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Abstract

As a first step in a Bayesian analysis of PCB fate and transport in the upper Hudson River, a joint probability density
function for narameters in a simulation model is created. The density function describes the joint probabilities of the
following parameters: the anaerobic dechtorination rate constant, the volatilization rate constant, the aerobic biodegradation
rate constant, the sedimentation rate, and the contaminated sediment depth. Difficulties in forming this probabQity density
function are shown to result from problems with extrapolating data from the laboratory to the field, non-stationarity and
aggregation, extrapolating information and analyses from other sites, and bias due to study design. These difficulties result in
a density function characterized by high variances, and imply mat predictions from this simulation model, and similarly large
fate-and-transport models, are apt to be highly uncertain. Bayesian analysis is proposed as a rigorous mathematical technique
for including observational data in density function generation in order to reduce prediction uncertainty. O 1997 Elsevier
Science B.V.

Keywords: Bayes theorem; Poiychlorinated biphenyl; Fate and tnnspott models; Hudson River, Parameter estimation

1. Introduction

It is common practice to use a combination of
expert judgment and experimental evidence to setect
parameter values for application of a mechanistic
(process-oriented) environmental simulation model.
Optimization is infrequently applied with site-specific
data for parameter estimation, and error estimates to
reflect parameter uncertainty are rarer still. The em-
phasis on judgment and selection (as opposed to

' Corresponding author. Tel.: +1-504-8623254; tax: + 1-504-
8628941.

observation and optimization) has probably devel-
oped for a number of reasons including: (1) the lack
of observational data for optimal estimation of more
man a few parameters, and (2) the belief that the
model equations are correct so that parameters are
measurable and transferable.

Classical optimization techniques can be used with
site-specific observational data to yield point and
interval estimates for parameters; however, classical
(or frequentist) statistical inference is ill-suited for
incorporation of collateral information into the pa-
rameter estimation algorithm. In contrast, Bayesian
inference provides a framework for combining all
information in a probabilistic expression of knowl-

0304-3800/97/SI7.00 O 1997 Elsevier Science B.V. All rights reserved.
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edge concerning parameters. Indeed, Bayesian infer-
ence is quite consistent with current modeling prac-
tice, but with Bayes' theorem replacing the current
ad hoc information pooling approach used by model-
ers.

To apply Bayes' theorem, the modeler must first
express existing knowledge about parameters in
probabilistic terms. This expression, called the 'prior
probability', represents all information on the param-
eters available before new data are-obtained. If no
additional data are to be acquired, then the prior
probability is a complete characterization of knowl-
edge (and uncertainty) concerning a parameter;
clearly, the prior probabilit--' conveys more informa-
tion than does a single point value (selected under
current modeling practice).

In mis paper, we describe how scientific knowl-
edge, expert judgment, experimental evidence, and
observational data can be used to characterize proba-
bility distributions for parameters for a contaminant
fate and transport model. This is undertaken for a
mechanistic model of polychlorinated biphenyl (PCB)
in the upper Hudson River which is briefly described
in the next section; details of the complete modeling
study are presented elsewhere (Steinberg, 1993;
Steinberg et al., 1996). Following the description of
the model, we describe how extant information was
used to define the parameter probability distribu-
tions. The paper concludes with a discussion of
parameter estimation and specification of functional
relationships in mechanistic models.

2. The PCB fate and transport model

PCBs were introduced into the upper Hudson
River of New York State as a consequence of waste
discharges from General Electric manufacturing
plants in Fort Edward and Hudson Falls, NY
(Schroeder and Bames, 1983). The discharged PCBs
were in the form of Aroclors, complex chemical
mixtures of the 209 different possible PCB con-
geners. Due to the hydrophobicity of PCBs most of
the chemical sorbed to river sediments. This material
has migrated downstream, contaminating the Hudson
River sediments with PCB from Fort Edward to New
York Harbor and serving as a source of PCB loading
to the water column.

