<5.	<5.	<5.	<5.	<5.	<5.
Bromoform	<5.	<5.	<5.	<5.	<5.	<5.
4-Methyl-2-pentanone	<10.	<10.	<10.	<10.	<10.	<10.
2-Hexanone	<10.	<10.	<10.	<10.	<10.	<10.
Tetrachioroethene	<5.	<5.	<5.	<5.	<5.	<5.
1,1,2,2-Tetrachioroethane						
Toluene						
Chiorobenzene						
- Ethylbenzene						
Styrene						
Xyiene (totai)			↓		Ļ	Ţ
	I	1	1	Ì	1	
Comments:					nt Compound List 6 r 1986, 3rd Edition 55	hy 8240, SW-848
			Units:	μg/	ļ-	
						Page 2 of 2
	instant Comment		Author	ized: Them	all	margle_
BG Laboratories, Inc., an O'Brien & Gere L 000 Brittonfield Parkway / Suite 300, Box 4		21 / (315) 437-020	<b>0</b> (	Date: Sep	tember 3,	1991

Ann.

LABORATORIES, INC.	Revisio Date:	n NoC on No 10/01/91 35 of53	Volatile Organics Method 8240 QUALITY CONTROL				
CLIENT			JOB NO1163.	061.525			
		NY					
			MATRIX: Solid				
DATE COLLECTED	DATE R		DATE ANALYZED	See Below			
DESCRIPTION:	VBLK072601	VBLK0727Ext.					
Date SAMPLE NO.: Analyzed	7-26-91	7-27-91					
Chloromethane	<10.	<1200.					
Bromomethane							
Vinyl chloride							
Chioroethane							
Methylene chloride	<5.	<620.					
Acetone	<10.	<1200.	- 1 km - 1	·			
Carbon disulfide	<5.	<620.					
1,1-Dichloroethene							
- 1,1-Dichloroethane		•					
1,2-Dichloroethene (total)							
Chloroform							
1,2-Dichloroethane		<b>J</b>					
2-Butanone	<10.	<1200.					
1,1,1-Trichloroethane	<5.	<620.					
Carbon tetrachioride	<5.	<620.					
Vinyl acetate	<10.	<1200.					
Bromodichloromethane	<5.	<620.					
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzane							

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonitield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Page 1 of 2 Inin Authorized: <u>September 3, 1991</u> Date: _

LABORATORIES, INC.	Revisi Date:	n No. on No. 0 10/01/9 360f		_ Vc		ethod 82 QUALITY CON
CLIENT	<u> </u>			JOB NO.	1163.	.061.525
DESCRIPTION			_			
	trol Summary:				: Solid	Coo Polou
DATE COLLECTED	DATE R			DATE AN	IALYZED	-See Delow
DESCRIPTION:	VBLK072601	VBLK0727Ext.				
Date SAMPLE NO.: Analyzed	7-26-91	7-27-91				
trans-1,3-Dichloropropene	<5.	<620.				
Bromoform	<5.	<620.				
4-Methyl-2-pentanone	<10.	<1200.				
2-Hexanone	<10.	<1200.				
Tetrachioroethene	<5.	<620.				
1,1,2,2-Tetrachloroethane						
Toluene						
Chlorobenzene						
					•	
Styrene Xylene (total)						
	+	↓				
					1	
			-			
_						
Comments:			Method	Nove	mber 1986, 3rd	und List By 8240, SW- 1 Edition
			Certific		10155	
			Units:		µg/kg di	ry weight
				/	i /.	
			Authori	zed: JU	wasfil	Allfond

