MAY 1999

/

For

U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District

> Volume 2D - Book 2 of 4 Fate and Transport Models

Limno-Tech, Inc. Menzie-Cura & Associates, Inc. Tetra Tech, Inc.

BOOK 2 of 4

LIST OF TABLES

TABLE

TITLE

3-1	Comparison of Manning's 'n' from Previous Studies
3-2	Modeled Hudson River Flows at the Upstream Boundary of the TIP
3-3	Comparison of Model Results with Rating Curve Data
3-4	Effect of Manning's 'n' on Model Results for 100-Year Flow Event
3-5	Effect of Turbulent Exchange Coefficients on Model Results
4-1	Summary of Inputs for Depth of Scour Model at Each High Resolution Core
4-2	Predicted Depth of Scour Range for 100 Year Flood at Each High Resolution Core Location
4-3	TIP Cohesive Sediment Expected Values of Solids Erosion and Mean Depth of Scour for 100- Year Flood, from Monte Carlo Analysis
5-1 a	HUDTOX Water Column Segment Geometry in Thomspon Island Pool (2-Dimensional Segmentation).
5-1 b	HUDTOX Water Column Segment Geometry Below Thomspon Island Pool (1-Dimensional Segmentation).
5-2 a	HUDTOX Sediment Segment Geometry in Thomspon Island Pool for Surficial Sediment Segments (2-Dimensional Segmentation).
5-2 b	HUDTOX Sediment Segment Geometry Downstream of Thomspon Island Pool for Surficial Sediment Segments (1-Dimensional Segmentation).
6-1	Sediment Data Sets Used in Development and Application of the HUDTOX Model
6-2	Sediment Areas Used for Computing HUDTOX Sediment PCB Calibration Targets
6-3	USGS Gauge Information for Gauges Used in Flow Estimation
6-4	Drainage Areas and Reference Tributaries Used in the LTI Tributary Flow Estimation
6-5	Mean Seasonal USGS Flows for the Selected Flow Gauges in the Study Area for the Period 3/1/77 – 6/30/92
6-6	Seasonal Tributary Flow Adjustment Factors Applied to Tributaries between Fort Edward and Stillwater, and between Stillwater and Waterford
6-7	Summary of Available Solids Data for Mainstem Stations; Number of Samples and Sources of SS Sample Data by Station
6-8	Summary of Available Solids Data for Tributaries; Number of Samples and Source of SS Sample Data by Station
6-9	Reference Tributaries for Unmonitored Tributaries
6-10	Cumulative Mainstem SS Loads and Yields

BOOK 2 of 4

LIST OF TABLES (cont.)

TABLE <u>TITLE</u>

6-11	Cumulative SS Loads and Corresponding Yields by Reach (10/1/77 - 9/30/97)
6-12	Tributary Drainage Areas Used in Tributary Load Adjustment
6-13	Inputs to SS Trapping Efficiency Calculations
6-14	SS Trapping Efficiency Estimates for Specific Reaches
6-15	Final Tributary SS Concentration Equations, Considering Deposition
6-16	Estimated Average Annual Tributary SS Loads to HUDTOX (10/1/77 – 12/31/97)
6-17	Seasonal Suspended Solids Load Difference by Reach Based on Preliminary Load Estimates for the period 10/1/77 to 12/31/96
6-18	Number of Days on which PCB Data were Available for Batten Kill, Hoosic River, and Mohawk River
6-19	Percent of PCB Transport Past Mainstem Upper Hudson River PCB Sampling Stations Under High and Low Flow (4/1/91 – 9/30/97)
6-20	Percent of PCB Load at Fort Howard for Suspended Solids Concentration Above and Below 10 mg/l (4/1/91 – 9/30/97)
6-21	Comparison of Annual Tri+ PCB Loads Estimates at Fort Edward, Schuylerville, Stillwater and Waterford Presented in the DEIR (TAMS 1997) and this Report
7-1	HUDTOX Solids Model Calibration Parameter Values
7-2	Transition Levels by Reach for Flow-dependent Settling in HUDTOX
7-3	HUDTOX Sediment Resuspension and Armoring Parameters
7-4	HUDTOX Fraction Organic Carbon and Dissolved Organic Carbon Parameterization by Reach
7-5	HUDTOX PCB Model Calibration Parameter Values

BOOK 2 of 4

LIST OF FIGURES

FIGURE

TITLE

1-1	Location Map for Hudson River Watershed
1-2	Upper Hudson River Watershed
1-3	Thomspon Island Pool
2-1	Upper Hudson Reassessment Modeling Framework
3-1	Thomspon Island Pool Study Area
3-2	Thomspon Island Pool RMA-2V Model Mesh
3-3	Thomspon Island Pool Velocity Vectors 100-year Flow Event
3-4	Shear Stress Computed from Vertically Averaged Velocity
4-1	Erosion versus Shear Stress
4-2	Armoring Depth versus Shear Stress
4-3	Armoring Depth versus Shear Stress Above 5 dynes/cm ²
4-4	Core HR-19: Likelihood of PCB Scour
4-5	Core HR-20: Likelihood of PCB Scour
4-6	Core HR-23: Likelihood of PCB Scour
4-7	Core HR-25: Likelihood of PCB Scour
4-8	Core HR-26: Likelihood of PCB Scour
4-9	Cumulative Percent versus Mean Depth of Scour
4-10	Cumulative Percent versus Total Solids Scoured
5-1	Conceptual Framework for the HUDTOX PCB Model
5-2	Illustration of Sediment Scour in the HUDTOX Model
5-3	Illustration of Sediment Burial in the HUDTOX Model.
5-4 (a-b)	HUDTOX Model Water Column Segmentation Grid for Upper Hudson River
5-4 (c-d)	HUDTOX Model Water Column Segmentation Grid for Upper Hudson River
5-5	Thomspon Island Pool Study Area
5-6	Schematic of the HUDTOX Water Column Segmentation Grid
5-7	HUDTOX Water Column Segment Depths by River Mile
5-8	Percent Cohesive Sediment Area Represented in HUDTOX by River Mile
6-1	Upper Hudson River Basin USGS Flow Gage Stations Used in HUDTOX Modeling

BOOK 2 of 4

LIST OF FIGURES (cont.)

TITLE

FIGURE

6-2	Comparison of Sources of Flow as a Percentage of the Flow at the Federal Dam
6-3	Estimated Daily Average Mainstem and Tributary Flows for the Upper Hudson River between Fort Edward and Federal Dam (1/1/97 – 9/30/97)
6-4	Upper Hudson River Basin Primary Long-Term Sampling Locations for Solids used in HUDTOX Modeling
6-5	Subwatersheds Monitored for Solids between Fort Edward and Waterford
6-6	Log Flow vs. Log TSS Concentration at Fort Edward, Stillwater, and Waterford
6-7	Mainstem and Tributary Suspended Solids Watershed Yield based on HUDTOX Suspended Solids Loading Estimates (10/1/77 – 9/30/97)
6-8	Relative Contribution of Estimated External Suspended Solids Loads to the Upper Hudson River 1/1/77 to 9/30/97
6-9	Upper Hudson River Basin Primary Long-Term Sampling Locations for PCB Data Used in HUDTOX Modeling
6-10	Available Mainstem Upper Hudson River PCB Data from The Hudson River Database, Release 4.1
6-11	Estimated Annual Tri+ PCB Load at Historical PCB Sampling Stations on the Upper Hudson River
6-12	Estimated Annual Load of Total PCB, BZ#4, and BZ#52 past Fort Edward 4/1/91 to 9/30/97
6-13	Relative Contribution of Estimated External PCB Loads to the Upper Hudson River 1/1/77 to 9/30/97
6-14	Estimated Cumulative Tri+ PCB Load passing Fort Edward, Schuylerville, Stillwater, and Waterford compared to DEIR Estimates
6-15	Estimated Annual Tri+ PCB Load at Fort Edward, Stillwater, and Waterford compared to DEIR Estimates
7-1	Flow Transition Levels for Gross Settling in the Thompson Island Pool Specified for HUDTOX Calibration
7-2	Spring 1994 High Flow Event Settling and Resuspension Rates in HUDTOX
7-3	Monthly Air Temperature at Glens Falls, New York for 1977-1997
7-4	Monthly Average Water Temperature by Reach in the Upper Hudson River
7-5	Specification of Historical Atmospheric Gas-Phase PCB Boundary Concentrations for the 1977 - 1997 HUDTOX Calibration Period
7.6a	HUDTOX Annual Surficial Sediment Porewater Diffusive Mass Transfer Rates for Cohesive and Noncohesive Sediment

BOOK 2 of 4

LIST OF FIGURES (cont.)