A simulation model for PCB fate and transport in
the Hudson River from Fort Edward south to Water-
ford, NY was developed (see Steinberg et al., 1996)
from the advection-dispersion-reaction equation. In
Steinberg et al. (1996) the development of the model
is discussed in detail and it is shown mat simulation
results vary depending on the method used to fit the
model parameters. The maximum likelihood method
produced the best fits to the data, but the paper
shows that the Bayesian method of parameter estima-
tion win produce better fits to new data (i.e. data not
used in the calibration).

Steinberg et al. (1996) made a number of simpli-
fying assumptions in deriving the simulation model
from the advection-dispersion-reaction equation.
These assumptions were driven primarily by the lack
of observational data to support more complex model
formulation. One of the most important simplifica-
tions was in the sedimentation and resuspension
terms. Data to parameterize a model with flow-
specific resuspension rates have not been collected in
the upper Hudson River (see Zimmk, 1985). In light
of mis difficulty, resuspension was parameterized
using a constant resuspension rate which represents
the mean behavior of sediment in the upper Hudson
River over tune. The sedimentation rate was inferred
by imposing a mass balance in each segment.

The simulation model developed in Steinberg et
al. (1996) consists of two coupled differential equa-
tions, Eq. (1) and Eq. (2). Eq. (1) simulates c,, die
PCB concentration in the water column, and Eq. (2)
models cb, the PCB concentration in the sediments.
In addition to transport terms (1), Eq. (1) includes a
first order reaction term for volatilization and aerobic
biodegradation in die water column (2), a term for
increases in ca due to resuspension of bottom sedi-
ments (3), and a term for loss of PCB mass due to
sedimentation from die water column (4). Symbols
in Eq. (1) include: «, the water velocity; D, the
longitudinal dispersion coefficient; kYOt, the
volatilization rate constant; *0, the aerobic biodegra-
dation rate constant; Fv, the fraction of PCB which
is dissolved; vt, the sediment resuspension velocity;
z, the water column depth; and t>, the sediment
sedimentation velocity. Changes in die concentration
of PCB in the bottom sediment, cb, are modeled
with a term for concentration increase due to sedi-
mentation of PCB-contaminated particles from die
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water column (1), and a term for concentration de-
crease due to anaerobic dechlorination and resuspen-
sion of PCB-contaminated sediment (2). The sedi-
mentation velocity is modeled as the complement to
the resuspension velocity. Its value is set as required
to ensure that the flux of material resuspended is
compensated by an equal flux onto the bed In this
way, no net scour or fill at any cross-section is
simulated '. Symbols in Eq. (2) include: f, me thick-
ness of the contaminated sediment layer and *,, the
anaerobic dechlorination rate constant

dc,
dt

dc. d

(1)

dt

(2)

Calculation of the simulation model inputs are
detailed in Steinberg et al. (1996). In brief:
1. river velocity was calculated from the equation of

continuity using flow rates reported by the United
States GeolOfeiwJ Survey (USGS) and assuming
rectangular channels with width measured from
USGS topographic maps;

2. the longitudinal dispersion coefficient was calcu-
lated using Fischer's equation;

3. Fw was calculated assuming equilibrium partition-
ing, with the partition coefficient calculated from
Km estimates of Hawker and Council (1988),
Karickboffs K^-K^ relationship (\O%10KX^
log 10ATOW-0.21), and the observed fraction or-

1 This approach is suggested by die results of Lane and Borland
(1954). Culbertson and Dawdy (1964), Colby (1964), and An-
drews (1979), each of whom reported cycles of fill and scour and
little net deposition or fill over the time period studied.

game carbon found in upper Hudson River sedi-
ment;

4. boundary PCB concentrations in the water col-
umn were available from measurements of PCBs
taken by the USGS;

5. initial PCB concentrations in the sediment were
available for 1976 from the USEPA.

3. Parameter estimation '•'. '

It was assumed mat several of the parameters in
the model were uncertain and should be character-
ized by probability density functions. Steinberg et al.
(1996) combined these density functions into a sin-
gle prior probability density function in a Bayesian
analysis for parameter estimation. Here, we focus on
the interpretation of available information to define
the individual parameter probabilities. From Eqs. (1)
and (2), the following uncertain model terms are
discussed and estimated below: anaerobk dechlori-
nation rate constant (*.), aerobk bkxJegradation rate
constant (*„). volatilization rate constant (*„*), re-
suspension velocity (»r), and the thickness of the
contaminated sediment layer (f).