Sec. Same

_~~~~

LABORATORIES, INC.	Revis Date:	on No. ion No. 0 10/01/91 37of	Volatile Organics Method 8240 QUALITY CONTROL				
CLIENT				_ JOB NO1163	. 061 525		
DESCRIPTION		Reagent Blanks		MATRIX . Watar	······································		
DATE COLLECTED	DATE RE			DATE ANALTZED _	Jee Below		
DESCRIPTION:	VBLK080101	VBLK080201					
Date							
SAMPLE NO.: Analyzed	8-1-91	8-2-91					
·							
Chloromethane	<10.	<10.					
Bromomethane							
Vinyl chloride							
Chloroethane		•					
Methylene chloride	<5.	<5.					
Acetone	<10.	<10.					
Carbon disulfide	<5.	<5.					
1,1-Dichloroethene							
Tt-Dichloroethane							
1,2-Dichloroethene (total)	-						
Chloroform							
1,2-Dichloroethane							
2-Butanone	<10.	<10.					
1,1,1 - Trichloroethane	<5.	<5.					
Carbon tetrachloride	<5.	<5.					
Vinyl acetate	<10.	<10.					
Bromodichloromethane	<5.	<5.					
1,2-Dichloropropane							
cis-1,3-Dichloropropene							
Trichloroethene							
Dibromochloromethane							
1,1,2-Trichloroethane							
Benzene							

OBG Laboratories. Inc., an O'Brien & Gere Limited Company 5000 Brittonhield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Page 1 of 2 tour Authorized: -

Date: September 3, 1991

DESCRIPTION	53	Volatile Organics Method 8240 QUALITY CONTROL			
Ouality Control Summary: Reagent Blanks         DATE COLLECTED	J(	08 NO. <u>1163</u>	.061.525		
DATE COLLECTED DATE RECEIVED DESCRIPTION: Date SAMPLE NO.: Analyzed 8-1-91 8-2-91 trans-1.3-Dichloropropene (S. (S. (S. (S. (S. (S. (S. (S. (S. (S.		TDIY. Water	· · · · · · · · · · · · · · · · · · ·		
Date     Sample NO.:     Analyzed     8-1-91     8-2-91       trans-1.3-Dichloropropene     <5.     <5.       Bromoform     <5.     <5.       4-Methyl-2-pentanone     <10.     <10.       2-Hexanone     <10.     <10.       2-Hexanone     <5.     <5.       1.1.2.2-Tetrachloroethane     <5.     <5.       Totuene     <5.     <5.       Chlorobenzene     <5.     <5.       Styrene         Xytene (total)					
SAMPLE NO.:     Analyzed     8-1-91     8-2-91       trans-1,3-Dichioropropene     <5.     <5.       Bromotorm     <5.     <5.       4-Methyl-2-pentanone     <10.     <10.       2-Hexanone     <10.     <10.       2-Hexanone     <5.     <5.       1,1,2,2-Tetrachioroethane     <5.     <5.       Totuene     <5.     <5.       Chiorobenzene         Styrene     Xyiene (total)					
Bromoform (S. (S. 4-Methyl-2-pentanone (10. (10. 2-Hexanone (10. (10. Tetrachioroethene (S. (S. 1.1.2.2-Tetrachioroethane Toluene Chiorobenzene Ethylbenzene Styrene Xylene (total)					
4-Methyl-2-pentanone       <10.					
2-Hexanone     <10.					
Tetrachioroethene  I.1.2.2-Tetrachioroethane  Totuene  Chlorobenzene  Ethylbenzene  Styrene Xylene (total)					
1.1.2.2-Tetrachloroethane         Toluene         Chlorobenzene         Ethylbenzene         Styrene         Xylene (totzi)         omments:					
Toluene Chlorobenzene Ethylbenzene Styrene Xylene (totzi) Cammenta:					
Chlorobenzene Ethylbenzene Styrene Xylene (totzi)					
Ethylbenzene Styrene Xylene (totzi)			1944. 1944		
Styrene Xylene (total)					
Xylene (total)			•		
Saments:					
Ca					
	Methodology	EPA Target Compo November 1985, 3	ound List By 8240, SW-846 Ind Edition		
Ur	Cartification	No.: 10155			
	Units:	μ <b>g</b> /1			
			? - Page 2 of 2		
	Authorized:	Homel	allerand		
AL BG Laboratories, Inc., an O'Brien & Gere Limited Company 00 Brittontield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200	Date:	Santania	er <u>3, 1991</u>		