FIGURE

ł

TITLE

7.6b	HUDTOX Reach-Specific Annual Particulate Chemical Mass Transfer Rates
7-7 (a-c)	Spring 1994 Total Suspended Solids HUDTOX Calibration Results
7-8	Spring 1994 HUDTOX-Computed versus Estimated Cumulative TSS Flux
7-9 (a-c)	1977 – 1997 Total Suspended Solids HUDTOX Calibration Results
7-10 (a-c)	1993 Total Suspended Solids HUDTOX Calibration Results
7-11	1991-1997 HUDTOX-Computed versus Estimated Cumulative TSS Flux
7-12	1977 – 1997 Cumulative HUDTOX-Computed versus Estimated Solids Transport at High and Low Flows* past Mainstem Hudson River Sampling Stations
7-13	1991 – 1997 HUDTOX-Computed versus Observed Total PCB Concentrations
7-14	1991 – 1997 HUDTOX-Computed versus Observed BZ#4 Concentrations
7-15	1991 – 1997 HUDTOX-Computed versus Observed BZ#52 Concentrations
7-16	Observed versus Computed Water Column BZ#4 to BZ#52 Concentration Ratios
7-17a	Computed versus Observed Total PCB Concentrations through TIP during the GE September 24, 1996 Time of Travel Survey
7-17b	Computed versus Observed Total PCB Concentrations through TIP during the GE September 25, 1996 Time of Travel Survey
7-17c	Computed versus Observed Total PCB Concentrations through TIP during the GE June 4, 1997 Time of Travel Survey
7-17d	Computed versus Observed Total PCB Concentrations through TIP during the GE June 17, 1997 Time of Travel Survey
7-18	HUDTOX-Computed vs. Data-Estimated Total PCB Load Gain across Thompson Island Pool 1/1/91 to 9/30/97
7-19	Cumulative Total PCB In-River Fluxes Past Mainstem Hudson River Sampling Stations from 4/1/91 to 9/30/97
7-20	Percent of Total PCB Transport Occurring at High* and Low Flow at Mainstern Hudson River Sampling Stations
7-21	Cumulative Tri+ PCB Flux at Schuylerville 1977 – 1984 with and without Additional External PCB Load Specified at Fort Edward
7-22	Calibration Results of Total Suspended Solids 21-Year Cumulative Mass Flux in the Hudson River
7-23 (a-b)	1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations

BOOK 2 of 4

ł

LIST OF FIGURES (cont.)

TITLE

FIGURE

7-24	1977 – 1997 HUDTOX Computed versus Estimated Cumulative Tri+ Flux past Schuylerville, Stillwater, and Waterford
7-25 (a-b)	1977-1997 HUDTOX-Computed versus Observed Surficial (0 - 4 cm) Bulk Tri+ Concentrations in Cohesive Sediments
7-25 (c-d)	1977-1997 HUDTOX-Computed versus Observed Surficial (0 - 4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments
7-26	Computed (HUDTOX) TSS Mass Balance by Reach for 1977-1997
7-27	HUDTOX-Computed Long-Term Average Burial Velocity for Cohesive and Noncohesive Sediment in Thompson Island Pool for 1977-1997
7-28	HUDTOX-Computed Cumulative Bed Elevation Change in Thompson Island Pool during 1977- 1997
7-29	Computed (HUDTOX) Total PCB Mass Balance by Reach for Period from 4/1/91 to 9/30/97
7-30	Cumulative HUDTOX-Computed Contribution of Sediment-Water Total PCB Flux to Cumulative PCB Load Gain between Mainstern Hudson River Sampling Stations from 4/1/91 to 9/30/97
7-31	Cumulative HUDTOX-Computed Sediment Contribution to Load Gain across Thompson Island Pool from 1991-1997 for TSS, Tot-PCB, BZ#4 and BZ#52
8-1	Water Column PCB Concentrations at Thompson Island Dam and Waterford (Lock 1) for the No Action Forecast Simulations (1998 – 2018)
8-2	1998 – 2018 Summer Average (June through September) Total PCB Concentrations at Thompson Island Dam and Waterford for the No Action Forecast Simulations
8-3	Annual Total PCB Flux at Thompson Island Dam and Waterford for the 1998 – 2018 No Action Forecast Simulations
8-4	Predicted Reach Average Surficial Sediment Total PCB Concentrations for the No Action Forecast Simulations (1998-2018)
8-5	Adjustment of 1977 Fort Edward Hydrograph to Include the 100-Year Peak Flow (47,330 cfs)
8-6	HUDTOX-Computed PCB Concentrations at Thompson Island Dam for the 100-Year Flow and 1977 Flow Forecast Simulations
8-7	Cumulative Total PCB Flux over Thompson Island Dam for the 1st Year of the 1998 – 2018 Forecast Simulations with the 100-Year Flow and 1977 Flow

BOOK 2 of 4

LIST OF PLATES

<u>PLATE</u>

<u>TITLE</u>

3-1

Thompson Island Pool Bottom Shear Stress 100-year Flow Event

.

Table 3-1Comparison of Manning's 'n' from Previous Studies

Source	Main Channel 'n'	Floodplair 'n'
Zimmie, 1985	0.027	0.065
FEMA, 1982	0.028 - 0.035	0.075

Limno-Tech, Inc.

Table 3-2Modeled Hudson River Flows at the Upstream Boundary of the TIP

Flow Description	River Discharge (cfs)
Peak flow during spring and fall surveys, 1991	8,000
Peak flow for GE high flow survey, April 23-24, 1992	19,000
Peak flow for TAMS Phase 2 survey, April 12, 1993	20,300
Peak flow for spring 1994 (Bopp, 1994)	28,000
Peak flow in 1983	35,000
5-year high flow	30,126
25-year high flow	39,883
100-year high flow	47,330

Rating Curve Model Predicted Downstream Gauge 119 Flow Boundary Upstream (Upstream) (cfs) Condition feet Elevations Elevations feet (NGVD) (NGVD) feet (NGVD) 10,000 120.6 121.5 121.2 20,000 122.2 123.8 123.6 30,000 123.8 126.1 126.1

Table 3-3Comparison of Model Results with Rating Curve Data

Limno-Tech, Inc.

Table 3-4 Effect of Manning's 'n' on Model Results for 100-Year Flow Event

	Main Channel Manning's 'n'	Floodplain Manning's 'n'	River Elevation at Roger's Island feet (NGVD)
Baseline	0.020	0.060	129.1
High 'n'	0.035	0.075	131.1
Low 'n' Main Channel	0.015	0.060	128.6
Low 'n' Floodplain	0.020	0.040	128.9
High 'n' Floodplain	0.020	0.080	129.3

	Turbulent Exchange Coefficients (lb-sec/ft ²⁾	River Elevation Roger's Island feet (NGVD)
Baseline	100	129.1
Low Turbulent Exchange Coefficients	50	128.8
High Turbulent Exchange Coefficients	200	129.7

Table 3-5Effect of Turbulent Exchange Coefficients on Model Results

l

Table 4-1

Summary of Inputs for Depth of Scour Model at Each High Resolution Core

Core Name	100 Year Flood Shear Stress (dynes/cm²)	Surficial Dry Bulk Density (g/cm ²)
HR-19	12.7	0.369
HR-20	29.8	0.207
HR-23	19.1	0.619
HR-25	53.1	0.590
HR-26	31.7	0.276

Source: Hudson River Database Release 4.1

Thompson Island Pool Hydrodynamic Model results

Limno-Tech, Inc.

Table 4-2Predicted Depth of Scour Range for 100 Year Flood at EachHigh Resolution Core Location

Core Name	Depth of Scour (cm)			
	Median	5 th Percentile	95 th Percentile	Depth of PCB Peak (cm)
HR-19	0.074	0.016	0.356	20-24
HR-20	1.820	0.311	7.695	24-28
HR-23	0.158	0.030	0.819	28-32
HR-25	3.714	0.500	21.789	2.5
HR-26	1.643	0.275	8.262	12-24

Source: Hudson River Database Release 4.1

Limno-Tech, Inc.