3.1. The anaerobic dechJorination rate constant

Laboratory research and field studies have shown
mat PCB molecules are dechkxinated by bacteria
under anaerobk conditions. For example. Brown et
al. (1987a>, Brown et al. (1987b) evaluated chro-
matograms of upper Hudson River sediment in the
anaerobk zone and found mat me distribution of
congener concentrations was inconsistent with Aro-
clor 1242. Assuming mis Arodor was the primary
Aroclor discharged into meaner. Brown et*L con-
cluded mat the discrepancy was due to dechlorina-
tion by anaerobic bacteria. The effectpf the dechlori-
nation, Brown et aL hypothesized, was to reduce the
relative concentration of the more highly chlorinated
congeners, and to increase the concentration of those
which are less chlorinated. Laboratory evidence for
dechlorination was reported by Queosen et aL (1990).
In these experiments, the more highly chlorinated
congeners of Aroclor 1242, 1248, 1254, and 1260
were dechlorinated, white most di- and tri-chlo-
rinated congeners increased in concentration over me
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24 week incubation period. Similar results were re-
ported by Abramowicz et al. (1993) in a study of
Aroclor 1242, 1254, and 1260 in Hudson river sedi-
ments.

These investigations are useful in establishing the
important factors which control the dechlorination
process, and in quantifying changes in PCB concen-
tration due to dechlorination over time. However,
they do not propose detailed kinetic models of the
process or provide process parameters. In the ab-
sence of this guidance from microbiology, a simple
pseudo-first order reaction rate was chosen for mis
analysis. This is equivalent to assuming Michaelis-
Menten enzyme kinetics when the substrate concen-
tration is much less than Km, the saturation constant
Descriptions of more complex kinetics which, for
example, account for the loss of microbial enzyme
activity or for the presence of growth and energy
substrates, have not yet been developed for PCB
dechlorination.

The probability density function for the rate con-
stant kt which characterizes the loss of mass due to
the dechlorination process under the assumption of a
first order reaction must be estimated from the avail-
able data. Laboratory studies were used to define this
density function, since no naturally-occurring PCB
dechlorination rates measured in actual rivers have
been reported in the literature. Four published labora-
tory studies were reviewed, each simulating different
environmental conditions. The anaerobic dechlorina-
tion rate constant was calculated from each study,
and men adjusted to reflect the PCB congener com-
bination believed to have been originally discharged
into the Hudson River (38% Aroclor 1016 and 62%
Aroclor 1242 (Bopp, 1979)). Table 1 shows the
calculated half-lives.

TaMe 1 —
KUC consono compile
Author
Chenet 11.0988)
Rhee et at (1989)
Quensen et al. (1990)
Rhee etal.( 1993)

120 ppm
300 ppm
500 ppm
800 ppm

a nan mac
Rate const
3.3X10-
3.2X10"
1.4X10"

4.6 X 10-
4.6X10-
83X10-
4.0X 10"

rooic laooiaiory experiments
tantfe-') Half-Hfe(d)

243
2S1
573

1740
1740

' 966
' 2000

The wide range of half-lives in Table 1 is difficult
to reconcile. It emphasizes the need for a probability
density function for the rate constant, since a mod-
eler would clearly be uncertain if asked to choose a
point estimate on the basis of these data. Some of the
variability in the rates is surely due to the different
conditions under which the experiments were con-
ducted. Table 2 summarizes some of the important
parameters of the experiments and their variability
across experiments. Possibly important differences in
parameters include the use of enriched versus unen-
richcu bacteria, the amount of agitation the bacteria
were subject to, the sediment origins, the gaseous
environment maintained, the total PCB concentra-
tion, and the particular congener mix which the
bacteria :iere dechlorinating. Table 2 also shows
conditions which would be expected in the Hudson
River.