,

320197

## Lau Jratory Report

CLIENT			JOB NO. 1163.	061.525						
DESCRIPTION	- Quali	ty Control	Summary		-				•	
Volatile Organics:	Matrix Spike and	Matrix Sp	ike Duplicate		-					
Date Analyzed 7-26-91 DAT	TE COLLECTED	7-24-91	DATE RECEIVED	7-24-91	-			1		
Date Analyzed 7-26-91 1,1-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE		7-24-91 LE INFORM MATRIX Water			X SPIKE A MS CONC. 64.2 60.9 61.1 59.8 59.0	ND MATRIX RECOVERY	SPIKE DUPL MSD CONC. 57.3 55.2 54.6 54.0 52.7	- and the local data	RPD <b>5</b> 11. 10. 11. 10. 12.	Section No. C Revision No. 0 Date: 10/01/91 Page 39 of 53
Commente: MS Stock Solution # V15	1	Certifica Units:	11on No.: 10155 μg/1		i	hsd = Ma	TRIX SPIKE TRIX SPIKE LATIVE PERG			

1

. OBG Laboratories: Inc., an O'Bren's Gere Lunited Company. 5000 Brittontield Parkway / Suite 300: Box 4942 / Syracuse, NY 13221 / (315) 437-0200.

Authorized: Thomas difference Date: August 30, 1991

		2		
_		<u>_</u>		
=		_		
=				
-				
LAB	ORAT	ORIES	, INC.	

## Lavoratory Report

CLIENT			JOB NO1163.061.525								
DESCRIPTION e ···	<u>- Quali</u>	ty Control	Summary								
	<u>x Spike and</u>	Matrix Sp	ike Duplicate								
Date Analyzed 7-30-91 DATE COLLE	CTED	7-24-91	DATE RECEIVED	7-25-91							
	<u>san</u> Sample #	PLE INFORM MATRIX	SAMPLE	SPIKE	IX SPIKE A MS CONC.	ND MATRIX RECOVERY	SPIKE DUPL MSD CONC				
	10/80		RESULT	ADDED							
1,1-DICHLOROETHENE	M8670	Water	<5.00	50.0	62.9	126.	57.1	114			
TR I CHLOROETHENE			<5.00		52.4	105.	52.4	105			
BENZENE			127.		181.	108.	182.	110			
TOLUENE			<5.00		55.2	110.	54.4	109			
CHLOROBENZENB		Ţ	11.2	↓ ↓	62.3	102.	61.2	100			

Section No. C Revision No. 0 Date: 10/01/91 Page ₿ q ່ດ Čb

.1

320198

Comments: MS Stock Solution # V151

Certification No.: 10155

 $\mu g/1$ Unite: Authorized HERAL lill

MS - MATRIX SPIKE

MSD - MATRIX SPIKE DUPLICATE

RPD - RELATIVE PERCENT DIFFERENCE

RECOVERY

114.

105.

110.

109.

100.

ŧ

RPD

10.

0.

2.

1.

2.

OBG Laboratories. Inc. an O'Brien & Gere Limited Company 5000 Brittonnield Parkway / Suite 300, Box 4942 / Syracuse NY 13221 / (315) 437 0200

August 30, 1991 Date: ....

		3		
_				
E		-		
LAB	ORAT	ORIES	INC.	



