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ABSTRACT: Modelers of contaminant fate and transport in surface waters typically rely on literature values
when selecting parameter values for mechanistic models. While the expert judgment with which these selections
are made is valuable, the information contained in contaminant concentration measurements should not be
ignored. In this full-scale Bayesian analysis of polychlorinated biphenyl (PCB) contamination in the upper
Hudson River, these two sources of information are combined using Bayes' theorem. A simulation model for
the fate and transport of the PCBs in the upper Hudson River forms the basis of the likelihood function while
the prior density is developed from literature values. The method provides estimates for the anaerobic bio-
degradation half-life, aerobic biodegradation plus volatilization half-life, contaminated sediment depth, and re-
suspension velocity of 4,400 d, 3.2 d, 0.32 m, and 0.02 m/yr, respectively. These are significantly different than
values obtained with more traditional methods, and are shown to produce better predictions than those methods
when used in a cross-validation study.

INTRODUCTION
Predictions from water-quality models are largely dependent

on the values of the parameters in the models. In mechanistic
models, examples of model parameters include chemical and
physical reaction rates, sedimentation and resuspension veloc-
ities, and environmental variables such as water clarity. In em-
pirical models, parameters are coefficients or exponents in the
model, and do not necessarily have particular physical mean-
ings.

Within the context of a particular irudel specification, a
modeler may be uncertain about which value to choose for the
parameter. For example, it frequently happens that while there
is some information that indicates the expected behavior of the
chemical in the environment:

• There are no site-specific data,
• There are no chemical-specific data,
• The available data conflict with each other, or
• The parameter is an aggregated one representing condi-

tions during many time periods or at many sites.

In these cases, it makes sense to adopt a probability distri-
bution in which both the uncertainty the modeler has about
the parameter value and its inherent variability can be quan-
tified. The data upon which the investigator bases'the proba-
bility distribution as well as the judgment exercised in com-
bining these data are referred to as "prior knowledge." The
term refers to the information that the investigator has prior to
reviewing and analyzing the data set for the particular study
of interest.

Sometimes modelers estimate parameter values by fitting
the model parameters to UK data. In this case, the resulting
parameter values are uncertain because the modeler must use
some (often arbitrary) criterion to determine the best fit Even
parameter values obtained from a nearly perfect fit with the
data are uncertain when the calibrated model is applied to a
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new input data set There are many possible reasons for thi
behavior, Beck (1987) presents a particularly lucid discussioi
of this and other issues related to uncertainty.

When model fitting is done in the context of a statistica
model for the measured concentrations, and the fitting criterior
is to maximize the likelihood of the observed measurements,
the method is known as maximum likelihood estimation. Foi
example, the measured concentration may be nwdeled as a
normally distributed random variable with mean, r . equal to
the prediction from a simulation model, and unknown variance
a3. Let 0, represent the vector of unknown parameters in the
simulation model, and u<8/ the model prediction. The prob-
ability density function for ooserving a particular concentra-
tion, y, given 0, and a, is the likelihood function and is given
as

1
(2W2)0 exp B [*=-«]}

Together, the parameters 0, and a comprise 6, the vector of
unknown parameters to be estimated. If a set of independent
observations, y, is taken, the likelihood function for die set is
the product:

(2)

of the normal density functions from (1). Usually, the loga-
rithmic forms of (1) and (2) are used. In that case, (2) becomes

ta/(y|0) » -r ln(2ircrt) - (3)

Maximum likelihood estimation would maximize ln/(j|0) as
a function of 0.

One of the problems with maximum likelihood estimation
and many other methods that estimate parameters from the
data is that a global optimum may be difficult to identify when
many local optima exist A second deficiency of the optimi-
zation approach is that it offers no formal route for prior
knowledge to enter the analysis—as a result, the optimized
values may be best for die calibration data set, but may not
simulate the process well in other applications of die pa-
rameterized model. One way to incorporate both prior infor-
mation (in the form of probability density functions) and em-
pirical evidence (in the form of the likelihood function) is to
use Bayesian parameter estimation. An added benefit is that
the resulting point estimate of the parameter is unambiguous
since the resulting function typically has only a single opti-
mum.
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In the present paper, we describe how Bayesian parameter
estimation can be used to estimate parameter values for a con-
taminant fate and transport model. This is undertaken for a
mechanistic model of polychlorinated biphenyl (PCB) in the
upper Hudson River. Following a discussion of Bayes' theo-
rem, we describe the simulation model used and the model
inputs. Results of the Bayesian analysis are presented, and
compared with those resulting from the use of prior knowledge
solely, and from maximum likelihood estimation. Finally, we
conclude with some observations about the advantages of Bay-
esian parameter estimation in water quality modeling [see Ber-
ger (1985) for a thorough discussion of Bayesian techniques
for parameter estimation].