The differences in environmental conditions
shown in Table 2 lend uncertainty to the extrapola-
tion of the laboratory data to the field. For some
conditions, it is possible to guess what the impact of
the difference on the rate is. For example, the 25°C
temperature probably permits faster dechlorination
rates man would be seen under the colder conditions
that exist in the sediment during the winter.

The impacts of other differences are much harder
to guess. Continuous stirring to simulate a continu-
ously stirred reactor equalizes the concentration of
PCB throughout the reactor, and allows uniform
contact between the PCB-contaminated sediment and
the bacteria, but does not simulate the heterogeneous
concentrations which exist in the upper Hudson
River. Use of enriched bacteria selects for those
bacteria which are capable of degrading PCB, and
therefore the population of PCB-degradmg bacteria
is probably higher in the laboratory experiments than
in the Hudson River. Chen et al. (1988) showed the
gaseous environment to be important, but it is not
known what gases predominate in the sediment envi-
ronment of the upper Hudson River.

Another important variable is die particular mix
of congeners in the sediment Experiments show mat
different congeners are degraded at very different
rates. Rhee et al. (1993) showed that different start-
ing concentrations of Aroclor 1242 underwent vary-
ing degrees of dechlorination during the same time
period.

11.0172
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Table 2
Comparison of environmental conditions for anaerobic biodegradation

Environmental condition

Bacterial characteristics
Temperature
Sediment stability

Geochemistry

Gaseous environment
Total PCB concentration
Congener mix

Upper Hudson River

naturally occurring
0-30°C
disturbed during flood flows

naturally occurring

not known
0-l500ppm
originally Aroclor 1242/1016;
current conditions not known

Chen et al.
(1988)

enriched bacteria
25°C

stirred vigorously
and continuously

Hudson River
sediments
co, /HI
30 ppm
naturally occurring

Rhee ct al.
(1989)
enriched bacteria

25"C
not clear: treatment
may include
mechanical agitation
Hudson River scdin.ents

N,
707 ppm
naturally occurring

Quensen et al.
(1990)
unenriched

25°C
no agitation
reported

Hudson River
sediments
N2-C02
500 ppm
Aroclor 1242

Rhee el al.
(1993)

unenriched
room temperature
no agitation reported

Owasco Lake. NY
sediments
Nj
120-800 ppm
Aroclor 1242 î

Uj

O
H
-J
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A disturbing pattern in the data is die tendency for
the degradation to become slower over time. One
possible hypothesis is that below certain concentra-
tions of congeners, very little degradation occurs.
Thus, the rates calculated from the experiments may
be relevant only for a narrow range of concentra-
tions.

Using all the laboratory data and all the knowl-
edge about differences in laboratory and field condi-
tions, and recognizing the heterogeneity and non-
stationarity of the field conditions, the following
estimates are made:
1. 25% chance mat the half-life is less man 1700

days;
2. 25% chance the half-life is between 1700 and

3000 days;
3. 50% chance the half-life is greater man 3000

days;
Let ?, denote the half-life in days for PCB in the

sediment due to anaerobic dechlorination. A log-
normal distribution for r, approximately fitting the
specifications above is: LN(4320, 44442). This dis-
tribution produces a 0.1% probability that ta is less
man 240 days and a 3.5% probability that /„ is less
man 570 days. The corresponding distribution for me
anaerobic first order rate constant kt is log-normal
with a mean of 0.00034/4 and a variance of 1.34 X
10~7/d2. A plot of the probability density function
for kt appears in Fig. 1.

32. Aerobic biodegradation rate constant

Aerobic biodegradation of PCBs has been ob-
served in the laboratory (Bedard et al., 1986; Bedard
et al., 1987; Furukawa et al., 1978) and in situ under
artificial stimulation in the upper Hudson River
(Harkness et al., 1993). As is the case of dechlorina-
tion by anaerobes, no detailed kinetic model for the
aerobic degradation of PCBs has been proposed. In
the absence of such a model, we have chosen to use
a simple pseudo-first order reaction to model the
aerobic degradation of dissolved PCBs in the water
column of the Hudson River.

