United States Department of the Interior

U. S. GEOLOGICAL SURVEY
Columbia Environmental Research Center
4200 New Haven Road
Columbia, Missouri 65201

September 14, 2000

Anne Secord
US Fish and Wildlife Service
New York Field Office
3817 Luker Road
Cortland, New York 13045

Dear Anne:
Report for Set \#1: Dioxins, Furans, and non-ortho-PCBs in Bald Eagle Bloods is enclosed. This is the final set of data for the Eagle Bloods. The OC-pesticides, congener-specific PCBs, and the percent lipids were reported earlier in Set \#1 Reports (June 30 and July 20, 2000). Please note that I titled these earlier reports as "Reports \#1".

The remaining analyses for the project ("Chemical Contamination of Nesting Tree
Swallows, Great Blue Herons, and Resident/Nesting Bald Eagles Along the Hudson River, New York") are in progress.

I have not yet sent you any of the Hudson River reports electronically. I can do so whenever you would like them. Drop me an email or give me a call if you have any questions about the various reports that you have received to date (573-876-1823).

Sincerely,

Carl E. Orazio
Leader, Organic Chemistry Section

Columbia Environmental Research Center U.S. Geological Survey- Biological Resources Division 4200 New Haven Road, Columbia, Missouri 65201

September 15, 2000

REPORT for Set \#1 Dioxins, Furans, and non-ortho-PCBs in Bald Eagle Bloods

FY-00-31-02
FWS NO: 1448-50181-99-H-007 CERC NO: 3307-70L1D

By
Organic Chemistry Section
John Meadows, Robert Gale, Mike Tanner, Kevin Feltz, Paul Peterman, Kathy Echols Carl Orazio- USGS Project Leader

FWS PROJECT TITLE

Chemical Contamination of Nesting Tree Swallows, Great Blue Herons, and Resident/Nesting Bald Eagles Along the Hudson River, New York

Principal Investigator
Anne Secord
US Fish and Wildlife Service
New York Field Office
3817 Luker Road
Cortland, New York 13045
Peter Nye
Endangered Species Unit
Wildlife Resources Center
New York State Department of Environmental Conservation
Delmar, New York 12054

Project History:

The Hudson River is highly contaminated with PCBs from industrial sources, primarily two capacitor manufacturing facilities operated by General Electric. The 200 river miles from the New York Harbor upstream to Hudson Falls, New York, are designated a Superfund Site. From 1946 until 1977, it is estimated that between 209,000 and 1.3 million pounds of PCBs were discharged into the waters of the Hudson by these two plants. Downstream movement of the PCBs was retarded by the Ft. Edward Dam until its removal in 1973, at which time the heavily contaminated sediments and detritus began to migrate downstream. In addition to contamination of the river itself, dredging operations have deposited contaminated material at nine known upland sites adjacent to the river. In 1993, it was discovered that one of the facilities was continuing to discharge PCBs into the river.

Contamination of water, sediments, and fish along the Hudson River by PCBs has been examined, but less is known about the concentration and movement of the contaminants among other trophic levels. Many resident and migrating avian species may be affected, including a fairly substantial population of wintering bald eagles (Haliaeetus leucocephalus). The samples described in this report are part of a series of studies designed to expand the knowledge of PCB flux in the food chain of bird species and other biota on and around the Hudson River. In 1995-1997, we took part in a study involving tree swallows (Tachycineta bicolor) as the indicator species along the river. Eggs, pre-fledgling chicks, odonates (emergent insects which comprise a large percentage of the diet of the swallows), and two species of ducks were assessed for contaminant concentrations. In 1997-1998, the scope of the study expanded to include samples from a bald eagle and a number of bald eagle prey species. Several species of fish, tree swallows, bluebirds, wood ducks, and two species of sparrow were analyzed.

The present segment of the study expands the diversity of the sample matrices still further. In response to the growing number of wintering, and in some cases, nesting bald eagles on the Hudson, tissue and eggs from a larger group of bald eagles and prey species have been added. The great blue heron (Ardea herodias), another top predator inhabiting the area, was examined. To gain further understanding of the factors influencing the life cycles and reproduction of these animals, more comprehensive organic analyses were conducted. PCB congeners including non-ortho-chlorinated (dioxin-like) PCBs, polychlorinated dibenzo-dioxins and-furans (PCDDs, PCDFs), polycyclic aromatic hydrocarbons (PAHs), and a suite of organochlorine pesticides were targeted in this investigation. As the information base on this ecosystem grows, a clearer picture of the remedial efforts required to restore it to its normal function will hopefully emerge.

Biota sampled by US F\&WS were analyzed by the Organic Chemistry Section of the Columbia Environmental Research Center. A total of 124 samples were investigated, targeting selected analytes from the following list (each sample was not analyzed for all analytes):

Total PCBs and selected PCB congeners, Organochlorine pesticides 2,3,7,8-substituted polychlorinated dibenzo-p-dioxins (PCDDs) and -dibenzofurans (PCDDFs)
Non-ortho PCB congeners
Polycyclic aromatic hydrocarbons
Samples were generally grouped by analysis type. The various groups are reported separately. In addition to organic analysis, selected samples were analyzed for mercury, arsenic, and selenium; these are reported under a separate cover.

This "gport concerns the following samples and targeted contaminants:
 19 Eald Eagle blood samples 2,3,7,8-substituted PCDD/PCDFs non-ortho-PCBs

(The eagle bloods were also analyzed for congener-specific PCBs and organochlorine pesticides. These were reported on July 20, 2000).

Contents:

I. Summary of Analytical Methods for Sample Preparation
II. 2,3,7,8-Substituted PCDD/PCDF Analysis and Results
III. Non-ortho-PCB Congener Analysis and Results
IV. Summary

Tables:

1. 2,3,7,8-Cl Substituted PCDD/PCDF Concentrations in Eagle Bloods
2. Percent Recoveries of ${ }^{13} \mathrm{C}$-PCDD/PCDFs in Eagle Bloods
3. Non- ortho-PCB Concentrations in Bald Eagle Bloods
4. Percent Recoveries of ${ }^{13} \mathrm{C}$-non-ortho-PCBs in Bald Eagle Bloods
5. Calculated Avian Toxic Equivalents in Eagle Bloods

Figures:

1. Analytical scheme for congener-specific PCBs, non-ortho-PCBs, PCDFs, and PCDDs.

I. Summary of Analytical Methods for Sample Preparation

The 19 Bald Eagle blood (serum) samples in this set were analyzed for PCDD/PCDFs and non-ortho-PCBs. The samples were received in two groups and were assigned CERC database numbers 19848-19860 and 20026-20031. Where serum and cells had been separated, serum was analyzed. Whole blood was analyzed as received.

Quality Control: Procedural blanks, and matrix blanks and spikes prepared from clean bovine serum were analyzed with each set of samples.

2 procedural blanks
2 bovine serum blanks
2 bovine serum spikes
Sample Preparation: The samples were dehydrated by addition of anhydrous sodium sulfate and method recovery compounds were added. Samples were extracted with methylene chloride, ant a small portion of the extract (1%) was used to determine percent lipid (1). Percent lipids were presented in the July $20^{\text {th }}$ report). The remaining extrac's were passed trrough gravity driven gel permeation chromatography (2) and High Performance Gel Permeation Chromatography (HPGPC) (3) before fractionation on a two-layered octadecyl silica/activated silica gel column into two fractions: one fraction containing PCDDs, PCDFs, PCBs and four of the targeted OCs (SODS-1), and a second fraction containing the remainder of the OCs (SODS-2) (4). SODS-2 was analyzed at this point for organochlorine pesticides by GC/ECD. SODS-1 was further fractionated on high performance Porous Graphitic Carbon (PGC) (5) into the following fractions:

PGC 1 ortho-chlorinated PCB congeners and four of the targeted OCs - Analysis by gas chromatography (GC)/ electron-capture detection (ECD)

PGC 2 non-ortho-chlorinated PCBs - Analysis by GC/ high resolution mass spectrometry (GC/HRMS)

PGC 3 PCDD/PCDFs

- Analysis by GC/ high resolution mass spectrometry (GC/HRMS)

II. 2,3,7,8-Cl Substituted PCDD/PCDF Analysis and Results

PCDD/PCDF fractions from PGC (PGC-3) were eluted through basic alumina for removal of potential co-contaminants such as chlorinated diphenyl ethers and residual PCNs and PCBs (6). A total of 1 ng of the internal standard, ${ }^{13} \mathrm{C}$-labeled 1,2,3,4-TCDD, was added to each semiconical autosampler vial prior to transferring the PCDDs/PCDFs. The final extract was concentrated to a volume of $-25 \mu \mathrm{~L}$ under a stream of nitrogen. PCDFs and PCDDs were determined by GC/HRMS by monitoring five sequential mass windows of selected ions during the chromatographic separation (7).

Instrumentation:

GC/HRMS analysis was performed using a HP 5890A capillary gas chromatograph interfaced to a VG 70-AS high resolution mass spectrometer. An HP 7673 autosampler was used to introduce 2 of $25 \mu \mathrm{~L}$ of the extract from a conical vial through a spiral uniliner onto a $5 \mathrm{~m} \times 320 \mu \mathrm{~m}$ deactivated fused silica retention gap via a heated $\left(285^{\circ} \mathrm{C}\right)$ direct inlet. The analytes of interest were separated on a $50 \mathrm{~m} \times 200 \mu \mathrm{~m} \times 0.11 \mu \mathrm{~m}$ Ultra-2 (Hewlett Packard) capillary column with an initial hold of 1 min at $120^{\circ} \mathrm{C}$ followed by a ramp to $200^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C} / \mathrm{min}$, another ramp to $300^{\circ} \mathrm{C}$ at $2.3^{\circ} \mathrm{C} / \mathrm{min}$, and a final hold of 5 min . The helium carrier gas was maintained at 44 psig with an initial linear velocity of $25 \mathrm{~cm} / \mathrm{s}$. All column-to-column connections were made using fused silica press-tight connectors.

General Detection Procedure:

The VG GC/HRMS system was iuncd to 10,000 R.P. and calibrated using perfluorokerosene, and mass windows were established for five ion groups to measure Cl_{4-8} PCDFs and FCDDs. These windows were monitored sequentially during the temperature program. Within eact mass window, two most abundant ions were measured for positive identification and quantitation of each analyte. The ion responses were quantified and averaged, unless interferences occurred. Within each mass window, additional ions monitored any responses from potentially interfering Cl_{5-9} PCDEs and Cl_{5-7}-PCTs, and dioxin-like $\mathrm{Cl}_{6-7}-\mathrm{PCNs}, \mathrm{Cl}_{3-8}$ dibenzothiophenes (PCDTs), and Cl_{3-8} phenanthrene and anthracenes.

Quantitation of Analytes using the Method of Isotope Dilution:
A calibration curve describing the response of each native congener to that of a ${ }^{13} \mathrm{C}$ labeled surrogates congener was used directly in the calculations and its range of values were determined in the calibration procedure. Each calibration curve was matched to the range of analyte responses in the sample set.

Chromatographic and Mass Spectral Resolution:

Window switching times were established using a window-defining PCDF/PCDD standard mixture; relative retention times were then established for PCDTs. Chromatographic columns were selected and temperature programmed on the basis that they must resolve 2,3,7,8-TCDD from 1,2,3,7/1,2,3,8-TCDD (and from 1,2,3,4TCDD) by a resolution factor of at least 0.5 . Column performance was verified by analyzing standards of individual components, and observing the chromatographic resolution of the TCDDs, HxCDDs, and HxCDFs. Similarly, relative retention times for all other congeners of interest were evaluated with respect to labeled analogs.

Adequate mass resolution was verified while monitoring ions for $\mathrm{Cl}_{6-7} \mathrm{PCNs}$ vs. ion responses of ${ }^{13} \mathrm{C}$-TCDDs and of native TCDD vs. ${ }^{13} \mathrm{C}$-TCDF throughout the sample set. The latter two ions, both at nominal $\mathrm{m} / \mathrm{z} 320$, differ by 0.04 Da , requiring a Resolving Power of at least 8000 for complete resolution. Monitoring these ion ratios thereby assures a continual check on mass resolution. For each mass window, lock-mass and
lock-mass-check ions were used to maintain and verify the accuracy of mass measurement.

Criteria for Confirmation:

For the positive identification and quantitation of a particular congener, the following additional criteria had to be met:

1. The peak areas for the selected ion responses must be greater than three times the background noise ($\mathrm{S} / \mathrm{N}>3$)
2. For congeners with isotopically-labeled analogs, the ion peaks for the native must occur at retention times from -1 to +3 sec that for the corresponding ${ }^{13} \mathrm{C}$ labeled ion peaks, which elute about 1 sec earlier than the native ion peaks;
3. For OCDF (without an isotopically-labeled analog), ion responses in sample analyses must occur at RRTs from -0.2 to 0.5% of ${ }^{13} \mathrm{C}$-labeled OCDD, analogous to the window above;
4. For the two principal ion responses, the ion ratio must be within the acceptable range (generally $\pm 15 \%$) These ion iatios were determined experimentally for the system during calibrations, compared witl. the theoretical values, and were tracked for quality assurance.

Calculation of method efficiency (recovery of ${ }^{13} \mathrm{C}$-surrogates): A known amount of internal standard was spiked into the final extract and used to calculate the amounts of the surrogate recovered in the final extract. The efficiency of the extraction and cleanup was measured by comparing the quantity of the surrogates detected in the final isolated extract (at GC/HRMS analysis) with the quantity spiked into the sample at the beginning of the extraction step.

Quality Control Results: In the quality control blanks, amounts of PCDFs and PCDDs are expressed as total mass (pg) divided by 3 g to normalize to sample concentrations (Table 1). In these blanks, values are at or below the lowest concentrations in the samples. Concentrations of PCDFs and PCDDs in the bovine serum matrix blanks were less than the method detection limits, and approximately the same as concentrations in the procedural blanks. Concentrations of native PCDFs and PCDDs in the spiked bovine serum samples were within 25% of expected values. No positive control reference material is currently available for use for the determination of PCDFs and PCDDs in serum.

Recoveries of most of the ${ }^{13} \mathrm{C}$-labeled surrogates (Table 2) are within the expected QC range of $25-125 \%$. Ion ratios of the primary ions for all detected analytes in both samples and calibration standards varied within the QC range ($\pm 15 \%$ of theoretical) except where noted by LQ. Values designated as LQ are less than the method quantification limit.

III. Non-ortho-PCB Congener Analysis and Results

The non-ortho-PCB fractions (PGC-2) were transferred to conical autosampler vials, evaporated to less than $50 \mu \mathrm{~L}$ with nitrogen, and then spiked with 5 ng of internal standard ($50 \mu \mathrm{~L}$ of $100 \mathrm{pg} / \mu \mathrm{L}{ }^{13} \mathrm{C}$-labeled $2,2^{\prime}, 4,5,5^{\prime}-\mathrm{PeCB}$ (PCB \#101) in nonane). The final volume was adjusted to about $50 \mu \mathrm{~L}$ with nitrogen blow-down. Non-ortho-PCBs were determined by gas chromatography/high resolution mass spectrometry (GC/HRMS), monitoring two sequential mass windows of selected ions during the chromatographic separation $(8,9)$.

Instrumentation:

GC/HRMS analysis was performed with a HP 5890A capillary gas chromatograph interfaced to a VG 70-250S high-resolution mass spectrometer. An HP 7673 autosampler was used to introduce $2 \mu \mathrm{~L}$ of the extract from a conical vial onto a 5 mx $320 \mu \mathrm{~m}$ deactivated fused silica retention gap via heated ($285^{\circ} \mathrm{C}$) direct on-column injection with a Restek spiral Uniliner. A $50 \mathrm{~m} \times 200 \mu \mathrm{~m} \times 0.11 \mu \mathrm{~m}$ Ultra-1 capillary column was used to resolve non-ortho-PCEs from most interierents. The GC oven was held at $120^{\circ} \mathrm{C}$ for 1 min , programmed to $240^{\circ} \mathrm{C}$ at $2.2^{\circ} \mathrm{C} / \mathrm{miri}$, then ramped to $310^{\circ} \mathrm{C}$ at $5^{\circ} \mathrm{C} / \mathrm{min}$, and a final hold of 5 min . Helium carrier gas was maintained at 45 psig with an initial linear velocity of $27 \mathrm{~cm} / \mathrm{s}$. The analytical column was put into the MS interface, heated at $310^{\circ} \mathrm{C}$. All column-to-column connections were made with fused silica presstight connectors.

General Detection Procedure:

The VG GC/HRMS system was tuned to 10,000 R.P. and calibrated using perfluorodecalin, and mass windows were established for two groups of non-orthoPCBs. Group 1 from 23-47:00 min included ions for Cl_{4}-biphenyls \#77 and 81 and Cl_{5} biphenyl \#126; Group 2 from 47:05-64 min included ions for Cl_{6}-biphenyl \#169. Within each mass window, two most abundant ions were measured for positive identification and quantitation of each analyte. The ion responses were quantified and averaged, unless interferences occurred. Within each mass window, additional ions monitored the responses of higher chlorinated, potential interfering PCB congeners, Cl_{4-8} naphthalenes (PCNs), Cl_{3-5} terphenyls (PCTs), Br_{5} - and Cl_{6}-diphenyl ethers (residual carryover from PGC-1), and $\mathrm{Cl}_{4}-\mathrm{PCDF}$ (to ensure no breakthrough of PCDFs).

Quantitation of Analytes:

With isotope dilution MS quantitation, the amount of each analyte detected is inherently corrected to account for losses through the whole analysis (isolation of analytes and instrumental analysis) because ${ }^{13} \mathrm{C}$-isotopically labeled surrogates added at the beginning are recovered or lost in the same percentage as the native target analytes. A calibration curve describing the response of each native congener to that of its ${ }^{13} \mathrm{C}$ labeled surrogate was used directly in the calculations and its range of values were determined in the calibration procedure. Each calibration curve was specifically matched to the range of analyte responses in the sample set. Concentrations of the native PCB congeners in standards ranged from 0.25 to $2,500 \mathrm{pg} / \mu \mathrm{L}$.

Chromatographic and Mass Spectral Resolution:

PGC separates non-ortho-PCBs from other PCB congeners with nearly 99.9\% efficiency. However, even this 0.1% carryover of major PCB congeners can interfere with gas chromatographic/mass spectral analysis: fragment ions are not fully resolved by high resolution MS and thus overwhelm the response of the lower level non-orthoPCBs. Therefore, a $50-\mathrm{m}$ Ultra 1 column is used (instead of the more commonly used DB-5 column) to chromatographically resolve most non-ortho-PCBs from major PCBs: non-ortho-Cl4 - PCB 81 elutes about 9 sec earlier than $\mathrm{Cl}_{5}-\mathrm{PCB} 87$, non-ortho-Cl4 -PCB 77 elutes about 10 sec later than $\mathrm{Cl}_{6}-\mathrm{PCB} 136$ and 10 sec earlier than $\mathrm{Cl}_{5}-\mathrm{PCB}$ congener 110, and non-ortho-Cl - -PCB 169 elutes when no other PCBs elute. For continuing QC checks on chromatography, molecular ion responses of these major PCB congeners are measured to ensure that their fragment ion responses do not contribute an interference $>10 \%$ to the responses of the respective non-ortho-PCB. Column performance is verified by analyzing standards of individual congeners, iabeled congeners, and congeners from Aroclor spiked mixtures.

Because non-ortho-Cl5-PCB 126 is only minimally resolyed from $\mathrm{Cl}_{6}-\mathrm{PCE} 129, \mathrm{PCB}$ 129's molecular ion response is monitored to assure that its fragment ion response (3.5% abundance) does not contribute an interference of $>10 \%$ to the response of PCB 126. PCB 129's molecular ion response must not exceed three times that of PCB 126.

Adequate mass resolution is verified while monitoring ions for Cl_{4-8} PCNs throughout the sample set. The $\mathrm{Cl}_{5-7} \mathrm{PCNs}$ ions monitored differ by about 0.1 Da from the ${ }^{13} \mathrm{C}-\mathrm{Cl}_{4-6}$ PCB surrogates, assuring a continual check on mass resolution. For each mass window, lock-mass and lock-mass-check ions were used to maintain and verify the accuracy of mass measurement.

Criteria for Confirmation:

For the positive identification and quantitation of each congener, the following criteria were established and met in this study:

1. Peak areas for the selected ion responses must be greater than three times background noise.
2. Native ion peaks must occur at retention times from -1 to +3 sec that for the corresponding ${ }^{13} \mathrm{C}$-labeled ion peaks, that elute about 1 sec earlier.
3. The ion ratio for the two principal ion responses must be within the acceptable range (generally $\pm 15 \%$). These ion ratios were determined experimentally for the system during calibrations, compared with the theoretical values, and were tracked.

Method efficiency by calculating percent recovery of ${ }^{13} \mathrm{C}$-surrogates:

To account for variations in GC/HRMS analysis, a known internal standard amount was spiked into the final extract and used to calculate the amounts of the surrogates recovered in the final extract. The efficiency of the extraction and cleanup procedure was measured by comparing the quantity of the surrogates detected in the final isolated extract (at GC/HRMS analysis) with the quantity spiked into the sample.

Quality Control Results:

Total mass (pg) of native non-ortho-PCBs in the procedural blanks is normalized to sample size (3 g in Table 3). For both procedural blanks, values are at or below the lowest concentrations in the samples. Non-ortho-PCB concentrations are also low in the bovine serum matrix blanks, and in the bovine serum matrix spike for PCDFs/PCDDs that may be considered another matrix blank for non-ortho-PCBs.

In the Aroclor-spiked bovine serum sample, the most abundant non-ortho congener, PCB 77, is within 20\% of the historic mean determined for our mixed Aroclor spiking standard. Less abundant non-ortho congeners PCBs 81 and 126 in the Aroclor-spiked samples are also within 20% of their respective means. PCB 169 is too low for meaningful comparisons.

Percent recoveries of the ${ }^{13} \mathrm{C}$-labeled surrogates (Table 4) range from 50 to 85%, and are within the QC range ($25-125 \%$) for this method. The corresponding native non-ortho-PCB concentrations would still have been accurate had losses occurred, wecause their values are self-corrected by the ${ }^{13} \mathrm{C}$-labeled surrogates, using the isotope-dilution technique. Ion ratios of the primary ions for all detected analytes in both samples and calibration standards generally varied within the QC range ($\pm 15 \%$ of theoretical), except where noted by LQ (< method quantitation limit due to inaccurate ion ratio). Thus most concentrations associated with LQ are less precise and more approximate values just above the detection limit.

IV. Summary

Levels of PCDD/PCDFs and non-ortho-PCBs were determined in eagle bloods. This report completes the analysis of the eagle bloods. The organochlorine pesticides and congener-specific PCBs were reported June 30, and July 21, 2000. This report is part of the much larger investigation of exposure of biota to contaminants along the Hudson River, NY. Fish, birds, eagle prey items, eagle eggs, and eagle bloods are being analyzed for organochlorine pesticides, PCB congeners, non-ortho-PCBs, and PCDDs/PCDFs.

The PCDD/PCDFs and non-ortho-PCB data quality is described earlier in the report. The quality control samples show that the results fall well within QC limits. Background levels of the targeted contaminants were low in matrix and procedural blanks. Recoveries of the surrogates were within QC limits.

Total dioxin toxic equivalents (TEQs) based on avian TEFs (10) are presented in Table 5. The greatest contribution to dioxin-like toxicity was from the non-ortho-PCB congener numbers 77, 81, 126 and from the mono-ortho-PCB congener numbers 105 and 156. In this set of eagle bloods, PCDDs and PCDFs accounted for just 1-2\% of the TEQs.

REFERENCES

1. CERC SOP P.461. 1998. "Extraction of Animal Tissues for Residue Analysis and Percent Lipid Determination."
2. CERC SOP P.196. 1998. "Preparation and Use of Gravity-flow Gel Permeation Chromatography (GPC) Columns."
3. CERC SOP P.464. 1998. "Use of High Performance Gel Permeation Chromatography in Sample Preparatory Applications."
4. CERC SOP: P.460. 1998. "Organochlorine Pesticide Analysis: Fractionation of Complex Mixtures on Silica Gel/ODS. "
5. CERC SOP: P.480. 1998. "Automated Porous Graphitic Carbon Column HPLC System for Fractionation of Polychlorinated Biphenyls and Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans."
6. CERC SOP P.193. 1991. "Alumina Cleanup of PCDD/PCDF Fractions from HPLC-Carbon."
7. CERC SOP P.482. 1995 "Gas Chromatography/High Resolution Mass Spectrometry for the Determination of Tetra-through Octa-substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans."
8. CERC SOP P.481. 1998 revision. "High Resolution Gas Chromatography/High Resolution Mass Spectrometry for the Determination of Selected Non-ortho-Chloro-Substituted Polychlorinated Biphenyls."
9. Peterman, P. H., Gale, R. W., Tillitt, D. E., and Feltz, K. P. 1996. "Analysis of Non-ortho-PCBs in Fish, Bird Eggs, Sediments, Soils, and SPMD Samples by Gas Chromatography/High Resolution Mass Spectrometry," in Techniques in Aquatic Toxicology, ed. by G. K. Ostrander, pp. 517-553, CRC Lewis Publishers, Boca Raton, FL.
10. Van den Berg, et al. 1998. "Toxicity Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife". Environmental Health Perspectives Vol 106, No 12.