BAYESIAN PARAMETER ESTIMATION FOR WATER
QUALITY MODELS
Bayes' Theorem

Bayesian parameter estimation is based on the use of Bayes'
theorem, published by Thomas Bayes in 1763. This theorem
is used to infer probabilities of events or distributions of pa-
rameters, given data which are indicative of them. As Berger
(1985) writes:

The typical phrasing of Bayes's theorem is in terms of dis-
joint events At, A2, ..., A,, whose union has probability
one (i.e., one of the A, is certain to occur). Prior probabil-
ities P(At), for the events, are assumed known. An event B
occurs, for which P(B\AJ (the conditional probability of £
given A,) is known for each A,. Bayes's theorem then states
that:

P(A,\B) = T

These probabilities reflect our revised opinions about the
A,, in light of the knowledge that B has occurred

When Bayes theorem is extended to estimation of parame-
ters, rather than the estimation of probability of events, it takes
the form:

ir(6|y) = - (4)
(y|6) effi

In this equation, ir(6) represents the probability density func-
tion for 6, the vector of unknowa parameters, before any data
are collected. This is called the prior distribution for the pa-
rameters. ir(6|y) is the revised probability density function
after data, y, have been collected and is called the posterior
density function. L(y |6) is the likelihood function for y given
6. It is the probability density of y given 6, considered as a
function of 6.

The numerator of (4) is regarded as the joint density of y
and 6, and the denominator is the marginal density of y, the
division of the former by the latter creates the revised condi-
tional density of 0 given y. Since the denominator is always
a constant (i.e., not a function of G), the posterior distribution
is known up to a normalizing constant when only the numer-
ator is evaluated. Thus, the shape of the posterior density func-
tion may be found from evaluating the numerator only, while
the scale of the distribution requires calculation of the denom-
inator as well.

In this paper, the mode of the posterior density function is
found and it is used as a point estimate for the parameter
vector (rather than the more common maximum likelihood es-

timates). Ultimately, the full value of a Bayesian analysis
should be realized with the use of the posterior distribution to
yield probabilistic statements about the parameters and pre-
dictions, the present analysis gives only an approximation of
this goal.

Fate and Transport Modeling
Bayes' theorem can be applied to fate and transport models

in surface water. These models typically take their form from
the advection-diffusion-reaction equation (Thomann and
Mueller 1987). Consider a one-dimensional form of this equa-
tion for the fate and transport of a contaminant in a river with
known loading rate W

9C<x, t) aq*,*) ( 3
dt ~ dx dx

[ aq*. /)]
I *< J"

W

(5)
where u = water velocity; D = longitudinal dispersion coeffi-
cient; r « a first-order rate constant for loss of the compound;
and C(jt, r) = concentration at location x at tune r. Assume that
the velocity and dispersion are known (or can be fairly well
approximated from measurements and empirical formulas) and
that interest centers around estimating the first order rate con-
stant which governs the loss of the contaminant Then (4) can
be solved for ir(6|y) with a and r comprising 6', and y being
the vector of known concentrations, C(x, t). /XylO) is the like-
lihood of observing y given the unknown parameters; its log-
arithm may computed from (3) with u, equal to the predictions
from (5). The joint prior density function for r and Q- can be
computed from the multiplication of individual prior densities
for r and a assuming that the investigator's uncertainties about
each are independent

In assessing the prior density function for r, the investigator
uses all the information available in the literature which can
provide guidance on expected loss rates. This could include
the results of laboratory experiments, field tests on the inves-
tigated water body or elsewhere, empirical equations whose
structure and parameters are fit from other data sets, and the
investigator's own intuition based on previous experience.

The error standard deviation, a, originates from the concept
that any one of a range of PCB concentrations might be mea-
sured at a given site in the river at a particular moment Choos-
ing a prior distribution for <j requires the investigator to assess
the lack of fit in the model and the two main sources of ran-
domness in the contaminant data: the degree of error in the
measurement technique and the inherent variability which
characterizes the water body. The assessment may consider
model specification error, the reliability of the laboratory an-
alytical techniques employed, the spatial heterogeneity of the
data and the coarseness of the grid of measurements, and the
temporal fluctuations in the concentrations.

HUDSON RIVER CASE STUDY
Fate of PCBs In Hudson River

Polychlorinated biphenyl (PCB) contamination of the Hud-
son River dates from approximately 1950 when General Elec-
tric began discharging PCBs from its electrical equipment
manufacturing plants in Fort Edward and Hudson Falls, N.Y.
(Schroeder and Barnes 1983). Over 230,000 kg of PCBs
[mostly in the commercially available forms of Aroclor 1016
and Aroclor 1242 (Bopp 1979)] were discharged into the Hud-
son River at these sites between 1950 and 1977 (Tofflemire
et al. 1979). Due to the hydrophobicity of PCBs, most of the
chemical sorbed to river sediments. [There are 209 different
forms (congeners) of PCBs; Hawker and Council (1988) es-
timate that the octanol-water partition coefficients for PCB
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.. .- .— '* iw , wiui nyoropno-
bicity generally increasing as the number of chlorine atoms in
the molecule increases.] This material has migrated down*
stream, contaminating the Hudson River sediments with PCB
from Fort Edward to New York Harbor (Fig. 1) and serving
as a source of PCB loading to the water column. Fig. 2 shows
measurements of PCB concentrations (ppm) from 243 sedi-
ment cores taken in the upper Hudson River from 1976 to
1978. [The upper Hudson River is defined as the Hudson River
from its origin in the Adirondack Mountains to Troy N.Y.
(just south of Waterford). Between Troy and New York
Harbor, the river is tidally influenced]