The prior density for the rate constant is deter-
mined from laboratory data gathered by Furukawa et
al. (1978), Bedard et al. (1986), and Bedard et al.
(1987). In these experiments, aerobic bacteria ex-
tracted from aquatic sediments were used to degrade

2000

0.0002 0.0064 O.OOOS
d*ehleria*tiai r»e«

Fig. I. Prior probability density function for die anaerobic dechJo
rinatkn iale constant.

various mixtures of PCB congeners. As was the case
for anaerobic dechlorination, the half-lives calculated
from these experiments span more man one order of
magnitude. Table 3 snows the calculated rate con-
stants and half-lives after adjustment for the Aroclor
1016/1242 mixture of congeners. Some of the vari-
ability in the rate constants may be explained by the
differing environmental conditions under which the
experiments were performed. These are summarized
in Table 4, which also shows the environmental
conditions which are expected to predominate in the
natural environment of the Hudson River.

The problems in extrapolating the laboratory aero-
bic biodegradation rate constant to the upper Hudson
River are similar to those for extrapolating labora-
tory anaerobic biodegradation rates. Each of the
differences in Table 4 adds uncertainty to the extrap-
olation. While-for some conditions, it is possible to
guess what the impact of the difference, for other
conditions, mere are not enough data to understand
how the*degradation rate will be effected.

Temperature: The 25°C temperature probably en-

Tabk3
Rate constants computed from aerobic laboratory experiments
Author Rate constant ($-') hatttifeQO
Furukawa etal.( 1978)

Acineiobacter
Atcaligrnes

Bedaidetal.(1986)
BedaidetaL(1987)

3.2X 1(T4

3JX10"4

8.4X 1(T6

1.6X 1(T5

0.60
0.58
22.9
12.0

11.0174
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courages biodegradation at a higher rate than would
be found in the cooler waters of the river.

PCB concentration: In the work of Furukawa et
al. (1978), the rate decreased as the experiment
proceeded, implying that as the concentration of
PCB decreases, the biodegradation rate may de-
crease. Hence the less concentrated PCB in the water
column (0.1 ppb versus 10 to 20 ppm in the labora-
tory) may be subject to degradation at a much slower
rate man mat observed in the laboratory:

Bacterial strain and concentration: The experi-
ments exposed PCB to enriched bacteria grown on
biphenyl; the field contains many more species of
bacteria and concentrations of the particular strains
tested are likely to be much smaller than those
created in the laboratory experiments. It is unlikely
mat the concentrations of PCB-degrading bacteria
are as high in the water column as they were in me
reactors.

Congener mix: The particular combination of con-
geners in the mix could effect the rate of biodegrada-
tion. Bedard et aL (1986) showed mat 4,4'-dichloro-
bipbenyl had different degradation rates depending
on the mixture of congeners it is found in. The
mixture of congeners in the upper Hudson River is
heterogeneous and probably non-stationary, implying
mat the aerobic biodegradation rate may be variable
in time and space as well.

Considering the smaller expected bacterial popu-
lations, cooler prevailing temperatures, and lower
PCB concentrations in the upper Hudson River when
compared to the laboratory environment, it is as-
sumed mat the half-lives shown in Table 4 are
considerably shoim than the half-lives in the upper
Hudson River. After weighing all the data, the large

TaHe4
Comparison of environmental conditions for aerobic biodegradation

Fig. Z Prior probability density function forme aerobic biodegr*-

variabflity between the computed rale constants, and
our knowledge of the two environments, the follow-
ing estimates are made:
1. 95% chance mat the half-life is greater man 24 h;
2. 50% chance mat the half-lire is less man % h.

A log-normal distribution for the half-life (in
hours) approximately fitting these specifications is
LN(136, 19140). This corresponds to a log-normal
distribution for me aerobic biodegradation rate con-
stant k0 with expectation 0.012 h"1 aid variance
0.00011 h~2. The probability density function for k0
is graphed in Fig. 2.