CLIENT	group REISSA		JOB NO.	1163.061.525
--------	--------------	--	---------	--------------

W __ Quality Control Summary DESCRIPTION_

Volatile Organics: Matrix Spike and Matrix Spike Duplicate

Date Analyzed 7-31-91 DATE COLLECTED 7-25-91 DATE RECEIVED 7-26-91

		LE INFORM			TRIX SPIKE					
	SAMPLE #	MATRIX	SAMPLE RESULT	SP I N ADDE		RECOVERY \$	MSD CONC	RECOVERY \$	RPD \$	
, 1 - D I CHLOROBTHENE	M8744	Water	<5.00	50.	0 58.8	118.	54.5	109.	8.	Page 41
RICHLOROETHENE			<5.00		54.2	108.	51.6	103.	5.	d e
ENZENE			64.4			94.	111.	94.	0.	
OLUENE			86.7	`	132.	90.	124.	74.	20.	
HLOROBENZENII	L L	Ţ	<5.00	1	52.3	105.	47.3	95.	10.	
									:	
										10/01/91
	t i									ا ^ن گر
								. 1		

Comments: MS Stock Solution # V151

OBG Laboratories The Lan O'Brien & Gere Limited Company

5000 Brittonfield Parkway / Suite 300 Box 4942 / Syracuse, NY 13221 / (315) 437-0200

10155 Certification No.:

Units: µg/1

Authorized: flemechiligerete

August 30, 1991 Date:

MS - MATRIX SPIKE

MSD - MATRIX SPIKE DUPLICATE

RPD - RELATIVE PERCENT DIFFERENCE

-			-		-	
-			-		diam'r.	
		3			and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second se	
-					_	
-		<b>-</b>				
-	•			-	-	
	-		-			
-	-		_	-	-	
Station of the local division of the local d				_		
-		_	_	-	-	
1 1 1	nn i	170	10.00		100	
LAB	UHI	41 U		5. H	NLi.	



CLIENT	- Oual	JOB NO.		-			
	cs: Matrix Spike ar						
Date Analyzed 7-27-91	DATE COLLECTED		RECEIVED 7-24-91	-			
	<u>Sa</u> Sample i	MPLE INFORMATION MATRIX SAMP RESU	LE SPIKE	UX SPIKE AND MATRI MS CONC. RECOVE \$		Y RPD	
1,1-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE	M8638	Solid <620 (620 18800 8480 (670		11800. 81. 12200. 84. 30300. 79. 20100. 80. 12100. 83.	12200. 84. 12400. 86. 31800. 90. 20600. 84. 12300. 85.	4. 2. 13. 5. 2.	Section No. C Revision No. 0 Date: 10/01/91 Page 42 01 53
Comments:MS Stock Solution /	 Surr 1/08/91	Certification No.:	1 1	1 1 MS = 1	I I MATRIX SPIKE	1 i	l ,

Unite:

µg/kg dry woight

10-15 Authorized:

OBG Laboratories Inc. an O'Brien & Gare Limited Company 5000 Brittonheid Parkway / Sinte 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

320200

MSD - MATRIX SPIKE DUPLICATE

- RELATIVE PERCENT DIFFERENCE RPD



La Jralui y Report

CLIENT			JOB NO. 116	3.061.525					
DESCRIPTION	- Quali	ty Contro	1 Summary	····					
			pike Duplicat						
Date Analyzed 7-26-91 DATE COLLEG	CTED	7-24-91	DATE RECEIVED	7-24-91					
I, I - DI CHLOROETHENE TR I CHLOROETHENE BENZENE TOLUENE CHLOROBENZENE	SAMPLE #	PLE INFORM MATRIX	SAMPLE RESULT	MATE SPIKE ADDED	IX SPIKE A MS CONC. 49.3 62.4 71.9 58.3	ND MATRIX RECOVERY \$ 114. 83. 105. 121. 98.	SPIKE DUPL MSD CONC 66.6 50.0 65.0 73.4 63.6	RPD <b>4</b> . 0. 3. 1. 7.	Section No. C Revision No. 0 Date: 10/01/91 Page 43 of 53

320201

Comments: MS Stock Solution # V151

OBG Laboratories Inc. an O'Brien's Gere Limited Company

5000 Brittonfield Parkway / Suite 300, Buk 4942 / Syracuse, NY 13221 / (315) 437-0200

Certification No.: 10155

µg/kg dry weight Units:

1 Adines Authorized:

Date: August 30, 1991

MS = MATRIX SPIKE

MSD . MATRIX SPIKE DUPLICATE

RPD = RELATIVE PERCENT DIFFERENCE

	Date:10/01,	C 0 /91 of53	- <b>L</b> a - -	aborato Repo
CLIENT			JOB NO1163.(	361.525
DESCRIPTION	Water	- Qualit	y Control Summary	
Volatile Organics: S	Jurrogate Recover	ries		
Date Analyzed 7-26,27,29-91_0.	ATE COLLECTED	7-24-91	DATE RECEIVED	7-24-91
	I	1	1 1	I
Surrogate	1.	2.	3.	
Sample #				
M8628	96.	102.	99.	
M8629	98.	102.	100.	
M8630	98.	104.	101.	
M8631	101.	102.	98.	
M8632	100.	103.	101.	
M8633	102.	102.	101.	
M8633MS	- 104-	104.	104.	
M8633MSD	105.	102.	104.	
M8634	103.	108.	101.	
M8635	106.	104.	100.	
M8640	99.	103.	100.	
M8641	103.	104.	102.	
omments. Stock Solution # V165			10155	•
omments: Stock Solution # V105 1. 1,2-Dichloroethane-E	<b>л</b> а			
2. Toluene D8		Units:	Percent	A . 1
3. 4-Bromofluorobenzene	;			11/1.1 1
		Autho	mized: Momoly	Collips all
BG Laboratories, Inc., an O'Brien & Gere Limited Compa 000 Brittontield Parkway / Suite 300, Box 4942 / Syracus		o	Date:Septembe	er 3, 1991

_			
		a succession of the second second second second second second second second second second second second second	
	(inclusion)		_
_			
-			
	LINAIL	Dries, 1	
_			

Sectior	ר No.		2
Revisic	n No.	0	
Date:	107	01/91	
Page	45	of	53

### Laboratory Report

	Water	- Qualit	y Control Summar	<u>y</u>
Volatile Organi	cs: Surrogate Recove	ries		
te Analyzed 7-27,29-30,8-	-1-9 DATE COLLECTED	7-24-91	DATE RECEIVED	7-25-93
		1	1 1	1
Surrogate	1.	2.	3.	
Sample #				
M8659	105.	102.	102.	
M8660	109.	104.	105.	
M8661	110.	104.	103.	
M8662	108.	104.	103.	
M8663	101.	103.	100.	
M8664	104.	102.	101.	
M8665	97.	103.	100.	
M8666	102.	101.	101.	
M8667	111.	104.	102.	
M8668	108.	101.	105.	
M8669	107.	109.	105.	
M8670	109.	104.	103.	
M8670MS	114.	107.	105.	
M8670MSD	113.	105.	108.	
M8671	115.	104.	104.	
M8672	103.	103.	100.	
M8673	109.	104.	104.	
M8674	106.	104.	103.	

Comments: Stock Solution # V165

**Certification No.:** 

Units:

10155

- 1. 1,2-Dichloroethane-D4
- 2. Toluene D8
- 3. 4-Bromofluorobenzene

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

UOM Authorized: Date: _____September_3__1991 ___

Percent



Section N	10.	C	)	
Revision	No.	0		
Date:	10,	/01/91		-
Page	46	of	53	

### Laboratory Report

RIPTION. Volatile Organics:			y Control Summary	
e Analyzed 7-31,8-1,2-91			DATE RECEIVED	7-26-9:
le Analy 200 / -51,0-1,2-51	_DATE COLLECTED	/	DATE HECEIVED	, 20 9
Surrogate	1.	2.	3.	
Sample #				
M8743	112.	105.	106.	
M8744	110.	104.	103.	
M8744MS	112.	106.	105.	
M8744MSD	110.	99.	100.	
M8745	112.	104.	102.	
M8746	110.	104.	103.	
M8747	110.	107.	105.	
M8748	112.	104.	103.	
M8749	107.	104.	101.	
M8750	114.	104.	105.	
M8751	111.	104.	104.	
M8752		105.	105.	
M8753	111.	105.	104.	
M8754	111.	109.	100.	

