
REPORT

Correction of Analytical Biases in the 1991-1997 GE Hudson River PCB Database

September 1997

REPORT

Correction of Analytical Biases in the 1991-1997 GE Hudson River PCB Database

General Electric Company Corporate Environmental Programs Albany, New York

> J. Kevin Farmer Vice President

September 1997

O'Brien & Gere Engineers, Inc. 5000 Brittonfield Parkway East Syracuse, New York. 13057

This report was prepared by:

Kerry A. Thurston - O'Brien & Gere Engineers, Inc.

and reviewed by:

William A. Ayling - O'Brien & Gere Engineers, Inc. J. Kevin Farmer, P.E. - O'Brien & Gere Engineers, Inc. James R. Rhea, Ph.D. - HydroQual, Inc.

Contents

1. Introduction	1
1.1. Background	1
1.1.1. Analytical method summary	
1.1.2. Summary of GE Hudson River PCB database	
1.1.3. Identification and quantification of analytical biases	
1.2. Objective	
1.3. Approach	
2. Implementation of database corrections	7
2.1. Database preparation	
2.2. Analytical bias corrections: CP database	8
2.2.1. Procedure	8
2.2.2. Media-specific concerns	9
2.2.3. Rounding	10
2.2.4. Correction of database errors	10
2.3. Analytical bias corrections: GE database	11
3. QC protocols development, implementation, and results	13
3.1. Electronic QC review	
3.2. Manual QC review	
3.3. HydroQual QC Review	14
4. Impact of analytical bias corrections on databases	15
4.1. Magnitude of change in PCB data	
4.1.1. Magnitude of congener concentration changes	
4.1.2. Water column data	
4.1.3. Sediment and porewater data	
4.1.4. Fish and biota data	
4.2. Method detection limit	
4.3. Data validation qualifiers	
5. Modifications to future analytical and database deliverables .	
5.1. Analytical changes for future analyses	
5.2. Database deliverable changes	20

i

Tables

- 1-1 DB-1 capillary column peaks and corresponding congeners
- 1-2 HydroQual calibration correction factors
- 1-3 HydroQual coelution correction factors
- 2-1 Summary of new database fields
- 4-1 Data validation criteria review and potential impacts

Figures

- 2-1 Database preparation and post-correction task algorithm
- 2-2 Program algorithm for CP congener peak database corrections
- 2-3 Program algorithm for GE environmental database corrections

Appendices

- A Revised database file structure tables
- B Revised GE Hudson River databases (diskette)
- C Detailed algorithm for computer program design
- D Reference databases
- E Northeast Analytical letter

1. Introduction

C

1.1. Background

On behalf of the General Electric Company (GE), O'Brien & Gere Engineers, Inc. (O'Brien & Gere) prepared this report to document corrections implemented to address PCB analytical bias in the GE Hudson River database. HydroQual (1997) identified analytical bias in the database, and developed correction factors to correct for the bias. This report presents detailed documentation of the corrections as applied to the database.

1.1.1. Analytical method summary

Sampling and analysis for PCBs in the Hudson River by GE and its contractors has been performed in accordance with the Quality Assurance Project Plan (QAPP) developed for the site (O'Brien & Gere 1992). The PCB analytical method used for the Hudson River sampling programs, Method NEA608CAP, has been performed by Northeast Analytical Laboratories, Inc. (Northeast Analytical) for the Hudson River project since 1991.

Method NEA608CAP involves the analysis of PCBs, extracted from the sample matrix, by gas chromatographic (GC) separation of PCB congeners on a DB-1 capillary column, with electron capture detection (O'Brien & Gere 1997a). Calibration of the DB-1 column is based on the method developed by the U.S. Environmental Protection Agency (USEPA) for the Green Bay Mass Balance Study (USEPA 1987). The Green Bay Method involves GC standardization using a 25:18:18 mixture of Aroclors 1232, 1248, and 1262. Individual DB-1 peak response factors¹ are calculated based on standard peak weight percent values originally developed by the USEPA (USEPA 1987). These response factors are then used to calculate PCB content of environmental samples. The DB-1 column separates PCBs into 118 unique chromatogram peaks. Several of these peaks contain multiple (coeluting) congeners (Table 1-1).

The response factor is defined as the PCB congener mass per unit area of chromatogram peak.

1.1.2. Summary of GE Hudson River PCB database

The GE Hudson River PCB database was developed to store data collected from the Hudson River by GE and its contractors in association with the USEPA Reassessment Remedial Investigation and Feasibility Study (RRI/FS). The database contains congener PCB data for approximately 3,000 environmental samples collected from the Hudson River between 1990 and 1997. Sampling programs include the Post-Construction Remnant Deposit Monitoring Program (PCRDMP; O'Brien & Gere 1993a, 1994, 1995, 1996a, 1997a) Temporal Water Column Monitoring Program (O'Brien & Gere 1993b), and others (O'Brien & Gere 1993d,e,f; 1996b, 1997b,c,d)

Hudson River PCB data are contained in two related databases.

GE (environmental) database. Information in the GE database consists of:

- Total PCB, PCB homolog distributions and chlorines per biphenyl obtained from Method NEA608CAP PCB congener analyses
- analytical results from conventional parameters such as total suspended solids, organic carbon, and total PCBs obtained from analytical methods other than NEA608CAP
- · sample field logs and chain of custody information
- Hudson River USGS gaging station discharge data
- sampling program and investigating contractor responsible for sample collection.

CP (congener peak) database. Information in the CP database consists of data from Method NEA608CAP analyses:

- sample identification information
- PCB congener peak concentrations for 118 peaks resolved on a DB-1 capillary column
- total PCB concentrations
- average molecular weight
- total micromoles of PCB within sample

Additional fields have been added to both databases to reflect the revisions made to compensate for analytical biases. These revisions are described in Chapter 2. Revised file structure tables for the databases are contained in Appendix A.

1.1.3. Identification and quantification of analytical biases

HydroQual identified and quantified analytical biases in the GE Hudson River database (HydroQual 1997). A brief synopsis of those findings is provided below.

HydroQual (1997) compared water column PCB concentrations in samples collected by GE in 1993 from the Fort Edward (HRM 194.2) and Thompson Island dam (HRM 188.5) monitoring stations (O'Brien & Gere 1994) with those measured as part of the USEPA RRI/FS Phase II study (USEPA 1995). Although total PCB levels exhibited consistency in magnitude and temporal trends, individual PCB congeners differed significantly (HydroQual 1997).

HydroQual (1997) identified analytical biases as the predominant cause of observed differences between GE and USEPA data. These analytical biases were associated with the Green Bay mixed Aroclor standard used to calibrate the DB-1 capillary column system (HydroQual 1997). These analytical biases, briefly summarized below, are of two types: calibration errors and coelution biases (HydroQual 1997).

Calibration errors. Differences between the GE and USEPA congener PCB data can be partly attributed to an error in the original calibration of the PCB standard used by GE for DB-1 analyses (USEPA 1987). The congener distribution of the Green Bay standard was apparently miscalculated, predominantly for components of DB-1 Peak 5, and a revision to the calibration was later published (USEPA 1994). The congener distribution miscalculation introduced systematic analytical biases in the GE data because underestimation of DB-1 Peak 5 in the calibration standard resulted in underestimation of DB-1 Peak 5 in the Hudson River environmental samples. Since the error was in the interpretation of the calibration standard composition, not the PCB mass, it affected data for all 118 DB-1 peaks. Specifically, underestimation of DB-1 Peak 5 resulted in overestimation of the other peaks (HydroQual 1997).

Original and revised DB-1 peak weight percent data for the Green Bay standard were used to develop correction factors to account for the calibration error in the original standard (HydroQual 1997). These correction factors were used to implement this portion of the database correction.

Coelution bias. Another cause of bias in the GE database is related to the methods used to separate and quantify PCB congeners (HydroQual 1997). Mass estimates of coeluting congeners with differing response factors are sensitive to the assumption made regarding the relative amounts of the congeners that coelute in a single DB-1 peak (HydroQual 1997). Currently, the assumptions for deconvolution of peaks containing congeners with different chlorination levels (mixed peaks) are based on mass spectrometry analysis of Aroclor mixtures (Frame et al, 1996). As mixed-peak congener mass ratios in Hudson River environmental samples deviate from those of commercial Aroclors, measurement errors are introduced into results for these peaks. Furthermore, differences in coeluting peak congener compositions between Hudson River environmental samples and those of the DB-1 calibration standard will result in similar errors (HydroQual 1997).

HydroQual (1997) ranked the DB-1 capillary column peaks with coeluting congeners for potential bias based on differences in congener response factors and the relative abundance of these peaks in Hudson River environmental samples. Mixed DB-1 peak deconvolution assumptions used for PCB analysis were derived from literature (Mullin et al, 1984; Frame and others 1996; Frame 1997). Peaks possessing the largest potential bias (Peaks 5, 8, and 14) were further evaluated through the analysis of selected water column and sediment archived sample extracts on a different analytical column (Chromopack, Inc. CP-SIL5/C18 (C18) capillary column). The C18 column separates target congeners that coelute in the DB-1 capillary column Peaks 5, 8 and 14. HydroQual (1997) quantitatively compared individual congener results from the C18 column with the original DB-1 column results and developed coelution correction factors for both sediment and water column samples.

Based on these findings, HydroQual developed correction factors to be used to correct PCB calibration (Table 1-2) and coelution biases (Table 1-3) in the historical GE database, and changes to the GE Hudson River PCB analytical program (HydroQual 1997).

1.2. Objective

The principal objective of database correction was to correct the 1991-1997 GE Hudson River PCB database for both calibration errors and coelution biases identified and quantified by HydroQual (1997). This document accompanies the revised GE Hudson River database (Appendix B).

1.3. Approach

O'Brien & Gere developed the following approach to implement the corrections to the GE Hudson River PCB database:

1. Prepare the CP, GE and reference databases:

e Shiring the property of the

- archiving a copy of the existing databases
- editing of the databases to separate the records of samples analyzed using the Green Bay standard from those not using the Green Bay standard
- developing reference databases used to implement the corrections.
- 2. Implement analytical bias corrections to the CP database:
 - applying correction factors for both the calibration and coelution biases to the congener concentrations
 - recalculating total PCBs, average molecular weight, and total micromoles of PCB.
- Manual and electronic Quality Control (QC) review of the corrected CP database.
- 4. Implement analytical bias corrections to the GE database including recalculating homolog distributions, and ortho-, meta+para- and total chlorines per biphenyl.
- 5. Manual and electronic QC review of the corrected GE database.
- 6. Finally, the corrected CP and GE databases were reconstructed with the non-corrected records.

This approach was implemented electronically, using routines written in Microsoft FoxPro software. A detailed algorithm is presented in Appendix C.

2. Implementation of database corrections

The PCB analytical bias correction factors developed by HydroQual (1997) were applied to the 1991-1997 GE Hudson River database (Tables 1-2 and 1-3). Corrections for analytical biases affected numerous field entries in the Hudson River databases including:

- DB-1 PCB peak concentrations
- Total PCB concentrations
- PCB composition information

The specific fields within the databases that were corrected for analytical biases are identified in the following table:

Data	CP Database	GE Database
DB-1 peak concentrations	PK2_AMT ¹ through PK118AMT	- .
Total PCB concentration	PCB_CONC	NEA_TOT, PCB_CAP, DL_CAP
PCB composition information	Total micromoles PCB (MIC_MOLS)	Homolog distributions, weight percent and mole percent MONO_WT through DECA_WT MONO_ML through DECA_ML
	Average molecular weight (AVG_MWT)	Chlorine substitution patterns (ORTHO_CL, MP_CL, TOT_CL)

Notes:

Source: O'Brien & Gere Engineers, Inc.

Database corrections also required addition of new fields to the GE Hudson River PCB database. These new fields are summarized in Table 2-1.

Other reference information used to implement database corrections (Appendix D) were obtained from HydroQual (1997) and Northeast Analytical.

¹PK1_AMT (biphenyl) does not have a defined correction factor. This peak is not considered for PCB analysis of Hudson River environmental samples (HydroQual 1997).

2.1. Database preparation

Prior to implementing the corrections programs, two copies of the existing databases were made: one copy was archived; a second, working copy was prepared for revision in a three-step procedure (Figure 2-1):

- 1. Editing the GE and CP databases The GE database was edited to remove those records containing data not obtained using the Green Bay standard and for which the corrections did not apply. The CP database was also edited, using the field ID that links the GE and CP databases, to remove those records not requiring correction. The data not requiring correction were Harza (INVEST = HAR) sediment and fish data collected prior to 1990 and GE Corporate Research and Development (INVEST = CRD) archived fish data. New fields were added to the CP database to provide additional space to document the corrections implemented (Table 2.2).
- Separating the databases by media Since some of the corrections have media-specific correction factors, the CP and GE databases were separated by the media categories for water column, sediment/porewater, and fish/biota.
- 3. Developing additional reference databases The information in these databases included data from C18 analyses, correction factors for the calibration bias, sample-specific indicators of analytical method, and DB-1 congener peak molecular weights (Table 1-2, Appendix D).

Once the databases were prepared, the corrections were implemented (Sections 2.2 and 2.3).

2.2. Analytical bias corrections: CP database

2.2.1. Procedure

Two analytical bias corrections to the CP databases were implemented for the three media data sets. Separate algorithms were written for the three media. For each record (or sample), four steps were completed (Figure 2-2):

1. The calibration bias was corrected by applying the appropriate correction factor from the reference database to the existing DB-1 congener peak

data in the selected database for water, sediment, porewater, fish and biota samples.

- The coelution peak bias was corrected by applying the appropriate, mediaspecific, correction factor to DB-1 Peaks 5, 8 and 14. The additional fields (CF_PK5, CF_PK8, CF_PK14) contain the correction factors used for the given sample.
- 3. The data obtained from C18 analyses of archived extracts from water column, sediment, and porewater samples were compiled in the reference database C18_DATA (Appendix D). Values from the reference database were copied into the fields BZ4_AMT, BZ10_AMT, BZ5_AMT, BZ8_AMT, BZ15_AMT, and BZ18_AMT in the congener database. The database field C18_CHK indicates by "Y" or "N" if the sample was analyzed using the C18 column.
- 4. Three fields were recalculated once the calibration and coelution biases were corrected. First, the revised concentrations of the DB-1 peaks were summed for a PCB total that was placed in the field PCB_CONC. Then, the average molecular weight and the total micromoles were calculated and the resulting values placed in the fields AVG_MWT and MIC_MOLS, respectively.

2.2.2. Media-specific concerns

Two media-specific concerns with respect to the correction of coelution bias are summarized below:

Fish and biota coelution correction factors. Coelution correction factors were developed for water, sediment and porewater data sets, but were not developed for fish and biota samples. HydroQual evaluated the potential for coelution bias in the fish and biota samples, and concluded that higher-chlorinated coeluting congeners had the most potential for bias in the fish and biota samples. HydroQual indicated that separation of these higher chlorinated congeners could be difficult on a single-column system, and therefore coelution correction factors were not developed (HydroQual 1997).

Change in calibration protocols for sediment and porewater. During the original analysis of samples obtained during the 1991 Sediment Sampling Program (O'Brien & Gere 1993b), the DB-1 calibration protocol was altered to account for elevated DB-1 peak 5 concentrations within the

samples (Northeast Analytical 1997a). Early in the sampling program, the calibration standard was changed from the Green Bay mixed Aroclor standard to the Green Bay standard plus an independent Peak 5 standard consisting of a 4:1 ratio of BZ4 and BZ10. This alleviated a DB-1 Peak 5 calibration range problem. Samples analyzed using the Green Bay standard only are identified in the database field GBS_BZ with "N". Samples analyzed by Green Bay standard with the BZ standard are identified with "Y" in the database field GBS_BZ. Sediment samples collected in 1996 (Particle Transport Study) and 1997 (High Flow Bed Load Sampling) were also analyzed using the Green Bay standard only. The different correction factors used for these two calibration protocols are included in Table 1-2.

2.2.3. Rounding

PCB congener concentrations in the database are in ppm units, and the database fields for congener concentrations (PK1_AMT to PK118AMT) extend to eleven decimal places. To minimize rounding errors in the calculations, the structure of the field PCB_CONC was adjusted to match that of the individual congener fields. The correction program performs calculations to fifteen decimal places, then rounds the resulting value to fit the structure of the field.

2.2.4. Correction of database errors

During the QC phase of the database correction task, several errors in the original database became apparent. These errors, listed below, have been corrected in the course of this task:

- MIC_MOLS field The data in this field should be in micromole units throughout the database. The water column values in this field, however, were in picomole units. To maintain consistency in the MIC_MOLS field, the structure of the field was adjusted to allow picomole data to be presented in micromole units.
- Fish samples analyzed in 1995 from frozen tissues collected by Law Environmental in 1990 The congener peak data in the original CP database were under reported by 10⁶, resulting in values reported by the laboratory in ppm units to be shown in the database in ppt units. Total PCBs in the original CP and GE databases were properly reported in ppm units. The congener peak data was corrected to the ppm units prior to adjustment for calibration bias. In addition, data for DB-1 Peak 89 were

missing from the original database for this set of fish samples. Prior to database correction, these missing data were entered and checked.


Change of the field name OBG-ID in the GE databases to CONV_ID-OBG_ID was originally used to identify the sample number assigned by O'Brien & Gere Laboratories (OBG) which performed conventional parameters analyses (e.g., TOC, TSS). However, the laboratory was changed to NEA and this field name is no longer relevant. Therefore, the field name CONV_ID for conventional parameters laboratory sample ID is a more appropriate descriptor.

2.3. Analytical bias corrections: GE database

Upon completion and QC review of the corrections to the CP databases for the three media data sets, the revisions to the GE databases using the corrected CP data were implemented. For each record (or sample), three steps were completed (Figure 2-3):

- 1. The total PCB values calculated in the CP databases (field PCB_CONC) were copied into the fields NEA_TOT and PCB_CAP in the GE database. The field structures for NEA_TOT and PCB_CAP were adjusted to match that of PCB_CONC to minimize potential rounding errors. Data from PCB_CONC which were less than the media detection limit are identified by labels in the DL_CAP field, and by negative values in the NEA_TOT and PCB_CAP fields.
- Homolog distributions were recalculated on both a weight percent and mole percent basis. The reference database MOL_WT, used to provide the information to the database on the distribution of DB-1 peaks in the ten homolog groups, is presented in Appendix D.
- 3. The average chlorination levels were recalculated for ortho, meta-para, and total chlorines per biphenyl. The reference database MOL_WT, which provided the information on the chlorination levels of the DB-1 congener peaks, is presented in Appendix D.

12

3. QC protocols development, implementation, and results

QC protocols were developed by O'Brien & Gere to check the accuracy of the corrections executed by the computer programs. In addition, HydroQual developed QC protocols and reviewed database changes as an independent quality check of the database. O'Brien & Gere worked closely with HydroQual during the QC process to validate the accuracy of changes to the database.

QC protocols were implemented in three phases: electronic QC review, manual QC review, and HydroQual review.

3.1. Electronic QC review

Electronic QC review consisted of electronically applying calibration and coelution correction factors to original congener peak data and comparing the result to the computer program revised congener peak data. In addition, total PCB, homolog distributions and chlorination levels were checked for accuracy. QC criteria included:

- Revised congener data matched original data times correction factors, with a rounding error of ±1x10⁻¹¹ ppm.
- The sum of homolog weight percents and the sum of the homolog mole percents were within ±0.02% of 100%.
- The sum of the congeners equaled the values in fields PCB_CONC, NEA_TOT and PCB_CAP.

3.2. Manual QC review

Manual QC review was conducted on 5% of the database records, which were randomly selected from the three media-specific CP- and GE-adjusted databases. The corresponding original records were copied from the archived original CP and GE databases. The calibration and coelution correction factors were applied, in QuattroPro spreadsheet format, to the original records. The calculations to obtain total PCB, average molecular weight, total micromoles, homolog distributions and chlorination levels were also performed within the spreadsheet. The results were compared with the program-generated data in the adjusted databases. QC criteria included:

- Congener values corrected in the spreadsheet matched congener values corrected by the computer program within ±1 x 10⁻¹¹ ppm.
- Total PCBs, total micromoles, and average molecular weight values calculated in the spreadsheet matched, within one significant decimal place, the values calculated by the computer program.
- Ortho, meta-para and total chlorines per biphenyl values calculated in the spreadsheet matched, within ±0.01 chlorines per biphenyl, the values calculated by the computer program.
- Homolog distributions, both weight percent and mole percent, calculated in the spreadsheet matched the values calculated by the computer program, and totaled 100% ±0.02%.
- Total chlorines per biphenyl, which represents the average chlorination level in the sample, was compared to the homolog distributions to qualitatively assess agreement between the two values.

3.3. HydroQual QC Review

HydroQual independently developed QC protocols and reviewed database changes as a secondary QC check after O'Brien & Gere completed its QC protocols.

4. Impact of analytical bias corrections on databases

Application of the analytical bias correction factors has impacted the quantification of PCB data and related parameters. The following sections provide a brief summary of changes in Hudson River PCB capillary column data, potential impact on the method detection limit, and potential impact to data validation qualifiers.

4.1. Magnitude of change in PCB data

Changes in PCB congener concentrations resulting from the analytical bias correction has impacted Method NEA608CAP PCB data. Total PCB concentration, total micromoles of PCB, average molecular weight, homolog distributions, and chlorines per biphenyl changed. The degree of alteration depended on the congener composition of the individual sample.

4.1.1. Magnitude of congener concentration changes

Congener concentrations were adjusted for two forms of bias, calibration and coelution (Section 1.1.3). Calibration bias correction factors were applied to the 118 DB-1 capillary column peaks, whereas coelution bias correction factors were applied only to DB-1 Peaks 5, 8 and 14.

On average, corrected congener peak concentrations were approximately 13% greater than the original data. The greatest increase occurred for DB-1 Peaks 5, 6, 8, 14, 60, and 66 (Tables 1-2 and 1-3). Samples with high concentrations of these congener peaks exhibited the greatest change in total PCB concentrations and homolog distributions. A cursory evaluation of the magnitude of change in total PCB concentrations, homolog distributions, and chlorines per biphenyl are briefly summarized for the three media databases in the following subsections.

4.1.2. Water column data

Preliminary review of water column data indicate that the corrections increased water column total PCB concentrations by an average of 7.7 ppt (median = 1.6 ppt), and ranged from a decrease of 135 ppt to an increase of 127 ppt.

The change in water column homolog groups mono through deca averaged from -3% weight to 2% weight. Overall, change in homologs on a weight percent basis ranged from -15% to 26%.

On average, changes in total chlorines per biphenyl ranged from -0.56 to 0.33 chlorines per biphenyl.

4.1.3. Sediment and porewater data

Preliminary review of the sediment and porewater data indicate that the corrections increased total PCB concentrations by an average of 4 ppm (median = 0.42 ppm), and ranged from -0.05 ppm to approximately 440 ppm.

The change in sediment and porewater homolog groups mono through deca averaged from -3% weight to 3% weight. Overall, change in homologs on a weight percent basis ranged from -34% to 36%.

On average, total chlorines per biphenyl increased by 0.02, and ranged from -0.32 to 0.31 chlorines per biphenyl.

4.1.4. Fish and biota data

Preliminary review of the fish and biota data indicate that the corrections increased total PCB concentrations by an average of 0.37 ppm (median = 0.13 ppm), and ranged from -1.25 ppm to 7.8 ppm.

The change in fish and biota homolog groups mono through deca averaged from -3% weight to 4% weight. Overall, change in homologs on a weight percent basis ranged from -6% to 7%.

On average, total chlorines per biphenyl decreased by 0.05, and ranged from -0.25 to 0.03 chlorines per biphenyl.

4.2. Method detection limit

The analytical biases may have impacted quantification of the method detection limit. This issue is currently under investigation.

4.3. Data validation qualifiers

Data validation qualifiers in the field QL_CAP indicate to the user whether the quality of the PCB capillary column data are affected by analytical or handling problems. Data validation technical memorandums that accompanied data summary reports provide specific details about the qualifiers used (O'Brien & Gere 1993a, 1994, 1995, 1996a, 1997a).

In general, most of the data validation criteria are not affected by the analytical bias. However, certain criteria are evaluated based on comparisons of DB-1 peak concentrations in a sample to a known concentration in a spike solution. Qualification of the data using these criteria may be affected by the analytical bias. Table 4-1 presents the data validation criteria, the qualifiers associated with those criteria, and description of how correction of the analytical bias may impact the relevance of the qualifiers originally assigned to uncorrected data. This issue is currently under investigation.

...

5. Modifications to future analytical and database deliverables

Modifications to future analytical and database deliverables will be implemented to reflect the database corrections.

5.1. Analytical changes for future analyses

Hudson River samples collected after September 1, 1997 will be quantified using the revised calibration standard (Northeast Analytical 1997b, Appendix E). The laboratory will quantify PCBs using the revised Green Bay standard and calculate total PCBs, average molecular weight, total micromoles, homolog distributions (for both weight percent and mole percent), and chlorines per biphenyl. These data will be delivered to O'Brien & Gere in both hard copy and electronic format.

Media-specific coelution correction factors will be applied to the data after receipt from the laboratory. The coelution correction factors were developed using Hudson River data; therefore, these factors are specific to the Hudson River project and represent an additional level of data interpretation beyond the purview of the laboratory. Specifically, congener DB-1 peaks 5, 8 and 14 will be adjusted using the media-specific coelution correction factors calculated by HydroQual (HydroQual 1997; Appendix D).

Following coelution bias adjustment of the three peaks, the remaining PCB data will be recalculated as part of the monthly database update procedure performed by O'Brien & Gere. These include the database fields: MIC_MOLS, AVG_MWT, PCB_CONC, NEA_TOT, PCB_CAP, homologs MONO_WT through DECA_WT and MONO_ML through DECA_ML, and chlorination levels ORTHO_CL, MP_CL and TOT_CL.

The data will be periodically reviewed to evaluate whether changes in PCB composition in river samples will require adjustment of the media-specific coelution correction factors. Additional analysis on the C18 column will be conducted on a proportion of samples. These data will provide resolution of coeluting congeners in DB-1 Peaks 5, 8, and 14 to verify the coelution correction factors. These data will be added to the database fields BZ4_AMT, BZ10_AMT, BZ5_AMT, BZ8_AMT, BZ15_AMT and BZ18_AMT. The

database field C18_CHK will indicate by "Y" or "N" whether confirmation analysis on the C18 column was conducted for a given sample.

5.2. Database deliverable changes

The database deliverable in the future will include revised file structure tables and a data table containing the calibration correction factors for each DB-1 peak.

Revisions of future submittals of the database will incorporate structure changes as discussed in Sections 2.1 and 2.2 of this report. These are summarized below:

- Update and revision of field name OBG_ID to CONV_ID
- Identification of samples with total PCB concentrations reported less than
 the method detection limit by using negative detection limit values in the
 GE database (NEA_TOT and PCB_CAP fields)
- Additional field in the database containing identification of samples analyzed with the original Green Bay standard which have been corrected
- Additional fields in the CP database to include sample-specific coelution bias correction factors for DB-1 Peaks 5, 8, and 14
- Additional fields in the CP database to include congener concentrations for BZ4 and BZ10 (Peak 5), BZ5 and BZ8 (Peak 8), and BZ15 and BZ18 (Peak 14) obtained from C18 analyses.

References

- Erickson, M.D. 1992. Analytical Chemistry of PCBs. Lewis Publishers, Boca Raton, FL. (Appendix A).
- Frame, G.M. 1997. A collaborative study of 209 PCB congeners and 6 Aroclors on 20 different HRGC columns: 1. Retention and coelution database. Fresenius Journal of Analytical Chemistry. 357(6):701-713.
- Frame, G.M., R.E. Wagner, J.C. Carnahan, J.F. Brown, R.J. May, L.J. Smullen and D.L. Bedard. 1996. Comprehensive, quantitative, congener-specific analyses of eight Aroclors and complete PCB congener assignments on DB-1 capillary columns. *Chemosphere*, 33(4):603-623.
- HydroQual, Inc. 1997. Development of Corrections for Analytical Biases in the 1991-1997 GE Hudson River PCB Database. Prepared for General Electric Company Corporate Environmental Programs, Albany NY. June 1997.
- Mullin, M.D., C.M. Pochini, S. McCrindle, M. Romkes, S.H. Safe, and L.M. Safe. 1984. High-Resolution PCB Analysis: Synthesis and Chromatographic Properties of All 209 PCB Congeners. *Environmental Science and Technology*, 18:468-476.
- Northeast Analytical, Inc. 1997a. Facsimile from R.E. Wagner of Northeast Analytical, Inc. to J.R. Rhea, Ph.D., of HydroQual. March 22, 1997.
- Northeast Analytical, Inc. 1997b. Letter from R.E. Wagner of Northeast Analytical, Inc. to W.A. Ayling of O'Brien & Gere. August 27, 1997.
- O'Brien & Gere Engineers, Inc. 1997a. 1996 Post Construction Remnant Deposit Monitoring Program Report. Syracuse, NY: O'Brien & Gere Engineers, Inc. *In progress*.
- O'Brien & Gere Engineers, Inc. 1997b. 1997 High Flow Monitoring Program Report. Syracuse, NY: O'Brien & Gere Engineers, Inc, in association with HydroQual, Inc. *In progress*.

- O'Brien & Gere Engineers, Inc. 1997c. 1997 Thompson Island Pool Survey Report. Syracuse, NY: O'Brien & Gere Engineers, Inc. In progress.
- O'Brien & Gere Engineers, Inc. 1997d. 1996 Water Column Monitoring Program Report. Syracuse, NY: O'Brien & Gere Engineers, Inc. In progress.
- O'Brien & Gere Engineers, Inc. 1996a. 1995 Post Construction Remnant Deposit Monitoring Program Report. Syracuse, NY: O'Brien & Gere Engineers, Inc. July 1996.
- O'Brien & Gere Engineers, Inc. 1996b. 1995 Hudson River Project, River Monitoring Test. Syracuse, NY: O'Brien & Gere Engineers, Inc. January 1996.
- O'Brien & Gere Engineers, Inc. 1995. 1994 Post Construction Remnant Deposit Monitoring Program Report. Syracuse, NY: O'Brien & Gere Engineers, Inc. November 1995.
- O'Brien & Gere Engineers, Inc. 1994. Fort Edward Dam PCB Remnant Containment 1993 Post-Construction Monitoring Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1994.
- O'Brien & Gere Engineers, Inc. 1993a. Fort Edward Dam PCB Remnant Containment 1992 Post-Construction Monitoring Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. August 1993.
- O'Brien & Gere Engineers, Inc. 1993b. Hudson River Project 1991 Sediment Sampling and Analysis Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1993.
- O'Brien & Gere Engineers, Inc. 1993c. Hudson River Project 1991-1992 Sampling and Analysis Program, Temporal Water Column Monitoring Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1993.
- O'Brien & Gere Engineers, Inc. 1993d. Hudson River Project 1992 Food Chain Study. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1993.

- O'Brien & Gere Engineers, Inc. 1993e. Hudson River Project 1992 High Flow Monitoring Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1993.
- O'Brien & Gere Engineers, Inc. 1993f. Hudson River Project 1991 Float Survey Program. Syracuse, New York: O'Brien & Gere Engineers, Inc. May 1993.
- O'Brien & Gere Engineers, Inc. 1992. Quality Assurance Project Plan. Post-Construction Monitoring Program. Fort Edward Dam PCB Remnant Deposit Containment. Syracuse, NY: O'Brien & Gere Engineers, Inc., June 1992.
- USEPA. 1995. Further Site Characterization and Analysis Database Report. Phase 2 Report Review Copy, Hudson River PCBs Reassessment RI/FS. Prepared by TAMS Consultants, Inc. and Gradient Corporation for U.S. USEPA Region II.
- USEPA. 1994. Memorandum from M.D. Mullin of the USEPA Environmental Research Laboratory, Duluth Large Lakes Research Station, to G.M. Frame of GE Corporate Research and Development. November 21, 1994.
- USEPA. 1987. Quality Assurance Project Plan: Green Bay Mass Balance Study. I. PCBs and Dieldrin. Prepared by D.L. Swackhamer, Great Lakes National Program Office.

DB-1 eak No.	Congener BZ No.	Chlorination Structure	DB-1 Peak No.	Congener BZ No.	Chlorination Structure	DB-1 Peak No.	Congener BZ No.	Chlorination Structure	DB-1 Peak No.	Congener BZ No.	Chlorination Structure	DB-1 Peak No.	Congener BZ No.	Chlorination Structure
1	0	biphenyl	31	52	2,2',5,5'	53	90	2,2',3,4',5	74	105	2,3,3',4,4'	109	201	2,2',3,3',4,5',6,6'
2	1	2	31	73	2,3',5',6	53	101	2,2',4,5.5'	74	132	2,2',3,3',4,6'	110	196	2,2',3,3',4,4',5,6'
3	2	3	32	73 49		54	99	2,2',4,4',5	75	153	2,2',4,4',5,5'	110	203	2,2',3,4,4',5,5',6
_		3			2,2',4,5'	55	112		76	168	1	111	189	2,3,3',4,4',5,5'
4	3		33	47	2,2',4,4'			2,3,3',5,6			2,3',4,4',5',6			
5	4	2,2'	34	48	2,2',4,5	55	119	2,3',4,4',6	77	141	2,2',3,4,5,5'	112	195	2,2',3,3',4,4',5,6
5	10	2,6	34	75	2,4,4',6	55	150	2,2',3,4',6,6'	78	179	2,2',3,3',5,6,6'	113	208	2,2',3,3',4,5,5',6,
6	7	2,4	35	62	2,3,4,6	56	83	2,2',3,3',5	79	130	2,2',3,3',4,5'	114	207	2,2',3,3',4,4',5,6
6	9	2,5	35	65	2,3,5,6	56	109	2,3,3',4,6	80	137	2,2',3,4,4',5	115	194	2,2',3,3',4,4',5,5'
7	6	2,3'	36	35	3,3',4	57	86	2,2',3,4,5	81	176	2,2',3,3',4,6,6'	116	205	2,3,3',4,4',5,5',6
8	5	2,3	37	44	2,2',3,5'	57	97	2,2',3',4,5	82	138	2,2',3,4,4',5'	117	206	2,2',3,3',4,4',5,5
8	8	2,4'	37	104	2,2',4,6,6'	57	152	2,2',3,5,6,6'	82	163	2,3,3',4',5,6	118	209	2,2',3,3',4,4',5,5'
9	14	3,5	38	37	3,4,4'	58	87	2,2',3,4.5'	83	158	2,3,3',4,4',6	NQ	20	2,3,3'
10	19	2,2',6	38	42	2,2',3,4'	58	111	2,3,3',5,5'	84	129	2,2',3,3',4,5	NQ	38	3,4,5
11	30	2,4,6	38	59	2,3,3',6	58	115	2,3,4,4',6	85	178	2,2',3,3',5,5',6	NQ	41	2,2',3,4
12	11	3,3'	39	64	2,3,4',6	59	85	2,2',3,4,4'	86	166	2,3,4,4,5,6	NQ	43	2,2',3,5
13	12	3,4	39	71	2,3',4',6	59	116	2,3,4,5,6	87	175	2,2',3,3',4,5',6	NQ	69	2,3',4,6
13	13	3,4'	40	68	2,3',4,5'	60	136	2,2',3,3',6,6'	88	182	2,2',3,4,4',5,6'	NQ	72	2,3',5,5'
14	15	4,4	41	96	2,2',3,6,6'	61	77	3,3',4,4'	88	187	2,2',3,4',5,5',6	NQ	78	3,3',4,5
14	18	2,2',5	42	40	2,2',3,3'	61	110	2,3,3',4',6	89	128	2,2',3,3',4,4'	NQ	79	3,3',4,5'
15	17	2,2',4	43	57	2,3,3',5	62	154	2,2',4,4',5,6'	90	183	2,2',3,4,4',5',6	NQ	80	3,3',5,5'
16	24	2,3,6	43	103	2,2',4,5',6	63	82	2,2',3,3',4	91	167	2,3',4,4',5,5'	NQ	81	3,4,4',5
16	27	2,3',6	44	67	2,3',4,5	64	151	2,2',3,5,5',6	92	185	2,2',3,4,5,5',6	NQ	88	2,2',3,4,6
17	16	2,2',3	44	100	2,2',4,4',6	65	124	2',3,4,5,5'	93	174	2,2',3,3',4,5,6'	NQ	102	2,2',4,5,6'
17	32	2,4',6	45	58	2,3,3',5'	65	135	2,2',3,3',5,6'	93	181	2,2',3,4,4',5,6	NQ	113	2,3,3',5'6
18	23	2,3,5	45	63	2,3,4',5	66	144	2,2',3,4,5',6	94	177	2,2',3,3',4',5,6	NQ	117	2,3,4',5,6
19	34	2',3,5	46	74	2,4,4,5	67	107	2,3,3',4',5	95	156	2,3,3',4,4',5	NQ	120	2,3',4,5,5'
19	54	2,2',6,6'	46	94	2,2',3,5,6'	67	108	2,3,3',4,5'	95	171	2,2',3,3',4,4',6	NQ.	121	2,3',4,5',6
	29		1	61	2,3,4,5	67	147	2,2',3,4',5,6	96	202	2,2',3,3',5,5',6,6'	NQ	125	2',3,4,5,6'
20	26	2,4,5	47			68	123		97	157		NQ	126	3,3',4,4',5
21		2,3',5	47	70	2,3',4',5		106	2',3,4,4',5	98	173	2,3,3',4,4',5'	NQ	127	
22	25	2,3',4	47	76	2',3,4,5	69		2,3,3',4,5	1 1		2,2',3,3',4,5,6			3,3',4,5,5'
23	31	2,4',5	48	66	2,3',4,4'	69	118	2,3',4,4',5	99	200	2,2',3,3',4,5,6,6'	NQ	142	2,2',3,4,5,6
24	28	2,4,4	48	93	2,2',3,5.6	69	149	2,2',3,4',5',6	99	204	2,2',3,4,4',5,6,6'	NQ	145	2,2',3,4,6,6'
24	50	2,2',4,6	48	95	2,2',3,5',6	70	139	2,2',3,4,4',6	100	172	2,2',3,3',4,5,5'	NQ	148	2,2',3,4',5,6'
25	21	2,3,4	49	55	2,3,3',4	70	140	2,2',3,4,4',6'	100	192	2,3,3',4,5,5',6	NQ	159	2,3,3',4,5,5'
25	33	2',3,4	49	91	2,2',3,4',6	71	114	2,3,4,4',5	101	197	2,2',3,3',4,4',6,6'	NQ	160	2,3,3',4,5,6
25	53	2,2',5,6'	49	98	2,2',3',4,6	71	134	2,2',3,3',5,6	102	180	2,2',3,4,4',5,5'	NQ	162	2,3,3',4',5,5'
26	22	2,3,4'	50	56	2,3,3',4'	71	143	2,2',3,4,5,6'	103	193	2,3,3',4',5,5',6	NQ	164	2,3,3',4',5',6
26	51	2,2',4,6'	50	60	2,3,4,4'	72	122	2',3,3',4,5	104	191	2,3,3',4,4',5',6	NQ	165	2,3,3',5,5',6
27	45	2,2',3,6	51	84	2,2',3,3',6	72	131	2,2',3,3',4,6	105	199	2,2',3,3',4,5,5',6'	NQ	169	3,3',4,4',5,5'
28	36	3,3',5	51	92	2,2',3,5.5'	72	133	2,2',3,3',5,5'	106	170	2,2',3,3',4,4',5	NQ	184	2,2',3,4,4',6,6'
29	46	2,2',3,6'	51	155	2,2',4,4',6,6'	73	146	2,2',3,4',5,5'	107	190	2,3,3',4,4',5,6	NQ	186	2,2',3,4,5,6,6'
30	39	3,4',5	52	89	2,2',3,4,6'	73	161	2,3,3',4,5',6	108	198	2,2',3,3',4,5,5',6	NQ	188	2,2',3,4',5,6,6'

Note: NQ = not quantified in DB-1 method. The congener assignments presented in this table are those used for the historic GE/Hudson River PCB database. Updates to PCB congener assignments have been made for the DB-1 system (Frame, 1996), but are not reported here for consistency with the historic laboratory records.

SOURCES:

HydroQual 1997

Northeast Analytical Laboratories

"Analytical Chemistry of PCBs" - Erickson, 1992 (Appendix A)

10473

Table 1-2. HydroQual calibration correction factors (reference database

DB-1	Correction	DB-1	Correction	DB-1	Correction
Peak	Factor	Peak	Factor	Peak	Factor
1	1.0000	41	1.0000	81	1.0000
2	1.0441	42	1.0657	82	1.0308
3	1.0000	43	1.0000	83	0.7794
4	1.0073	44	0.8231	84	0.1621
5	4.5431	45	1.0617	85	1.2104
6	2.0407	46	0.8776	86	1.0000
7	1.6925	47	0.6057	87	1.2471
8	1.0476	48	0.9904	88	0.8979
9	1.0000	49	1.3629	89	0.7960
10	1.0476	50	0.7275	90	0.8260
11	1.0000	51	1.5661	91	1.6666
12	1.0000	52	1.2471	92	0.7993
13	1.0858	53	1.4030	93	1.0884
14	1.0648	54	1.2037	94	1.1158
15	1.8707	55	0.5820	95	0.8010
16	1.1054	56	1.5589	96	0.7460
17	1.1138	57	1.1027	97	1.0000
18	1.0000	58	1.3072	98	1.1168
19	1.0000	59	1.2471	99	0.7050
20	1.1016	60	2.0043	100	1.0912
21	1.1712	61	1.1224	101	1.8878
22	1.1972	62	1.0000	102	0.9509
23	0.9293	63	1.2663	103	1.1224
24	0.9226	64	1.1158	. 104	0.9977
25	0.8819	65	0.4628	105	1.6088
26	0.9297	66	9.9882	106	0.5257
27	1.2333	67	1.4739	107	0.5255
28	1.0000	68	1.0000	108	0.6701
29	1.0690	69	1.0321	109	1.0476
30	1.0000	70	1.0000	110	0.9463
31	1.3824	71	0.8891	111	0.8314
32	0.9561	72	1.1923	112	0.3701
33	0.7483	73	0.9120	113	0.3711
34	0.9353	74	0.7451	114	0.7249
35	1.0000	75	0.7447	115	0.9760
36	1.0000	76	1.0000	116	1.0289
37	1.0725	77	1.2231	117	0.6057
38	1.1054	78	1.0000	118	0.4726
39	0.9411	79	1.1224		
40	1.0000	80	0.7008		

Source: HydroQual (1997)

Table 1-3. HydroQual coelution correction factors.

DB-1 Peak	Water Column ¹	Sediment/Porewater (GBS only²)	Sediment/Porewater (GBS with BZ³)	Fish/Biota ⁴
Peak 5	0.65	1.25	1.37	4000
Peak 8	0.45	0.58	0.58	_
Peak 14	1.44	2.23	2.23	_

Notes:

Source: HydroQual 1997

¹Includes 1996 Particle Transport and 1997 High Flow Bedload sediment samples (Section 2.2.2).

²Green Bay mixed Aroclor standard only; Peak 5 adjusted by both the calibration and coelution correction factors (Section 2.2.2).

³Green Bay standard with BZ4/BZ10 congener standard; Pea: 5 adjusted by only the co∈tion correction factor (Section 2.2.2).

⁴Fish data were not adjusted for coelution bias (Section 2.2.2).

Table 2-1. Summary of new database fields and definitions.