Table 4-3

TIP Cohesive Sediment Expected Values of Solids Erosion and Mean Depth of Scour for 100-Year Flood, from Monte Carlo Analysis

Erosion Type	Expected Value				
Depth (cm)	0.317				
Solids (kg)	1,740,000				

	HUDTOX Segment Number	Location Description	Downstream River Mile	Length	Depth	Surface Area	Volume	Cross- sectional Area	Adjacent Segments		ents
				(m)	(m)	(m²)	(m ³)	(m²)	Bel	ow	Downstream
	1	West R. Island	194.11	721	1.66	111,167	184,239	256	48		3
	2	East R. Island	194.11	721	1.33	124,233	164,924	229	49		4
	3	West R. Island	193.59	845	1.66	179,319	301,100	357	50		5,6
	4	East R. Island	193.59	845	2.19	100,373	219,502	260	51		7
	5	west	193.00	942	1.55	93,705	145,320	154	53	52	8
	6	center	193.00	942	4.77	69,641	331,926	353	54	-	9
	7	east	193.00	942	1.60	51,501	82,167	87	55	-	10
	8	west	192.25	1,219	1.25	135,968	170,143	140	57	56	11
	9	center	192.25	1,219	3.68	118,933	437,877	359	58	-	12
Б	10	east	192.25	1,219	1.47	72,249	106,095	87	60	59	13
itati	11	west	191.69	896	1.63	116,614	190,137	212	62	61	14
ner	12	center	191.69	896	3.60	104,141	374,750	418	63	-	15
egn	13	east	191.69	896	0.72	88,892	65,047	73	65	64	16
al s	14	west	190.99	1,125	1.67	108,820	181,319	161	67	66	17
Ö	15	center	190.99	1,125	4.82	98,464	481,381	428	69	68	18
SUSI	16	east	190.99	1,125	1.62	89,519	145,283	129	71	70	19
Ĕ	17	west	190.33	1,054	1.71	77,285	132,461	126	73	72	20
-4 -7	18	center	190.33	1,054	4.34	101,114	439,168	417	74	-	21
	19	east	190.33	1,054	2.00	66,975	133,699	127	76	75	22
	20	west	189.81	848	1.71	66,786	113,979	134	77	-	23
	21	center	189.81	848	4.29	78,114	335,126	395	79	78	24
	22	east	189.81	848	2.04	88,884	181,045	214	-	80	25
	23	west	189.22	941	2.07	76,079	157,460	167	82	81	26
	24	center	189.22	941	5.62	63,745	358,258	381	83	-	27
	25	east	189.22	941	2.01	60,339	121,202	129	85	84	28
	26	west TI Dam	188.50	1,160	1.92	106,532	200,215	173	86	-	29
	27	center TI Dam	188.50	1,160	3.58	146,361	517,870	446	87	-	29
	28	east TI Dam	188.50	1,160	1.48	157,473	232,375	200	89	88	29

Table 5-1a HUDTOX Water Column Segment Geometry in Thompson Island Pool (2-dimensional segmentation)

Table 5-1b
HUDTOX Water Column Segment Geometry Below Thompson Island Pool (1-dimensional segmentation)

	HUDTOX Segment Number	Location Description	Downstream River Mile	Length	Depth	Surface Area	Volume	Cross- sectional Area	Adjad	cent Segm	ents
				(m)	(m)	(m²)	(m ³)	(m²)	Bel	ow	Downstream
	29	Lock 6	186.20	3,757	1.95	837,947	1,634,430	435	91	90	30
	30		184.85	2,178	3.49	557,155	1,946,807	894	93	92	31
	31	Lock 5	183.41	2,317	3.86	474,625	1,832,981	791	95	94	32
	32		182.30	1,767	3.92	468,521	1,835,130	1,039	96		33
c	33		181.40	1,446	3.12	229,378	715,684	495	97		34
atio	34		179.73	2,699	2.84	572,753	1,628,112	603	99	98	35
ente	35		178.08	2,647	3.76	501,225	1,882,175	711	101	100	36
й	36		175.08	4,833	4.20	948,752	3,985,892	825	103	102	37
sei	37		170.98	6,597	4.24	1,377,869	5,844,528	886	105	104	38
nal	38		169.79	1,918	3.69	558,975	2,064,033	1,076	107	106	39
Isio	39	Stillwater Dam	168.19	2,566	2.99	408,394	1,222,268	476	109	108	40
ner	40		166.67	2,454	1.93	952,848	1,835,070	748	111	110	41
-dir	41	Lock 3 Dam	165.99	1,087	4.18	417,298	1,743,711	1,605	113	112	42
+	42		164.31	2,715	3.18	623,849	1,982,413	730	115	114	43
	43	Lock 2 Dam	163.49	1,309	2.47	563,621	1,390,352	1,062	117	116	44
	44		160.87	4,214	2.89	1,090,832	3,148,431	747	119	118	45
	45	Lock 1 Dam	159.39	2,384	4.15	682,251	2,831,358	1,188	121	120	46
	46		156.41	4,795	4.56	1,280,753	5,841,577	1,218	122		47
	47	Federal Dam	153.89	4,056	5.77	1,282,972	7,405,588	1,826	123		0

Table 5-2a

HUDTOX Sediment Segment Geometry in Thompson Island Pool for Surficial Sediment Segments (2-dimensional segmentation)

	HUDTOX Segment Number	Sediment Type	Surface Area	Volume	HUDTOX Sediment Layer	Adjacent S	egments
			(m ⁻)	(m)		Above	Below
	48	N	86,468	1,729	1	1	124
	49	N	64,616	1,292	1	2	125
	50	N	104,029	2,081	1	3	126
	51	N	66,458	1,329	1	4	127
	52	C	9,251	185	1	5	128
	53	N	25,142	503	1	5	129
	54	N	69,532	1,391	1	6	130
	55	N	34,250	685	1	/	131
	56	<u> </u>	67,706	1,354	1	8	132
	57	N	22,071	441	1	8	133
	58	N	102,034	2,041	1	9	134
	59		5,886	118	1	10	135
	60	N	32,421	648	1	10	136
5	61		16,475	329	1	11	137
Iati	62	N	33,064	001	1	11	138
	63	N O	103,509	2,070	1	12	139
- Ga	64		20,920	5/9	1	13	140
ais	60	N C	19,719	394	1	13	141
	67		34,407	000	1	14	142
	69		17 701	256	1	14	143
	60		71 668	1 433	1	15	144
·	70	<u> </u>	36.064	721	1	15	145
	70	N	24 256	485	1	16	140
	72		24,230	405	1	17	147
	72		22,973	455	1	17	140
ł	7.	N	84 520	1 690	1	17	145
ł	75	C	8 939	1,000	1	10	150
ł	76	N	13 685	274	1	19	152
	77	N	31.066	621	1	20	153
	78	C	12 148	243	1	21	154
ŀ	79	N	53 177	1 064	1	21	155
ł	80	C	58 927	1 179	1	22	156
ŀ	81	C C	22 523	450	1	23	157
ł	82	N	23 873	477	1	23	158
ŀ	83	N	50 643	1 013	1	24	159
ł	84	C	19 342	387	1	25	160
	85	N	4.315	86	1	25	161
ŀ	86	N	64.343	1.287	1	26	162
	87	N	138,185	2 764	1	27	163
ŀ	88	C	63 742	1,275	1	28	164
ł	89	Ň	31.981	640	1	28	165

Layer thickness = 2 cm

Table 5-2b

HUDTOX Sediment Segment Geometry Downstream of Thompson Island Pool for Surficial Sediment Segments (1-dimensional segmentation)

	HUDTOX Segment Number	Sediment Type	Surface Area	Volume	HUDTOX Sediment Layer	Adjacent S	egments
			(m²)	(m ³)		Above	Below
	90	С	79,269	1,585	1	29	166
	91	N	449,376	8,988	1	29	167
	92	С	189,009	3,780	1	30	168
	93	N	160,637	3,213	1	30	169
	94	С	268,967	5,379	1	31	170
	95	N	145,117	2,902	1	31	171
	96	N	468,567	9,371	1	32	172
	97	N	229,401	4,588	1	33	173
	98	С	68,901	1,378	1	34	174
	99	N	503,907	10,078	1	34	175
	100	С	97,432	1,949	1	35	176
~	101	N	403,842	8,077	1	35	177
tior	102	С	89,073	1,781	1	36	178
nta	103	N	859,771	17,195	1	36	179
Jme	104	С	346,399	6,928	1	37	180
sec	105	N	1,031,605	20,632	1	37	181
nal	106	С	295,637	5,913	1	38	182
sio	107	N	263,392	5,268	1	38	183
nen	108	С	34,953	699	1	39	184
ģi	109	N	373,481	7,470	1	39	185
, É	110	С	213,454	4,269	1	40	186
	111	N	739,487	14,790	1 .	40	187
	112	С	171,255	3,425	1	41	188
	113	N	246,085	4,922	1	41	189
	114	С	18,739	375	1	42	190
	115	N	605,171	12,103	1	42	191
	116	С	51,928	1,039	1	43	192
	117	N	511,748	10,235	1	43	193
	118	С	3,092	62	1	44	194
	119	N	1,087,846	21,757	1	44	195
	120	С	64,524	1,290	1	45	196
	121	N	617,793	12,356	1	45	197
	122	N	1,280,878	25,618	1	46	198
	123	N	1,283,097	25,662	1	47	199