Comments: Stock Solution # V165

1. 1,2-Dichloroethane-D4

2. Toluene D8

3. 4-Bromofluorobenzene

OBG Laboratories, inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Units: Percent Authorized: //Amoulleande Date: September 3, 1991

10155

Certification No.:

	n No10/01/	C 0 /91 of53	- -	Laboratory Repor
LIENT		<u></u>	јов ио	1163.061.525
ESCRIPTION	Water	- Quality	<u> Contro</u> j	L Summary
Volatile Organics: Surroga	<u>ate Recove</u>	ries/Methc	<u>id Blanks</u>	<u>\$</u>
Date Analyzed 7-26 thru 8-2-9 bate colle	ECTED	· · · · · · · · · · · · · · · · · · ·	DATE R	RECEIVED
	1	1	1	1
Surrogate	1.	2.	3.	
Sample #				
VBLK072601	97.	102.	97.	
VBLK072701	102.	103.	98.	
VBLK072901	100.	103.	98.	
VBLK072902	104.	104.	102.	
VBLK073002	106.	104.	102.	
VBLK073101	105.	105.	102.	
VBLK080101	105.	106.	102.	
VBLK080201	110.	104.	102.	
Stock Solution # V165	I	I	1	1 10155
200000			ation No.:	Percent
1. 1,2-Dichloroethane-D4 2. Toluene D8		Units:		n n
3. 4-Bromofluorobenzene			× ./.	1) Min I a
		Author	rized:	molluball
BG Laboratones, Inc., an O'Brien & Gere Limited Company 100 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221	112151 437-020	n	Date:	September 3, 1991

				- 1167	061 575
		Solid	- Mualit	JOB NO. 1163.0 y Control Summar	
ESCRIPTION Volatile Organics				y control Summar	<u> </u>
Date Analyzed 7-26,27-91				DATE RECEIVED	7-24-91
	_ DATE COL			UNIE RECEIVED	
Surrogate		1.	2.	3.	
-					
Sample #					
•					
		87.	116.	78.	
M8636MS		88.	121.	71.	
M8636MSD		89.	115.	81.	
M8637		90.	109.	86.	
M8638		88.	83.	84.	
M8639		. 84.	102.	89.	
VBLK072601	•	87.	98.	97.	
VBLK0727Ext		107.	99.	102.	
M8638MS		89.	82.	83.	
M8638MSD		84.	80.	80.	
-					
		•	I	• 1	i
mments: Stock Solution # V165	, V161		Certifi	cation No.: 10155	
1. 1,2-Dichloroethane	-04		Units:	Percen	t
2. Toluene D8 3. 4-Bromofluorobenze	ne				nn /

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

3,

September

Date: ___

Date:	No0 No0 10/01/91 0f	C 53	La	aboratory Report
			_ JOB NO	061.525
Laboratory Control Sampl	e #080391			
DATE COL		-	DATE RECEIVED	•
	Observed Conc.	Actual Conc.	% Recovery	
Total Metals:				
MAGNESIUM	9.9	10.	99.	
SODIUM	9.8	10.	98.	
CALCIUM POTASSIUM	9.5 9.8	10. 10.	95. 98.	
IRON	<u> </u>	1.0	98.	
~~				
-				
-			•	
Comments:		Certifica	ton No.: 10155 mg/1	•
		Units; Authoriz		flesarle

OBG Laboratories, Inc., an O'Brien & Gere Limited Company 5000 Brittonfield Parkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200

August 28, 1991

Date: _____

	-	
JRIE	5, I	NC.