33. Volatilization rate constant

Using Whitman's two-film theory of volatiliza-
tion, and assuming liquid film control (Mackay et al.
(1983)), the volatilization rate may be modeled as

*-.-££,.* f (*•JT :z
c- *«<c< W

Environmental condition Upper Hudson River Furukawa et at (1978) Bedard etaL (1986) Bedard et aL (1987)
Bacterial species not known

Bacterial concentration not known

Total PCB concentration
Congener mix

0-30fC
0-10 ppb
originally 1242/1016;
current condition
not known

enriched AIcaBgenes and
Acinetobacter
Alcaligener. 23 X 10* mT';
Acinetobacter 4.4 X 10* mT'
not given
10 ppm
individual congeners

enriched Akattgates

3.8X10* ml"1

30"C
20 ppm
mixture of congeners

Alcoligenes

3.8X10' ml"'

3CTC
10 ppm
Aroctor 1242

11.0175
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Table 5
Distributions for volatilization parameters
Parameter Distribution
Molecular weight, M (g/mol) N(250.918)
Velocity, « <m/s) LN( 1 .5, 0.58)
Depth, z(m) LN(3.7,0.81)
Temperature, T CO LN( 10,95)

where cd is the dissolved contaminant concentration,
z is the water column depth, and AT,, the liquid film
transfer coefficient, can be approximated by

/32\°-25(Dt«)°-s

U) -7*- (4)
where M is die molecular weight DL is die oxygen
diffusivity, and « is die stream velocity (Mills et al.,
1985; O'Connor and Dobbins, 1958).

Using die formulation in Eq. (4) and dividing by
z, a prior density function for kmt can be calculated.
The first step is to create first and second moments
for each of die parameters in die equation (Table 5)
based on knowledge of die upper Hudson River
environment and die molecular weight of congeners
found in Aroclors 1016 and 1242. The exception is
mat for M, die molecular weight In die case of M,
die mean is so far removed from zero and die
variance is so small, mat die probability hi die left
tail at values of M less dum zero is negligible.

The mean of die prior distribution for kml is
found by solving Eq. (4) with die mean values of die
parameters given in Table 5. The mean value thus
calculated is 3.88 X 10~6 s~'.

The variance of die prior distribution is found
using first order error analysis:

4 4 IM \\ f 9klvol

Bxs
cov(x|t

(5)
where \ — [M, T, u and z] and |m represents die
partial derivative evaluated at die mean value of x.
Assuming a diagonal variance-covariance matrix for
x, Eq. (5) yields a variance of 3.24 X 10 "'' s'2.

The two moments are now used to parameterize a
log-normal distribution for die volatilization rate
constant
JtTOl~LN(3.88X 10~6 s-',3.24X 10~" s~2)

(6)

The probability density function for i^, is plotted
in Fig. 3.

3.4. Resuspension and sedimentation velocity

Sorbed PCBs are transported between the water
column and the benduc sediment via resuspension
and sedimentation. No field studies measuring the
rates of these processes have been reported for the
upper Hudson River. However, field studies have
been conducted at other sites. The data from these
studies are used to construct a prior distribution for
the resuspension velocity in the upper Hudson River.

In the simulation model, the resuspension velocity
represents the rate of sediment loss from the river
bottom in units of L/T. For example, a resuspension
rate of 1 m/yr means mat resuspension is responsi-
ble for removing 1 m from the top of the sediment
bed each year. Under the assumption of scour and
fill equilibrium discussed above, mis ŝuspended
material is replaced with the same amount of sedi-
menting material, so the bed elevation at any point in
space remains constant

Colby (1964) recorded gross resuspension of four
feet in die Colorado River over four months in the
spring and summer, and two feet of gross resuspen-
sion in the same amount of time in die Elkhorn River
in Nebraska. Both these rivers, however, had sedi-
ment concentrations one to two orders of magnitude
higher man those observed during the spring and
summer in the upper Hudson River.

Culbertson and Dawdy (1964) studied scour and
fill in die Rio Grande River. During die spring

350000

300COO

2SOCOO

200000

iscooo

locooo

soceo

\

»«-Ot 1.2«-05 l.S«-05
nt* e«o«t«at (a*1)

Fig. 3. Prior probability density function for die volatilizatioa rate
constant

11.0176
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high-flow season, between zero and two feet of bed
material was removed (and subsequently replaced by
sedimentation) at the thirteen cross-sections studied.
Once again, the suspended sediment concentrations
recorded during this period were two orders of mag-
nitude higher than those found in the upper Hudson
River during the spring and summer.