Layer thickness = 2 cm

Table 6-1
Sediment Data Sets Used in Development and Application of the HUDTOX Model

Year	Agency	Program Description	Purpose of Study	Parameters*	Use in HUDTOX
		Sediment core and grab	Assess extent of PCB	Aroclor PCBs, visual	Specification of sediment Tri+ PCB
1977	NYSDEC	sampling	pollution in the UHR	texture	initial conditions for the 1977-1997
					calibration.
1984	NYSDEC	Sediment core and grab	Confirm locations of PCB	Aroclor PCBs, visual	Specification of sediment Tri+ PCB
1004		sampling	hotspots in TIP	texture, bulk density	calibration targets.
		Composite sediment	Provide sufficient data to	PCB congeners,	Specification of Total PCB, BZ#4,
		sampling	calculate mean PCB	porewater PCB	BZ#52, and Tri+ PCB initial
	General		concentrations over 1 to 2	congeners, DOC, bulk	conditions for the 1991-1997
1991	Electric		mile intervals of the UHR	density, texture, grain size	calibration. Specification of
	Electric				sediment Tri+ PCB calibration
					targets. Specification of sediment
					DOC levels.
		High resolution core	Investigation of long-term	PCB congeners,	Assesment of model-computed
		sampling	trends in PCB transport,	porewater PCB	sediment burial rates in calibration.
1994	USEPA		release and degradation via	congeners, DOC, bulk	
			the sediment record	density, texture, grain size,	
				radionuclides	
		Low resolution sediment	Investigation of PCB levels	PCB congeners, bulk	Specification of sediment Tri+ and
(core sampling	in selected hotspots of the	density, texture, grain size,	Total PCB calibration parameters.
1994	USEPA		UHR	organic carbon	Specification of sediment organic
					carbon levels.
		Confirmatory sediment	Calibration of the side scan	Texture, grain size, bulk	Specification of mean cohesive and
1992	USEPA	sampling	sonar signal to sediment	density, total carbon	noncohesive bulk density values.
			properties	-	
		Sediment type mapping	Side scan sonar survey of	Areal distribution of fine	Establishment of cohesive and
1000		between Fort Edward and	bottom sediments	and coarse sediment	noncohesive sediment
1992	USEFA	Northumberland Dam			segmentation
		Sodimont type mapping	Qualitative sediment type	Qualitative sediment tuno	Establishment cohosive and
	Gonoral	between Northumberland	determinations based on	determination at specific	noncohesive sediment
1997	Electric	Dam and Fedoral Dam at	vieual inspection of grab	nointe	segmentation
	Electric	77 transports	samples or by probing	pointe	segmentation.
+Th - P + - f		1// ualisects	samples of by probing	the development and salls	

318238

Table 6-2Sediment Areas Used for Computing HUDTOX Sediment PCB Calibration Targets

Areal-Average Group No.	Upstream RM	Downstream RM	Total Cohesive Area	Total Non- cohesive Area	Reach	Area Description
1	194.5	192.5	82,841	607,025		Ft. Edward to bend above Snook Kill
2	192.5	191.5	133,664	275,421		Bend above Snook Kill to bend below Snook Kill
3	191.5	190.5	31,913	121,096	Thompson	Bend below Snook Kill to Griffin Island
4	190.5	189.8	71,073	84,242	Island Pool	Griffin Island to below hotspot14
5	189.8	189.4	41,865	78,834		Hotspot14 to Moses Kill
6	189.4	188.5	63,740	234,511		Moses Kill to T.I. Dam
7	188.5	183.4	537,245	755,125		T.I. Dam to Northumberland Dam
8	183.4	168.2	932,393	4,133,925		Northumberland Dam to Stillwater Dam
9	168.2	159.4	458,471	3,872,660		Stillwater Dam to Lock 2
10	159.4	154.9		2,564,000		Lock 2 to Federal Dam

Table 6-3USGS Gauge Information for Gauges Used in FlowEstimation

USGS gaging station	USGS Station No.	Drainage Area (mi²)	Period of Operation	
Hudson River at Fort Edward, NY	01327750	2817	1/1/77 - 9/30/97	
Hudson River at Stillwater, NY	01331095	3773	1/1/77 - 9/30/97 ¹	
Hudson River above Lock 1 near Waterford, NY	01335754	4611	3/1/77 - 9/30/97 ¹	
Glowegee Creek at West Milton, NY	01330000	26	10/1/90 - 9/30/97	
Kayaderosseras Creek near West Milton, NY	01330500	90	1/1/77 - 9/30/96	
Hoosic River near Eagle Bridge, NY	01334500	510	1/1/77 - 9/30/97	
Mohawk River at Cohoes, NY	01357500	3450	1/1/77 - 9/30/97	
Mohawk River Diversion at Crescent Dam, NY	01357499	N/A	1/1/77 - 9/30/97	

Source: USGS

¹ Due to construction, many of the flows recorded after 6/30/92 were rated as "poor" by the USGS. "Poor" means that "about 95 percent of the daily discharges have less than "fair" accuracy. "Fair" means that about 95 percent of the daily discharges are within 15 percent.

Table 6-4Drainage Areas and Reference Tributaries Usedin the LTI Tributary Flow Estimation

Tributary	Reach into which Tributary Enters	Drainage Area (mi²)	Gaged Reference Tributary		
Snook Kill		75	DAR to Kayaderosseras		
Moses Kill		55	Creek for the period $1/1/77 = 9/30/96$ and		
Thompson Island Pool direct runoff		31	DAR to Glowegee Creek for the period		
Batten Kill		431	9/30/96 – 9/30/97.		
Fish Creek	Fort Edward- Stillwater	245	(Kayaderosseras Creek flow data are unavailable after 6/30/96 so Glowegee Creek was used.)		
Flatey Brook	1	8			
Schuylerville- Stillwater direct runoff		80			
Hoosic River		720	DAR to Hoosic River at		
Anthony Kill		63	Eagle Bridge, NY		
Deep Kill	Stillwater –	16]		
Stillwater- Waterford direct runoff	Waterford	39			
Mohawk River		3,450	USGS gage at Cohoes + Diversion at Crescent Dam		

Source: LTI GIS

¹The Mohawk River stations are near the Mohawk-Hudson confluence so no drainage area adjustment was required.

Area for the Period 3/1/77 to 6/30/92										
Season	Fort Edward	Stillwater	Waterford	Glowegee Creek	Kay. Creek @ West Milton	Hoosic River @ Eagle Bridge				
Winter	5274.1	6582.5	8283.7	36.1	133.6	1042.9				
Spring	7773.6	10052.9	12866.1	56.0	254.3	1770.4				
Summer	3267.2	4000.1	4579.9	16.5	80.2	545.1				
Fall	4489.8	5582.4	6579.0	31.5	106.1	743.5				

Table 6-5Mean Seasonal USGS Flows for Selected Flow Gauges in the StudyArea for the Period 3/1/77 to 6/30/92

Source: Hudson River Database Release 4.1

Limno-Tech, Inc.

Table 6-6Seasonal Tributary Flow Adjustment Factors applied to Tributaries between Fort Edward and Stillwater, andbetween Stillwater and Waterford

	Fort Edward -	Stillwater	Stillwater - W	aterford
Season	∆ Q _{FE-Still} (cfs)	α _{fs}	∆	α _{sw}
Winter	1175	0.88	658	0.98
Spring	2025	0.81	1043	0.92
Summer	653	0.83	35	0.10
Fall	986	0.94	253	0.53

Table 6-7
Summary of Available Solids Data for Mainstem Stations; Number of Samples and
Source of SS Sample Data by Station

	Ft	. Edward		TID	TID		Stillwater			aterford	
Year	USGS	Phase 2	GE	Phase 2	GE	USGS	Phase 2	GE	USGS	Phase 2	GE
1977	1					33			47		
1978	30					30			31		
1979	52					34			32		
1980	55					27			37		
1981	55					29			24		
1982	49					43			32		
1983	40					126			134		
1984	34					209			247		
1985	17					82			129		
1986	27					306			295		
1987	15					49			85		
1988	38					68			101		
1989	23					15 <u>7</u>			334		
1990	3					275			242		
1991	19		65			373		60	251		120
1992	21		67			390		28	390		34
1993	27	58	56	78		387			410	288	1
1994	30	47	31	40		386			405	89	
1995	68		68			303			299		
1996	2719		71		4	30			66		L
1997			155	· · · · ·	19	19			25		

Table 6-8 Summary of Available Solids Data for Tributaries; Number of Samples and Source of SS Sample Data by Station

Year	Ва	atten Kill		Ho	Hoosic River		Mohaw	k River	Moses Kill		Snook Kill	
	USGS	Phase 2	GE	USGS	Phase 2	GE	USGS	Phase 2	Phase 2	GE	Phase 2	GE
1988	6			2								
1989				4			2					
1990				1			10					
1991			25	4		24	5					
1992			28			28	2					
1993		5	1	9	6	1	9	6				L
1994		32		12	32		18	31	32		31	ļ
1995				3			25					
1996							10					
1997										115		117

Table 6-9Reference Tributaries for Unmonitored Tributaries

Reference Tributary	Unmonitored Tributaries					
Moses Kill	TIP Direct Drainage Area, Flately Brook, TID-Schuylerville Direct Drainage Area, Schuylerville-Stillwater Direct Drainage Area					
Batten Kill	Fish Creek					
Hoosic River	Anthony Kill, Deep Kill, Stillwater- Waterford Direct Drainage Area					

Table 6-10Cumulative Mainstem SS Loads and Yields

Station	Cumulative SS Load (MT) (1/1/77 - 9/30/97)	Cumulative SS Load (MT) (10/1/77 - 9/30/97)	Drainage Area (mi²)	Yield (MT/mi ² *yr) (10/1/77 – 9/30/97)
Fort Edward	539,119	510,564	2,817	9.06
Stillwater	1,596,085	1,506,198	3,773	20.0
Waterford	3,519,798	3,159,690	4,611	34.3

Loads estimated from data in Hudson River Database Release 4.1

Table 6-11Cumulative SS Loads and Corresponding Yields by Reach (10/1/77 - 9/30/97)

	Cumulative SS L	oad (MT)	Average Annual Yield by Reach (MT/mi ² *yr)			
Reach	Load increment between mainstem stations	Sum of tributary SS loads	Yield increment between mainstem stations	Yield delivered by tributaries using rating curve		
Fort Edward - Stillwater	995,634	601,061	52.1	31.4		
Stillwater - Waterford	1,653,492	924,948	98.7	55.2		

Table 6-12 Tributary Drainage Areas Used in Tributary Load Adjustment

Tributary Drainage	Drainage Area (mi ²) used to estimate solids loads
Snook Kill	75
Moses Kill	55
TIP Direct Drainage Area ¹	8
Batten Kill	431
TID-Schuylerville Direct Drainage Area	31
Fish Creek ²	90
Flately Brook	8
Schuylerville-Stillwater Direct Drainage Area	80
Hoosic River	720
Deep Kill	16
Anthony Kill	63
Stillwater - Waterford Direct Drainage Area	39
Mohawk River	3,450

Source: LTI GIS Analysis

¹ The TIP direct drainage area includes the Champlain Canal which is highly regulated. Tributaries draining into the Champlain Canal have a drainage area of 23 square miles. The TIP direct drainage area was therefore reduced by this amount (from 31 to 8 square miles), because the SS contribution from tributaries draining into the Champlain Canal is assumed to settle out before reaching the Hudson River.

²The Fish Creek drainage includes Saratoga Lake which has a surface area of 16.3 km², a mean depth of 7.7 meters, and a retention time of 0.4 years. As such, this large lake is expected to greatly reduce the solids load in Fish Creek. In the absence of monitoring data, it was assumed that 80% of the solids upstream of Saratoga Lake are trapped in the lake. All of the drainage downstream of the lake outlet was assumed to contribute solids to the Hudson River. In all, the drainage area used in the SS load estimation was reduced from 245 to 90 square miles.

Table 6-13Inputs To SS Trapping Efficiency Calculations

	Cohesive	Non-cohesive
Assumed lower-bound, reach-wide, average burial velocity (m/yr)	0.003	0.000
Assumed upper-bound, reach-wide, average burial velocity (m/yr)	0.015	0.003
Assumed long-term average reach-wide burial velocity by sediment type (m/yr)	0.009	0.0015
Sediment solids specific weight (g/cc)	0.84	1.38
TIP bed area (m ²)	480,935	1,345,284
TID to Stillwater Dam bed area (m ²)	1,339,399	4,965,377
Stillwater Dam to Lock 1 Dam bed area (m ²)	522,991	6,032,086

Reach	Lower Bound Trapping Efficiency (%)	Upper Bound Trapping Efficiency (%)	Selected Trapping Efficiency Estimate (%)
TIP	9	28	15
TID-Stillwater	19	48	25
Stillwater-Federal Dam	8	15	10

Table 6-14SS Trapping Efficiency Estimates for Specific Reaches

Tributary Name	Low and Hi	gh Flow Equations	Cutpoint flow (cfs)
Snook Kill	= 6.9 = 0.007*Q ^{1.56}	when $Q \le cutpoint$ when $Q > cutpoint$	105
Moses Kill	= 8.9 = 0.04*Q ^{1.29}	when $Q \le cutpoint$ when $Q > cutpoint$	77
TIP Direct Drainage	= 8. 9 = 0.04*Q ^{1.29}	when $Q \le cutpoint$ when $Q > cutpoint$	43
Batten Kill	= 6.1 = 0.011 *Q ^{1.26}	when $Q \le cutpoint$ when $Q > cutpoint$	602
TID to Schuylerville Direct Drainage	= 8.9 = 0.04*Q ^{1.64}	when $Q \le cutpoint$ when $Q > cutpoint$	42
Fish Creek	= 6.1 = 0.011*Q ^{1.19}	when $Q \le cutpoint$ when $Q > cutpoint$	357
Flately Brook	= 8.9 = 0.04*Q ^{1.9}	when $Q \le cutpoint$ when $Q > cutpoint$	12
Schuylerville to Stillwater Direct Drainage Area	= 8.9 = 0.04*Q ^{1.26}	when $Q \le cutpoint$ when $Q > cutpoint$	117
Hoosic River	= 8.15 = 0.002*Q ^{1.31}	when $Q \le cutpoint$ when $Q > cutpoint$	1,328
Deep Kill	= 8.15 = 0.002*Q ^{2.26}	when $Q \le cutpoint$ when $Q > cutpoint$	24
Anthony Kill	= 8.15 = 0.002*Q ^{1.81}	when $Q \le cutpoint$ when $Q > cutpoint$	94
Stillwater to Waterford Direct Drainage	= 8.15 = 0.002*Q ^{1.95}	when $Q \le cutpoint$ when $Q > cutpoint$	58
Mohawk River	= 13.89 = 0.0002*Q ^{1.28}	when $Q \le cutpoint$ when $Q > cutpoint$	5,661

Table 6-15Final Tributary SS Concentration Equations, Considering Deposition

Table 6-16Estimated Average Annual Tributary SS Loads to HUDTOX (10/1/77 - 12/31/97)

Tributary	Average Annual SS Load (MT/yr)
Snook Kill	4,222
Moses Kill	2,619
TID Direct Drainage	198
Batten Kill	48,740
TID-Schuylerville Direct Drainage	3,506
Fish Creek	10,178
Flately Brook	905
Schuylerville-Stillwater Direct Drainage	9,047
Hoosic River	86,115
Deep Kill	1,914
Anthony Kill	7,535
Stillwater - Waterford Direct Drainage	4,665
Mohawk River	246,674

Table 6-17

Seasonal Suspended Solids Load Difference by Reach Based on Preliminary Load Estimates for the period 10/1/77 to 12/31/96

	Т	ID-Stillwater	Stillwater - Waterford			
Season	% of Load from Tributaries	% of Load Increment btwn. Mainstem Stations	% of Load from Tributaries.	% of Load Increment btwn. Mainstem Stations		
Dec Feb.	23%	18%	23%	21%		
Mar May	59%	63%	69%	70%		
Jun Aug.	6%	6%	2%	4%		
Sept. – Nov.	12%	13%	6%	5%		

Table 6-18

Number of Days on which PCB Data were Available for Batten Kill, Hoosic River, and Mohawk River

Year		Bat	ten Kill		Hoosic River				Mohawk River				
	Tri+	Total	BZ#4	BZ#52	Tri+	Total	BZ#4	BZ#52	Tri+	Total	BZ#4	BZ#52	
1991		25	8	8		24	10	10					
1992		28	6	6		28	14	14					
1993	5	7	1	1	6	6	5	5	6	6	5	5	
Total	5	60	15	15	6	58	29	29	6	6	5	6	

Source: Hudson River Database Release 4.1

Table 6-19Percent of PCB Transport Past Mainstem Upper Hudson River PCB Sampling
Stations Under High and Low Flow (4/1/91 - 9/30/97)

Mainstem Station	Flow Range (cfs)	Tri+ PCB	Total PCB	BZ#4	BZ#52
Fort Edward	Q < 11,000	81%	86%	94%	88%
Fon Edward	Q ≥ 11,000	19%	14%	6%	12%
TID	Q < 11,000	78%	77%	90%	75%
	Q ≥ 11,000	22%	23%	10%	25%
Stillwator	Q < 13,000	64%			
Suilwater	Q ≥ 13,000	36%			
Waterford	Q < 16,000	64%			
wateriord	Q ≥ 16,000	36%			

Source: Load estimates based on data in Hudson River Database Release 4.1

Table 6-20Percent of PCB Load at Fort Edward for Suspended Solids ConcentrationAbove and Below 10 mg/L (4/1/91-9/30/97)

Fort Edward Water Column Solids Concentration (mg/l)	Tri+ PCB	Total PCB	BZ#4	BZ#52
SS < 10	83%	91%	94%	91%
SS <u>></u> 10	17%	9%	6%	9%

Table 6-21 Comparison of Annual Tri+ PCB Loads estimates at Fort Edward, Schuylerville, Stillwater and Waterford presented in the DEIR (TAMS 1997) and this report

Voor	Fort Ec	dward	Schuy	lerville	Stillw	ater	Wate	Waterford		
rear	DEIR	LTI	DEIR	LTI	DEIR	LTI	DEIR	LTi		
1977	1,414	858	2,519	2,496	2,926	3,076	2,439	2,581		
1978	544	530	2,747	2,043	2,138	2,026	2,260	2,148		
1979	1,272	1,290	4,635	4,047	3,008	4,030	2,963	3,524		
1980	439	482	760	934	899	839	1,007	919		
1981	354	324	962	1,383	922	1,114	1,299	1,140		
1982	374	351	528	535	635	767	818	833		
1983	657	530	997	1,138	1,612	1,677	1,191	1,307		
1984	477	638	830	479	826	682	702	529		
1985	294	209	324	194	299	202	432	187		
1986	423	238	320	200	358	158	366	168		
1987	197	270	213	226	235	207	300	295		
1988	119	98	83	85	105	109	100	107		
1989	445	179	195	199	200	198	151	168		
1990	398	357	1	363	220	373	115	428		
1991	185	349		457	208	281	212	274		
1992	825	680		866	411	541	317	496		
1993	310	223		322	420	559	229	334		
1994	90	157		258		153		143		
1995		138		188		121		131		
1996		67		297		240		234		
1997		32		179		98		171		

Parameter	Definition	Units	Value	Comments
Vs	Gross solids settling velocity	D	flow-dependent	Constant at low and high flow, the settling rate is linearly interpolated in between these conditions. (see Figure 7-1 for rates in TI Pool)
V _{SL}	Gross solids settling velocity at low flow	m/day	1.0 (to RM 182.3); 0.8 (downstream)	Batten Kill enters the Upper Hudson at RM 182.3
q _{сть}	Flow threshold for low-flow settling velocity	cms	148.0 - 423.3	The base Fort Edward flow threshold (148.0 cms) was adjusted according to cumulative drainage area in downstream reaches (see Table 7-2)
v _{sh}	Gross solids settling velocity at high flow	m/day	8.0 (to RM 182.3); 6.0 (downstream)	Model calibration
Чстн	Flow threshold for high-flow settling velocity	cms	370.6 - 1,060	The base Fort Edward flow trigger (370.6 cms) was adjusted according to cumulative drainage area in downstream reaches (see Table 7-2).
V _{rL}	Background solids resuspension velocity	mm/year	0.2 (cohesive); 0.4 (non-cohesive)	Model calibration
V _{rH}	High flow solids resuspension velocity	m/day	flow and sediment type dependent	See Table 7-3 for coefficients used to control resuspension and sediment armoring during events in cohesive and non-cohesive sediments
ω _{ij}	Particle mixing rate between sediment layer i and j	m²/day	1.0E-05 (layer1-2); 1.0E-06 (layer 2-3); 1.0E-07 (layer 3-4)	Same rate in both cohesive and non-cohesive sediments
D _L	Longitudinal dispersion	m²/sec	18.8 - 37.2; 0.0 at dam interfaces	Estimates based on USGS dye survey results (USGS, 1969)
C _S	Sediment solids bulk density (dry)	g/cm ³	0.84 (cohesive) 1.38 (non-cohesive)	Estimated using Phase 2 and NYSDEC 1984 data
0	Solid density	g/cm ³	2.65	

Table 7-1HUDTOX Solids Model Calibration Parameter Values

.

Table 7-2Transition Levels by Reach for Flow-dependent Settling in HUDTOX

		HUDTOX	Low to High Flow Transition Levels for Settling								
Upper Hudson	Upper Hudson River	Water	DA	Low	Flow	High	Flow	Low Flow	High Flow		
River Miles	Reach Description	Segment(s)	Increase ¹	q _{CTL} (cms)	q _{CTL} (cfs)	q _{стн} (cms)	q _{CTH} (cfs)	v _{SL} (m/d)	v _{sH} (m/d)		
194.7 - 188.5	Fort Edward - TID	1 - 28	1	146.0	5,157	370.6	13,090	1.0	8.0		
188.5 - 182.3	TID - Batten Kill	29 - 32	1.07	156.2	5,518	396.5	14,006	1.0	8.0		
182.3	Batten Kill confluence	32	1.22	178.1	6,291	452.1	15,969	1.0	8.0		
181.4 - 178.1	Fish Creek - Hoosic River	33 - 39	1.34	195.6	6,910	496.6	17,540	0.8	6.0		
178.1 - 168.2	Hoosic River - Mohawk River	40 - 41	0.16	23.4	825	59.3	2,094	0.8	6.0		
156.4 - 153.9	Mohawk River - Federal Dam	47	0.16	23.4	825	59.3	2,094	0.8	6.0		

		Cohesive S	Sediment ¹		Non-cohesive Sediment ²						
Segment	α,	α2	α3	$\varepsilon = 0$ Flow (1,000 cfs)	β1	β2	β ₃	β4	β ₅	β ₆	
Above Thom	son Island	l Dam									
1	-17.88	0.03798047	2.946	8.08	1.15396	0.92966	0.004	1.0	6.0	0.03	
2	166 62	21:02054298	1.0904	6.68	2.15954	0.71805	0.004	1.0	6.0	0.03	
3	-2.08	0.17339826	2.024	3:41	1.32400	0.81022	0.004	1.0	6.0	0.03	
4	-32.34	2.28040000	1326	7.39	0.98969	0.76338	0.004	1.0	6.0	0.03	
5	-5.33	0.00221500	3.294	10.63	0.46405	1.16126	0.004	1.0	6.0	0.03	
6	-40.00	0.07454000	2.909	8.68	0.67817	1.08553	0.004	1.0	6.0	0.03	
7	n n	o cohesive sedima	ent identifie	d here	0.89857	1.02312	0.004	1.0	6.0	0.03	
8	-1.30	0.00334178	2.716	8.99	0.58399	0.99892	0.004	1.0	6.0	0.03	
9	-19:43	0.01881700	3.062	9.64	0.59242	1.07995	0.004	1.0	6.0	0.03	
10	-32.03	0.03929738	2.950	9.70	0.64118	1.10696	0.004	1.0	6.0	0.03	
11	-0.67	0.00323573	2.480	8.60	0.46651	0.98090	0.004	1.0	6.0	0.03	
12	316 16	0.07562286	2:419*	9.18	0.53138	1.02711	0.004	1.0	6.0	0.03	
13	-11.02	0.27144876	1.654	9.39	0.45752	1.03921	0.004	1.0	6.0	0.03	
14	-2.18	0.00061881	3.440	10.74	0.24462	1.16511	0.004	1.0	6.0	0.03	
15	-3.00	0.00471263	2.833	9.76	0.34730	1.13571	0.004	1.0	6.0	0.03	
16	-7.05	0.02144044	2.501	10.14	0.25874	1.09311	0.004	1.0	6.0	0.03	
17	-1.83	0.00663035	2.491	9.55	0.28690	1.09322	0.004	1.0	6.0	0.03	
18		0:03323969	2.451	10.33	0.44469	1.07877	0.004	1.0	6.0	0.03	
19	-12.39	0.02901571	2.524	11.02	0.55993	1.02401	0.004	1.0	6.0	0.03	
20	1.95	0.01184945	2.267	9,50	0.18296	1.19690	0.004	1.0	6.0	0.03	
21	-7.84	0.01900183	2.557	10.54	0.29332	1.15543	0.004	1.0	6.0	0.03	
22	-15.71	1.40936058	1.160	7.99	0.43626	1.11088	0.004	1.0	6.0	0.03	
23	-7.05	0.01277475	2.618	11.15	0.26723	1.16320	0.004	1.0	6.0	0.03	
24	3.89	0.09770687	2.175	9.77	0.43582	1.12535	0.004	1.0	6.0	0.03	
25	-68.42	2.16242877	1.562	9.14	1.23705	0.79648	0.004	1.0	6.0	0.03	
26	-0.55	0.00534900	2.352	7.19	0.65699	0.84558	0.004	1.0	6.0	0.03	
27	135	0.00025495	3.620	10.68	0.52736	1.01628	0.004	1.0	6.0	0.03	
28	X8330143	0.00227800	3.00	21112	0.95554	0.90227	0.004	1.0	6.0	0.03	
Downstream	of Thomps	on Island Pool									
29 - 47	-7.84	0.02144044	2.501	10.59	0.52937	1.05899	0.004	1.0	2.0	0.03	
¹ Cohesive sedi	ment:										
	ε=a+b*	(Q / 1000) ^c , units	of mg/cm ²								