Section	No.	C	
Revisior	1 No.	0	
Date:	10	/01/91_	
Page _	_50	of	_53

### Laboratory Report

				1		
	Observed Conc.	Actual Conc.	۶ Recovery			
1 Metals:						
GNESIUM	9.6	10.	96.			
DIUM	9.6	10.	96.			)!
LCIUM	9.2	10.	92.			, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second
TASSIUM	9.8	10.	98.			
· ·	0.95	1.0	95.			
					s	21 29
					10155 mg/1	August
					1 No.1	K
					Certification No. ; Unita :	Authorized:
					Certifi Units:	Aut
					-	e
					pike added)	177-1050
					ke a	. 15101
					s,	13211
					(SR>4x	pany ISA NY
						ed Com
					ulato	e Lunu 10 12
					calculated	08G Laboratories, inc. Jan O'Brien 5 Gure Luntied Company 3000 Britlontield Parkway / Suite 300 Box 4942 / Svacuse, NY 13221 / 17151 437, nym
			tion No.: 10155		Not	in O'Bri // Suite
/***		Units:	mg/l	· · ·	" NC	s. Inc. J Parkwav
				AM		oratorie: onlield
es, Inc., an O'Brien & Gere Limited Company		Authori	200: Nomell	(alloude	Comments:	8G Lao 200 Brill

La pratory Report

____

LABORAT	'ORIES,	INC.

Trace Metals: Matrix Spike, Duplicate and Method Blank

DATE COLLECTED 7-24,25-91 DATE RECEIVED 7-24,26-91

PARAMETER	ANALYZED	LABORATOR) NUMBER OF SPIKED SAMPLE	SPIKED Sample Result	SAMPLE Result (SR)	SPIKE Added (SA)	(\$R)	LABORATORY NUMBER OF DUPLICATE SAMPLE	SAMPLE RESULT (S)	DUPLICATE RESULT (D)	DUPLICATE RPD	METHOD BLANK	
Total Metals: MAGNESIUM SODIUM CALCIUM POTASSIUM IRON	8-7-91	M8633	55.8 470. 187. 121. 1.26	10. 380. 100. 76. 0.36	50. 100. 100. 50. 1.0	92. 90. 87. 90. 90.	M8633	10. 380. 100. 76. 0.36	9. 380. 100. 75. 0.36	11. 0. 0. 1. 0.	<s. &lt;0.05</s. 	Section No. Revision No. Date: 10/01/
Total Metals: MAGNESIUM SODIUM CALCIUM POTASSIUM IRON	8-8-91	M8793	47.4 174. 608. 53.2 1.01	<1. 80. 550. 8. 0.10	50. 160. 100. 50. 1.0	95. 94. NC 90. 91.	M8793	<1. 80. 550. 8. 0.10	<1. 77. 540. 7. 0.10	- 4. 2. 13. 0.	0 (1. 53 (1. 3 (1. 1 (5. (0.05	0

320209

Comments: NC = Not calculated (SR>4x spike added)

Certification No.: 10155

mg/l Units: NOME Authorized:

OBG Laboratories. Inc. an O'Brien & Gare Limited Company 5000 Britlionheld Parkway / Suite 300 Box 4942 / Syracuse, NY 13221 / (315) 437-0200