Figure 1: Analysis for Congener-specific PCB, PCDD, and PCDF Residues

Chemical Contamination of Nesting Tree Swallows, Great Blue Herons, and Resident/Nesting Bald Eagles Along the Hudson River, New York

Dioxins, Furans, and non-ortho-PCBs in Bald Eagle Bloods
September 14, 2000

Prepared By:

Prepared By:

Reviewed By:

Leader, Organic Chemistry Section
USGS Project Officer

Chief, Environmental Chemistry Branch

Paul Heine
CERC Quality Assurance Officer

Director, Columbia Environmental Research Center
 File: DF33nye-blood.xls 1-Sep-2000
Date Analyzed: June 29-July 1, 2000

Sample Site/Matrix:	Serum	Serum	Serum	Serum	Serum	Serum
CERC Number:	19848-S	19849-S	19850-S	19851-S	19852-S	19853-S
GC/HRMS Sets: DF33- Injection No.	33-5	33-6	33-7	33-8	33-18	33-19
Sample Submitter No.	BE-A-BL904-98	BE-A-BL949-98	BE-IM-BL935-98	BE-A-BL913-98	BE-A-BL956-98	BE-IM-BL914-98
Sample Mass Extracted (grams):	2.700	3.945	3.315	2.687	2.227	1.006
DIOXINS						
2,3,7,8-Tetrachloro	0.2 LQ	0.2 LQ	0.7	0.6	0.3	0.2
1,2,3,7,8-Pentachloro	0.2 LQ	0.1 ND	0.7	1.1 LQ	0.3 LQ	0.4 LQ
1,2,3,4,7,8-Hexachloro	0.1 ND	0.1 ND	0.2 LQ	0.1 ND	0.1 ND	0.1 ND
1,2,3,6,7,8-Hexachloro	0.1 ND	0.1 ND	0.5	0.8 LQ	0.1 LQ	0.1 LQ
1,2,3,7,8,9-Hexachloro	0.1 ND					
1,2,3,4,6,7,8-Heptachloro	0.1	0.1 LQ	0.6	0.4	0.3 LQ	0.1 LQ
Octachloro	18	23	67	67	24	20
FURANS 2,3,7,8-Tetrachloro	0.5 LQ	0.2 LQ	0.6 LQ	0.4 LQ	0.5 LQ	1.2 LQ
1,2,3,7,8-Pentachloro	0.1 LQ	0.1 LQ	0.1 LQ	0.1	0.1 ND	0.2 LQ
2,3,4,7,8-Pentachloro	0.3 LQ	0.2 LQ	1.0	0.4	0.3	0.6
1,2,3,4,7,8-Hexachloro	0.1 ND	0.1	0.1	0.1 ND	0.1 ND	0.1 ND
1,2,3,6,7,8-Hexachloro	0.1 LQ	0.1 LQ	0.1 LQ	0.1 LQ	0.1 ND	0.1 LQ
1,2,3,7,8,9-Hexachloro	0.1 LQ	0.1	0.1 LQ	0.1 LQ	0.1 LQ	0.1 LQ
2,3,4,6,7,8-Hexachloro	0.1 ND	0.1	0.1 LQ	0.1 ND	0.1 ND	0.1 LQ
1,2,3,4,6,7,8-Heptachloro	0.1 LQ	0.1 LQ	0.1 LQ	0.1 ND	0.1 LQ	0.1
1,2,3,4,7,8,9-Heptachloro	0.1 ND					
Octachloro	0.1 LQ	0.1 LQ	0.1	0.1 LQ	0.1	0.1 LQ

LQ Less than Method Quantification Limit due to Incomplete Ion Cluster or Ion Ratio Outside of $+/-15 \%$ Tolerances ND Not Detected at Specified Detection Limit

Table 1. 2,3,7,8-Substituted Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations (pg/g) in Eagle Blood Samples from the Hudson River Area 2 File: DF33nye-blood.xis
1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33- Injection No.
Sample Submitter No.

1,2,7, 8 Pentachloro

1,2,3,4,7,8-Hexachloro 1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro

1,2,3,4,6,7,8-Heptachloro
Octachloro

FURANS 2,3,7,8-Tetrachloro

1,2,3,7,8-Pentachloro 2,3,4,7,8-Pentachloro

1,2,3,4,7,8-Hexachloro 1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro
2,3,4,6,7,8-Hexachloro
1,2,3,4,6,7,8-Heptachioro
1,2,3,4,7,8,9-Heptachloro

Octachloro

0.5 LQ	0.9 LQ	2.7 LQ	0.1	0.1 LQ	0.1 LQ
0.4	0.3 LQ	1.3	0.1 LQ	0.1 LQ	0.1 LQ
0.1 ND	0.1 LQ	0.3	0.1 ND	0.1 ND	0.1
0.3	0.4	1.7	0.1 LQ	0.1 LQ	0.1 LQ
0.1 ND	0.1				
0.3 LQ	0.2	1.1	0.1 ND	0.1 ND	0.1 LQ
25	24	90	18	24	25
0.7	0.3 LQ	1.7 LQ	2.1 LQ	0.5	0.4 LQ
0.2	0.1 ND	0.2	0.1 LQ	0.1 ND	0.1 LQ
0.3	0.7	3.5	0.2	0.2 LQ	0.1
0.1 ND	0.1 ND	0.1 LQ	0.1 LQ	0.1 ND	0.1 ND
0.1 LQ	0.1 LQ	0.1	0.1 LQ	0.1 LQ	0.1 LQ
0.1 LQ	0.1 LQ	0.1 LQ	0.1 ND	0.1 LQ	0.1 LQ
0.1 ND	0.1 LQ	0.1 ND	0.1 ND	0.1 LQ	0.1 LQ
0.1 LQ	0.1 LQ	0.5 LQ	0.1 ND	0.1 LQ	0.1 LQ
0.1 ND					
0.1 LQ	0.1 LQ	0.1 LQ	0.1 LQ	0.1	0.1

LQ Less than Method Quantification Limit due to Incomplete Ion Cluster or Ion Ratio Outside of $+1-15 \%$ Tolerances
ND Not Detected at Specified Detection Limit

Table 1. 2,3,7,8-Substituted Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations (p / s) in Eagle Blood Samples from the Hudson River Area File: DF33nye-blood.xis 1-Sep-2000
Date Analyzed: June 29-July 1, 2000

Sample Site/Matrix:	Serum	Serum	Serum	Serum	Serum	Serum
CERC Number:	19860-S	20026-S	20027-W	20028-W	20029-W	20030-W
GC/HRMS Sets: DF33-Injection No.	33-28	33-29	33-31	33-32	33-33	33-34
Sample Submitter No.	BE-NE-BL911-C-98	BE-IM-BL976-99	BE-NE-BL972A-99	BE-NE-BL972B-99	BE-NE-BL.971-99	BE-NE-BL974-99
Sample Mass Extracted (grams):	3.237	2.928	3.116	3.225	3.143	3.114
DIOXINS						
2,3,7,8-Tetrachloro	0.1 LQ	0.5	0.1	0.1 LQ	0.1 LQ	0.1 LQ
1,2,3,7,8-Pentachloro	0.1 LQ	0.6	0.2	0.1 ND	0.1 ND	0.1 ND
1,2,3,4,7,8-Hexachloro	0.1 ND	0.1 LQ	0.1 LQ	0.1 ND	0.1 ND	0.1 ND
1,2,3,6,7,8-Hexachioro	0.1 ND	0.7	0.1	0.1	0.1 LQ	0.1 ND
1,2,3,7,8,9-Hexachloro	0.1 ND					
1,2,3,4,6,7,8-Heptachloro	0.2 LQ	0.4	0.1 LQ	0.2	0.3 LQ	0.2 LQ
Octachloro	27	19	6.0	5.2	4.6	6.4
FURANS $\quad 2,3,7,8$-Tetrachloro	0.4 LQ	0.8 LQ	0.4 LQ	0.3	0.8 LQ	0.2
1,2,3,7,8-Pentachloro	0.1 LQ	0.1				
2,3,4,7,8-Pentachloro	0.1	0.5 LQ	0.1	0.1	0.2 LQ	0.1 LQ
1,2,3,4,7,8-Hexachloro	0.1 LQ	0.1 LQ	0.1 LQ	0.1 ND	0.1 LQ	0.1 ND
1,2,3,6,7,8-Hexachloro	0.1 LQ	0.1 LQ	0.1 LQ	0.1	0.1 LQ	0.1
1,2,3,7,8,9-Hexachloro	0.1 LQ					
2,3,4,6,7,8-Hexachioro	0.1 LQ	0.1 ND	0.1 LQ	0.1 LQ	0.1 LQ	0.1
1,2,3,4,6,7,8-Heptachloro	0.1 LQ	0.1	0.1 LQ	0.1 LQ	0.1 LQ	0.1 LQ
1,2,3,4,7,8,9-Heptachloro	0.1 ND					
Octachloro	0.1	0.1	0.1	0.1	0.1 LQ	0.1 LQ
	LQ Less than Method Quantification Limit due to Incomplete Ion Cluster or Ion Ratio Outside of $+/-15 \%$ Tolerances ND Not Detected at Specified Detection Limit					

Table 1. 2,3,7,8-Substituted Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations (pg / g) in Eagle Blood Samples from the Hudson River Area 4 File: DF33nye-blood.xls 1-Sep-2000
Date Analyzed: June 29-July 1, 2000

Sample Site	Matrix:	Serum	Blanks:		Quality Assurance	amples
CERC Num		20031-W	Procedure Blank	Procedure Blank	Sovine serum Matrix Blk	Bovine serum Matrix Blk
GC/HRMS	ts: DF33- Injection No.	33-36	33-13	33-14	33-16	33-17
			\#\#\#\#\#\#\#\#	\#\#\#\#\#\#\#\#	\#\#\#\#\#\#\#\#	\#\#\#\#\#\#\#\#
Sample Sub	mitter No.	BE-IM-BL981-99	Conc. (pg/g-eq) based on sample	Conc. (pg/g-eq) based on sample		
Sample Ma	Extracted (grams):	3.57	wgts $\mathbf{3} \mathrm{g}$	wgts 3 g	3.0	3.0
DIOXINS						
	2,3,7,8-Tetrachloro	0.3 LQ	0.1 LQ	0.1 LQ	0.1 LQ	0.1 ND
	1,2,3,7,8-Pentachloro	0.3 LQ	0.1 ND	0.1 ND	0.1 ND	0.1 ND
	1,2,3,4,7,8-Hexachloro	0.1 LQ	0.1 ND	0.1 ND	0.1 ND	0.1 ND
	1,2,3,6,7,8-Hexachloro	0.4	0.1 ND	0.1 ND	0.1 ND	0.1 ND
	1,2,3,7,8,9-Hexachloro	0.1	0.1 ND	0.1 ND	0.1 ND	0.1 ND
	1,2,3,4,6,7,8-Heptachloro	0.3 LQ	0.1 ND	0.1 ND	0.1 ND	0.1 LQ
	Octachloro	2.6	0.6 LQ	0.2 LQ	0.1 LQ	0.1 LQ
FURANS	2,3,7,8-Tetrachloro	0.3	0.1 LQ	3.6 LQ	0.1	0.1 LQ
	1,2,3,7,8-Pentachloro	0.1 LQ	0.1	0.1 ND	0.1 ND	0.1
	2,3,4,7,8-Pentachloro	0.4	0.1 ND	0.1 ND	0.1 ND	0.1 LQ
	1,2,3,4,7,8-Hexachloro	0.1 ND				
	1,2,3,6,7,8-Hexachloro	0.1 LQ	0.1 ND	0.1 ND	0.1 ND	0.1 LQ
	1,2,3,7,8,9-Hexachloro	0.1	0.1 ND	0.1 ND	0.1 LQ	0.1 LQ
	2,3,4,6,7,8-Hexachloro	0.1	0.1 ND	0.1 ND	0.1 LQ	0.1 LQ
	1,2,3,4,6,7,8-Heptachloro	0.1 LQ	0.1 ND	0.1 LQ	0.1 LQ	0.1 LQ
	1,2,3,4,7,8,9-Heptachloro	0.1 LQ	0.1 ND	0.1 ND	0.1 ND	0.1 ND
	Octachloro	0.2	0.1 ND	0.1 LQ	0.1 LQ	0.1 LQ

LQ Less than Method Quantification Limit due to Incomplete Ion Cluster or lon Ratio Outside of $+/-15 \%$ Tolerances ND Not Detected at Specified Detection Limit

Table 1. 2,3,7,8-Substituted Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Concentrations (pg/g) in Eagle Blood Samples from the Hudson River Area

File: DF33nye-blood.xls

1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33-Injection No.
Spikes:
Spikes: \quad Bovine serum Matrix Spk Bovine serum Matrix Spk
33-11
33-12

Sample Submitter No.
Sample Mass Extracled (grams):
\#\#\#\#\#\#\#\#
50 or 250 pg total
(17 or $85 \mathrm{pg} / \mathrm{g}$)
2.93
\#\#\#\#\#\#\#\#
50 or 250 pg total
(16.6 or $82.8 \mathrm{pg} / \mathrm{g}$) 3.02

DIOXINS

2,3,7,8-Tetrachloro

1,2,3,7,8-Pentachloro
1,2,3,4,7,8-Hexachloro 1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro

1,2,3,4,6,7,8-Heptachloro
Octachloro

FURANS 2,3,7,8-Tetrachloro
1,2,3,7,8-Pentachloro 2,3,4,7,8-Pentachloro

1,2,3,4,7,8-Hexachloro 1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro 2,3,4,6,7,8-Hexachloro

1,2,3,4,6,7,8-Heptachloro 1,2,3,4,7,8,9-Heptachloro Octachloro

11
$10 \quad 10$
$12 \quad 12$

11
11
11

11
11
92
81

12 13
$11 \quad 11$
12 . 13
$13 \quad 12$

13	11
13	14

10 LQ 11
13 13
$11 \quad 11$

84
81 ND Not Detected at Specified Detection Limit

LQ Less than Method Quantification Limit due to Incomplete Ion Cluster or Ion Ratio Outside of $+/-15 \%$ Tolerances

Table 2. Percent Recovery of ${ }^{13} \mathrm{C}$-Substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Eagle Blood Samples from the Hudson River Area

File: DF33nye-blood.xls 1-Sep-2000						
Date Analyzed: June 29-July 1, 2000						
Sample Site/Matrix:	Serum	Serum	Serum	Serum	Serum	Serum
CERC Number:	19848-S	19849-S	19850-S	19851-S	19852-S	19853-5
GC/HRMS Sets: DF33- Injection No.	33-5	33-6	33.7	33-8	33-18	33-19
Sample Submitter No.	BE-A-BL904-98	BE-A-BL949-98	BE-IM-BL935-98	BE-A-BL913-98	BE-A-BL956-98	BE-IM-BL914-98
Sample Mass Extracted (grams):	2.700	3.945	3.315	2.687	2.227	1.006
DIOXINS						
2,3,7,8-Tetrachloro	59	55	57	53	49	53
1,2,3,7,8-Pentachloro	74	77	75	71	63	69
1,2,3,4,7,8-Hexachloro	70	70	77	74	63	70
1,2,3,6,7,8-Hexachloro	77	75	73	71	58	64
1,2,3,7,8,9-Hexachloro	69	68	69	66	55	61
1,2,3,4,6,7,8-Heptachloro	71	71	73	72	56	62
Octachloro	55	57	60	57	47	54
FURANS						
2,3,7,8-Tetrachloro	68	67	66	63	57	60
1,2,3,7,8-Pentachloro	73	70	75	71	63	68
2,3,4,7,8-Pentachloro	73	73	73	69	61	67
1,2,3,4,7,8-Hexachloro	68	69	72	70	60	66
1,2,3,6,7,8-Hexachloro	77	69	75	69	59	65
1,2,3,7,8,9-Hexachloro	67	57	68	67	56	57
1,2,3,4,6,7,8-Heptachloro	78	75	78	74	61	66
1,2,3,4,7,8,9-Heptachloro	69	62	69	67	57	58

Table 2. Percent Recovery of ${ }^{13} \mathrm{C}$-Substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Eagle Blood Samples from the Hudson River Area
File: DF33nye-blood.xls
1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33-Injection No.
Sample Submitter No. \quad BE-BL921-98 BE-A-BL898-97 BE-A-BL968-99 BE-NE-BL950-98 BE-NE-BL911-A-98 BE-NE-BL911-B-98

Sample Mass Extracted (grams):	2.985	3.208	1.548	4.006	3.335	3.500
DIOXINS						
2,3,7,8-Tetrachloro	57	53	53	60	54	50

Table 2. Percent Recovery of ${ }^{13} \mathrm{C}$-Substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Eagle Blood Samples from the Hudson River Area

File: DF33nye-blood.xls

1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33-Injection No.
Sample Submitter No.
Sample Mass Extracted (grams):

DIOXINS

2,3,7,8-Tetrachloro
1,2,3,7,8-Pentachloro

1,2,3,4,7,8-Hexachloro 1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro

1,2,3,4,6,7,8-Heptachloro
Octachloro
FURANS
2,3,7,8-Tetrachloro
1,2,3,7,8-Pentachloro
2,3,4,7,8-Pentachloro
1,2,3,4,7,8-Hexachloro
1,2,3,6,7,8-Hexachloro 1,2,3,7,8,9-Hexachloro

1,2,3,4,6,7,8-Heptachloro 1,2,3,4,7,8,9-Heptachloro

Table 2. Percent Recovery of ${ }^{13} \mathrm{C}$-Substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Eagle Blood Samples from the Hudson River Area
File: DF33nye-blood.xis
1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33- Injection No.
Sample Submitter No.
Sample Mass Extracted (grams):

DIOXINS

2,3,7,8-Tetrachloro	55	52	50	51	55
1,2,3,7,8-Pentachloro	75	66	65	66	73
1,2,3,4,7,8-Hexachloro	79	63	62	65	71
1,2,3,6,7,8-Hexachloro	71	65	61	63	71
1,2,3,7,8,9-Hexachloro	67	57	54	59	63
1,2,3,4,6,7,8-Heptachloro	73	61	63	61	65
Octachloro	61	48	49	49	54
2,3,7,8-Tetrachloro	67	61	59	59	65
1,2,3,7,8-Pentachloro	73	69	67	65	73
2,3,4,7,8-Pentachloro	71	65	65	65	69
1,2,3,4,7,8-Hexachloro	74	61	58	61	69
1,2,3,6,7,8-Hexachloro	68	67	59	65	69
1,2,3,7,8,9-Hexachloro	73	55	55	57	62
1,2,3,4,6,7,8-Heptachloro	78	64	65	64	69
1,2,3,4,7,8,9-Heptachloro	71	57	57	59	60

Table 2. Percent Recovery of ${ }^{13} \mathrm{C}$-Substituted Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Eagle Blood Samples from the Hudson River Area
File: DF33nye-blood.xis
1-Sep-2000
Date Analyzed: June 29-July 1, 2000
Sample Site/Matrix:
CERC Number:
GC/HRMS Sets: DF33-Injection No.
Sample Submitter No.
Sample Mass Extracted (grams):
DIOXINS

	2,3,7,8-Tetrachloro	42	48
	1,2,3,7,8-Pentachloro	54	61
	1,2,3,4,7,8-Hexachloro	49	57
	1,2,3,6,7,8-Hexachloro	53	57
	1,2,3,7,8,9-Hexachloro	47	50
	1,2,3,4,6,7,8-Heptachloro	49	55
	Octachloro	32	35
FURANS			
	2,3,7,8-Tetrachloro	52	59
	1,2,3,7,8-Pentachloro	59	67
	2,3,4,7,8-Pentachloro	53	60
	1,2,3,4,7,8-Hexachloro	49	56
	1,2,3,6,7,8-Hexachloro	54	62
	1,2,3,7,8,9-Hexachloro	46	52
	1,2,3,4,6,7,8-Heptachloro	57	61
	1,2,3,4,7,8,9-Heptachloro	47	51

Table 3. Non-o-Chloro-Substituted PCBs (pg/g) in Bald Eagle Blood from the Hudson River Area, NY

	$\begin{aligned} & \text { 7-Sep-00 } \\ & \text { N41-nye-blood.xls } \end{aligned}$		GC/MS Sets: N41PCB Dates: July 19-July 22, 2000		Non-o-Polychlorinated Biphenyls			
					Tetra:		Penta:	Hexa:
	NFCR Number:	Field Number:	Sample Description:	GC/MS Run No.	$\begin{gathered} 3,4,4^{\prime}, 5-\mathrm{TCB} \\ (81) \\ \hline \end{gathered}$	$\begin{gathered} 3,3^{\prime}, 4,4^{\prime} \text {-TCB } \\ (77) \\ \hline \end{gathered}$	$\begin{gathered} 3,3^{\prime}, 4,4^{\prime}, 5-\mathrm{PeCB} \\ (126) \\ \hline \end{gathered}$	$\begin{gathered} 3,3^{\prime}, 4,4^{\prime}, 5,5^{\prime}-\mathrm{HxCB} \\ (169) \\ \hline \end{gathered}$
	19848-S	BE-A-BL.904-98	Bald Eagle Blood 2.7 g	41-12	25	107	87	15
	19849-S	BE-A-BL.949-98	Bald Eagle Blood 3.945 g	41-13	27	141	119	20
	19850-S	BE-IM-BL935-98	Bald Eagle Blood 3.315 g	41-15	66	402	250	38 LQ
	19851-S	BE-A-BL.913-98	Bald Eagle Blood 2.687 g	41-16	75	106	250	44
	19852-S	BE-A-BL956-98	Baid Eagle Blood 2.227 g	41-17	39	159	112	20
	19853-S	BE-IM-BL914-98	Bald Eagle Blood 1.006 g	41-18	22 LQ	216	80	36
	19854-S	BE-BL.921-98	Bald Eagle Blood 2.985 g	41-20	24	300	70	12 LQ
	19855-S	BE-A-BL898-97	Bald Eagle Blood 3.208 g	41-21	163	298	361	40
	19856-S	BE-A-BL968-99	Bald Eagle Blood 1.548 g	41-22	527	2,380	1,100	89
	19857-S	BE-NE-BL950-98	Bald Eagle Blood 4.006 g	41-23	29	224	48	5
	19858-S	BE-NE-BL911-A-98	Bald Eagle Blood 3.335 g	41-25	19	158	41	6 LQ
	19859-S	BE-NE-BL911-B-98	Bald Eagle Blood 3.5 g	41-26	13	110	27	5 LQ
	19860-S	BE-NE-BL911-C-98	Bald Eagle Blood 3.237 g	41-27	8	81	21	4
	20026-S	BE-IM-BL976-99	Bald Eagle Blood 2.928 g	41-28	13	196	121	26
	20027-W	BE-NE-BL.972A-99	Bald Eagle Blood 3.116 g	41-30	18	234	32	5 LQ
ω	20028-W	BE-NE-BL972B-99	Bald Eagle Blood 3.225 g	41-31	12	144	22	8 LQ
O	20029-W	BE-NE-BL971-99	Bald Eagle Blood 3.143 g	41-32	9	105	20	4
O	20030-W	BE-NE-BL.974-99	Bald Eagle Blood 3.114 g	41-33	10	140	27	5

Table 3. Non-o-Chloro-Substituted PCBs (pg/g) in Bald Eagle Blood trom the Hudson River Area, NY

$\begin{aligned} & \text { 7-Sep-00 } \\ & \text { N41-nye-blood.xls } \end{aligned}$		GC/MS Sets: N41PCB Dates: July 19-July 22, 2000		Non-0-Polychlorinated Biphenyls					
		Tetra:	Penta:	Hexa:					
NFCR Number:	Field Number:			Sample Description:	GC/MS Run No.	$\begin{gathered} 3,4,4^{\prime}, 5-\mathrm{TCB} \\ (81) \\ \hline \end{gathered}$	$\begin{gathered} 3,3^{\prime}, 4,4^{\prime}-\mathrm{TCB} \\ (77) \\ \hline \hline \end{gathered}$	$\begin{gathered} 3,3^{\prime}, 4,4^{\prime}, 5-\mathrm{PeCB} \\ (126) \\ \hline \hline \end{gathered}$	3,3',4,4',5,5'-HxCB (169)
20031-W	BE-IM-BL981-99	Bald Eagle Blood 3.57 g	41-35	60	516	108	10		
		Quality Control Samples:							
Proc. Blk 10/26/99		Procedure Blank, 10/26/99 (3 g sample basis)	41-5	1 ND	22	4 LQ	2		
Proc. Blk 10/29/99		Procedure Blank, 10/29/99 ($\mathbf{3} \mathrm{g}$ sample basis)	41-6	1 LQ	25	5 LQ	1 ND		
Matrix BIk 10/26/99		Bovine Serum Matrix Blank 10/26/99 3.0g	41-7	1 LQ	35	4 LQ	2 LQ		
Matrix BIk 10/29/99		Bovine Serum Blank \#2 10/29/99 3.0g	41-8	1 LQ	15	6	1 ND		
Matrix Spike 10/26/99		Bovine Serum Matrix Spike-DFs 10/26/99 2.93g 41-10		1	11	3 LQ	2 LQ		
Matrix Spike 10/29/99		Bovine Serum Matrix Spike 10/29/99 3.02g	41-11	21	502	16 LQ	2 LQ		
		LQ Less than Method Quantification Limit due to Incomplete lon Cluster or Inaccurate Ion Ratio (Oulside $+/-15 \%$ Tolerances) ND Not Detected at Specified Detection Limit							

Table 4. Percent Recoveries of ${ }^{13} \mathrm{C}$-Non-o-Chloro-Substituted PCBs in Bald Eagle Blood from the Hudson River Area, NY

$\begin{aligned} & \text { 7-Sep-00 } \\ & \text { N41-nye-blood.xls } \end{aligned}$		GC/MS Sets: N41PCB Dates: July 19-July 22, 2000		${ }^{13} \mathrm{C}$-Non-O-Polychlorinated Biphenyls					
					ra:	Penta:	Hexa:		
NFCR Number:	Submitter Number:			Sample Description:	GC/MS Run No.	$\begin{array}{r} 3,4,4,5-\mathrm{TCB} \\ \left({ }^{13} \mathrm{C}-\mathrm{PCB} \# 81\right) \\ \hline \end{array}$	$\begin{array}{r} \text { 3,3'4,4'4-TCB } \\ \left({ }^{3} \mathrm{C}-\mathrm{PCB} \# 77\right) \\ \hline \end{array}$	3,3',4,4,5-PeCB (${ }^{13} \mathrm{C}$-PCB \#126)	3,3,4,4',5,5'-HxCB (${ }^{13} \mathrm{C}-\mathrm{PCB} \# 169$)
19848-S	BE-A-BL904-98	Bald Eagle Blood 2.7 g	41-12	60	54	59	65		
19849-S	BE-A-BL.949-98	Bald Eagle Blood 3.945 g	41-13	68	54	56	62		
19850-S	BE-IM-BL935-98	Bald Eagle Blood 3.315 g	41-15	70	55	60	65		
19851-S	BE-A-BL913-98	Bald Eagle Blood 2.687 g	41-16	70	57	63	66		
19852-S	BE-A-BL956-98	Bald Eagle Blood 2.227 g	41-17	62	49	53	54		
19853-S	BE-IM-BL914-98	Bald Eagle Blood 1.006 g	41-18	63	52	55	59		
19854-S	BE-BL921-98	Bald Eagle Blood 2.985 g	41-20	67	56	61	60		
19855-S	BE-A-BL898-97	Bald Eagle Blood 3.208 g	41-21	78	65	67	71		
19856-S	BE-A-BL968-99	Bald Eagle Blood 1.548 g	41-22	71	58	60	64		
19857-S	BE-NE-BL950-98	Bald Eagle Blood 4.006 g	41-23	71	60	64	66		
19858-S	BE-NE-BL911-A-98	Bald Eagle Blood 3.335 g	41-25	81	65	75	73		
19859-S	BE-NE-BL911-B-98	Bald Eagle Blood 3.5 g	41-26	76	64	76	77		
19860-S	BE-NE-BL911-C-98	Bald Eagle Blood 3.237 g	41-27	79	69	77	78		
20026-S	BE-IM-BL976-99	Bald Eagle Blood 2.928 g	41-28	71	60	64	67		
20027-W	BE-NE-BL972A-99	Bald Eagle Blood 3.116 g	41-30	79	60	66	63		
20028-W	BE-NE-BL.972B-99	Bald Eagle Blood 3.225 g	41-31	74	63	64	65		
20029-W	BE-NE-BL971-99	Bald Eagle Blood 3.143 g	41-32	77	62	67	66		
20030-W	BE-NE-BL974-99	Bald Eagle Blood 3.114 g	41-33	83	65	73	79		

Table 4. Percent Recoveries of ${ }^{13} \mathrm{C}$-Non-o-Chloro-Substituted PCBs in Bald Eagle Blood from the Hudson River Area, NY

7-Sep-00 N41-nye-blood.xls		GC/MS Sets: N41PCB Dates: July 19-July 22, 2000		${ }^{13} \mathrm{C}$-Non-O-Polychlorinated Biphenyls					
		Tetra:		Penta:					
		Hexa:							
NFCR Number:	Submitter Number:			Sample Description:	GC/MS Run No.	$\begin{array}{r} 3,4,4,5-\mathrm{TCB} \\ \left({ }^{13} \mathrm{C}-\mathrm{PCB} \# 81\right) \\ \hline \hline \end{array}$	$\begin{array}{r} 3,3,4,4^{4}-\mathrm{TCB} \\ \left({ }^{13} \mathrm{C}-\mathrm{PCB} \# 77\right) \\ \hline \end{array}$	$\begin{array}{r} 3,3^{\prime}, 4,4,5-\mathrm{PeCB} \\ \left.\mathrm{a}^{13} \mathrm{C}-\mathrm{PCB} \# 126\right) \\ \hline \end{array}$	$\begin{array}{r} 3,3^{\prime}, 4,4^{\prime}, 5,5^{\prime}-\mathrm{HxCB} \\ \left({ }^{13} \mathrm{C}-\mathrm{PCB} \# 169\right) \\ \hline \end{array}$
20031-W	BE-IM-BL981-99	Bald Eagle Blood 3.57 g	41-35	77	63	67	69		
		Quality Control Samples:							
Proc. Blk		Procedure Blank, 10/26/99	41-5	58	50	51	55		
Proc. Blk		Procedure Blank, 10/29/99	41-6	62	52	55	62		
Matrix Blk	6/99	Bovine Serum Matrix Blank 10/26/99 3.0g	41-7	64	53	53	59		
Matrix BIk	9/99	Bovine Serum Blank \#2 10/29/99 3.0g	41-8	67	56	62	65		
Matrix Sp	/26/99	Bovine Serum Matrix Spike-DFs 10/26/99 2.93g	41-10	70	56	58	57		
Matrix Sp	129/99	Bovine Serum Matrix Spike 10/29/99 3.02g	41-11	85	67	75	76		

Table 5. Calculated Avian TEQs for Eagle Blood (pg/g)

Table 5. Calculated Avian TEQs for Eagle Blood (pg/g)

Sample		Non-ortho congeners				Sum	
ID		81	77	126	169	nPCB	
	Ävian TEFs ${ }^{1}$	0.1	0.05	0.1	0.001		
	TEQs (pg / g)						
19848-s		2.5	5.3	8.7	0.015	16	
19849-s		2.7	7.0	12	0.020	22	
19850-s		6.6	20	25	0.038	52	
19851-s		7.5	5.3	25	0.044	38	
19852-s		3.9	7.9	11	0.020	23	
19853-s		2.2	11	8.0	0.036	21	
19854-s		2.4	15	7.0	0.012	24	
19855-s		16	15	36	0.040	67	
19856-s		53	119	110	0.089	282	
19857-s		2.9	11	4.8	0.0049	19	
19858-s		1.9	7.9	4.1	0.0057	14	
19859-s		1.3	5.5	2.7	0.0045	9.5	
19860-s		0.81	4.1	2.1	0.0035	6.9	
20026-s		1.3	9.8	12	0.026	23	
20027-w		1.8	12	3.2	0.0050	17	
20028-w		1.2	7.2	2.2	0.0085	11	
20029-w		0.94	5.2	2.0	0.0037	8.1	
20030-w		0.99	7.0	2.7	0.0045	11	
20031-w		6.0	26	11	0.01	43	
From Van d	Berg etal. 19						

Table 5. Calculated Avian TEQs for Eagle Blood (pg/g)

Sample		Dioxins							Total
ID		2378-TCDD	12378-PCDD	123478-HxCDD	123678-HxCDD	123789-HxCDD	1234678-HpCDD	OCDD	Dioxins
	Àvian TEFs ${ }^{\text {¹ }}$	1	1	0.05	0.01	0.1	0.001	0.0001	
	TEQs (pg/g)								
19848-s		0.20	0.20	0.005	0.001	0.010	0.0001	0.0018	0.42
19849-s		0.20	0.10	0.005	0.001	0.010	0.0001	0.0023	0.32
19850-s		0.70	0.70	0.010	0.005	0.010	0.0006	0.0067	1.4
19851-s		0.60	1.1	0.005	0.008	0.010	0.0004	0.0067	1.7
19852-s		0.30	0.30	0.005	0.001	0.010	0.0003	0.0024	0.62
19853-s		0.20	0.40	0.005	0.001	0.010	0.0001	0.0020	0.62
19854-s		0.50	0.40	0.005	0.003	0.010	0.0003	0.0025	0.92
19855-s		0.90	0.30	0.005	0.004	0.010	0.0002	0.0024	1.2
19856-s		2.7	1.3	0.015	0.017	0.010	0.0011	0.0090	4.1
19857-s		0.10	0.10	0.005	0.001	0.010	0.0001	0.0018	0.22
19858-s		0.10	0.10	0.005	0.001	0.610	0.0001	0.0024	0.22
19859-s		0.10	0.10	0.005	0.001	0.010	0.0001	0.0025	0.22
19860-s		0.10	0.10	0.005	0.001	0.010	0.0002	0.0027	0.22
20026-s		0.50	0.60	0.005	0.007	0.010	0.0004	0.0019	1.1
20027-w		0.10	0.20	0.005	0.001	0.010	0.0001	0.0006	0.32
20028-w		0.10	0.10	0.005	0.001	0.010	0.0002	0.0005	0.22
20029-w		0.10	0.10	0.005	0.001	0.010	0.0003	0.0005	0.22
20030-w		0.10	0.10	0.005	0.001	0.010	0.0002	0.0006	0.22
20031-w		0.30	0.30	0.005	0.004	0.010	0.0003	0.0003	0.62
${ }^{1}$ From Van den Berg etal. 1998.									

Sample		Furans							
ID		2378-TCDF	12378-PCDF	23478-PCDF	123478-HxCDF	123678-HxCDF	123789-HxCDF	234678-HxCDF	1234678-HpCDF
	Âvian TEFs	1	0.1	1	0.1	0.1	0.1	0.1	0.01
	TEQs (pg/g)								
19848-s		0.50	0.01	0.30	0.01	0.01	0.01	0.01	0.00
19849-s		0.20	0.01	0.20	0.01	0.01	0.01	0.01	0.00
19850-s		0.60	0.01	1.0	0.01	0.01	0.01	0.01	0.00
19851-s		0.40	0.01	0.40	0.01	0.01	0.01	0.01	0.00
19852-s		0.50	0.01	0.30	0.01	0.01	0.01	0.01	0.00
19853-s		1.2	0.02	0.60	0.01	0.01	0.01	0.01	0.00
19854-s		0.70	0.02	0.30	0.01	0.01	0.01	0.01	0.00
19855-s		0.30	0.01	0.70	0.01	0.01	0.01	0.01	0.00
19856-s		1.7	0.02	3.5	0.01	0.01	0.01	0.01	0.01
19857-s		2.1	0.01	0.20	0.01	0.01	0.01	0.01	0.00
19858-s		0.50	0.01	0.20	0.01	0.01	0.01	0.01	0.00
19859-s		0.40	0.01	0.10	0.01	0.01	0.01	0.01	0.00
19860-s		0.40	0.01	0.10	0.01	0.01	0.01	0.01	0.00
20026-s		0.80	0.01	0.50	0.01	0.01	0.01	0.01	0.00
20027-w		0.40	0.01	0.10	0.01	0.01	0.01	0.01	0.00
20028-w		0.30	0.01	0.10	0.01	0.01	0.01	0.01	0.00
20029-w		0.80	0.01	0.20	0.01	0.01	0.01	0.01	0.00
20030-w		0.20	0.01	0.10	0.01	0.01	0.01	0.01	0.00
20031-w		0.30	0.01	0.40	0.01	0.01	0.01	0.01	0.00
${ }^{1}$ From Van den Berg etal. 1998.									

Table 5. Calculated Avian TEQs for Eagle Blood (pg/g)

United States Department of the Interior

U. S. GEOLOGICAL SURVEY

Columbia Environmental Research Center
4200 New Haven Road
Columbia, Missouri 65201

September 14, 2000

Anne Secord
US Fish and Wildlife Service
New York Field Office
3817 Luker Road
Cortland, New York 13045

Dear Anne:

While looking over the earlier report for OC pesticides and PCBs I found a text error on page 6. I am enclosing the title page of the report for reference, the page with the error shown, and the replacement page.

Columbia Environmental Research Center U.S. Geological Survey- Biological Resources Division 4200 New Haven Road, Columbia, Missouri 65201

July 20, 2000

REPORT \#1
PCB and OC Pesticides in Bald Eagle Blood
FY-00-31-02
FWS NO: 1448-50181-99-H-007
CERT NO: 3307-70L1D

By
Organic Chemistry Section
John Meadows, Kathy Echols, Robert Gale, Paul Peterman
Carl Orazio- USGS Project Leader

FWS PROJECT TITLE

Chemical Contamination of Nesting Tree Swallows, Great Blue Herons, and Resident/Nesting Bald Eagles Along the Hudson River, New York

Principal Investigator
Anne Secord
US Fish and Wildlife Service
New York Field Office
3817 Luker Road
Cortland, New York 13045
Peter Ny
Endangered Species Unit
Wildlife Resources Center
New York State Department of Environmental Conservation
Delmar, New York 12054
except for procedural blank samples, which are reported as a mass amount (ng). Quality control data for procedural and matrix blanks, spikes, replicates, and positive controls are presented in Table 2. The method detection limits (MDLs) for individual PCB congeners and for total PCBs are based on procedural blank (PB) results according to the method outlined by Keith et al. $(7,8)$. Briefly, an average and standard deviation are determined. The MDL (ng) is calculated using the following formula:

$$
M D L=(P B A v g)+3(P B S D) .
$$

The MDL is then expressed in units of concentration: mass of analyte per mass of sample. If sample masses are within 10% of each other, an average mass is calculated for the entire set. The lowest MDL for this set of samples was $0.01 \mathrm{ng} / \mathrm{g}$ and $3 \mathrm{ng} / \mathrm{g}$ for the highest (9) of the individual PCB congeners and the MDL $30 \mathrm{ng} / \mathrm{g}$ for total PCB concentrations. If included, the method quantitation limit (MQL) was calculated as well using the formula $(7,8)$:

$$
M Q L=(P B A v g)+10(P B \text { SD }) .
$$

The mass corrections are made in the same manner as for the MDLs. Two congeners (048,085) were non-quantifiable due to known interferences (Table 1).

Gas chromatographic analysis, peak measurement decisions, and quantification were monitored with triplicate injection of the same sample. Precision averaged 4\% for all the sample sets.

Accuracy of the method is monitored through rigorous quality control. Analytical standards have been verified against certified standards. Analyte recoveries are monitored by the following spikes:

1) internal recovery standards in each sample,
2) PCB-spiked control bovine serum.

The spiked recovery compounds, PCBs 029, 155, and 204, which elute in the PGC1 fraction, are presented in Table 3. PCB 029, a trichlorobiphenyl, is representative of more volatile early eluting PCBs $\left(\mathrm{Cl}_{1}-\mathrm{Cl}_{3}\right)$. PCB 155, a hexachlorobiphenyl, is representative of mid-range eluting congeners ($\mathrm{Cl}_{4}-\mathrm{Cl}_{6}$). PCB 204, an octachlorobiphenyl, is less volatile and representative of later eluting $\mathrm{PCBs}\left(\mathrm{Cl}_{7}-\right.$ Cl_{10}). Recoveries averaged $33 \pm 11 \%$ for PCB 029, $52 \pm 15 \%$ for PCB 155, and $61 \pm$ 17% for PCB 204 (Table 3). Recoveries of spiked A1111 PCB congeners ranged from 3% to 121% and recovery of total PCBs were 69% for the matrix spike.

III. Organochlorine Pesticide Analysis and Results

Organochlorine pesticide fractions (SODS-1/PGC 1 and SODS-2) were adjusted to a final volume of 2 mL and 80 ng internal standard (PCBs 030 and 207) was added.
except for procedural blank samples, which are reported as a mass amount (ng). Quality control data for procedural and matrix blanks, spikes, replicates, and positive controls are presented in Table 2. The method detection limits (MDLs) for individual PCB congeners and for total PCBs are based on procedural blank (PB) results according to the method outlined by Keith et al. $(7,8)$. Briefly, an average and standard deviation are determined. The MDL (ng) is calculated using the following formula:

$$
M D L=(P B A v g)+3(P B S D) .
$$

The MDL is then expressed in units of concentration: mass of analyte per mass of sample. If sample masses are within 10% of each other, an average mass is calculated for the entire set. The lowest MDL for this set of samples was $0.01 \mathrm{ng} / \mathrm{g}$ and $3 \mathrm{ng} / \mathrm{g}$ for the highest (9) of the individual PCB congeners and the MDL $30 \mathrm{ng} / \mathrm{g}$ for total PCB concentrations. If included, the method quantitat calculated as well using the formula $(7,8)$:

$$
M Q L=(P B \text { Avg })+10(P B \text { SD }) .
$$

The mass corrections are made in the same manner as for the congeners $(048,085)$ were non-quantifiable due to known inte

OC\&PCBS-EAGEBLCODS
REPORT\#1.

Gas chromatographic analysis, peak measurement decisions, and quantification were monitored with triplicate injection of the same sample. Precision averaged 4\% for all the sample sets.

Accuracy of the method is monitored through rigorous quality control. Analytical standards have been verified against certified standards. Analyte recoveries are monitored by the following spikes:

1) internal recovery standards in each sample,
2) PCB-spiked control bovine serum.

The spiked recovery compounds, PCBs 029, 155, and 204, which elute in the PGC1 fraction, are presented in Table 3. PCB 029, a trichlorobiphenyl, is representative of more volatile early eluting PCBs $\left(\mathrm{Cl}_{1}-\mathrm{Cl}_{3}\right)$. PCB 155, a hexachlorobiphenyl, is representative of mid-range eluting congeners ($\mathrm{Cl}_{4}-\mathrm{Cl}_{6}$). PCB 204, an octachlorobiphenyl, is less volatile and representative of later eluting $\mathrm{PCBs}\left(\mathrm{Cl}_{7}-\right.$ Cl_{10}). Recoveries averaged $33 \pm 11 \%$ for PCB 029, $52 \pm 15 \%$ for PCB 155, and $61 \pm$ 17% for PCB 204 (Table 3). The total-PCB recovery in the matrix spike was 70%.

III. Organochlorine Pesticide Analysis and Results

Organochlorine pesticide fractions (SODS-1/PGC 1 and SODS-2) were adjusted to a final volume of 2 mL and 80 ng internal standard (PCBs 030 and 207) was added.