Table 7-3HUDTOX Sediment Resuspension and Armoring Parameters

² Non-cohesive sediment:

 $\tau_{b} = c * (Q / 1000)^{d}$, units of dynes/cm²
Table 7-4
HUDTOX Fraction Organic Carbon and Dissolved Organic Carbon Parameterization by Reac

-

		HUDTOX	f _{oc} ¹			DOC (mg/L) ²		
Upper Hudson River Miles	Upper Hudson River Reach Description	Water Segment(s)	Water	Cohesive Sediment	Non-cohesive Sediment	Water	Cohesive Sediment	Non-cohesive Sediment
194.7 - 188.5	Fort Edward - TID	1 - 28	25%	2.2%	1.7%	4.86	50.0	38.6
188.5 - 182.3	TID - Batten Kill	29 - 32	18%	2.6%	2.4%	4.72	59.1	54.5
182.3 - 181.4	Batten Kill - Fish Creek	33	16%	1.8%	0.8%	4.72	40.9	18.2
181.4 - 178.1	Fish Creek - Flately Brook	34 - 35	16%	1.8%	0.8%	4.89	40.9	18.2
178.1 - 168.2	Flately Brook - Hoosic River	36 - 39	16%	1.8%	0.8%	4.89	40.9	18.2
168.2 - 166.0	Hoosic River - Anthony Kill	40 - 41	16%	2.8%	0.9%	4.30	63.6	20.5
166.0 - 163.5	Anthony Kill - Deep Kill	42 - 43	16%	2.8%	0.9%	4.30	63.6	20.5
163.5 - 156.4	Deep Kill - Waterford	44 - 46	16%	2.1%	1.0%	4.30	47.7	22.7
156.4 - 153.9	Waterford - Federal Dam	47	16%	2.1%	1.0%	4.05	47.7	22.7

¹ Fraction organic carbon on particulates were developed for:

a) Water, based on the Phase2 water column data (TAMS et al., 1997).

b) Sediment, using the Phase2 low-resolution core data and the 1991 GE composite sediment sampling data (O'Brien and Gere, 1993b).

² Dissolved organic carbon (DOC) concentrations were developed for:

a) Water, using data from Vaughn, 1996.

b) Sediment, based on the 1991 GE composite sediment sampling data (O'Brien and Gere, 1993b).

				Calibrati				
Parameter	Definition	Units	Total PCB	BZ#4	BZ#52	Tri+ PCB	Comments	
MW	Molecular Weight; chemical specific	g/mole	268.0 ¹	223.1	292.0	279.0 ¹	Estimated based on congener distribution	
H ₂₅	Henry's Law Constant; chemical specific, and temperature dependent	atm m ³ /mole	2.26E-04 ¹	0.00023 ²	0.0002 ²	2.26E-04 ¹	Estimated based on congener distribution or literature values	
log K _{poc}	Partition coefficient for sorbate on POC, based on three-phase equilibrium partitioning model; chemical specific	log (L/kg C)	5.6 ¹	4.76	5.91	5.821 ¹	Congener-specific Kpoc's are theoretical. DEIR	
log K _{doc}	Partition coefficient for sorbate on DOC, based on three-phase equilibrium partitioning model; chemical specific	log (L/kg C)	4.6	3.76	4.91	4.216	Set at 10% of Kpoc	
k,	Air-water liquid film mass transfer rate	m/day	O'Connor - Dobbins formulation				(Chapra, 1997); (Thomann and Mueller, 1987)	
k _g	Air-water gas exchange mass transfer rate	m/day		10	WASP5 User Guide (Ambrose et al, 1993)			
υ	Surficial sediment-water mass transfer rate of particulate phase PCB	mm/yr	6.	5 - 0.125 (Se	Model calibration			
θι	Arrenhius temperature correction for air-water mass transfer rate	dimension- less	1.024				(Chapra, 1997); (Thomann and Mueller, 1987)	
k _b	PCB dechlorination rate	day ⁻¹	0	0	0	0	Dechlorination not simulated	
tsf	Temperature slope factor constant affecting partitioning: chemical specific	°K	1195.7 (representative across all PCB forms)			DEIR (TAMS, 1997)		
u _x	Particle concentration effect constant; chemical specific.	dimension- less	inactive (data analysis suggests minimal effect)				DEIR (TAMS, 1997)	
V _{C01}	Cohesive sediment-water mass transfer coefficient for dissolved and DOC-bound PCB.	cm/day	(see Fi	1.5 - gure 7-6a for	Model calibration			
V _{C12}	Shallow (0-4 cm) cohesive sediment mass transfer for dissolved and DOC-bound PCB.	cm/day		0.15 -	Set to 1/10th of sediment-water mass transfer			
V _{N01}	Non-cohesive sediment-water mass transfer coef. for dissolved and DOC-bound PCB	cm/day	0.5 - 2.167 (see Figure 7-6a for seasonal variation)				Set to 1/3rd of cohesive sediment mass transfer	
V _{N12}	Shallow (0-4 cm) non-cohesive sediment mass transfer for dissolved and DOC-bound PCB	cm/day	0.05 - 0.2167				Set to 1/10th of sediment-water mass transfer	
D _{deep}	Deep (>4 cm) sediment porewater diffusion coefficient for dissolved and DOC-bound PCB	m²/sec	2.00E-10 (dissolved); 1.00E-10 (DOC-bound)				Set approximately to molecular diffusion rate	
f _{oc}	Fraction organic carbon in particulate solids	dimension- less	0.25 - 0.16 in water 0.028 - 0.018 in cohesive sediment 0.024 - 0.008 in non-cohesive sediment (see Table 7-4 for spatial variation)			DEIR (TAMS, 1997); 1991 GE data (O'Brien and Gere, 1993b)		
¹ Estimated ba ² Brunner et a	ased on apparent PCB congener distribution.							

 Table 7-5

 HUDTOX PCB Model Calibration Parameter Values

l

Figure 2-1 Upper Hudson River Reassessment Modeling Framework

Thompson Island Pool

Study Area

Figure 3-1

Thompson Island Pool

RMA-2V Model Mesh

Figure 3-2

Thompson Island Pool

Velocity Vectors 100-year Flow Event

Figure 3-3

- Gailani Stress (dyne/cm²) Velocity (ft/s)

Figure 3-4 Shear Stress Computed from Vertically Averaged Velocity

...

Figure 4-2 Armoring Depth versus Shear Stress

Figure 4-3 Armoring Depth versus Shear Stress Above 5 dynes/cm²

Figure 4-4 Core HR-19: Likelihood of PCB Scour

Figure 4-5 Core HR-20: Likelihood of PCB Scour

Figure 4-6						
Core HR-23:	Likelihood	of	PCB	Scour		

Figure 4-8 Core HR-26: Likelihood of PCB Scour

Figure 4-7 Core HR-25: Likelihood of PCB Scour

Figure 4-9

Figure 4-10 Cumulative Percent versus Total Solids Scoured

Conceptual Framework for the HUDTOX PCB Model

Figure 5-2 Illustration of Sediment Scour in the HUDTOX Model

,

Figure 5-3 Illustration of Sediment Burial in the HUDTOX Model

HUDTOX Model Water Column Segmentation Grid for Upper Hudson River Parts A and B

Figure 5-4 A, B

HUDTOX Model Water Column Segmentation Grid for Upper Hudson River Parts C and D

Figure 5-4 C, D

Thompson Island Pool Study Area

Figure 5-5

Figure 5-6 Schematic of the HUDTOX Water Column Segmentation Grid

The state and and the last the state and the state and the same state and the same state and

Figure 5-7 HUDTOX Water Column Segment Depths by River Mile

Figure 5-8 Percent Cohesive Sediment Area Represented in HUDTOX by River Mile

Figure 6-1 Upper Hudson River Basin USGS Flow Gage Stations Used in HUDTOX Modeling

Limno Tech, Inc.

Subwatersheds Monitored for Solids between Fort Edward and Waterford

Figure 6-6 Log Flow vs. Log TSS Concentration at Fort Edward, Stillwater, and Waterford

Figure 6-7 Mainstem and Tributary Suspended Solids Watershed Yield based on HUDTOX Suspended Solids Loading Estimates (10/1/77 - 9/30/97)

Figure 6-8 Relative Contribution of Estimated External Suspended Solids Loads to the Upper Hudson River 1/1/77 to 9/30/97

Figure 6-9 Upper Hudson River Basin Primary Long-Term Sampling Locations for PCB Data Used in HUDTOX Modeling

Figure 6-10

Available Mainstem Upper Hudson River PCB Data from Hudson River Database Release 4.1

Figure 6-11 Estimated Annual Tri+ PCB Load at Historical PCB Sampling Stations on the Upper Hudson River

Figure 6-14 Estimated Cumulative Tri+ PCB Load passing Fort Edward, Schuylerville, Stillwater, and Waterford compared to DEIR Estimates

Figure 6-15 Estimated Annual Tri+ PCB Load at Fort Edward, Stillwater, and Waterford compared to DEIR Estimates

Figure 7-2 Spring 1994 High Flow Event Settling and Resuspension Rates in HUDTOX

Figure 7-3 Monthly Air Temperature at Glens Falls, NewYork for 1977-1997

yn 1988 hat wet wet wet the state and the state wet the state and the state and the state and the state and

Figure 7-4 Monthly Average Water Temperature by Reach in the Upper Hudson River

Figure 7-6a HUDTOX Annual Surficial Sediment Porewater Diffusive Mass Transfer Rates for Cohesive and Non-cohesive Sediment

Figure 7-6b HUDTOX Reach-Specific Annual Particulate Chemical Mass Transfer Rates

Limno-Tech, Inc.

Figure 7-7a Spring 1994 Total Suspended Solids HUDTOX Calibration Results

Figure 7-7b Spring 1994 Total Suspended Solids HUDTOX Calibration Results

Data Source: Hudson River Database Release 4.1

Figure 7-7c Spring 1994 Total Suspended Solids HUDTOX Calibration Results

Data Source: Hudson River Database Release 4.1

Figure 7-8 Spring 1994 HUDTOX-Computed versus Estimated Cumulative TSS Flux

Figure 7-9a 1977-1997 Total Suspended Solids HUDTOX Calibration Results

Figure 7-9b 1977-1997 Total Suspended Solids HUDTOX Calibration Results

Figure 7-9c 1977-1997 Total Suspended Solids HUDTOX Calibration Results

Figure 7-10a 1993 Total Suspended Solids HUDTOX Calibration Results

Figure 7-10b 1993 Total Suspended Solids HUDTOX Calibration Results

Figure 7-10c 1993 Total Suspended Solids HUDTOX Calibration Results

Figure 7-11 1991-1997 HUDTOX-Computed versus Estimated Cumulative TSS Flux

Figure 7-12 1977-1997 Cumulative HUDTOX-computed Versus Estimated Solids Transport at High and Low Flows* Past Mainstern Hudson River Sampling Stations

Figure 7-13 1991-1997 HUDTOX-Computed versus Observed Total PCB Concentrations

Figure 7-14

Figure 7-15

Figure 7-16 Observed versus Computed Water Column BZ#4 to BZ#52 Concentration Ratios

Figure 7-17a Computed versus Observed Total PCB Concentrations through TIP during the GE September 24, 1996 Time of Travel Survey

Data Source:

Hudson River Database Release 4.1

flow = 5,200 cfs **TIP west shore** 120 Total PCB (ng/L) model 100 🔳 data 80 60 40 1365 10 1 20 19 1 13 0 194.5 190.5 193.5 192.5 191.5 189.5 188.5 **River Mile TIP center channel** 120 Total PCB (ng/L) 100 80 60 40 1 - 🖾 - 🗕 🖾 -**8** 20 62 **53** 80 0 194.5 191.5 193.5 192.5 190.5 189.5 188.5 **River Mile TIP** east shore Total PCB (ng/L) 2 100 K ĉ, 50 8 0 0 194.5 193.5 192.5 191.5 190.5 189.5 188.5 **River Mile**

flow = 4,500 cfs **TIP** west shore 300 model data Total PCB (ng/L) 250 8 200 150 100 **-**22 163 50 0 193.5 191.5 194.5 192.5 190.5 189.5 188.5 **River mile TIP center channel** 300 Total PCB (ng/L) 250 200 150 100 50 8 1 0 194.5 193.5 192.5 191.5 190.5 189.5 188.5 **River Mile TIP east shore** 300 Total PCB (ng/L) **\$**3 250 200 12 150 100 2 I B 22 50 3 20 0 194.5 193.5 192.5 191.5 190.5 189.5 188.5 **River Mile**

Figure 7-17c Computed versus Observed Total PCB Concentrations through TIP during the GE June 4, 1997 Time of Travel Survey

flow = 5,200 cfs **TIP west shore** 250 Total PCB (ng/L) 200 150 1 12 83 100 50 model 麝 data 0 190.5 189.5 188.5 194.5 193.5 192.5 191.5 **River mile TIP center channel** 120 Total PCB (ng/L) 1 100 80 60 83 40 20 0 194.5 193.5 192.5 191.5 190.5 189.5 188.5 **River Mlle TIP east shore** Total PCB (ng/L) 120 100 80 1 60 40 20 0 194.5 193.5 192.5 191.5 190.5 189.5 188.5 **River Mile**

Figure 7-18 HUDTOX-Computed versus Data-Estimated Total PCB Load Gain across Thompson Island Pool 1/1/91 to 9/30/97

Figure 7-19 Cumulative Total PCB In-River Fluxes Past Mainstem Hudson River Sampling Stations from 4/1/91 to 9/30/97

Figure 7-20 Percent of Total PCB Transport Occuring at High* and Low Flow at Mainstem Hudson River Sampling Stations

Limno-Tech, Inc.

Figure 7-22 Calibration Results of Total Suspended Solids 21-Year Cumulative Mass Flux in the Hudson River

Figure 7-23a 1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations

Figure 7-23b 1977 - 1997 Computed versus Observed Water Column Tri+ Concentrations
HUDTOX-computed Schuylerville at River Mile 183.4 data-based estimate 25,000 Cumulative PCB flux (kg) 20,000 15,000 10,000 5,000 0 Stillwater at River Mile 168.2 25,000 Cumutative PCB flux (kg) 20,000 15,000 10,000 5,000 0 Waterford at River Mile 159.4 (Lock 1) 25,000 Cumulative PCB flux (kg) 20,000 15,000 10,000 5,000 0 1980 1983 1985 1989 992 1995 1996 1997 978 979 1986 1987 1988 0661 1993 1994 1977 1981 19J2 1984 1991 Data Source: TAMS/Gradient Database/Release 4.1b

Figure 7-24 1977-1997 HUDTOX-Computed versus Estimated Cumulative Tri+ Flux past Schuylerville, Stillwater, and Waterford

Figure 7-25a 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Cohesive Sediments

Figure 7-25b 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm Bulk Tri+ Concentrations in Cohesive Sediment

Figure 7-25c 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments

Figure 7-25d 1977-1997 HUDTOX-Computed versus Observed Surficial (0-4 cm) Bulk Tri+ Concentrations in Non-Cohesive Sediments

Figure 7 - 27 HUDTOX-Computed Long-term Average Burial Velocity for Cohesive and Noncohesive Sediment in Thompson Island Pool for 1977-1997

Limno Tech, Inc.

Figure 7-29 Computed (HUDTOX) Total PCB Mass Balance by Reach for Period from 4/1/91 to 9/30/97

Figure 8-1 Water Column PCB Concentrations at Thompson Island Dam and Waterford (Lock 1) for the No Action Forecast Simulations (1998 - 2018)

Figure 8-2 1998 - 2018 Summer Average (June through September) Total PCB Concentrations at Thompson Island Dam and Waterford for the No Action Forecast Simulations

Thompson Island Dam - Ft. Edward Total PCB concentration = 9.9 mg/L . Annual Total PCB Flux (kg/yr) - Ft. Edward Total PCB concentration = 0.0 ng/L Year Waterford -O-- Ft. Edward Total PCB concentration = 9.9 ng/L Annual Total PCB Flux (kg/yr) - Ft. Edward Total PCB concentration = 0.0 ng/L Year

Figure 8-3 Annual Total PCB Flux at Thompson Island Dam and Waterford for the 1998 - 2018 No Action Forecast Simulations

Figure 8-4 Predicted Reach Average Suficial Sediment Tot PCB Concentrations for the No Action Forecast Simulations (1998-2018)

Thompson Island Pool

Bottom Shear Stress 100-year Flow Event

Plate 3-1