Besides downstream transport into the lower Hudson River
and into the New York Harbor, loss of PCB mass in the upper
Hudson River is due primarily to three mechanisms: volatili-

no. 1. Hudson Rlvar from Glana Falls to New York Harbor
(Adapted from Schroadar and »—»* (1W3)]

10000 20000
a*t«ra

10OOO 40000
of tart Mnx<

RQ. 2. Maximum 1976-78 PCB Concentration hi Each Sadl-
nwntCora

zation, aerobic oiodegradation, and anaerobic dechlorination.
A brief discussion of the importance of these mechanisms fol-
lows. A more complete discussion can be found in Steinberg
(1994) and in the referenced publications.

Volatilization of PCBs in the laboratory has been demon-
strated by Doskey and Andren (1981), Dunnivant (1988), and
Warren et al. (1987). Investigations of the fate and transport
of PCBs in the natural environment typically include a deter-
mination of the volatilization flux; Baker and Eisenreich
(1990) calculated volatilization rates of PCBs in Lake Superior
and Thomann et al. (1989) estimated the effect of volatilization
on PCB mass in the lower Hudson River using a simulation
model. Larsson et al. (1990) showed that volatilization of
PCBs occurred in the River Em in Sweden using a floating
sampler. Calculations using Whitman's two-film model indi-
cate that half-lives on the order of 3.5 d are likely.

Aerobic biodegradation is a biological removal process in
which PCB molecules are converted to intermediate products
such as benzoic acids. These products may later be completely
mineralized by other bacteria (Furukawa et al. 1979). Aerobic
biodegradation of PCBs has been observed in the laboratory
(Bedard et al. 1986; Bedard et al, 1987; Furukawa et al. 1978);
and in situ under artificial stimulation in the upper Hudson
River (Harkness et aL 1993). Half-lives computed from these
experiments are on the order of 0.08 to 8 d

Anaerobic dechlorination is a biological "transformation"
process in which chlorine atoms in highly chlorinated PCB
molecules are removed and incorporated into metabolic prod-
ucts or by-products. This results in an increase in the number
of less-chlorinated PCB molecules and a decrease in the num-
ber of highly chlorinated PCB molecules. Anaerobic dechlo-
rination has been observed in laboratory experiments (Quensen
et al. 1990; Rhee et al. 1989), and existence in the natural
environment has been deduced from field data in the Hudson
River (Brown et al. 1987a, b). Half-lives for die loss of PCB
mass (due to the loss of chlorine atoms attached to PCB mol-
ecules) of 200-2,000 d have been calculated from the pub-
lished data (Steinberg et al. 1994).

Simulation MocM
The simulation model for PCB fate and transport in die

upper Hudson River is derived from die advection-diffusion-
reaction equation. A number of simplifying assumptions were
made in deriving the form of the simulation model These as-
sumptions were driven by the lack of observational data to sup-
port more complex model formulation. They are detailed later.

Simplifying Assumptions

Overall PCB Physical/Chemical Behavior. PCB fate
and transport models are always complicated by congeaer- and
homologue-specific rates of sotption, degradation, and volatil-
ization. While the original mixture of PCB congeners dis-
charged into the river may be crudely estimated from General
Electric records of Aroclors bought (Bopp 1979), there are no
observational data until 1990 with which to calibrate congener-
or homologue-specific concentration predictions. Furthermore,
reaction rates and removal rates for individual congeners and
homologues are largely unknown and would have to be'esti-
mated from the data; the Hudson River data set is not suffi-
ciently large to identify so many additional parameters.

In this simulation model, the model parameters reflect the
overall behavior of PCBs in the upper Hudson River. Individ-
ual congener and homologue behavior is accounted for in the
creation of the prior density functions for degradation and vol-
atilization (see Steinberg et al. 199S). Experimental results and
empirical predictions used to derive the prior density functions
were weighted by the mix of Aroclors believed to have orig-
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inally been discharged into the Hudson River as documented
in Bopp (1979). The partition coefficient for PCB is calculated
using the same weighting (see the "Simulation Model Inputs"
section).

Sedimentation and Resuspension. Few measurements of
resuspension and sedimentation in the upper Hudson River
have been reported. Data to parameterize a model with seg-
ment-specific sedimentation and resuspension rates have not
been collected in the upper Hudson River. In light of this dif-
ficulty, a single overall resuspension rate was chosen to rep-
resent the behavior of sediment in the upper Hudson River.
The rate of sedimentation was calculated based upon the as-
sumption of no net buildup or removal of sediment. Thus, the
flux of sediment onto the river bottom was set equal to the
flux of sediment from the river bottom into the water column.
Although there may be net deposition in some regions and net
scouring in others, the delineation of these areas is not known,
the amount of yearly change is not known, and the movement
does not lend itself to one-dimensional modeling (in which we
average over cross sections) because it tends to be a localized
phenomenon.