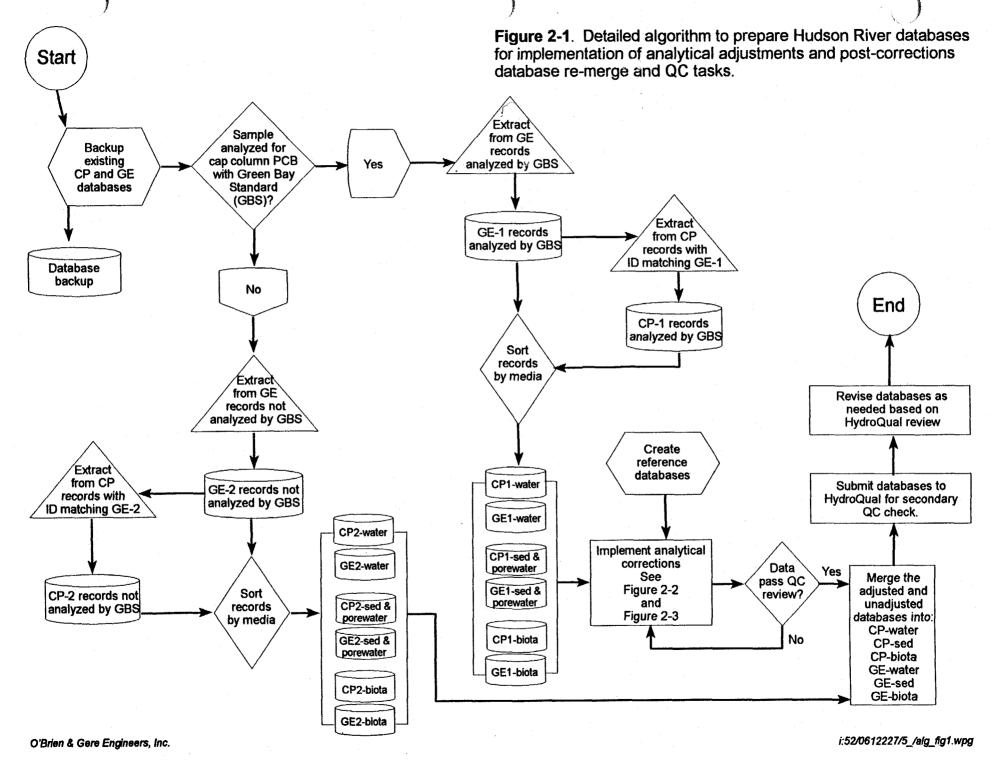
Required Additional Information	Field Name	Entry Type	Definition
Media-specific coelution bias correction factors to allow for reversal of corrections if required.	CF_PK5 CF_PK8 CF_PK14	0.65, 1.25, 1.37 0.45, 0.58 1.44, 2.23	Coelution correction factors used to adjust for peak coelution bias in DB-1 Peaks 5, 8 and 14
C18 column confirmation analysis data.	C18_CHK	Y, N	Yes or no, whether analysis on a C18 column was conducted.
	BZ4_AMT BZ10_AMT BZ5_AMT BZ8_AMT BZ15_AMT BZ18_AMT	0.00012345 0.00012345 0.00012345 0.00012345 0.00012345 0.00012345	C-18 column confirmation analytical results for congeners BZ4 and BZ10 (DB-1 Peak 5), BZ5 and BZ8 (DB-1 Peak 8), and BZ15 and BZ18 (DB-1 Peak 14).
Identify different standards used for sediment and porewater analyses ¹ .	GBS_BZ	Y, N	Yes or no, whether sediment and porewater samples were analyzed with both GB ² and BZ ³ standards.
In GE and CP, indicate whether samples adjusted for analytical bias	ADJUST	Y, N	Yes or no, whether database record was adjusted for analytical biases.

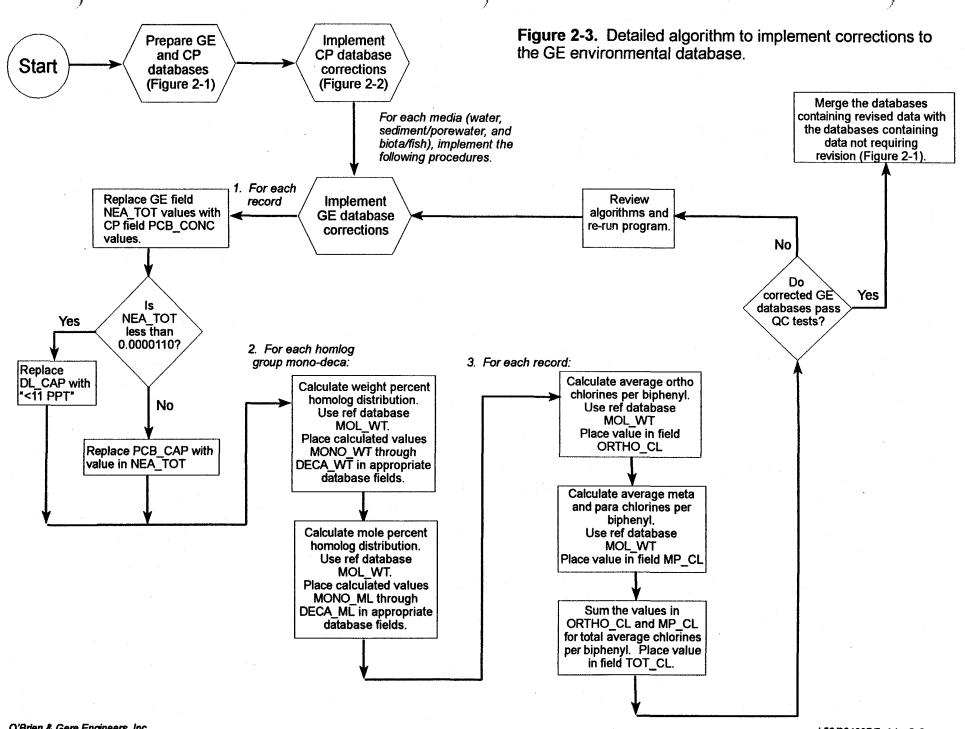
Notes:

¹During original analysis of 1991 Sediment Survey samples, the DB-1 calibration protocol was altered to account for elevated DB-1 Peak 5 concentrations within sediment and porewater samples (Northeast Analytical, 1997a). See Section 2.2 of this report for additional details.

²GB = Green Bay mixed Aroclor standard consisting of 25:18 = 18 mixture of Aroclors 1232, 1248 and 1262

³BZ = independent Peak 5 standard consisting of 4:1 ratio of BZ4 and 10


Source: O'Brien & Gere Engineers, Inc.


Table 4-1. Data validation criteria review and potential impacts due to analytical bias corrections.

Validation Criteria	Definition	Validation Qualifiers	Impact from analytical bias	Rationale
Documentation completeness	full package includes required documentation	d.o.e.	No impact	Bias does not affect documentation
Holding times	7 days from collection to extraction; 40 days from extraction to analysis	J, UJ, R	No impact	Bias does not affect holding times
Instrument performance	23456-2346 NCBP retention time shift baseline stability chromatographic resolution internal standard area performance	J, UJ, R d.o.e. J, R J, R	No impact No impact No impact No impact	Bias does not affect retention times Bias does not affect stability Measured in peak height (mm) Area under peak not affected
Calibration	initial linearity check analytical sequence verification calibration verification	J, R d.o.e. J, R	Potentially No impact Potentially	Bias affects calculation of response factors Bias does not affect sequence Bias affects congener concentrations
Blank analysis	field blank; method blank	U	Potentially	Bias adjustment could increase blank concentrations above detection limit
Surrogate recovery	percent recovery between 70 and 130	J, R	Potentially	Bias adjustment affects quantification of congener concentration; dependent on whether quantification of congener in surrogate solution was based on Green Bay standard.
Matrix spike analysis	percent recovery between 70 and 130	J, R	Potentially	Bias adjustment affects quantification of congener concentration; adjustment affects sample concentration, which affects calculation of MS %recovery; dependent on whether quantification of congener in matrix spike solution was based on Green Bay standard.
Duplicate analysis	relative percent difference less than 35	J	No impact	Bias affects both sample and duplicate equally

Table 4-1. Data validation criteria review and potential impacts due to analytical bias corrections.

Validation Criteria	Definition	Validation Qualifiers	Impact from analytical bias	Rationale
Spike blank	percent recovery between 70 and 130	J, R	Potentially	Bias adjustment affects quantification of congener concentration; dependent on whether quantification of congener in spike solution was based on Green Bay Standard.
Compound identification	peak retention times within continuing calibration retention time window.	J, R	No impact	Bias does not affect retention times
Compound quantitation	manually validated; recalculate sample concentration from instrument response	J	No impact	Bias affects original result and recalculation equally
Overall data assessment	manual assessment of cumulative effects of excursions	d.o.e.	Potentially	Depends on whether the excursions are impacted by bias adjustment
U = not detected UJ = approximation	s on excursion kimated due to deviation from data validation crite d due to blank contamination ted detection limit ata due to significant excursion from data validatio			

APPENDIX A

Revised database file structure tables

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
1	NEA_FILE	7	0	CHARACTER	911606F or 911345X	NEA file identification as reported on the PCB Congener Amount Report. An "X" is only indicated in the NEA_FILE field if the sample is a Temporal Water Column sample analyzed for dissolved PCBs. "R" indicates sample was reanalyzed.
2	NEA_DESC	50	0	CHARACTER	8A-F1(0-5) or BAKER FALLS BRIDGE or 806 0920	NEA file description as reported on PCB summary report sheet
3	REACH	20	0	CHARACTER	8A	River reach where sediment samples were collected. Reach 9 is above Thompson Island Pool, Reach 1 is above Troy Dam.
4	SAMPSED	20	0	CHARACTER	F1	Sediment sample texture (F = fine, C = coarse) and ordinal descriptor.
5	ST_DPTH	8	0	NUMERIC	0	Starting depth of sediment core (cm) or composite water sample
6	END_DPTH	8	0	NUMERIC	5	Ending depth of sediment core (cm) or composite water sample (ft)
7	DATE_COL	8	0	DATE	08/17/91	Date of sample collection
8	ID	12	0	CHARACTER	25	The unique sample identifier assigned in the field to each environmental sample collected.
9	LOCATION	25	0	CHARACTER	8A-22 or B.F.Br Rt.197 Br. TID-West Rt.29 Br. S.W.Br. Rt.4 Br. Hoosic R. Bat. Kill	Sampling location. The actual location where the sample was collected. Water column sample locations: B.F.Br = Baker Falls Bridge (HRM 197.0); HRM 196.8 = Canoe Carry; Rt.197 Br. = Rt. 197 Bridge Fort Edward (HRM 194.2); TID = Thompson Island Dam (HRM 188.5); Rt.29 Br. = Rt. 29 Bridge Schuylerville; S.W.Br. = Stillwater Bridge; Rt.4 Br. = Rt. 4 Bridge Waterford; Hoosic R. = Hoosic River; Bat Kill = Batten Kill. "COMPOSITE" refers to sediment samples composited from more than one location. "EQBL" refers to equipment blanks (included only where total PCB concentration exceeds MDL). HRM = approximate Hudson River mile. HRM 0.0 is located at the Battery in New York City. Sample locations within the river may be further differentiated by W = west (shore or channel), C = center (of channel), E = east (shore or channel). "R" indicates the archive sample for a given location.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
10	MEDIA	1	0	CHARACTER	f,w,a,b,p,s	וֹץpe of matrix: f=fish, w=water, a=air, b=biota, p=pore water, s=sediment
11	MIX_TYPE	1	0	CHARACTER	s	The type of mixed peak deconvolution as reported on the PCB Congener Amount Report.
12	PK1_AMT	17	11	NUMERIC	0.00000	Amount of PCB (ppm) detected in Peak #1 as reported on the PCB Congener Amount Report.
13	PK2_AMT	17	11	NUMERIC	1.35323	Amount of PCB (ppm) detected in Peak #2 as reported on the PCB Congener Amount Report.
14	PK3_AMT	17	11	NUMERIC	0.21430	Amount of PCB (ppm) detected in Peak #3 as reported on the PCB Congener Amount Report.
15	PK4_AMT	17	11	NUMERIC	2.03247	Amount of PCB (ppm) detected in Peak #4 as reported on the PCB Congener Amount Report.
16	PK5_AMT	17	11	NUMERIC	0.01879	Amount of PCB (ppn.) detected in Peak #5 as reported on the PCB Congener Amount Report.
17	PK6_AMT	17	11	NUMERIC	0.14898	Amount of PCB (ppm) detected in Peak #6 as reported on the PCB Congener Amount Report.
18	PK7_AMT	17	11	NUMERIC	1.59697	Amount of PCB (ppm) detected in Peak #7 as reported on the PCB Congener Amount Report.
19	PK8_AMT	18	11	NUMERIC	0.23654	Amount of PCB (ppm) detected in Peak #8 as reported on the PCB Congener Amount Report.
20	PK9_AMT	17	11	NUMERIC	0.00000	Amount of PCB (ppm) detected in Peak #9 as reported on the PCB Congener Amount Report.
21	PK10_AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #10 as reported on the PCB Congener Amount Report.
22	PK11_AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #11 as reported on the PCB Congener Amount Report

Field	Field Name	Length	Dec	Type	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
23	PK12_AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #12 as reported on the PCB Congener Amount Report.
24	PK13_AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #13 as reported on the PCB Congener Amount Report.
25	PK14_AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #14 as reported on the PCB Congener Amount Report.
26	PK15_AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppm) detected in Peak #15 as reported on the PCB Congener Amount Report.
27	PK16_AMT	17	11	NUMERIC	0.00004	Amount of PCB (ppm) detected in Peak #16 as reported on the PCB Congener Amount Report.
28	PK17_AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #17 as reported on the PCB Congener Amount Report.
29	PK18_AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #18 as reported on the PCB Congener Amount Report.
30	PK19_AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #19 as reported on the PCB Congener Amount Report.
31	PK20_AMT	17	11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #20 as reported on the PCB Congener Amount Report.
32	PK21_AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #21 as reported on the PCB Congener Amount Report.
33	PK22_AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #22 as reported on the PCB Congener Amount Report.
34	PK23_AMT	17	11	NUMERIC	0.84621	Amount of PCB (ppm) detected in Peak #23 as reported on the PCB Congener Amount Report.
35	PK24_AMT	17	11	NUMERIC	0.25041	Amount of PCB (ppm) detected in Peak #24 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
36	PK25_AMT	17	11	NUMERIC	0.21430	Amount of PCB (ppm) detected in Peak #25 as reported on the PCB Congener Amount Report.
37	PK26_AMT	17	11	NUMERIC	2.03247	Amount of PCB (ppm) detected in Peak #26 as reported on the PCB Congener Amount Report.
38	PK27_AMT	17	11	NUMERIC	0.01879	Amount of PCB (ppm) detected in Peak #27 as reported on the PCB Congener Amount Report.
39	PK28_AMT	17	11	NUMERIC	0.14898	Amount of PCB (ppm) detected in Peak #28 as reported on the PCB Congener Amount Report.
40	PK29_AMT	17	11	NUMERIC	1.59697	Amount of PCB (ppm) detected in Peak #29 as reported on the PCB Congener Amount Report.
41	PK30_AMT	17	11	NUMERIC	0.23654	Amount of PCB (ppm) detected in Peak #30 as reported on the PCB Congener Amount Report.
42	PK31_AMT	17	11	NUMERIC	0.00000	Amount of PCB (ppm) detected in Peak #31 as reported on the PCB Congener Amount Report.
43	PK32_AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #32 as reported on the PCB Congener Amount Report.
44	PK33_AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #33 as reported on the PCB Congener Amount Report.
45	PK34_AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #34 as reported on the PCB Congener Amount Report.
46	PK35_AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #35 as reported on the PCB Congener Amount Report.
47	PK36_AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #36 as reported on the PCB Congener Amount Report.
48	PK37_AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppm) detected in Peak #37 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
49	PK38_AMT	17	11	NUMERIC	0.00004	Amount of PCB (ppm) detected in Peak #38 as reported on the PCB Congener Amount Report.
50	PK39_AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #39 as reported on the PCB Congener Amount Report.
51	PK40_AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #40 as reported on the PCB Congener Amount Report.
52	PK41_AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #41 as reported on the PCB Congener Amount Report.
53	PK42_AMT	17	. 11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #42 as reported on the PCB Congener Amount Report.
54	PK43_AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #43 as reported on the PCB Congener Amount Report.
55	PK44_AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #44 as reported on the PCB Congener Amount Report.
56	PK45_AMT	17	11	NUMERIC	0.84621	Amount of PCB (ppm) detected in Peak #45 as reported on the PCB Congener Amount Report.
57	PK46_AMT	17	11	NUMERIC	0.25041	Amount of PCB (ppm) detected in Peak #46 as reported on the PCB Congener Amount Report.
58	PK47_AMT	17	11	NUMERIC	0.21430	Amount of PCB (ppm) detected in Peak #47 as reported on the PCB Congener Amount Report.
59	PK48_AMT	17	11	NUMERIC	2.03247	Amount of PCB (ppm) detected in Peak #48 as reported on the PCB Congener Amount Report.
60	PK49_AMT	17	11	NUMERIC	0.01879	Amount of PCB (ppm) detected in Peak #49 as reported on the PCB Congener Amount Report.
61	PK50_AMT	17	11	NUMERIC	0.14898	Amount of PCB (ppm) detected in Peak #50 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
62	PK51_AMT	17	11	NUMERIC	1.59697	Amount of PCB (ppm) detected in Peak #51 as reported on the PCB Congener Amount Report.
63	PK52_AMT	17	11	NUMERIC	0.23654	Amount of PCB (ppm) detected in Peak #52 as reported on the PCB Congener Amount Report.
64	PK53_AMT	17	11	NUMERIC	0.00000	Amount of PCB (ppm) detected in Peak #53 as reported on the PCB Congener Amount Report.
65	PK54_AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #54 as reported on the PCB Congener Amount Report.
66	PK55_AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #55 as reported on the PCB Congener Amount Report.
67	PK56_AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #56 as reported on the PCB Congener Amount Report.
68	PK57_AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #57 as reported on the PCB Congener Amount Report.
69	PK58_AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #58 as reported on the PCB Congener Amount Report.
70	PK59_AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppm) detected in Peak #59 as reported on the PCB Congener Amount Report.
71	PK60_AMT	17	11	NUMERIC	0.00004	Amount of PCB (ppm) detected in Peak #60 as reported on the PCB Congener Amount Report.
72	PK61_AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #61 as reported on the PCB Congener Amount Report.
73	PK62_AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #62 as reported on the PCB Congener Amount Report.
74	PK63_AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #63 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
75	PK64_AMT	17	11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #64 as reported on the PCB Congener Amount Report.
76	PK65_AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #65 as reported on the PCB Congener Amount Report.
77	PK66_AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #66 as reported on the PCB Congener Amount Report.
78	PK67_AMT	17	11	NUMERIC	0.84621	Amount of PCB (ppm) detected in Peak #67 as reported on the PCB Congener Amount Report.
79	PK68_AMT	17	11	NUMERIC	0.25041	Amount of PCB (ppm) detected in Peak #68 as reported on the PCB Congener Amount Report.
80	PK69_AMT	17	11	NUMERIC	0.21430	Amount of PCB (ppm) detected in Peak #69 as reported on the PCB Congener Amount Report.
81	PK70_AMT	17	11	NUMERIC	2.03247	Amount of PCB (ppm) detected in Peak #70 as reported on the PCB Congener Amount Report.
82	PK71_AMT	17	11	NUMERIC	0.01879	Amount of PCB (ppm) detected in Peak #71 as reported on the PCB Congener Amount Report.
83	PK72_AMT	17	11	NUMERIC	0.14898	Amount of PCB (ppm) detected in Peak #72 as reported on the PCB Congener Amount Report.
84	PK73_AMT	17	11	NUMERIC	1.59697	Amount of PCB (ppm) detected in Peak #73 as reported on the PCB Congener Amount Report.
85	PK74_AMT	17	11	NUMERIC	0.23654	Amount of PCB (ppm) detected in Peak #74 as reported on the PCB Congener Amount Report.
86	PK75_AMT	17	11	NUMERIC	0.00000	Amount of PCB (ppm) detected in Peak #75 as reported on the PCB Congener Amount Report.
87	PK76_AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #76 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Type	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
88	PK77_AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #77 as reported on the PCB Congener Amount Report.
89	PK78_AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #78 as reported on the PCB Congener Amount Report.
90	PK79_AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #79 as reported on the PCB Congener Amount Report.
91	PK80_AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #80 as reported on the PCB Congener Amount Report.
92	PK81_AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppm) detected in Peak #81 as reported on the PCB Congener Amount Report.
93	PK82_AMT	17	11	NUMERIC	0.00004	Amount of PCB (ppm) detected in Peak #82 as reported on the PCB Congener Amount Report.
94	PK83_AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #83 as reported on the PCB Congener Amount Report.
95	PK84_AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #84 as reported on the PCB Congener Amount Report.
96	PK85_AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #85 as reported on the PCB Congener Amount Report.
97	PK86_AMT	17	11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #86 as reported on the PCB Congener Amount Report.
98	PK87_AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #87 as reported on the PCB Congener Amount Report.
99	PK88_AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #88 as reported on the PCB Congener Amount Report.
100	PK89_AMT	17	11	NUMERIC	0.84621	Amount of PCB (ppm) detected in Peak #89 as reported on the PCB Congener Amount Report.

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
101	PK90_AMT	17	. 11	NUMERIC	0.25041	Amount of PCB (ppm) detected in Peak #90 as reported on the PCB Congener Amount Report.
102	PK91_AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #91 as reported on the PCB Congener Amount Report.
103	PK92_AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #92 as reported on the PCB Congener Amount Report.
104	PK93_AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #93 as reported on the PCB Congener Amount Report.
105	PK94_AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #94 as reported on the PCB Congener Amount Report.
106	PK95_AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #95 as reported on the PCB Congener Amount Report.
107	PK96_AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppn:) detected in Peak #96 as reported on the PCB Congener Amount Report.
108	PK97_AMT	17	11	NUMERIC	0.00004	Amount of PCL (ppm) detected in Peak #97 as reported on the PCB Congener Amount Report.
109	PK98_AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #98 as reported on the PCB Congener Amount Report.
110	PK99_AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #99 as reported on the PCB Congener Amount Report
111	PK100AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #100 as reported on the PCB Congener Amount Report.
112	PK101AMT	17	11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #101 as reported on the PCB Congener Amount Report.
113	PK102AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #102 as reported on the PCB Congener Amount Report.

310494

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
114	PK103AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #103 as reported on the PCB Congener Amount Report.
115	PK104AMT	17	11	NUMERIC	0.84621	Amount of PCB (ppm) detected in Peak #104 as reported on the PCB Congener Amount Report.
116	PK105AMT	17	11	NUMERIC	0.25041	Amount of PCB (ppm) detected in Peak #105 as reported on the PCB Congener Amount Report.
117	PK106AMT	17	11	NUMERIC	0.56981	Amount of PCB (ppm) detected in Peak #106 as reported on the PCB Congener Amount Report.
118	PK107AMT	17	11	NUMERIC	0.25781	Amount of PCB (ppm) detected in Peak #107 as reported on the PCB Congener Amount Report.
119	PK108AMT	17	11	NUMERIC	0.56984	Amount of PCB (ppm) detected in Peak #108 as reported on the PCB Congener Amount Report.
120	PK109AMT	17	11	NUMERIC	0.00254	Amount of PCB (ppm) detected in Peak #109 as reported on the PCB Congener Amount Report.
121	PK110AMT	17	11	NUMERIC	0.05671	Amount of PCB (ppm) detected in Peak #110 as reported on the PCB Congener Amount Report.
122	PK111AMT	17	11	NUMERIC	0.23681	Amount of PCB (ppm) detected in Peak #111 as reported on the PCB Congener Amount Report.
123	PK112AMT	17	11	NUMERIC	0.00004	Amount of PCB (ppm) detected in Peak #112 as reported on the PCB Congener Amount Report.
124	PK113AMT	17	11	NUMERIC	0.00045	Amount of PCB (ppm) detected in Peak #113 as reported on the PCB Congener Amount Report.
125	PK114AMT	17	11	NUMERIC	0.25981	Amount of PCB (ppm) detected in Peak #114 as reported on the PCB Congener Amount Report.
126	PK115AMT	17	11	NUMERIC	0.25874	Amount of PCB (ppm) detected in Peak #115 as reported on the PCB Congener Amount Report.

Last update: 09/13/97

GE HUDSON RIVER PROJECT CONGENER PEAK DATABASE - dBASE III FILE STRUCTURE TABLE

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
127	PK116AMT	17	11	NUMERIC	0.12584	Amount of PCB (ppm) detected in Peak #116 as reported on the PCB Congener Amount Report.
128	PK117AMT	17	11	NUMERIC	0.40014	Amount of PCB (ppm) detected in Peak #117 as reported on the PCB Congener Amount Report.
129	PK118AMT	17	11	NUMERIC	0.25804	Amount of PCB (ppm) detected in Peak #118 as reported on the PCB Congener Amount Report.
130	PCB_CONC	17	11	NUMERIC	11.542	Total PCB concentration (ppm) as reported on the PCB Congener Amount Report.
131	MIC_MOLS	13	10	NUMERIC	0.04761	Total micromoles as reported on the PCB Congener Amount Report.
132	AVG_MWT	7	2	NUMERIC	242.3	Average molecular weight as reported on the PCB Congener Amount Report.
133	PEAKS	3	0	NUMERIC	107	The number of calibrated peaks detected as reported on the PCB Congener Amount Report.
134	C18_CHK	1	0	CHARACTER	Y, N	Yes or no, whether confirmation analysis on a C18 column was conducted for this sample.
135	CF_PK5	17	11	NUMERIC	0.65, 1.25, 1.37	Coelution correction factor used to adjust for peak coelution bias in DB-1 Peak 5
136	CF_PK8	17	11	NUMERIC	0.45, 0.58	Coelution correction factor used to adjust for peak coelution bias in DB-1 Peak 8
137	CF_PK14	17	11	NUMERIC	1.44, 2.23	Coelution correction factor used to adjust for peak coelution bias in DB-1 Peak 14
138	BZ4_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ4 (ppm), first of two coeluting congeners in DB-1 Peak 5

Printed: September 14, 1997

Last update: 09/13/97

Field	Field Name	Length	Dec	Туре	Entry Types	Comments
					Water Column, Sediment, Pore Water, Fish and Biota	
139	BZ10_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ10 (ppm), second of two coeluting congeners in DB-1 Peak 5
140	BZ5_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ5 (ppm), first of two coeluting congeners in DB-1 Peak 8
141	BZ8_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ8 (ppm), second of two coeluting congeners in DB-1 Peak 8
142	BZ15_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ15 (ppm), first of two coleuting congeners in DB-1 Peak 14
143	BZ18_AMT	17	11	NUMERIC	0.00012345678	C-18 confirmation analysis results for congener BZ18 (ppm), first of two coeluting congeners in DB-1 Peak 14
144	GBS_BZ	1	0	CHARACTER	Y, N	Yes or no, whether sediment or porewater samples were analyzed with both Green Bay (GBS) and BZ standards
145	ADJUST	1	0	CHARACTER	Y, N	Indicates which records have been adjusted for analytical biases.

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
1	ID		12	0	CHARACTER	25	10037		The unique sample identifier assigned in the field to each environmental sample collected or tested. If a sample is collected and archived, a unique identifier will be given to it and the sample will be entered into an Archive Database. This is the DATABASE KEY field. Each record in the database has a unique ID. This ID is used to relate into the QA/QC database.
2	LOCATION		10	0	CHARACTER	For a composite enter: COMPOSIT E	B.F.Br Rt.197 Br. TID-West Rt.29 Br. S.W.Br. Rt.4 Br. Hoosic R. Bat. Kill BFI AREA		Sampling location. The actual location where the sample was collected. Water column sample locations: B.F.Br = Baker Falls Bridge (HRM 197.0); HRM 196.8 = Canoe Carry; Rt.197 Br. = Rt. 197 Bridge Fort Edward (HRM 194.2); TID = Thompson Island Dam (HRM 188.5), Rt.29 Br. = Rt. 29 Bridge Schuylerville; S.W.Br. = Stillwater Bridge; Rt.4 Br. = Rt. 4 Bridge Waterford; Hoosic R. = Hoosic River; Bat Kill = Batten Kill. "COMPOSITE" refers to sediment samples composited from more than one location. "EQBL" refers to equipment blanks (included only where PCB concentration exceeds MDL). HRM = approximate Hudson River mile. HRM 0.0 is located at the Battery in New York City. Sample locations within the river may be further differentiated by W = west (shore or channel), C = center (of channel), E = east (shore or channel). "R" indicates the archive sample for a given location.

Note: NA = Not Applicable

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
3	MEDIA		1	0	CHARACTER	f,w,a,b,p,s	f,w,a,b,p,s		Type of matrix: f=fish, w=water, a=air, b=biota, p=pore water, s=sediment
4	INVEST		3	0	CHARACTER	OBG, HAR, D&M	OBG, HAR, D&M	DEC, LAW, EPA, CRD	The organization that collected the sample: OBG = O'Brien & Gere; HAR = Harza; D&M = Dames & Moore; DEC = NYS Dept. Environ. Conserv.; LAW = Law Environmental; EPA = US Environ. Protect. Agency; CRD = GE Corporate Research and Development.
5	DESC		150	0	CHARACTER	ST/CL-3A-1, 8A-12, 8A-2, 8A-3, 8A-5, 8A-7, 8A-15, 8A-6, 8A-13, 8A-4		Brown bullhead Atlantic tomcod American eel	Sample description. Possible sediment descriptions: CS=coarse sand, MS=medium sand, FS=fine sand, G=gravel, ST=silt, CL=clay, FS/ST=fine sand/silt, ST/CL=silt/clay, WC=wood chips, PD=plant debris, SH=shells. Fish species are abbreviated in Field SPP (number 23) and are spelled out in this Description field. For composites: Enter the description of the composite sample along with the locations of each sample involved in the composite.
6	MILE	mi	5	1	NUMERIC				Approximate Hudson River Mile (HRM). HRM 0.0 is located at the Battery in New York City. The river mile for the Batten Kill and Hoosic River (Temporal Water Column Sampling locations) were estimated at the confluent. The river miles entered for the Float Survey sampling locations are also estimated. In addition, the river mile was estimated at the midpoint of each of the sampling reaches for the Sediment Survey.

Note: NA = Not Applicable

Last updated: 09/13/97

Field	Field Name	Units	Length	Dec	Type		Entry Types		Comments
						Sediment	Water column	Other	
7	NORTHING	ft	9	1	NUMERIC	1189500.0	1185467.0		Northing coordinate according to the 192 State Plane Coordinate System, this coordinate is estimated.
8	EASTING	ft	9	1	NUMERIC	699400.0	699450.0		Easting coordinate according to the 1927 State Plane Coordinate System, this coordinate is estimated.
9	ELEV	ft	5	1	NUMERIC	950.0	950.0		River Elevation, this value is estimated.
10	DATE_COL		8	0	DATE	03/09/91	04/12/91		Date of sample collection (MM/DD/YY)
11	HRCOL	hours	2	0	NUMERIC	NA	14		This value represents the hour of the day that the sample was collected.
12	MINCOL	minutes	2	0	NUMERIC	NA	45		This value represents the minute of the day that the sample was collected.
13	WTR_DPTH	ft	5	1	NUMERIC	8.4	18.0		Depth of water at sample location
14	ST_DPTH	cm or ft	5	1	NUMERIC	0.0	0.0		Starting depth of sediment core (cm) or composite water sample (ft)
15	END_DPTH	cm or ft	5	1	NUMERIC	5.0	18.0		Ending depth of sediment core (cm) or composite water sample (ft)
16	LAB		8	0	CHARACTER	NEA	NEA		The laboratory that performed the sampl analysis
17	TOT_SOL	%	4	1	NUMERIC	78.3	. NA		Total percent solids for sediment core composite samples only
18	VOL_SOL	%	4	1	NUMERIC	45.6	NA		Volume solids for sediment core composite samples only
19	DENSITY	g(dry)/mi(wet)	4	2	NUMERIC	1.3	NA		Bulk density for sediment core composite samples only

NA = Not Applicable

-	_
•	>
Ĺ	Л
C)
•	_

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
20	MOIST	%	4	1	NUMERIC	92.4	NA		Percent moisture for sediment core composite samples only
21	тос	mg/kg or mg/l	6	0	NUMERIC	23000	50		Total organic carbon in sediment core composite samples (mg/kg) or water composite samples (mg/l)
22	AGE	yr	111	0	CHARACTER	. NA	NA NA	1	Age of fish in years
23	SPP		4	0	CHARACTER	NA	NA	BB	Fish Species abbreviated: Largemouth Bass, Brown Bullhead, Smallmouth Bass Pumpkinseed.
24	PCLPD	%	5	2	NUMERIC	NA	NA	34.56	Percent lipids
25	LEN	mm	6	1_	NUMERIC	NA	NA	14.1	Fish length
26	WGT	grams	9	2	NUMERIC	NA	NA	3.34	Fish weight
27	SEX		1	0	CHARACTER	NA	NA	M,F	Sex of fish: m=male, f=female, U=undetermined
28	PREP		3	0	CHARACTER	NA	NA	F,W, CF, CW	Preparation method: F=fillet, W=whole fish, CF=composite fillets, CW=composit whole fish
29	OBG_ID		8	0	CHARACTER	M2241	M2241		O'Brien and Gere sample identification fo fields 30 to 34. If this field is blank then there will be no data available for entry int fields 30 to 34, and zeros can be regarde as "null values".
30	TSS	mg/l	5	0	NUMERIC	NA	6		Total suspended solids in water samples only. Results presented to tenths place for 1995 data, otherwise rounded to who numbers. Results less than detection limits shown as "11111".

NA = Not Applicable

(ι		
ı	ŀ	_	J
•	Ć		
(ι	J	Ì
•	(_	
1	L	_	ı

Field	Field Name	Units	Length	Dec	Type		Entry Types		Comments
						Sediment	Water coļumn	Other	
31	TDS	mg/l	5	0	NUMERIC	NA NA	59	:	Total dissolved solids in water samples only
32	SP_COND	umho/cm	6	0	NUMERIC	NA	89		Specific conductivity in water samples only
33	TOT_ALK	mg/l as CaCO3	5	0	NUMERIC	NA	11		Total alkalinity in water samples only
34	TOC_F	mg/l	5	0	NUMERIC	NA	15		Total organic carbon in filtered water samples only
35	FTEDFLOW	cubic ft/sec	8	0	NUMERIC	NA .	7150		United States Department of the Interior USGS daily average flow data for the Hudson River at Fort Edward, NY (station number 01327750). Instantaneous flows are entered for recent dates (typically going back about 3 months) for which preliminary daily average data is not yet available. Preliminary flows are updated quarterly.
36	WTFDFLOW	cubic ft/sec	8	0	NUMERIC	NA .	8400		United States Department of the Interior USGS daily average flow data for the Hudson River at Waterford, NY (station number 01335754). Preliminary and finalized values are included.
37	SWTRFLOW	cubic ft/sec	8	0	NUMERIC	NA	3520		United States Department of the Interior USGS daily average flow data for the Hudson River at Stillwater, NY (station number 01331095). Preliminary and finalized values are included.
38	WTR TMP	Degrees Celsius	4	0	NUMERIC	NA	9		Water temperature for water samples only

NA = Not Applicable

Field	Field Name	Units	Length	Dec	Type		Entry Types		Comments
						Sediment	Water column	Other	
39	PCB_WM	ppm	12	7	NUMERIC		0.0000126		Total PCB concentration by Webb & McCall Method or USEPA Method 8080, this entry will be reported as a "zero value" if the sample concentration is less than the detection limit. See field 45 to distinguish a below detection limit entry from a "null value".
40	PCB_USGS	ppm	12	7	NUMERIC		0.0000025		Total PCB concentration by USGS Method, this entry will be reported as a "zero value" if the sample concentration is less than the detection limit. See field 44 to distinguish a below detection limit entry from a "null value".
41	PCB_CAP	ppm	17	11	NUMERIC	65.7800000	0.0000198		Total PCB concentration by Capillary Column Method NEA608CAP, this entry will be reported as a "zero value" if the sample concentration is less than the detection limit. See field 46 to distinguish a below detection limit entry from a "null value".
42	AROC_ID		20	0	CHARACTER	A1242 Altered A1242 A1248 None	A1242 Altered A1242 A1248 None		Visually identified nominal Aroclor pattern reported by NEA for Webb & McCall or Method 8080 analyses.
43	TOT_DISS		1	0	CHARACTER	T,D	T,D		Total or Dissolved (derived from a filtered water sample)
44	DL_USGS		7	. 0	CHARACTER		<11PPT		USGS method detection limit. This field will be blank if the sample was not analyzed by this method and will indicate that a zero in field 40 is a "null value".

Note: NA = Not Applicable

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
45	DL_WM		7	0	CHARACTER		<11PPT	· ·	Webb & McCall or Method 8080 method detection limit. This field will be blank if the sample was not analyzed by this method and will indicate that a zero in field 39 is a "null value".
46	DL_CAP		7	0	CHARACTER	<1PPM	<11PPT		Capillary Column method detection limit. This field will be blank if the sample was not analyzed by this method and will indicate that a zero in field 41 is a "null value". It should be noted that the method detection limit for pore water analyses will be <100PPB.
47	COL_TYP1		1	0	CHARACTER	P,C	P,C		Type of column used to generate Webb & McCall data: P=packed column, C=capillary column
48	COL_TYP2		1	0	CHARACTER	P,C	P,C		Type of column used to generate homolog values: P=packed column, C=capillary column. If a packed column was used to generate homolog values, the homolog values are estimates.
49	NEA_FILE		12	0	CHARACTER	910606F or N/A	910566F or 910878X		NEA file identification as reported on PCB summary report sheet. An "X" is only included in the NEA_FILE field if the sample is a Temporal Water Column sample analyzed for dissolved PCBs. N/A applies to samples not analyzed by NEA (e.g. Channel Characterization samples.) "R" indicates reanalyzed sample.
50	CUSTOMER		20	0	CHARACTER	O'BRIEN & GERE	O'BRIEN & GERE	GE:CR and D	NEA Customer identification as reported on the PCB summary report sheet

NA = Not Applicable

Numeric fields containing zeros (0) may indicate either a "zero value" or a "null value". See comments to identify individual numeric fields where zero entries reflect "null values".

O'BRIEN & GERE ENGINEERS, INC. i:div52\0612dat\structur\ge970913

Printed: September 14, 1997

ω	
μ	
O UI	
Ö	
4	

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
51	NEA_DESC		40	0	CHARACTER	8A-F1(0-5)	BAKER FALLS BRIDGE (DISSOLVE D)	806 0855	NEA file description as reported on PCB summary report sheet. RalTech #s reported for Archived Fish analyses.
52	NEA_COM		40	0	CHARACTER	1991 HUDSON RIVER SEDIMENT SURVEY COC:7/16/9	1991 HUDSON RIVER H2O SURVEY COC:5/3/91		NEA comment as reported on PCB summary report sheet
53	NEA_TOT	ppm	17	11	NUMERIC	67.8900000	0.0000182		NEA total PCB concentration as reported on PCB summary report sheet. Value is equal to the value reported for "PCB_CAP" in field 41.
54	MONO_WT	%	5	2	NUMERIC	17.40	50.00		Weight % of monochlorinated PCB by Capillary Column Chromatography
55	DI_WT	%	5	2	NUMERIC	17.90	0.0		Weight % of dichlorinated PCB by Capillary Column Chromatography
56	TRI_WT	%	5	2	NUMERIC	27.00	18.47		Weight % of trichlorinated PCB by Capillary Column Chromatography
57	TERA_WT	%	5	2	NUMERIC	25.20	30.62		Weight % of terachlorinated (tetrachlorinated) PCB by Capillary Column Chromatography
58	PENTA_WT	%	5	2	NUMERIC	9.30	17.63		Weight % of pentachlorinated PCB by Capillary Column Chromatography
59	HEXA_WT	%	5	2	NUMERIC	2.10	14.62		Weight % of hexachlorinated PCB by Capillary Column Chromatography

NA = Not Applicable

Field	Field Name	Units	Length	Dec	Туре		Entry Types		Comments
						Sediment	Water column	Other	
60	HEPTA_WT	%	5	2	NUMERIC	0.90	15.32		Weight % of heptachlorinated PCB by Capillary Column Chromatography
61	OCTA_WT	%	5	2	NUMERIC	0.10	3.34		Weight % of octachlorinated PCB by Capillary Column Chromatography
62	NONA_WT	%	5	2	NUMERIC	0.10	0.00		Weight % of nonachlorinated PCB by Capillary Column Chromatography
63	DECA_WT	%	5	2	NUMERIC	0.10	0.00		Weight % of decachlorinated PCB by Capillary Column Chromatography
64	MONO_ML	%	5	2	NUMERIC	23.00	0.00		Mole % of monochlorinated PCB by Capillary Column Chromatography
65	DI_ML	%	5	2	NUMERIC	19.90	0.00		Mole % of dichlorinated PCB by Capillal Column Chromatography
66	TRI_ML	%	5	2	NUMERIC	26.10	22.98		Mole % of trichlorinated PCB by Capillal Column Chromatography
67	TERA_ML	%	5	2	NUMERIC	21.60	33.29		Mole % of terachlorinated (tetrachlorinated) PCB by Capillary Column Chromatography
68	PENTA_ML	%	5	2	NUMERIC	7.20	16.92		Mole % of pentachlorinated PCB by Capillary Column Chromatography
69	HEXA_ML	%	5	2	NUMERIC	1.50	12.43		Mole % of hexachlorinated PCB by Capillary Column Chromatography
70	HEPTA_ML	%	5	2	NUMERIC	0.60	12.01		Mole % of heptachlorinated PCB by Capillary Column Chromatography
71	OCTA_ML	%	5	2	NUMERIC	0.10	2.36		Mole % of octachlorinated PCB by Capillary Column Chromatography

NA = Not Applicable

GE HUDSON RIVER PROJECT ENVIRONMENTAL SAMPLE DATABASE - BBASE III FILE STRUCTURE TABLE

Field	Field Name	Units	Length	Dec	Туре	Entry Types			Comments
						Sediment	Water column	Other	
72	NONA_ML	%	5	2	NUMERIC	0.10	0.00		Mole % of nonachlorinated PCB by Capillary Column Chromatography
73	DECA_ML	%	5	2	NUMERIC	0.10	0.00		Mole % of decachlorinated PCB by Capillary Column Chromatography
74	ORTHO_CL		4	2	NUMERIC	1.39	1.55		Mole ratio of ortho chlorines per biphenyl
75	MP_CL		4	2	NUMERIC	1.38	2.09		Mole ratio of meta and para chlorines per biphenyl
76	TOT_CL		4	2	NUMERIC	2.77	3.64		Mole ratio of total chlorines per biphenyl
77	VERIFIED		3	0	CHARACTER	YES	YES		Verified data has been checked for accuracy and validated
78	QL_WM		2	0	CHARACTER	U,J,UJ	LU,L,U		Data Validation Qualifier for the Webb & McCall PCB results: J=approximate sample result U=approximate the detection limit UJ=approximate the sample result and the detection limit R=reject the sample result or the detection limit
79	QL_USGS		2	0	CHARACTER	. U,J,UJ	U,J,UJ		Data Validation Qualifier for the USGS PCB results: J=approximate sample result U=approximate the detection limit UJ=approximate the sample result and the detection limit R=reject the sample result or the detection limit

Note:

NA = Not Applicable

Field	Field Name	Units	Length	Dec	Туре	Entry Types			Comments
						Sediment	Water column	Other	
80	QL_CAP		2	0	CHARACTER	LO'r'n	ก'า'กา		Data Validation Qualifier for the Capillary Column PCB results: J=approximate sample result U=approximate the detection limit UJ=approximate the sample result and the detection limit R=reject the sample result or the detection limit
81	PROGRAM		20	0	CHARACTER	SEDIMENT, FOOD CHAIN, BFI,	TWCMP, HIGHFLOW, BFI, PCRDMP	FOOD CHAIN LOWER HUDSON	This field indicates the sampling program under which the sample was collected. Examples: TWCMP = Temporal Water Column Monitoring Program 91-92 PCRDMP = Post Construction Remnant Deposit Monitoring Program 92-96+ SEDIMENT = Sediment Sampling and Analysis Program 91 BFI = Bakers Falls Investigation 92-93
82	ADJUST		1	0	CHARACTER	Y,N	Y,N	Y,N	Indicates which records have been adjusted for analytical biases.

Data disk: GE Hudson River PCB database

EPA REGION II SCANNING TRACKING SHEET

DOC ID # 67288

DOC TITLE/SUBJECT:

HUDSON RIVER PCBS UPDATE #7
GE HUDSON RIVER PCB DATABASE
(FILE FORMAT:dBASEIV)

(Page: 310509)

THIS DOCUMENT IS ON A DISKETTE AND CAN BE LOCATED IN THE ADMINISTRATIVE RECORD FILE AT THE

SUPERFUND RECORDS CENTER 290 BROADWAY, 18TH FLOOR NEW YORK, NY 10007 Computer program algorithm to implement database corrections

Appendix C. Algorithm for the correction of the analytical biases in the GE Hudson River PCB database¹

I. Prepare the databases

- A. Backup the existing databases GE (environmental) and CP (congener peak)
- B. Edit the GE database for samples analyzed using Green Bay Standard (GBS).
 - 1. Select samples (records) which will be modified
 - a. criteria: INVEST + "HAR" (excludes the Harza sediment and biota data)
 - b. criteria: **DATE_COL** > {01/01/90} (excludes the GE CR&D archived fish results from 1977-1982)
 - 2. Copy records to be modified to a temporary database GE-1
 - 3. Reverse selection process to select samples which will not be modified
 - a. criteria: INVEST = "HAR" (includes the Harza sediment and biota data)
 - b. criteria: **DATE_COL** < {01/01/90} (includes the GE CR&D archived fish results from 1977-1982)
 - 4. Copy records which will not be modified to a temporary database GE-2.
- C. Edit the CP (congener peak) database
 - 1. Add the following fields to the CP database
 - a. C18 CHK
 - b. CF_PK5
 - c. CF PK8
 - d. CF PK14
 - e. BZ4_AMT
 - f. BZ10 AMT
 - g. BZ5_AMT
 - h. BZ8 AMT

Note that bold and capitalized text indicates actual field names in the databases. The format GE.INVEST indicates the field INVEST is in the GE database.

- i. BZ15 AMT
- j. BZ18 AMT
- k. GBS BZ
- 2. Select the records that will be modified
 - a. criteria: CP.ID LIKE GE-1.ID

Note that the ID fields in both databases contain unique sample identification numbers which link the GE and CP database records. In this step, the ID field in the edited GE-1 database is used to select the records for modification in the CP database. This step will remove from CP those records from the Archived Fish and Harza Lower Hudson programs.

- b. Copy the records to be modified to a temporary database CP-1.
- 3. Reverse selection process to select samples which will not be modified
 - a. criteria: GE-2.ID LIKE CP.ID

 In this step, the ID field in the edited GE-2 database is used to select the records which will not be modified in the CP database.
 - b. Copy the records not to be modified to a temporary database CP-2.
- D. Sort the temporary databases by media
 - 1. Using GE-1, sort the database into three databases by media
 - a. water column ("W") data GE-1W
 - b. sediment ("S") and porewater ("P") data GE-1S
 - c. fish ("F") and biota ("B") data GE-1B
 - 2. Using GE-2, sort the database into three databases by media
 - a. water column ("W") data GE-2W
 - b. sediment ("S") and porewater ("P") data GE-2S
 - c. fish ("F") and biota ("B") data GE-2B
 - 3. Using CP-1, sort the database into three databases by media
 - a. water column ("W") data CP-1W
 - b. sediment ("S") and porewater ("P") data CP-1S
 - c. fish ("F") and biota ("B") data CP-1B

- 4. Using CP-2, sort the database into three databases by media
 - a. water column ("W") data CP-2W
 - b. sediment ("S") and porewater ("P") data CP-2S
 - c. fish ("F") and biota ("B") data CP-2B
- E. Store the temporary databases which will not be modified (e.g. GE-2W, GE-2S, GE-2B, CP-2W, CP-2S, CP-2B).
- F. Create the additional reference databases
 - 1. C18_DATA (HydroQual 1997, Tables A-9, A-11, and A-15) create using the C18 data obtained from additional C18 capillary analyses to quantify the coeluting congeners in DB-1 Peaks 5, 8, and 14.
 - COR_FACTOR (HydroQual 1997, Table A-6) contains the corrections factors for calibration bias correction.
 - 3. GBS_ONLY (HydroQual 1997, Tables A-14 and A-17) contains identification information for sediment and porewater samples analyzed using only the GBS, not supplemented with the BZ Standard (BZS). This database will contain 101 sediment samples and 54 porewater samples.
 - 4. MOL_WT contains the molecular weights of each DB-1 peak, chlorination levels, and homolog distribution ratios to be used in the calculation of average molecular weight, total micromoles, ortho-, meta-para-, and total chlorines per biphenyl, and homolog distributions. Derived from work by Frame and others, 1996.

II. Implement the analytical bias corrections - congener peak (CP) databases

The analytical bias corrections will be implemented in order by media. Each sample (record) will be adjusted for the calibration bias and the coelution bias before the next record is selected.

Table B-1 defines which fields will be affected by the database revisions, and those which will not be affected.

Table B-1. Field status in CP databases

Fields that will be affected	Fields that will not be affected				
Congener peak concentrations (PK2_AMT through PK118AMT)	Sample description fields (NEA_FILE, NEA_DESC, ID, MEDIA)				
Total PCBs (PCB_CONC)	Field log information (DATE_COL, LOCATION, ST_DPTH, END_DPTH, SAMPSED, REACH)				
Total micromoles PCB (MIC_MOLS)	Type of mixed peak deconvolution (MIX_TYPE)				
Average molecular weight (AVG_MWT)	Biphenyl concentration (PK1_AMT)				
	Number of peaks quantified (PEAKS)				

A. Correct the CP-W1 temporary water column database.

- 1. Correct calibration bias For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. apply the appropriate correction factor from COR_FACTOR reference database to each peak concentration value in the fields PK2_AMT through PK118AMT. Note that the correction factor for DB-1 Peak 1 (PK1_AMT) is undefined. This peak is not considered for PCB analysis of Hudson River environmental samples.
 - (1) PK2 AMT \times 1.0441
 - (2) $PK3_AMT \times 1.0000$
 - (3) $PK4_AMT \times 1.0073$
 - (4) **PK5_AMT** \times 4.5431

(117) **PK118_AMT** \times 0.4726

- Correct coelution bias For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. Replace the following peak values using the correction factor shown.
 - (1) replace CP-1W.PK5_AMT with (0.65 × CP-1W.PK5_AMT)
 - (2) replace CP-1W.PK8_AMT with (0.45 × CP-1W.PK8_AMT)
 - (3) replace CP-1W.PK14 AMT with (1.44 × CP-1W.PK14_AMT)
 - (4) write value 0.65 into field CP-1W.CF PK5
 - (5) write value 0.45 into field CP-1W.CF_PK8
 - (6) write value 1.44 into field CP-1W.CF_PK14
 - b. If the record is present in C18_DATA reference database, then fill in the following fields with data from C18_DATA.
 - (1) write "Y" into field CP-1W.C18_CHK
 - (2) write value in C18_DATA.BZ4_AMT to CP-1W.BZ4_AMT
 - (3) write value in C18 DATA.BZ10 AMT to CP-1W.BZ10 AMT
 - (4) write value in C18_DATA.BZ5_AMT to CP-1W.BZ5_AMT
 - (5) write value in C18 DATA.BZ8 AMT to CP-1W.BZ8 AMT
 - (6) write value in C18_DATA.BZ15_AMT to CP-1W.BZ15_AMT
 - (7) write value in C18_DATA.BZ18_AMT to CP-1W.BZ18_AMT
 - if the record is not present in C18_DATA and was therefore not measured for C18 data, then
 write "N" into field CP-1W.C18_CHK
- 3. Update additional field in CP-1W
 - a. Calculate total PCB concentration (\sum_PK1_AMT through PK118AMT) and put the sum value in field PCB_CONC
 - b. Calculate the total micromoles using values in the reference database MOL_WT and the following formula:
- (1) Equation II.A.3.b.
 Calculation for total micromoles
 of PCB (MIC_MOLS).

$$\sum \frac{C_i}{MWT_i} = \sum MICMOL_i = MICMOLS$$

where C_i is the concentration in ppm of the individual congener peak, and MWT_i is the molecular weight of the same congener peak from the reference database MOL_WT, resulting in the micromole concentration for the individual DB-1 capillary column peak (MICMOL). Put the calculated value in the field MIC_MOLS.

c. Calculate the average molecular weight using the reference values in database MOL_WT and put the calculated value in the field AVG_MWT, using the following formula:

(2) Equation II.A.3.c.
Calculation for average molecular
weight (AVG_MWT)

where PCBCONC is the total PCB concentration (CP-1W.PCB_CONC) and MICMOLS is total micromoles (CP-1W.MIC_MOLS).

- 4. Close the CP-1W database after the last sample has been adjusted.
- B. Correct the temporary fish/biota database CP-1B
 - 1. Correct calibration bias For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. apply the appropriate correction factor from COR_FACTOR to each peak concentration value in the fields PK2 AMT through PK118AMT.

Note that the correction factor for DB-1 Peak 1 (PK1_AMT) is undefined. This peak is not considered for PCB analysis of Hudson River environmental samples.

- (1) **PK2 AMT** \times 1.0441
- (2) **PK3 AMT** \times 1.0000
- (3) $PK4_AMT \times 1.0073$
- (4) $PK5_AMT \times 4.5431$
- (117) **PK118_AMT** × 0.4726
- 2. Coelution bias: note that coelution bias corrections have not been developed for the biota data (HydroQual 1997).
- Correct additional fields in CP-B1
 - a. Calculate total PCB concentration (\sum_PK1_AMT through PK118AMT) and put the sum value in field PCB_CONC
 - b. Calculate the total micromoles using reference values in database MOL_WT and put the calculated value in the field MIC_MOLS (see Equation II.A.3.b).
 - c. Calculate the average molecular weight using the reference values in database MOL_WT and put the calculated value in the field AVG MWT (see Equation II.A.3.c.).
- 4. Close the CP-1B database after the last sample has been adjusted
- C. Correct the temporary sediment/porewater database CP-1S
 - 1. Coelution bias correction For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. apply the appropriate correction factor from COR_FACTOR to each peak concentration value in the fields PK2_AMT through PK118AMT, except for PK5_AMT.

Note that the correction factor for DB-1 Peak 1 (PK1_AMT) is undefined. This peak is not considered for PCB analysis of Hudson River environmental samples.

Also note that some sediment and porewater samples were analyzed using only the Green Bay mixed Aroclor calibration standard, whereas other samples were analyzed with both the Green Bay and BZ#4-BZ#10 standard to refine calibration of Peak 5. Correction of calibration bias for Peak 5 is not required for samples analyzed using both standards, but is required for samples analyzed using only the GBS standard. These calibration bias for Peak 5 will be applied as appropriate at the time the coelution biases are applied (Section II.C.2.)

- (1) PK2 AMT \times 1.0441
- (2) $PK3_AMT \times 1.0000$
- (3) **PK4 AMT** \times 1.0073
- (4) **PK6_AMT** \times 2.0407
- (116) **PK118_AMT** \times 0.4726
- 2. Correct coelution bias For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. use database GBS_ONLY to evaluate if the record was analyzed by GBS only, or GBS supplemented with BZS
 - Note: A group of sediment samples collected in association with the 1996 Particle Study (HydroQual) and the 1997 High Flow Bedload Study (HydroQual) were not significantly altered from a commercial Aroclor congener pattern. Therefore, the water column coelution bias corrections factors were deemed more appropriate for these data than the sediment coelution corrections factors.
 - (1) if the record is present in GBS_ONLY (having been analyzed using the Green Bay standard only) and the DATE_COL is earlier than January 1, 1996, then:
 - (a) replace CP-1S.PK5_AMT with $(1.25 \times 4.5431 \times \text{CP-1S.PK5_AMT})$
 - (b) replace CP-1S.PK8_AMT with (0.58 × CP-1S.PK8_AMT)
 - (c) replace CP-1S.PK14 AMT with (2.23 × CP-1S.PK14 AMT)
 - (d) write value 1.25 into field CP-1S.CF_PK5
 - (e) write value 0.58 into field CP-1S.CF_PK8
 - (f) write value 2.23 into field CP-1S.CF PK14
 - (g) write "N" in the field GBS_BZ
 - (2) if the record is present in GBS_ONLY (having been analyzed using the Green Bay standard only) and the DATE_COL is the same or later than January 1, 1996, then:
 - (a) replace CP-1S.PK5_AMT with $(0.65 \times 4.5431 \times \text{CP-1S.PK5_AMT})$
 - (b) replace CP-1S.PK8_AMT with $(0.45 \times \text{CP-1S.PK8_AMT})$

- (c) replace CP-1S.PK14_AMT with $(1.44 \times \text{CP-1S.PK14_AMT})$
- (d) write value 0.65 into field CP-1S.CF PK5
- (e) write value 0.45 into field CP-1S.CF_PK8
- (f) write value 1.44 into field CP-1S.CF PK14
- (g) write "N" in the field GBS_BZ
- (3) if the record is not present in GBS_ONLY database (the record has been analyzed with Green Bay standard and the BZ#4-BZ#10 standard):
 - (a) replace CP-1S.PK5 AMT with (1.37 × CP-1S.PK5 AMT)
 - (b) replace CP-1S.PK8 AMT with (0.58 × CP-1S.PK8 AMT)
 - (c) replace CP-1S.PK14_AMT with (2.23 × CP-1S.PK14_AMT)
 - (d) write value 1.37 into field CP-1S.CF_PK5
 - (e) write value 0.58 into field CP-1S.CF PK8
 - (f) write value 2.23 into field CP-1S.CF PK14
 - (g) write "Y" in the field GBS & BZ
- b. Use the database C18_DATA to evaluate if the sample was analyzed using the C-18 capillary column.
 - (1) If the record is present in C18_DATA then write the following values into the fields specified:
 - (a) write "Y" into field CP-1S.C18_CHK
 - (b) write value in C18 DATA.BZ4 AMT to CP-1S.BZ4 AMT
 - (c) write value in C18 DATA.BZ10 AMT to CP-1S.BZ10 AMT
 - (d) write value in C18 DATA.BZ5 AMT to CP-1S.BZ5 AMT
 - (e) write value in C18 DATA.BZ8 AMT to CP-1S.BZ8 AMT
 - (f) write value in C18_DATA.BZ15_AMT to CP-1S.BZ15_AMT
 - (g) write value in C18 DATA.BZ18 AMT to CP-1S.BZ18 AMT
 - (2) if the record is not present in C18_DATA, write "N" in the field CP-1S.C18_CHK.
- Correct additional fields in CP-S1
 - a. Calculate total PCB concentration (\sum_PK1_AMT through PK118AMT) and put the sum value in field PCB_CONC
 - b. Calculate the total micromoles using reference values in database MOL_WT and put the calculated value in the field MIC_MOLS (see Equation II.A.3.b.).
 - c. Calculate the average molecular weight using the reference values in database MOL_WT and put the calculated value in the field AVG_MWT (see Equation II.A.3.c.).
- 4. Close the CP-1S database after the last sample has been adjusted.

III. Quality Control (QC) check of the CP databases

QC evaluation of the databases will be the same procedure for each media (water column, sediment/porewater, and biota/fish). A copy of the original database will be used as a reference

- A. Electronic QC of 100% of the data using the original and revised databases.
 - 1. For each congener concentration in DB-1 Peaks 2 through 118 (PK2_AMT through PK118AMT)
 - a. multiply the uncorrected value in the original CP database by the appropriate correction factor from database COR_FACTOR and, as applicable, by the coelution correction factor (Peaks 5, 8 and 14)
 - b. compare the result to the corresponding record in the revised database
 - (1) if the values match within $\pm 1 \times 10^{-11}$ (e.g., 0.00001 parts per trillion), then the field passes this QC test; proceed with next field
 - (2) if the values do not match within $\pm 1 \times 10^{-11}$, then the field fails
 - (a) write sample information and the peak that failed to a temporary database for later evaluation
 - (b) proceed with next field
 - 2. For each record, recalculate the total PCB as the sum of the 118 congener peaks and compare the result to the value in the field **PCB CONC**
 - a. if the values match within $\pm 1 \times 10^{-11}$ (e.g., 0.00001 parts per trillion), then the record passes this QC test; proceed with next step
 - b. if the values do not match within $\pm 1 \times 10^{-11}$, then the record fails
 - 1. write sample information and reason for failure to a temporary database for later evaluation
 - 2. proceed with next step
 - 3. Upon completion of evaluation, close the CP database in use and proceed with next media database.
- B. Review the electronic "fail" databases, identify the sources of error and implement corrections
- C. Manual QC of 5% of the records. Records will be randomly selected from the original database, and extracted to a spreadsheet. Within the spreadsheet, the analytical bias corrections will be applied to the data. In addition to the same review described in Section III.A., the following will be reviewed:
 - 1. Recalculate the average molecular weight using the reference database MOL_WT and compare the result to the value in the field AVG MWT
 - a. if the values match within 0.1, then the record passes this QC test; proceed with next step
 - b. if the values do not match within 0.1, then the record fails

- (1) write sample information and reason for failure to a temporary database for later evaluation
- (2) proceed with next step
- 2. Recalculate the total micromoles using the reference database MOL_WT and compare the result to the value in the field MIC MOLS
 - a. if the values match within 0.00001, then the record passes this QC test; proceed with next record
 - b. if the values do not match within 0.00001, then the record fails
 - (1) write sample information and reason for failure to a temporary database for later evaluation
 - (2) proceed with next record
- D. Compile the information on the records which failed the QC tests, evaluate the data, and identify the source of error. Correct the computer program as necessary and proceed with Section II of this algorithm. After all the records have passed the QC tests, proceed with Section IV of this algorithm.

IV. Implement the analytical bias corrections - environmental (GE) databases

The analytical bias corrections will be implemented in order by media. Each sample (record) will be adjusted in the CP databases for calibration and coelution bias and pass QC criteria before this series of corrections is undertaken.

Table B-2 defines which fields will be affected by the database revisions and those which will not be affected.

Table B-2. Field status for GE database.

Fields that will be affected	Fields that will not be affected
Total PCBs (NEA_TOT, PCB_CAP, DL_CAP)	Sample description fields (NEA_FILE, NEA_DESC, ID, MEDIA, INVEST, LAB, DESC, OBG_ID, CUSTOMER, NEA_COM)
Homologs weight percent (MONO_WT through DECA_WT)	Field log information (DATE_COL, HRCOL, MINCOL, LOCATION, WTR_DPTH, ST_DPTH, END_DPTH, MILE, NORTHING, EASTING, ELEV, WTR_TMP)
Homologs mole percent (MONO_ML through DECA_ML)	Other parameters (TOT_SOL, VOL_SOL, DENSITY, MOIST, TOC, AGE, SPP, PCLPD, LEN, WGT, SEX, PREP, TSS, TDS, SP_COND, TOT_ALK, TOC_F, TOT_DISS, VERIFIED, PROGRAM)
Chlorination level (ORTHO_CL, MP_CL, TOT_CL)	River flow data (FTEDFLOW, WTFDFLOW, SWTRFLOW)
Validation qualifiers (QL_CAP)	PCB data by methods other than NEA608CAP (PCB_WM, PCB_USGS, AROC_ID, DL_USGS, DL_WM, COL_TYP1, COL_TYP2, QL_WM, QL_USGS)

- A. Correct each media GE database by implementing the following steps.
 - 1. Correct the total PCB fields For each sample, starting with the first one and ending with the last one, complete the following steps:
 - a. Use the ID field to identify matching records between the corrected CP-1 database and GE-1 database
 - b. Replace GE.NEA_TOT with CP.PCB_CONC
 - c. Check if the total PCB concentration is greater than the method detection limit
 - (1) If GE.NEA_TOT is greater than or equal to the detection limit, then replace all values in the field GE.PCB_CAP with the value in GE.NEA_TOT

- (2) If GE.NEA_TOT is less than the detection limit, then replace all labels in the field GE.DL_CAP with the detection limit label
- 2. Calculate the homolog distribution
 - a. weight percent basis: for each homolog group
 - (1) Calculate the sum concentration of the DB-1 peaks from the CP database for the homolog group, referencing database MOL_WT for the peak distribution and coelution ratios.
- (3) Equation IV.A.2.a.

 Calculation for homolog weight percent

$$\frac{\sum (PK_AMT \times HOMVALUE)}{PCBCONC} \times 100 = HomologWT\%$$

where PK_iAMT is the congener peak concentration for DB-1 peaks 1 through 118, HOMVALUE is taken from the MOL_WT database for PK_i and the homolog group being calculated, and PCBCONC is the total PCB concentration in field **GE.NEA_TOT**. Table B-3 summarizes the congener distribution among the homolog groups.

Table B-3. Congener-homolog deconvolution rules.

C-12

Homolog Group	DB-1 Peaks, or percentage thereof
mono	2, 3, 4,
di	5, 6, 7, 8, 9, 12, 13, (<i>24.8%</i> 14)
tri	10, 11, (75.2%14), 15, 16, 17, 18, (70.0%19), 20, 21, 22, 23, 24, (94.4%25), (96.6%26), 28, 30, 36, (57.0%38)
tetra	(30.0%19), (5.6%25), (3.4%26), 27, 29, 31, 32, 33, 34, 35, 37, (43.0%38), 39, 40, 42, (80.0%43), (80.0%44), 45, 46, 47, (95.5%48), (5.0%49), 50
penta	41, (20.0%43), (20.0%44), (4.5%48), (95.0%49), 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 63, (30.0%65), (70.0%67), 68, (68.0%69), (38%71), (70.0%72), (38.0%74)
hexa	60, 62, 64, (70.0%65), 66, (30.0%67), (32.0%69), 70, (62%71), (30.0%72), 73, (62.0%74), 75, 76, 77, 79, 80, 82, 83, 84, 86, 89, 91, (38.0%95), 97
hepta	78, 81, 85, 87, 88, 90, 92, 93, 94, (<i>62.0%</i> 95), 98, 100, 102, 103, 104, 106, 107, 111

Table B-3. Congener-homolog deconvolution rules.

Homolog Group	DB-1 Peaks, or percentage thereof									
octa	96, 99, 101, 105, 108, 109, 110, 112, 115, 116									
nona	113, 114, 117	•								
deca	118									

- (2) Place the calculated weight percent value in the appropriate homolog field (GE.MONO_WT through GE.DECA_WT).
- (3) Repeat for each homolog group
- b. mole percent basis: for each homolog group
 - (1) Calculate the sum micromoles of the DB-1 peaks from the CP database for the homolog group, referencing database MOL_WT for the peak distribution and coelution ratios.

$$\frac{\sum (\frac{PK_{i}AMT}{MWT_{i}} \times HOMVALUE)}{\sum (\frac{PK_{i}AMT}{MWT_{i}})} \times 100 = HomologMole\%$$

(4) Equation IV.A.2.b. Calculation for homolog mole percent.

where PK_iAMT is the congener peak concentration for DB-1 peaks 1 through 118, MWT_i is the molecular weight of the congener peak from MOL_WT database, and HOMVALUE is taken from the MOL_WT database for PK_i and the homolog group being calculated.

Table B-3 summarizes the congener distribution among the homolog groups.

- (2) Place the calculated mole percent value in the appropriate homolog field (GE.MONO_ML through GE.DECA_ML).
- (3) Repeat for each homolog group
- c. Calculate the chlorination level chlorination level is based on the ratio of total chlorines to one of two options: ortho chlorines, meta-para chlorines. DB-1 peak chlorination levels are listed in the MOL_WT reference database. Repeat the following steps for each chlorination level:
 - (1) Select a record
 - (2) calculate the ortho-chlorination level using the following equation:

(5) Equation IV.A.2.c.(2)
Calculation for ortho
chlorines per biphenyl

$$\sum \left(\frac{\frac{PK_{i}AMT}{MWT_{i}}}{\sum \left(\frac{PK_{i}AMT}{MWT_{i}}\right)} \times CLORTHO\right) = Avg.ORTHO.CLperBP$$

where PK,AMT is the congener peak concentration for DB-1 peaks 1 through 118, MWT, is the molecular weight of the congener peak from MOL_WT database, and CLORTHO is taken from the MOL WT database for PK,

- (3) place the calculated value for ortho-chlorines per biphenyl in the field **GE.ORTHO_CL**.
- (4) calculate the meta-para-chlorination level using the following equation:

$$\sum \left(\frac{\frac{(PK_{A}MT)}{MWT_{i}}}{\sum \left(\frac{PK_{A}MT}{MWT_{i}}\right)} \times CLMP\right) = Avg.MP.CLperBP$$

(6) Equation IV.A.2.c.(4)
Calculation for meta-para chlorines per biphenyl

where PK_iAMT is the congener peak concentration for DB-1 peaks 1 through 118, MWT_i is the molecular weight of the congener peak from MOL_WT database, and CL.MP is taken from the MOL_WT database for PK_i.

- (5) place the calculated value for meta-para-chlorines per biphenyl in the field **GE.MP CL**.
- (6) Add together the values in the fields GE.ORTHO_CL and GE.MP_CL, and place the resulting value in the field GE.TOT_CL.
- (7) Select the next record and repeat steps (2) through (7) until all the records have been recalculated.
- B. close the GE database upon completion. Repeat for each media database until completed.

C-14

V. QC check of the adjusted GE database

QC evaluation of the databases will be the same procedure for each media (water column, sediment/porewater, and biota/fish). A copy of the original database will be used as a reference

- A. Electronic QC of 100% of the data using the corrected databases.
 - 1. Check the total PCB fields For each record from first to last, select one record and proceed with the following steps:
 - a. Confirm that the value in GE.NEA_TOT equals the value in CP.PCB_CONC.
 - (1) if the values do not match, tabulate the record and continue to next step
 - (2) if the values match, continue with next step
 - b. Confirm that values in the field **GE.PCB_CAP** are greater than or equal to the detection limit value for the media
 - (1) if the values do not match, tabulate the record and continue to next step
 - (2) if the values match, continue with next step
 - c. Confirm that the detection limit label in **GE.DL_CAP** correspond to values less than the media detection limit in **GE.NEA_TOT**.
 - (1) if the labels and values do not correspond, tabulate the record and continue to next step
 - (2) if the labels and values correspond, continue with next step
 - 2. Check the calculation of the homolog distributions
 - a. Weight percent values sum the weight percents of the ten homolog groups (GE.MONO_WT through GE.DECA_WT)
 - (1) if the result is greater than or less than 100% by 0.02%, tabulate the record and continue to next step
 - (2) if the result equals $100\% \pm 0.02\%$, continue with next step
 - Mole percent values sum the mole percents of the ten homolog groups (GE.MONO_ML through GE.DECA_ML)
 - (1) if the result is greater than or less than 100% by 0.02%, tabulate the record and continue to next step
 - (2) if the result equals $100\% \pm 0.02\%$, continue with next step
 - 3. Check the calculation of the average of ortho, meta, para, and total chlorines per biphenyl, for each record:
 - a. sum the values for the ortho, and meta-para chlorines per biphenyl (GE.ORTHO_CL + GE.MP CL)
 - b. compare the resulting sum to the value in the field **GE.TOT CL**
 - (1) if the values match within 0.01, then the record passes this QC test; proceed with next record

- (2) if the values do not match within 0.01, then the record fails
 - (a) write sample information and reason for failure to a temporary database for later evaluation
 - (b) proceed with next record
- 4. Upon completion of evaluation, close the GE database in use and proceed with next media database.
- B. Review the electronic "fail" databases, identify the sources of error and implement corrections
- C. Manual QC of 5% of the records. Records from the original database will be randomly selected, and extracted to a spreadsheet. Within the spreadsheet, the analytical bias corrections will be applied to the data. In addition to the review described in Section V.A., the following will be reviewed:
 - 1. Recalculate the homolog distributions using the reference database MOL_WT and compare the results to the values in the homolog distribution fields of the revised database
 - a. if the values match within 0.02%, then the record passes this QC test; proceed with the next step.
 - b. if the values do not match within 0.02%, then the record fails
 - (1) note the sample information and reason for failure for later evaluation
 - (2) proceed with the next step.
 - 2. Recalculate the chlorination levels using the reference database MOL_WT and compare the results to the values in the fields ORTHO_CL, MP_CL and TOT_CL in the revised database
 - a. if the values match within 0.02 chlorines per biphenyl, then the record passes this QC test; proceed with the next step.
 - b. if the values do not match within 0.02 chlorines per biphenyl, then the record fails
 - (1) note the sample information and reason for failure for later evaluation
 - (2) proceed with the next step.
 - 3. Qualitatively assess the reasonableness of the homolog and chlorines per biphenyl calculations: The average total chlorines per biphenyl (TOT_CL) for a given sample should reasonably approximate the homolog group with the highest percentage of representation in the sample. For example, if TOT_CL equals 3.5, then the highest percentages in the homolog distribution should be between the tri-chlorinated and tetra-chlorinated groups (TRI_WT, TETRA_WT, TRI_ML, and TETRA_ML).
 - a. if the value for TOT_CL reasonably approximates the homolog distribution, then the record passes this QC test; proceed with the next step.
 - b. if the value for TOT_CL does not reasonably approximates the homolog distribution, then the record fails this QC test. Tabulate the record information for later evaluation.
- D. Compile the information on the records which failed the QC tests, evaluate the data, and identify the source of error. Correct the computer program as necessary and proceed with Section IV of this

algorithm. After all the records have passed the QC tests, proceed with Subsection V.E of this algorithm.

E. QC corrections - HydroQual
Once OBG has completed the corrections and run through QC procedures, the database will be
sent to HydroQual, where another round of independent QC procedures will be run. OBG will work
with HydroQual to address any QC issues which arise resulting from their QC evaluation.

VI. Re-Merging of the databases

A. Water column data

- Re-merge the database CP-W1 (adjusted and QC corrected) to CP-W2 (unadjusted data). The merged database will be called CPW
- 2. Re-merge the database GE-W1 (adjusted and QC corrected) to GE-W2 (unadjusted data). The merged database will be called GEW

B. Biota data

- Re-merge the database CP-B1 (adjusted and QC corrected) to CP-B2 (unadjusted data). The merged database will be called CPB
- 2. Re-merge the database GE-B1 (adjusted and QC corrected) to GE-B2 (unadjusted data). The merged database will be called GEB

C. Sediment data

- Re-merge the database CP-S1 (adjusted and QC corrected) to CP-S2 (unadjusted data). The merged database will be called CPS
- 2. Re-merge the database GE-S1 (adjusted and QC corrected) to GE-S2 (unadjusted data). The merged database will be called GES
- D. Prior to database delivery, merge the separate media GE and CP databases together into one GE database and one CP database.

C-18

Reference databases to implement database corrections

Table D-1(a). Congener-specific information for calculating total micromoles, average molecular weight, and chlorines per biphenyl (reference database MOL_WT.DBF)

		tabase MOL_W1.			DB-1 Peak					
	Database Peak	DB-1 Peak	Congener	Molecular Structure of	Molecular	DD 4 Daal	k Chlorines per	Dinhamul		
	Label	Number		PCB Congener	Weight			•		
Eiolds:	PEAKLABL	PEAK_NO		MOL_STRU	MWT	Total CL_TOT	Ortho CL_ORTHO	Meta-Para CL_MP		
rieius.	PK1_AMT	7 FEAR_100		biphenyl	154.20	0.000	0.000	0.000		
	PK2_AMT	2	1	· ·	188.70	1.000	1.000	0.000		
	PK3_AMT	3		3	188.70	1.000	0.000	1.000		
	-	4		4	188.70	1.000	0.000	1.000		
	PK4_AMT				223.10					
	PK5_AMT	5		22'; 26	1	2.000	2.000	0.000		
	PK6_AMT	6 7		2 4; 2 5	223.10	2.000	1.000	1.000		
	PK7_AMT			2 3'	223.10	2.000	1.000	1.000		
	PK8_AMT	8		2 3; 2 4'	223.10	2.000	1.000	1.000		
	PK9_AMT	9		35	223.10	2.000	0.000	2.000		
	PK10_AMT	10		2 2'6	257.50	3.000	3.000	0.000		
	PK11_AMT	11		246	257.50	3.000	2.000	1.000		
	PK12_AMT	12		3 3'	223.10	2.000	0.000	2.000		
	PK13_AMT	13	•	3 4; 3 4'	223.10	2.000	0.000	2.000		
	PK14_AMT	14		4 4'; 2 2'5	249.00	2.752	1.504	1.248		
	PK15_AMT	15		2 2'4	257.50	3.000	2.000	1.000		
	PK16_AMT	16		2 3 6; 2 3'6	257 50	3.000	2.000	1.000		
	PK17_AMT	17 .		2 2'3; 2 4'6	257.50	3.000	2.000	1.000		
	PK18_AMT	18		235	257.50	3.000	1.000	2.000		
	PK19_AMT	19		2'3 5'; 2 2'6 6'	267.90	3.300	1.900	1.400		
	PK20_AMT	20	29	245	257.50	3.000	1.000	2.000		
	PK21_AMT	21	26	2 3'5	257.50	3.000	1.000	2.000		
	PK22_AMT	22	25	2 3'4	257.50	3.000	1.000	2.000		
	PK23_AMT	23	31	2 4'5	257.50	3.000	1.000	2.000		
	PK24_AMT	24	28, 50	2 4 4'; 2 2'4 6	257.50	3.000	1.000	2.000		
	PK25_AMT	25	21, 33, 53	2 3 4; 2'3 4'; 2 2'5 6'	259.50	3.056	1.112	1.944		
	PK26_AMT	26		2 3 4'; 2 2'4 6'	258.70	3.034	1.068	1.966		
	PK27_AMT	27		2 2'3 6	292.00	4.000	3.000	1.000		
	PK28_AMT	28		3 3'5	257.50	3.000	1.000	2.000		
	PK29_AMT	29		2 2'3 6'	292.00	4.000	3.000	1.000		
	PK30_AMT	30		3 4'5	257.50	3.000	1.000	2.000		

Table D-1(a). Congener-specific information for calculating total micromoles, average molecular weight, and chlorines per biphenyl (reference database MOL_WT.DBF)

	Database		Congener		DB-1 Peak			
	Peak	DB-1 Peak	BZ	Molecular Structure of	Molecular	DB-1 Peal	k Chlorines per	Biphenyl
	Label	Number	Number	PCB Congener	Weight	Total	Ortho	Meta-Para
Fields:	PEAKLABL	PEAK_NO	BZ_NO	MOL_STRU	MWT	CL_TOT	CL_ORTHO	CL_MP
	PK31_AMT	31	52, 73	2 2'5 5'; 2 3'5'6	292.00	4.000	2.000	2.000
	PK32_AMT	32	49	2 2'4 5'	292.00	4.000	2.000	2.000
	PK33_AMT	33	47	2 2'4 4'	292.00	4.000	2.000	2.000
	PK34_AMT	34	48, 75	2 2'4 5; 2 4 4'6	292.00	4.000	2.000	2.000
	PK35_AMT	35	62, 65	2346;2356	292.00	4.000	2.000	2.000
	PK36_AMT	36	35	3 3'4	257.50	3.000	0.000	3.000
•	PK37_AMT	37	44, 104	2 2'3 5'; 2 2'4 6 6'	292.00	4.000	2.000	2.000
	PK38_AMT	38	37, 42, 59	3 4 4'; 2 2'3 4'; 2 3 3'6	272.40	3.430	0.860	2.570
	PK39_AMT	39	64, 71	2 3 4'6; 2 3'4'6	292.00	4.000	2.000	2.000
	PK40_AMT	40	68	2 3'4 5'	292.00	4.000	1.000	3.000
	PK41_AMT	41	96	2 2'3 6 6'	326.40	5.000	4.000	1.000
	PK42_AMT	42	40	2 2'3 3'	292.00	4.000	2.000	2.000
	PK43_AMT	43	57, 103	2 3 3'5; 2 2'4 5'6	298.90	4.200	1.400	2.800
	PK44_AMT	44	67, 100	2 3'4 5; 2 2'4 4'6	298.90	4.200	1.400	2.800
	PK45_AMT	45	58, 63	2 3 3'5'; 2 3 4'5	292.00	4.000	1.000	3.000
	PK46_AMT	46	74, 94	2 4 4'5; 2 2'3 5 6'	292.00	4.000	1,000	3.000
	PK47_AMT	47	61, 70, 76	2 3 4 5; 2 3'4'5; 2'3 4 5	292.00	4.000	1.000	3.000
	PK48_AMT	48	66, 93, 95	2 3'4 4'; 2 2'3 5 6; 2 2'3 5'6	293.50	4.045	1.090	2.955
	PK49_AMT	49	55, 91, 98	2 3 3'4; 2 2'3 4'6; 2 2'3'4 6	324.70	4.950	2.900	2.050
	PK50_AMT	50	56, 60	2 3 3'4'; 2 3 4 4'	292.00	4.000	1.000	3.000
	PK51_AMT	51	84, 92, 155	2 2'3 3'6; 2 2'3 5 5'; 2 2'4 4'6 6'	326.40	5.000	3.000	2.000
	PK52_AMT	52	- 89	2 2'3 4 6'	326.40	5.000	3.000	2.000
	PK53_AMT	53	90, 101	2 2'3 4'5; 2 2'4 5 5'	326.40	5.000	2.000	3.000
	PK54_AMT	54	99	2 2'4 4'5	326.40	5.000	2.000	3.000
	PK55_AMT	55	112, 119, 150	2 3 3'5 6; 2 3'4 4'6; 2 2'3 4'6 6'	326.40	5.000	2.000	3.000
	PK56_AMT	56	83, 109	2 2'3 3'5; 2 3 3'4 6	326.40	5.000	2.000	3.000
	PK57_AMT	57	•	2 2'3 4 5; 2 2'3'4 5; 2 2'3 5 6 6'	326.40	5.000	2.000	3.000
	PK58_AMT	58		2 2'3 4 5'; 2 3 3'5 5'; 2 3 4 4'6	326.40	5.000	2.000	3.000
•	PK59_AMT	59		2 2'3 4 4'; 2 3 4 5 6	326.40	5.000	2.000	3.000
	PK60_AMT	60		2 2'3 3'6 6'	360.90	6.000	4.000	2.000

Table D-1(a). Congener-specific information for calculating total micromoles, average molecular weight, and chlorines per biphenyl (reference database MOL_WT.DBF)

	Database		Congener		DB-1 Peak			
	Peak	DB-1 Peak	BZ	Molecular Structure of	Molecular	DB-1 Pea	k Chlorines per	Biphenyl
	Label	Number	Number	PCB Congener	Weight	Total	Ortho	Meta-Para
Fields:	PEAKLABL	PEAK_NO	BZ_NO	MOL_STRU	MWT	CL_TOT	CL_ORTHO	CL_MP
	PK61_AMT	61	77, 110	3 3'4 4'; 2 3 3'4'6	315.80	5.000	2.000	3.000
	PK62_AMT	62	154	2 2'4 4'5 6'	360.90	6.000	3.000	3.000
	PK63_AMT	63	82	2 2'3 3'4	326.40	5.000	2.000	3.000
	PK64_AMT	64	151	2 2'3 5 5'6	360.90	6.000	3.000	3.000
	PK65_AMT	65	124, 135	2'3 4 5 5'; 2 2'3 3'5 6'	350.50	5.700	2.400	3.300
	PK66_AMT	66	144	2 2'3 4 5'6	360.90	6.000	3.000	3.000
	PK67_AMT	67	107, 108, 147	2 3 3'4'5; 2 3 3'4 5'; 2 2'3 4'5 6	336.80	5.300	1.600	3.700
	PK68_AMT	68	123	2'3 4 4'5	326.40	5.000	1.000	4.000
	PK69_AMT	69	106, 118, 149	2 3 3'4 5; 2 3'4 4'5; 2 2'3 4'5'6	337.50	5.320	1.640	3.680
	PK70_AMT	70	139, 140	2 2'3 4 4'6; 2 2'3 4 4'6'	360.90	6.000	3.000	3.000
	PK71_AMT	71	114, 134, 143	2 3 4 4'5; 2 2'3 3'5 6; 2 2'3 4 5 6'	347.80	5.620	2.240	3.380
	PK72_AMT	72	122, 131, 133	2'3 3'4 5; 2 2'3 3'4 6; 2 2'3 3'5 5'	336.80	5.300	1.600	3.700
	PK73_AMT	73	146, 161	2 2'3 4'5 5'; 2 3 3'4 5'6	360.90	6.000	2.000	4.000
	PK74_AMT	74	105, 132	2 3 3'4 4'; 2 2'3 3'4 6'	347.80	5.620	2.240	3.380
	PK75_AMT	75	153	2 2'4 4'5 5'	360.90	6.000	2.000	4.000
	PK76_AMT	76	168	2 3'4 4'5'6	360.90	6.000	2.000	4.000
	PK77_AMT	77	141	2 2'3 4 5 5'	360.90	6.000	2.000	4.000
	PK78_AMT	78	179	2 2'3 3'5 6 6'	395.30	7.000	4.000	3.000
	PK79_AMT	79	130	2 2'3 3'4 5'	360.90	6.000	2.000	4.000
	PK80_AMT	80	137	2 2'3 4 4'5	360.90	6.000	2.000	4.000
	PK81_AMT	81	176	2 2'3 3'4 6 6'	395.30	7.000	4.000	3.000
	PK82_AMT	82	138, 163	2 2'3 4 4'5'; 2 3 3'4'5 6	360.90	6.000	2.000	4.000
	PK83_AMT	83	158	2 3 3'4 4'6	360.90	6.000	2.000	4.000
	PK84_AMT	84	129	2 2'3 3'4 5	360.90	6.000	2.000	4.000
	PK85_AMT	85	178	2 2'3 3'5 5'6	395.30	7.000	3.000	4.000
	PK86_AMT	86	166	234456	360.90	6.000	2.000	4.000
	PK87_AMT	87	175	2 2'3 3'4 5'6	395.30	7.000	3.000	4.000
	PK88_AMT	88	182, 187	2 2'3 4 4'5 6'; 2 2'3 4'5 5'6	395.30	7.000	3.000	4.000
	PK89_AMT	89	•	2 2'3 3'4 4'	360.90	6.000	2.000	4.000
	PK90_AMT	90	183	2 2'3 4 4'5'6	395.30	7.000	3.000	4.000

Table D-1(a). Congener-specific information for calculating total micromoles, average molecular weight, and chlorines per biphenyl (reference database MOL_WT.DBF)

	Database		Congener		DB-1 Peak			
	Peak	DB-1 Peak	BZ	Molecular Structure of	Molecular	DB-1 Peal	k Chlorines per	Biphenyl
	Label	Number	Number	PCB Congener	Weight	Total	Ortho	Meta-Para
Fields:	PEAKLABL	PEAK_NO	BZ_NO	MOL_STRU	MWT	CL_TOT	CL_ORTHO	CL_MP
	PK91_AMT	91	167	2 3'4 4'5 5'	360.90	6.000	1.000	5.000
	PK92_AMT	92	185	2 2'3 4 5 5'6	394.30	7.000	3.000	4.000
	PK93_AMT	93	174, 181	2 2'3 3'4 5 6'; 2 2'3 4 4'5 6	394.30	7.000	3.000	4.000
	PK94_AMT	94	177	2 2'3 3'4'5 6	394.30	7.000	3.000	4.000
	PK95_AMT	95	156, 171	2 3 3'4 4'5; 2 2'3 3'4 4'6	382.20	6.620	2.240	4.380
	PK96_AMT	96	202	2 2'3 3'5 5'6 6'	429.80	8.000	4.000	4.000
	PK97_AMT	97	157	2 3 3'4 4'5'	360.90	6.000	1,000	5.000
	PK98_AMT	98	173	2 2'3 3'4 5 6	395.30	7.000	3.000	4.000
*	PK99_AMT	99	200, 204	2 2'3 3'4 5 6 6'; 2 2'3 4 4'5 6 6'	429.80	8.000	4.000	4.000
	PK100AMT	100	172, 192	2 2'3 3'4 5 5'; 2 3 3'4 5 5'6	395.30	7.000	2.000	5.000
	PK101AMT	101	197	2 2'3 3'4 4'6 6'	429.80	8.000	4.000	4.000
	PK102AMT	102	180	2 2'3 4 4'5 5'	395.30	7.000	2.000	5.000
	PK103AMT	103	193	2 3 3'4'5 5'6	395.30	7.000	2.000	5.000
	PK104AMT	104	191	2 3 3'4 4'5'6	395.30	7.000	2.000	5.000
	PK105AMT	105	199	2 2'3 3'4 5 5'6'	429.80	8.000	4.000	4.000
	PK106AMT	106	170	2 2'3 3'4 4'5	395.30	7.000	2.000	5.000
	PK107AMT	107	- 190	2 3 3'4 4'5 6	395.30	7.000	2.000	5.000
	PK108AMT	108	198	2 2'3 3'4 5 5'6	429.80	8.000	3.000	5.000
	PK109AMT	109	201	2 2'3 3'4 5'6 6'	429.80	8.000	3.000	5.000
	PK110AMT	110	196, 203	2 2'3 3'4 4'5 6'; 2 2'3 4 4'5 5'6	429.80	8.000	3.000	5.000
	PK111AMT	111	189	2 3 3'4 4'5 5'	395.30	7.000	1.000	6.000
	PK112AMT	112	195	2 2'3 3'4 4'5 6	429.80	8.000	3.000	5.000
	PK113AMT	113	208	2 2'3 3'4 5 5'6 6'	464.20	9.000	4.000	5.000
	PK114AMT	114	207	2 2'3 3'4 4'5 6 6'	464.20	9.000	4.000	5.000
	PK115AMT	115	194	2 2'3 3'4 4'5 5'	429.80	8.000	2.000	6.000
	PK116AMT	116	205	2 3 3'4 4'5 5'6	429.80	8.000	2.000	6.000
	PK117AMT	117	206	2 2'3 3'4 4'5 5'6	464.20	9.000	3.000	6.000
	PK118AMT	118	209	2 2'3 3'4 4'5 5'6 6'	498.60	10.000	4.000	6.000

Sources:

Northeast Analytical, Inc.

HydroQual, Inc.

Table D-1(b). Congener-specific information for calculating homolog distributions (reference database MOL_WT.DBF)

	Database		Congener										
	Peak	DB-1 Peak	BZ			1	DB-1 Peak	Homolog	Group Di	istribution			
	Label	Number	Number	Mono	Di	Tri	Tetra	Penta	Hexa	Hepta	Octa	Nona	Deca
Fields:	PEAKLABL	PEAK_NO	BZ_NO	MONO	DI	TRI	TETRA	PENTA	HEXA	HEPTA	OCTA	NONA	DECA
	PK1_AMT	1	0										
	PK2_AMT	2	1	1.000									
	PK3_AMT	3	2	1.000				÷					
	PK4_AMT	.4	3	1.000									
	PK5_AMT	5	4, 10		1.000								
	PK6_AMT	6	7, 9		1.000								
	PK7_AMT	7	6		1.000								
	PK8_AMT	8	5, 8		1.000								
	PK9_AMT	9	14		1.000								
	PK10_AMT	10	19			1.000							
	PK11_AMT	11	30			1.000							
	PK12_AMT	12	11		1.000								
	PK13_AMT	13	12, 13		1.000								
	PK14_AMT	14	15, 18		0.248	0.752							
	PK15_AMT	15	17			1.000							
	PK16_AMT	16	24, 27			1.000							
	PK17_AMT	17	16, 32			1.000							
	PK18_AMT	18	23			1.000							
	PK19_AMT	19	34, 54			0.700	0.300						
	PK20_AMT	20	29			1.000							
	PK21_AMT	21	26			1.000							
	PK22_AMT	22	25			1.000							
	PK23_AMT	23	31			1.000							
	PK24_AMT	24	28, 50			1.000							
	PK25_AMT	25	21, 33, 53			0.944	0.056						
	PK26_AMT	26	22, 51			0.966	0.034						
	PK27_AMT	27	45				1.000	4					
	PK28_AMT	28	36			1.000							
	PK29_AMT	29	46				1.000						
	PK30_AMT	30	39			1.000							

Table D-1(b). Congener-specific information for calculating homolog distributions (reference database MOL_WT.DBF)

	Database		Congener	-									
	Peak	DB-1 Peak	BZ				DB-1 Peak	Homolog	Group Di	stribution			
•	Label	Number	Number	Mono	Di	Tri	Tetra	Penta	Hexa	Hepta	Octa	Nona	Deca
Fields:	PEAKLABL	PEAK_NO	BZ_NO	MONO	DI	TRI	TETRA	PENTA	HEXA	HEPTA	OCTA	NONA	DECA
	PK31_AMT	31	52, 73				1.000						
	PK32_AMT	32	49				1.000						
	PK33_AMT	33	47				1.000						
	PK34_AMT	34	48, 75				1.000						
	PK35_AMT	35	62, 65				1.000						
	PK36_AMT	36	35			1.000							
	PK37_AMT	37	44, 104				1.000						
	PK38_AMT	38	37, 42, 59			0.570	0.430						
	PK39_AMT	39	64, 71		•		1.000				•		
	PK40_AMT	40	68				1.000						
	PK41_AMT	41	96				•	1.000					
	PK42_AMT	42	40				1.000						
	PK43_AMT	43	57, 103				0.800	0.200					
	PK44_AMT	44	67, 100				0.800	0.200					
	PK45_AMT	45	58, 63				1.000						
	PK46_AMT	46	74, 94				1.000						
	PK47_AMT	47	61, 70, 76				1.000						
	PK48_AMT	48	66, 93, 95				0.955	0.045					
	PK49_AMT	49	55, 91, 98				0.050	0.950					
	PK50_AMT	50	56, 60				1.000						
	PK51_AMT	51	84, 92, 155					1.000					
	PK52_AMT	52	89					1.000					
	PK53_AMT	53	90, 101					1.000					
	PK54_AMT	54	99					1.000					
	PK55_AMT	55	112, 119, 150)				1.000					
	PK56_AMT	56	83, 109					1.000					
	PK57_AMT	57	86, 97, 152					1.000					
	PK58_AMT	58 8	87, 111, 115					1.000					
	PK59_AMT	59	85, 116					1.000					
	PK60_AMT	60	136						1.000				

Table D-1(b). Congener-specific information for calculating homolog distributions (reference database MOL_WT.DBF)

	Database		Congener										
	Peak	DB-1 Peak	BZ			I	DB-1 Peak	Homolog	Group Di	stribution			
	Label	Number	Number	Mono	Di	Tri	Tetra	Penta	Hexa	Hepta	Octa	Nona	Deca
Field	s: PEAKLABL	PEAK_NO	BZ_NO	MONO	DI	TRI	TETRA	PENTA	HEXA	HEPTA	OCTA	NONA	DECA
	PK61_AMT	61	77, 110					1.000					· · · · · · · · · · · · · · · · · · ·
	PK62_AMT	62	154						1.000				
	PK63_AMT	63	82					1.000					
	PK64_AMT	64	151						1.000				
	PK65_AMT	65	124, 135					0.300	0.700				
	PK66_AMT	66	144						1.000				
	PK67_AMT	67	107, 108, 147					0.700	0.300				
	PK68_AMT	68	123					1.000					
	PK69_AMT	69	106, 118, 149					0.680	0.320				
	PK70_AMT	70	139, 140						1.000				
	PK71_AMT	71	114, 134, 143					0.380	0.620				
	PK72_AMT	72	122, 131, 133					0.700	0.300				
	PK73_AMT	73	146, 161						1.000				
	PK74_AMT	74	105, 132					0.380	0.620				
	PK75_AMT	75	153						1.000				
	PK76_AMT	76	168						1.000				
	PK77_AMT	77	141						1.000				
	PK78_AMT	78	179							1.000			
	PK79_AMT	79	130						1.000				
	PK80_AMT	80	1,37						1.000				
	PK81_AMT	81	176							1.000			
	PK82_AMT	• 82	138, 163						1.000				
	PK83_AMT	83	158						1.000				
	PK84_AMT	84	129						1.000				
	PK85_AMT	85	178							1.000			
	PK86_AMT	86	166						1.000				
	PK87_AMT	87								1.000			
	PK88_AMT	88								1.000			
	PK89_AMT	89							1.000				
	PK90_AMT	90								1.000			

Table D-1(b). Congener-specific information for calculating homolog distributions (reference database MOL_WT.DBF)

Database		Congener										•
Peak	DB-1 Peak	BZ			1	DB-1 Peak	Homolog	Group Di	stribution			
Label	Number	Number	Mono	Di	Tri	Tetra	Penta	Hexa	Hepta	Octa	Nona	Dec
Fields: PEAKLABL	PEAK_NO	BZ_NO	MONO	DI	TRI	TETRA	PENTA	HEXA	HEPTA	OCTA	NONA	DECA
PK91_AMT	91	167						1.000				
PK92_AMT	92	185							1.000			
PK93_AMT	93	174, 181							1.000			
PK94_AMT	94	177							1.000			
PK95_AMT	95	156, 171						0.380	0.620			
PK96_AMT	96	202								1.000		
PK97_AMT	97	157						1.000				
PK98_AMT	98	173							1.000			
PK99_AMT	99	200, 204								1.000		
PK100AMT	100	172, 192							1.000			
PK101AMT	101	197								1.000		
PK102AMT	102	180							1.000			
PK103AMT	103	193							1.000			
PK104AMT	104	191							1.000			
PK105AMT	105	199								1.000		
PK106AMT	106	170							1.000			
PK107AMT	107	190							1.000			
PK108AMT	108	198								1.000		
PK109AMT	109	201								1.000		
PK110AMT	110	196, 203								1.000		
PK111AMT	111	189							1.000			
PK112AMT	112	195								1.000		ē
PK113AMT	113	208									1.000	
PK114AMT	114	207									1.000	-
PK115AMT	115	194								1.000		
PK116AMT	116	205								1.000		
PK117AMT	117	206									1.000	
PK118AMT	118	209										1.00

Sources:

Northeast Analytical, Inc.

HydroQual, Inc.

310538

Laboratory	Approx.	Date	Core D	epth			C18 Data	a (ppm)		
Sample ID	River Mile	Collected	Start	End	BZ4_AMT	BZ10_AMT	BZ5_AMT	BZ8_AMT	BZ18_AMT	BZ15_AM
911718F	194.00	07/11/91	0.00	5.00	0.79	0.10	0.01	0.78	0.76	0.4
911719F	194.00	07/11/91	5.00	10.00	0.82	0.09	0.01	0.83	0.72	0.4
911720F	194.00	07/11/91	10.00	25.00	1.63	0.14	0.01	1.42	0.96	0.5
911778F	194.00	07/15/91	0.00	5.00	24.80	4.12	0.01	1.95	0.88	0.9
911779F	194.00	07/15/91	5.00	10.00	23.87	4.14	0.01	2.44	0.80	1.1
911780F	194.00	07/15/91	10.00	25.00	16.63	2.98	0.00	3.04	0.55	0.9
911943F	193.00	07/16/91	0.00	5.00	0.32	0.04	0.00	0.22	0.10	0.1
911944F	193.00	07/16/91	5.00	10.00	0.11	0.02	0.00	0.10	0.03	0.0
911945F	193.00	07/16/91	10.00	25.00	0.11	0.01	0.00	0.02	0.01	0.0
911924F	193.00	07/17/91	0.00	5.00	1.39	0.32	0.00	0.54	0.25	0.5
911925F	193.00	07/17/91	5.00	10.00	4.07	0.81	0.00	1.13	0.41	0.8
911926F	193.00	07/17/91	10.00	25.00	30.92	4.95	0.01	4.61	0.95	1.6
912182F	193.00	07/24/91	0.00	5.00	1.44	0.23	0.01	1.03	0.60	0.5
912333F	193.00	07/26/91	0.00	5.00	2.24	0.52	0.00	1.61	0.49	0.8
912334F	193.00	07/26/91	5.00	10.00	15.06	2.62	0.01	4.08	1.05	1.6
912335F	193.00	07/26/91	10.00	25.00	54.34	8.56	0.02	8.53	1.83	2.9
912491F	192.00	07/30/91	0.00	5.00	4.54	0.73	0.00	1.33	0.47	0.7
912492F	192.00	07/30/91	5.00	10.00	15.29	2.44	0.01	2.17	0.71	1.0
912493F	192.00	07/30/91	10.00	25.00	10.70	1.69	0.01	2.41	0.68	0.9
912676F	192.00	07/31/91	0.00	5.00	2.10	0.32	0.00	1.99	0.38	1.0
912804F	192.00	08/02/91	0.00	5.00	10.44	1.94	0.01	3.94	1.34	2.0
912805F	192.00	08/02/91	5.00	10.00	27.09	4.39	0.02	6.59	1.59	2.6
912806F	192.00	08/02/91	10.00	25.00	59.69	9.45	0.01	10.72	3.51	4.8
913273F	191.00	08/07/91	0.00	5.00	40.55	5.97	0.01	5.65	1.23	1.6
913393F	193.00	08/12/91	0.00	5.00	1.94	0.21	0.01	1.68	0.84	0.5
913680F	191.00	08/15/91	0.00	5.00	0.99	0.15	0.00	0.98	0.35	0.4
913850F	190.00	08/16/91	0.00	5.00	2.96	0.44	0.00	1.57	0.45	0.8
914118F	190.00	08/21/91	0.00	5.00	9.95	1.61	0.01	3.74	0.98	1.3
914119F	190.00	08/21/91	5.00	10.00	53.39	8.28	0.02	8.88	2.36	3.0
914120F	190.00	08/21/91	10.00	25.00	103.23	14.45	0.03	18.71	3.18	3.4
914545F	189.00	08/27/91	0.00	5.00	1.22	0.29	0.00	0.60	0.26	0.3
914546F	189.00	08/27/91	5.00	10.00	13.85	2.16	0.01	3.27	0.94	1.3
914547F	189.00	08/27/91	10.00	25.00	61.28	8.60	0.01	7.96	1.64	1.8
						2.22				***

189.00

08/28/91

0.00

5.00

914559F

0.79

0.00

1.58

4.78

0.87

0.60

(J
ŀ		1
(_)
t	ĵ	1
•	•	•
	,	

Laboratory	Approx.	Date	Core D	epth			C18 Data	a (ppm)		· · · · · · · · · · · · · · · · · · ·
Sample ID	River Mile	Collected	Start	End	BZ4_AMT	BZ10_AMT	BZ5_AMT	BZ8_AMT	BZ18_AMT	BZ15_AM
914758F	189.00	08/29/91	0.00	5.00	0.19	0.03	0.00	0.12	0.06	0.0
914812F	189.00	08/30/91	0.00	5.00	3.63	0.51	0.00	1.93	0.69	1.0
950274F	191.40	01/18/95			0.00	0.00	0.44	2.13	4.18	0.0
953879F	192.40	05/11/95		İ	0.00	0.00	0.38	1.30	3.00	0.0
955225F	193.40	06/22/95		•	0.00	0.00	0.55	2.24	4.30	0.0
957979F	194.40	10/03/95			0.95	0.46	0.37	1.31	5.27	0.0
9603897	196.90	07/17/96			20.70	1.76	1.86	46.70	78.70	6.4
9604293	196.90	08/07/96			1.93	1.10	0.44	2.74	5.61	0.0
9604954	196.90	09/10/96			20.40	1.44	1.02	38.10	105.50	19.1
9604179	194.40	07/31/96		•	0.00	0.00	0.00	0.36	2.07	0.0
961008F	189.00	03/06/96		•	19.40	4.64	0.47	3.77	3.46	0.0
9601648	189.00	04/24/96		•	15.80	4.22	ა.64	2.58	2.56	0.0
9603292	189.00	06/26/96			48.30	13.40	0.50	5.69	5.05	0.0
9603892	189.00	07/17/96		į	27.20	8.16	0.33	2.93	1.79	0.0
9605127	189.00	09/18/96		į	20.50	6.84	0.51	2.23	2.24	0.0
9605321	189.00	09/25/96			24.30	6.28	0.31	1.70	0.95	0.0
9605611	189.00	10/16/96			23.30	7.62	0.25	1.68	0.94	0.0
9605873	189.00	10/29/96		į	40.90	11.50	0.49	4.60	2.85	0.0
911287F	194.40	06/07/91			6.02	1.20	0.71	2.26	2.17	0.
911289F	189.00	06/07/91	•	i	23.94	3.51	0.87	3.84	4.39	0.0
911682F	194.40	07/11/91		i	5.33	1.20	1.06	3.85	5.16	0.0
911684F	189.00	07/11/91		į	27.27	6.76	0.86	4.46	6.30	0.
912162F	194.40	07/25/91		i.	5.65	1.16	0.93	2.11	3.46	0.0
912164F	189.00	07/25/91		į	23.37	6.31	1.14	3.82	7.62	0.0
922022F	194.40	06/04/92		i	4.29	0.78	0.64	3.62	5,54	0.0
922015F	189.00	06/04/92		i	26.51	5.13	1.47	5.35	5.73	0.0
923464F	194.40	08/19/92		i	35.43	2.97	1.11	34.31	34.29	6.
923469F	189.00	08/19/92		į	75.48	11.14	1.24	49.10	50.51	12.:
924687F	194.40	10/15/92			5.95	1.66	0.79	6.03	8.24	0.
924691F	189.00	10/15/92			44.04	8.58	1.06	8.86	12.31	0.
935526F	194.40	09/29/93		į	0.00	0.00	0.56	2.32	3.82	0.0
935527F	189.00	09/29/93			37.00	9.26	0.90	5.01	4.54	0.
944734F	194.40	08/24/94		İ	0.00	0.00	0.00	0.00	2.34	0.0
944736F	189.00	08/24/94		į	7.44	2.20	0.55	4.79	7.60	0.0

Table D-2. C18 column confirmation data (reference database C18_DATA.DBF).

_	Laboratory	Approx.	Date	Core D	epth			C18 Data	a (ppm)		
	Sample ID	River Mile	Collected	Start	End	BZ4_AMT	BZ10_AMT	BZ5_AMT	BZ8_AMT	BZ18_AMT	BZ15_AMT
_	945544F	194.40	09/07/94			0.00	0.00	0.49	2.65	5.91	0.00
	945547F	189.00	09/07/94			12.46	2.61	0.76	9.35	16.60	4.07
	954536F	194.40	06/07/95			3.60	1.43	0.45	1.69	4.70	0.00
	954537F	189.00	06/07/95		į	52.40	12.87	0.46	5.29	7.08	0.00
	957192F	194.40	08/31/95			0.00	0.00	0.37	1.62	1.71	0.00
_	957193F	189.00	08/31/95			29.21	8.32	0.49	3.17	5.37	0.00

Source: HydroQual (1997)

Table D-3. Sediment and porewater records analyzed using Green Bay mixed Aroclor standard only

(reference database GBS_ONLY.DBF).

Database	Laboratory	ONLY.DBF) Approx.		Core I	Depth		Total PCBs
ID	Sample ID			Start		Sample Description	(ppm)
1	911718	194.00		0.0		8A-C1-(0-5)	16.1
2	911719	194.00		5.0		8A-C1-(5-10)	15.3
3	911720	194.00	i	•		8A-C1-(10-25)	15.16
.7	911709	194.00		0.0		8A-C2-(0-5)	15.6
8	911710	194.00		5.0		8A-C2-(5-10)	28.08
9	911711	194.00		10.0		8A-C2-(10-25)	13.86
13	911714	194.00		0.0		8A-C2-GRAB	12.38
14	911778	194.00		0.0		8A-F1-(0-5)	45.41
15	911779	194.00		5.0		8A-F1-(5-10)	49.85
16	911780	194.00		10.0		8A-F1-(10-25)	35.11
20	911787	194.00		0.0		8A-F2-(0-5)	20.49
21	911788	194.00		5.0		8A-F2-(5-10)	16.86
22	911789	194.00				8A-F2-(10-25)	15.54
38	911943	193.00		0.0		8B-C1-(0-5)	2.61
39	911944	193.00	07/16/91	5.0		8B-C1-(5-10)	0.98
40	911945	193.00	07/16/91			8B-C1-(10-25)	0.31
26	911871	193.00	07/17/91			8B-F1-(0-5)	6.51
27	911872	193.00				8B-F1-(5-10)	8.17
28	911873	193.00	07/17/91			8B-F1-(10-25)	1.88
32	911937	193.00				8B-F2-(0-5)	6.81
33	911938	193.00	07/17/91	5.0		8B-F2-(5-10)	21.3
34	911939	193.00		10.0		8B-F2-(10-25)	7.5
42	911924	193.00	•	0.0		8B-F3-(0-5)	8.01
43	911925	193.00	•			8B-F3-(5-10)	14.07
44	911926	193.00	07/17/91	10.0		8B-F3-(10-25)	65.38
48	912060	193.00	:	0.0		8B-F4-(0-5)	9.43
49	912061	193.00	•	5.0		8B-F4-(5-10)	12.43
50	912062	193.00	07/18/91	10.0		8B-F4-(10-25)	12.79
54	912182	193.00	07/24/91	0.0		8B-F5-(0-5)	9.72
55	912183	193.00	07/24/91	5.0		8B-F5-(5-10)	16.58
56	912184	193.00		10.0		8B-F5-(10-25)	17.33
60	912231	193.00	07/25/91	0.0		8B-F6-(0-5)	9.87
61	912232	193.00	07/25/91	5.0		8B-F6-(5-10)	24.70
62	912233	193.00	07/25/91	10.0		8B-F6-(10-25)	31.15
66	912239	193.00	07/25/91	0.0		8B-C2-(0-5)	3.59
67	912240	193.00	07/25/91	5.0	1	8B-C2-(5-10)	2.81
68	912241	193.00	07/25/91	10.0		8B-C2-(10-25)	13.67
10	911715F	194.00	07/12/91	0.0		8A-C2(0-5)PW	1.57
17	911781F	194.00	07/15/91	0.0		8A-F1-(0-5)PW	11.99
18	911782F	194.00	07/15/91	5.0		8A-F1-(5-10)PW	10.25
19	911783F	194.00	07/15/91	10.0		8A-F1-(10-25)PW	43.79
23	911790F	194.00	07/16/91	0.0		8A-F2-(0-5)PW	6.13
24	911791F	194.00	07/16/91	5.0		8A-F2-(5-10)PW	5.7
25	911791F	194.00	07/16/91	10.0		8A-F2-(10-25)PW	4.68
29	911874F	193.00	07/17/91	0.0		8B-F1-(0-5)PW	3.82
35	911940F	193.00	07/18/91	0.0		8B-F2(0-5)PW	5.29
37	911942F	193.00	07/18/91	10.0		8B-F2(10-25)PW	9.03
41	911946F	193.00	07/18/91	0.0		8B-C1(0-5)PW	4.5
45	911927F	193.00	07/19/91	0.0		8B-F3-(0-5)PW	2.97
46	911927F	193.00	:	_		8B-F3-(5-10)PW	3.60

Table D-3. Sediment and porewater records analyzed using Green Bay mixed Aroclor standard only

(reference database GBS ONLY.DBF).

Database	atabase GBS Laboratory	Approx.		Core I)enth		Total PCBs
ID	Sample ID	River Mile		**********		Sample Description	(ppm)
47	911929F	193.00				8B-F3(10-25)PW	48.0
51	911929F 912063F	193.00		0.0		8B-F4(0-5)PW	3.3
52	912064F	193.00		5.0		8B-F4(5-10)PW	8.3
53	912065F	193.00	07/22/91	10.0		8B-F4(10-25)PW	5.1
57	912185F	193.00	07/24/91	0.0		8B-F5(0-5)PW	4.3
57 59	912187F	193.00		10.0		8B-F5(10-25)PW	3.1
63	912167F	193.00	07/25/91	0.0		8B-F6(0-5)PW	4.9
64	912234F	193.00		5.0		8B-F6(5-10)PW	12.6
65	912236F	193.00	07/25/91	10.0		8B-F6(10-25)PW	21.5
69		193.00	07/25/91	0.0		8B-C2(0-5)PW	9.2
	912243F	193.00	07/25/91	10.0		8B-C2(10-25)PW	20.1
71 75	912245F			0.0		8B-F7(0-5)PW	5
75	912336F	193.00	07/26/91 07/26/91	•			4.3
76	912337F	193.00		5.0		8B-F7(5-10)PW	26.6
77	912338F	193.00		10.0		8B-F7(10-25)PW	0.8
81	912348F	193.00		0.0		8B-C3(0-5)PW	0.7
83	912350F	193.00		10.0		8B-C3(10-25)PW	5.3
88	912500F	192.00		0.0		8C-F1-(0-5)PW	11.8
94	912486F	192.00	07/31/91	0.0		8C-F2(0-5)PW	5.4
95	912487F	192.00		5.0		8C-F2(5-10)PW	5.2
96	912488F	192.00		10.0		8C-F2(10-25)PW	19.5
100	912494F	192.00		0.0		8C-C1(0-5)PW	5.1
120	912673F	192.00	08/02/91	0.0		8C-F5(0-5)PW	15.3
121	912674F	192.00	08/02/91	5.0		8C-F5(5-10)PW	21.5
122	912675F	192.00		10.0		8C-F5(10-25)PW	41.0
120.1	912773F	192.00	08/02/91	0.0		8C-F5-(0-5) PW #120	5.2
122.1	912775F	192.00	08/02/91	10.0		8C-F5-(10-25)PW #122	10.0
126	912807F	192.00	08/05/91	0.0		8C-F6-(0-5)PW #126	4.7
139	913116F	191.00	08/07/91	5.0		8D-F1-(5-10)PW #139	14.4
147	913278F	191.00		10.0		8D-F2-(10-25)PW #147	38.4
330	915402F	184.80	09/12/91	0.0		6B-F2(0-5)-330	19.5
331	915403F	184.80		5.0		6B-F2(5-10)-331	23.2
332	915404F	184.80		10.0		6B-F2(10-25)332	25.7
358	915760F	178.50	09/20/91	0.0		5EF-F1(0-5)358	2.5
359	915761F	178.50	09/20/91	5.0		5EF-F1(5-10)359	8.3
360	915762F	178.50	09/20/91	10.0		5EFF1(10-25)360	9.7
377	915958F	176.50	09/24/91			5GH-F1(0-5)-377	1.3
378	915959F	176.50		•		5GH-F1(5-10)378	1.8
379	915960F	176.50		10.0		5GHF1(10-25)379	10.3
390	916129F	174.50		0.0		5IJ-F1(0-5)390	2.7
391	916130F	174.50		5.0		5IJ-F1(5-10)391	4.9
392	916131F	174.50	09/26/91	10.0		5IJF1(10-25)392	18.1
81791	9605675	194.90	09/18/96		0.0		2.5
81792	9605676	194.90			0.0		3.4
81793	9605677	194.90			0.0		2.1
81794	9605678	194.90	09/18/96	0.0	0.0		4.4
81795	9605679	194.90	09/18/96	0.0	0.0		6.0
81796	9605680	194.90	09/19/96	0.0	0.0	6	2.8
81797	9605681	194.90		0.0	0.0	7	5.3
81798	9605682	194.90			0.0		2.5
81799	9605683	194.90			0.0		8.6

Table D-3. Sediment and porewater records analyzed using Green Bay mixed Aroclor standard only

(reference database GBS_ONLY.DBF).

_	<u>(reference d</u>	atabase GBS	ONLY.DBF)					
	Database	Laboratory	Approx.		Core I			Total PCBs
_	ID	Sample ID	River Mile				Sample Description	(ppm)
	81800	9605684	194.90		:	0.0	•	6.58
	81801	9605685	194.90		0.0	0.0	t .	2.85
	81802	9605686	194.90	09/20/96	0.0	0.0		3.22
	81803	9605687	194.90	09/20/96	0.0	0.0	i e	3.38
	81804	9605688	194.90	09/20/96	0.0	0.0	}	1.77
	81805	9605689	194.90	09/20/96	0.0	0.0	15	4.24
	81806	9605690	194.90	09/20/96	0.0	0.0	ξ	3.74
	81807	9605691	194.90	09/20/96	0.0	0.0	§	4.89
	81808	9605692	194.20			0.0	?	2.67
	81809	9605693	194.20	09/18/96		0.0	E .	5.04
	81810	9605694	194.20	09/18/96	0.0	0.0	§ -	3.19
	81811	9605695	194.20	09/18/96	0.0	0.0	•	2.71
	81812	9605696	194.20	09/18/96	0.0	0.0	}	4.48
	81813	9605697	194.20	09/18/96	0.0	0.0	23	5.15
	81814	9605698	194.20	09/19/96	0.0	0.0	24	2.96
	81815	9605699	194.20	09/19/96	0.0	0.0	25	3.54
	81816	9605700	194.20	09/19/96	0.0	0.0	26	4.70
	81817	9605701	194.20	09/19/96	0.0	0.0	27	18.60
	81818	9605702	194.20	09/19/96	0.0	0.0	28	4.72
	81819	9605703	194.20	09/19/96	0.0	0.0	29	4.46
	81820	9605704	194.20	09/20/96	0.0	0.0	30	2.44
	81821	9605705	194.20	09/20/96	0.0	0.0	31	2.30
	81822	9605706	194.20	09/20/96	0.0	0.0	32	2.37
	81823	9605707	194.20	09/20/96	0.0	0.0	33	2.56
	81824	9605708	194.20	09/20/96	0.0	0.0	34	2.87
	81850	9605709	194.20	09/20/96	0.0	0.0	35	7.40
	81851	9605710	0.00	09/23/96	0.0	0.0	38	6.44
	81852	9605711	0.00	09/23/96	0.0	0.0	39	2.34
	81853	9605712	0.00	09/23/96	0.0	0.0	40	2.41
	81854	9605713	0.00	09/23/96	0.0	0.0	41	31.95
	81855	9605714	0.00	09/23/96	0.0	0.0	42	27.15
	81856	9605715	0.00	09/23/96	0.0	0.0	43	12.62
	81857	9605716	0.00	09/23/96	0.0	0.0	44	6.89
	81858	9605717	0.00	09/23/96	0.0	0.0	45	8.72
	81859	9605718	0.00	09/23/96	0.0	0.0	46	6.07
	81860	9605719	0.00	09/23/96	0.0	0.0	47	2.80
	81861	9605720	0.00	09/23/96	0.0	0.0		3.79
	81862	9605721	0.00	09/23/96	0.0	0.0		5.74
	81863	9605722	0.00	09/23/96	0.0	0.0		5.97
	81864	9605723	0.00	09/23/96	0.0	0.0		5.73
	81865	9605724	194.90	09/18/96	0.0	0.0		3.06
	81866	9605725	194.90	09/18/96	0.0	0.0	•	2.98
	81867	9605726	194.90	09/19/96	0.0	0.0		1.37
	81868	9605727	194.90	09/20/96	0.0	0.0		2.81
	81869	9605728	194.20	09/18/96	0.0	0.0		2.58
	81870	9605729	194.20	09/20/96	0.0	0.0		6.95
	81871	9605730	0.00	09/23/96	0.0	0.0		2.42
	81872	9605731	0.00	09/23/96	0.0	0.0		5.84
	81992	9701419	194.20	04/08/97	0.0	,	R.I. EAST CHANN	1.29
	81993	9701420	194.20	04/08/97	0.0		R.I. WEST CHANN	11.90
		- · - · · · · · ·	;		▼		·	,

Table D-3. Sediment and porewater records analyzed using Green Bay mixed Aroclor standard only (reference database GBS_ONLY.DBF).

Database	Laboratory	Approx.	Date	Core [epth		Total PCBs
ID	Sample ID	River Mile	Collected	Start	End	Sample Description	(ppm)
81994	9701421	194.20	04/09/97	0.0	0.0	R.I. WEST CHANN	4.53
81995	9701071	0.00	03/20/97	0.0	0.0	36	5.47
81996	9701072	0.00	03/20/97	0.0	0.0	37	5.14
90181	935214F	0.00	08/20/93	0.0	0.0	HR-2	1856.84
91006	923483F	0.00	08/19/92	0.0	0.0	002 OUTFALL BEDDING	2843.20

Note:

Sample descriptions for 1991 Sediment Survey samples indicate river reach (5 through 8), subsection of reach (A-J), sediment texture (F=fine, C=coarse), sample depth, and PW if sample is porewater. Samples numbered 1 through 60 were collected for the 1996 Particle Transport Study. Samples R.I. EAST CHANN and R.I. WEST CHANN are bedioad samples collected during the 1997 High Flow Monitoring. Samples HR-2 and 002 OUTFALL BEDDING were collected in the Bakers Falls area.

Source: HydroQual (1997)

APPENDIX E

Northeast Analytical Laboratories letter of August 27, 1997

NORTHEAST ANALYTICAL _________

ENVIRONMENTAL LAB SERVICES

301 Nott Street, Schenectady, NY 12305 (518) 346-4592 • FAX (518) 381-6055

August 27, 1997

Mr. William Ayling O'Brien & Gere Engineers 5000 Brittonfield Parkway P.O. Box 4873, Suite 300 Syracuse, NY 13221

Re: Update of Weight Percent Distribution for Congener Specific PCB Analysis associated with General Electric's Hudson River Program. Corrections to PCB weight percent distributions as reported in "Development of Corrections for Analytical Biases in the 1991-1997 GE Hudson River PCB Database," June 1997, by HydroQual, Inc.

Mr. Ayling:

Starting on September 1, 1997, Northeast Analytical, Inc. will be using a new set of weight percent values for all congener specific PCB measurements performed by the Green Bay Mass Balance Study Protocol (EPA 1987) covered by Northeast Analytical, Inc.'s Standard Operating Procedures NEA-608CAP. This will entail changing the PCB mixed Aroclor calibration standard values for each reported DB-1 peak with new updated concentration values.

The new weight percent values to be used were issued by Dr. Michael D. Mullin (USEPA) in a letter dated November 21, 1994 to Dr. George Frame (General Electric Corporate R&D), which supplied values for a commercially available Aroclor source.

Attached is a listing of currently used weight percent values and the new weight percent values based on the DB-1 capillary peak number assignment. Also listed are concentration values for each reportable peak and the new peak amounts calculated from the new weight % values (Mullin 1994).

Mr. William Ayling August 27, 1997 Page 2

All samples received at the laboratory for PCB analysis by the above referenced method after September 1, 1997 will be quantified by the new calibration values. If you have any questions concerning this change in the PCB quantitation profile, please contact me to discuss them.

Sincerely,

Northeast Analytical, Inc.

Robert E. Wagner Laboratory Director

S:\TEXT\CORR\REW\970825A.OBG REW\JMP

cc: Dr. Jim Rhea, Ph.D., HydroQual, Inc.

Dr. John Haggard, Ph.D., General Electric

WEIGHT PERCENT DISTRIBUTIONS FOR "GREEN BAY STANDARD" COMPRISING PCB FROM AROCLORS 1232, 1248, 1262 IN THE RATIO OF 25:18:18

August 25, 1997 RE Wagner

Provided by: Northeast Analytical, Inc. 301 Nott St., Schenectady, NY 12305
Phone: (518) 346-4592 Fax: (518) 381-6055 E-mail: nelab@aol.com

FILE; S:\FORMS\DB1WT%97.WK4

DB-1	CURRENT PEAK AMOUNT	CURRENT WEIGHT %	NEW PEAK AMOUNT	NEW WEIGHT %	NEW PEAK AMOUNT	
PEAK#	SWACKHAMER 1987 (1)	SWACKHAMER 1987 (1)	MULLIN 1994 (2)	MULLIN 1994 (2)	NORTHEAST ANALYTICAL (EFFECTIVE 09/1/97) (ng/mL)	
ASSIGNMENT	(ng/mL)		(ug/mL)	(commercial Arociors)		
001				8		
002	430	6.76	12	6.99	445.14	
003			, .			
004	260	4.09	7.0	4.08	259.67	
005	28	0.44	3.4	1.98	126.12	
006	22	0.35	1.2	0.70	44.51	
007	42	0.66	1.9	1.11	70.48	
008	500	7.86	14.0	8.16	519.33	
009			•••			
010	10	0.16	0.28	0.16	10.39	
011					·	
012			•		•	
013	9.2	0.14	0.267	0.16	9.90	
014	130	2.04	3.7	2.16	137.25	
015	74	1.16	3.7	2.16	137.25	
016	8.8	0.14	0.26	0.15	9.64	
017	131	2.06	3.9	2.27	144.67	
018			-	2.07		
019	가는 함께 가는 사람이 있다.					
020	1.8	0.03	0.053	0.03	1.97	
021	23	0.36	0.72	0.42	26.71	
022	10	0.16	0.32	0.19	11.87	
023	166	2.61	4.123	2.40	152.94	
024	214	3.36	5.277	3.08	195.75	
025	168.5	2.65	3.972	2.32	147.34	
026	116.7	1.83	2.9	1.69	107.58	
027	27	0.42	0.89	0.52	33.01	
028	· · · · · · · · · · · · · · · · · · ·		0.07			
029	14	0.22	0.40	0.23	14.84	
030	• • • • • • • • • • • • • • • • • • • •	V.22	0.40	0.23	17.07	
031	129.1	2.03	4.77	2.78	176.94	
032	90	1.41	2.3	1.34	85.32	
033	50	0.79	1.0	0.58	83.32 37.10	
034	40	0.63	1.0	* ************************************	NOSE SELECTION (ELIC), INCOMESSOR SENSON PROFESSOR SENSON PROFESSOR SELECTION PROFESSOR SELECTION PROFESSOR SENSON SELECTION S	
035	40	0.03	1.0	0.58	37.10	
036	•	:	!			
037	150	2.36	4.3		ren er	
037	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 1		2.51	159.51	
039	88	1.38	2.6	1.52	96.45	
UJY	163	2.56	4.1	2.39	152.09	

DB-1 PEAK#	CURRENT PEAK AMOUNT SWACKHAMER 1987 (1)	CURRENT WEIGHT % SWACKHAMER 1987 (1)	NEW PEAK AMOUNT MULLIN 1994 (2)	NEW WEIGHT % MULLIN 1994 (2)	NEW PEAK AMOUNT NORTHEAST ANALYTICAL	
ASSIGNMENT	(ng/mL)		(ug/mL)	(commercial Aroctors)	(EFFECTIVE 09/1/97) (mg/mL)	
040		i	•		. '	
041			!		·	
042	33	0.52	0.94	0.55	34.87	
043						
044	5	0.08	0.11	0.06	4.08	
045	7.4	0.12	0.21	0.12	7.79	
046	81	1.27	1.9	1.11	70.48	
047	210	3.30	3.4	1.98	126.12	
048	272	4.27	7.2	4.20	267.08	
049	14	0.22	0.51	0.30	18.92	
050	180	2.83	3.5	2.04	129.83	
051	43	0.68	1.8	∞1.05	-66.77	
052	. 3	0.05	0.10	0.06	3.71	
053	48	0.75	1.8	1.05	66.77	
054	23	0.36	0.74	0.43	27.45	
055	1.8	0.03	0.028	0.02	1.04	
056	3.6	0.06	0.15	0.09	.5.56	
057	19	0.30	0.56	0.33	20.77	
058	33.2	0.52	1.16	0.68	43.03	
059	21	0.33	0.70	0.41	25.97	
060	14	0.22	0.75	0.44	27.82	
061	71	1.12	2.13	1.24	79.01	
062			•			
063	13	0.20	0.44	0.26	16.32	
064	57	0.90	1.7	0.99	63.06	
065	22	0.35	0.29	0.17	10.76	
066	2.23	0.04	0.60	0.35	22.26	
067	3.3	0.05	0.13	0.08	4.82	
068						
069	145	2.28	4.0	2.33	148.38	
070		į				
071	8.5	0.13	0.202	0.12	7.49	
072	0.91	0.01	0.029	0.02	1.08	
073	16	0.25	0.39	0.23	14.47	
074	68.04	1.07	1.355	0.79	50.26	
075	147.96	2.32	2.945	1.72	109.25	
076						
077	52	0.82	1.7	0.99	63.06	
078 (3)	54.6	0.86	1.46	0.85	54.16	
079	2.5	0.04	0.075	0.04	2.78	
080	13.88	0.22	0.26	0.15	9.64	
081 no	peak 81, combined and reported w	vith peak 80				
082	98	1.54	2.7	1.57	100.16	
083	12	0.19	0.25	0.15	9.27	
084	3	0.05	0.013	0.01	0.48	

DB-1 PEAK # ASSIGNMENT	CURRENT PEAK AMOUNT SWACKHAMER 1987 (1) (ng/mL)	CURRENT WEIGHT % SWACKHAMER 1987 (1)	NEW PEAK AMOUNT MULLIN 1994 (2) (ug/mL)	NEW WEIGHT % MULLIN 1994 (2) (commercial Aroclors)	NEW PEAK AMOUNT NORTHEAST ANALYTICAL (EFFECTIVE 09/1/97) (ng/mL)
085	34	0.53	1.1	0.64	40.80
086					
087	6	0.09	. 0.2	0.12	7.42
088	150	2.36	3.6	2.10	133.54
089	4.7	0.07	0.10	0.06	3.71
090	77	1.21	1.7	0.99	63.06
091	1.1	0.02	0.049	0.03	1.82
092	22	0.35	0.47	0.27	17.43
093	110	1.73	3.2	1.87	118.70
094	57	0.90	1.7	0.99	63.06
095	36.9	0.58	0.79	0.46	29.31
096	3.31	0.05	0.066	0.04	2.45
097					
098	1.273	0.02	0.038	0.02	1.41
099	20.697	0.33	0.39	0.23	14.47
100	19.2	0.30	0.56	0.33	20.77
101	2.18	0.03	0.11	0.06	4.08
102	240	3.77	6.1	3.56	226.28
103	14	0.22	0.42	0.24	15.58
104	4.5	0.07	0.12	0.07	4.45
105	10	0.16	.0.43	0.25	15.95
106	91.1	1.43	1.280	0.75	47.48
107	29.9	0.47	0.420	0.24	15.58
108	6.7	0.11	0.12	0.07	4.45
109	150	2.36	4.2	2.45	155.80
110	170	2.67	4.3	2.51	159.51
111	1.8	0.03	0.040	0.02	1.48
112	55.9	0.88	0.553	0.32	20.51
113	24.9	0.39	0.247	0.14	9.16
114	4.8	0.08	0.093	0.05	3.45
115	69	1.08	1.8	1.05	66.77
116	4	0.06	0.11	0.06	4.08
117	42	0.66	0.68	0.40	25.22
118	0.95	0.01	0.012	0.01	0.45
TOTAL	6363.93	100	171.557	100	6363.93

⁽¹⁾ Weight percent distributions obtained from "Deborah L. Swackhamer, Quality Assurance Plan, Green Bay Mass Balance Study, I. PCBs and Dieldrin U.S. EPA Great Lakes National Program Office, Final Draft, Quality Assurance Coordinator, Field and Analytical Methods Committee, December 11, 19

⁽²⁾ Weight percent disributions provided by Michael D. Mullin/LLRS to George M. Frame/GE CRD in a letter dated November 21, 1994. New reference standard solution prepared from a commercial source.

⁽³⁾ Peak #78, which contains PCB congener IUPAC 179 was not reported by Mullins in either the 1987 or 1994 weight percent listing. The weight perce used for peak #78 is from data published in "Comprehensive, Quantitative, Congener-Specific Analysis of Eight Aroclors and Complete PCB Congener on DB-1 Capillary GC Columns." George M. Frame et. al., Chemosphere, Vol. 33, No. 4, pp. 603-623, 1996.