The study of Andrews (1979) analyzed scour and
fill data from the East Fork River in Wyoming. In
the cross-sections Andrews studied the amount of
scour recorded in each cross-section varied from
three-quarters of a foot to two feet over a sixty-four
day period in the spring. No suspended sediment
data are given in the study.

Analyses of suspended sediment concentrations
and correlations with flow have indicated that re js-
pension at Fort Edward does not occur until a flow
of 283-340 m3 is reached, and that resuspension at
Waterford requires minimum flows of 538 m3 (Zim-
mie, 1985). These flows are typically reached several
times each year. With these data and the results of
the studies by Colby, Culbertson and Dawdy, and
Andrews, the prior distribution for the resuspension
velocity in meters per year is defined as:

3 .50 r

v, ~ LN(0.46 m/yr, 0.40 m2/yr2) (7)

This distribution is derived such that the conditions
P( v, < 0.05 m/yr) « 0.05 />( v, < 1 m/yr) = 0.90

are met The probability density function for vr is
plotted in Fig. 4.

0.50 1.00 1.50 3.09 J. 50
contaminated MdiMnt depth (•)

3. SO 1.00 1.50 J.OO

Fig. 4. Prior probability density function for the resuspension
velocity.

Fig. 5. Prior probability density function for the contaminated
sediment depth.

33. Contaminated sediment depth

The contaminated sediment depth, £, is an artifact
of (he model specification. It enters the model in Eq.
(2) as the depth over which the mass of PCB is
averaged in order to convert PCB mass to PCB
concentration. This value should reflect the depths
used to calculate the initial condition PCB concentra-
tions (PCB concentrations taken from cores drilled
during 1976-1978), and those used to calculate the
'observed' PCB concentrations. These values are not
the same for all the cores — they varied from 5 cm
to 300 cm, depending on the depth of the core, and
the depth to which PCB mass was detected. £ also
represents contaminated sediment depths for averag-
ing of the mass at locations where no core samples
were taken and where the depth of, or even the
existence of, PCB is uncertain.

The uncertainty in the sediment depth is reflected
in the chosen prior probability density function which
assumes a 25% probability mat it is less than 0.1 m
and a 5% probability that the sediment depth is
greater man 1 m. This distribution represents, in part,
additional knowledge that cores were taken at loca-
tion nought most likely to have high PCB concentra-
tions. This implies that many locations would have
contaminated sediment depths significantly less than
those observed in the cores. A log-normal distribu-
tion with expectation 0.317 m and variance 0.167 m2

fits the specifications above. The probability density
function is plotted in Fig. 5.
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Fig. 6. Probability density functions for td calculated using
convolution and the summation of moments.

3.6. Combining the volatilization
biodegradation rate constants

and aerobic

From Eq. (1) it is clear that the aerobic biodegra-
dation rate constant and die volatilization rate indi-
vidually will not be identifiable in the model. How-
ever, their sum is an identifiable quantity. The prior
density function for the combined aerobic biodegra-
dation rate constant and the volatilization rate con-
stant is constructed from a log-normal distribution
with expectation created by adding die expectations
of the two rate constants and variance created by
adding the two variances. The true distribution, given
the two prior density functions, would be obtained
by convoluting the density functions, but it was
expected mat the addition of moments would provide
a nearly identical distribution. This assumption was
checked by actually performing the convolution; the
resulting two probability density functions are shown
in Fig. 6 and are nearly coincident

4. Discussion

There are formal, established methods (see Mor-
gan and Henrion, 1990) for judgmental probability
elicitation from experts; these methods are apt to be
useful for uncertain model parameters in some cases.
However, in this study we chose to assume a typical
mechanistic modeling scenario in which scientific
experts for each uncertain term are not readily avail-
able, so the modeler must rely on the existing litera-
ture for parameter estimates. Our observation of this

exercise is that modelers tend to make quick, ad hoc
choices. Indeed, there is often little discussion of
parameter selection and little justification for choice
in the literature on mechanistic surface water quality
models. As the preceding section illustrates, the use
of simple point estimates for parameter values may
necessitate that the investigator ignores considerable
amounts of conflicting data in an effort to limit
parameter estimation to a single value.

A generally-held perspective is that most model
parameters have physical meaning and thus can be
measured directly. However, direct measurements of
die quantities of interest are often unavailable, as
was the case in the Hudson River study. Further-
more, this perspective assumes that the model equa-
tions represent truth. The preceding discussion illus-
trates, however, that at least two types of model-
specification errors, aggregation error and assump-
tions of stationarity, may be unavoidable in model
development In these cases, where the equations are
approximations to actual behavior, it is probably not
reasonable to insert a measured parameter into a
model without adjustment (tuning). Thus, despite
modeler claims, the presence of so-called 'tuning'
parameters in a model is apt to be a positive at-
tribute, since tuning allows the modeler the opportu-
nity to adjust for, or correct, the approximations or
errors in the model equations.

Notwithstanding modeler bias against tuning pa-
rameters, there is general acknowledgment among
modelers that lab-to-field differences and field-to-
field differences are important in the extrapolation of
scientific inferences. Ironically, these differences im-
ply that adjustment, or tuning, is apt to be necessary
when extrapolating to a field site of interest If this is
so, then how scientific knowledge is used to make
this adjustment to point estimates and to uncertain-
ties is an important modeling step and should be
thoroughly documented.

For example, the differences in experimental con-
ditions for anaerobic dechlorination studies identified
in Table 2 are undoubtedly responsible for some of
the variability in the half-lives presented in Table 1.
This variability (in Table 1) is substantial, and it
illustrates the need for scientific judgment in the
interpretation and application of laboratory studies.
Furthermore, extrapolation of these estimates to re-
flect natural environmental conditions is apt to in-
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volve additional uncertainty because relationships
between environmental conditions and natural pro-
cesses are complex and poorly understood. Explana-
tion of the use of this limited scientific information
for mode] parameter estimation should be part of
model documentation and justification.

Other factors contribute to the difficulty in model
parameterization, as identified in the examples that
we discuss above. These factors include:
• nonstationarity and aggregation, which affected

the estimate of the volatilization rate,
• extrapolation of information and analyses from

other sites, which was instrumental in the deter-
mination of sedimentation/resuspension velocity,

• bias due to study design vocation of sampling
sites), which appeared to be important in the
estimation of the contaminated sediment depth.
All of these factors are likely to increase uncer-

tainty in the point estimates of parameters, and thus
explanations relating each scientific analysis to the
resulting parameter estimate should be provided to
improve model applications. Beyond mat, the in-
evitable problems with point estimates underscore
the need to include uncertainty in die analysis.

certainty. As we demonstrate in this paper, Bayesian
inference leads to probabilistic characterization of
uncertainties, both data-based and judgmental. In a
full Bayesian analysis (see Steinberg et al., 1996),
these probabilities are combined and a complete
expression of uncertainty results. While there are
difficulties that remain to be resolved (as discussed
above and in Steinberg et al., 1996), Bayes' theorem
still appears to offer the best chance for a logical,
rigorous analysis that characterizes the uncertainty in
water quality models when these models must be
parameterized with limited information obtained or
extrapolated from several sources.
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5. Conclusions

Two primary conclusions result from our work,
one concerned with a key weakness of current mod-
eling approaches and the other concerned with a
promising solution to mis weakness. The parameteri-
zation difficulties that are the focus of mis paper
highlight a problem with many existing water quality
models. Gaps in scientific understanding and limited
data contribute to the fact mat the predictions from
large mechanistic water quality models are apt to be
highly uncertain. As a consequence of mis scientific
uncertainty, management recommendations and sci-
entific inferences based on these models may have
relatively little scientific support. If decision makers
are to have confidence in science-supported manage-
ment, then better, more rigorous methods are needed
to extract and combine information from scientific
studies for simulation modeling.

A promising solution to this problem is to use
Bayesian analysis for pooling information about
model parameters and for expressing parameter un-
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