Interstitial Diffusion. The model is also simplified in that
it does not include a term for interstitial diffusion of dissolved
PCB between the sediment and the water. This process may
be of particular importance in returning PCB to the water col-
umn during low-flow periods. In trying to reduce me numbc'
of parameters in the model, we did not include this term spe-
cifically because we believe that the effects of interstitial dif-
fusion are reflected in the resuspension velocity parameter es-
timate. The resuspension velocity is responsible for moving
PCB from the sediment to the water column and therefore its
posterior value reflects all processes that do this, including the
interstitial diffusion.

Single Sediment Layer. The sediment was modeled as a
single, mixed layer of PCB-laden sediment Core data were
averaged vertically over the depth of the PCB-contaminated
layer to set initial PCB concentrations in the sediment

We had expected core samples to reveal a consistent profile
of concentration variation with depth, reflecting the time pat-
tern of deposition and degradation. The four core sample data
sets used in this study showed no such profile, even for mul-
tiple cores taken in a single segment of the upper Hudson
River. This absence of a characteristic concentration profile
suggests that such patterns either are widely variable, or else
do not persist over time. This leads us to suspect that mixing
arising from storm events, other natural phenomena, or per-
haps human intervention has destroyed any continuous record
of PCB accumulation at the core locations. For this reason,
we did not choose to model variations in the PCB concentra-
tion with depth in the benthic sediment; rather, we elected to
model the benthic sediment in aggregate as (locally) well-
mixed.

Model Specification
The simulation model for PCB fate and transport in the

upper Hudson River is derived from the advection-difrusion-
reaction equation. It consists of two coupled differential equa-
tions, (6) and (7). Eq. (6) simulates c«, the total PCB concen-
tration in the water column, and (7) models c* the PCB
concentration in the sediments. Eq. (6) includes: (term 1)
transport terms; (term 2) a first-order reaction term for vola-
tilization and aerobic biode gradation in the water column;
(term 3) a term for increases in c. due to resuspension of
bottom sediments; and (term 4) a term for loss of PCB mass
due to sedimentation from the water column. Symbols in (6)
include: u, water velocity; D, longitudinal dispersion coeffi-
cient; *„,„ volatilization rate constant; k,, aerobic biodegrada-
tion rate constant; Fw, fraction of PCB that is dissolved; vr,
344/JOURNAL OF ENVIRONMENTAL ENGINEERING/MAY 1996

the sediment resuspension velocity; z, water column depth; am
v, sediment sedimentation velocity.

Changes in me concentration of PCB in the bottom sedi
menu c^ are modeled with a term for concentration increase
due to sedimentation of PCB-contaminated particles from th<
water column (term 5), and a term for concentration decrease
due to anaerobic decbJorination and resuspension of PCB-con-
taminated sediment (term 6). The sedimentation velocity i;
modeled as the complement to the resuspension velocity. Its
value is set as required to ensure that the flux of material
resuspended is compensated by an equal flux onto the bed. In
this way, no net scour or fill at any cross section is simulated.
[This approach is suggested by the results of Lane and Borland
(1954), Culbertson and Dawdy (1964), Colby (1964), and An-
drews (1979), each of whom reported cycles of fill and scour
and little net deposition or fill over the time period studied.]
Symbol* in (7) include: £, thickness of the contaminated sed-
iment layer, and k*, anaerobic biodegradation rate constant

dt
Vr
— c»

- %• (1 - F,)c.

dt -(H
(6)

(7)

is + A
dx dx

+ kJFwC. is term 2

— c» is term 3

— (1 - FJc. is term 4

d- /•„*. is term 5

> term 6

(8c)

(M)

(8*)

(V)

The simulation model was solved numerically using implicit
finite differences with timesteps of approximately one day and
spatial gridding of 1,000 m [see Smith (1978) and Richtmyer
and Monon (1967) for a discussion of finite difference meth-
ods for solving partial differential equations].

In the next section, we present the basis for calculation of
input values for the solution of (6) and (7). including the river
velocity, the longitudinal dispersion coefficient, the fraction of
dissolved PCB, suspended sediment concentrations, and bound-
ary conditions.

Simulation Model Inputs ~~
River velocity was calculated from the equation of conti-

nuity using flow rates reported by the United States Geological
Survey (USGS) and assuming rectangular channels with width
measured from USGS topographic maps.

River depth was calculated from the empirical weir equa-
tion:

Q = KLH" (9)
with K = 1.77 (SI units); Q = flow rate; L = weir length; and
H - height of the water over the weir. Weir lengths and heights
were obtained from the New York State Department of En-
vironmental Conservation.

11.0163



The longitudinal dispersion coefficient was calculated using
Fischer's equation (Fischer et al. 1979)

TABLE 1. Parameter Values at Mode of Prior Distribution

D = 0.011
V

'.VgzS (10)

where w = river width (estimated from USGS topographic
maps); g = gravitation acceleration; and S = slope of the water
surface (estimated from 10-year flood elevations from Federal
Emergency Management Agency floodway studies).

Fw is the fraction of PCB dissolved in the water column,
and is calculated from:

1
sKf

(H)

where Kf = partition coefficient; and s = suspended solids con-
centration. The partition coefficient, Kr is calculated using the
K^ estimates of Hawker and Connell (1988) for PCB con-
geners, and averaging the estimates to reflect the composition
of the Arbclor 1016/1242 mixture originally discharged into
the Hudson River. Kx was estimated from the Karickhoff
(1979) relationship: log,̂  = log10AT^ - 0.21. This yielded
a log Kx of 5.36. The fraction of organic carbon,/^, was taken
as the median /„ measurement of the upper Hudson River core
samples. This resulted in an estimate of fK of 6.3%. Multiply-
ing 10s-3* by 0.063 yields a Kf value of 14,400 and this was
the value used in the simulation model.

Suspended sediment concentrations are sampled daily at
Fort Edward, Stillwater, and Waterford, N.Y. Missing samples
were imputed using regressions of the logs of suspended sed-
iment concentration on flow or using regressions of suspended
solids concentration on suspended sediment concentrations at
adjacent stations.

The simulation model also requires boundary PCB concen-
trations in the water column. To predict missing days, the log
of PCB water column measurements taken at Fort Edward and
at Waterford were regressed against flow and year.

Initial PCB concentrations for use in the simulation model
were calculated from 243 core samples taken from the upper
Hudson River in 1976, 1977, and 1978. Each core had been
sectioned; the PCB concentrations of the sections were aver-
aged after removing all bottom sections of 0 ppm concentra-
tion. The average concentrations were assigned to 50-m
reaches of the river based upon where the sample had been
taken. All cores belonging to the same 50-m reach were av-
eraged, and this value was assigned as the reach PCB concen-
tration. Reaches where no PCB measurements were taken were
assigned 0 ppm concentrations, on the understanding that cores
bad been taken at locations where it was thought that PCB
would most likely be found. Initial concentrations at each node
of the model were estimated as the average of the nearest 10
reaches on either side of the node.

BAYESIAN MODEL ~

It is assumed that several of the parameters in the model
are uncertain and should be characterized by prior probability
density functions. These include the anaerobic dechlorination
rate constant (*.), aerobic biodegradation rate constant (*«,),
volatilization rate constant (*„,), resuspension velocity (*>„,
and the thickness of die contaminated sediment layer (£). The
estimation of the prior probability density functions for each
of these parameters is discussed in Steinberg et al. (1994). In

v summary, the distributions were estimated as follows:

• k. and k, are estimated from the results of laboratory stud-
ies on dechlorination and biodegradation

• k^, is estimated from empirical equations relating chem-

e
0)
a
'4
'.
£
v,

Description
(2)

Measurement error
Volatilization + aerobic biodegradation half-life
Anaerobic biodegradation half-life
Contaminated sediment depth
Rwuspension velocity

Parameter
value

(3)
28 ppm
3.1 d

1,400 d
0.07m

0.09 m/yr

ical properties and environmental conditions to the vola-
tilization rate

• v, is estimated from resuspension data collected in other
rivers (no data available for the upper Hudson River)

• £ is estimated from sediment cores taken from the upper
Hudson River

Also in Steinberg et al. (1994) is a discussion of how the prior
distributions for k^ and k were combined into a single dis-
tribution for k+ a new parameter representing the combined
effects of *voj and kf. This reparameterization was required be-
cause neither parameter is individually identifiable from (6)
and (7). Then, for greater interpretability, the density functions
for kt and k, were transformed into distributions for half-lives
due to anaerobic dechlorination (/«) and aerobic biodegradation
plus volatilization (tj.

A fifth unknown parameter, a, appears in the likelihood
function, (3). A discussion of the derivation of the probability
density function for a, the unknown variance of the PCB con-
centration, may be found in Steinberg et al. (1994) and Stein-
berg (1993).

Under the assumption of independence of these distribu-
tions, i.e. that knowledge of one parameter is not informative
about the distribution of another, they may be multiplied to-
gether to form the joint probability density function, ir(8), for
the suite of parameters

ir(8) (12)

The result is a multivariate lognormal density function with
mode located at me parameter values shown in Table 1. These
are the same parameter values found at the mode of the in-
dividual prior density functions.

The likelihood function is constructed from (3). We used
measured PCB concentrations in the sediment taken in 1984,
1985, and 1990 as y and predictions of sediment PCP con-
centrations from the simulation model as p.. The suite of five
unknown parameters (/., ?A v,, {, and a) comprises 0.

RESULTS
Posterior Distribution

By Bayes' theorem the posterior density function is pro-
portional to the product of the prior density function and the
likelihood function. Even without knowing the proportionality
constant (which would require a high-dimensional integration)
the shape of the posterior distribution can be explored, partic-
ularly in a neighborhood of the posterior mode where it attains
its maximum. The m^de itself can be used as a parameter point
estimate, replacing the point estimates commonly used by wa-
ter quality modelers that are based solely on expert opinion
(i.e., prior information) or on ad hoc model calibration exer-
cises; see Schnoor et al. (1987). As computing hardware and
integration algorithms improve it will soon become practical
to base parameter estimates and model predictions on the full
posterior distribution, better reflecting all sources of variability
and uncertainty.

Even locating the posterior mode is difficult in a statistical
JOURNAL Oe E 11.0164



pomi o requires approximating the numerical
solution to coupled partial differential equations, taking about
half a minute on a 20 MIPS computer; both inherent variability
and numerical approximations lead to nonsmooth posterior
density functions, making efficient derivative-based optimiza-
tion routines ineffective. We used a polytope direct-search
method [DUMPOL; see IMSL (1985)].

Achieving convergence with DUMPOL when searching for
a maximum in the five-dimensional parameter space required
good starting values. These were obtained by methodical!;-
varying two parameters at a time (a total of 40 combinations
for each pair of parameters was used), and using DUMPOL
to search the remaining three-parameter space for the maxi-
mum value of the posterior density function. [The optimization
is actually performed by minimizing the negative log of the
posterior density. This is equi. u^nt to maximizing the poste-
rior density itself.] For each pairing of parameters, a contour
plot of the maximized posterior density function was con-
structed by interpolating the 40 calculated posterior density
function values. The contour plots indicated the regions in
two-dimensional parameter space where the highest values of
the posterior density function were found. These regions were
used to establish several good starting points for the complete
five-dimensional optimization of the posterior density func-
tion. When the optimization was performed with these starting
points, the optimal parameter values shown in Table * were
found. Since these are the parameter values at which the pos-
terior density function is maximized, these are the values of
the parameters that determine the mode of the posterior density
function.

It is interesting to explore the shape of the posterior distri-
bution in the vicinity of the mode to determine if there is a
sharp drop-off in the posterior density function around the
maximum, or whether the function tends to be very flat in this
area. A fiat posterior would indicate that many combinations
of the parameters will yield nearly the same posterior density,
and hence all would be equally valid to use as a point estimate.
Tftis analysis also indicates which parameters are especially
influential in determining the posterior density function in the
area of the maximum. The results of the analysis are shown
in Table 3. The table shows the change in the value of the
negative log of the posterior density function. The changes are
generated by holding four of the five parameters constant at

TABLE 2. Optimal Parameter Values for Posterior Distribution

6
(1)
a
t<
i.
(
V,

Description
(2)

Measurement error
Volatilization + aerobic biodegradation half-life
Anaerobic biodegradation half-life
Contaminated sediment depth
Resuspension velocity

Parameter
value

(3)
37 ppm
3.2 d

4,400 d
0.32m

0.02 m/yr

TABLE 3. Increase In Negative Log of Posterior Density aa a
Function of Changes In Parameter Values In Neighborhood of
Posterior Mode

Parameter
varied

(D
a
tj
t.
t
Vr

Percent Change in Parameter Value
+50
(2)
6.20
0.23
0.49
0.27
0.35

•MO
(3)

0.55
0.04
0.14
0.09
0.16

+5
(4)

0.22
0.04
0.11
0.09
0.14

-5
(5)

0.03
0.03
0.12
0.12
0.09

-10
(6)

0.28
0.03
0.14
0.14
0.08

-SO
(7)

27.44
0.36
054
0.54
0.50

rath parameter by ±5%, ± 10%, and ±50%.
It can be seen from Table 3 that the error standard deviation

has the greatest impact on the posterior density in the neigh-
borhood of the posterior mode. The combined volatilization
and aerobic biodegradation rate constant shows little impact
on the posterior until the change becomes greater than ±10%.
The three remaining parameters appear to be approximately
equally influential in the neighborhood of the posterior mode.
Thus, the table indicates that in the neighborhood of the pos-
terif" mode, the posterior densi'. function is relatively flat ..i
the dimension representing volatilization and aerobic bio-
degradation, very steep in the dimension representing the err^r
standard deviation, and mildly steep in the dimensions repre-
senting the anaerobic biodegradation rate constant, the con-
taminated sediment depth, and the resuspension velocity.

Likelihood Function
Maximization of the likelihood function is another method

for selecting parameter values. This method considers only the
information contained in the data, and not the knowledge that
an expert or well-informed investigator might have about
likely values for the parameters. Maximum likelihood esti-
matL.-. is concerned with finding me values of the parameter*
whic*' maximize the probability _f y given 9. Thus, it is e>
petted that the maximum likelihood estimator for 6 will pro-
vide better fits to this particular data set than either the pos-
terior or prior mode, but that the posterior mode would provide
better fits to future data sets collected from the Hudson River
because of the additional information supplied by the prior
distribution.

Finding the maximum likelihood estimate of the parameter
involves a series of optimizations similar to that undertaken to
find the posterior mode. Two alternative explorations of the
likelihood were used. First, the shape of the likelihood func-
tion in the neighborhood of the posterior mode was investi-
gated by changing one parameter value at a time. The results
of this analysis are shown in Table 4. They indicate that
changes in any one of the parameters except the combined
volatilization and aerobic biodegradation rate constant will im-
prove the likelihood function. This emphasizes the point that
the posterior mode is not a maximizing point for the likelihood
function.

For the second exploration of the likelihood function, the
locations of local maxima are found by using a variety of
starting points for the optimization. It is not expected mat this
likelihood function will have a single optimum for two rea-
sons. First, the effects of one parameter may be compensated
for by the effects of another parameter. For example, a large
value for the contaminated sediment depth will minimize the
effects of resuspension on the benthic sediment PCB concen-
tration, while a fast anaerobic biodegradation rate will de-
crease the benthic sediment PCB concentration quickly. This
was not a problem with the posterior distribution, since un-
likely values of the parameters yielded small values of the

TABLE 4. Ghana* In Negative Log of Likelihood Function as a
Function of Changes in Parameter Values in Neighborhood of
Posterior Mode

Parameter
varied

(D
a
t*
t.
i
V,

Percent Change in Parameter Value
+50
(2)
2.05

-0.08
-0.45
-0.60

0.65

+ 10
(3)

-0.25
-0.12
-0.19
-0.21

0.12

+5
(4)

-0.25
-0.12
-0.13
-0.13

0.04

-5
(5)
0.16

-0.13
0.04
0.04

-0.13

-10
(6)
0.64

-0.13
0.15
0.15

-0.23

-50
(7)
26.66
-0.13

1.19
1.23

-0.80
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iwuu runcuon

(1)
a
*«r
t.
i
fr

Point 1
(2)

38 ppm
5.0 d

7,600 d
0.77m

0.004 m/yr

Point 2
(3)

39 ppm
5.1 d

8,600 d
0.92m

0.003 m/yr

prior density, and hence two ext-eme parameter values could
not cancel each other out. Second, since the likelihood func-
tion is determined by a and the difference between y and the
predictions, when two parameter vectors have nearly the same
a and one produces concentrations x ppm greater than the
measurements while the other produces concentrations x ppm
less than the measurements, botn will yield the same likeli-
hood function value.

When a starting point close to the posterior mode was used,
a local optimum was identified nearby at: cr = 39 ppm; it -
0.35 d; /« * 5,200 d; £ » 0.61 m; and v, - 0.001 m/yr.

When a different starting point was used, the DUMPOL
algorithm failed to identify a minimum after 200 iterations,
but did locate several points that appear upon investigation of
nearby points to be local optima and which yield the same
likelihood function value. Two such points are shown in
Table 5.

j

Fitted Values and Predictions
The fitted PCB concentration values obtained from the

modes of the prior and posterior density functions, and from
a local maximum of the likelihood function were compared
with measured PCB concentration values. In general, the fitted
values from the prior density function seriously underesti-
mated the measured values while the parameter values from
the posterior density function provided much closer fits. Fitted
values from the likelihood function were closest (in the root
mean square error sense) to the measured concentrations, since
minimizing the squared error term is the sole criterion for fit-
ting the likelihood function.

These results are summarized in Fig. 3 which presents box-
plots of the absolute value of the residuals obtained from each
of the three parameter estimation techniques. The shaded
boxes indicate the interquartile range. The upper whiskers are
1.5 times the interquartile range and the lower whiskers are
located at the smallest residual value. The horizontal lines rep-
resent outliers.

The median values of the residuals in the boxplots do not
differ much (10-5 ppm, 8 ppm, and 12 ppm for the prior den-
sity, posterior density, and likelihood function, respectively).
However, the interquartile range is considerably larger for the
prior density function man for the other two methods. This
effect is also apparent in the values of the root mean square
errors for the fitted values, which are 52 ppm, 45 ppm, and
43 ppm for the prior, posterior, and likelihood, respectively.

Although the likelihood function produces fitted values
closest to the actual measured values, it is expected that pa-
rameter estimates obtained from the likelihood function will
not predict concentrations at new points in time or space as
well as those obtained from of the posterior density function.
In other words, it is believed that existing scientific knowledge
concerning processes and reaction rates, as expressed in the
simulation model and the prior distribution, is of value for
prediction. When this prior infonnation is combined with that
from the observational data set, the resultant posterior distri-

is expected to provide the best fits to other (including
future) data sets collected from the upper Hudson River. Ide-
ally, one would like to have a validation data set on which to

S -

8 -

FIG. 3. BoxpkX Showing Absolute VWtM of RMiduals (ppm)
for Each of Thr*« Parameter Estimation tfcchnlqu**

test this assertion. In the absence of a validation data set, the
existing data set was divided into two sets. One set consisted
of 1984 data and a second set of 1985 and 1990 data. The first
set was used to find a local maximum of the likelihood func-
tion and the posterior mode. Then, the resulting parameter val-
ues were used to predict concentrations in 1985 and 1990.

When the predicted values are subtracted from the mea-
surements and squared, the squared error obtained with pre-
dictions from a local maximum of the likelihood function is
almost double that obtained with predictions from the posterior
mode (3,899 ppm2 versus 7,256 ppm2). This indicates that un-
der the squared loss criterion, the posterior estimator gave bet-
ter matches to the 1985 and 1990 data set than did the like-
lihood estimator.

CONCLUSIONS
Reliance on complex mechanistic water quality models has

tended to divert attention from underlying uncertainties about
the aquatic systems under investigation. While models grow
more complex, scientists' ability to provide rate constants and
other process values that are appropriate for the particular
chemical and site under study may not keep pace. Bayesian
statistics provide a method for selecting parameter values for
water quality models, which updates limited information from
experimentation with chemical-specific and site-specific data.
The method also explicitly incorporates the spatial and tem-
poral variability in "calibntion" data (observations of con-
centration), which results from die heterogeneity and nonsta-
tionarity of environmental processes.

In the Hudson River PCB case study, it was shown that
information on the behavior of PCBs in the natural environ-
ment is often contradictory (for example, PCB half-lives of
200-2,000 d) or is dependent on site-specific processes for
which data are not available (for example sediment resuspen-
sion rates). The Bayesian paradigm of beginning with prior
information, updating with observations, and recalculating pa-
rameter values offered a way to combine all existing infor-
mation, producing more chemical-specific and site-specific pa-
rameter values. The updating was reflected in the difference
between the modes of the posterior density function and the
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prioi > density function. The posterior density was simple to
calculate, requiring just the multiplication of the likelihood
function by the prior density function. The posterior density
was found, as expected, to have a global maximum, and the
location of this maximum was found with little difficulty. The
likelihood function, on the other hand, had multiple optima.
Furthermore, cross-validation analysis showed that predictions
made with the posterior estimator were better (in the squared
error sense) than those obtained with the maximum likelihood
estimator.

The updated parameter estimates (located at the mode of the
posterior density function) were: 37 pptn for the measurement
standard error, 3.2 d for the combined volatilization and aer-
obic biodcgradation rate constant, 4,400 d for the anaerobic
biodegradation half-life, 0.32 m for the contaminated sediment
depth, and 0.02 m/yr for the resuspension velocity. In the
neighborhood of the mode, the posterior density function was
steepest in the directions of the error standard deviation and
the anaerobic biodegradation half-life, indicating that these
two parameters were the most influential in determining the
posterior density function value at the mode.

Modelers should be aware, that data on which to base pa-
rameter estimates may be sparse, contradictory, or irrelevant
upon closer examination of the modeling problem at hand. Use
of the Bayesian paradigm requires the modeler to sort out
these discrepancies and inconsistencies, and to account for
them in a probability density function. By bringing in calibra-
tion data in a rigorous way, the Bayesiaa analysis produces
parameter estimates that incorporate this parameter uncertainty
as well as spatial and temporal variability in the measurements.
As in this study, the resulting parameter estimates may be sig-
nificantly different than estimates obtained through more tra-
ditional methods.

One resul? of the Bayesian analysis may be the realization
that parameter uncertainty is quite high, and that the resulting
predictions will be highly uncertain, leading to management
decisions with little scientific support In this case, it may be
more useful to pursue a simpler model, or an empirically de-
rived model, from which parameters and predictions can be
calculated with greater certainty. Ultimately, the most useful
models are likely to result from a compromise between sci-
entific feasibility, as characterized by uncertainty, and man-
agement desirability, as characterized by decision maker in-
formation needs.
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The follo^itg symbols are used in this paper:

C(jr, 0 = concentration at location x at time r;
c. = water column PCB concentration;
c» = sediment PCB concentration;
D = longitudinal dispersion coefficient;

F, a fraction of PCB which is dissolved;
fx = fraction of organic carbon;

g - gravitational acceleration;
H as height of water over weir,
J SB weir length;
K = weir equation constant;

Kf - partition coefficient;
k, - anaerobic dechlorination rate constant;
k< = combined rate constant for aerobic biodegradation and

volatilization;
k, = aerobic biodegradation rate constant;

k^ = octanol-water partition coefficient;
fc^ = volatilization rate constant;

L, = iiKcunooa function;
n = number of observations;
r = first-order rate constant;
S = slope of water surface;
s = suspended solids concentration;
/. = anaerobic dechlorination half-life;
!„ = combined aerobic biodegradation and volatilization

half-life;
u = river velocity;
v, = sediment resuspension velocity;
v, = sedimentation velocity;
W s loading rate;
w as river width;
y = vector of observations;
z - water column depth;
{ s: thickness of the contaminated sediment layer;

6, = vector of unknown parameters;
H « mean;
it s probability density function, either prior or posterior,

and
IT = variance.
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