Date: August 29, 1991

### L. bratory Report

ł

CLIENT	********	- Qua	ality Cont		<u>1663.061.5</u> Y		-						1 I I
Wet Chemistry: Mat	rix Spike	, Duplicate	e, Referen	ce Sample	& Reagent	Blank					•		
	DATE COLLEG			DATE RECEI		6-91	-						
PARAMETERS	DATE		E INFORMA	TION	M/ CONC. OF	TRIX SPIKE SPIKED	RECOVERY	DUPLI DUPLICATE	CATE RPD	REP	REPERENCE	LE RECOVERY	REAGENT BLANK VALUE
	ANALYZEN	PRIMIA	JAHLL .	VALUE	SPIKE ADDED	SAMPLE RESULT	\$	VALUE	*	VALUE	SAMPLE RESULT	\$	VALUE
TOTAL ALKALINITY	8-05-91	Water	M8742	36.	_			36.	0.	60.	58.	97. G	Section I Revision Date:
PHENOLPHTHALEIN ALKALINITY		1	M8742	a.			_	<1.	-				Sectic Revis Date:
SULFATE	8-23-91		M8735	360.			-	360.	0.		-		Į ĝ S
SULFATE	8-23-91		M8736	1500.	1000."	2500.	100.		-	120.	120.	100. 0	ZO.
CARBONATE	8-05-91		M8742	<1.	-	-	-	<ı.	-	_		Ň	
BICARBONATE	8-05-91		M8742	36.	-	_	-	36.	0.	_	-		2
TOTAL ALKALINITY	8-05-91		M8801	2200.	-	_	-	2200.	0.	60.	59.	98. C	9
PHENOLPHTHALEIN ALKALINITY	8-05-91		M8801	2200.	-	_	-	2200.	0.	-	-	≓   -1	
SULFATE	8-20-91		M8798	22.	-	-	-	21.	5.	120.	121.	101.	
SULFATE	8-20-91		M8800	340.	SO.	397.	102.	-	•	120.	121.	101. 0	
CHLORIDE	8-22-91		M8801	77.	10.	85.	82.	77.	0.	50.	48.	97.	a
CHLORIDE	8-26-91		M8733	95,000.	•	•	*	94,000.	1.	50.	49.	98.	a.
CARBONATE	8-05-91		M8801	<1.	- 1	-	-	a.	-	-		-	-
BICARBONATE	8-05-91		M8801	<1.	-	-	-	<i>a</i> .	-	-	-	-	-
										l			

Comments: "Sample value exceeds spike level more than Certificat

Certification No.: 10155

RPD - Relative Percent Difference

4 times.

mg/l Units: Authorized: .

OBG Laboratories Inc. . an O Brien's Gare Limited Company 5000 Brittonfield Purkway / Suite 300, Box 4942 / Syracuse, NY 13221 / (315) 437-0200



## دیں Report

ł

CLIENT	JOB NO. <u>1163.061.525</u>
DESCRIPTION	Water & Soil - Quality Control Summary

Wet Chemistry: Matrix Spike, Duplicate, Reference Sample & Reagent Blank

DATE COLLECTED 7-24-91 DATE RECEIVED 7-24-91

		SAMPL	INFORMAT	ION		TRIX SPIKE		DUPL	CATE	RBI	RENCE SAM	LE	REAGENT BLANK
	DATE ANALYZED	MATRIX	SAMPLE #	SAMPLE VALUE	CONC. OF SPIKE ADDED	SPIKED SAMPLE RESULT	RECOVERY	DUPLICATE VALUE	RPD \$	TRUE VALUE	REFERENCE SAMPLE RESULT	RECOVERY	VALUE
PHENOLPHTHALEIN ALKALINITY PERCENT TOTAL SOLIDS CHLORIDE SULFATE	7-29-91 7-29-91 8-01-91 8-18-91 8-26-91	Water Water Water Water Water	M8633 M8633 M8636 M8633 M8633 M8633	170. <1. 71. 510. 165. 510.	- 50. 50.	- - - 220. 550.	- - - 110. 80.	180. <1. 55. 530. 160.	6. - 25. 4. 3. -	60. - - 50. 120. -	59. - - 50. 116. -	Page 53 - 53 - 100. 97 0f 53	00, No. 10, No. 10/01/91

10155 Certification No.;

**RPD** = Relative Percent Difference

Comments:

mg/1 Units: 1-14/1 Authonized: September 6, 1991

OBG Laboratories Inc. an O'Brien's Gere Limited Company 5000 Brittontield Parkway / Suite 300 Box 4942 / Syracuse, NY 13221 / (315) 437-0200 Date: