

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION Trenton, New Jersey

Preliminary Report:

REMEDIAL INVESTIGATION / FEASIBILITY STUDY COMBE FILL SOUTH LANDFILL Volume II Appendices

February 1986

LAWLER, MATUSKY & SKELLY ENGINEERS

as Prime Contractor

in Association with

R.E. WRIGHT ASSOCIATES, INC.

#455-102

NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION TRENTON, NEW JERSEY

_

PRELIMINARY REPORT

REMEDIAL INVESTIGATION/FEASIBILITY STUDY COMBE FILL SOUTH LANDFILL

VOLUME II APPENDICES

February 1986

LAWLER, MATUSKY & SKELLY ENGINEERS as Prime Contractor in Association with R.E. WRIGHT ASSOCIATES, INC.

302258

÷

Project No. 455-102

.

APPENDICES

TABLE OF CONTENTS

Appendix	Title	
A	Air Quality Modeling at Combe Fill South Landfill RI	/FS
В	Borehole Geophysical Investigation, Geophysical Well Logs D-3, D-5, D-6, and D-7 April 1985	
С	Memo on Discrepancies in Monitoring Well Designation Combe Fill South Landfill	s on
D .	Memorandum from Dave Kaplan and John Trela of NJDEP Haig Kasabach of NJDEP, 14 April 1982	to
E	Soil Boring/Rock Coring Geologic Logs (SB-Series Wel	ls)
F-1	Geologic Well Logs for Deep Bedrock Monitoring Wells	
F-2	Geologic Well Logs for Shallow Monitoring Wells	
G	Test Pit Construction Procedures and Logs	
н	Results of Sieve and Hydrometer Testing on Selected Samples	Soil
Ι	Health and Safety Monitoring Reports	
J	Combe Fill South Landfill Hand Augered Soil Samples, Soil Classification Sheets	
К	Combe Fill South Landfill, Report on Electromagnetic Survey, August 1982 by NJDEP	
L	Report to Chester and Washington Townships on the Results of the Water Quality Testing Program at the Combe Fill Landfill by Upper Raritan Watershed Association, May 24, 1981	
Μ	Other Potential Sources of Environmental Contaminati within 5 mi radius of Combe Fill South	on
N	Supplement to Landfill Report: <u>Radioactivity</u> by Upp Raritan Watershed Association	er
0	Memo Concerning Site Geology, Mark Germine (NJDEP), 7/21/82	
n. Popp	Pumping Test Data	302 259

ند.

Lawler, Matusky 🖉 Skelly Engineers

APPENDICES

TABLE OF CONTENTS (Continued)

Appendix	Title
Q	Slug Test Analyses
R	Manufacture/Use, Organic Chemicals
S	Manufacture/Use, Inorganic Chemicals
Т	Characterization of Organic Compounds at Combe Fill South RI/FS
U	Characterization of Inorganic Compounds at Combe Fill South RI/FS
۷	Chemicals in Groundwater at Combe Fill South
W	Chemicals in Potable Water at Combe Fill South Landfill
X	Chemicals in Leachate at Combe Fill South Landfill
Y	Chemicals in Surface Water at Combe Fill South Landfill
Z	Chemicals in Air at Combe Fill South Landfill
AA	Annotated Site Chronology, Combe Fill South Landfill
BB	Chronology of Environmental Sampling In and Around Site, Combe Fill South Landfill
CC	Chemical Analyses
DD	Public Health Assessment Worksheets

302 %

I

302260

Lawler, Matusky 😤 Skelly Engineers

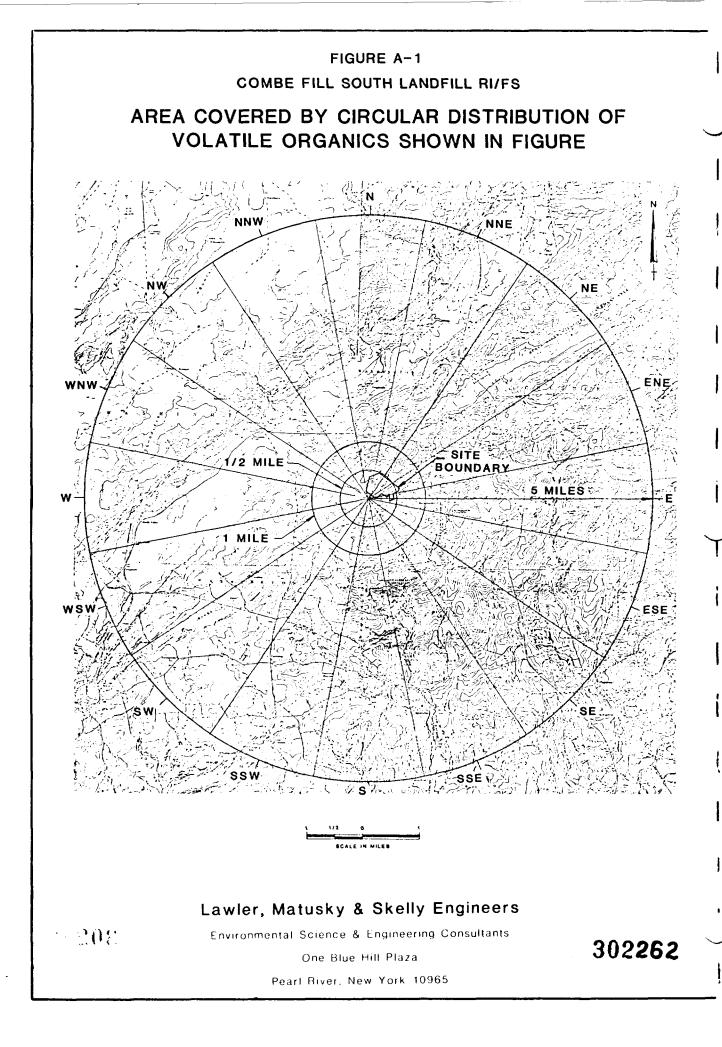
APPENDIX A

AIR QUALITY MODELING FOR COMBE FILL SOUTH LANDFILL RI/FS

Introduction

The Industrial Source Complex Long-term (ISCLT) model developed by Bowers, Bjorklund and Cheney of H.E. Cramer Company, Inc. was used to calculate off-site concentrations of total volatile organics emanating from Combe Fill South landfill. The ISCLT model calculates ground level, average concentrations of consititutents at specified distances or locations from an air emission source.

Program Options


Annual average, ground-level concentrations are calculated for a polar coordinate grid at radii of 0.5, 1.0, and 5.0 miles, where the center of the polar coordinate grid is positioned at the southwest corner of the Combe Fill South landfill (Figure A-1). The Combe Fill South landfill is estimated to be a square landfill with no terrain elevations. The total volatile organics emitted are calculated on the basis of a constant emission rate and no decay mechanisms.

Data Input

1.1248

The meteorological data used by the ISCLT model include:

- STAR summaries, tabulations of the joint frequency of occurrence of wind speed and wind-direction categories, classified according to the Pasquill stability categories
- Annual mean afternoon mixing heights classified according to the Pasquill stability categories. The mean afternoon mixing height is assigned to the B, C, and D stability categories; 1.5 times the mean afternoon mixing height is assigned to

the A stability category, and an infinite mixing height is assigned to the E and F stability categories.

 Ambient annual air temperatures classified according to the Pasquill stability categories. The average annual maximum daily temperature is assigned to the A, B, and C stability categories, the average annual minimum daily temperature is assigned to the E and F stability categories, and the average annual daily temperature is assigned to the D stability category.

STAR summaries, mean afternoon mixing heights, and ambient annual air temperature from Wilkes Barre/Scranton, PA, were used because of the area's topography and meteorology are similar to those of the landfill area and also because it had the most complete set of data needed to run the model.

Other data inputs to the model include:

- Volatile emission rate is calculated assuming a completely mixed air volume, wind movement perpendicular to the landfill, concentration of contaminants in terms of mass/area/time, and no decay mechanisms. The upwind concentration is subtracted from the concentration at the landfill, both measured during the September 1985 sampling. A 1-m concentration height is assumed for just above ground surface sampling.
- Wind-profile exponents classified according to the Pasquill stability categories. Stability Categories E and F are assigned 0.30 and stability categories A, B, C, and D are assigned 0.10, 0.15, 0.20, and 0.25, respectively.
- Verticle potential temperature gradients classified according to the Pasquill stability categories. Stability categories A, B, C, and D are assigned 0.000°K/m, and stability categories E and F are assigned 0.02 and 0.035°K/m, respectively.

3.92198.

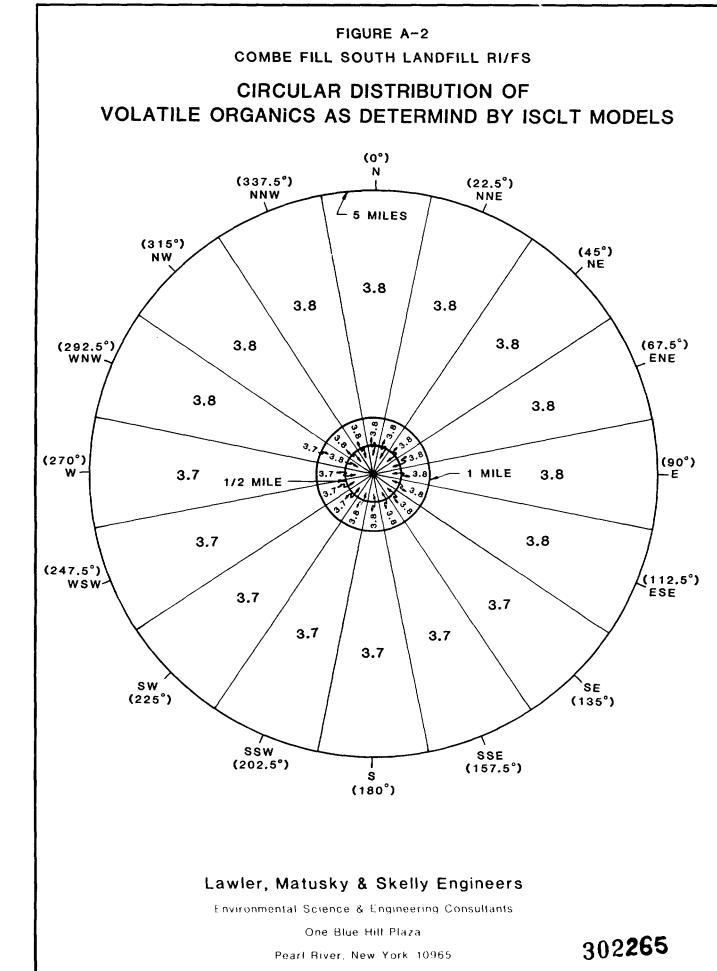
302**263**

A-2

Lawler, Matusky 🖉 Skelly Engineers

Data Output

The model evaluates impacts from site alone and does not include background concentrations. The data output consists of:

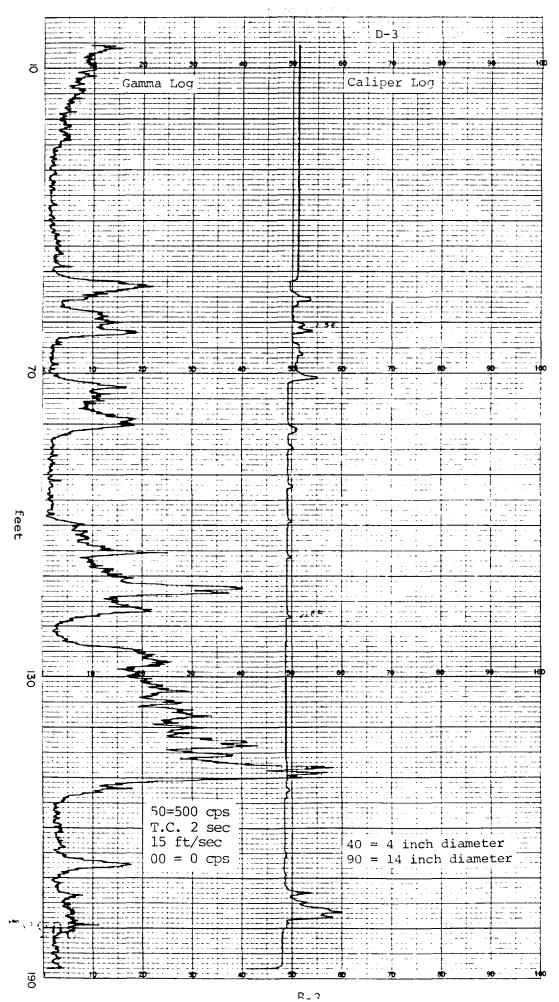

÷

- 1. Average concentrations of site-generated volatile organics at radii of 0.5, 1.0, and 5.0 miles for each of the 16 wind directions in μ g/m³ (Figure A-2 and page 7 of model output). The concentration of volatile organics increases from southwest to northeast of the landfill, from a minimum of 3.699 to a maximum of 3.809 μ g/m³ primarily following predominant wind directions.
- 2. The sites of the 10 maximum concentrations. These sites occur mostly at the 5-mile radius and in the northeasterly direction (see page 7 of model output). Concentrations of volatile organics at these 10 sites range from 3.769 to 3.809 μ g/m³.

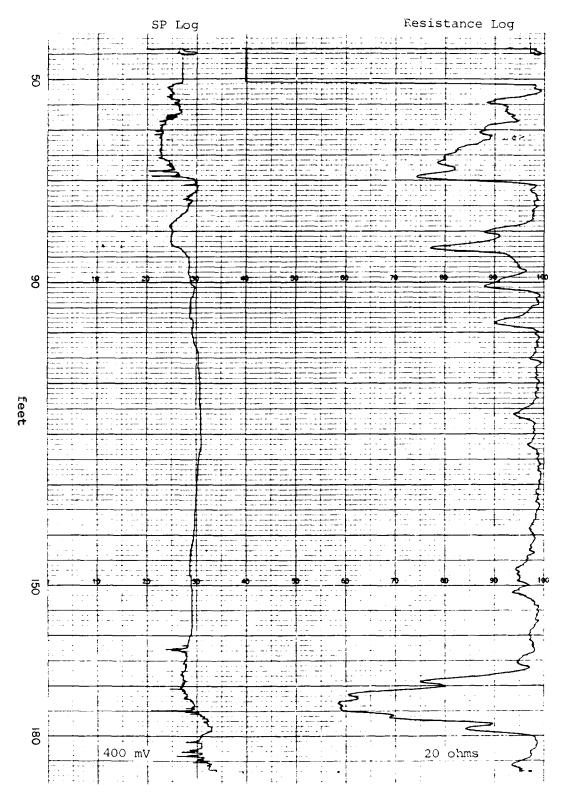
302264

ł

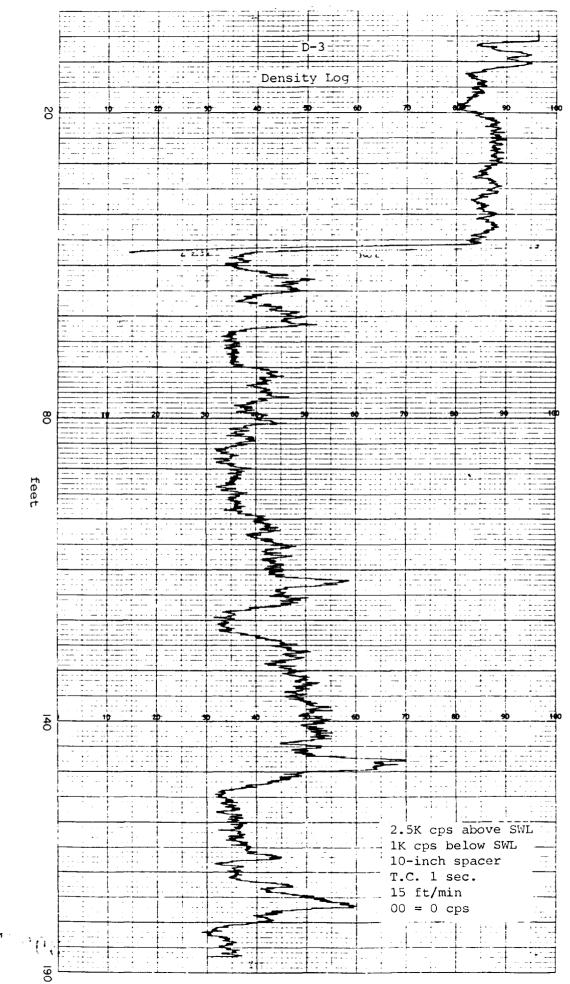
ł


APPENDIX B BOREHOLE GEOPHYSICAL INVESTIGATION GEOPHYSICAL WELL LOGS D-3, D-5, D-6, AND D-7 APRIL 1985

ELMER A. SIGOUIN COMPANY COAL & WATER WELL EXPLORATION


HOLE N [•] D-3 DATE 4/16/85	5			AREA Combe F	ill South Chester RGE		
PERATOR Mark J.	Sigouin		COUNTY		_ STATE New Jersey		
DRILLER					OLE DIA. 6" CASING 6"		
	GAMM RUN I	A DATA RUN 2	DENSIT RUN I	Y DATA RUN 2	HOURLY LOG		
	entire		entire		ARRIVAL TIME -		
RANGE (5" full scale)	500 cps		2.5K cps above SWL	IK cps below SWL	STAND BY TIME -		
FIME CONSTANT	2 sec.		l sec.	l sec.	DOWN HOLE TIME		
OGGING SPEED	15 ft/min.		15 ft/min.		START -		
OLE MEDIUM (Air)					FINISH -		
(Water)					TOTAL TIME		
(FACTOR					ON SITE -		
ALIBRATED	00 = 0 cps		00 = 0 cps	10" spacer			
RILLING AGENT			<u> </u>				
LUID DENSITY							
		_ OHMS PER FUL	L SCALE (5")	20 ohms			
SELF POTENTIAL							
RES. CONTACT							
CALIPER 40 = 4" dia	a., 90 = 14" di	a.					
REMARKS. Temperat	ture calibratio	ons, 00 = 50°F,	$50 = 100^{\circ} F, 15$	ft/min.	ESA		

° :						<u></u>		· · · ·		
ŗ	<u>[</u>								•	
						<u></u>				
ł										
:							· · · · · · · · · · · · · · · · · · ·	D-3		
							Temper	ature	Log	
								· · · · · ·		
	-2-2-1									
ខ										
	<u></u>								··· · · · · · · · · · · · · · · · · ·	
	A							· · · · · · · · ·		
			· · · · · · ·							
							· · · · · · · · · · · · · · · · · · ·			
									0-9	
ē	· · · · · · · · · · · · · · · · · · ·	2								
								t · · · ·		- · ·
								<u> </u>		
						<u> </u>	· · · · · · · · · · · · · · · · · · ·		i :	
1										
							• • 1			
	È.							, .	· · ·	
-			t				I	<u>↓</u>		
			<u> </u>	<u> </u> 		• • • • • • • • • • •) 00 = 1	50°F —	ļ	· · · · · · · · ·
			<u>, 1.1</u>				00 = 5 50 = 5	100 ⁰ F -		
							15 ft,	/min		
							t t			
5		· · · · · · · · · · · · · · · · · · ·	b			• • • • • • • • • • • • • • • • • • •	0 7	• •	9	
170						-				
		· · · ·						 		
					1					
\mathbf{D}	4-T-									


J

D-3

L

ELMER A. SIGOUIN COMPANY COAL & WATER WELL EXPLORATION

HOLE N [•] D-5					pe Fill South
DATE 4/16/85			SEC	TWP.	Chester RGE.
OPERATORMark J.	Sigouin		COUNTY	Morris	_ STATE New Jersey
TRUCK Nº1			GEOLOGIS1	<u>Jeff Thompson</u>	n
DRILLER		<u> </u>	DRILL DEP	TH <u>165.3'</u> H	OLE DIA6"CASING6"
	GAMM/ RUN I	A DATA RUN 2	DENSIT RUN I	Y DATA Run 2	HOURLY LOG
LOGGED INTERVAL	entire		entire		ARRIVAL TIME -
RANGE (5" full scale)	100 cps		2.5K below SWL	1K above	STAND BY TIME -
TIME CONSTANT	2 sec.		l sec.		DOWN HOLE TIME
LOGGING SPEED	15 ft/min.		15 ft/min.		START -
HOLE MEDIUM (Air)	· · · · · · · · · · · · · · · · · · ·				FINISH -
(Water)					TOTAL TIME
K FACTOR					ON SITE -
CALIBRATED	00 = 0 cps	L	00 = 0 cps	10" spacer	
DRILLING AGENT		· · · · · · · · · · · · · · · · · · ·			
FLUID DENSITY					
RESISTANCE		OHMS PER FUI	_L SCALE (5")	20 ohms	
SELF POTENTIAL		MILLIVOLTS P	ER FULL SCALE (5") <u>100mV</u>	
RES. CONTACT		OHMS PER FUI	LL SCALE (5")		
CALIPER 40 = 4" dia	1., 90 = 14" di	<u>a</u> .			- ESA
REMARKS. Temperatu	nre calibration	s, 00 = 50°F,	50 = 100°F, 15	ft/min.	

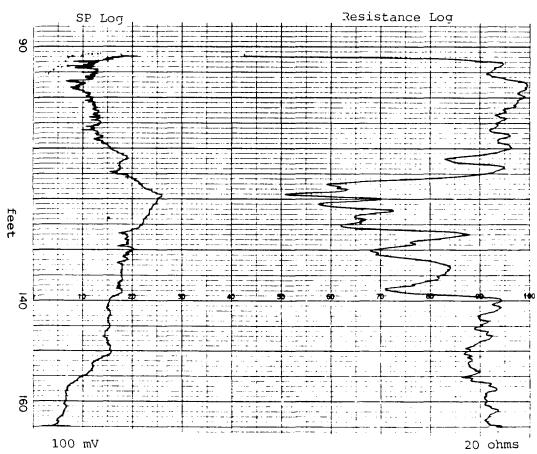
2 * 3 • • • 3 • • • •

			1	Ξ	1-1.7		<u>⊧</u>		į		±			i		i -		
			1====	Ţ		+						====		1		<u> </u>		
	\equiv			· · · · · · ·		1					<u> </u>	<u></u>			- + - +	1		
õ		+9		2		<u> </u>						6		79		•	9	þ
0	=															==		
	=	1													1			
	==+	<u>+</u>		÷	<u> </u>		 		<u> </u>	<u> </u>	 		<u> </u>	f =	+	<u> </u>		
	\equiv			<u> </u>	E													
	=	1		÷		+					 	Tom	perati	ire	Loa			
			<u> </u>									+	.pc1ucu					
														- h				
	\equiv				<u> </u>									1		<u> </u>		
						<u>t===</u>								1	1			
	=	·	<u>↓</u>	<u>+</u>		L								<u>i</u>	1			
															·			
	=+			<u> </u>	<u>+</u>					t				-				
	F	==																
	<u>}</u> =-+:			+											· · · · ·			
	=			<u>+</u>												<u></u> -		
	1	IN PL										!		T	<u>+</u>			
	EEE														· · · · · · · · · · · · · · · · · · ·			
	 			•										†				
~														70			9	₽
70	<u></u>		F											1	•			
	EĘ												•	<u>{</u>	•		-	
	ELE E	à																
		:::::]						• • • •		t	•		11	
	<u></u>							• • •						;				
)				+ 	r						÷	1		+				
	• • •		·		· · · ·						:		1. 1 .11	1.	•	-		
	<u> </u>	: <u> </u>												<u> </u>				
	ΈĒ	1.1.									·	· *			•			· · · · ·
	⊨‡=													+			· · · · · ·	
	E	••••••••••••••••••••••••••••••••••••••		•								<u>- : </u>	· · · · · · · · · · · · · · · · · · ·		1	1		
	ÈÈ		<u>}</u>				· · · · · ·		<u> </u>		-				<u></u>			· · · · · · · · · · · · · · · · · · ·
			t	:							: :			£	•••••	1.		
				-	 									<u> </u>				
	<u>}-</u> ∔-	÷ :::										:.::. 		• •	1.5	k ·		· · · · · · · ·
														+				
	EE		E									[· · · · · · · · · · · · · · · · · · ·	t	1.1			· · · · · · · · · · · · · · · · · · ·
	E													+	• - • •			
	Ē																	
	E																	
	E	<u>+</u>	ļ	<u></u>											+			
	H													===	1			
3		r.		- 2	-			#		5		- 6					9)ti
130	-+	••••													+			
		<u>.</u>												F				
	E	A												===				
	<u> </u>	•	<u> </u>	+										<u>+</u>	1			
	EE	i		=					=						1			
	E E														<u>+</u>			· · · · · · · · · · · · · · · · · · ·
	=	، محمد معرف	;	•••••										<u></u>		<u>E</u>		
	E E	,											00 =	50	0 _F			
	E											<u></u> .		10	~0_			
	++-	÷	<u> </u>										<u> </u>	τÜ	U-F			
	E=		1										_ 50 = 15 f	t/m	in			
	E		1											111.				
	EF-	<u>.</u>	1	1111	tri :									<u>†</u>	:			
	<u></u>	<u>.</u>										1			1			
	E		<u> </u>		111			11.44	::: : :					1		·		

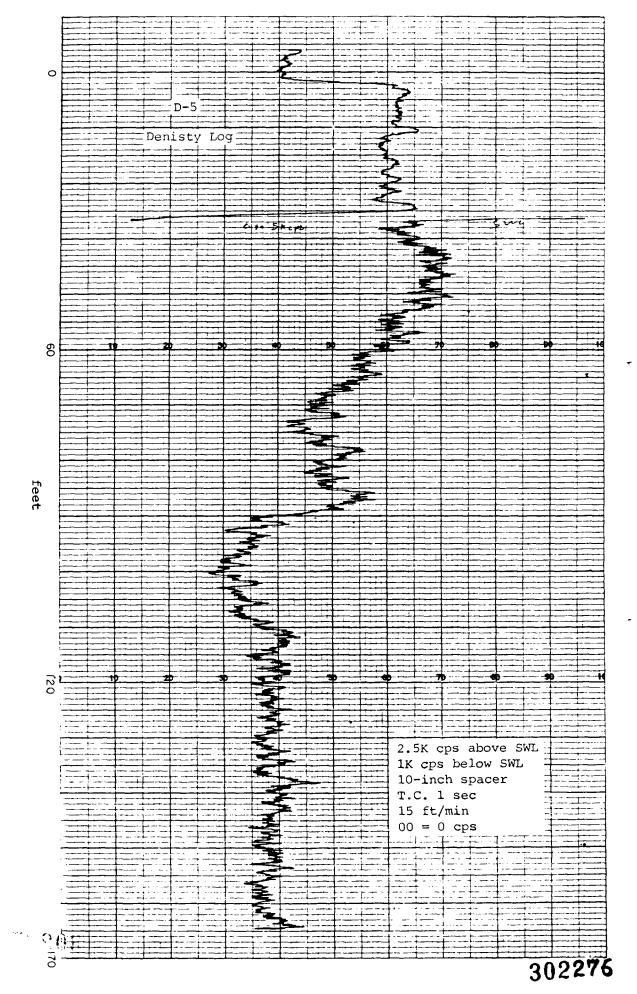
feet

10266

302273



							<u> </u>			
		E	****							
							····			
							Entra			
20		0	. 						D 9 + :	
								D-5		· · · · · ·
								E		
							Ca.	liper L	og	
										↓ ↓. `. `
								1.1.1		
							F			· · · · · · · · · · · · · · · · · · ·
			· · · · · · · · · · · · · · · · · · ·					<u> </u>		
								<u></u>		
				· · · · · · · · · · · · · · ·					<u> </u>	<u> </u>
					· · · · · · · · · · · · · · · · · · ·					,
						tt				
		L						f 11 FT t		
								-		
~										
80	n	`	3		,					
ħ										
† 2000 †						<u></u>				
т								t		
		· · · · · · · · ·		· · · · · · · · · · · · · · · · ·			· · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·· _= ·	
			·····				····			
				1 						
		· · · · · ·						· · · · · · · · · · · · · · · · · · ·		- <u>-</u>
			-							
			· · · · · · · ·			· · · · · · · · · · · · ·				
					· · · · · · · · · · · · · · · · · · ·					
140	1	2	<u> </u>	b)			/) 8	b 9	b - 10
0										
								1	<u> </u>	<u> </u>
				l Internet	E = E E	∔ • ·	‡ ;			<u></u>
		-				$40 \approx 4$	inch	diamete	er	
						90 = 1	4 inch	diame	ter	
					<u> </u>	1	1		· · · · ·	
						· · · · · · · · · ·				-
	₩	∮ − ↓		+				! : <u></u>	t	


feet

1920C

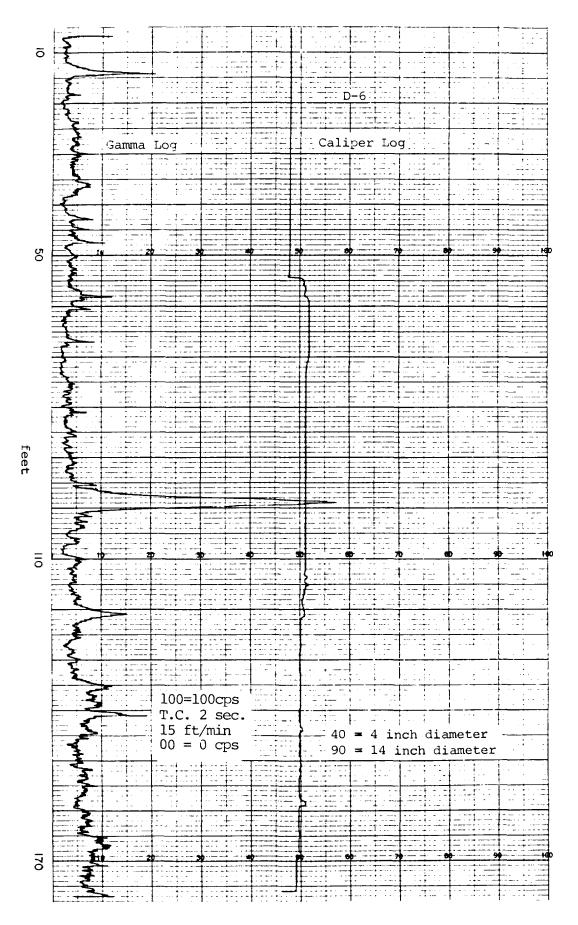
I

D-5

ł

ō D-5 Gamma Log 1.: -70 1 i ÷ : feet ;-----. ---1: i ÷È. ÷ -130 100=100cps T.C. 2 sec 15 ft/min 00 = 0 cps ł

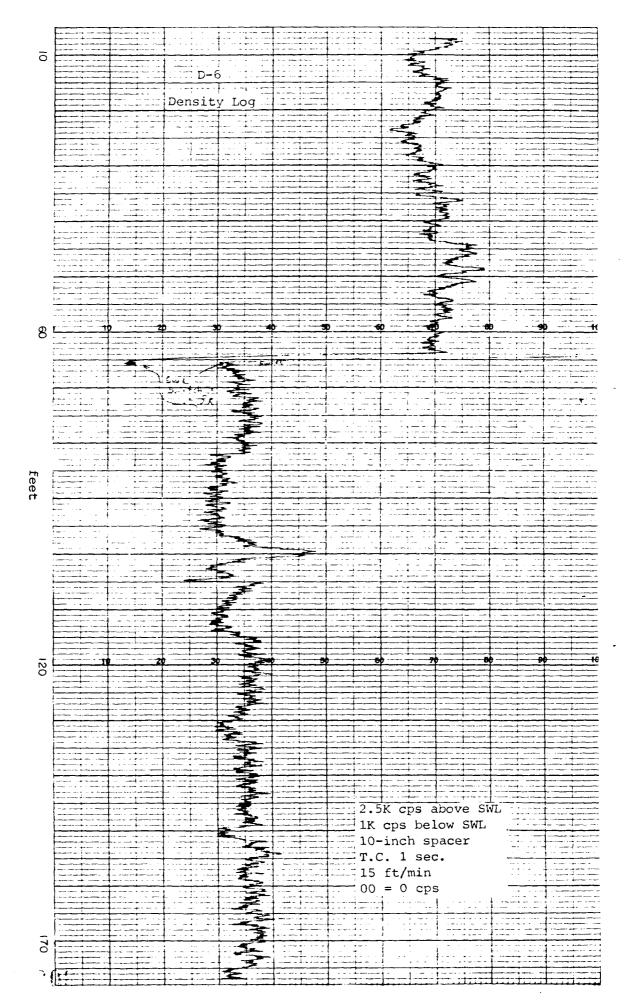
-

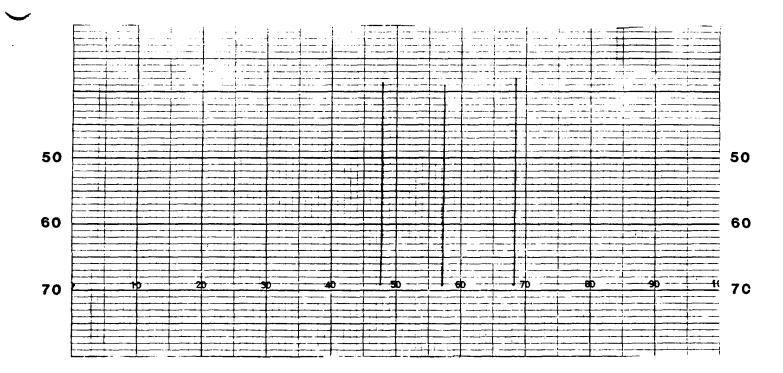

302

ELMER A. SIGOUIN COMPANY COAL & WATER WELL EXPLORATION

HOLE N [•] D-6	4/16/85				Fill South ChesterRGE
DATE					RGE STATE New Jersey
TRUCK Nº	······································				n
			DRILL DEP	TH <u>176.9</u> H	OLE DIACASING
	GAMMA RUN I	DATA RUN 2	DENSIT RUN I	Y DATA Run 2	HOURLY LOG
	entire		entire		ARRIVAL TIME -
RANGE (5" full scale)	100 cps		2.5K above SWL	lK below	STAND BY TIME -
TIME CONSTANT	2 sec.		l sec.		DOWN HOLE TIME
LOGGING SPEED	15 ft/min.		15 ft/min.		START -
HOLE MEDIUM (Air)					FINISH -
(Water) K FACTOR					ON SITE -
CALIBRATED	00 = 0 cps		00 = 0 cps	10" spacer	
DRILLING AGENT					
FLUID DENSITY				<u> </u>	
		OHMS PER FUL	L SCALE (5")	20 ohms	······································
SELF POTENTIAL		MILLIVOLTS P	ER FULL SCALE (5") <u>400 mV</u>	
RES. CONTACT		OHMS PER FUL	L SCALE (5")		
CALIPER 40 - 4" o	<u>lia., 90 = 14"</u> d	lia.			ESA.
REMARKS:Temperatu hot when	ire calibration, removed from we		70 = 100°F 15 ft	./min. Probes	

300 N


0										
			D-6_							
		Tempe	rature	Log ===						
							Jeen			
40) 	2					0	<u>b</u>	b	
				· · · · · · · · · · · · · · · · · · ·						
						}				
								·		
					£	······································				
				1						
							· · · · · · · · · · · · · · · · · · ·			
100		2			,	6	9 7	8	99	(
0										
							· · · · · ·			
							20 = 5 70 = 5	50°F		
							15 ft,			
Ŧ		2							98	
160								····		
			· 5							

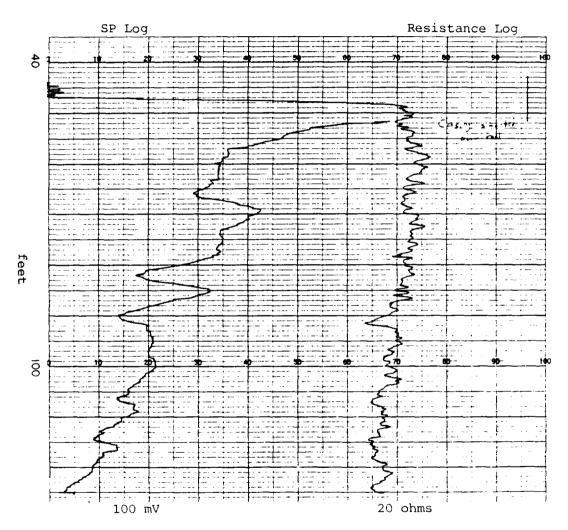

ł.

D-6

	 SP Log	5			Resistance Log						
110		1					······································				
0											
								>			
									2		
									\leq		
	\leq										
140 feet		9	•	•••	6			9	140		
μ, C	£								5		
									- S		
	 \prec								5		
	4							<	\sim		
									Š		
170	3	400 mV					20	ohms	Ş		
	2								-\$-		

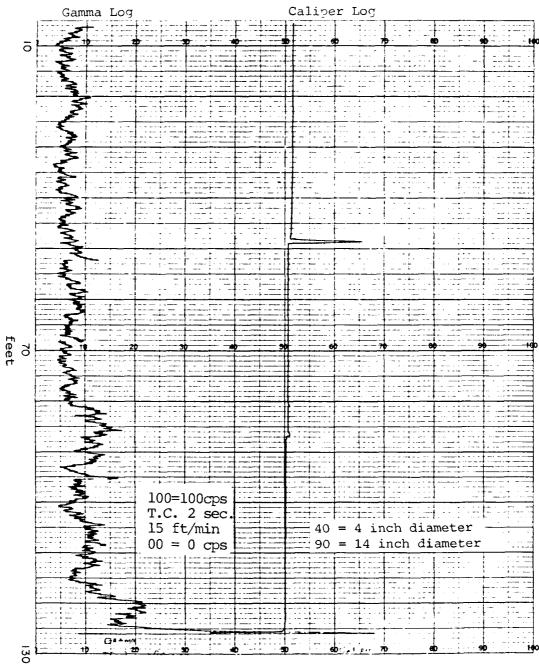
D-6

302283


Y 『住気

ELMER A. SIGOUIN COMPANY COAL & WATER WELL EXPLORATION

HOLE N [•] D-7 DATE 4/15/85,	4/17/85			REA <u>Combe</u> I	Fill South Cnester RGE
OPERATOR Mark J. S	Sigouin				_ STATE New Jersey
	······			-	1
			DRILL DEP	ТН <u>125.9'</u> НС	DLE DIA6"CASING6"
	GAMMA RUN I	DATA RUN 2	DENSIT RUN I	Y DATA Run 2	HOURLY LOG
LOGGED INTERVAL	entire		entire		ARRIVAL TIME -
RANGE (5" full scale)	100 cps		2.5K cps above SWL	1000K below	STAND BY TIME -
TIME CONSTANT	2 sec.		1_sec	L	DOWN HOLE TIME
LOGGING SPEED	15 ft/min.		15 ft/min.		START -
HOLE MEDIUM (Air)					FINISH -
(Water)			_		TOTAL TIME
K FACTOR					ON SITE -
CALIBRATED	00 = 0 cps		00 = 0 cps	10" spacer	
DRILLING AGENT					
FLUID DENSITY					
RESISTANCE		OHMS PER FUL	.L SCALE (5")2	0 ohms	
SELF POTENTIAL					
RES. CONTACT			_L SCALE (5")		
CALIPER $40 = 4"$ dia.	., 90 = 14" dia.				
REMARKS: <u>Heavy odon</u> 15 ft/min.		nperature cali	ibrations, 00 =	50° F, $50 = 100$	ESA _{co.}


10 C

0			 						
-						· · · · · · · · · · · · · · · · · · ·			
:									
-					D-7				
; ;				Temper	ature	Log			
								· · · · · · · · · · · · · · · · · · ·	
						· · · · · · · · · · · · · · · · · · ·		- · · · · ·	
							· · · · · ·	· · · · · · · · · · · · · · · · · · ·	
		· · · · · · · · · · · · ·	 · · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · · · · · · · · ·		
g		······································			6	b 74		9	·····
0									
1						· · · · · · · · · · · · · · · · · · ·			
feet	-								
t									·····
-			 						
	Ę.								
								······································	
					00 = 5 50 = 1	00°F - 100°F -	· · · · · · · · · · · · · · · · · · ·		
1					15 ft/	min			
ī		2		••••••	0	D 7		9 9	
						1			
	5					· · · · · · · · · · · · · · · · · · ·			
			 	-	<u>+:</u>			-:	·

D-7

ł

D-7

19208

2.5K cps above SML IK cps below SML IK cps below SML IN-inch spacer T.C. 1 sec ISft/min O0 = 0 cps										
3 Denisty Log 0 Denisty Log 0 Denisty Log 0 Denisty Log 1 Denisty Log 2 Stars 1 Denisty Log 1 Denisty Log 1 Denisty Log 2 Stars 1 Denisty Log 1	0	2	•			.	0 7		D9	9 - 10C
Benisty Log Denisty Log Image: Solution of the second state of the	50 Feet									
Benisty Log Denisty Log Image: Solution of the second state of the										
2.5K cps above SWL 1K cps below SWL 10-inch spacer T.C. 1 sec 15ft/min 00 = 0 cps				22			D-	7		
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z		 					Denist	y Log		
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z				ξ.						· · · · · · · · · · · · · · · · · · ·
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z										
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z				V		· · · · · · · · · · · · · · · · · · ·				
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z										
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z			÷							
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z										
No No <td< td=""><td>2</td><td></td><td></td><td>) </td><td>6</td><td>)7</td><td></td><td>• • • • • • • • • • • • • • • • • • •</td><td></td></td<>		2) 	6)7		• • • • • • • • • • • • • • • • • • •	
No No <td< td=""><td></td><td>5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			5							
No No <td< td=""><td></td><td></td><td>*</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				*						
No No <td< td=""><td></td><td>.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			.							
No No <td< td=""><th></th><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>										
No No<			3				2.5K c	ps abc	ve SWL	
No No<	120						1K cps	s below ch spac	sWL SWL	
NO = 0 cps							T.C. 1	. sec		
							00 = 0) cps		
			3						· - · ·	
									B9	B H¢C
			3							

feet

100

I

APPENDIX C MEMO ON DESCREPANCIES IN MONITORING WELL DESIGNATIONS ON COMBE FILL SOUTH LANDFILL

FILE NO. 455-102

DATE: 17 October 1984

TO: Ruth Maikish

FROM: Andy Hudock

SUBJECT: Discrepancies in Monitoring Well Designations in Combe South Quarterly Report, 1977-1981

INTRODUCTION

-

A review of the available Combe South quarterly reports submitted to the NJDEP from January 1977 to May 1981 indicates that there exists some discrepancies in monitoring well designations and locations.

The Remedial Action Master Plan (RAMP) for the Combe Fill South site discussed such discrepancies. The RAMP indicated that the well locations are best determined as follows:

o Well No. 1 - Located at the landfill garage
(LMS# DW-1)

- o Well No. 3 Located at the Filiberto Sr. house on (LMS# DW-3) Parker Road

o Well No. 5 - Located 200 feet south of the (LMS# DW-5) southern property line along the powerline easement

However, these descriptions of well locations are different from the descriptions contained in two NJDEP memos.

In an 18 April 1975 NJDEP memo written by Frank Markewicz, the locations of the existing wells were described as:

o Well No. 1 - Resident House adjacent to office

o Well No. 2 - Garage Well - east of Resident House

30200

File No. 455-102 Page 2

TO: Ruth Maikish FROM: Andy Hudock

- o Well No. 3 Well approximately 300 ft east of old landfill and on west side of Tate Road to landfill,

The well that Mr. Markewicz designated as Well No. 1 does not directly correspond to any of the well location descriptions in the RAMP. Mr. Markewicz's Well Nos. 2 and 4 apparently correspond to RAMP well designations for Well Nos. 1 and 3, respectively. The well that Mr. Markewicz designated as Well No. 3 may correspond to the well designated by the RAMP as Well No. 4, although there is some uncertainty regarding this.

In an 18 April 1977 NJDEP memo written by William J. Berk to describe a 13 April 1977 meeting with Mr. Filiberto, Mr. Filiberto identified the monitoring wells locations as follows:

o Well No. 1 - Located at house adjacent to the landfill office o Well No. 2 - Located at the landfill garage o Well No. 3 - Located at the Filiberto Sr. house next to the rail fence o Well No. 4 - Located in the driveway at the Filiberto Sr. house

The well that Mr. Filiberto designated as Well No. 1 corresponds to the well that Mr. Markewicz designated as Well No. 1. However, no corresponding well is indicated in the RAMP. The well that Mr. Filiberto designated as Well No. 2 corresponds to Mr. Markewicz's Well No. 2 and corresponds to RAMP Well No. 1. The well that Mr. Filiberto designated as Well No. 3 corresponds to RAMP Well No. 3 and possibly to Mr. Markewicz's Well No. 4. The well that Mr. Filiberto designated as Well No. 4 has no obvious counterpart based on well location descriptions in the RAMP or in Mr. Markewicz's well designations.

DATA INTREPRETATION

j,

Based on these two NJDEP memos, there apparently exists two monitoring wells (at the landfill office and at the driveway of the Filiberto, Sr., house) that were not included in the RAMP well location descriptions. The RAMP did not specifically discuss the contents of these two memos. However, these memos were cited in the RAMP list of references and, therefore, it is believed that they were considered in the formulation of the RAMP well

TO: Ruth Maikish FROM: Andy Hudock

CANDI THO DATE

100002

- I

designations. The RAMP did summarize, for each well number, the concentration ranges of the chemical constituents found in these quarterly monitoring analyses.

The monitoring well quarterly reports and other sampling analysis generally identify the wells by number and do not describe the location of a particular monitoring well (see Table 1). However, on the following sampling dates, some descriptions of well locations were included with the well numbers reported:

SAMPLING DATE	WELL DESIGNATIONS
27 January 1977	Well No. 1 = office, Well No. 2 = garage, Well No. 3 = Filiberto Sr. house, Well No. 4 = Filiberto Sr. driveway
22 March 1979	Well No. 1, Well No. 2, Well No. 3, garage, Filiberto
17 May 1979	Well No. 1 = garage, Well No. 2, Well No. 3 = Filiberto, Well No. 4, Well No. 5
19 November 1979	Well No. 1 = garage, Well No. 2, Well No. 3 = Filiberto, Well No. 4, Well No. 5
6 May 1981 (NJDEP Sample)	Well No. 1 = garage, Well No. 2

In an effort to make sense of the available sampling information for the landfill monitoring wells, LMS proposes to accept the monitoring well number designations appearing in the quarterly reports as corresponding to the monitoring well locations described in the RAMP. There are two obvious exceptions to this proposed rule of thumb, namely:

 The sampling results of 27 January 1977 would be discarded for Well Nos. 1 and 4 (as having well locations that do not correspond to RAMP well locations), with Well No. 2 (garage) directing corresponding to RAMP Well No. 1, and Well No. 3 (Filiberto) directly corresponding directly to RAMP Well No. 3.

302292

TO: Ruth Maikish FROM: Andy Hudock File No. 455-102 Page 4

2. The sampling results of 22 March 1979 would be discarded for Well Nos. 1, 2, and 3, with the wells designated as garage and Filiberto, corresponding directly to RAMP Well Nos. 1 and 3, respectively. Well No. 1, as designated in the 22 March 1979 sampling results, has TDS, hardness, and chloride concentrations that seem to correspond to those of the well designated as Well No. 5 in previous samples. However, other constituent concentrations are such that any attempts to directly match these wells to previous well results could not be done with a high degree of confidence.

CONCLUSIONS

22 Mar 1979

Rather than disregarding the entire set of landfill monitoring well sampling information because of occasional discrepancies regarding well locations, it may be preferable to salvage that information, which does not provide obviously conflicting well designations (as compared to well designation in the RAMP).

Unless additional information (as yet unavailable) dictates otherwise, LMS will accept the monitoring well designations appearing in the quarterly monitoring reports as corresponding to the monitoring well locations described in the RAMP. However, unless additional information is received, the following sampling information will not be used:

SAMPLING DATE	REPORTED WELL DESIGNATION
27 Jan 1977	1
27 Jan 1977	4
22 Mar 1979	1
22 Mar 1979	2

3

Additional information may be forthcoming which may clarify the well information of 27 January 1977 and 22 March 1979. Maps of well locations that were included with the submittal of sampling results to NJDEP for the two dates have been requested from NJDEP by LMS but have not yet been received.

39.266

TO: Ruth Maikish FROM: Andy Hudock

.

, .**.**.

.

....

File No. 455-102 Page 5

This proposed use of available monitoring well data was discussed during telephone conversations with Dick Popiel, Dan Toder, and Elissa Stone (all of the NJDEP) on 11 October 1984.

· · .

cc: Richard Popiel, NJDEP Dan Toder, NJDEP Elissa Stone, NJDEP

÷

C-5

14 O (4)

1		
"		
-		
· •		

.

TABLE	1	
-------	---	--

CHRONOLOGICAL LIST OF LANDFILL MONITORING WELL DESIGNATIONS

			WELL LOCATION BY W	ELL NUMBERS	
SAMPLING DATE	#1	#2	#3	#4	#5
27 Jan 1977	Office	Garage	Filiberto House	Filiberto Driveway	NS
26 Aug 1977	*	*	*	*	*
18 May 1978	*	*	*	*	*
6 Sep 1978	*	*	*	*	*
29 Nov 1978	*	*	*	*	*
22 Mar 1979	*	*	*	Garage ^a	Filiberto
17 May 1979	Garage	*	Filiberto	*	*
21 Aug 1979	*	*	*	*	*
18 Sep 1979	*	NS	*	NS	NS
19 Nov 1979	Garage ^a	*	Filiberto ^a	*	*
26 Feb 1980	*	*	*	*	*
29 May 1980	*	*	*	*	*
5 Sep 1980	*	*	*	*	*
7 Nov 1980	*	*	*	*	*
6 Jan 1981	NS	NS	NS	NS	*
11 Feb 1981	*	*	*	*	*
3 Mar 1981	NS	NS	NS	DEP DW-4	DEP DW-5
6 May 1981	Garage ^a	*	*	*	*
22 May 1981	*	*	*	*	*

. اف ر

.

* - No location designated.
 NS - Not sampled.
 ^a - No well number designated.

C-6

APPENDIX D MEMORANDUM FROM DAVE KAPLAN AND JOHN TRELA OF NJDEP TO HAIG KASSABACH OF NJDEP APRIL 14, 1982

...

E.	MEMO	(NEW JERSEY STA	TE DEPARTMEN VE EN	NVIRONMEN	TAL PROTECTION	
•1 u · ·	· · ·	ibach. Chief				
	FROM DAVE Kap	lan through John Trela	H	DATE	APR 1 4 1982	-
	_	ll South Landfill, Chest	()			-

- The above-referenced facility, covering 193.34 acres, started operation in 1971 and closed in 1981. Wastes accepted included: household, industrial, dead animals, sewage sludge, septic tank wastes, chemicals, and waste oil. The trench method was used — individual trenches measuring seventy feet wide by several hundred feet long were excavated into the underlying bedrock. Cover consisted of crushed bedrock. Two monitor wells are on-site; MW4, a 150' rock well, is NE of the landfill, MW5, a 30' sand well, is south of the landfill.
- 2. The landfill is in a rural area, situated on a hill 100' above the surrounding terrain. Fields are south and west, and wooded areas are north and east. Numerous residential dwellings, with wells, are nearby? on Parker Road (SE), Schoolhouse Lane (NE), and East Valley Brook Road (NW). Adjacent surface waters include: wetlands (NW), Trout Brook (W), and Rheinhart Brook (S). Rheinhart Brook (E. Branch Trout Brook) flows south entering Trout Brook south of Parkers Road. An enclosed sketch of the landfill shows approximate locations of the surface waters, roads, and monitor wells in relation to the landfill.
- 3. The landfill is situated on residual soils overlying grantitic gneiss bedrock. Twenty-five soil borings and sixteen test pits indicate the following profile: 0-12' of clayey silt; 0-15' of rock rubble, silts, sands, and clays; 0-8' of fractured bedrock, "competent" bedrock. Water depth ranges from 2' to greater than 20' in the borings. Ground-water flow is assumed to following topography, that is, move radially in all directions from the crest of the hill.
- 4. An inspection was made on March 9, 1981. At that time the landfill was still open. Filling was taking place in the western section a dragline was excavating new trenches. Wastes were primarily municipal, and cover, crushed gneiss bedrock, was poor. There was.uncovered garbage, odors, seagulls were everywhere, and windblown garbage covered adjacent fields and trees. Leachate seeps were visible along the northern landfill face, and puddles of leachate were evident around the landfill toe. The leachate seeps, red and black colored, some with an oil sheen, flowed toward the headwaters of Trout Brook. Trout Brook is "dead" leachate entering it gives it a red color and encourages the growth of Sphaerotilus. Leachate also seeps into Rheinhart Brook, tuvning it a reddish color.
- 5. Because of the possibility of leachate from the landfill polluting nearby potable wells, a sampling program was institued. Analyses were made on water taken from: residential wells on East Valley Brook Road, Schoolhouse Lane, and Parker Road; Monitor wells #4 and #5; and Trout Brook and Rheinhart Brook. A table is enclosed summarizing the analyses results for total volatile or-ganics, acid and base neutral extracts, pesticides, and PCB's. (The table in-cludes the most recent data available to the Bureau of Ground Water Management).

302297

D-1

6. Results

The results show significant organic contamination of ground and surface waters adjacent to the landfill. Both monitor wells (shallow and deep) are polluted, as are Trout Brook and Rheinhart Brook. -(No samples were-available for the wetlands north of the landfill). However, at present, it appears that contaminated ground water has not reached any of the near-by potable wells. Of fifteen wells sampled, none exceeded the 100 ppb total volatile organics threshold used by the Bureau of Potable Water to close wells.

7. Conclusions and Recommendations

The hydrology beneath the Combe Fill South Landfill is very complex. Ground water flow, in general, follows topography, moving radially in all directions away from the crest of the hill on which the landfill sits. However, ground water within the highly fractured bedrock will not follow topography, but will flow along fracture zones, which may be oriented in any direction.

Therefore, leachate formed within the landfill will move away in all directions. There is no single flow direction or distinct leachate plume. Additional monitor wells would probably be of little value in defining the problem, since it would be impossible to monitor all fracture zones beneath the landfill (any of which may be a conduit for leachate escaping from the landfill).

To reduce leachate formation at the landfill, and thus also reducing the possibility of future potable well contaminations, I recommend that the landfill be capped with an impermeable material (preferably with 10-7 clay). Also, to detect contamination of wells, representative homes (selected by the Bureau of Ground Water Management) on East Valley Brook Road, Schoolhouse Lane, and Parker Road should have their wells tested quarterly for volatile organics.

ye funde o 100Nelse filt.

302298

WOM32:c1b

cc: Frank Markewicz - William Althoff Barker Hamill Dan Toder

· · · · · ·

....

enders son <u>autoritation</u> data da ante a subno a constanta da ante a sub-

New Strategy with

D-2

Files (3)

Enclosure

195

ta carata 👘

feski tirti tir ⊋inu i

APPENDIX E

and i

4

- - - **-** -

SOIL BORING/ROCK CORING GEOLOGIC LOGS

(SB-SERIES WELLS)

Well Construction Symbols for SB-Series Wells

Portland Cement Grout

Bentonite Slurry with PVC Solid

~

• ` - •

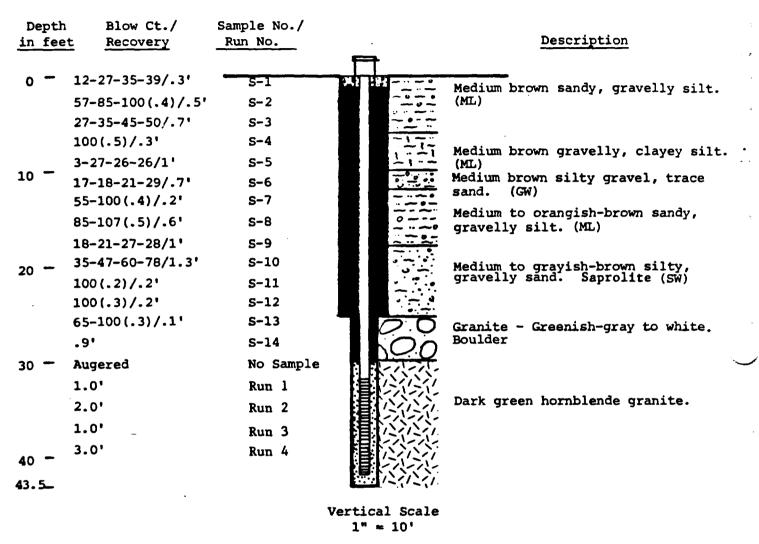
Peltonite Seal

Caved Formation

19 202

Sand Pack with PVC Screen

Abbreviations for SB-Series Wells


- (chem): indicates soil sample submitted for chemical analysis
- G.S.: ground surface
- T.O.C.: top of casing
- (unc.): unconsolidated

302300

r.e. wright associates, inc.

Combe-Fill South Landfill Project 8455

Piezometer SB-1

Drilling Began: 11/29/84 Drilling Completed: 12/3/84 Well Construction Completed: 12/4/84 Driller: Empire Soils Investigation Geologist: RCW/JST Well Type: Soil Boring/Piezometer (rock) Screened Interval: 32-42' Total Depth: 43.5' Depth to Competent Bedrock: 27-30' Elevation T.O.C.: 850.35 Elevation G.S.: 848.35 SWL(Date): 815.89 (1/29/85)

31003

E-2 r.e. wright associates, inc.

Combe-Fill South Landfill Project 8455 Safety Instrument Readings Piezometer SB-1

Depth in Feet	Sample No./ 	HNU	EXP	RAD
Ø – 2	S-1	1-ØB Ø	Ø-1% B . Ø%	.Ø35 B Ø
2 - 4	S-2	Ø	08	Ø
4 - 6	S-3	Ø	Øs	Ø
6 - 8	S-4	Ø	Øŧ	Ø
8 -10	S- 5	Ø	Ø8	Ø
10 -12	S-6	0	Øŧ	Ø
12 -14	S-7	ø	Øz	Ø
14 -16	S-8	Ø	08	Ø
16 -18	5-9	ø	Øŧ	Ø
18 -20	S-10	Ø	08	Ø
20 -22	S-11	ø	Ø %	Ø
22 -24	5-12	Ø.2	Øŧ	Ø
24 -26	S-13	Ø.6	08	Ø
26 -26.9	S-14	Ø	Øz	Ø
26.9-33.5	No Sample	NT	NT	NT
33.5-34.5	Run 1	Ø	NT	Ø
34.5-36.5	Run 2	ø	NT	NT
36.5-37.5	Run 3	Ø	NT	NT
37.5-43.5	Run 4	Ø	NT	NT

Note: No samples sent for chemical analysis on SB-1. Readings are all listed as values above background levels.

\$ 110E

r.e. wright associates, inc.

302302

,

. .)

ين.

...,

Combe-Fill South Landfill Project 8455

Piezometer SB-2 🦟

Depth Blow Ct./ in feet Recovery	Sample No./ Run No.	Description
0 - 5-7-8-11/1' 37-100(.4)/.5' 17-18-15-13/.2 13-12-10-9/1.8	2' S-3 3' S-4	Medium brown sandy, gravelly, clayey
11-12-14 -14/. $10 - 9-9-10-9/1.8'$ $12-13-14-14/1.$ $7-9-11-16/1.7'$ $11-12-15-19/2'$	S-6 .25' S-7 S-8	Light gray silty sand, fine to coarse sand. (SW) -1-1 Dark brown sandy, clayey silt. (ML) -1-1 Some clay, some sand, much silt.
8-8-9-10/1.5' 20 - 11-13-15-19/No 21-37-43-50/.3 19-21-27-28/1	S-10 one S-11 3' S-12	Light gray silty sand. (SP)
$\begin{array}{r} 21-37-45-60/1.\\ 14-21-27-29/1.\\ 30 - 23-25-28-30/1.\\ 24-25-25-21/.6\\ 12-13-15-18/.5\end{array}$.25' S-15 ' S-16 5' S-17	Greenish-gray silty sand. Saprolite (SP)
$40 - \frac{3-4-7-6/1}{7-14-35-60/.9}$	S-19 (chem) S-20 S-21 .	Orange-brown sandy silt. Saprolite. (ML) Orange-brown to greenish-gray silty
11-15-21-25/1 $55-100(.2)/.5'$ $50 - 100(.2)/.2'$ $100(.5)/.5'$.5' S-23	sand. Saprolite. (SM) Dark orange-brown sandy silt. (ML) Fan silty sand. Saprolite. (SM)
3.1' 3.5' 3' 60 _	Run 1 Run 2 Run 3	Dark green, hornblende granite. Contains hornblende, quartz and feldspar. Becomes less mafic Jownward.
62 -	v	Vertical Scale
Drilling Began: 11/2 Drilling Completed: Well Construction Com Driller: Empire Soil Well Type: Soil Borin Screened Interval: 4	11/21/84 pleted: 11/26/84 s Investigation ng/Piezometer (unc) 3-48'	<pre>1" = 10' Total Depth: 62' Depth to Competent Bedrock: 51' Elevation T.O.C.: 812.76 Elevation G.S.: 810.76 SWL(Date): 793.38 (1/29/85) E-4 Bacagaia@ag imag 202202</pre>
	r.e. wrigini	associates, inc. 302303

-

.

•

ł

455T2	
-------	--

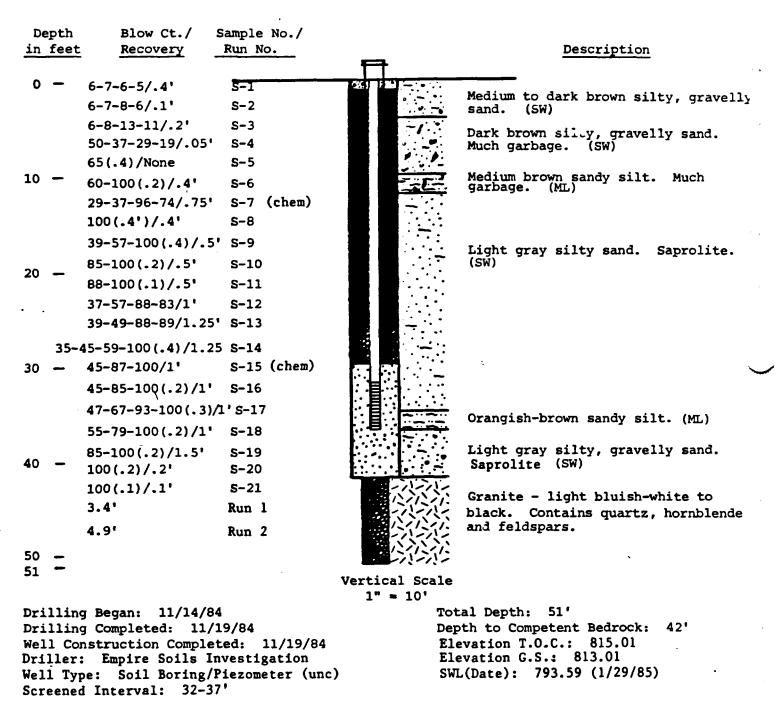
1

.....

Combe-Fill South Landfill Project 8455 Safety Instrument Readings Piezometer SB-2

.

Depth in Feet	Sample No./	HNU	EXP	RAD
		1-ØB	—	.Ø3B
0 - 2	S-1	1 0 1 2	1% B Ø%	D
2 - 4	S-2	Ø	08	Ø
4 - 6	S-3	0	08	Ø
6 - 8	S-4	Ø	08	Ø
8 -10	S- 5	0	08	Ø
10 -12	S-6	Ø	Øŧ	Ø
12 -14	s-7	Ø	Øŧ	Ø
14 -16	S-8	Ø	Øs	Ø
16 -18	S-9	Ø	Ø\$	Ø
18 -20	S-10	2.0	08	Ø
20 -22	8-11	Ø	Øz	Ø
22 -24	S-12	Ø	Øŧ	Ø
24 -26	S-13	Ø	Øŧ	Ø
26 -28	S-14	Ø	08	Ø
28 -30	S-15	0.6	Øŧ	0
30 -32	S-16	Ø.6	Ø %	0
32 -34	S-17	1.4	Øz	Ø
34 -36	S-18	Ø	Ø %	Ø
36 -38	S-19 (chem)	3.4	Øŧ	Ø
38 -40	S-2Ø	1.0	08	Ø
40 -42	S-21	0.4	Ø8	Ø
42 -44	S-22 (chem)	5.4	88	Ø
44 -46	S-23	Ø.4	Øŧ	Ø
46 -48	S-24	1.6	9 8	Ø
48 -48.5	S-25	NT	NT	NT
50 -50.2	S-26	NT	NT	NT
50.2-62	Runs 1-3	NT	NT	NT


Note: Readings are all listed as values above background levels.

2025

E-5 r.e. wright associates, inc.

Combe-Fill South Landfill Project 8455

Piezometer SB-3

- 2**6**0

302305

r.e. wright associates, inc.

Combe-Fill South Landfill
Project 8455
Safety Instrument Readings Piezometer SB-3
Piezometer SB-3

Depth in Feet	Sample No./ 	HNU	EXP	RAD
Ø- 2	S-1	Ø-1.ØB 4.0	Ø-2% в Ø%	.04B 0
2-4	S-2	ø	08	Ø
4- 6	S-3	5.0	Øŧ	Ø
6- 8	S-4	Ø.4	Øŧ	Ø
8-10	s-5	NT	NT	NT
10-12	5 -6	3.4	08	NT
12-14	S-7 (chem)	8.0	08	NT
14-16	S-8	ø	Ø 8	NT
16-18	S-9	рт	NT	NT
18-20	S-10	ø	Ø 8	NT
20-22	S-11	NT	NT	NT
22-24	S-12	Ø	88	Ø
24-26	S-13	Ø	Ø\$	Ø
26-28	S-14	NT	Ø 8	ø
28-30	S-15 (chem)	NT	08	Ø
30-32	S-16	NT	08	Ø
32-34	S-17	NT	08	Ø
34-36	S-18	Ø	08	Ø
36-38	S-19	NT	08	Ø
38-40	S-20	NT	NT	NT
40-42	S-21	6.0	Ø\$	Ø
42-46	Run 1	Ø	Øz	Ø
46-51	Run 2	NT	NT	NT

Note: Readings are all listed as values above background levels.

E-7 r.e. wright associates, inc. 302306

455T3

-22

Combe-Fill South Landfill Project 8455

5

.

I

Piezometer SB-4

• • •

Depth		mple No./	
in feet	Recovery R	un No.	Description
			₽ = 1
0 -	3-4-5-5/.8'	S-1	Dark grayish-brown sandy,
	12-15-19-23/.5'	S-2	Light grayish-brown silty sand. (SW)
	7-6-5-6/.3'	S-3	
	7-7-7-8/1'	S-4	Light orangish-brown sandy, clayey silt
10 -	3-5-7-8/.5' 9-11-13-15/1'	S-5	Light brown silty sand. (SW)
	7-8-8-9/None	s-6 s-7	
	3-7-9-11/1.2'	5-8 (chem)	
	9-11-13-14/1.1'	S-9	Light brown to greenish-gray sandy
20 —	5-6-6-7/1'	S-10	silt. Saprolite. (ML)
	7-9-11-11/.9'	5-11	
	8-12-15-25/1.2'	S-12 (chem)	
·	8-8-11-13/.8'	S-13	Greenish-gray silty sand. Saprolite.
	21-27-35-33/.8'	S-14 S-15	(SW) Multi-colored sandy, gravelly silt.
30 -	35-100(.3)/.6' 45-70-88-96/1'	S-15 S-16	Saprolite. (ML)
	100(.3)/.3'	S-17	Multi-colored silty sand. Saprolite.
	100(.1)/None	S-18	
	1.3'	Run 1	Greenish-gray rounded gravel and
40 —	Augered	S-20	boulders with a silty sand. Saprolite.
40 -	100(.1)/.1'	S-21	
	100(.3)/None	S-22	Pot
	100(.1)/.1'	S-23	
	100(.1)/None	s-24	
50 —	1.3' 2.6'	Run 2 Run 3	Granite greenish-gray with black
	3'	Run 4	minerals interspersed. More quartz
	2.5'	Run 5	hornblende throughout.
58 -	·		
·		V	ertical Scale 1" = 10'
Drill	ing Began: 11/27/8	4	Total Depth: 58'
Drill	ing Completed: 11/	28/84	Depth to Competent Bedrock: 48'
Well (Drille	Construction Comple er: Empire Soils I		
Geolog	-		SWL(Date): 789.27 (1/29/85)
	Type: Soil Boring/		
Screet	ned Interval: 36-4	1.	E-8
	· (* () ;	e wriah	t associates, inc. 302307
	U		

455T4

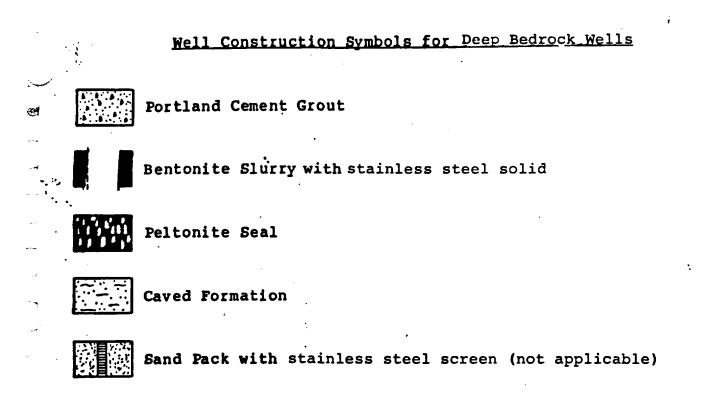
(3

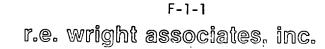
~-

.

Combe-Fill South Landfill Project 8455 Safety Instrument Readings Piezometer SB-4

Depth in Feet	Sample No./ No	<u>HNU</u>	EXP	RAD
Ø – 2	S-1	0-1.0	08	Ø
2 - 4	S-2	ø	Øŧ	Ø
4 - 6	S-3	Ø	08	Ø
6 - 8	S-4	Ø	Øs	Ø
8 -10	S-5	2.6	Øs	Ø
10 -12	S-6	5.0	NT	Ø
12 -14	S-7	3.0	NT	Ø
14 -16	S-8 (chem)	2.5	Ø 8 ,	Ø
16 -18	8-9	1.0	Øŧ	Ø
18 -20	S-10	0.4	NT	Ø
20 -22	S-11	1.4	NT	Ø
22 -24	S-12 (chem)	1.6	NT	Ø
24 -26	S-13	1.6	Ø۶	Ø
26 -28	S-14	NT	NT	Ø
28 -30	S-15	NT	Ø 8	Ø
30 -32 -	S-16	NT	Øz	Ø
32 -34	S-17	NT	Ø 8	Ø
34 -34.1	S-18	NT	08	0
34.1-39.1	Run 1	NT	Ø 8	Ø
39.1-40	8-19	NT	NT	NT
40 -42	S-20	Ø	88	Ø
42 -44	S-21	NT	NT	NT
44 -46	S-22	Ø	Øs	NT
46 -48	S-23	NT	NT	NT
48 -49.5	Run 2	NT	NT	NT
49.5-52.5	Run 3	NT	NT	NT
52.5-55.5	Run 4	Ø	ØS	Ø
55.5-58 5	Run 5	NT	NT	NT


Note: Readings are all listed as values above background levels. E-9 302308 F.C. Wright associates, inc. APPENDIX F-1 GEOLOGIC WELLS LOGS FOR DEEP BEDROCK MONITORING WELLS


s -

-

....

.

455ABR

- B: Indicates a Background Measurement
- EXP: Explosimeter Readings (values in percent explosive/readings taken at top of casing.
- G.S.: Ground Surface
- HNU: Measurements made for organic vapor content using an HNU vapor analyzer (values in parts per million/readings taken at top of casing).
- N: Readings not above background level reading (many times this value equals Ø).
- NR/NT: No measurements made due to either; lack of time, instrument malfunction, or inavailability of instrument.
- RAD: Radiation measurements made using a Radiation Alert detector (values in mili-roentgens per hour/readings taken on soil and rock samples).
- SCH10: Schedule 10 Casing
- S.S.: Stainless Steel
- **T & C:** Threaded and Coupled Casing
- **T.O.C.:** Top of Casing
- WBZ: Water Bearing Zone
- WZN: Weathered Rock Zone

<u>EPTH</u>	HNU	EXP	RAD	COMMENTS		LITHOLOGIC DESCRIPTION
0	_0.8B	0 7 B	.03B	Cement grout seal	iz	Orange brown to brown, sandy
10	_0	02	N	to 3'. Annular space backfilled with		clayey silt; gravelly, sand fine to coarse, (ML) dry.
20	_0	07	N	bentonite slurry and bentonite	·	
30	_0	02	.03	pellets. (3'-89') 10" hole O'-89'.		Same as above but increased clay content. Material becoming saturated around 25'. Cohesive.
40	NR	NR	NR	Much water (15-20 gpm) in overburden.	<u>i -1</u> <u>i -1</u> <u>i -1</u>	Yellow brown to green brown,
50	NR	NR	NR ·		33~5 253 4 5~55	highly weathered granite saprolite with much granitic sand. Sand is coarse to fine.
60	-0.8B	07B 07	.03B N		5 4 5	Very soft, wet.
10	_0	02	N		5 - 5 - 57	
30	<u> </u>	NR .	NR	91' of 6" dia., SCH10, s.s. casing		White to yellow brown to gray granite. Highly weathered in
90	-NR	NR	NR	set at 89'. 6" hole 89' to 147'	Chin	zones with several mud seams. Much quartz and feldspar. Some
\smile	NR	NR	NR	Possible WBZ 95' (trace) WBZ 99'-102' (1 1/4		pyrite.
110	0	07	N	gpm) WZN 104'. WBZ 109' (mud.		ticks owner over to owner boundlands
!0	_0.2	02	.03	filled 1 3/4 gpm). WZN 111' - 114'.	泛派	Light green gray to green hornblende granite (or amphibolite). Much pyrite. Weathered zones. Trace
• 30	-NR	NR	NR	WZN 120'. WZN 126 - 128' Possible WBZ 136'	1111	purple quartz. Dark green hornblende granite. Much
140	NR	NR	NR	(trace) WZN 141'	12	hornblende. Many metallic minerals (pyrite, etc.). Fairly hard.
57	_0.2	0%	.03	Bottom of Well 147' L	うろに	Hard.

Drilling Began: 11/13/84 Drilling Completed: 11/19/84 Well Construction Completed: 11/19/84 Development Completed: 11/19/84 Driller: William Stothoff Co. Geologist: JST Well Type/Aquifer: Deep Rock/Granite 'J DEP Permit No. 2525632 Total Depth: 147' Depth to Bedrock: 77' Depth to Competent Bedrock: 82' Elevation T.O.C.: 837.72' Elevation G.S.: 836.01' SWL(DATE): (1/29/85) 812.49' Yield: 2.5 gpm

 $30^{-9.9}$

F-1-3

r.e. wright associates, inc.

							*te
EPTH	HNU	EXP	RAD	COMMENTS		LITHOLOGIC DESCRIPTION	
0	_ 1.2E	0 7 B	.02B	- -		r	,
				Cement grout seal it.		Dark brown to orange brown, silty	
10	_ 0.2	07	.03	Annular space back- filled with bento-		clay; sandy and clayey silt; sandy, much silt and clay, some coarse,	
				nite slurry which had cement added to	1 50005	quartz sand, sand increases at 10', slightly moist. (ML)	,
20	_ 0.2	02	N	the lower 3-4'. (3' to 80').	5 5- 5 - 7 5 h 5		•
				10" hole to 80'.	why in	Yellow brown granite saprolite.	;
30	_ 0.2	02	N	10" steel casing to 40'.	مرد ج م مح	Some granite gravel. Loose. Saturated. Becoming coarser graine	ar i
					- h 1	with depth. Some clay.	
40	_ 0.6	0%	N	Slight odor to water.	en ser		1.1
				15-20 gpm in over- burden.	5 5 5		:
50	_ 0.4	02	N	burden.	2 4 5 SCI24		3
						Highly weathered brown to brown	
60	NR	NR	NR	82.08' of 6" dia., SCH10, s.s. casing set at 80'.		green, hornblende granite with many weathered zones. Some weathered	· .
70	0.2	07	N			zones drill hard, some drill soft. Much sand in seams.	
70	0.2	04	N	6" hole from 80' to 124.5'		Auth Bana In Seans.	
80	NR	NR	NR				
00			~				
90	_ 0.6	NR	NR	Many small WZN from			1
				Many small WZN from 80' to 100'.		Dark green to brown, hornblende	
100	_ 0.6	NR	NR	WBZ 99-100 (1 gpm).	以公公	granite. Much hornblende and weathered quartz. Much silt and	•
						sand in seams. Some biotite and pyrite.	·
110	NR	NR	NR	WBZ 110-111' (5- 7 gpm).		Fireco	
				Mud and sand filled	以 於		
120	_ 1.0	07	N	seam. Strong odor to			A
124.5	_ 1.4	0%	N	water. WZN 123'.			. +
				Bottom of well 124.5'			÷.
Drill.	ing Bega	n: 1	/29/85		Tota	11 Depth: 124.5'	
	ing Comp					to Bedrock: 50'	

Drilling Completed: 1/30/85 Depth to Bedrock: 50 Depth to Competent Bedrock: 70' Well Construction Completed: 1/30/85 Elevation T.O.C.: 794.47' Development Completed: 1/30/85 793.60; Elevation G.S.: Driller: William Stothoff Co. Geologist: JST SWL(DATE): 788.22 (2/19/85) Well Type/Aquifer: Deep Rock/Granite Yield: 7-8 gpm ÷ NJ DEP Permit No. 2525633 302313 F-1-4 r.e. wright associates, inc.

I

1992					
<u>)EPTH</u>	<u>Hnu</u>	EXP	RAD	COMMENTS	LITHOLOIC DESCRIPTION
i0	0B	0 % B	.03B	terret terret terret	Orange brown, clayey, silty
••0	_ 0.4	0%	N	Annular space back- filled with cement grout to 20' and	sand. Trace clay, some silt, much sand. (SW) Buff to dirty white granite, highly
20	_ 0.2	07	N	bentonite/cement slurry mix from 20' to 49'.	weathered with much sand in seams, dry, hard.
0	_ 0.2	07	N	10" hole to 49'. 50.97' of 6" dia.,	Dark brown, silty, sand. Much mica, very soft, dry saprolitic.
40	_ 0.4	07	N	SCH10, s.s. casing set at 49'.	
.0	NR	NR	NR	6" hole from 49' to 186'.	
10	_ 0.2	02	NR	WZN 53'-57'.	Primarily dark green hornblende granite with some interbedded gray to buff biotite granite (possible
70	_ 0.2	07	N	Possible WBZ 61' (trace).	-/ -/ quartz diorite). Much silt and
0	NR	NR	NR	WZN 80'.	alternatively hard and soft.
90	_ 0.4	0 Z	NR	WZN 88-90'.	
				WZN 95-97'.	
\sim	NR	NR	NR	WBZ 101-103' (1 gpm). WZN 107'.	monel
! 10	<u> </u>	NR	NR	WZN 115-117'	
120	<u> </u>	NR	NR	Possible WBZ 119' (trace)	
: 0	_ 0	0 Z	.04		
140	_ NR	NR	NR	WZN 147-150'.	
: 0	_ 0.2	NR	NR		
<u>14</u> 0	NR	NR	NR		
1/0	<u> </u>	NR	NR	WBZ 178' (2-3 gpm) Mud filled seam.	1000
0	NR	NR	NR	Water very dirty.	The second s
186	_ 0.2	02	.03	WZN 185'. Bottom of well 186'	
L_ill: Well (1 velo 1 ill(('og	opment er: Wi gist: Type/Aq P Permi	plete ction Comple 11iam JST uifer	d: 1/ Compl eted: Stoth : Dee 25256	11/85 eted: 1/11/85 1/11/85 off Co. [[-]] p rock/granite	Total Depth: 186' Depth to Bedrock: Unknown Depth to Competent Bedrock: 42' Elevation T.O.C.: 826.09' Elevation G.S.: 824.22' SWL(DATE): 1/29/85 779.13' Yield: 3-4 gpm 302314
			₹ . 4		F-1-5

r.e. wright associates, inc.

.

DEPTH		HNU	EXP	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
0	_	NR	NR	NR	·	
Ū	_	612			Cement grout seal to	and sandy clayey silt; gravelly. Trace
		~ ~			Annular space back-	fine to coarse quartz sand. Some
10		0.6	07	NR	filled with bento- nite slurry which	fine to coarse quartz sand. Some granite cobbles, cohesive, wet at 10'. (ML and CL)
					had cement added to the lower 3 to 4'.	
20		1.4	07 -	NR	10" hole to 35'.	L may 5
					37' of 6" dia.,	saprolite with much sand, loose wet.
30	_	2.2	17	NR	SCH10, s.s. casing set at 35'.	
					6" hole from 35' to re	
10				117	125'.	下於於
40		NR	NR	NR	WZN 37' Much water (15-20 gpm)	
					in overburden.	
50 -		0.4	02	.02		
					WZN57'.	
60 -		0	07	N	WBZ 61' (4 gpm)	
•••		-			Mudfilled WZN 68'.	EXECUTION OF THE PARTY OF THE P
-0		~ ~	.			Alternating gray or white, biotite
70 .		0.2	02	N		dark green, hornblende granite
					WZN 78'.	(Possibly some amphibolite or
80 -	_	0.2	07	N		(///// pyroxenite). Biotite zones yield ////// reddish water, much pyrite is zones,
				~	WZN 86'.	Silver some silt and sand seams.
90 •	_	0.4	0 Z	N		
				•	WBZ 95.5-98'	
			~ ~		(trace)	
100 -	-	0.3	02	N		
					· ·	
110 -	_	0	07	N	Possible slight odor	
					to water.	
120 _		NR	NR	NR		
125 .		0	NR	NR	Bottom of well 125'	
143 4	-	Ū			Bottom of well 125	
Drilli	ng	Bega	n: 1	/14/8	5	Total Depth: 125'
Drilli						Depth to Bedrock: 26.5'
					eted: 1/18/85 1/18/85	Depth to competent Bedrock: 28' Elevation T.O.C.: 803.69'
					off Co.	Elevation G.S.: 802.13'
Geolog	is	t: J	ST			SWL(DATE): 795.69' (1/29/85)
					p rock/granite	Yield: 4 gpm
NJ DEP	' P	ermit	Nq	25256	332	
						F-1-6 302315

r.e. wright associates, inc.

.

1

PTH	HNU	EXP	RAD	COMMENTS		LITHOLOGIC DESCRIPTION
⇒0	_2.0B	0 % B	.02B			Med. Drown clayey sandy silt and silty
.0	_0.2	15 %	N	Cement grout seal to 3'. Annular space back-		sand. Garbage for 3 to 5'. Much silt and sand, some clay, fill (SM)
20	_0.4	0 Z	.04	filled with bento- nite slurry (3' to 90').		Light orange brown to brown clayey silty sand; gravelly and sandy silt; gravelly. Gravel increases with
10	_0.2	07	N	10 ¹¹ hole (0-90').		depth. Cohesive zones (SM)
40	_0.6	5 %	N	Garbage odor from hole.	1- 203	William have be assured by the
2 0	_1.4	07	N		2 5 1 .	Yellow brown to orange brown, granite saprolite with much silt and sand, soft but with hard zones. Much
50	NR	NR	N		1 5 5 S	angular weathered quartz and granite. much mica.
70	_2.4	5 %	N			
;0	-0:8B	57B 307	N	92.12' of 6" dia., SCH10, s.s. casing set at 90'.		Weathered brown to white granite
90	-0.4	5%	N	6" hole (90-165')		soft with much sand in seams.
\smile	NR	5 %	N	WZN 93-95' WZN 97.5'.		
1.0	— NR	NR	N	Possible WBZ 102' (TR.) WZN 106.5		
120	_0.2	07	N	WZN 113-115'.		Dark green, hornblende granite. Much
30	— NR	NR	N	WZN 127'. WZN 133-134'. WBZ 135' (4 gpm)		hornblende. Trace pyrite. Trace biotite. In some spots becoming a pyroxenite or amphibolite. At 106'
140	_0	02	N	WBZ 140-145' (1 gpm)		the above becomes interbedded with a grayish white biotite granite or gneiss. Much pyrite associated with
;0	_NR	NR	N		155	the hornblende granite. Some weathered zones. Biotite present
150	_ NR	NR	N		112	throughout but also occurs in zones.
55	_0	07	N	Bottom of well 165'	しらた	
-4114	ng Beg		11/21/	84	Total Doot	. 1651

:illing Began: 11/21/84 urilling Completed: 11/28/84 Well Construction Completed: 11/28/84 evelopment Completed: 11/28/84 _riller: William Stothoff Co. Geologist: JST ell Type/Aquifer: Deep rock/granite (DEP Permit No. 2525636

Total Depth: 165' Depth to Bedrock: 80' Depth to Competent Bedrock: 85' Elevation T.O.C.: 843.50' Elevation G.S.: 841.89' SWL(DATE): 807.42' (1/29/85) Yield: 5.0 gpm

302316

r.e. wright associates, inc.

F-1-7

 \smile

Page 1 of 2

COMBE FILL SOUTH LANDFILL PROJECT NO. 8455 MONITORING WELL D-6

				MONITO	ORING WELL D	9-6
)EPTH	HNU	EXP	RAD	COMMENT		LITHOLOGIC DESCRIPTION
0	_1.0B	NR	.02B			_
				10" steel casing to 24'	FII·· - <i>C</i>	Granite cobbles to 1'.
10	NR	NR	NR	8" steel casing to		-41
10		ИК	MK	100'. 10" hole to 104'.		•
				8" hole from 104' toFI	0	
20	-2.0	157	N	110'. 6" hole from 110' to		·
	10.0 C	C		175'.		
30	ND	ND	ND			,
30	NR	NR	NR	Annular spaces back- filled with a cement		
				grout 0' to 110'.		x
40	-2.0		N	Very strong		Green gray to gray green, fill and garbage. Garbage consists of much
	10.0 C	100 Z C		"methane" odors throughout fill.		garbage. Garbage consists of much decayed wood, glass, paper, plastics.
50	_1.0B	-	NR			decayed wood, glass, paper, plastics, metal, wire, and cloth-like material.
50	_1.05	UAD	NK		110	Many voids. Dry to 50'. Soft.
		·		E la		
60	NR	NR	NR	EL EL		973
70		ND				•
70	NR	NR	NR	lt [,]		•
				<u></u>		
80	NR	NR	NR		11:1	
					1	80' light brown silt or clay. Possil'
~~					1 2'-	clay liner. Harder than fill above,
90	_4.0	102	NR			low return.
				•		
100	_4.0	102	NR	112.33' of 6" dia.,		
			-	SCH10, s.s. casing fine set at 110'.		
	1 05			WZN 102'		
110	_1.0B	UZB	NR	WZN 109':		
				WZN 114'.		k
120	NR	NR	NR	WBZ 117-120' (1 1/4 gpm).	1 私公公	
	-			Odor to water.		- · · · · · -
						Dark green, hornblende granite. In some spots it may be amphibolite or
130	_2.3	2%	NR			pyroxenite. Large amounts of blotite
					以次次	occur occasionally. Some muscovite. Trace pyrite. Very hard.
140	_2.5	10 Z	NR			• • •
						,
150	_2.0	107	NR	WZN 155'.		
						·
.160	NR	NR	NR	WZN 159'.		
			****	WBZ_160-163'		
				(3-4 gpm).		
170	_3.2	127	NR			
175	3.2	127	.02			
			108		F-1-8	302317
				r a wriabl a		

r.e. wright associates, inc.

J.

WELL D-6 (cont'd)

Drilling Began: 1/23/85 Drilling Completed: 1/28/85 Well Construction Completed: 1/29/85 Development Completed: 1/28/85 Driller: William Stothoff Co. Geologist: JST Well Type/Aquifer: Deep rock/granite NJ DEP Permit No. 2525637

ہے۔

Total Depth: 175' Depth to Bedrock: 98.5' Depth to Competent Bedrock: 98.5' Elevation T.O.C.: 872.32' Elevation G.S.: 870.09' SWL(DATE): 809.74' (1/29/85) Yield: 4-5 gpm

F-1-9

					·
)EPTH	HNU	<u>EXP</u>	RAD	COMMENTS	LITHOLOIC DESCRIPTION
-			• • •	_	
0	_0.5B	OZB	.03B	Cement grout seal & to 3'.	Light to medium brown, sandy, gravelly silt. Moist. (ML)
10	_0	02	N	Annular space back- filled with bento- nite slurry. (3' to 45')	Light to medium brown, clayey silty sand; gravelly, trace
20	_0.7	27	N	10" hole 0' to 45'. Much water in overburden.	clay, trace gravel, some silt, much sand. Wet. (SM)
30	_0.4	NR	N	47.3' of 6" dia., SCH10, s.s. casing set at 45'.	Green gray highly weathered granite saprolite with much sand. Much granite gravel, cobble and boulder sized, wet, soft zones.
40	NR	NR	NR	6" hole 45' to 125'	Green gray hornblende granite with brown weathered zones. Pyrite present as crystals and
50	_2.0	37	NR	WBZ 47.5-48'. (20 gpm). Strong odor to water. WBZ 54' (2 gpm).	Stringers. Trace biotite. Hardness increases with depth.
60	NR	NR	NR	WZN 60.5'. WZN 65'.	
70	_5.6	5 %	.02	WBZ 68.5 (1 gpm). WZN 74'.	77' buff to light gray biotite granite. Appears gneissic. Hard. Some biotite in layers.
80	_2.2	2%	N _	WBZ 77' (2 gpm). Water very foamy.	
90	_2.2	2%	NR	WZN 98'	38' pale to dark green biotite, hornblende granite. Some pyroxenes or amphiboles. Biotite increases with depth.
100	5.8	47	NR		
110	2.0	NR	NR	WBZ 112.5' (2 gpm)	
120	0.8ـــ	2%	NR	WBZ 122' (3 gpm) Water very foamy.	1224
125	6.1_	37	.03	Bottom of well 125'.	
Drill: Well (DEvelo Drille	ing Comp Constructor opment (er: Wil	plete ction Compl lliam	12/11/84 d: 12/1 Complet eted: 1 Stothos	7/84 ed: 12/17/84 2/17/84	Total Depth: 125' Depth to Bedrock: 37' Depth to Competent Bedrock: 37' Elevation T.O.C: 792.65' Elevation G.S.: 790.98'
	gist: J Syne/Acu		• Deen	rock/granite	SWL(DATE): 786.88' (1/29/85) Yield: 30 gpm
			2525638		302319
		1	Ļ		F-1-10
					· · · · ·

r.e. wright associates, inc.

Ŧ

- -					
)EPTH	<u>hnu</u>	<u>EXP</u>	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
0	-NR	3 7 B	. 04B	Cement grout seal to 5	Light to medium brown or green
.0	_NR	2%	N	Annular space back- filled with bento- nite slurry. (3' to 45')	brown, clayey sandy silt; gravelly, some clay and gravel; much sand and silt, clay increases at 5', wet at 10'.
0	NR	5 % 14 %	N	10" hole to 48.4'.	North (ML)
-30	_NR	4% 7%	N	÷	Green to green brown highly weathered granite saprolite with much medium to coarse quartz sand. Very soft, wet.
40	NR	37	N	50.71 of 6" dia., SCH10, s.s. casing set at 48.4'.	3-4
50	_0.2	NR	NR	6" hole 48.4' to 100'. WZN 50'.	
60	NR	NR	NR	WBZ 61' (3 gpm). Water has strong. odor and is foamy. WBZ 67' (1 gpm).	
\smile	_0.9	07	NR	WZN 73.5'	Dark green to blackish green, hornblende granite. Much soft,
;0	_NR	NR	NR	WBZ 80-82' (approx. 15 gpm).	brown weathered zones, trace biotite and pyrite.
1 0	_4.7	37	NR	Possible WBZ 93' Water has a strong "biting" odor.	
10	_5.3 6.3	27	NR	Bottom of well 100'.	

/rilling Began: 11/29/84 Drilling Completed: 11/30/84 Tell Construction Completed: 11/30/84 Development Completed: 11/30/84 Driller: William Stothoff Co. Geologist: JST Tell Type/Aquifer: Deep rock/granite ..J DEP Permit No. 2525639

Total Depth: 100' Depth to Bedrock: 40' Depth to competent Bedrock: 42' Elevation T.O.C.: 810.16' Elevation G.S.: 808.16' SWL(DATE): 798.47' (1/29/85) Yield: 20-25 gpm

r.e. wright associates, inc.

DEP	TH	HNU	EXP	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
0	_	3.0B	2 % B	.02B		J L
Ū		5.02			Cement grout seal to 2'.	Orange-brown, clayey, gravelly, sandy silt. Some weathered granite gravel,
10	-	1.0	10 Z	.02	Annular space back- filled with bento-	cobble and sand boulder sized, trace clay, some sand increase with depth.
					nite slurry $(2' - 81')$.	
20		1.6	47	.03	10" hole 0 to 81'.	
30	-	NR	NR	NR	~5 gpm water in overburden. 83.5' of 6" dia., SCH 10, SS casing set at 81'.	As above but increased silt and fine sand content.
40	-	2.2	37	.02	6" hole from 81' to 125'.	quartz.
50	_	3.6	17	.02	Strong garbage- type odor noticed	Yellow brown clayey sandy silt, trace clay, some sand, much silt, saprolitic.
					near 35'.	Green-brown highly weathered granite
60	-	1.6	17	NR		saprolite and highly weathered granite bedrock. Some saprolite, much weathere_ granite, very hard in zones.
70	-	4.0	27	NR		
80	-	1.2	27	.02	WBZ 83' (¹ z gpm)	
			-		MD7 02 (3 Rhm)	
90	-	1.4	07	NR		Srown-green, gray and green-gray granit
100	-	NR	NR	NR	WBZ 102' (10 gpm)	
110		NR	NR	NR	WBZ 107' (5 gpm)	
110		NK	MK	111		
120		NR	NR	NR		
125		NR	NR	NR		
					Ve	rtical Scale 1" = 20'
		ng Bega			84 /26/84	Total Depth: 125' Depth to Bedrock: 50'
					eted: 12/26/84	Depth to Competent Bedrock: 75'
Dev	elop	oment C	comple	eted:	12/26/84	Elevation T.O.C.: 809.24
					off Co.	Elevation G.S.: 807.24' SWL (Date): 783.03' (1/29/85)
		lst: J			n rock/oresite	Yield: 16 gpm
		pe/Aqu Permit			p rock/granite 540	11ETU. 10 Bhm
110						F-1-12
			·*•();	L	n o weigh	Baccociales inc 302321

r.e. wright associates, inc.

I

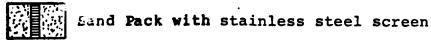
APPENDIX F-2

÷

1

GEOLOGIC WELLS LOGS FOR SHALLOW MONITORING WELLS

Portland Cement Grout


Bentonite Slurry with stainless steel solid

Peltonite Seal

Caved Formation

9 (B)

302323

F-2-1 r.e. wright associates, inc.

455ABR	45	57	B	R
---------------	----	----	---	---

B: Indicates a Background Measurement

- EXP: Explosimeter Readings (values in percent explosive/readings taken at top of casing.
- G.S.: Ground Surface
- HNU: Measurements made for organic vapor content using an HNU vapor analyzer (values in parts per million/readings taken at top of casing).
- N: Readings not above background level reading (many times this value equals 0).
- NR/NT: No measurements made due to either; lack of time, instrument malfunction, or inavailability of instrument.
- RAD: Radiation measurements made using a Radiation Alert detector (values in mili-roentgens per hour/readings taken on soil and rock samples).
- SCH10: Schedule 10 Casing
- S.S.: Stainless Steel
- **T & C:** Threaded and Coupled Casing
- T.O.C.: Top of Casing
- WBZ: Water Bearing Zone
- WZN: Weathered Rock Zone

39.00

302324

r.e. wright associates, inc.

Depth HNU	EXP	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
0-1.0B	0 7 B	NT	6" Steel protector	Green brown to yellow brown, sandy silt; some gravel and cobbles;
2.6	22	NT	to 3'. Cement grout seal	trace clay. Garbage encountered at 2'. Saturated at 4' to 5'. (ML)
10-3.5	37	NT	Annular space back- filled with bento- nite slurry (3'-8')	Clay content increases.
2.6	5%	NT	4" dia., SCH10, solid s.s. casing to 14'. Peltonite seal 8'	Green brown to brown green, granite sapprolite. Very sandy. Some gravel. Highly weathered. Soft. Much water at 20'. Water is foamy.
20-4.0	5%	NT	Top of 4" dia., 20 slot, S.S. screen	water 18 Idamy.
25-2.2	27	NT	Sand pack 11'-25' Bottom of 4" dia., 20 slot, S.S. screen 24'	Dark green, granite bedrock.

Drilling Began: 12/18/84 Drilling Completed: 12/18/84 Well Construction Completed: 12/19/84 Development Completed: Driller: William Stothoff Co. Geologist: JST Well Type/Aquifer: Shallow Mon./Saprolite NJ DEP Application No. 2525627

Total Depth: 25' Screened Interval: 14' to 24' Depth to Bedrock: 23.5' Elevation T.O.C.: 793.67; Elevation G.S.: 791.27' SWL(DATE): 787.96 (1/29/85) Yield: 10-20 gpm

r.e. wright associates, inc.

F-2-3

Dept	<u>h hnu</u>	EXP	RAD	COMMENTS	- ·	LITHOLOGIC DESCRIPTION	_ به
0	_1.0B	2 % B	.02B	6" steel protector 7 casing installed to 3'. Cement grout seal to 3'.	· · · · · · · · · · · · · · · · · · ·	gravel is granite, sand is	-
10	_0	02	N	Annular space back- filled with bento- nite slurry. (3' to 35').	·		,
20	0.8	07	N	4" dia., SCH10, solid s.s. casing to 40'. 10" dia., T&C, steel casing to	I	Saturated around 17'.	4
				approx. 44°.			•
30	_0.4	02	N	Peltonite seal	~·~1 · _ ·-		•
40	_0.2	02	N -	from 35' to 38'. Sand pack from 38' to 52'. Top of 4" dia., 20 slot, s.s. screen to 41'.		Brown to green brown, granite saprolite. Very sandy with many weathered granite fragments. Very soft. Some pyrite.	•
50	_0.2	07	N	Some water here. Bottom of 4" dia., 20 slot, s.s. screen-51'.		Buff to green, highly weathered	¥ 4
58	_NR	oz	NR	Caved formation. Bottom of hole 58'		and broken, hornblende granite.	
	Developmer Driller: Geologist:	Complet truction t Comp Willia JST /Aquif	ted: 1 on Comp pleted: am Stot er: Sì	1/2/85 Dieted: 4/3/85 1/3/85 Choff Co. Mallow Mon./Saprolite	Total Depth: 58' Screened Interval: 41' to 51' Depth to Bedrock: Approx. 52' Elevation T.O.C.: 817.92' Elevation G.S.: 816.06' SWL(DATE): 798.79' (1/29/85) Yield: 3-4 gpm		

F-2-4 r.e. wright associates, inc.

· (.)

ł

L_PTH	HNU	EXP	RAD	CONNENTE		LITHOLOGIC DESCRIPTION
				COMMENTS		LITHOLOGIC DESCRIPTION
0	_ NR	NR	NR	6" steel protector ta casing installed to 3'.		Medium to light orange brown, gravelly, silty sand. (SP)
10	-1.0	02	NR	Cement grout seal to 3'. Annular space back- filled with bento- nite slurry. (3' to 34'). 4" dia., SCH10, solid s s casing		Light orange brown, sandy, clayey silt. (ML)
20	- 1.2	NR	NR	solid s.s. casing to 37.5'. Approx. 5 gpm of water in over- burden, fairly strong odor.	 	Brown green, sandy silt. (SM)
_0	_ 1.6	0 Z	NR		~ 24 7 5 ~ 1 5 5. 1 5 5.	
) 0	NR	NR	NR	Peltonite seal from 34' to 35'. Sand pack from 35' to 49.5'. Top of 4", 20 slot, s.s. screen 37.5'.	~ > > . . ~ > . ~ ~ . ~ ~ . . ~ . . ~ .	Green brown, granite saprolite with much sand and some silt. Very soft.
'9. 5	— NR	NR	NR	Bottom of 4', 20 slot, s.s. screen 47.5'.	15	Green to brown green, hornblende granite. Much quartz.
Dril Well Deve Dril Geol	lopment ller: N logist:	omplete ruction t Compl Willian RCW	d: 12 Compl eted: Stoth		Total Dept Screened 1 Depth to F Elevation Elevation SWL(DATE):	nterval: 37.5' to 47.5' edrock: 46' T.O.C.: 809.93' G.S.: 807.93'

- Geologist: RCW Well Type/Aquifer: Shallow Mon./Saprolite
- NJ DEP Permit No. 2525629

302327

Yield: est 5 gpm (open hole)

18108

.

r.e. wright associates, inc.

F-2-5

DEPTH	HNU	EXP	RAD	COMMENTS	يەتق ا	LITHOLOGIC DESCRIPTION	<u>_</u>
0	_2.0B	0 7 B	.03B	6" steel pro- tector casing installed to 3'.	1	Brown to yellow brown, clayey sandy silt; gravelly, some weathered granite gravel, sand fine to coarse. Trace garbage	1
10	0.8 _1.0	57 47	N .01	Cement grout seal to 3'. Annular space backfilled with bentonite slurry	·	fine to coarse. Trace garbage near 2'. (ML)	F. R
	1.0	47	.01	(3' to 18'). Peltonite seal 18' to 23'.	10-1-		1
20	_1.4	42	N	Sand pack 23' to 42'.	50,11		а ж. т
	2.6	5 %	N	4" dia., solid, s.s. casing to 32'.	15 4	Dark green to green brown, highly weathered granite saprolite, with much sand, soft.	•
30	_3.1	5%	N	Top of 4" dia.,	· · · · · · · · · · · · · · · · · · ·		ر
	1.8	37	N	20 slot s.s. screen ~ 32'. Some water here with a very			
40 42	_ 2.2	4 7 NT	N NT	strong odor. Bottom of 4" dia., 20 slot,		Brown green, hornblende granite.	-
42	NI	N1	-	s.s. screen - 42'.			

Drilling Began: 12/4/84 Drilling Completed: 12/4/84 Well Construction Completed: 12/5/84 Development Completed: Driller: William Stothoff Co. Geologist: JST Well Type/Aquifer: Shallow Mon./Saprolite NJ DEP Permit No. 2525630

11:5

Total Depth: 42.0' Screened Interval: 32' to 42' Depth to Bedrock: 42' Elevation T.O.C.: 810.33' Elevation G.S.: 808.13' SWL(Date): 798.00 (1/29/85) Yield: 2 gpm

COMBE FILL SOUTH LANDFILL PROJECT NO. 8455 MONITORING WELL S-5

<u>) -7TH</u>	HNU	EXP	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
يە. 0	_1.0B	0 2 B	.03B	6" steel pro-	-
· •	0.2	02	N	tector casing installed to 3'. Cement grout seal to 3'.	Orange brown, sandy clayey silt; gravelly, trace of granite gravel, sand occurs in lenses, cohesive
10	0.2	07	N	Annular space backfilled with bentonite slurry (3'-15').	slightly moist to moist. Wet at 10'. (ML)
	0.4	02	N	Peltonite seal from 15' to 17'.	
20	_0.2	07	N '	Sand pack from 17' to 29'.	Yellow brown to green brown,
	0.5	17	N	Top of 4" dia., 20 slot, s.s. screen - 19'. Much water around	highly weathered granite saprolite with much sand. Soft.
29	_0.8	02	N	26'. Bottom of 4" dia., 20 slot, s.s. screen to 29'. Bottom of hole 29'.	Green, hornblende granite.

Drilling Began: 1/22/85 Drilling Completed: 1/22/85 Well Construction Completed: 1/22/85 Development Completed: 1/23/85 Driller: William Stothoff Co. Geologist: JST Well Type/Aquifer: Shallow Mon./Saprolite NJ DEP Permit No. 2525631

1411 Q.S

Total Depth: 29' Screened Interval: 19' to 29' Depth to Bedrock: 29' Elevation T.O.C.: 804.77' Elevation G.S.: 801.98' SWL(DATE): 796.50' (1/29/85) Yield: 10-20 gpm

F-2-7

302329

r.e. wright associates, inc.

COMBE FILL SOUTH LANDFILL PROJECT NO. 8455 MONITORING WELL S-6

<u>DEPTH</u>	HNU	EXP	RAD	COMMENTS	LITHOLOGIC DESCRIPTION
0	NR	NR	NR	6" steel protector 5 casing installed to 5	
10	_ 1.0	02	.02	Annular space back- filled with bento- nite slurry (3' to 42'). 4" dia., SCH10,	~~~
20	_1.0	07	N	solid s.s. casing	Dark brown to orange brown, sandy clayey silt; gravelly. Some sand in lenses, some granite cobbles, dry to slightly moist. (ML)
30	_1.2	02	N		Orange brown to yellow brown clayey, sandy silt. Sand is
40	_1.2	OZ	N 	Peltonite seal from	fine to medium. (ML)
50.	_0.8	oz	N	Sand pack from 45' to 65'. Approx. 1.3 gpm water Top of 4" dia., 20 slot, s.s. screen- 54'	Yellow brown to green brown, highly weathered, granite saprolite with much coarse grained sand. Soft.
60	_NR	NR	NR	Bottom of 4" dia., 20 slot, s.s. screen	· · · ·
69	_NR	NR	NR .	Caved form. 64' to 69'. Bottom of hole 69'.	Green to green brown granite bedrock.
Drills Well (Develo Drills Geolog Well	opment (er: Wil sist: J	leted: tion (Complet lliam JST Jfer:	: 1/8 Comple ted: Stothe Shal	ted: 1/9/85 1/9/85 off Co. low Mon /Saprolited according	Total Depth: 69' Screened Interval: 54' to 64' Depth to Bedrock: 68.5' Elevation T.O.C.: 840.09' Elevation G.S.: 837.37' SWL(DATE): 813.19' (1/29/85) Yield: 2-4 gpm Sp IMCo 302330

L

APPENDIX G

.

فتعت

TEST PIT CONSTRUCTION PROCEDURES AND LOGS

•

۰.

-- ,

-

in the pre-

Excavation Procedures - Backhoe Test Pits

A John Deere Model 510 backhoe with a 12- to 13-foot reach capability and a specially fitted safety shield for the operator was used to advance each of the three test pit excavations shown on Figure 1.3-2. Completed test-pit depths ranged from 11 to 12 feet. Continuous air monitoring using an HNU photoionization detector and an MSA Explosimeter was conducted during the excavation. Both the air in the vicinity of the opened test pit and excavated material removed by the backhoe was monitored. Excavated material was piled on large plastic sheets placed near each pit. Since no apparently hazardous material was uncovered (determined by air monitoring and visual examination), the need to separate contaminated material from uncontaminated material as set forth in the FSP was not warranted.

Since, for safety reasons no one was allowed to enter a test pit, all soil and/or fill descriptions were made from material retrieved in the backhoe bucket. All descriptions and observations were made by a REWAI geologist and are included on soil classification logs which follow this procedural text.

In addition to soil descriptions for each test pit, there was also at least one soil sample collected from each test pit for laboratory analysis. Two samples were collected from Test Pit 1 (TP-1), consisting of a \emptyset to 9 foot depth composite, and a 9 to 11.3 feet interval composite. A \emptyset to 12 feet composite, was collected from each of Test Pit 2 (TP-2) and 3 (TP-3).

Samples were taken from the backhoe bucket, however, the material sampled was not in direct contact with the bucket. The sample was removed from the bucket using a laboratory cleaned, stainless steel spoon for VOA samples and a clean gloved hand for metals samples. The remaining procedures followed during the sampling are outlined in Section 3.6.2 of the Field Sampling Plan.

> G-1 r.e. wright associates, inc.

Decontamination of the backhoe between sites consisted of a thorough steam cleaning.

cong

i.

G-2 r.e. wright associates, inc.

R. E. WRIGHT ASSOCIATES, INC.

SOIL CLASSIFICATION SHEET

Project Combe Fill South Landfill	Job No. 8455	Drill Hole No. TP-1
Site Area Southeast Corner	Date 8/27/85	Elevation
Contractor R & R Construction	Sheet 1 of 1	SWL
Classified by JST		Core Diameter

 ••	o'z	.:		1	arse	[REM			
Depuil Ft	0	Rec.	SOIL DESCRIPTION		nular		ical Con			
านี้	Sample	1.	Density (or Consistency), Color		Soils Range Grain		Geologic Data,			
้า	Sal	15	Soil Type - Accessories	-	1		ld Water	•		
		†		Dize	Shape		ruction	Prob.		
		1	 Medium to dark brown, cobbly, clayey silt. Becoming siltier and sandier 		1	Soil	Air	Soil	EXP Air	
			with depth. Very sandy in spots. Many							
		· ·	granite cobbies. Poorly sorted.			5.0	5.0	1%	1%	
			Fill. Dry.			5.0	г о [.]	197	1 07	
	-					5.0	5.0	1%	1%	
]			which becomes stronger with depth.			5.0	4.0	12	17	
									•	
0	_		Red-brown to brown, gravelly, sandy			5.0	4.0	12	17	
	S 1	NA	silt. Trace clay.			5.0	4.0	1.6	1.6	
-			- Yellow brown, slightly gravelly,			5.0	4.5	1%	1%	
			- silty sand. Sand is fine to very			5.0	4. J	1.6	16	
	I		coarse grained. Highly weathered.							
16.0	-	ļ	Some granite cobbles. Damp. Fill.			5.2	3.5	1%	17	
1 (ł	-							
\mathbf{H}	Ì	4	-			5.5	5.0	17	12	
!	1	ł	-				·.			
<u></u> 0	1	ļ					•			
<u> <u> v</u>.0</u>	-	ł	Same as above.			5.0	5.0	1%	1%	
·		ł	_							
<u>ل</u> ت		ł	1			6.0	4.0	2%	17.	
<u>7:0</u>		t	- Dirty yellow-brown, highly weathered				4.0	2.0		
0	t	t	"granite" sand. Some red-brown silty seams. Some granite cobbles. Sand is							
	2	NA	fine to coarse grained. Fill. Strong			8.0	3.5	3 %	1%	
			odor.						ļ	
i		t	-			7.5	3.5	4%	1%	
<u> </u>	1	Ť	Bottom of Test Pit #1 11.3'			,	3.5	7/0	1/0	
		T								
·]		Γ	Sample #1 (0-9' composite)						1	
-		Ι	2 VOA's A30012/A30013				age noti			
1	- 1	I	2 Metals A30014/A30015				ns notice		1	
1			- Samples #2 (9-11.3')			present	d damp s	spors ar	e	
	. 1						 s listed	are in	DDT OT	
		L	2 Metals A30018/A30019				s above			
· 4		Ļ	=			levels.		-		
-		Ļ					und read d at the			
\checkmark	·	Ļ	_ [↓]		_		und HNU			
		Ļ	1				und EXP		i •	
$ \rightarrow $		Ļ	- 200 - 0				3023	31	1	
4		Ļ					3023	JT		
		!							. <u></u>	

... L. WRIGHT ASSUCIATES, INC.

SOIL CLASSIFICATION SHEET

S	ite .	Area	<u>Combe Fill South Landfill</u> Job No. <u>80</u> <u>Near SB-2</u> Date <u>8/27</u>	/85	<u> </u>	Drill Hole No. TP-2 Elevation			
			or <u>R&R Construction</u> Sheet <u>1</u>	_ of		SWL_	Diameter		
_			······································			COLE	Diameter_		$-\smile$
<u>ب</u>	No.	5			arse		REMA		·
Depun Ft.	e	Rec	SOIL DESCRIPTION Density (or Consistency), Color		nular bils		nical Comp		i
าก่อ	Sample	1.	Soil Type - Accessories		Grain		ogic Data, nd Water,		1
ີ	No.			-	Shape		truction P		с.
	4		Medium brown, sandy, slightly clayey		_	<u><u>1</u></u>	INU	E	EXP
	1		silt. Trace gravel. Fairly firm andtight. Damp.	ł		Soi1	Aír	Soil	Air
.;	1		CIBRCO Damp.	ł	-				٠
2.0	Ļ		Garbage and fill. Glass bottles, much	1		5.0	4.0	17	1%
<u> </u>	{		plastic, garbage bags, wood, shoes, newspaper, many metal pipes and frames,	1					
			washing machine, mufflers, springs,						· · ·
			wires. All of this trash is						· · ·
4.0			surrounded by a granite cobble, sandy silty matrix. Overall color is gray-			6.0	4.0	17	12
			- brown. Material is highly permeable.						
!			Strong garbage odor. Water dripping into pit at 5'. Same to 12.0'.						
!			Into pit at 9. Same to 12.0.						
16.Q						6.0	5.0	1%	17 .
	S3	NA							
			<u> </u>						\sim
		•							
8.0						5.0	4.0	17	0-1%
;		•				5.0	410	- 4	· · · · ·
-									1
						F 0	a - a	1 67	
.0.0						5.0	5.0	.1%	17
									1
			_						ł
-		•	-						1
2.0	_					6.0	5.0	17	17
_			Bottom of Test Pit #2 12.0'						
			-						
-			— Sample #3 (0-12' composite) 2 VOA's A30006/A30007		_		arbage in		
			2 VOA S AS0000/AS000/ 2 Metals A30004/A30005				e-like odo picious ga		irums
	-					Reading	s listed	are in p	
						or perc levels.	ents abov	e backgr	ound
						Backgro	ound readi		
-			—				ed at the ound HNU =		po
	-						ound EXP =		
						ł	3023	35	:
	ļ					ł			

ł

R. E. WRIGHT ASSOCIATES, INC.

SOIL CLASSIFICATION SHEET

Site Area	Combe Fill South Landfill Job No. 845 Near E. Trout Brook HW. Date 8/27	/85	····	Eleva	Hole No ation		
Contracto Uassifie	or <u>R&RConstruction</u> Sheet <u>1</u> ed by <u>JST</u>	_ of	1	SWL	Diameter		
D. Ftl. Sample No. In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Gra Sc Range	arse nular bils Grain Shape	Geol Grou	REMA nical Com ogic Data nd Water truction I	np., a,	
	Medium brown to orange-brown, silty gravelly sand. Loose. Saturated at 1.5'. Some granite cobbles.				Air 5.0	<u>EX</u> Soil 1%	
	Dark brown, sandy, clayey silt and			5.0	5.0	1%	1%
	silty sand. Sand is fine to coarse grained. Poorly sorted. Some garbage present. Fill.			7.0	5.0	2%	17
	Same to 9.0' with more granite cobbles and garbage present. General type garbage. All fill to 9.0'.			6.0 6.0	5.0 4.5	2% 2%	1Z 1Z
6-0- 54 NA				6.2	5.0	3%	2%
				5.0	4.5	17	12
	At 9.0' soil looks more natural. Gray-brown, silty sand and sandy silt.			5.0	5.0	17	12
	Better Sorting. More compact and tight.			4.5	5.0	1%	17
2.0	 Bottom of Test Pit #3 12.0'			5.0	4.5	17	17
	Sample #4 (0-12' composite) 2 VOA's A30008/A30009 2 Metals A30010/A30011			1.5' c	seeping f on the lar ading on om.	ndfill si	de.
				or per levels Backgr	cound read	ove backg dings wer	round
\sim				Backgi	red at the cound HNU round EXP	= 0 ppm = 0%	post.
·	_		_		3029	50	

APPENDIX H

RESULTS OF SIEVE AND HYDROMETER TESTING

-

4

ألحه

. ~

....

• •

••••

ON SELECTED SOIL SAMPLES

JM500-6/BST-3412

REWAI

Carl-8455 RFC,EIVED

UST borings, soils & testing co. SUBSURFACE INVESTIGATION

GEOTECHNICAL ENGINEERING

June 24, 1985

Wright Associates 3240 Schoolhouse Road Middletown, Pennsylvania 17057

Attention: Mr. Carl Boyer

Re: Laboratory Testing Job 8455/Combe Fill S. 3/72 P.O. 8455-595

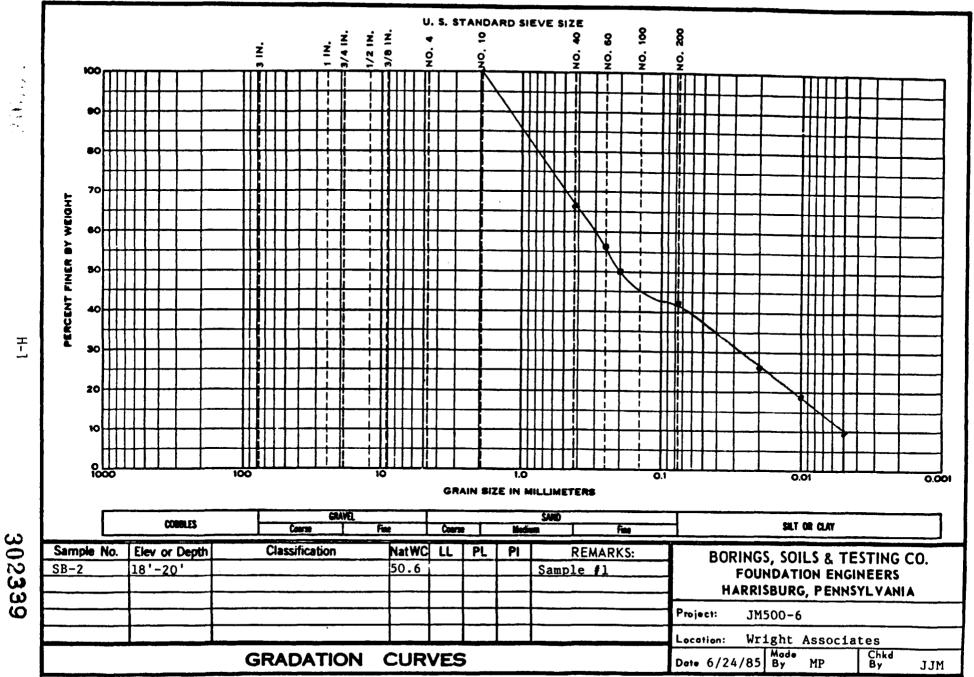
Gentlemen:

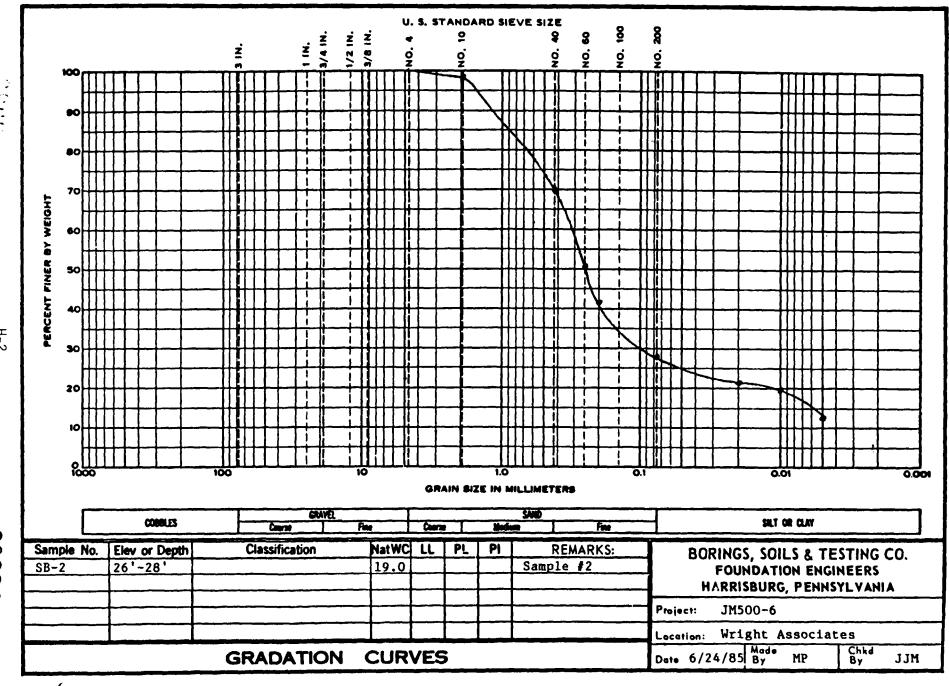
Transmitted herewith are two (2) copies each of the laboratory test results for the above referenced project.

Also enclosed is our invoice for work completed on this project.

It has been a pleasure serving you on this project and we are looking forward to doing more work of a similar nature for you.

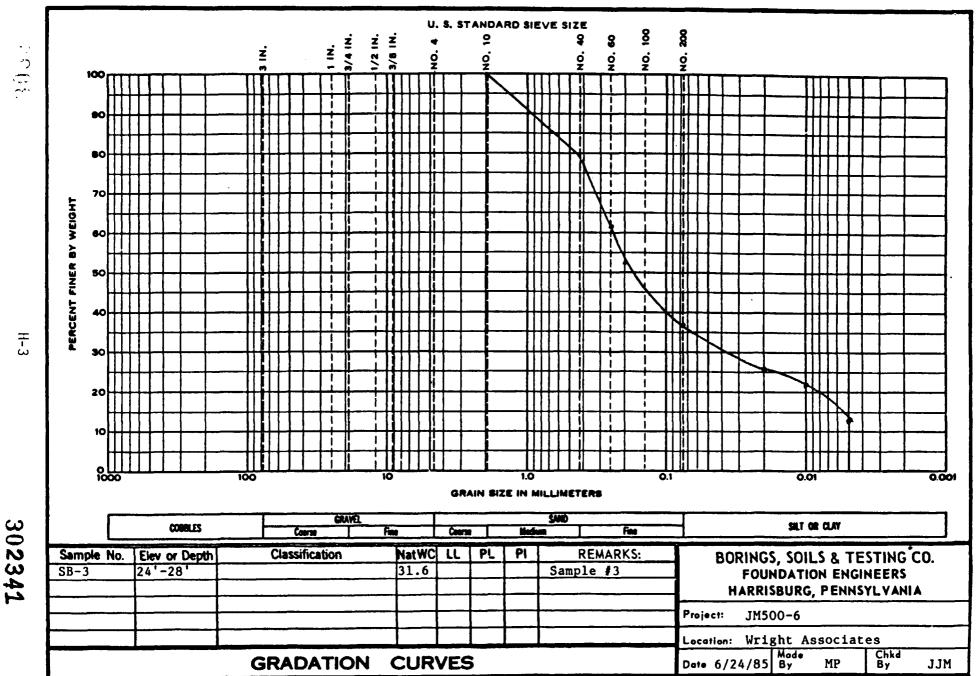
Very truly yours,

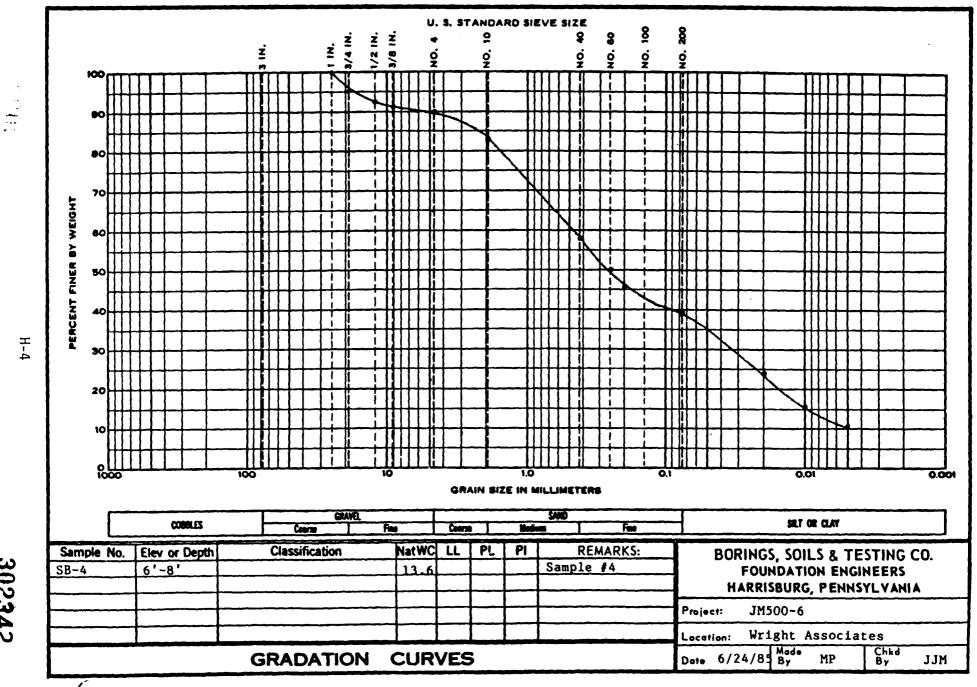

BORINGS, SOILS & TESTING CO.

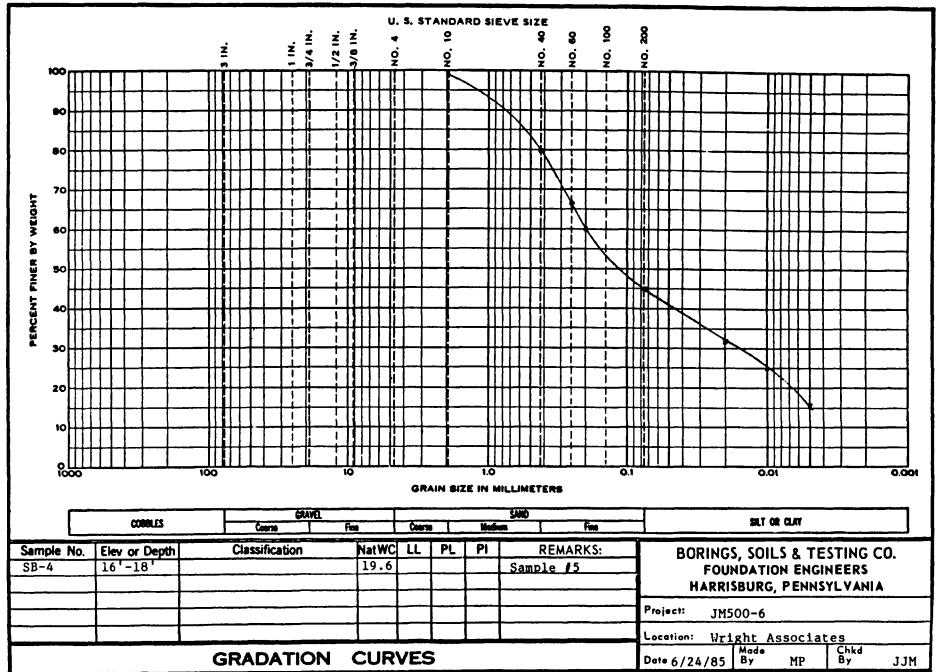

Joseph C. Mehalick

President

JCM/bad


encls.




H-2

í.

an (an the second s

H-5

302343

APPENDIX I

......

.

. ...

HEALTH AND SAFETY MONITORING REPORTS

302**344**

· _--

Date: 11/13/84

يند م ر امرين

- `

Background HNU Reading (Measured at Trailer): 0.8 ppm Background EXF Reading (Measured at Trailer): 07. Background RAD Reading (Measured at Trailer): .03 mm/hm Work Area and Task: Air Rotory drilling at D-1

Ambient HNU Readings (Measured in Working Area): O_{PPm} Ambient EXP Readings (Measured in Working Area): O_{7_0} Ambient RAD Readings (Measured in Working Area): $O_{-.O3} mr/h$, Level of Protection Required: Level D

Comments: No anomalous readings during drilling.

On-Site Health and Safety Officer: Geffing & Thompson (REWAI)

I-1 r.e. wright associates, inc.

Date: 11/14/84

Background HNU Reading (Measured at Trailer): 0.8 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): .03 m/hr Work Area and Task: Air Rotory Drilling (ARD) of Well D-1 Soil Boring / Rock Coring (SB/R) of SB-3

Ambient HNU Readings (Measured in Working Area): ARD: Oppon SB/RC: O-3.2ppm Ambient EXP Readings (Measured in Working Area): ARD: 0% SB/RC: 07. Ambient RAD Readings (Measured in Working Area): ARD: O-.03 mr/hr SB/RC: O-.03 mr/hr SB/RC: O-.03 mr/hr SB/RC: O-.03 mr/hr

Comments: On SB-3 on HNU reacting taken inside the object around 4-6' showed nearly SO ppm; however, when measurment was taken above augers a reacting of only 3-sppm resulted. Ambient working area was below sppm so Level D used. Eventually the high readings inside the augers also subsided.

On-Site Health and Safety Officer: Jeffrey S. Thompson (REWAI)

10266

r.e. wright associates, inc.

I-2

Date: 11/15/84

- 0000 B

Background HNU Reading (Measured at Trailer): 0.5ppm Background EXP Reading (Measured at Trailer): 0-17. Background RAD Reading (Measured at Trailer): .02mr/hr Work Area and Task: Air Rotory Drilling at Well D-1 Soil Boring / Rock Coring at SB-3

Ambient HNU Readings (Measured in Working Area): ARD: Oppm SB/RC: O-16.5 ppm Ambient EXP Readings (Measured in Working Area): ARD: 07, SB/RC: O-100% Ambient RAD Readings (Measured in Working Area): ARD: no readings (NR) SB/RC: O-102 nur/hr Level of Protection Required: ARD required Level D SB/RC required Level D (mostly Level C).

Comments: Most of the very high readings were occuring around the auger heads on sp.3, so any work done in this vicinity was on Level C as detailed in HASP. When working further away from rig or when HWU levels dropped and stayed below sppm Level D was resurred. Both drillers and geologist are on Level C.

Affing &. Thompson (REWAT) On-Site Health and Safety Officer: 4

r.e. wright associates, inc.

DAILY HEALTH AND SAFETY REPORT

Date: ////6/85

Phi

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Work at Well D-1 Soil Boring Rock Coring at SB-3

Ambient HNU Readings (Measured in Working Area): ARD:NR SB/RC: O-G.Oppm Ambient EXP Readings (Measured in Working Area): ARD:NR SB/RC: 0% Ambient RAD Readings (Measured in Working Area): ARD:NR SP/RC:NR Level of Protection Required: ARD required Level D (determined from Previous work).

SB/RC required Level C and Level D

comments: On SB/RC Level C was required while augering through the saprolite. Readings were greatest around the auger heads.

On-Site Health and Safety Officer: $f_{i}f_{uy} \& Thompson (R \in \omega AI)$

I-4

r.e. wright associates, inc.

DAILY HEALTH AND SAFETY REPORT

Date: ///19/84

0 ° 9 8

د.

Background HNU Reading (Measured at Trailer): Oppm Background EXP Reading (Measured at Trailer): 070 Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling of Well D-1 Soil Boring (Rock Coring of SE-3 (coring)

Ambient HNU Readings (Measured in Working Area): ARD: O-O.2 ppm Ambient EXP Readings (Measured in Working Area): ARD: O7. SB/RC: 07. Ambient RAD Readings (Measured in Working Area): ARD: O-.03 mr/hr SB/RC: NR Level of Protection Required: ARD required Level D SB/RC required Level D

Comments: While constructing piezometer in SB-3 some low level (1-6ppm) HNU recollings occurred (especially while installing sonal pock). These recollings were not at high enough levels for a long enough period of time to womant Level C. I left decision up to Ron Weaver and drillers.

On-Site Health and Safety Officer: Jeffury 3-Thompson (REWAI)

Date: 11/20/84

Background HNU Reading (Measured at Trailer): 0.1 ppm Background EXP Reading (Measured at Trailer): 0-17 Background RAD Reading (Measured at Trailer): 02mr/hr Work Area and Task: Air Rotory Rig stuck 30 no work. Soil Boring / Rock Coring at SB-2

Ambient HNU Readings (Measured in Working Area): ARD: NR Ambient EXP Readings (Measured in Working Area): ARD: NR SB/RC: 07. Ambient RAD Readings (Measured in Working Area): ARD: NR SB/RC: 0-.02 m^r/hr Level of Protection Required: ARD required Level D (no intrusive work) SB/RC required Level D

Comments: ARD spent day cleaning up at D-1, stean cleaning at Commonal Post, and being stuck while trying to get to site D-5.

On-Site Health and Safety Officer: $Affur \ge Thompson (R \in \omega Ar)$

r.e. wright associates, inc.

Date: 11/21/84

TOPHY

•

Background HNU Reading (Measured at Trailer): 2.0 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): .02 mr/hr Work Area and Task: Air Roberg Drilling at Well D-5 Soil Boring / Rock Coring at SB-2

Ambient HNU Readings (Measured in Working Area): ARD: 0-24 ppm. SB/RC: 0-5.4 ppm Ambient EXP Readings (Measured in Working Area): ARD: 0-157 SB/RC: 070 Ambient RAD Readings (Measured in Working Area): ARD: 0-.04 mr/hr SB/RC: 0 Level of Protection Required: ARD required Level D SB/RC required Level D SB/RC required Level C and Level D (level c protection was used for soil Sompling; once coring storted, reading: allowed Level D).

Comments: 15% explosive occurred for a very short time near 10' in D-S. Monitoring showed this fell off shortly after 10'.

On-Site Health and Safety Officer: Jeffrey S. Thompson

I-7 r.e. wright associates, inc.

Date: 11/26/84

Background HNU Reading (Measured at Trailer): 0.8ppm Background EXP Reading (Measured at Trailer): 0-5% Background RAD Reading (Measured at Trailer): .03mr/hr Work Area and Task: Air Rotory Drilling of Well D-5 Soil Boring/Rock Coring of SB-2 (Piezometer Construction)

Ambient HNU Readings (Measured in Working Area): ARD: 0-1.4 ppm SB/RC: NR Ambient EXP Readings (Measured in Working Area): ARD: 5-30% SB/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: 0-.03 mr/hr SB/RC: NR Level of Protection Required: ARD required Level D SB/RC required Level D

Comments: EXP was closely monitored on D-S and most of time remained around 5%. (30% was a peak).

Level a used during construction on SB-2 due to previous HNU readings (11/21/84) and inducidability of HNU for Raws use.

On-Site Health and Safety Officer: Affrey 8. Thompson (REWAI)

The section of the se

r.e. wright associates, inc.

I-8

DAILY HEALTH AND SAFETY REPORT

Date: ///27/84

e de la compañía de

Background HNU Reading (Measured at Trailer): 0-1ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): 0-.03 mm/hm Work Area and Task: Air Rotory Work of D-5 (installing cosing) Soil Baring/Rock Coning of SE-4

Ambient HNU Readings (Measured in Working Area): ARD: NR SE/RC: O-5.Oppm Ambient EXP Readings (Measured in Working Area): ARD: 5-10% SE/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: NR SE/RC: O-0.3 mc/hr Level of Protection Required:

> ARD required Level D SB/RC = readings show only level D required but RCW decided to follow Level C. Drillers followed Level D.

Comments: ARD: tender truck stuck much of day. Once work began cosing was installed to 90' and grouted. Exp readings returned to 0% after this step.

> Lorry Hoyt (surveyor) on site to look oround. I told him to follow Level D protection. (He was staying on rouals).

On-Site Health and Safety Officer: Jeffrey 2 Thompson (REWHI)

302353

r.e. wright associates, inc.

Date: 11/28/84

Background HNU Reading (Measured at Trailer): Oppm Background EXP Reading (Measured at Trailer): 070 Background RAD Reading (Measured at Trailer): Omr/hr Work Area and Task: Air Rotory Drilling at Well D-5 Soil Boring / Rock Coring at SB-4

Ambient HNU Readings (Measured in Working Area): ARD: O- O.2 ppm SB/RC: NR Ambient EXP Readings (Measured in Working Area): ARD: O- 570 SB/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: Omr/hr SB/RC: Omr/hr Level of Protection Required: ARD required Level D

SB/RC required Level C

Comments: HUU lost its charge almost immediately. To be safe RCW with the auger rig (SB/Ri) decided to follow Level C. I told him this was a good idea.

On-Site Health and Safety Officer: Juny S. Thompson (Rewis)

I-10 r.e. wright associates, inc.

DAILY HEALTH AND SAFETY REPORT

Date: 11/29/84

....

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): 0-3% Background RAD Reading (Measured at Trailer): 0-.04 mr/hr Work Area and Task: Air Rotory chilling of Site D-8 Soil Boring/Rock Colling of SE-1

Ambient HNU Readings (Measured in Working Area): ARD: NR Ambient EXP Readings (Measured in Working Area): ARD: 2-14-70 SB/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: 0-04 mr/hr SE/RC: 0-04 mr/hr Level of Protection Required: ARD used Level C protection since Ron Weover

ARD used Level C protection since Kon Webber was using HNU on SB-1. Odor indicates something present in overburden. Exp indicates this also.

SB/RC storted on Level C but low level HNU responses coused switch to Level D.

Comments:

On-Site Health and Safety Officer: Jeffrey 2. Thompson (REWAI)

r.e. wright associates, inc.

I-11

DAILY HEALTH AND SAFETY REPORT

Date: 11/30/84

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling on Well D-8 Soil Boring / Rock Coring on site SB-1

Ambient HNU Readings (Measured in Working Area): ARD: 0-6.3 ppm Ambient EXP Readings (Measured in Working Area): ARD: 0-3% SB/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: NR SB/RC: NR Level of Protection Required: ARD requires Level C protection.

SB/RC requires Level D protection.

Comments: Water in D-8 has a sharp biting odor. Water Towns also. How readings are for the most part under S.Oppon but we didn't like the odor, so decided to use Level C. How readings inside casing are as high as 10ppm. Radiation canter out of service (battery).

> Surveyors are on site and a check around the site showed Level D would be sufficient protection

On-Site Health and Safety Officer:

Jeffrey D. Thompson (REWAI)

I-12 r.e. wright associates, inc.

Date: 12/3/84

70202

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Soil Boring/Rock Coring St SE-1

Ambient HNU Readings (Measured in Working Area): NR Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D was used for rock coring and piezometer construction on

Comments: No air rotory (deer hunting) Very heavy rain and wind prevent use of HNU and EXP.

5B-1.

On-Site Health and Safety Officer: July S. Thompson (REWR'T)

I-13 r.e. wright associates, inc.

DAILY HEALTH AND SAFETY REPORT

Date: 12/4/84

Background HNU Reading (Measured at Trailer): 0-2.0 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): .03 mr/hr Work Area and Task: Air Rotory Drilling of S-4 Soil Boring Rock Coring of SE-1

Ambient HNU Readings (Measured in Working Area): ARD: 0-3.1 ppm SB/RC: NR Ambient EXP Readings (Measured in Working Area): ARD: 3-5% SB/RC: NR Ambient RAD Readings (Measured in Working Area): ARD: 0)mr/hr SB/RC: NR Level of Protection Required: ARD required Level C protection SB/RC required Level D protection

Comments: Although HNU readings on 5-4 were below S.C. pun for the most part, odor in water and cutting necessitated Level C. SB/RC was just cleaning up.

On-Site Health and Safety Officer: Affrey S. Thompson (REWAR)

I-14 r.e. wright associates, inc.

DAILY HEALTH AND SAFETY REPORT

Date: 12/5/84

139262

Background HNU Reading (Measured at Trailer): 0.5 ppm Background EXP Reading (Measured at Trailer): 070 Background RAD Reading (Measured at Trailer): 03 mr/hr Work Area and Task: Air Rotory work at 5-4 (finish well construction) Air Rotory Drilling at site D-7.

Ambient HNU Readings (Measured in Working Area): 0-0.7ppm (D-7) Ambient EXP Readings (Measured in Working Area): 0-2% (D-7) Ambient RAD Readings (Measured in Working Area): 0-03 mr/hr (D-7) Level of Protection Required: Level D used to finish S-4 construction Level C used to drill D-7 (even though AND is well below 5.0) Drilling Overbunden so close to the octual fill mode me choose Level C.

Comments: Carl Boyer (KEWAI) and Dan Toter (NUDER) on site.

On-Site Health and Safety Officer: Affrey S. Thompson (REUSE)

302**359**

I-15

r.e. wright associates, inc.

Date: 12/6/84

112

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory work of D-7 woter Levels (where site)

Ambient HNU Readings (Measured in Working Area): 0-0.4 ppm Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): 0.3 ppm Level of Protection Required: Level D protection was used for all work today.

Comments: Only 1' drilled today. Casing broke downhole. Retrieved as much as possible and hole bentonited shut.

On-Site Health and Safety Officer: Jeffrey S. Thompson (Rewar)

302360

I-16 r.e. wright associates, inc.

Date: 12/7/85

- ----

1115115

Background HNU Reading (Measured at Trailer): 0.8 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Start new D-7 with Air Rotary rig.

Ambient HNU Readings (Measured in Working Area): O-1-Oppm Ambient EXP Readings (Measured in Working Area): O70 Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Air Rotory required Level D protection.

Comments: move oway from 1st attempt on D-7 to try new attempt.

On-Site Health and Safety Officer: Ron Weaver (457)

302361

r.e. wright associates, inc.

Date: 12/10/85 to 12/14/85

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Work on well D-7 (no intrusive activities)

Ambient HNU Readings (Measured in Working Area): NR Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D work.

comments: most of aby spent trying to pull 8" cosing.

On-Site Health and Safety Officer: Ron Weaver (Rewar)

****()E

I-18 r.e. wright associates, inc.

Date: 12/17/84

Background HNU Reading (Measured at Trailer): 0-2.0 ppm Background EXP Reading (Measured at Trailer): 0-3% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Occilling of Well D-7

Ambient HNU Readings (Measured in Working Area): 0.8-5.2 ppm Ambient EXP Readings (Measured in Working Area): 2-5% Ambient RAD Readings (Measured in Working Area): 0-.03 mr/hr Level of Protection Required: Level c protection was worn for all drilling and deutlopment at D-7 tody.

comments: water was very fromy. Oily sheen on surface.

On-Site Health and Safety Officer: Julius S. Thompson (RECUTE)

I-19 r.e. wright associates, inc.

Date: 12/18/84

Background HNU Reading (Measured at Trailer): 0-1.0 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Arilling at site S-1 (near D.7)

Ambient HNU Readings (Measured in Working Area): 2.0-4.0 ppmAmbient EXP Readings (Measured in Working Area): 2-5%Ambient RAD Readings (Measured in Working Area): NRLevel of Protection Required: Level c was worn due to findings of D-7, and location near fill.

Ambient Comments: HNU readings peaked over 5.0 ppm periodically due to wind from Londfill.

On-Site Health and Safety Officer: Juffey S. Thompson (Keuse)

I-20 r.e. wright associates, inc.

302**364**

COMBE-FILL SOUTH LANDFILL

DAILY HEALTH AND SAFETY REPORT

Date: 12/19/85

Strates.

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: finish well construction at 5-1 and cleanup Air Rotary: at 5-1. Setup on site D-9.

Ambient HNU Readings (Measured in Working Area): 0-3.0 ppm Ambient EXP Readings (Measured in Working Area): 0-2% Ambient RAD Readings (Measured in Working Area): 03 mr/h. Level of Protection Required: Level D protection was worn for all work today.

Comments: Water levels taken across site (Level D).

On-Site Health and Safety Officer: June S. Champson (REWAI)

I-21 r.e. wright associates, inc.

Date: 12/20/84

Sec. Be

Background HNU Reading (Measured at Trailer): 0-3 ppm Background EXP Reading (Measured at Trailer): 0-17 Background RAD Reading (Measured at Trailer): $\cdot 02 m/hr$ Work Area and Task: Air Rotory drilling at site D-9

Ambient HNU Readings (Measured in Working Area): 0-4 ppm Ambient EXP Readings (Measured in Working Area): 0-10% (mostly 1-2%) Ambient RAD Readings (Measured in Working Area): 0-03 mr/hr Level of Protection Required: Level C protection was worn most of the time. Level D used periodically further away from hole.

Comments: Occassionally higher HNU readings (s-7 Apm) occurred when wind would blow from landfill towards 0-9. Landfill odor noticed.

On-Site Health and Safety Officer: Gifficy D. Thompson (REUNI)

I-22 r.e. wright associates, inc.

Date: 12/21/84

1000

Background HNU Reading (Measured at Trailer): 0-1.0ppm Background EXP Reading (Measured at Trailer): 07. Background RAD Reading (Measured at Trailer): .02mm/hr Work Area and Task: Instoll cosing and grout 0-9

Ambient HNU Readings (Measured in Working Area): 0-2.0 ppm Ambient EXP Readings (Measured in Working Area): 0-1% Ambient RAD Readings (Measured in Working Area): 0-.03 mr/hr Level of Protection Required: Level 0 protection used for 0// Work.

Comments: Snow flurries and windy. (Londfill doesn't smell).

On-Site Health and Safety Officer: Julius S. Thompson (Rewsz)

I-23 r.e. wright associates, inc.

Date: 12/26/84

Background HNU Reading (Measured at Trailer): 0 - 1.0 ppmBackground EXP Reading (Measured at Trailer): $1 - 2.7_0$ Background RAD Reading (Measured at Trailer): 0.02 mr/hrWork Area and Task: Air Rotory drilling of D-9

Ambient HNU Readings (Measured in Working Area): O-Z.OppmAmbient EXP Readings (Measured in Working Area): $O7_{0}$ Ambient RAD Readings (Measured in Working Area): NRLevel of Protection Required: Level O protection work .

Comments:

On-Site Health and Safety Officer: Ron Weaver (Rewai)

302368

r.e. wright associates, inc.

Date: 12/27/84

-

Background HNU Reading (Measured at Trailer): NRBackground EXP Reading (Measured at Trailer): NRBackground RAD Reading (Measured at Trailer): NRWork Area and Task: *Air Rotory Drilling* $\Rightarrow t$ S-3.

Ambient HNU Readings (Measured in Working Area): 0-2.0 ppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level c protection worn due to werburden drilling and proximity to londfill.

Comments: no odbr in SE comer.

~~~ (14)

On-Site Health and Safety Officer: Ron Wower (Reup.)

302369

r.e. wright associates, inc.

Date: /2/28/84

Background HNU Reading (Measured at Trailer):NR Background EXP Reading (Measured at Trailer):NR Background RAD Reading (Measured at Trailer):NR Work Area and Task: finish well construction on S-3 and grout(ceme ) D-S, D-7, D-8 + D-9

Ambient HNU Readings (Measured in Working Area): 0-3.0 pp Ambient EXP Readings (Measured in Working Area): 1-2 % Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D protection worn of all Sites.

Comments:

On-Site Health and Safety Officer: Ron Weaver (Renar)

in the

302370

r.e. wright associates, inc.

I-26

Date: 1/2 /85

Background HNU Reading (Measured at Trailer): 1.0 ppm Background EXP Reading (Measured at Trailer): 2% Background RAD Reading (Measured at Trailer): .02 mr/hr Work Area and Task: Air Rotory Drilling on site 5-2.

Ambient HNU Readings (Measured in Working Area): 0-0.8 ppm Ambient EXP Readings (Measured in Working Area): 070 Ambient RAD Readings (Measured in Working Area): 0-02 mr//r Level of Protection Required: Level D protection require of for toologs work.

Comments:

-1-61

On-Site Health and Safety Officer: Jeffer & Thempson (Reuse)

I-27 r.e. wright associates, inc.

302371

Date: 1/3/85

20;

Background HNU Reading (Measured at Trailer): 0-1.0pm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: work on well 5-2 (well construction)

Ambient HNU Readings (Measured in Working Area): Oppor Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D protection required.

Comments: Much of day spent trying to pull temporary 10" steel on S-2. Cosing is stuck. Brake coving puller.

On-Site Health and Safety Officer: Julius S. Thompson (KEWAI)

I-28 r.e. wright associates, inc.

Date: 1/4/85

area (

 $\sim$ 

Background HNU Reading (Measured at Trailer):<sub>NR</sub> Background EXP Reading (Measured at Trailer):<sub>NR</sub> Background RAD Reading (Measured at Trailer):<sub>NR</sub> Work Area and Task: trying to pull cosing on S-2

Ambient HNU Readings (Measured in Working Area): NR Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D protection worn based on previous obys work.

Comments: Casing puller broke again.

On-Site Health and Safety Officer: July S- Thompson (RELAT)

I-29 r.e. wright associates, inc.

Date: 1/7/85

Background HNU Reading (Measured at Trailer): 0-1.0 ppmBackground EXP Reading (Measured at Trailer): 1-2%Background RAD Reading (Measured at Trailer): 02 - .03 mr/hrWork Area and Task: Set up on site S-6, grout S-4 0-8

Ambient HNU Readings (Measured in Working Area): Oppm Ambient EXP Readings (Measured in Working Area): 0-17, Ambient RAD Readings (Measured in Working Area): 0-.02 mr/hr Level of Protection Required: Level D protection worn for all work today.

Comments:

On-Site Health and Safety Officer: July 8. Thompion (REWAI)



302374

r.e. wright associates, inc.

Date: //8/85

33

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling of Site 5-6 Woter Levels

Ambient HNU Readings (Measured in Working Area): 0-1.2 ppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): 0-.02 mm/hm Level of Protection Required: Level D protection worn bosed on previous work of well D-1. (Level C available if needed).

Comments:

- CON

On-Site Health and Safety Officer: Jeffrey S. Thompson (Rauk)

r.e. wright associates, inc.

Date: 1/9/85

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Drilling and well construction at S-6.

Ambient HNU Readings (Measured in Working Area):  $O - O.8 \rho pm$ Ambient EXP Readings (Measured in Working Area):  $O.7_{o}$ Ambient RAD Readings (Measured in Working Area): O - O2 mr/hrLevel of Protection Required: Level O protection worn for oll work.

Comments: cold temps. are causing freezing problems with the rig.

On-Site Health and Safety Officer: Julia D. Termhinn (REWAI)

302376

r.e. wright associates, inc.

Date: 1/10/85

-

Background HNU Reading (Measured at Trailer): Oppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): 03mr/hr Work Area and Task: Air Rotory Drilling on Well D-3

Ambient HNU Readings (Measured in Working Area): 0-0.5ppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): 0-.03mr/hr Level of Protection Required: Level D protection required.

Comments:

\*\*\*\*\*\*\*

On-Site Health and Safety Officer:  $\int_{\mathcal{A}} \int_{\mathcal{A}} \mathcal{B} = \mathcal{B}$  (REWAT)

I-33 r.e. wright associates, inc.

# COMBE-FILL SOUTH LANDFILL

Date: 1/11/85

Background HNU Reading (Measured at Trailer): O-0.25ppm Background EXP Reading (Measured at Trailer): O-17 Background RAD Reading (Measured at Trailer): O-.02mr/hr Work Area and Task: Air Rotory Drilling on Well D-3

Ambient HNU Readings (Measured in Working Area): O - 0.4 ppmAmbient EXP Readings (Measured in Working Area):  $O_7$ Ambient RAD Readings (Measured in Working Area):  $O_- .04 mr/hr$ Level of Protection Required: Level D protection work.

Comments:

~~~DE,

t

On-Site Health and Safety Officer: Juffung-S. Throughon (KENAI)

I-34 r.e. wright associates, inc.

Date: 1/14/85

 ~ 1

Background HNU Reading (Measured at Trailer): 0-.5ppm Background EXP Reading (Measured at Trailer): 0-17 Background RAD Reading (Measured at Trailer): .02 m//hr Work Area and Task: Air Rotory Drilling of site D-4

Ambient HNU Readings (Measured in Working Area): $0.6 - 2.2 \rho m$ Ambient EXP Readings (Measured in Working Area): $0 - 17_0$ Ambient RAD Readings (Measured in Working Area): NRLevel of Protection Required: Level & protection worn. (Storted on Level & for 510)

Comments: Rig broke down.

0005

On-Site Health and Safety Officer: Jefficy S. Thompson (REWLE)

I-35 r.e. wright associates, inc.

Date: //15/85

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Fixing rig and installing casing.

Ambient HNU Readings (Measured in Working Area): NR Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D protection worn base on previous days work at this site.

Comments: Very cold temps are affecting HNU + EXP. (Batteries losing charge)

On-Site Health and Safety Officer: Affrey S. Througion (Raule)

302380

·····

r.e. wright associates, inc.

Date: 1/16/85

67 O.E

-1

Background HNU Reading (Measured at Trailer): OPP^m Background EXP Reading (Measured at Trailer): O^{*} Background RAD Reading (Measured at Trailer): $O^{-} \cdot O2 mr/hr$ Work Area and Task: Work Dn Well $\Delta - 4$

Ambient HNU Readings (Measured in Working Area): $O - \cdot 2 \rho \rho M$ Ambient EXP Readings (Measured in Working Area): $O 7_0$ Ambient RAD Readings (Measured in Working Area): $O 2 m \rho h r$ Level of Protection Required: Level 0 protection is word.

Comments: Very cold agoin. Instruments won't hold charge long.

On-Site Health and Safety Officer: Juffry & Thompson (REWRE)

r.e. wright associates, inc.

Date: 1/17/85

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: no chilling due to snow. Woter Levels token.

Ambient HNU Readings (Measured in Working Area): NR Ambient EXP Readings (Measured in Working Area): NR Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D worn for wother levels bosed on prior site experience.

Comments:

cop;

On-Site Health and Safety Officer: Juffray & Thompson (REVAI)

I-38 r.e. wright associates, inc.

302382

Date: 1/18/85

Background HNU Reading (Measured at Trailer): Oppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling on Well D-4.

Ambient HNU Readings (Measured in Working Area): 0-0.4 ppm Ambient EXP Readings (Measured in Working Area): 075 Ambient RAD Readings (Measured in Working Area): 0-02 mm/hm Level of Protection Required: Level D protection worm.

Comments: 54" Snow (very cold).

MORINE.

On-Site Health and Safety Officer: fifting S. Thompson (REWAT)

I-39 r.e. wright associates, inc.

Date: 1/2//85

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: 10008

Ambient HNU Readings (Measured in Working Area): *NR* Ambient EXP Readings (Measured in Working Area): *NR* Ambient RAD Readings (Measured in Working Area): *NR* Level of Protection Required: *non*

Comments: No work today due to extreme cold. Health wornings out about prolonged exposure so no work today.

On-Site Health and Safety Officer: Gilley S. Thompson (REWAI)

I-40 r.e. wright associates, inc.

Date: 1/22/85

30001

÷...

.....

Background HNU Reading (Measured at Trailer): 1-0 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): 03 mr/hr Work Area and Task: Air Rotory Drilling on Well 5-5.

Ambient HNU Readings (Measured in Working Area): 0.2-0.8 ppm Ambient EXP Readings (Measured in Working Area): 0-17. Ambient RAD Readings (Measured in Working Area): 0-.03 mr/hr Level of Protection Required: Level D protection worn

Comments: Near Wehler (Rewar) on site.

On-Site Health and Safety Officer: Juliu 2. Thompion (REWAI)

I-41 r.e. wright associates, inc.

Date: 1/23/85

Background HNU Reading (Measured at Trailer): O-1ppm Background EXP Reading (Measured at Trailer): O-170 Background RAD Reading (Measured at Trailer): O-.02mr/hr Work Area and Task: Develop Well 5-5 and begin drilling Well D-6.

Ambient HNU Readings (Measured in Working Area): D6:0-2.0ppm Ambient EXP Readings (Measured in Working Area): S5:0% O6:15-100% Ambient RAD Readings (Measured in Working Area): S5:NR D6:.02 Level of Protection Required: Level D protection on S5. Level C protection on D-6. (Drilled to 24' + install 10" cosing).

Comments: Explosimeter readings are varying greatly on D-6. Ambient around working area is 0-2076. Peaks of 10076 occur inside cosing. Hole left to air a bit then proceed coutiously. Levels chopped some ofter cosing installation.

On-Site Health and Safety Officer: Lifung S. Thompson

302386

I-42 r.e. wright associates, inc.

Date: 1/24/85

17 201

Background HNU Reading (Measured at Trailer): 1.0pp Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling of site D-6.

Ambient HNU Readings (Measured in Working Area): O-4.OppmAmbient EXP Readings (Measured in Working Area): O-10%Ambient RAD Readings (Measured in Working Area): NR

Level of Protection Required: Level C was worn at all times since hole was being drilled through certer of londfill.

Comments: Exp. levels one much lower than yesterday but some high peaks still occur. Corl Boyer (REWAS) on site.

On-Site Health and Safety Officer: Autur S. Thompson (Reards)

Date: 1/25/85

209

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air Rotory Drilling of site D-6.

Ambient HNU Readings (Measured in Working Area): 0-4.0 ppmAmbient EXP Readings (Measured in Working Area): 107_{0} Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level $\leq protection \cos \omega corn of$ $all times = 2 \circ precoution$.

Comments: Most of day spent installing 6 and 8" cosing. Constant Exp. monitoring corried out during cosing installation.

On-Site Health and Safety Officer: Juffrey S. Thompson (Really)

I-44 r.e. wright associates, inc.

COMBE-FILL SOUTH LANDFILL

DAILY HEALTH AND SAFETY REPORT

Date: 1/28/35

Background HNU Reading (Measured at Trailer): 1-0 ppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): NR Work Area and Task: Air rotory drilling of site D-6.

Ambient HNU Readings (Measured in Working Area): $0-3.2_{PPM}$ Ambient EXP Readings (Measured in Working Area): 0-12%Ambient RAD Readings (Measured in Working Area): .02mr/hrLevel of Protection Required: Level \subset protection ωcs ωcmn of 0!! times $\omega chile$ $\omega crhing on this hole.$

Comments:

> 19.08

On-Site Health and Safety Officer: Aufrey S. Thompson (REWNE)

I-45 r.e. wright associates, inc.

Date: 1/29/85

Background HNU Reading (Measured at Trailer): 1.2 ppm Background EXP Reading (Measured at Trailer): 07 Background RAD Reading (Measured at Trailer): 02 mr/hr Work Area and Task: grout well 0-6 and begin drilling Well 0-2. Water levels start token.

Ambient HNU Readings (Measured in Working Area): 0.2 - 0.6 ppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): .02-.03 mr/hn Level of Protection Required: Level D protection worn. (Level c ovo:/or/e if needed but since b-c is off-site we didn't start out wearing it). Level S for water kiek.

Comments: Slight over to water in D-2.

On-Site Health and Safety Officer: Julian &. Thompson (Rewai)

302390

I-46 r.e. wright associates, inc.

24:5

Date: //30/85

10008.

Background HNU Reading (Measured at Trailer): Oppm Background EXP Reading (Measured at Trailer): 0% Background RAD Reading (Measured at Trailer): $\cdot 02mn/m$ Work Area and Task: Air notory work at site D-2.

Ambient HNU Readings (Measured in Working Area): 0-0.4 ppm Ambient EXP Readings (Measured in Working Area): 07 Ambient RAD Readings (Measured in Working Area): 02mr/hr Level of Protection Required: Level D protection worn.

Comments: Water has a slight odor.

On-Site Health and Safety Officer: Julie &. Thompson (REWAZ)

I-47 r.e. wright associates, inc.

Date: 1/31/85 Background HNU Reading (Measured at Trailer): 0-1ppm Background EXP Reading (Measured at Trailer): 0-173 Background RAD Reading (Measured at Trailer): .03 mr/hr Background RAD Reading (Measured at Trailer): .03 mr/hr

Ambient HNU Readings (Measured in Working Area): 0-1.4 ppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): .02-.03 mr/hn Level of Protection Required: Level D protection worn.

Comments:

1. CAN

On-Site Health and Safety Officer: Active & Thrombson (RGM;=)

I-48 r.e. wright associates, inc.

1

Date: 2/19/85

2000

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Work on Well 5-2 (try to pull cosing). Surveyors on site.

Ambient HNU Readings (Measured in Working Area): 0-1.0 ppm) Ambient EXP Readings (Measured in Working Area): 07. Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level & protection worn. Surveyors on Kevel &.

Comments: Casing not coming out.

On-Site Health and Safety Officer: Alan S. Trompson (2004)

r.e. wright associates, inc.

Date: 2/20/85

1.1.1.5

Background HNU Reading (Measured at Trailer): NR Background EXP Reading (Measured at Trailer): NR Background RAD Reading (Measured at Trailer): NR Work Area and Task: Work on Well 5-2 (try to pull costing) Surveyor = on site.

Ambient HNU Readings (Measured in Working Area): Oppm Ambient EXP Readings (Measured in Working Area): 0% Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level D protection worn. Surveyors on level D.

Comments: Cosing puller brake, cosing stayed in hole.

On-Site Health and Safety Officer: felling S. Fiompson (Reach

I-50 r.e. wright associates, inc.

COMBE-FILL SOUTH LANDFILL

DAILY HEALTH AND SAFETY REPORT

Date: 8/27/85

Background HNU Reading (Measured at Trailer): 0.25 ppm Background EXP Reading (Measured at Trailer): 1% (OxYGEN METER 20.4%) Background RAD Reading (Measured at Trailer): NR

Work Area and Task: Monitoring Well Sompling Test Pit Investigations

see below Test Pits Ambient HNU Readings (Measured in Working Area): Ambient EXP Readings (Measured in Working Area): Ambient RAD Readings (Measured in Working Area): NR Level of Protection Required: Level, C protection was worn for all test pit work. Monitoring Wells EXP OXFOEN Inside well casings are all ch. D-5 0-0.25 170 20.5% D-1 Level D wom for sampling. 0-0.25 0-170 20.2% D-2 0-0.75 07. 20.5% D-4 0-17. 20.47. 0-0.25 5-6 0-0.25 0-17 20.4% 0-0.25 0-17. 20.57. 5-5 Comments: LMS is sampling monitoring wells. NJDEP is on site to observe.

On-Site Health and Safety Officer: John & Thompson (REWAT)

30000

I-51

302395

r.e. wright associates, inc.

Date: 8/25/85

Background HNU Reading (Measured at Trailer): 1.0 PPmBackground EXP Reading (Measured at Trailer): 1.76Background RAD Reading (Measured at Trailer): 20.676Work Area and Task:

Ambient HNU Readings (Measured in Working Area): $\frac{Well D-2}{D-1.0 ppm}$ Ambient EXP Readings (Measured in Working Area): $D7_0$ (Dxy: 20.6%) Ambient RAD Readings (Measured in Working Area): NRLevel of Protection Required: Level D protection required.

Comments: Also rechected wells D-1, D-4, 5-6, 5-5, and D-5 and all were safe for Level D -LAS on site. (Problems occurring to sampling not finished).

On-Site Health and Safety Officer: Acting & Thompson (REWAZ)

24.945

r.e. wright associates, inc.

5100M2

- ---

× ...

- -

. .

- - - -

MEMORANDUM

Í

To: File 85100

From: Kent V. Littlefield HVV

Date: September 18, 1985

Re: Combe South Air Sampling

Arrived at the site at around 11:00 a.m. Met Howard Leeman and Matt Reilly of U.S. Testing, who are running the air sampling study. I traveled with them to the sampling locations and they are designated as follows for today: A-8 is located approximately 200 feet south of DW-6 on top of the landfill, A-10 is approximately 150 feet west of DW-6 on top of the landfill, and A-12 and A-12 duplicate are located at the north portion of the landfill on the mass approximately 100 to 200 feet northeast of the old shop. D-4 is the designated upwind sampling location located out on the pasture to the west of the site. UD-2 is the downwind sampling location located at the curve in the entrance road on the east section of the site where the two access roads split.

Background HNU readings were 2 ppm; however, some readings may have been caused by the high gasoline vapor content in the truck at about 5-10 ppm. Explosive conditions were not noted nor any HNU readings above background at any of the sampling points. Following initial recon of these sites, I had the HNU malfunction and could not be used for the remainder of the field investigation. U.S. Testing left the site at 1430 hours for lunch and returned at 1600 hours to continue operation of the equipment.

The testing equipment includes a high volume particulate sampler which consists of an eight-inch by eight-inch piece of filter paper with a high-volume blower drawing air through it. The organic vapor detectors are battery-powered pumps and are housed within a sheet metal enclosure approximately eight inches off the ground.

I noted that at some locations, the gasoline powered generators, which provide the power for the high volume air sampling, were upwind from the sample location. This was particularly true at sampling point A-8 and I requested the generator be relocated to lateral wind direction. The same was true for A-12, although not as direct a line. However, we relocated that generator as well. The sampling was completed around 1730 hours and we left the site at that time.

· ^ ^ 0 ?:

I-53 r.e. wright associates, inc.

MEMORANDUM

To: File 85100 - Combe Fill South Air Sampling

From: Kent V. Littlefield μ_{UU}

Date: September 19, 1985

Re: Combe South Air Sampling

Arrived at the site at 8:15 a.m. Downwind sampler was not activated as yet. When I arrived at the trailer, only one generator was on. The personnel from U. S. Testing were on site at approximately 8:00 a.m. Between 8:00 a.m. and 9:00 a.m., they began the third and last day of air sampling.

r.e. wright associates. inc.

MEMORANDUM

1

To: Ruth M. Maikish Project Manager-LMS File 85100-Combe Fill South Landfill HSO Monitoring File 8455-Combe Fill South Landfill-Field Notes/Correspondence

Carl G. Boyer REWAI Project Manager 🔧 From:

Date: October 9, 1985

Re: Leachate Seep Reconnaissance

1100 - Arrived Combe South Landfill, the gate is locked all appears secure, there is a full 55-gallon drum of potable water remaining from the sampling events last month. The water has gone somewhat rusty. Someone has placed a concrete block inside the gate at the center. It does not appear to have any purpose. The trailer is empty with the exception of bees, the soil samples from the soil boring rock coring, the submersible pumps pulled from the existing deep wells on site, and one or two miscellaneous small items.

> I have suited up in Level D protection including Tyvek rubber boots and inner gloves. I have mobilized a photovac TIP photoionization detector. This detector functions very much the same way as an HNU photoionization detector, however, an HNU was not available. Background readings at the trailer using the TIP photoionization detector (PID) at 0.4 ppm. Using a nuetronics exotox gas montior, explosivity is at 2 percent, oxygen at 5 percent, background radiation at .02 millirems per hour (mR). Temperature is approximately 70 to 72 degrees, the sun is shining, the wind is fairly steady at about 5 to 10 mph to the northeast (using the New Jersey power line as a north/south orientation.) There are no distinct landfill odors at the site so far.

1125 - Having suited up, I am now at Leachate Seep #2 to the immediate east of Well D-8. The site is marked by a LMS stake with green and orange paint. The seep is wet and flowing. There is standing water in a circular area around the stake roughly measuring five feet in radius. The depth of the fluid is about one to two inches overall. There is a distinct sheen at the surface in many areas.

> Aside from the sheen the water appears to be generally clear with a red hue. There is a cottony like algal or fungus growth on the submerged rock surfaces. There is also a small white flag which I have just noticed in the seep area. It is labelled ERT-08.

> > 302399

31208

. . . .

....

There is a steady trickling through this area. I would guess that the rate of fluid influx to be about 0.25 gpm. There is no change in background readings of the PID, explosimeter, or radiation detector in this area. There are no anomalous readings at the seep surface with the PID either.

Leachate Site L-3

I am at the first ditch crossing the access road along the east face of the landfill. There is flow across this Site L-3 is to the immediate southwest of the ditch. ditch. There is standing water immediately downgradient from the stake, which I assume marks Site L-3. The stake is very weathered and has no legible markings on it. However, there is bubbling in the puddle at the base of the stake. As I recall, this was a very effervescent site last July. This entire area, however, was as dry as a bone last month. There is standing water in this area about one-quarter to one-half inch in depth overall. The bubbling at the seep site is at a rate of perhaps one one-half inch bubble per second, nothing dramatic, but nonetheless present. Areas adjacent to the seep and present standing water appear to have been recently saturated. Therefore, I would assume that the saturation now evident is receding at an unknown rate. There are deer tracks all around the seep, this is apparently a watering hole.

HNU readings maintained at about 0.1 to 0.4 (background). No change in explosivity or radiation, however, I do pick up an occassional whiff of landfill odor, nothing severe.

The sheen at the surface prevalent at Leachate Site $\ddagger2$ is not present here. Also, this seep area has a green hue as opposed to the red hue noticed at Site L-2. There are no positive readings on the PID at the bubbling point at Site L-3. The bubbling is taking place at a lip in the soil surface, I cannot make direct access with the explosimeter to measure methane content since I do not have a probe extension similar to the PID.

As I think I said before, I cannot ascertain the rate of fluid influx to Site L-3. The ditch across the access road to the north of Site L-3 is flowing at a very slow rate, perhaps slower than 0.25 gpm, probably close to 0.1 gpm. There is a small amount of ponding here. The hue at this site is also green.

innas.

re miller sees defes int.

1150 - The second ditch crossing the access road, located to the south of L-3 is also wet. There is no measurable flow rate, however, it is nevertheless wet in contrast to the dryness observed last month. Signs of adjacent dampness indicate that the "flow" is in recession.

1 .

1200 - Near Well D-9, as usual, the landfill odor is very distinct in this area PID is 0.4 ppm in ambient conditions. Measurements in the crevice at the perimeter of the landfill in this area were up to 2 ppm using the PID.

Leachate Site L-4

. ~

There was evidence of distinct leachate flow at this site. There is a reddish-black oozy-like stain coming from the toe of the site in this area, proceeding to the southwest and following the haul road to the west for perhaps 75 to 100 feet until it comingles with leachate coming from There is no measurable flow or visible evident Seep #5. flow in this seep or leachate Seep #5. However, there was undoubtedly a fair amount of movement recently. Last month this area was dry. It is possible that leachate collection for chemical analyses could be performed here by digging a hole and allowing leachate to collect. However, I doubt if much could be collected in a days' time.

Background PID measurements is 0.4 ppm, Nominal increases at the leachate seep surface to perhaps .1 ppm above background at the most.

This seep is located along the south face of the landfill and is marked at the highest point of seep emergence by a stake labelled S #4, painted green and orange.

Leachate Seep Site L-5

This seep is also located along the south face of the landfill approximately 100 feet west of Site L-4. This is also marked by a stake with green and orange paint labelled L-5. The conditions here are similar to those witnessed at Leachate Seep Site L-4. There is a reddish-black discharge approximately six feet above the toe of the slope. There is no measurable or visible flow, however, although the seep discharge is obviously wet. Background PID measurement have increased to about 1.3 ppm in the area. I have no ready explanation for this, it does not seem to be the leachate. There is a white flag at the toe of the slope in the path of the 302401

leachate, marked ERT1. Noteworthy along the slope to the west of L-5 is that there are several former seep discharge areas evidenced by red staining on the slope. These areas are dry now in contrast to the recently active areas described above.

Leachate Seep Site L-6

1220 - This site is located to the north of the southwest corner of the landfill along the western face. It is marked with a stake painted green and orange and labelled L-6. Recent leachate flow in this area is evident. The conditions are similar to those found at Sites L-4 and L-5. There is, however, a slight trickling flow approximately 10 feet immediately downgradient from the stake. I would estimate the flow rate at perhaps two pints per hour. There is a small puddle of standing leachate at the base of the This puddle measures approximately one foot in stake. diameter at a depth of perhaps two inches. There is a film or sheen at the surface of the leachate. It is difficult to estimate flow, however, I would estimate that there is a flow under the film similar to that described above.

There are four small flags in the leachate flow path downgradient from the stake about 15 feet. Three are yellow and are labelled C-6-11, C-6-7, and C-6-3 the fourth flag is labelled ERT-5.

Former seep areas adjacent to this seep are also evidenced by red staining on the slope. These areas do not appear to be active, at least within the recent past.

There are one or two additional seep outlets downgradient from Site #6 that are presently wet. However, no measurable flow is evident. At the toe of the slope downgradient from Site L-6 within the grassy area, there are small segregated pools of standing leachate, probably intermixed with runoff. Due to the high grass, it is difficult to quantify this area, however, I would estimate that the collection area is oval-shaped long access perhaps 75 feet parallel to the toe of the slope, short access perhaps 20 feet, overall fluid depth average There are three additional yellow flags on the l inch. slope further downgradient from Site L-6 labelled C-6-10, C-6-6, and C-6-2. There is at least two additional flags further downgradient along the leachate flow path.

* 208

te writel associates inc

As noted in other areas, the moisture staining adjacent to the active seep areas indicate recession.

Leachate Seep Site L-7

1250 - I tried to get to Site L-7 which is located on the west face of the landfill. This area is very heavily vegetated. There is an active seep located anomalously high on the landfill slope, I would estimate approximately 25 feet vertically from the top (perhaps 5 feet less). It is wet but there is no visible flow coming from it. There are residual leachate stains further upslope from this one these are, however, dry. I am trying to work my way downslope in the general direction of L-7. There are several leachate seep areas along this slope, which are located to the southeast of the "dead tree" at the toe of the west face of the landfill. These areas can at best be described as soggy with no visible flow. They are wet.

> About midway down the slope and approximately 150 feet southeast of the fallen tree at the toe of the slope, there is a bubbling seep area that is actively omitting gas. Fluid flow is not measurable, at the most a trickle, if a collection could be excavated. The sound of bubbling and gas emissions in this area could be easily discernible above other noises. This site is about halfway down the slope.

> Continuing further, I am looking for a marker indicating Site L-7. There are several very active gas vents in this area.

I see the stake marking Site L-7. It is just downgradient and approximately 100 feet south and west of the vents described above. The side of the slope leading to Site L-7 is muddy. The characteristic leachate red hue is absent here. If anything, there is a slight green hue.

At site L-7. there is a small puddle just downslope from the stake. There are occassional air bubbles coming out of the puddle which measures perhaps two feet in length by one foot in width with standing fluid approximately two to three inches in depth. There is no visible flow from the puddle, but there is a flow path continuing down the side of the slope to the toe of the slope. There are small puddle collection areas along this slope path. The seep here does not have the black-red coloration of seeps further to the south along this face and along the south

5002

~~

face. There is some sheen at the surface, but the overall hue, if any, is green.

The toe of the slope is located approximately 15 feet downgradient from L-7. The area can be describe generally as soggy with small collection areas for leachate and surface runoff. There are some reed patches.

PID readings at Site L-7 are at .6 ppm (surrounding conditions). No above background readings obtained at the fluid surface at L-7.

Going back up the slope to the top of the landfill at the air vents noted before, PID readings at the vents measured at 1.7 ppm. Ambient conditions measured at 0.6 ppm. Explosivity exceeds 50 percent after three seconds of exposure at the vent surface. In summary, the vent seems to be essentially all methane with perhaps one ppm other gases.

There is a small crevice area at the top of the landfill immediately upgradient from Site L-7. This crevice measures approximately 15 feet in length. There does not appear to be a great amount of positive air flow from the crevice which parallels the west face of the landfill. There are no positive PID readings inside the crevice nor are there positive explosimeter readings inside the crevice.

1330 - Moving along the top of the landfill in the vicinity of Well D-6, the landfill odor in this area is nauseating as usual. PID reading at 1 ppm. I am going to circle the northwest corner of the fill to access Site L-8.

> At the northwest corner of the landfill, the run at the toe of the slope in this area is dry and shows only small signs of recent moisture. This is particularly in the small sediment fan at the outwash area of this gully. Ι believe Site L-8 is in this area somewhere, if my recollection serves me correctly. A green and vellow-orange stake is to the immediate south of a stand of dead trees in an area that used to contain ponded This water is thickly vegetated with tall grass water. and at best can be described as slightly moist to dry. The stake is marked Seep #12. This is not leachate seep Site #8. I assume L-8 must be to the south of my position.

· • • • • • •

302404

.කළා ,කොද්පයකෙන ස්ථාන්තයා . කළා ,කලාද්පයකෙන ස්ථාන්තයා

About 50 feet south of the stake marking L-12, there is a small pond measuring about 15 feet by 6 feet, water in the pond is standing at a depth of about 3 to 4 inches. There are two used tires in the pond. To the immediate south of this ponded area there are some seep flow paths. The ground can be described as muddy, but a distinct flow is not evident.

PID remains at about .6 ppm background. There are several seeps in this area similar in flow characteristics to that of Site L-7 with small puddles, but no visible flow. I assume Site L-8 is in this vicinity somewhere, however, I do not see any stakes. I am now about 200 to 300 feet north of where I was when looking for Site L-7. If L-8 is in this area, I believe that is safe to assume that flow characteristics are similar to the rest of the seeps on this face of the landfill.

1355 - Having progressed further south along the west face of the slope, I have found <u>Leachate Site L-8</u>. There is a visible trickle coming from this seep. The seep can be described as having a dark green to blacking hue with a definite sheen at the surface. There are frogs living in this small puddle at the seep outlet. I would estimate the flow from this seep to be approximately 0.1 gallons per minute. The stake is marked with green paint and labelled L-8. The flow appears to continue downslope to the toe of the slope where it joins with other seep flows and collective surface runoff.

> This site is located immediately upgradient from a dead tree stand marked further by some lying dead tree stumps at the toe of the slope. There appears to be a pond immediately behind the tree line. PID readings remain at background with no distinct increases at the leachate surface.

Leachate Seep L-1

1410 - I'm in the vicinity of Site L-1, in the reeds area on the west face of the "old fill". I have found a stake with green paint on the top, however, there is no writing on the stake. There is a puddle of leachate near the base of the stake measuring perhaps 1.5 feet in diameter by three to four inches in depth. There are bubbles coming from the base of the puddle. The bubbling is sporatic and not very violent. In volume, I would estimate approximately one bubble measuring one inch in diameter per five seconds.

1008

302405

I-61

There is a very small trickle flowing down slope from the puddle along the leachate flow path. The trickle is to small to visually quantify.

The drainage swale downgradient from Site L-1 is for all practical purposes dry. There is no flow in this swale. The sediment is moist to saturated, but there appears to be no channelling of runoff or leachate. Further north toward the New Jersey Power Company tower, downgradient from Site L-1, there is some pooling of leachate and/or runoff within the reeds in that area. The depth of the standing water in this area is probably no more than one inch.

- 1500 Have called Karen Wright at LMS and relayed the above information. Adequate decontamination and equipment packed up, I am leaving the site.
- 1515 Site secure.

5100M2

<u>من</u>

. ...

- -

MEMORANDUM

To: File 85100

From: Rent V. Littlefield KVV

Date: September 18, 1985

Re: Combe South Air Sampling

Arrived at the site at around 11:00 a.m. Met Howard Leeman and Matt Reilly of U.S. Testing, who are running the air sampling study. I traveled with them to the sampling locations and they are designated as follows for today: A-8 is located approximately 200 feet south of DW-6 on top of the landfill, A-10 is approximately 150 feet west of DW-6 on top of the landfill, and A-12 and A-12 duplicate are located at the north portion of the landfill on the mass approximately 100 to 200 feet northeast of the old shop. D-4 is the designated upwind sampling location located out on the pasture to the west of the site. UD-2 is the downwind sampling location located at the curve in the entrance road on the east section of the site where the two access roads split.

Background HNU readings were 2 ppm; however, some readings may have been caused by the high gasoline vapor content in the truck at about 5-10 ppm. Explosive conditions were not noted nor any HNU readings above background at any of the sampling points. Following initial recon of these sites, I had the HNU malfunction and could not be used for the remainder of the field investigation. U.S. Testing left the site at 1430 hours for lunch and returned at 1600 hours to continue operation of the equipment.

The testing equipment includes a high volume particulate sampler which consists of an eight-inch by eight-inch piece of filter paper with a high-volume blower drawing air through it. The organic vapor detectors are battery-powered pumps and are housed within a sheet metal enclosure approximately eight inches off the ground.

I noted that at some locations, the gasoline powered generators, which provide the power for the high volume air sampling, were upwind from the sample location. This was particularly true at sampling point A-8 and I requested the generator be relocated to lateral wind direction. The same was true for A-12, although not as direct a line. However, we relocated that generator as well. The sampling was completed around 1730 hours and we left the site at that time.

* C 178

r.e. wright associates, inc.

5100M5

MEMORANDUM

To: File 85100 - Combe Fill South Air Sampling

From: Kent V. Littlefield K_{UU}

Date: September 19, 1985

Re: Combe South Air Sampling

Arrived at the site at 8:15 a.m. Downwind sampler was not activated as yet. When I arrived at the trailer, only one generator was on. The personnel from U. S. Testing were on site at approximately 8:00 a.m. Between 8:00 a.m. and 9:00 a.m., they began the third and last day of air sampling.

1

Carl \$5100

302**409**

MEMORANDUM

To: Ruth M. Maikish Project Manager-LMS File 85100-Combe Fill South Landfill HSO Monitoring File 8455-Combe Fill South Landfill-Field Notes/Correspondence

From: Carl G. Boyer REWAI Project Manager 🔧

Date: October 9, 1985

5100Ml

~-1

Re: Leachate Seep Reconnaissance

1100 - Arrived Combe South Landfill, the gate is locked all appears secure, there is a full 55-gallon drum of potable water remaining from the sampling events last month. The water has gone somewhat rusty. Someone has placed a concrete block inside the gate at the center. It does not appear to have any purpose. The trailer is empty with the exception of bees, the soil samples from the soil boring rock coring, the submersible pumps pulled from the existing deep wells on site, and one or two miscellaneous small items.

> I have suited up in Level D protection including Tyvek rubber boots and inner gloves. I have mobilized a photovac TIP photoionization detector. This detector functions very much the same way as an HNU photoionization detector, however, an HNU was not available. Background readings at the trailer using the TIP photoionization detector (PID) at 0.4 ppm. Using a nuetronics exotox gas montior, explosivity is at 2 percent, oxygen at 5 percent, background radiation at .02 millirems per hour (mR). Temperature is approximately 70 to 72 degrees, the sun is shining, the wind is fairly steady at about 5 to 10 mph to the northeast (using the New Jersey power line as a north/south orientation.) There are no distinct landfill odors at the site so far.

1125 - Having suited up, I am now at Leachate Seep \$2 to the immediate east of Well D-8. The site is marked by a LMS stake with green and orange paint. The seep is wet and flowing. There is standing water in a circular area around the stake roughly measuring five feet in radius. The depth of the fluid is about one to two inches overall. There is a distinct sheen at the surface in many areas.

> Aside from the sheen the water appears to be generally clear with a red hue. There is a cottony like algal or fungus growth on the submerged rock surfaces. There is also a small white flag which I have just noticed in the seep area. It is labelled ERT-08.

There is a steady trickling through this area. I would guess that the rate of fluid influx to be about 0.25 gpm. There is no change in background readings of the PID, explosimeter, or radiation detector in this area. There are no anomalous readings at the seep surface with the PID either.

Leachatc Site L-3

* (* I) (* I

I am at the first ditch crossing the access road along the east face of the landfill. There is flow across this ditch. Site L-3 is to the immediate southwest of the There is standing water immediately downgradient ditch. from the stake, which I assume marks Site L-3. The stake is very weathered and has no legible markings on it. However, there is bubbling in the puddle at the base of the stake. As I recall, this was a very effervescent site last July. This entire area, however, was as dry as a bone last month. There is standing water in this area about one-quarter to one-half inch in depth overall. The bubbling at the seep site is at a rate of perhaps one one-half inch bubble per second, nothing dramatic, but nonetheless present. Areas adjacent to the seep and present standing water appear to have been recently saturated. Therefore, I would assume that the saturation now evident is receding at an unknown rate. There are deer tracks all around the seep, this is apparently a watering hole.

HNU readings maintained at about 0.1 to 0.4 (background). No change in explosivity or radiation, however, I do pick up an occassional whiff of landfill odor, nothing severe.

The sheen at the surface prevalent at Leachate Site $\ddagger2$ is not present here. Also, this seep area has a green hue as opposed to the red hue noticed at Site L-2. There are no positive readings on the PID at the bubbling point at Site L-3. The bubbling is taking place at a lip in the soil surface, I cannot make direct access with the explosimeter to measure methane content since I do not have a probe extension similar to the PID.

As I think I said before, I cannot ascertain the rate of fluid influx to Site L-3. The ditch across the access road to the north of Site L-3 is flowing at a very slow rate, perhaps slower than $\emptyset.25$ gpm, probably close to $\emptyset.1$ gpm. There is a small amount of ponding here. The hue at this site is also green.

2

- 1150 The second ditch crossing the access road, located to the south of L-3 is also wet. There is no measurable flow rate, however, it is nevertheless wet in contrast to the dryness observed last month. Signs of adjacent dampness indicate that the "flow" is in recession.
- 1200 Near Well D-9, as usual, the landfill odor is verv distinct in this area PID is $\emptyset.4$ ppm in ambient conditions. Measurements in the crevice at the perimeter of the landfill in this area were up to 2 ppm using the PID.

Leachate Site L-4

There was evidence of distinct leachate flow at this site. There is a reddish-black oozy-like stain coming from the toe of the site in this area, proceeding to the southwest and following the haul road to the west for perhaps 75 to 100 feet until it comingles with leachate coming from Seep #5. There is no measurable flow or visible evident flow in this seep or leachate Seep #5. However, there was undoubtedly a fair amount of movement recently. Last month this area was dry. It is possible that leachate collection for chemical analyses could be performed here by digging a hole and allowing leachate to collect. However, I doubt if much could be collected in a days' time.

Background PID measurements is 0.4 ppm, Nominal increases at the leachate seep surface to perhaps .1 ppm above background at the most.

This seep is located along the south face of the landfill and is marked at the highest point of seep emergence by a stake labelled S #4, painted green and orange.

Leachate Seep Site L-5

This seep is also located along the south face of the landfill approximately 100 feet west of Site L-4. This is also marked by a stake with green and orange paint labelled L-5. The conditions here are similar to those witnessed at Leachate Seep Site L-4. There is a reddish-black discharge approximately six feet above the toe of the slope. There is no measurable or visible flow, however, although the seep discharge is obviously Background PID measurement have increased to about wet. 1.3 ppm in the area. I have no ready explanation for this, it does not seem to be the leachate. There is a white flag at the toe of the slope in the path of the ** /* P \$

302411

I-67 r.e. which associates inc. leachate, marked ERT1. Noteworthy along the slope to the west of L-5 is that there are several former seep discharge areas evidenced by red staining on the slope. These areas are dry now in contrast to the recently active areas described above.

Leachate Seep Site L-6

1220 - This site is located to the north of the southwest corner of the landfill along the western face. It is marked with a stake painted green and orange and labelled L-6. Recent leachate flow in this area is evident. The conditions are similar to those found at Sites L-4 and L-5. There is, however, a slight trickling flow approximately 10 feet immediately downgradient from the stake. I would estimate the flow rate at perhaps two pints per hour. There is a small puddle of standing leachate at the base of the This puddle measures approximately one foot in stake. diameter at a depth of perhaps two inches. There is a film or sheen at the surface of the leachate. It is difficult to estimate flow, however, I would estimate that there is a flow under the film similar to that described above.

There are four small flags in the leachate flow path downgradient from the stake about 15 feet. Three are yellow and are labelled C-6-11, C-6-7, and C-6-3 the fourth flag is labelled ERT-5.

Former seep areas adjacent to this seep are also evidenced by red staining on the slope. These areas do not appear to be active, at least within the recent past.

There are one or two additional seep outlets downgradient from Site ± 6 that are presently wet. However, no measurable flow is evident. At the toe of the slope downgradient from Site L-6 within the grassy area, there are small segregated pools of standing leachate, probably intermixed with runoff. Due to the high grass, it is difficult to quantify this area, however, I would estimate that the collection area is oval-shaped long access perhaps 75 feet parallel to the toe of the slope, short access perhaps 20 feet, overall fluid depth average l inch. There are three additional yellow flags on the slope further downgradient from Site L-6 labelled C-6-10, C-6-6, and C-6-2. There is at least two additional flags further downgradient along the leachate flow path.

1 11 11

1-68 5.0.1000 (1000) (1000) (1000)

5

As noted in other areas, the moisture staining adjacent to the active seep areas indicate recession.

Leachate Seep Site L-7

1250 - I tried to get to Site L-7 which is located on the west face of the landfill. This area is very heavily vegetated. There is an active seep located anomalously high on the landfill slope, I would estimate approximately 25 feet vertically from the top (perhaps 5 feet less). It is wet but there is no visible flow coming from it. There are residual leachate stains further upslope from this one these are, however, dry. I am trying to work my way downslope in the general direction of L-7. There are several leachate seep areas along this slope, which are located to the southeast of the "dead tree" at the toe of the west face of the landfill. These areas can at best be described as soggy with no visible flow. They are wet.

> About midway down the slope and approximately 150 feet southeast of the fallen tree at the toe of the slope, there is a bubbling seep area that is actively omitting gas. Fluid flow is not measurable, at the most a trickle, if a collection could be excavated. The sound of bubbling and gas emissions in this area could be easily discernible above other noises. This site is about halfway down the slope.

> Continuing further, I am looking for a marker indicating Site L-7. There are several very active gas vents in this area.

> I see the stake marking Site L-7. It is just downgradient and approximately 100 feet south and west of the vents described above. The side of the slope leading to Site L-7 is muddy. The characteristic leachate red hue is absent here. If anything, there is a slight green hue.

> At site L-7, there is a small puddle just downslope from the stake. There are occassional air bubbles coming out of the puddle which measures perhaps two feet in length by one foot in width with standing fluid approximately two to three inches in depth. There is no visible flow from the puddle, but there is a flow path continuing down the side of the slope to the toe of the slope. There are small puddle collection areas along this slope path. The seep here does not have the black-red coloration of seeps further to the south along this face and along the south

٦

face. There is some sheen at the surface, but the overall hue, if any, is green.

The toe of the slope is located approximately 15 feet downgradient from L-7. The area can be describe generally as soggy with small collection areas for leachate and surface runoff. There are some reed patches.

PID readings at Site L-7 are at .6 ppm (surrounding conditions). No above background readings obtained at the fluid surface at L-7.

Going back up the slope to the top of the landfill at the air vents noted before, PID readings at the vents measured at 1.7 ppm. Ambient conditions measured at 0.6 ppm. Explosivity exceeds 50 percent after three seconds of exposure at the vent surface. In summary, the vent seems to be essentially all methane with perhaps one ppm other gases.

There is a small crevice area at the top of the landfill immediately upgradient from Site L-7. This crevice measures approximately 15 feet in length. There does not appear to be a great amount of positive air flow from the crevice which parallels the west face of the landfill. There are no positive PID readings inside the crevice nor are there positive explosimeter readings inside the crevice.

1330 - Moving along the top of the landfill in the vicinity of Well D-6, the landfill odor in this area is nauseating as usual. PID reading at 1 ppm. I am going to circle the northwest corner of the fill to access Site L-8.

> At the northwest corner of the landfill, the run at the toe of the slope in this area is dry and shows only small signs of recent moisture. This is particularly in the small sediment fan at the outwash area of this gully. Ι believe Site L-8 is in this area somewhere, if my recollection serves me correctly. A green and yellow-orange stake is to the immediate south of a stand of dead trees in an area that used to contain ponded This water is thickly vegetated with tall grass water. and at best can be described as slightly moist to dry. The stake is marked Seep #12. This is not leachate seep I assume L-8 must be to the south of my Site #8. position.

I-70

· • 00.

Ì

7

About 50 feet south of the stake marking L-12, there is a small pond measuring about 15 feet by 6 feet, water in the pond is standing at a depth of about 3 to 4 inches. There are two used tires in the pond. To the immediate south of this ponded area there are some seep flow paths. The ground can be described as muddy, but a distinct flow is not evident.

PID remains at about .6 ppm background. There are several seeps in this area similar in flow characteristics to that of Site L-7 with small puddles, but no visible flow. I assume Site L-8 is in this vicinity somewhere, however, I do not see any stakes. I am now about 200 to 300 feet north of where I was when looking for Site L-7. If L-8 is in this area, I believe that is safe to assume that flow characteristics are similar to the rest of the seeps on this face of the landfill.

1355 - Having progressed further south along the west face of the slope, I have found <u>Leachate Site L-8</u>. There is a visible trickle coming from this seep. The seep can be described as having a dark green to blacking hue with a definite sheen at the surface. There are frogs living in this small puddle at the seep outlet. I would estimate the flow from this seep to be approximately 0.1 gallons per minute. The stake is marked with green paint and labelled L-8. The flow appears to continue downslope to the toe of the slope where it joins with other seep flows and collective surface runoff.

> This site is located immediately upgradient from a dead tree stand marked further by some lying dead tree stumps at the toe of the slope. There appears to be a pond immediately behind the tree line. PID readings remain at background with no distinct increases at the leachate surface.

Leachate Seep L-1

1410 - I'm in the vicinity of Site L-1, in the reeds area on the west face of the "old fill". I have found a stake with green paint on the top, however, there is no writing on the stake. There is a puddle of leachate near the base of the stake measuring perhaps 1.5 feet in diameter by three to four inches in depth. There are bubbles coming from the base of the puddle. The bubbling is sporatic and not very violent. In volume, I would estimate approximately one bubble measuring one inch in diameter per five seconds.

1000

There is a very small trickle flowing down slope from the puddle along the leachate flow path. The trickle is to small to visually quantify.

The drainage swale downgradient from Site L-1 is for all practical purposes dry. There is no flow in this swale. The sediment is moist to saturated, but there appears to be no channelling of runoff or leachate. Further north toward the New Jersey Power Company tower, downgradient from Site L-1, there is some pooling of leachate and/or runoff within the reeds in that area. The depth of the standing water in this area is probably no more than one inch.

- 1500 Have called Karen Wright at LMS and relayed the above information. Adequate decontamination and equipment packed up, I am leaving the site.
- 1515 Site secure.

. .

: .a

APPENDIX J

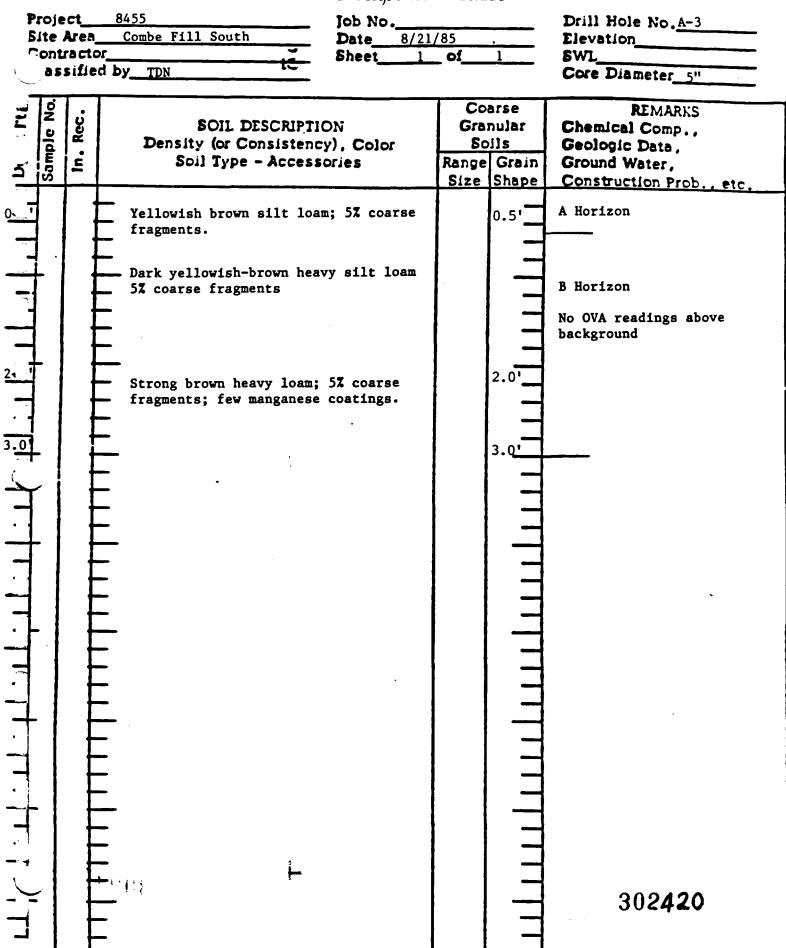
j

. .

~~~

. ...

------


COMBE FILL SOUTH LANDFILL HAND AUGERED SOIL SAMPLES SOIL CLASSIFICATIONS SHEETS

Site To: Ja	e Area ntract ssifie	8455     Job No       Combe Fill South     Date 8-20-8       or     Sheet 1	5	Drill Hole No. A-1 Elevation SWL Core Diameter 5"
The Tr.A	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granular Solls Range Grain Size Shape	
		Strong brown coarse sandy loam; 30% coarse fragments.	0'	Horizon l Fill
		Dark brown coarse sandy loam; 50% coarse fragments.	1' 1.5 <u>'</u>	Horizon 2 Fill No OVA Readings above
		Dark yellowish-brown sandy clay loam; 50% coarse fragments; strong brown coarse sandy loam; 50% coarse fragments.	2.0' 3.0'	background
				302418
				302410

# SOIL CLASSIFICATION SHEET

i     j     j     BOIL DESCRIPTION Density for Consistency). Color Soil Type - Accessories     Coarse Soils Size Shape Construction Prob., etc.     REMARKS Genular Goils Ground Water, Size Shape Construction Prob., etc.       1     Yellowish-brown silt loam; 15% coarse fragments.     0'     A Horizon       1     Yellowish-brown heavy silt loam; 15% coarse fragments.     0'     A Horizon       1     Dark Yellowish-brown heavy silt loam; 15% coarse fragments.     1.2%     B Horizon       3.01     0'     3.02     3.02	Contr	Area_		0-85 <b>of</b>	<u>.</u> 1	Drill Hole No. <u>A-2</u> Elevation SWL Core Diameter5"
A Horizon fragments. 1.251 Dark Yellowish-brown heavy silt loam; 1.251 Dark Yellowish-brown heavy silt loam; 1.251 B Horizon No OVA readings above background 3.02 	Deptn Ft. Sample No.	•	Density (or Consistency), Color Soil Type - Accessories	Gran So Range	nular bils Grain Shape	Chemical Comp., Geologic Data, Ground Water,
			fragments. Dark Yellowish-brown heavy silt loam; 15% coarse fragments.	DIZE	<sup>0'</sup>	A Horizon B Horizon No OVA readings above background

.



SOIL CLASSIFICATION SHEET

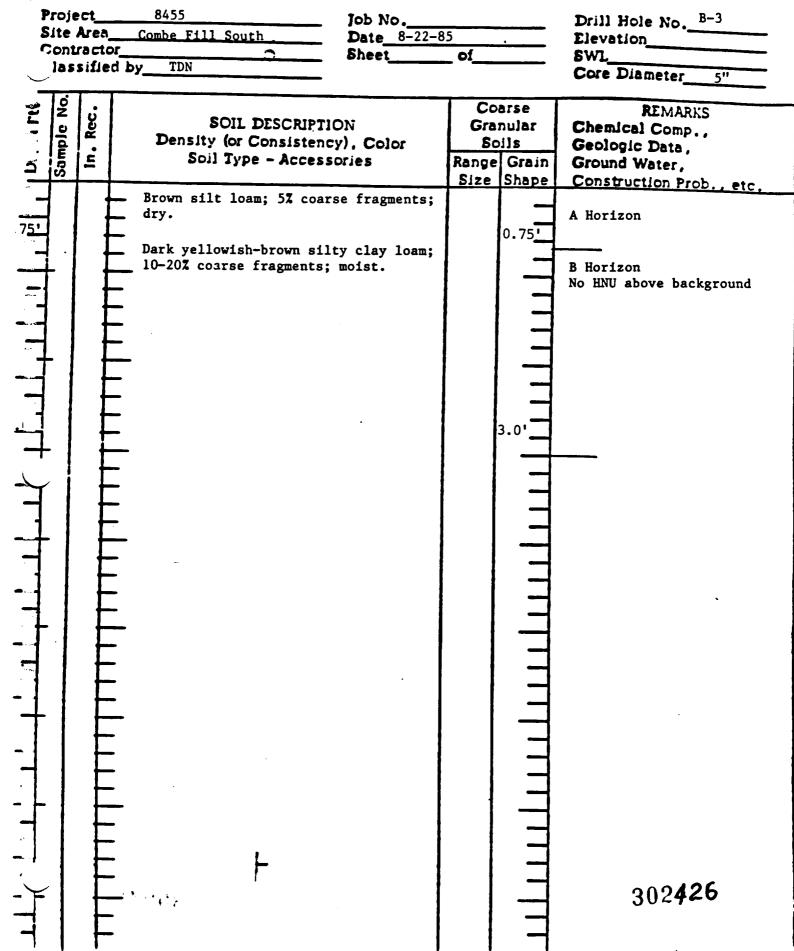
Cont	Area_ tracto	8455 Combe Fill South r d byTDN	Job No Date8-21- Sheet1	-85 of1	·	Drill Hole   Elevation SWL Core Diame	
Leptn Ft. Sample No.		SOIL DESCRIPT Density (or Consisten Soil Type - Acces	icy), Color	Gran So Range	arse nular ils Grain Shape	RE Chemical C Geologic D Ground Wat	MARKS comp., ata,
		Yellowish brown silt los fragments. Dark grayish-brown loam fragments.				Horizon 1 Fill Horizon 2 Fill	
2.5'		White very moist uniden Gray Ash	tified material.		2.5'		
		Pink, orange and yellow material.	gritty		6.0	No reading a	above background (
							302 <b>421</b>
-							·

Project Site Are Contrac Classif		-85	Drill Hole No. A-5 Elevation SWL Core Diameter 5"
Debui Ft. Sample No. In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granular Soils Range Grain Size Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.
┤┤┤╷┊┰┨┙┟┚┙╞╸╳┰╍┠╍┨┿╂┰╍╂┿╂┿┿┿┿┿┿┿┿┿╧┝	Yellowish brown silt loam; 5% coarse fragments; dry. Yellowsh-brown heavy silt loam; 5% coarse fragments Reddish-yellow silty clay loam; 5% coarse fragments; few manganese coatings.		A Horizon B Horizon No readings above background 302422

### SOIL CLASSIFICATION SHEET

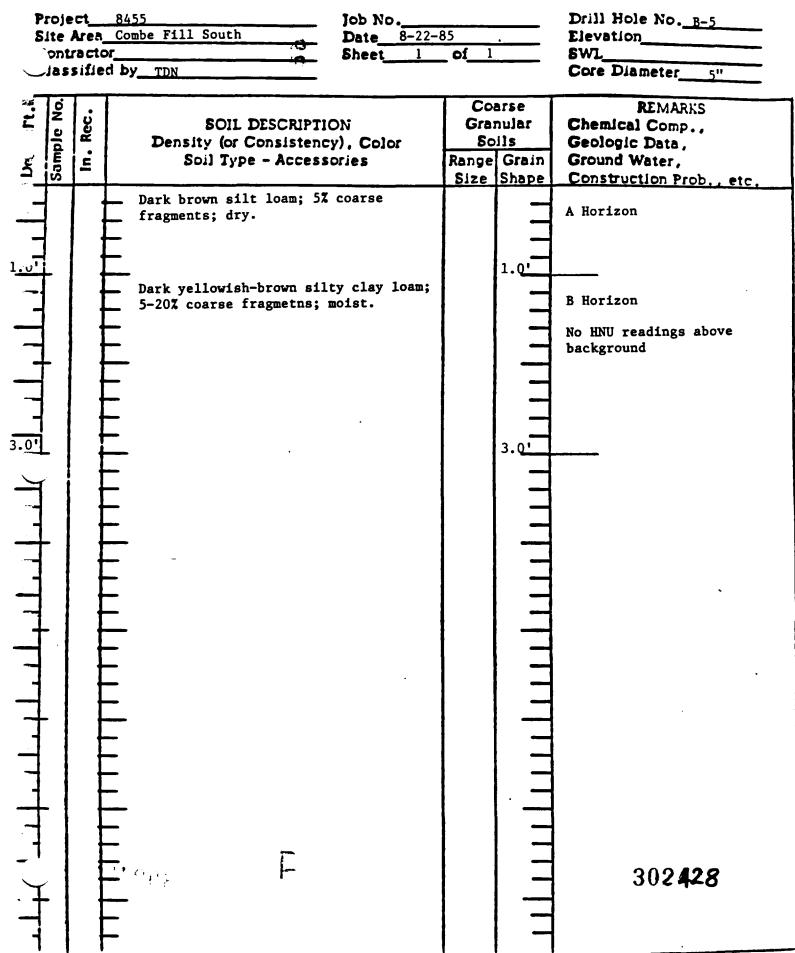
Project8455       Job No         Site Area Combe Fill South       Date8-21-85         Contractor       Sheet1of1         Classified by       TDN			21-85		Drill Hole No. <u>A-6</u> Elevation SWL Core Diameter5"		
Deptn Ft.	Sample No.	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granuli Soils Range Gr Size Shi	ar rain	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.	
			Dark brown silt loam; 5% coarse fragments. Yellowish-brown silt loam; 5% coarse fragments.	se 1.0		A Horizon B Horizon No readings above background	
			Yellowish-brown heavy silt loam; common pale brown mottles; 5% coar fragments.	se		]. 	
					IIIII		
	-				11111	· ]	• •
					11111		: ;
					11111	302423	

- 1


Cont	Area racto	Combe Fill South Date 8-21-8	5		Drill Hole No. <u>B-1</u> Elevation SWL Core Diameter_ 5"
Debui Ft. Sample No.	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Gra Sc Range	arse nular bils Grain Shape	
		Brown silt loam; 5% coarse fragments; dry. Dark yellowish-brown heavy silt loam; 20% coarse fragments. Dark yellowish-brown silty clay loam; 50% coarse fragments.	Size	Shape	Construction Prob., etc. A Horizon B Horizon No readings above background

### SOIL CLASSIFICATION SHEET

).


Ŝite Cont	Area racto	8455 Combe Fill South or d byTDN	Job No Date8-: Sheet1	22-85	  l	Drill Hole No. <u>B-2</u> Elevation SWL Core Diameter5"	
Urptn Ft. Sample No.	In. Rec.	SOIL DESCRI Density (or Consist Soil Type - Acc	ency), Color essories	Gran So Range	arse nular ils Grain Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.	
		Brown silt loam; 5% cd dry. Dark yellowish-brown 1 5% coarse fragments. Dark yellowish-brown 1 10% coarse fragments;	heavy silt loam; silty clay loam;		0.511111111	A Horizon B Horizon No HNU readings above background	
					3.0111111111111111111111111111111111111		
┯┿┯┯						302 <b>425</b>	

ł



# SOIL CLASSIFICATION SHEET

Site J	ct	mbe Fill South	Job No Date8-2	<u>2-85</u>		Drill Hole No. <u>B-4</u> Elevation SWL	pr: ed
Cont	ractor	yTDN	Sheet	. 01		SWL	$\bigcirc$
Deptn Ft. Sample No.	In. Rec.	SOIL DESCR Density (or Consis Soil Type - Acc	tency), Color cessories	Gran So Range	nular ils Grain Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.	
╎┤ <u>╎</u> ╎┤╎ <u>┆</u> ╎┤╎╎ <u>┆</u> ╎ ╎ ╎ ╎		Brown silt loam; 5% of dry. Strong brown heavy s coarse fragments. Strong brown silty of coarse fragments.	ilt loam; 5-10 <b>%</b>			A Horizon B Horizon No HNU readings above background	



## SOIL CLASSIFICATION SHEET

Project8455       Job No         Site Area_Combe_Fill South       Date_8-22-1         Contractor       Sheet         Classified byTDN       TDN			22-85 1 <b>01</b>	Drill Hole No. <u>B-6</u> Elevation SWL Core Diameter5"	
Deptn Ft. Sample No.	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granular Soils Range Grain Size Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.	
		Brown silt loam; 10% coarse fragme dry. Strong brown heavy silt loam; 10% coarse fragments. Strong brown silty clay loam; 20- coarse fragments.	Size Shape ints; 0.75 0.75 1.50 3.0' 	B Horizon No HNU readings above background	

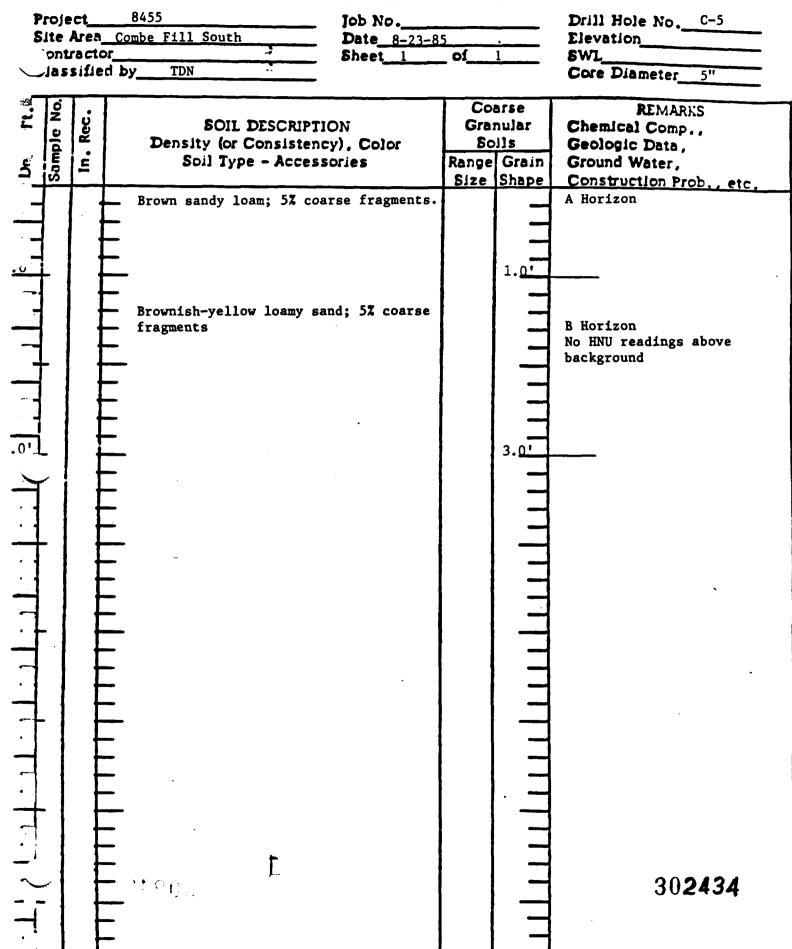
Т

	ject	8455	Job No			Drill Hole No. <u>C-1</u>
	: Area_ tracto	Combe Fill South		23-85		Lievation
Ja	ssifie	r	Sheet 1	to	<u> </u>	5WL
$\sim$						Core Diameter 5"
L rt. Sample No.				Co	arse	REMARKS
Lunn re Sample No	Rec.	SOIL DESCR			nular	Chemical Comp.
		Density (or Consis Soil Type - Act	tency), Color		slis	Geologic Data,
	1				Grain Shape	
				DIZE	Shape	Construction Prob., etc.
• –		Brown loam; 5-15% co	arse fragments;			
	1 +	dry.		1		A Horizon
	1 +	-				
	†	-				•
<u> </u>		_			-	
·•	1 4	- Yellowsh-brown sandy	loam 15-207		1.5	
	+	<ul> <li>coarse fragments; dry</li> </ul>	10am; 13-30%			B Horizon
<b>+</b>	+	—				No HNU readings above
	1 t	-				background
		-				
	1 I	-	•		2.75	
	╽┟	_				
	╞╴┝╸	-				
~	╎┟	•				
		•				
-1		-				
		•				
	┝	· •			コ	
		•		1	_	
	· 🕇	•				
_		· ·				
		•				
- 4	- H-	•		1 1		
		-				
_ ]						
-4						
	- <del> </del>	-				
		-				
	- †					
	E					
. 1					-1	302 <b>430</b>
						JUL7 V
	_					
- 1	$\vdash$					

## SOIL CLASSIFICATION SHEET

S	ite .	Aret	8455     Job No.       Combe Fill South     Date 8-23-       br     Sheet 1	<u>.                                    </u>	Drill Hole No Elevation SWL Core Diameter5"		
Deptn Ft.	Sample No.	ln. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Gran So Range	arse nular Ils Grain Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.	
			Brown sandy loam; 5% coarse fragments; moist. Strong brown sandy loam; 15% coarse fragments; moist. Brownish-yellow loamy sand; 15-25% coarse fragments.	DIZE		Construction Prob., etc. A Horizon B Horizon No HNU readings above background	

I.


51 7	ite a onti	Area_ racto	8455         Job No.           Combe Fill South         Date 8-23-85           or	ii	Drill Hole No. <u>C-3</u> Elevation SWL Core Diameter <u>5''</u>
Depuil R.	Sample No.	In. Rec.		Coarse Granular Soils Range Grair Size Shape	
ليلقيل يليبليك للمسلب المسلم المسلمان القالية المسلمان المسلم	-		Brown sandy loam; 5% coarse fragments; dry. Brownish-yellow sandy loam; 15-20% coarse fragments; dry.		A Horizon B Horizon No HNU readings above background
			F		30 <b>2432</b>

SOIL CLASSIFICATION SHEET

-----

Sit	Project       8455       Job No.       Drill Hole No.       C-4         Site Area       Combe Fill South       Date       8-23-85       Elevation         Contractor       Sheet       1       of       1         Classified by       TDN       Core Diameter       5"							
Ueptn Ft.	무민	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granular Solls Range Grain- Size Shape	REMARKS Chemical Comp., Geologic Data, Ground Water, Construction Prob., etc.			
			Brown sandy loam; 15% coarse fragments; dry.		A Horizon			
			Brownish-yellow sandy loam; 20-40% coarse fragments; dry.		B Horizon No HNU readings above background			
75'				2.75'				
+								
					A			
+					-			
+								
	والمتحدث والمتحدين							
					302433 _ ~			

I



### SOIL CLASSIFICATION SHEET

Project       8455       Job No       Drill Hole No         Site Area_Combe Fill South       Date       8-23-85       Elevation         Contractor       Sheet       1       of       1         Classified by       TDN       Core Diameter_5"       S								
Deptn Ft.	Sample No.	In. Rec.	SOIL DESCRIPTION Density (or Consistency), Color Soil Type - Accessories	Coarse Granular Soils Range Grain Size Shap	Geologic Data, n Ground Water, e Construction Prob., etc.			
			Brown loam; 10-20% coarse fragments. Brownish-yellow sandy loam; 30-40% coarse fragments.	Size Shap	A Horizon B Horizon No HNU readings above background			

#### APPENDIX K

نت

••••

#### COMBE FILL SOUTH LANDFILL

#### **REPORT ON ELECTROMAGNETIC SURVEY - AUGUST 1982**

BY

#### NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION

MEMO	NÈW JERSEY STATE DEPARTMENT (	DF .VIRONN	MENTAL PROTECTION	
TO <u>Frank Markewic</u>	z, Acting State Geologist			_
FROM Robert Canace	through Wayne Hutchinson and	DATE	AUG 1 0 1982	-
SUBJECT Combe Landfill	through Wayne Hutchinson and ich, Chief, Bureau of Ground Water South, Chester, New Jersey — Te	Managment rrain Condu	uctivity Investigat	- ion

An electromagnetic terrain conductivity geophysical survey was conducted on the perimeter of Combe Landfill South, to attempt to delineate zones of possible ground water contamination. The survey was conducted partially on-site and partially offsite in order to develop comparative data and to investigate possible off-site migration of contaminants.

The terrain conductivity instrument can be used to help locate principal zones of ground water storage and movement in a bedrock aquifer, such as that below the abovereferenced landfill. Additionally, zones of contaminated ground water can add to the instrument's resolution. In the survey, a 20 meter cable was utilized. Readings were taken in the horizontal and vertical mode (figures 1 and 2). Horizontal readings with a 20 meter cable are generally capable of detecting conductivity of the ground to a depth of approximately 15 meters (45 feet); the vertical mode is capable of detection to a depth of 30 meters (90 feet). Where a pattern indicating values of terrain conductivity higher than background values appear along a traverse line, there is an indication that such an area can be considered a likely zone of highly conductive ground water.

Elevated ground water conductivity is often a function of the presence of pollutants. In a bedrock aquifer, such as that surveyed, water occurs in select planes, such as joints, foliation and bedding planes. Elevated terrain conductivity readings in a bedrock aquifer indicate the location of water-bearing weathered zones. Other indicators are used to judge the quality of this ground water. For example, an increase in conductivity with depth can be an indication that water quality deteriorates with . depth, because the normal relationship is a decrease in conductivity with depth. This relationship, wherein conductivity increased with depth, was encountered in two areas of the Combe Landfill South. The likelihood is high that ground water contamination exists in the rock aquifer at those points.

### Conclusions

•

MAN

-

1

Based upon the results of the geophysical investigation, the following should be done to investigate ground water pollution at the Combe South Landfill:

- Additional geophysical survey lines are needed; these can be performed by 1. the Bureau.
- 2. Additional monitor wells are definitely required. Monitor wells are needed
  - north of the landfill, between the landfill and Schoolhouse Lane, ada.` jacent to the utility right-of-way,
  - b. in the southwest corner of the landfill,
  - c. immediately west of the landfill, west of Trout Brook,
  - c. adjacent to monitor well MW-4, drilled to a depth of approximately 50 feet.

302437

3. The existing monitor wells should be logged with a down-hole logging device. A caliper log and resistivity log can be performed by the Bureau.

### Findings and Recommendations

The results of the conductivity investigation are summarized below. Readings are summarized in the attached tables and are contoured on figures 1 and 2. Recommend-ations are made for the location of additional monitor wells (Fig. 3).

### Southwest Corner

Findings: An increase of terrain conductivity with increasing depth was noted on the immediate perimeter of the landfill. Since no leachate seeps were noted, there is evidence that the conductive water associated with leachate is present deep within the rock formation.

Recommendation: Install a monitor well in S.W. corner (Fig. 3 MW-SW) to investigate source of high ground conductivity at depth.

### Northeast Corner

Findings:

An increase in conductivity with increasing depth was noted between monitor well MW-4 and the power line. The likelihood that this increase is attributable to the presence of 100 feet of steel casing in the ground at MW-4 is negated by the fact that readings immediately east of MW-4, at a distance from the equivalent to the distance at which high readings were observed, are half (4-5 m.mho/m) of the elevated readings (9-10 m.mho/m). It is likely that the narrow zone of elevated conductivity values, as indicated in red contours in figure 2, is due to highly conductive ground water.

- Recommendations: a. Install a monitor well (MW-N) approximately 1000 feet and north of the landfill approximately 200 feet east of the high tension line (MW-N, fig. 3) to monitor ground water flow between the landfill and Schoolhouse Lane.
  - b. Log existing well MW-4 using the Bureau's logger. A resistivity and caliper log should be performed in the open hole below the 100 feet of casing.
  - c. Install a shallow (50 feet) 2" piezometer (MW-4A) adjacent to monitor well MW-4, for the purpose of determining the vertical variation in pressure head within the rock aquifer; alternately, this shallow piezometer could be located adjacent to proposed monitor well MW-N.

### Eastern Perimeter

1. 1. 1. 2.

Findings:

١

Values for terrain conductivity are generally low. This area corresponds with the Alaskite zone, as mapped by Mark Germane

302438

of the State Geological Survey, low background values would be expected. Existing monitor wells 2 and 1 appear to be adequately located to monitor the ground water in this area.

Recommendations: a.

ons: a. Perform additional geophysical surveys in the northeast corner; this can be accomplished by the Bureau.

-3-

b. Log monitor well MW-2 with the resistivity and caliper log to determine the depth of casing and characteristics of the rock aquifer.

### Southeastern Corner

Findings:

1 Pri

Deep readings could not be obtained along lines B, C, and D (Figure 2). This is an indication that the rock formation lacks significant permeability with depth, but does not preclude the presence of leachate. Shallow terrain conductivity readings indicate a potential zone of investigation in the vicinity of monitor well MW-5. Well MW-5 appears to be adequately located to monitor the ground water in this area.

### Western Perimeter

Findings:

Elevated readings of terrain conductivity were noted in the area west of Trout Brook. Elevated readings from the horizontal mode may be attributable to the presence of clay soils and poorly-drained terrain. The pattern of the conductivity contours, though, does not correspond to ground patterns of moisture that were obvious in the field. The pattern noted is a possible indication or reflection of weathered zones in the rock aquifer.

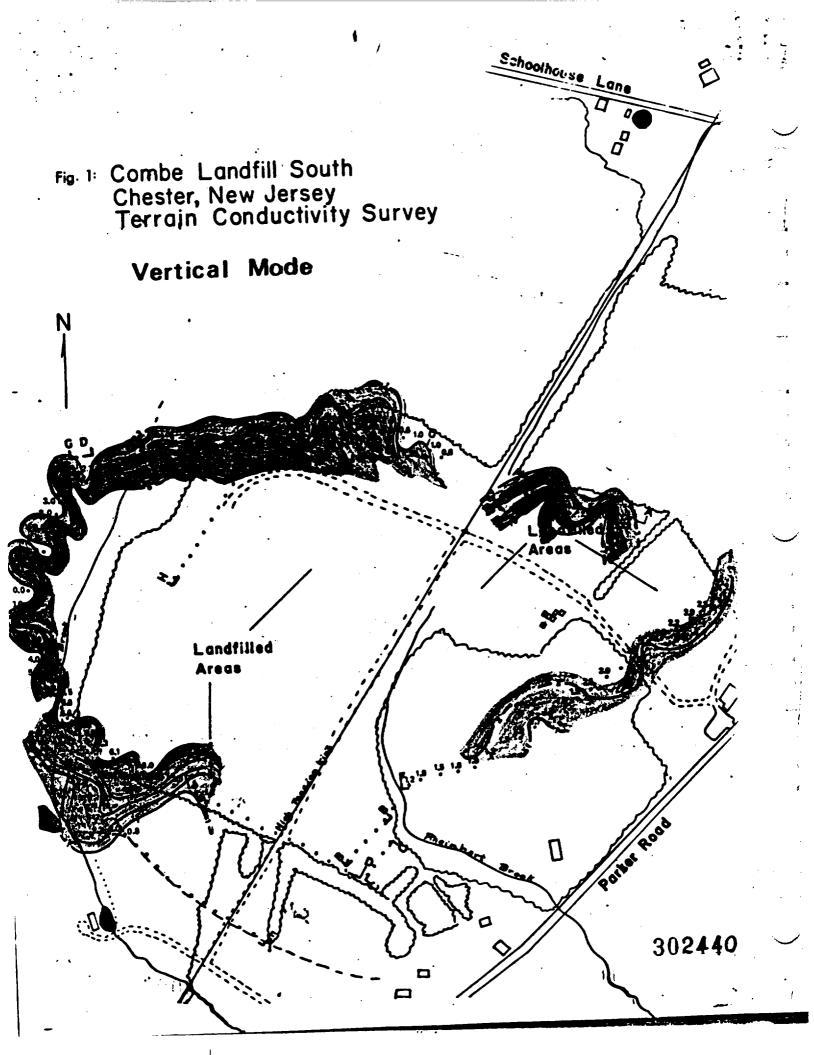
Recommendations: A a t

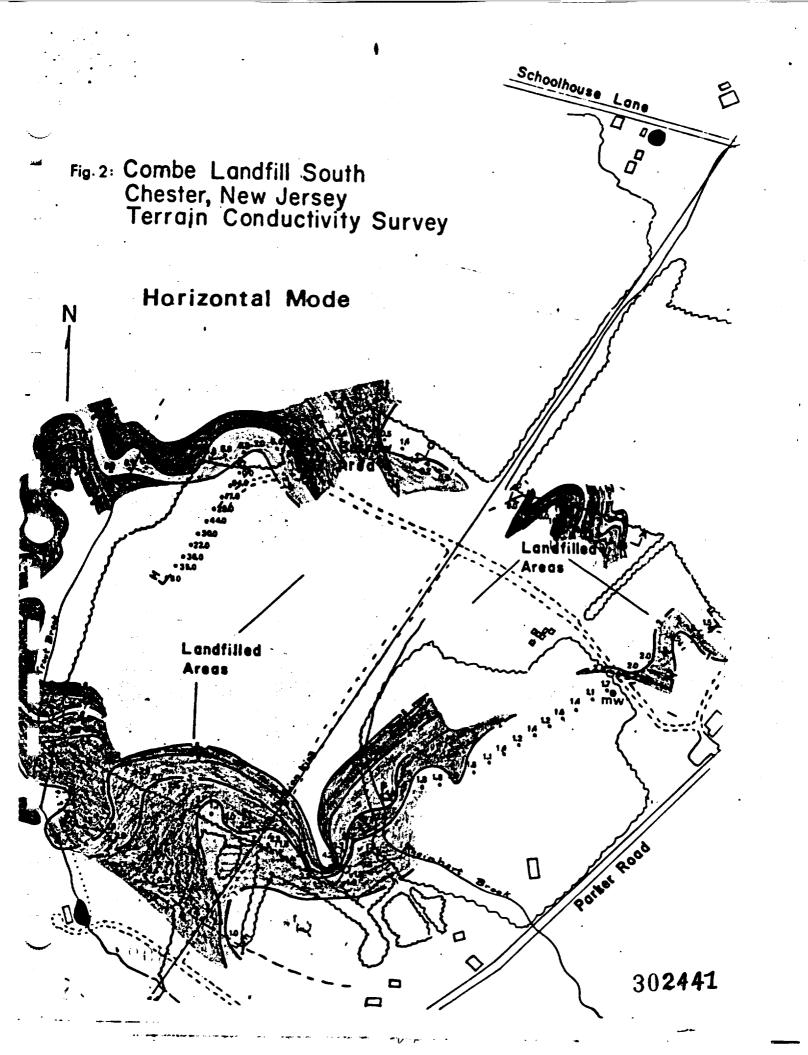
A precautionary monitor well should be installed in the cleared area west of Trout Brook. The purpose of this well would be to monitor for under flow in the rock aquifer below Trout Brook, toward Tanners Brook. The proposed location of the proposed monitor well is at MW-W (Fig. 3).

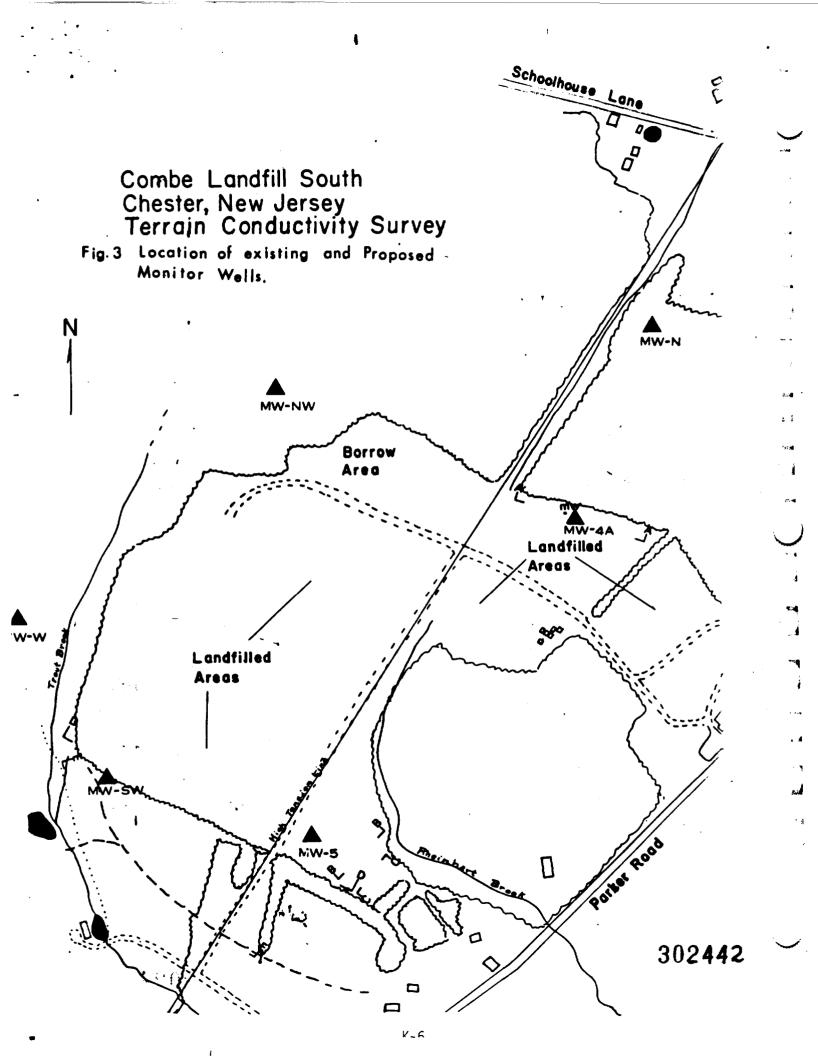
Northwest Corner

Findings: Decreased conductivity with depth was noted in this area.

Recommendations:


ł


A monitor well should be installed in the northwest corner as a background well and to aid in determining the direction of regional ground water flow and background water quality. The proposed location is MW-NW, (Figure 3).


WQM30:c1b

Attachments

cc: Arnold Schiffman, Director







### APPENDIX L

. .

- --- -

•-•

. . . .

\*\*\*~

۰,

. ...

# REPORT TO CHESTER AND WASHINGTON TOWNSHIPS ON THE RESULTS OF THE WATER QUALITY TESTING PROGRAM AT THE COMBE FILL LANDFILL

ΒY

## UPPER RARITAN WATERSHED ASSOCIATION

MAY 24, 1981

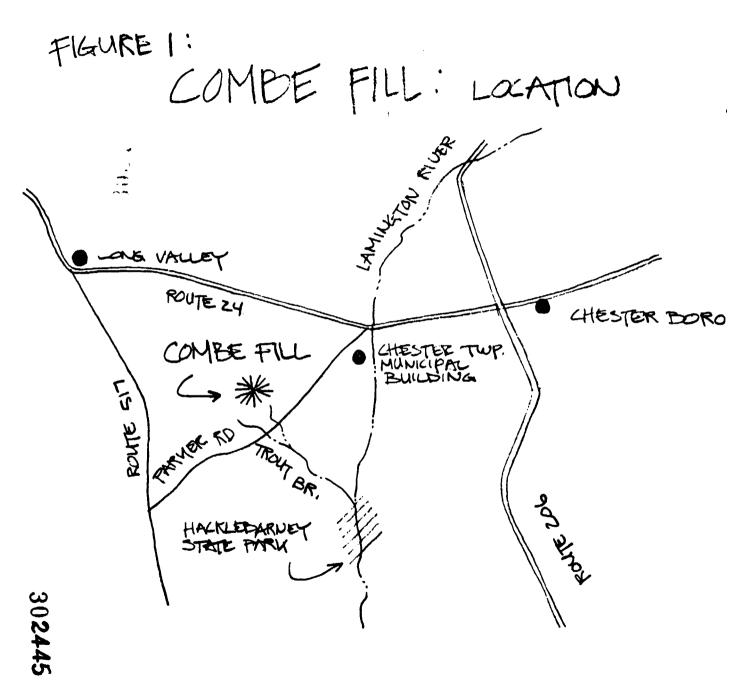
# VATERSHED ASSOCIATION

(201) 234-1852

# REFURN TO DAVE PEIFER

REPORT TO CHESTER AND WASHINGTON

TOWNSHIPS ON THE RESULTS OF THE WATER


QUALITY TESTING PROGRAM AT THE COMBE

FILL LANDFILL.

Darryl F. Caputo Executive Director

May 24, 1981





4.1

3

ti i generation de la seconda de

÷

\$

5

1 1 1 1 **1** 

### CONTENTS

1

لعت

---

~---; ;

 $\mathbf{x}$ 

 $= \frac{1}{2} \sum_{i=1}^{n} \frac{1}{i} \sum_{j=1}^{n} \frac{$ 

1	Page
List of Figures	. 3
Abstract	. 4
Combe Fill: Description and History	
Description	
Water Quality Testing Program	
Background	. 11
Metals	. 14 . 15
Descriptions, Health Effects and Toxicity of Selected Substances Found at Combe Fill	. 17
Organic Chemicals	. 17 . 20
Conclusions	, 21
Notes	, 24
Appendix	. 26
Summary of Water Quality Test Results: Combe Fill Landfill	. 26

### LIST of FIGURES

....

া

Figure 1:	Combe Fill:	Location	6
Figure 2:	Combe Fill:	Soil Location	7
Figure 3:	Combe Fill:	Water Characteristics	8
Figure 4:	Combe Fill:	Fill Status	10
Figure 5:	Combe Fill:	Water Quality Sites	12
Figure 6:	Combe Fill:	Test Parameters	13
Figure 7:	Combe Fill:	Water Quality Test Results for Maganese	15
Figure 8:	Combe Fill:	Water Quality Test Results for Total Organic Chemical Concentrations	5۲
Figure 9:	Combe Fill:	Highest Concentrations of Found Organic Chemicals ]	16
Figure .10:	Combe Fill:	Total Number of Organic Chemicals at Each Test Site	16
Figure 11:		ria for Carcinogenic Substances be Fill J	Ţ
Figure 12:	Combe Fill:	Cross-section	23

302447

Ł

Page 4

### ABSTRACT

~ ~ \*

This report summarizes the results of the water quality testing program at the Combe Fill Landfill located in Chester and Washington Townships, Morris County. The testing program, a joint undertaking by both T nships, the State Department of Environmental Protection and the Upper Raritan Watershed, was designed to determine if the landfill posed an existing or potential health hazard to adjacent residents who rely on surface and ground water as a drinking supply source. Surface, shallow subsurface and deep ground waters were tested for a broad range of possible contaminants consistant with State and Federally approved collection and analysis techniques.

Typical water quality characteristics indicated probable chemical contamination. Concentrations of lead and maganese were found to exceed state standards. Twentythree identifiable and 10 unknown organic chemicals were discovered in varying concentrations from 1 ppb to 338 ppb. While the results are not indicative of "gross" contamination they are, nevertheless, significant. The results indicate the presence of substances at the landfill which should not be there, that there is "significant" contamination of surface, shallow subsurface and deep ground waters and that the contamination is migrating from the landfill.

In view of these results, it is strongly recommended that residential wells along Parker Road in the vicinity of the landfill be tested consistant with procedures followed in this program. If contamination of residential wells is discovered, there can be no doubt that the landfill constitutes a public health hazard.

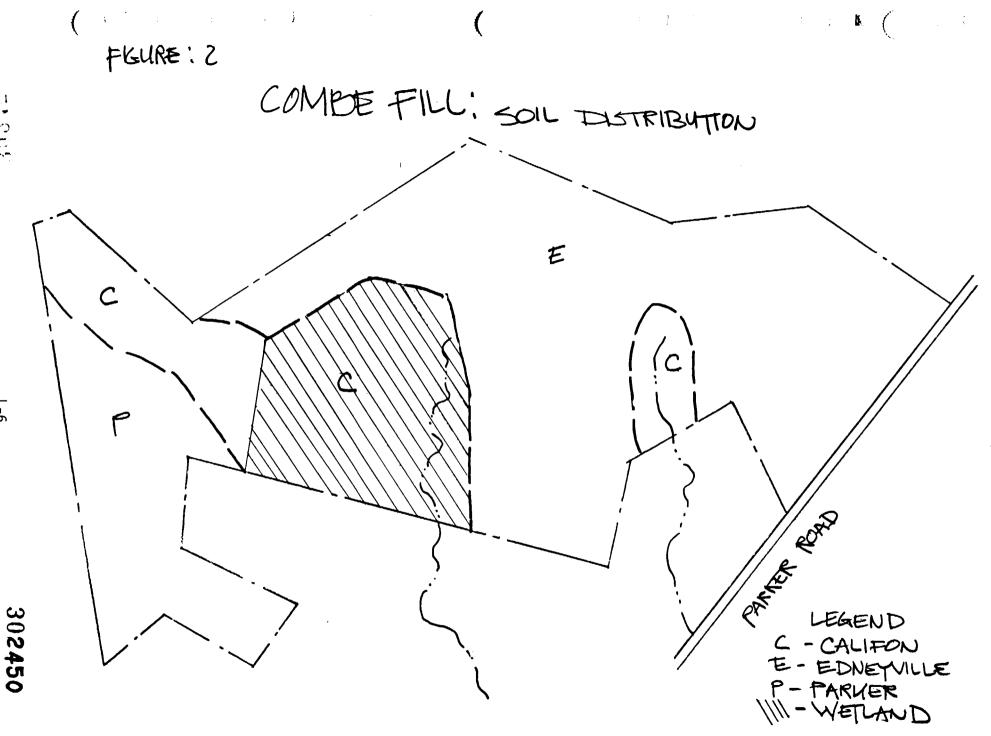
302448

### COMBE FILL: DESCRIPTION and HISTORY

١

### DESCRIPTION:

11:5


The landfill, presently named Combe Fill South, has been in existence for approximately 30-35 years and is located on Parker Road in Chester and Washington Townships, Morris County, approximately one mile west of the Chester Township Municipal Building (Figure 1). Approximately two thirds of the property lies in Washington Township with the remainder located in Chester Township. The 197-acre tract constitutes the headwaters of Trout Brook and is drained by two small tributaries; the east branch and west branch.<sup>[1]</sup>Along the west branch, on the landfill property, is an approximate 50-acre hardwood wetland which has been the subject of recent litigation. Trout Brook, classified by the State DEP as "trout production waters," the highest classification which can be given to fresh water streams, flows southeast where it joins with the Lamington River at Hacklebarney State Park. The Lamington meets the North Branch of the Raritan River which drains into the Raritan River in Somerset County near Branchburg. At Bound Brook, the Elizabethtown Water Company withdraws water from the river to supply over a million residents throughout central and northeast New Jersey. This understanding has lead to the aforementioned wetland being designated as an "environmentally critical area" by several experts and gov-ernmental agencies.<sup>(2)</sup> A small tributary of Tanners Brook, which also flows into the Lamington River, drains the western most portion of the property.

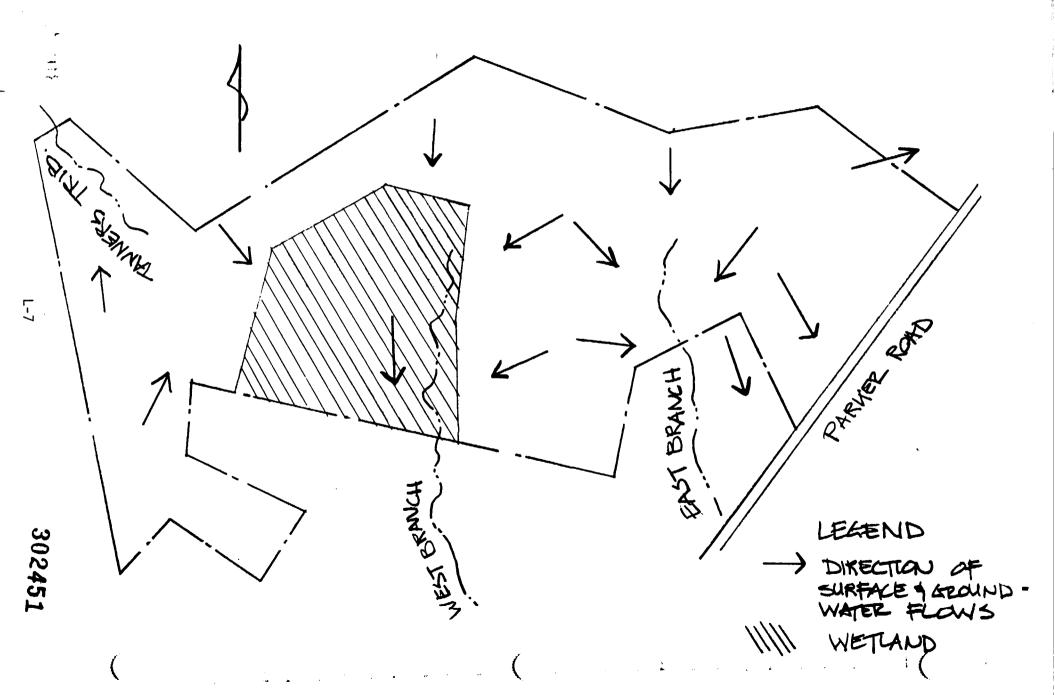
The landfill, and much of the region, is underlain by granitic gneiss; a hard, dense rock with an extremely complicated fracture pattern. The formation trends northeast and dips steeply to the southeast. Fractures occur generally vertical or transverse to the dip and with a highly variable distribution(3)

Soils consist primarily of the Califon, Parker and Edneyville Series as identified by the Morris County Soil Conservation Service (4) Figure 2 approximates the location of the soil series on the landfill property. The Edneyville Series consists of deep, well-drained loomy soils occurring at the center of the property; the area presently being filled. Califon soils are deep, moderately well to poorly drained soils occurring in water ways or seepage areas, and have a fragipan beginning at a depth of nine inches. These soils generally underlie the wetland area. Parker soils are deep, excessively drained and contain large amounts of stones, gravel and cobbles. They occur on the higher, unused portion of the property.

Surface and ground water flows are generally portrayed in Figure 3. Surface drainage occurs from the ridges toward the branches of Trout Brook and southeasterly across Parker Road. Although bedrock fractures are quite complex, it can generally be stated that ground water flows approximate surface flow directions; again in a southeasterly direction. This does not rule out other possible directions, however, it does indicate probable flows.

Page 5




1000

.1

L-9

FIGURE 3:

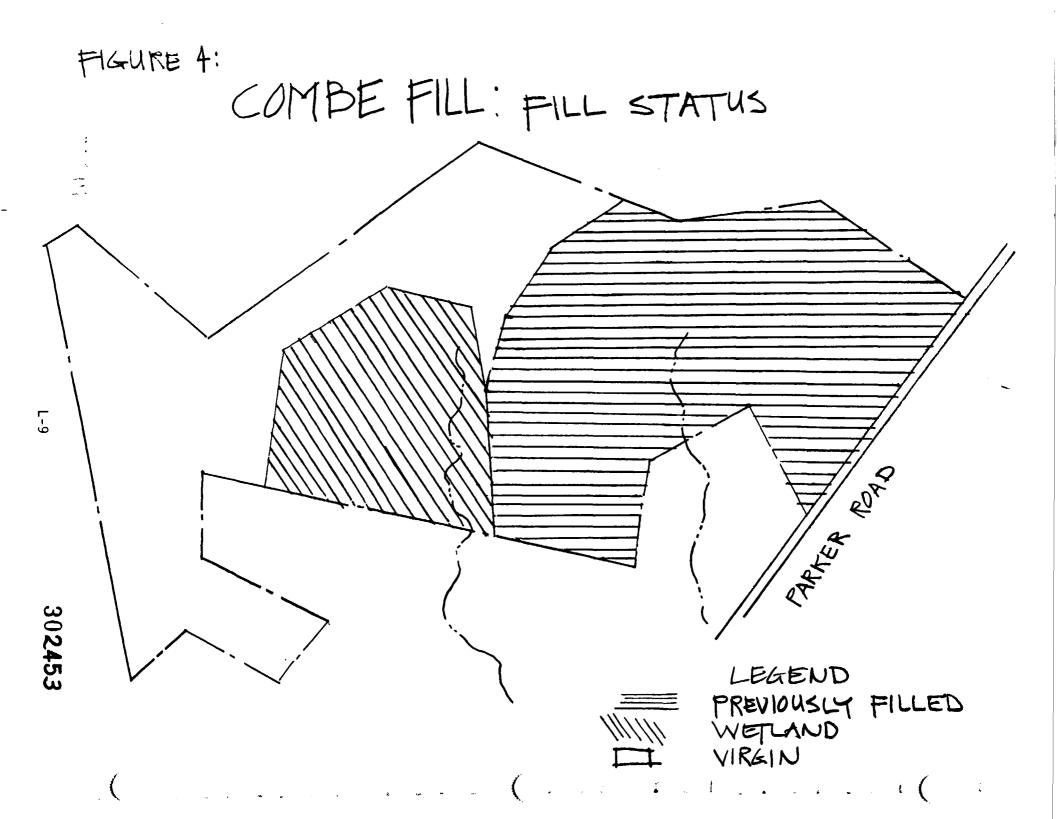
COMPE FILL: WATER CHARACTERISTICS



Page

### HISTORY:

. . . .


Filling has occurred at the site for the past 30-35 years. It must be recognized that for at least 20 years filling was allowed to occur with little governmental control over either contents or procedures. In 1971, Filliberto Sanitation, Inc. applied, pursuant to recently enacted state law, to the newly formed State DEP Bureau of solid Waste Management for a permit to continue operations at the site. In early 1972, a permit was given which allowed for, among others, the acceptance of industrial and municipal (residential) waste. Shortly after, in response to complaints by local residents and officials and the State Bureau of Fisheries Management, the owner was ordered to install several monitoring wells on the property to monitor potential ground water pollution. Visits by State DEP officials documented visible pollution originating from the landfill<sup>(5)</sup> In 1978, a change of corporate ownership certificate was issued by the State DEP Solid Waste Administration to Combe Fill, Inc. to reflect change in ownership of the property. The certificate transferred the previous granted permit to the new owners. A fire which occurred about two years ago at the property again drew attention of concerned residents, local and state officials. Continuing investigations by DEP officials pointed out existing and potential pollution problems at the landfill.<sup>(6)</sup>

With the closing of the Mt. Olive Landfill (Combe Fill North) in January 1981, the volume dumped at Combe Fill South increased by approximately 70-75 percent.<sup>(7)</sup> In response to the clearing of a portion of the wetland area, Chester and Washington Townships successfully obtained a court injunction against the landfill which prevented clearing or filling of that area and which required the submission of new engineering designs.<sup>(8)</sup> Subsequently, the DEP Solid Waste Administration issued "An Order Modifying Registration" requiring the submission of such designs.<sup>(9)</sup> The landfill owners have requested an administrative hearing on that order. During this time, the U.S. Environmental Protection Agency, acting under Section 404e of the "Clear Water Act of 1977," issued to the landfill a cease and desist order against further activity in the wetland and ordering the landfill to submit an application to the Corps of Engineers for the required permit.<sup>(10)</sup> Also, the DEP Division of Water Resources informed the landfill that a dewatering permit for draining the wetland was required prior to any disruption of the area.<sup>[11]</sup>

In September of 1980, the Solid Waste Administration issued a Certificate of Approval of the Morris County District Solid Waste Management Plan in which the Morris County Freeholders were ordered to establish a new landfill site and have it in operation by January 31, 1982.<sup>(12)</sup>

Financial statements of both Combe Fill and Combustion Equipment Associates, Inc. (the parent company) show that both are financially unstable.<sup>(13)</sup>Indeed, the parent company has filed a bankruptcy proceeding in New York. Figure 4 portrays the present fill status of the landfill.

302452



### WATER QUALITY TESTING PROGRAM:

### BACKGROUND:

----

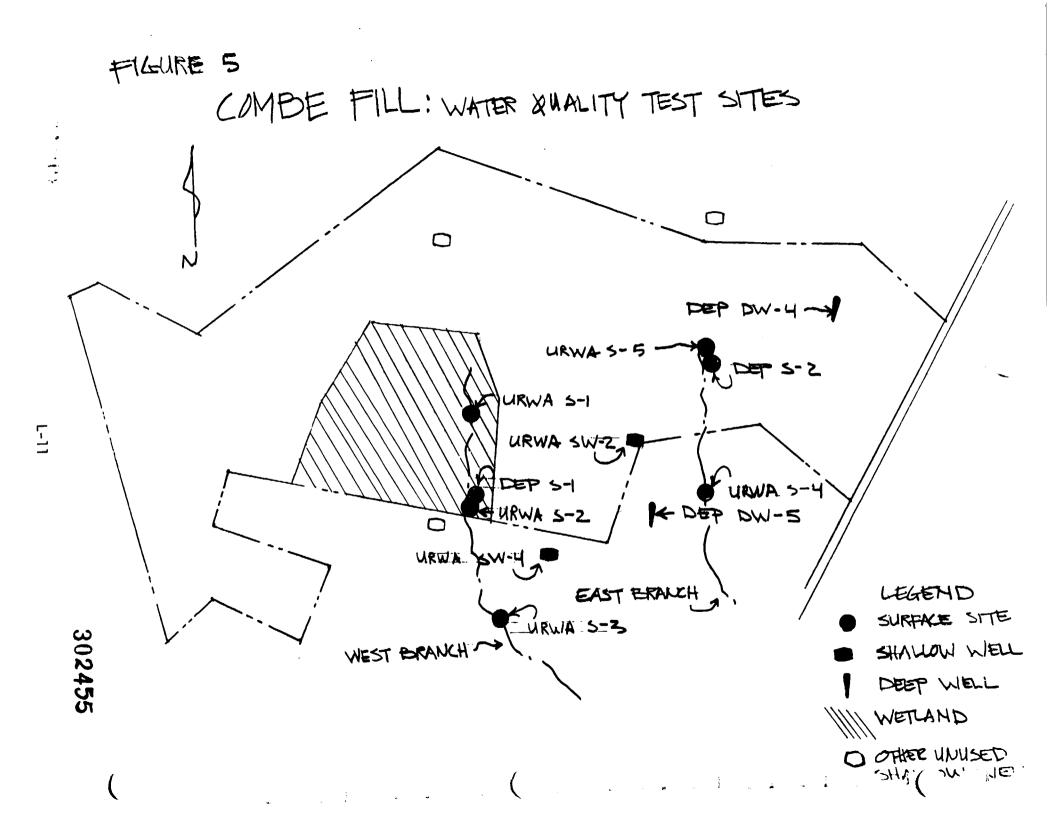
• • • •

~~~

Over the past ten years or so water quality at and adjacent to the landfill has been monitored. Results have shown elevated levels, at one time or another, of mercury, lead, phenols and arsenic. (14)

In response to growing public concerns URWA, in cooperation with the DEP Division of Water Resources and Solid Waste Administration, formulated a program for testing water quality at the landfill.⁽¹⁵⁾ This program was designed to determine whether or not the landfill was a pollution threat to surface and/or groundwaters and, if so, to determine if contamination was moving beyond the boundries of the property. A consultant, Allied Biological Control Corporation of Gladstone, was chosen to collect the samples and Princeton Testing Laboratory was chosen to conduct the actual tests. Samples were collected following accepted State and Federal sampling procedures. The laboratory is a state certified testing facility.

SITE LOCATIONS:


Sample stations were carefully chosen to intercept surface and groundwater flows on and migrating from the site. Figure 5 portrays the locations of both URNA's and DEP's stations. Seven surface sample sites were chosen: one URWA and one DEP site at the headwaters of the east branch of Trout Brook on the landfill property and one URWA site on the same watercourse off the property; a URWA site at the headwaters of the western branch of Trout Brook on the property; a DEP and URWA site at a seep which flows into the waterway again still on the property; a URWA site on the same watercourse but off the property. The DEP sampled the deep monitoring well number 4 located on the older filled portion of the property and a deep monitoring well number 5 on the Filliberto property adjacent to the landfill. URWA constructed five shallow monitoring wells, 25+ feet deep, and sampled two: one just off the southern boundary of the landfill on property owned by the Tingue and the other at the east property line separating the landfill from the Filliberto's property. Shallow wells were contructed by digging with a backhoe and installing a two-inch diameter pipe inside a six-inch diameter pipe with coarse, clean sand between the two. URWA samples were collected on March 23 and March 31, 1981. DEP samples were collected approximately two weeks earlier. A deep groundwater control well located a considerable distance from the landfill was also tested.

TEST PARAMETERS:

** n n i

A list of water quality parameters included in the testing program was developed in conjunction with DEP chemists, engineers and geologists. The parameters were chosen based on their known occurrences in other similar landfills. Figure 6 identifies the test parameters.

: •

Figure 6; Combe Fill: Parameters

1

BOD COD TOC Total Kjeldahl Nitrogen Nitrate Total Dissolved Solids

Chloride Total Coliform Fecal Streptococci Total Hardness

RADIOACTIVITY

Gross Alpha

Gross Beta

METALS

Arsenic Cadmium Lead Manganese Mercury Chromium Cyanide Phenols

ORGANIC CHEMICALS

Volatile Organics

Chloromethane Vinyl Chloride Methylene Chloride 1,1 Dichloroethene Trans-1,2 Dichloroethane Carbon Tetrachloride 1,2 Dichloropropene Trichloroethene bis-1,3 Dichloropropene Benzene 2-Chloroethylvinyl ether Tetrachloroethene Chlorobenzene Arolein Bromomethane Chloroethane Trechlorofluromethane 1,1 Dichloroethane Chloroform Bromodichloromethane Trans-1,3 Dichloropropene Dibromochloromethane 1,1,2-Trichloroethane Toluene Bromoform 1,1,2,2-Tetlachloroethane Ethylbenzene Acrylonitrile

PESTICIDES and PCB's

Aldrin BHC, Alpha BHC, Beta Chlordane 4,4' DDD Dieldrin Endosulfan Sulfate Endrin Aldehyde

7* 6:08

-.

BHC Gamma DHC Delta 4,4' DDT 4,4' DDE Endosulfan-alpha Endosulfan-beta Endrin Heptachlor

| Heptachlor epoxide | PCB-1254 |
|--------------------|----------|
| PCB-1242 | PCB-1221 |
| PCB-1232 | PCB-1248 |
| PCB-1260 | PCB-1016 |
| Toxaphene | |

ACID EXTRACTS

| 2-Chlorophenol | 2,4-Dichlorophenol |
|-----------------------|----------------------|
| 2,4-Dimethylphenol | 4,6-Dinitro-o-cresol |
| 2,4-Dinitrophenol | 2-Nitrophenol |
| 4-Nitrophenol | P-chloro-m-cresol |
| Pentachlorophenol | Phenol |
| 2,4,6-Trichlorophenol | |

BASE/NEUTRAL EXTRACTS

| Acenaphthene |
|-----------------------------|
| Acenaphthylene |
| Anthracene |
| Benzidene |
| Benzo (a) anthracene |
| bis(2-chloroethyl) ether |
| 4-bromophenyl phenyl ether |
| 2-Chloronaphthalene |
| Chrysene |
| 1,2-Dichlorobenzene |
| 1.4-Dichlorobenzene |
| Diethyl phthalate |
| Di-n-butyl phthalate |
| 2,6-Dinitrotoluene |
| 1,2-diphenylhydrazine (also |
| |

azobenzene)

Fluorene Hexachlorobutadiene Hexachloroethane Isophorone Nitrobensene N-nitrosodi-n-propylamine N-nitrosodiphenylamini 1,2,4-Trichlorobenzene

ı

Benzo (a) Pyrene 3,4-Benzofluoranthene Benzo (ghi) perylene Benzo (k) Fluroranthene bis(2-chloroethoxy) methane bis (2-ethylhexyl) phthalate Butylbenzyl phthalate 4-Chlorophenyl phenyl ether Dibenzo(a,h) anthracene 1,3-Dichlorobenzene 3,3'-Dichlorobenzidine Dimethyl phthalate 2,4-Dinitrotoluene Di-n-octyl phthalate

Fluorathene Bexachlorobenzene Hexchlorocyclopentadiene Ideno(1,2,3-cd) pyrene Naphthalene N-nitrosodimethylamini Pyrene Phenanthiene

TEST RESULTS

<u>Metals</u>: Typical water quality characteristics showed elevated levels of total dissolved solids, total coliform, nitrate and hardness. Results for heavy metals were generally at or below standards with two noticeable exceptions. At station URWA S-3 lead was found at a concentration of 0.13 parts per million (ppm) or about 2 1/2 times the 0.05 ppm standard for potable drinking water. Manganese was found exceeding the 0.05 ppm potable water standard at all URWA stations except URWA SW-4. Figure 7 presents the test results for manganese. URWA's doptrol well produced results for all parameters at or below standards.

L-13

Page

| <u>Station</u> | Concentration
Found | Standard
ppm | Times Exceeding the
Standard |
|----------------|------------------------|-----------------|---------------------------------|
| URWA S-1 | 4.98 | .05 | 99.7 X |
| URWA S-2 | .27 | 18 | 5.4 X |
| URWA S-3 | .44 | ** | 8.8 X |
| urwa 5-4 | 1.2 | n | 24 X |
| URWA S-5 | 1.35 | ** | 27 X |
| urwa sw-2 | 9.4 | 44 | 188 X |
| URWA SW-4 | .02 | ** | Below |
| CONTROL WELL | .02 | 11 | Below |

Figure 7: Combe Fill: Water Quality Test Results for Manganese

Organic Chemicals: Organic chemicals were found in all DEP stations and all but one URWA station which was URWA S-1. No organic chemicals were found at URWA's control well. Figure 8 provides total organic chemical results for each station.

| Fig | e 8: Combe Fill: Water Quality Test Results for
Total Organic Chemical Concents | ation. |
|------------------|--|--------|
| | Concentration | |
| Station | Found | |
| | (ppb) parts per billion | |
| URWA S-1 | 0 | |
| urwa s-2 | 1005 | |
| urwa s-3 | 54 | |
| urwa s-4 | 131 | |
| urwa S-5 | 122 | |
| urwa SW-2 | 80 | |
| urwa SW-4 | 43 | |
| URWA Control Wel | 0 | |
| DEP @-1 | 155 | |
| DEP S-2 | 616 | |
| DEP DW-4 | 762 | |
| DEP DW-5 | 150 | |

Eight unknown volatile organic compounds were found at site URWA S-2; 2 with concentrations of 200 ppb and 6 with concentrations of 10 to 20 ppb. Two unknown volatile organic compounds with concentrations of 10 to 20 ppb were found at site URWA S-3.

Concentrations of organic compounds found ranged from 1 ppb to 338 ppb. In total 33 organic chemicals were discovered five of which are known carcinogens. Eight compounds were found in individual concentrations equal to or exceeding 100 ppb. Figure 9 lists all organic chemicals found and indicates the highest concentrations of each one.

302458

····

.

ł

2

. .

| Figure 9: Combe Fill: | Highest | Concentrations of Found | |
|-----------------------|---------|-------------------------|--|
| | Organic | Chemicals | |

| Name | Sample Site | Concentration
(ppb) |
|------------------------------|-------------|------------------------|
| | | |
| Heptane | DEP DW-4 | 256 |
| Carbontetrachloride | DEP DW-4 | 338 |
| Nonane | DEP S-2 | 252 |
| Benzene | urwa s-4 | 11 |
| Toluene | urwa SW-2 | 13 |
| M,P, Xylene | DEP S-2 | 19 |
| O, Xylene | DEP S-2 | 22 |
| Propy. Benzene | DEP S-2 | 11 |
| Dibromochloromethane | DEP S-2 | 78 |
| 1,4 Dichloroluetane | DEP S-2 | 20 |
| 1,2 Dichloroethane | urwa SW-4 | 22 |
| Trichloroethylene | DEP DW-4 | 46 |
| Tetrachloroethylene | DEP DW-4 | 100 |
| 1,1 Dichloroethane | urwa s-2 | 160 |
| Tetrachloroethene | urwa SW-6 | 6 |
| Methylene Chloride | URWA S-2 | 280 |
| Trans 1,2 Dichloroethene | urwa s-4 | 120 |
| Ehtyl Benzene | urwa SW-2 | 10 |
| 1,4 Dichlorobenzene | DEP S-1 | 9 |
| Diethyl Phthalate | urwa s-2 | 54 |
| Bis (2-ethylhexyl) Phthalate | urwa s-5 | 90 |
| Naphthalene | URWA S-2 | 10 |
| Endosulfan-alpha | urwa S-2 | 1 |

Carbontetrachloride was the most common chemical found and showed up in concentrations exceeding 100 ppb in all DEP sites. Heptane also appeared in all DEP sites. The most prevelant chemicals found in URWA sites were 1,1-Dichloroethane and Trans-1,2-Dichlorethene which were each found in 3 out of 7 sample locations at the landfill. With the exception of URWA S-1 more than one organic compound was found in each sample site. Figure 10 lists the total number of organic chemicals for each test site.

> Figure 10: Combe Fill: Total Number of Organic Chemicals Found at Each Test Site

| Site | Number of Organic |
|-------------------|-------------------|
| Location | Chemicals Found |
| URWA S-1 | 0 |
| URWA S-2 | 12 |
| URMA S-3 | 4 |
| URWA S-4 | 2 |
| urwa 5-5 | 3 |
| urwa SN-2 | 4 |
| URWA SW-4 | 4 |
| URWA Control Well | 0 |
| DEP S-1 | 3 |
| DEP S-2 | 10 |
| DEP DW-2 | б |
| DEP DW-5 | 3 |

Standards for specific organic chemical contamination of surface water, groundwater or potable drinking water do not exist. In recognition of the fact that chlorine can react with naturally occurring substances to produce carcinogenic compounds, the U.S. Environmental Protection Agency has adopted a maximum contaminant level of 100 ppb (parts per billion) of trihalomethanes in drinking water from community water systems serving 10,000 or more persons.⁽¹⁶⁾ Trihalomethanes are one of the family of organic compounds named as derivatives of methane wherein three of the four hydrogen atoms in methane are each substituted by a halogen atom in the molecular structure. The N.J. Department of Environmental Protection, Division of Water Resources, Bureau of Ground Water Management recommends closure of groundwater wells serving individual residences when total concentrations of organic chemicals included in the EPA pollution priority list equal or exceed 100 ppb:⁽¹⁷⁾ It must be recognized that the absence of specific standards for specific organic compounds does not imply that these substances are safe. The lack of standards is due to the newness of the field, a lack of adequate scientific research and the length of time for promulgating the standards. Even though no specific standards exist for the specific organic chemicals in the EPA priority pollutant list, many are known or suspected to be toxic, carcinogenic, mutagenic or teratogenic. Also it is now accepted in the scientific literature that no safe threshold exists for a carcinogenic substance. In the absence of specific standards, the 100 ppb of total organic chemical contamination can be considered to be a reasonable threshold. It should be noted that the total organic chemical concentration exceeded 100ppb in seven of the eleven test sites.

~?

The U.S.EPA has published estimates of cancer risk of various known carcinogens.⁽¹⁸⁾ These estimates are based on extrapolations from laboratory animal data and are given in terms of the concentration of a substance which, if ingested in the given amounts over a life time, would cause one incidence of cancer in a population of $100,000 (10^{-5})$, $1,000,000 (10^{-6})$ or $10,000,000 (10^{-7})$. Figure 11 identifies health criteria for those carcinogenic chemicals found at Combe Fill. In all five cases, concentrations found at the landfill greatly exceed EPA's health criteria. For carbon tetrachloride the found concentration of 338 ppb exceeded the health criteria by 800 times.

| Compound | Health
Criteria | Concentration
Found | Times Above
Criteria |
|----------------------|--------------------|------------------------|-------------------------|
| | CIICEIIa | Found | CILCEIIa |
| Carbon Tetrachloride | .42 ppb | 338 ppb | 800 X |
| Benzene | .67 ppb | 11 ppb | 16 X |
| 1,2 Dichloroethane | .94 ppb | 22 ppb | 33 X |
| Trichloroethylene | 2.79 ppb | 46 ppb | 17 X |
| Tetrachloroethylene | .88 ppb | 100 ppb | 112 X |

Figure 11: Health Criteria for Carcinogenic Substances at Combe Fill

302460

• • • • • •

Page

DESCRIPTIONS, HEALTH EFFECTS AND TOXICITY OF SELECTED SUBSTANCES FOUND AT COMBE FILL

Below is a listing of selected organic chemicals and metals with a brief description of each and an identification of adverse health effects resulting from acute dosages. This information is taken from the current literature (19)

ORGANIC CHEMICALS

| Carbon Tetrachloride | - a nonflammable colorless liquid used in fire extinguisher and
as a solvent for fats and greases in cleaning solutions. Car-
bon tetrachloride has been linked with liver cancer and is
classed by the USEPA as a carcinogen.
Exposure may result in central nervous system depression and
gastrointestinal symptoms of liver and kidney damage. Nausea,
vomiting, abdominal pain, diarrhea, enlarged and tender liver
and jaundice result from liver damage. Diminished urinary
volume, red and white blood cells in the urine, albuminuria,
coma and death may result from acute kidney failure. Sys-
temic effects worsen when used in conjunction with ingestion
of alcohol. | | | |
|----------------------|--|--|--|--|
| Heptane - | is a paraffin contained in light petroleum products. Irri-
tates skin, lung and nerves. | | | |
| Nonane - | is also a paraffin in a liquid form, used as a solvent and irritates skin, lungs and nerves. | | | |
| Benzene - | is an extremely inflammable colorless liquid obtained by the
fractional distillation of coal tars. It is used as a solvent
for fats and in the making of lacquers, varnishes, many dyes
and other organic compounds. Benzene is classed as a carcino-
gen by the USEPA. Benzene may also cause prolonged menstrual
bleeding in humans. | | | |
| Toluene - | is a colorless liquid hydrocarbon generally obtained from coal tars used in making dyes, explosives and saccharin. To- | | | |

Soluene - Is a coloriess liquid hydrocarbon generally obtained from coal tars used in making dyes, explosives and saccharin. To-luene is volatile and may be absorbed through the skin, digestive tract or by breathing. Acute exposure results predominantly in central nervous system depression. Symptoms include headache, dizziness, fatigue, muscular weakness, drowsiness, incoordination with staggering gait, skin paresthesias, collapse and coma. Toluene is also associated with adverse reproductive effects in humans and may cause prolonged menstrual bleeding.

Xylene-is a liquid resembling toluene obtained from coal tar and usedin dyes and as a solvent.Xylene is known to be a centralnervous system depressant and to irritate the lungs.

1,2-Dichloroethane or

Ethylene Dichloride - is an oily toxic liquid used as a solvent and in the manufacture of polyvinyl chloride. Dichloroethane effects the ner-

302461

vous system, respiratory system, heart and liver. Inhalation may cause nausea, vomiting, mental confusion, dizziness and pulmonary edema. Chronic exposure has been associated with liver and kidney damage. There is risk to nursing infants and it is listed as a carcinogen.

Trichloroethylene or

TCE

- is a colorless liquid widely used as an industrial solvent in dry cleaning and as an anesthetic. It is a central nervous system depressant with such symptoms as headache, dizziness, vertigo, tremors, nausea and vomiting, irregular heart beat, sleepiness, fatigue, blurred vision and intoxication similar to that from alcohol. Unconsciousness and death have been reported. Alcohol may worsen the symptoms and the person may become flushed. Addiction and peripheral neuropathy have been reported. It is a known carcinogen.

Tetrachloroethylene (Perchlorethylene) -

Methylane Chloride

Diethyl Phthalate

- is a colorless non-flammable liquid used in dry cleaning. Acute exposure may cause nervous system depression, hepatic injury and anesthetic death. In animals it produces cardiac arrhythmias and renal injury. Symptoms of exposure include malaise, dizziness, headache, increased perspiration, fatigue, staggering gait and slowing of mental ability. It is a known carcinogen.

- oride (Dichloromethane) is a colorless volatile liquid used as a solvent refrigerant and anesthetic. It effects the central nervous system, causes heart fibrillation and symptoms similar to carbon monoxide poisoning.
- Naphthalene- is one of the principal constituents of coal tar and is usedas a disinfectant in moth balls and in the manufacture of___<t

phtalate - (Dioctyl-sodium sulfosuccinate) a powerful wetting compound used as a laxative. Can cause diarrhea and intestinal bloating.

<u>1,4-Dichlorobenzene</u> - used in making insecticides, phenol and dyes, engine cleaners and solvents, for resins and lacquers, moth repellants, air deodorants. Concentrates in fats and is highly resistant.

<u>1,1-Dichloroethane</u> - used in making vinyl chloride and tetraethyl lead. Also an insecticide fumigant and used in paint and varnishes, soaps, in wetting and penetrating agents, in ore flotation. A carcinogen.

***** * 113.

Page -

METALS

- <u>Arsenic</u> is a very poisonous element used in insecticides, glass, medicines and dyes. In addition to its high toxicity, arsenic may cause matitis, lung and lymphatic cancer. Cumulative effects include disorders of alimentary tract, nausea, vomiting, diarrhea, dehydration, neuritis and paralysis of wrist and ankle muscles. Symptoms include metallic taste and odor of garlic on breath, burning pain in gastrointestinal tract, vomiting and purging, shock syndrome, coma and convulsions, paralysis and death.
- <u>Cadmium</u> is a soft metal used in the manufacture of fusable alloys, electroplating and control rods for nuclear reactors. It is a known carcinogen and effects jungs and kidneys.
- Lead is a poisonous metal used in paints, plumbing and alloys. Toxicity occurs if more than .5 mg/day is absorbed. Lead may impair any part of the nervous system. Lead also effects the kidneys and blood.
- <u>Manganese</u> is a poisonous metal used in numerous alloys which, if ingested over long periods results in muscular weakness, peculiar gait, tremors, central nervous system disturbance and salivation and kidney malfunction.
- Chromium is a metal used in electroplating and alloys. It is a know carcinogen; symptoms of poisoning are pain, diarrhea, collapse, cramping and death due to kidney failure. It is also associated with lung cancer, lung irritation and skin ulcars.
- Cyanide Cyanides are the most common and most deadly poisons known. Cyanide also effects the thyroid and has blood and respiratory effects.
- Phenol is a colorless or light pink solid and dangerous due to its rapid corrosive action on tissues. It is a hazardous substance to skin and eyes. Come may occur within 30 minutes of skin exposure. Phenol also effects the liver and kidneys.
- Chlorine is a highly poisonous gas used as a bleaching agent and germicide. Excessive exposure can be fatal.
- Mercury is a poisonous metal which causes central nervous system breakdown and mental effects, abdominal cramps, increased salivation and kidney malfunction.

PESTICIDES

Endosulfan - also known as Thioden

St COL

1

CONCLUSIONS

It is necessary to understand the structure of the Combe Fill Landfill in order to draw conclusions from the test results. Figure 12 shows that structure.

Rain falling on the top of the landfill runs off the surface, picks up contaminants and flows in the direction of streams. Once infiltrating the landfill water will move laterally, again picking up contaminants, and appear at the edge of the landfill in seeps or springs. Water percolating through the alternating layers of compacted waste and cover may also move vertically, escaping from the bottom of the landfill and mixing with groundwater in the underlying bedrock. Water flowing through the landfill picks up a wide variety of contaminants and is called leachate. At Combe Fill, no provisions are made to prevent leachate from traveling to and mixing with both surface and groundwaters.

The water quality test results clearly show that the landfill is producing leachate and that within the property this leachate has contaminated surface, shallow subsurface and deep groundwaters (see results for stations URWA S-2, DEP S-1, URWA S-5, DEP S-2, URWA SW-2, DEP DW-4).

The data also indicates pollution originating from both the older and new sections of the site. Furthermore, the results indicate that contamination is migrating from the site via both surface and groundwater routes (see station results URWA SW-4, DEP SW-5, URWA S-3, URWA S-4).

While results did not indicate "gross contamination" they did indicate significant levels of surface and groundwater pollution. Of particular concern, is the pollution of groundwater since once polluted it is virtually impossible to cleanse. Also, once entering the fractures of the underlying bedrock, the pollution could travel considerable distances. The total organic chemical reading at station DEP DW-4, a 100-foot plus well, of 762 ppb indicates a potentially serious groundwater contamination problem. This problem is magnified by the presence of about 38 domestic residential wells within 1/4 mile from the landfill's active face and 60 wells within a 1/2 mile distance.

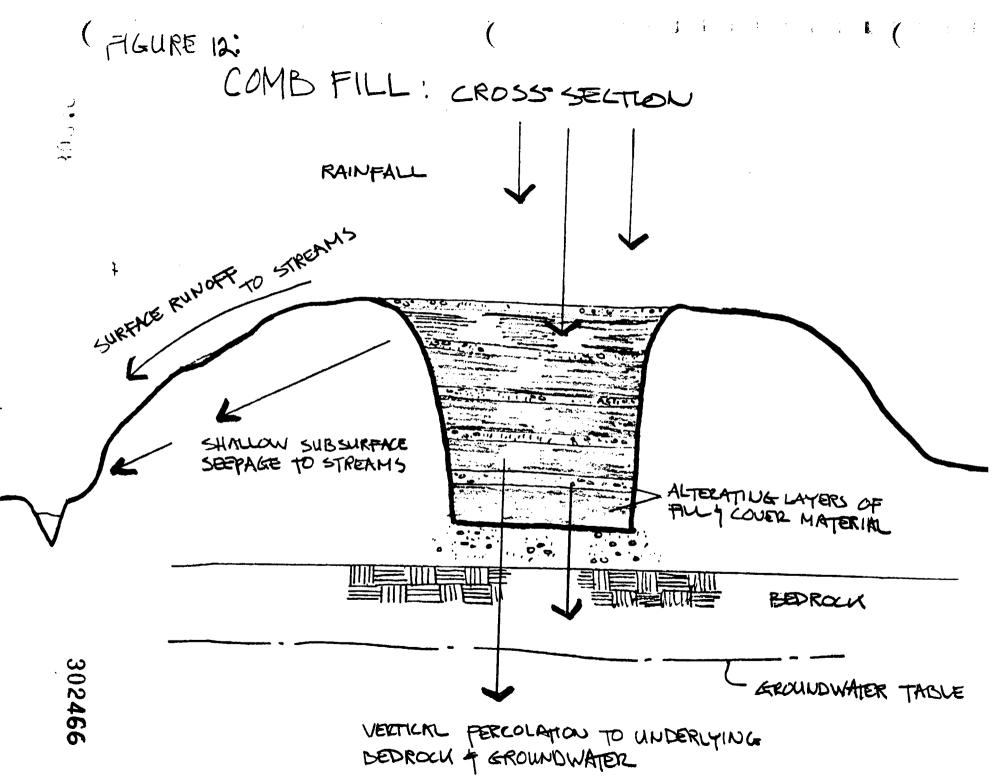
The total organic chemical reading of 1005 ppb at station URWA S-2 indicates significant surface water pollution. Since many of the organic chemicals will volatilize as they travel downstream, pollution downstream should diminish. However, this is not true in groundwater flows.

The variety of chemicals found in the test results, 33 different types, is reason for concern. Little is known about the synergetic effects of chemicals once combined. It is quite likely that two chemicals when combined could produce a new compound more harmful than either original one.

The extremely high concentrations of manganese found at most all of the sample locations is also reason for serious concern.

N 808

There is little doubt that the landfill is a source of serious pollution, however, it is not yet known how far by surface or groundwater the pollution has traveled. A testing program of residential wells along Parker Road, down gradient from the landfill, will assist in determining the magnitude of threat which the landfill poses to the public health and welfare.


j

Since the results indicate that there is both surface and groundwater contamination at the landfill and that the contamination is migrating from the site, it is the author's opinion that the facility should be closed.

302465

* 201.

i.

L-22

. .

NOTES

- 1. Affidavit of Robert Hordon in the matter of Township of Chester, et al. vs. Combe Fill Corporation and the N.J. Department of Environmental Protection.
- 2. See the following:
 - a. Letter from Oliver T. Alstrom, Assistant Field Supervisor, U.S. Department of the Interior, Fish and Wildlife Service, to Edward R. Russo, Council Present, dated February 26, 1981.
 - b. Affidavit of John A. Castner in the matter of Chester Township, et al. vs. Combe Fill Corporation.
 - c. Affidavit of Daniel Toder in the above matter.
- 3. Fowler, Angela, et al. The Chester, The Mendhams: A Natural resource Inventory and Environmental Study; 1976.
- 4. Morris County Soil Conservation Service, <u>Soil Survey of Morris County, New</u> Jersey, August 1976.
- 5. See especially: State Department of Environmental Protection Memorandum to Beatrice Tyluki, Director Solid Waste Administration, from Frank Markewicz, Supervising Geologist, re: Chester Hills Landfill Investigation, dated March 13, 1979.
- 6. State Department of Environmental Protection Memorandum to Lee Pereria, Solid Waste Administration from Frank J. Markewicz, Acting State Geologist, re: Combe Landfill South Field Inspection, dated February 24, 1981.
- 7. "Draft Report: Combe Fill South," Morris County Solid Waste Coordinator, April 9, 1981.
- 8. Township of Chester, et al. vs. Combe Fill Corporation, et al. Docket No. C-2094-80E, Superior Court of New Jersey, Chancery Division-Morris County.
- 9. "Order Modifying Registration: In the Matter of Combe Fill Corporation, Inc., Facility Registration, Number 1407A." Edward J. Landres, Assistant Director, Enforcement Branch, Solid Waste Administration, March 19, 1981.
- U.S. Environmental Protection Agency in the Matter of Combe Fill Corporation, Proceedings Under Section 309a.3 & 4, Clean Water Act, 33 U.S.C. & 1319a(3)(4), March 19, 1981, Julio Morales-Sanchez, Director, EPA, CWA-11-81-7; Enforcement Division, Region II, USEPA.
- Letter from Raymond A. Webster, P.E., Manager Water Allocation Section, Division of Water Resources, to Mr. Gary Molchan, Vice President, Combe Fill Corporation, dated March 16, 1981.
- 12. In the Matter of the Adopted and Modified Solid Waste Management Plan of the Morris County Solid Waste Management District: Certification of Approval with Modification of the Morris County District Solid Waste Management Plan, January 29, 1981, Jerry Fitzgerald English, Commissioner.

- 13. Dunn & Bradstreet, Review of Combe Fill Corporation and Combustion Equipment Associates, April 30, 1981.
- 14. See state-mandated quarterly tests from Chester Hills, Inc., January 27, 1977 through May 17, 1979. Also see files of Chester and Washington Township Boards of Health.
- 15. URWA, "A Proposal for Water Quality Testing at the Chester Hills Landfill."
- 16. Federal Register, Volume 44, Number 231, November 29, 1979.
- Personal Communication with Haig Kasabach, Chief, Bureau of Groundwater Management, Division of Water Resources, N.J. Department of Environmental Protection, April 29, 1981.
- 18. Federal Register, November 28, 1980.

19. See the following:

-

....

12

Council on Environmental Quality, "Contamination of Groundwater by Toxic Organic Chemicals", January 1981.

Tucker, Robert Dr., Groundwater Quality in New Jersey: An Investigation of Toxic Contaminants", March 1981, Office of Cancer and Toxic Substances Research, N.J. Department of Environmental Pro-

Ross, Steven S., Ed., Toxic Substances Sourcebook, March 1978.

Ross, Steven S., Ed., Toxic Substances Sourcebook Series 2, August 1980.

Thomas, Clayton L., MD, MPH, <u>Taber's Cyclopedic Medical Dictionary</u>, F. A. Davis Company, 1970.

APPENDIX M

OTHER POTENTIAL SOURCES OF ENVIRONMENTAL CONTAMINATION WITHIN 5 mi. RADIUS OF COMBE FILL SOUTH

.

• •

.

| | TYPE OF | | APPROX.
DISTANCE FROM | |
|--|---|----------------------------------|--------------------------|-----------|
| NAME OF FACILITY | FACILITY | LOCATION | LANDFILL (mi.) | DIRECTION |
| Quimby and Co. | Cleaning cpd and vibration pads | Oakdale Rd
Chester | 3.0 | North |
| Simmons Precision/
Cooperative Industries | Electrical harness for
gas turbine engines | Oakdale Rd
Chester | 3.0 | North |
| TD4E, Inc. | Technical manual
preparation for
manufacture of
electrical engines | Main St
Chester | 3.0 | North |
| Utility Propane Co. | Liquid propane gas | Rt. 24
Chester | 3.4 | North |
| Cooper Chemical Co. | Reagent and Industrial chemicals | Parker Rd
Long Valley | 2.9 | South |
| Frazier Industrial Co. | Structural steel
storage racks | Fairview Ave
Long Valley | 2.2 | West |
| Lanterman Machine & Tool | Microwave components | Parker Rd
Long Valley | 2.9 | South |
| Markan Globol | Raw materials for
pharmaceutical
companies | Rollings Ridge Dr
Long Valley | 4.5 | West |
| Valley Brook Machine &
Tool Co. | Tooling and machinery | West Mill Rd
Long Valley | 4.8 | Southwest |
| Welsh Farms | Manufacture dairy
products | Fairview Ave
Long Valley | 2.2 | West |
| Cherokee Rubber | - | Parker Rd
Long Valley | 2.9 | South |
| Norberg Machine and Tool | - | Parker Rd
Long Valley | 2.9 | South |
| MNTC | Warehouse | Parker Rd
Long Valley | 2.9 | South |
| Budd Moving System | Moving and storage | Bartley Rd
Flanders | 4.5 | Northwest |
| Byrne Ceramic Supply Co., Inc. | - | Bartley Rd
Flanders | 4.5 | Northwest |
| Provimi Inc. | Specialty milk replacer
for veal calves | Bartley Rd
Flanders | 4.5 | Northwest |

APPENDIX N

1

فنعد

SUPPLEMENT TO LANDFILL REPORT: RADIOACTIVITY

BY

UPPER RARITAN WATERSHED ASSOCIATION

SUPPLEMENT to LANDFILL REPORT: RADIOACTIVITY

Test results for radioactivity in the form of gross alpha and gross beta contamination were received by the Upper Raritan Watershed Association on May 27, 1981. Princeton Testing Labs subcontracted the tests to Radiation Management, Inc. of Philadelphia, Pennsylvania which has an EPA certification to conduct such tests. Princeton is not certified to conduct radioactivity testing.

Radioactivity was measured in picocuries per liter (pci/l). A picocurie is that quanity of radioactive material producing 2.22 nuclear transformation per minute. U.S.E.P.A. Drinking Water Regulations (which apply only to public water supply systems used by twenty-five or more persons) set the maximum alpha particle activity at 15 pci/l. EPA regulations for beta activity are more complex and cover only radiation from man-made radionuclide³. The limit is set at a total body dose or internal organ dose greater than 4 millirem per year, based on a two liter per day intake of water. A millirem is 1/1000 the amount of radiation which will cause the same biological effect as that due to one roentgen of x-rays.

The site of Combe Fill South is located in an area of known natural radioactivity from an element known as thorium. Thus, natural background radiation in the vicinity might be higher than in other areas. Exact data on natural background radiation are lacking at this time.

TEST RESULTS:

| Site Test # - | gross
<u>alpha</u> | permissable
counting error | gross
beta | permissable
counting error |
|---|--------------------------|-------------------------------|--|-------------------------------|
| G-5 (control)
G-2 5646
G-4 Station 1 | 1.05
3.49+2.8
2.64 | 79% | 2.56
5.10 <u>+</u> 2.0
3.26 <u>+</u> 1.9 | 40%
57% |
| S-1 Station 2
S-2 Station 3
S-3 Station 4
S-4 5647 | 3.21
1.18
40.9+11 | 26% | 2.47 <u>+</u> 1.8
2.56
33.4 <u>+</u> 3.7
14+2.6 | 73%
11%
18% |
| S-5 5649 | 2.2 8
2.94 | | 14 <u>+</u> 2.6
34.9 <u>+</u> 3.7 | 10% |

SUMMARY :

Station S-3, located on the west branch of Trout Brook on the Tingue property, had the highest levels of gross alpha (40.9+11) and the second highest levels of gross beta (33.4+3.7).

Station S-5, located within the landfill at the head of the east branch of Trout Brook, recorded the highest gross beta level (34.9+3.7).

Ground water samples generally showed lower amounts of both alpha and beta activity. The highest gross alpha reading (3.49 ± 2.8) came from Site G-2, a shallow well $(\pm20')$ just to the rear of the Filiberto residence. The same site also showed the highest gross beta reading (5.10 ± 2.0) .

* 4

CONCLUSION:

At present it is not possible to determine if the radioactivity measured by these tests is caused by purely natural activities, natural activities aggravated by the landfilling action or by radioactive substances deposited in the fill.

However, it is clear that the West Branch of Trout Brook contained elevated levels of radioactivity in comparison to the other sites tested. Radioactive activity at this site exceeded the EPA standard for drinking water by 2.6 times. If this were a potable water source for 25 individuals, it would be in violation of the Federal standards.

In addition, the higher beta activities recorded at S-5 may indicate the presence of radioactive material in the older section of the fill. Whether γ r not this material is natural or man-made, could not be determined by this sampling process.

Groundwaters showed generally lower concentrations of radioactive activity. However, G-2 showed levels of gross alpha over 3 times the levels found in the control groundwater sample (G-5) and roughly twice the gross beta activity.

RECOMMENDATIONS:

- 1. Testing for gross alpha and gross beta be continued in residential well tests. Cost is low (\$6.00/sample for gross alpha, \$8.00 for gross beta).
- 2. An attempt be made to establish more accurate background data for the area as a whole.
- 3. An attempt be made to trace the source of the radioactive activity at S-3.
- 4. Make testing for radioactivity mandatory for all new wells established in areas of known radioactive occurrence.
- 5. Attempt to ascertain whether the landfill has or could have accepted radioactive materials in the past.

78 6 (1)

APPENDIX 0

.

~~~~

~ •

## MEMO CONCERNING SITE GEOLOGY

## MARK GERMINE - NJDEP

# 7/21/82



STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION GEORGE J. TYLER, ASSISTANT COMMISSIONER CN 402

> TRENTON, N.J. 08625 609 - 292 - 8058

October 26, 1982

Honorable Frank Adessa, Mayor Township of Chester P. O. Box 428 Parker Road Chester, New Jersey 07930

Dear Mayor Adessa:

 $\{1, j\}$ 

Enclosure

This letter is an update of the Department's activities concerning Combe Fill South. It includes a summary of the geohydrologic investigation and an enforcement update.

In July and August, the Department conducted geologic and geophysical investigations at Combe Fill South, including an electromagnetic terrain conductivity survey. High conductivity is often a function of the presence of pollutants in the ground water. Generally conductivity decreases as depth increases. The focuses of concern from the conductivity survey are those areas where conductivity is inordinately high or increases with depth. Our findings are attached.

In the near future, the Department will be implementing these recommendations in order to refine the delineation of the full extent of ground water problems. As you know, this more detailed investigation, building upon what has been done to date, is a prerequisite to preparing a viable cleanup plan for the landfill.

The Department is continuing to pursue implementation of interim remedial measures from the bankruptcy trustee. They are: preventing access to the site, seeding and grading, final covering, ground and surface water interception systems, leachate treatment systems and regular and continuing sampling and analysis of existing ground water analysis. The Department is prepared to obtain needed work at the site through compulsory judicial process if voluntary compliance is not forthcoming.

I trust this update adequately addresses your concerns. Please call me if I can be of further assistance.

Sincerely, ORIGINAL SIGNED BY GEORGE J. TYLER

302474

George J. Tyler Assistant Commissioner for Environmental Management

c: Health Officer Matteo New Jersey Is An Equal Opportunity Employer

#### STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION GEORGE J. TYLER, ASSISTANT COMMISSIONER

CN 402

TRENTON, N.J. 08625 609 - 292 - 8058

October 26, 1982

Honorable Edward Shields, Mayor Township of Washington P. O. Box 216 43 Schooley's Mountain Road Long Valley, New Jersey 08753

Dear Mayor Shields:

This letter is an update of the Department's activities concerning Combe Fill South. It includes a summary of the geohydrologic investigation and an enforcement update.

In July and August, the Department conducted geologic and geophysical investigations at Combe Fill South, including an electromagnetic terrain conductivity survey. High conductivity is often a function of the presence of pollutants in the ground water. Generally conductivity decreases as depth increases. The focuses of concern from the conductivity survey are those areas where conductivity is inordinately high or increases with depth. Our findings are attached.

In the near future, the Department will be implementing these recommendations in order to refine the delineation of the full extent of ground water problems. As you know, this more detailed investigation, building upon what has been done to date, is a prerequisite to preparing a viable cleanup plan for the landfill.

The Department is continuing to pursue implementation of interim remedial measures from the bankruptcy trustee. They are: preventing access to the site, seeding and grading, final covering, ground and surface water interception systems, leachate treatment systems and regular and continuing sampling and analysis of existing ground water analysis. The Department is prepared to obtain needed work at the site through compulsory judicial process if voluntary compliance is not forthcoming.

I trust this update adequately addresses your concerns. Please call me if I can be of further assistance.

Sincerely,

302475

ORIGINAL SIGNED DY GEORGE J TYLES George J. Tyler

Assistant Commissioner for Environmental Management

Enclosure

c: Health Officer Matteo Environmen New Jersey Is An Equal Opportunity Employer

# APPENDIX O MEMO CONCERNING SITE GEOLOGY MARK GERMINE - NJDEP 7/21/82

a haran

-----

•••

~~,

. .



STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION GEORGE J. TYLER, ASSISTANT COMMISSIONER CN 402 TRENTON, N.J. 08625

609 - 292 - 8058

October 26, 1982

Honorable Frank Adessa, Mayor Township of Chester P. O. Box 428 Parker Road Chester, New Jersey 07930

Dear Mayor Adessa:

This letter is an update of the Department's activities concerning Combe Fill South. It includes a summary of the geohydrologic investigation and an enforcement update.

In July and August, the Department conducted geologic and geophysical investigations at Combe Fill South, including an electromagnetic terrain conductivity survey. High conductivity is often a function of the presence of pollutants in the ground water. Generally conductivity decreases as depth increases. The focuses of concern from the conductivity survey are those areas where conductivity is inordinately high or increases with depth. Our findings are attached.

In the near future, the Department will be implementing these recommendations in order to refine the delineation of the full extent of ground water problems. As you know, this more detailed investigation, building upon what has been done to date, is a prerequisite to preparing a viable cleanup plan for the landfill.

The Department is continuing to pursue implementation of interim remedial measures from the bankruptcy trustee. They are: preventing access to the site, seeding and grading, final covering, ground and surface water interception systems, leachate treatment systems and regular and continuing sampling and analysis of existing ground water analysis. The Department is prepared to obtain needed work at the site through compulsory judicial process if voluntary compliance is not forthcoming.

I trust this update adequately addresses your concerns. Please call me if I can be of further assistance.

Sincerely, ORIGINAL SIGNED BY GEORGE J. TYLER

George J. Tyler Assistant Commissioner for Environmental Management

302477

Enclosure c: Health Officer Matteo New Jersey Is An Equal Opportunity Employer



STATE OF NEW JERSEY DEPARTMENT OF ENVIRONMENTAL PROTECTION GEORGE J. TYLER, ASSISTANT COMMISSIONER CN 402 TRENTON, N.J. 08625 609 - 292 - 8058

October 26, 1982

Honorable Edward Shields, Mayor Township of Washington P. O. Box 216 43 Schooley's Mountain Road Long Valley, New Jersey 08753

Dear Mayor Shields:

This letter is an update of the Department's activities concerning Combe Fill South. It includes a summary of the geohydrologic investigation and an enforcement update.

In July and August, the Department conducted geologic and geophysical investigations at Combe Fill South, including an electromagnetic terrain conductivity survey. High conductivity is often a function of the presence of pollutants in the ground water. Generally conductivity decreases as depth increases. The focuses of concern from the conductivity survey are those areas where conductivity is inordinately high or increases with depth. Our findings are attached.

In the near future, the Department will be implementing these recommendations in order to refine the delineation of the full extent of ground water problems. As you know, this more detailed investigation, building upon what has been done to date, is a prerequisite to preparing a viable cleanup plan for the landfill.

The Department is continuing to pursue implementation of interim remedial measures from the bankruptcy trustee. They are: preventing access to the site, seeding and grading, final covering, ground and surface water interception systems, leachate treatment systems and regular and continuing sampling and analysis of existing ground water analysis. The Department is prepared to obtain needed work at the site through compulsory judicial process if voluntary compliance is not forthcoming.

I trust this update adequately addresses your concerns. Please call me if I can be of further assistance.

302478

c: Health Officer Matteo Enclosure Assistant Co New Jersey Is An Equal Opportunity Employer

ORIGINAL SIGNED DY GEORGE J. TYLES George J. Tyler

Assistant Commissioner for

Environmental Management

Sincerely,

# 10/26/82.

#### SOUTHWEST CORNER

Conductivity increased with depth on the immediate perimeter of the landfill. As no leachate seeps were noted, the possibility exists that leachate is present within the bedrock formation. It is recommended that a monitor well be installed in this corner.

#### NORTHEAST CORNER

Conductivity increased with depth. It is believed that a narrow zone of leachate has been identified at this location. An additional monitoring well should be installed. The existing well should be logged, and a piezometer, for determining vertical variation in pressure head, should be installed adjacent to the existing well.

#### EASTERN PERIMETER

Conductivity was generally low. Monitor well-MW-2 should be logged.

#### SOUTHEASTERN CORNER

Deep readings could not be obtained in certain areas. This indicates that the rock formation lacks significant permeability with depth, although the presence of leachate cannot be excluded. The area is adequately monitored by the existing well.

#### WESTERN PERIMETER

Elevated readings of terraine conductivity were noted in the area west of Trout Brook. The reason for this is not clear. A monitoring well should be installed to monitor for under flow in the rock aquifer below Trout Brook.

#### NORTHWEST CORNER -

all state

Decreased conductivity with depth was found; monitor well should be installed to aid in determining regional ground water flow and background water quality.

بنا \*

	NEW JERSEY STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION	
TO_Frank	J. Markewicz, Acting State Geologist	•
FROM Mar	k Germine. Assistant Geologist MK DATE July 21. 1982	•
SUBJECT Cor	mbe-South Landfill, Chester & Washington Twps., Morris County	•
•		
tion of the Townships (see attac	Tuesday, June 29, 1982, I conducted a geologic reconnaissance examina- he Combe-South Landfill and surrounding area in Chester and Washington . Geologic data was collected at five locations in the mapped area ched). In addition, float was examined throughout the area. Rock ere slabbed, polished, etched, and stained (for K-spar).	·
Fo	ur distinct rock types were noted in the area mapped. They are as	۰.
follows:		
1)	Alaskite gneiss - buff-colored, strongly foliated gneiss principally composed of elongate streaks of smoky quartz, plagioclase (oligoclase), K- hornblende and opaques, trace monazite. Prominent parting along folia- tion.	spi
2)	Hornblende granite - buff to pink-colored, weakly to moderately foliated granite containing quartz, oligoclase, K-spar, and hornblende.	
3)	Alaskite - dark gray, buff to brown weathering alaskite. Foliation weakly developed to absent. Composed of quartz, oligoclase, and K-spar, with accessory hornblende and opaques.	
1, <b>1)</b> 1, <b>1)</b> 1, <b>1</b> ) 1, <b>1</b> ) 1, <b>1</b> ) 1, <b>1</b> ) 1, <b>1</b> ) 1, <b>1</b> ]	Amphibolite - foliated rock containing hornblende and plagioclase. Occurs as thin bands in other rock units. A distinct band of amphibolite was reportedly excavated in the southwestern portion of the landfill and backfilled with garbage.	
Here, as folds. His stretched	liation is consistent throughout the mapped area, averaging N50°E, 80°SE. elsewhere in the Highlands, foliation probably reflects tight isoclinal ighly foliated units (e.g. "Alaskite gneiss") may correspond to the limbs of such folds. Fairly well developed joints occur within the area. These belong to three groups:	
· · · · · · · · · · · · · · · · · · ·	Maldaddan and murand dimensional directory but we dd ward di	
<b>,                                    </b>	Foliation set - present throughout the area but particularly well developed in the granite outcrop in the northern portion of the landfill. Appears to be a predominantly near-surface feature.	
2)	Conjugate shear sets - pair of steeply dipping to vertical sets trending	
i	at about N10 <sup>O</sup> W and N45 <sup>O</sup> W. Poorly to moderately well developed on land- fill site. Not noted elsewhere. It is probable that these joint sets	
	are conjugate shear pairs. The direction of maximum compression would	
	bisect the acute angle made by the sets, in this case indicating a more or less horizontal directional of maximum compressive stress trending about N28°W. This direction of compressive stress is apparently ex- pressed by joints, throughout the Highlands and may be connected with	
•	the Appalachian Revolution (late Paleozoic). The relatively low angle (35°) between the joint sets under consideration has been interpreted elsewhere in the New Jersey Highlands as indicating that tension was the chief stress involved. Such tension is thought to result from	
•		

0-2

ł

Combe-South Landfill, Chester & Washington Twps., Morris County (Contd)

minor adjustments in a predominantly compressional deformational regime. Minor faults in Northern New Jersey are typically parallel to one of these conjugate shear sets, indicating that both are caused by the same forces.<sup>2</sup> Epidote slickensides found on rock rubble in the landfill area are thought to be associated with motion related to these joint surfaces.

3) Sheeting - more or less horizontal fractures which are most pronounced in the upper 5 or 10 feet below the soil interface. Noted only in the northern sector of the landfill.

In addition, aerial photographs (1964, 1:12,000) were examined for lineaments. Two vague topographic lineaments were noted in the mapped area, and are shown on the attached map. There was some tonal expression on the northeastern lineament, while the southwestern lineament was more clearly expressed topographically. These features are of unknown affinity, but may have some connection with the shearing discussed above.

Wells in the area are typical for the Highlands. Yields range from 0-30 gpm. No wells were noted in association with the above-described lineaments.

Although it is not possible to predict the direction(s) of leachate migration from the landfill, observations suggest that most leachate will move out radially in the near surface zone of weathering, sheeting, and foliation jointing. This leachate will probably tend to make its way into the prevailing drainage regime and eventually, for the most part, find its way to Trout Brook and Reinhardt Brook. Infiltration to levels of deeper groundwater flow may occur along joints, particularly where the rock is well foliated. The highest potential for rapid transmission of contaminated groundwater is likely to be in the directions of trend of conjugate shear joints and/or linear features. Leachate migration into bedrock will proceed much faster and in greater volume where the amphibolite band was excavated.

A.N. Appleby, <u>A Study of Joint Patterns in Highly Folded and Crystalline</u> <u>Rocks</u>, with Particular Reference to Northern New Jersey, Ph.D. Dissertation, New York University, 1940.

Tbid.

js



#### NEW JERSEY STATE DEPARTMENT OF ENVIRONMENTAL PROTECTION

то	Frank Markewicz, Acting State Geologist	· · · · · · · · · · · · · · · · · · ·
FROM	Robert Canace through Wayne Hutchinson and	DATE AUG 1 0 1982
SUBJECT	Haig F. Kasabach, Chief, Bureau of Ground Combe Landfill South, Chester, New Jersey	Water Managment — Terrain Conductivity Investigation

An electromagnetic terrain conductivity geophysical survey was conducted on the perimeter of Combe Landfill South, to attempt to delineate zones of possible ground water contamination. The survey was conducted partially on-site and partially offsite in order to develop comparative data and to investigate possible off-site migration of contaminants.

The terrain conductivity instrument can be used to help locate principal zones of ground water storage and movement in a bedrock aquifer, such as that below the abovereferenced landfill. Additionally, zones of contaminated ground water can add to the instrument's resolution. In the survey, a 20 meter cable was utilized. Readings were taken in the horizontal and vertical mode (figures 1 and 2). Horizontal readings with a 20 meter cable are generally capable of detecting conductivity of the ground to a depth of approximately 15 meters (45 feet); the vertical mode is capable of detection to a depth of 30 meters (90 feet). Where a pattern indicating values of terrain conductivity higher than background values appear along a traverse line, there is an indication that such an area can be considered a likely zone of highly conductive ground water.

Elevated ground water conductivity is often a function of the presence of pollutants. In a bedrock aquifer, such as that surveyed, water occurs in select planes, such as joints, foliation and bedding planes. Elevated terrain conductivity readings in a bedrock aquifer indicate the location of water-bearing weathered zones. Other indicators are used to judge the quality of this ground water. For example, an increase in conductivity with depth can be an indication that water quality deteriorates with depth, because the normal relationship is a decrease in conductivity with depth, This relationship, wherein conductivity increased with depth, was encountered in two areas of the Combe Landfill South. The likelihood is high that ground water contamination exists in the rock aquifer at those points.

#### Conclusions

ALIN'S

MEMO

Based upon the results of the geophysical investigation, the following should be done to investigate ground water pollution at the Combe South Landfill:

- 1. Additional geophysical survey lines are needed; these can be performed by the Bureau.
- 2. Additional monitor wells are definitely required. Monitor wells are needed
  - a. north of the landfill, between the landfill and Schoolhouse Lane, adjacent to the utility right-of-way,
  - b. in the southwest corner of the landfill,
  - c. immediately west of the landfill, west of Trout Brook,
  - c. adjacent to monitor well MW-4, drilled to a depth of approximately 50 feet.

. The existing monitor wells should be logged with a down-hole logging device. A caliper log and resistivity log can be performed by the Bureau.

#### Findings and Recommendations

The results of the conductivity investigation are summarized below. Readings are summarized in the attached tables and are contoured on figures 1 and 2. Recommend-ations are made for the location of additional monitor wells (Fig. 3).

#### Southwest Corner

Findings:

An increase of terrain conductivity with increasing depth was noted on the immediate perimeter of the landfill. Since no leachate seeps were noted, there is evidence that the conductive water associated with leachate is present deep within the rock formation.

Recommendation:

Install a monitor well in S.W. corner (Fig. 3 MW-SW) to investigate source of high ground conductivity at depth.

#### Northeast Corner

Findings:

An increase in conductivity with increasing depth was noted between monitor well MW-4 and the power line. The likelihood that this increase is attributable to the presence of 100 feet of steel casing in the ground at MW-4 is negated by the fact that readings immediately east of MW-4, at a distance from the equivalent to the distance at which high readings were observed, are half (4-5 m.mho/m) of the elevated readings (9-10 m.mho/m). It is likely that the narrow zone of elevated conductivity values, as indicated in red contours in figure 2, is due to highly conductive ground water.

Recommendations: a.

Install a monitor well (MW-N) approximately 1000 feet and north of the landfill approximately 200 feet east of the high tension line (MW-N, fig. 3) to monitor ground water flow between the landfill and Schoolhouse Lane.

- b. Log existing well MW-4 using the Bureau's logger. A resistivity and caliper log should be performed in the open hole below the 100 feet of casing.
- c. Install a shallow (50 feet) 2" piezometer (MW-4A) adjacent to monitor well MW-4, for the purpose of determining the vertical variation in pressure head within the rock aquifer; alternately, this shallow piezometer could be located adjacent to proposed monitor well MW-N.

#### Eastern Perimeter

Findings:

Values for terrain conductivity are generally low. This area corresponds with the Alaskite zone, as mapped by Mark Germane

··· ·· (; ; ;

of the State Geological Survey, low background values would be expected. Existing monitor wells 2 and 1 appear to be adequately located to monitor the ground water in this area.

-3-

Recommendations: a.

Perform additional geophysical surveys in the northeast corner; this can be accomplished by the Bureau.

b. Log monitor well MW-2 with the resistivity and caliper log to determine the depth of casing and characteristics of the rock aquifer.

#### Southeastern Corner

Findings:

Deep readings could not be obtained along lines B, C, and D (Figure 2). This is an indication that the rock formation lacks significant permeability with depth, but does not preclude the presence of leachate. Shallow terrain conductivity readings indicate a potential zone of investigation in the vicinity of monitor well MW-5. Well MW-5 appears to be adequately located to monitor the ground water in this area.

#### Western Perimeter

Findings:

Elevated readings of terrain conductivity were noted in the area west of Trout Brook. Elevated readings from the horizontal mode may be attributable to the presence of clay soils and poorly-drained terrain. The pattern of the conductivity contours, though, does not correspond to ground patterns of moisture that were obvious in the field. The pattern noted is a possible indication or reflection of weathered zones in the rock aquifer.

Recommendations:

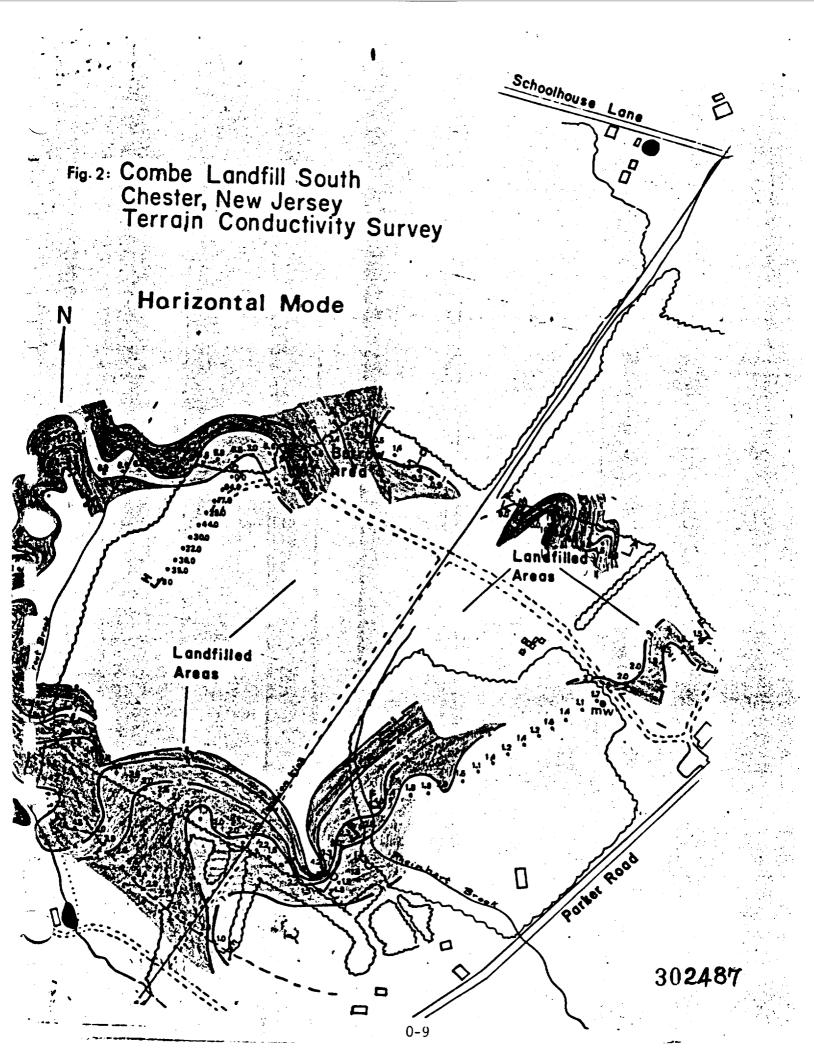
A precautionary monitor well should be installed in the cleared area west of Trout Brook. The purpose of this well would be to monitor for under flow in the rock aquifer below Trout Brook, toward Tanners Brook. The proposed location of the proposed monitor well is at MW-W (Fig. 3).

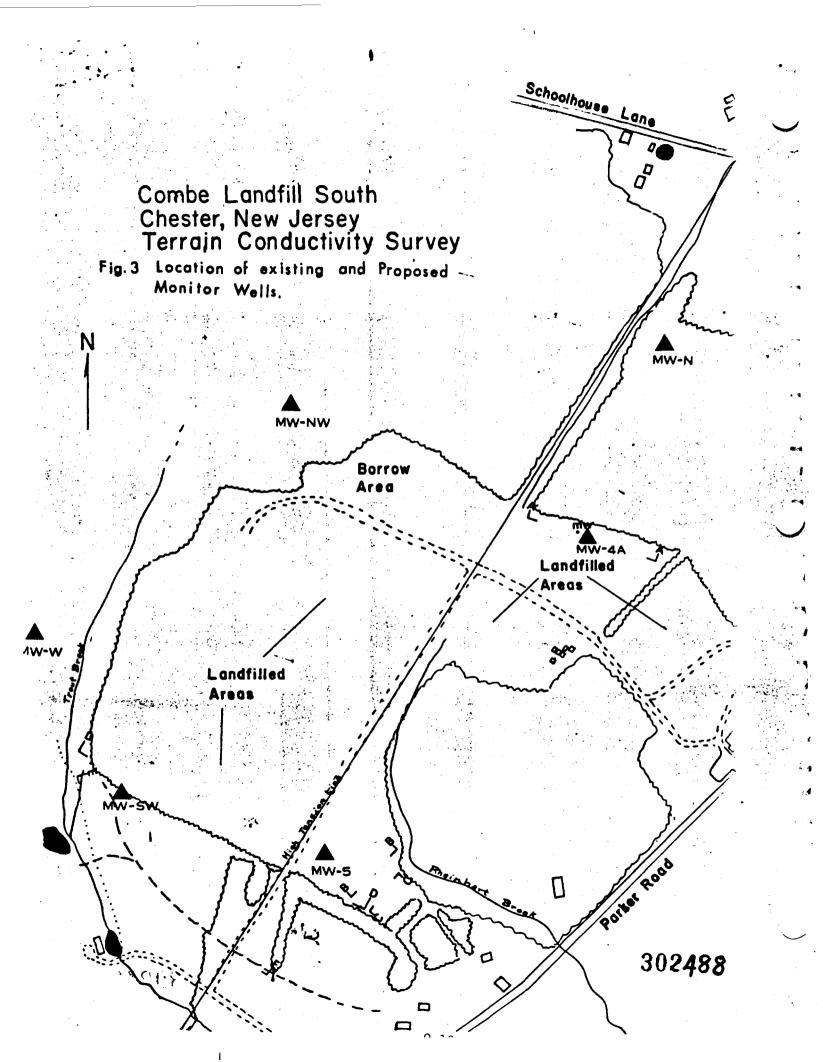
#### Northwest Corner

Findings:

Decreased conductivity with depth was noted in this area.

Recommendations:


A monitor well should be installed in the northwest corner as a background well and to aid in determining the direction of regional ground water flow and background water quality. The proposed location is MW-NW, (Figure 3).


#### WQM30:c1b

Attachments

cc: Arnold Schiffman, Director





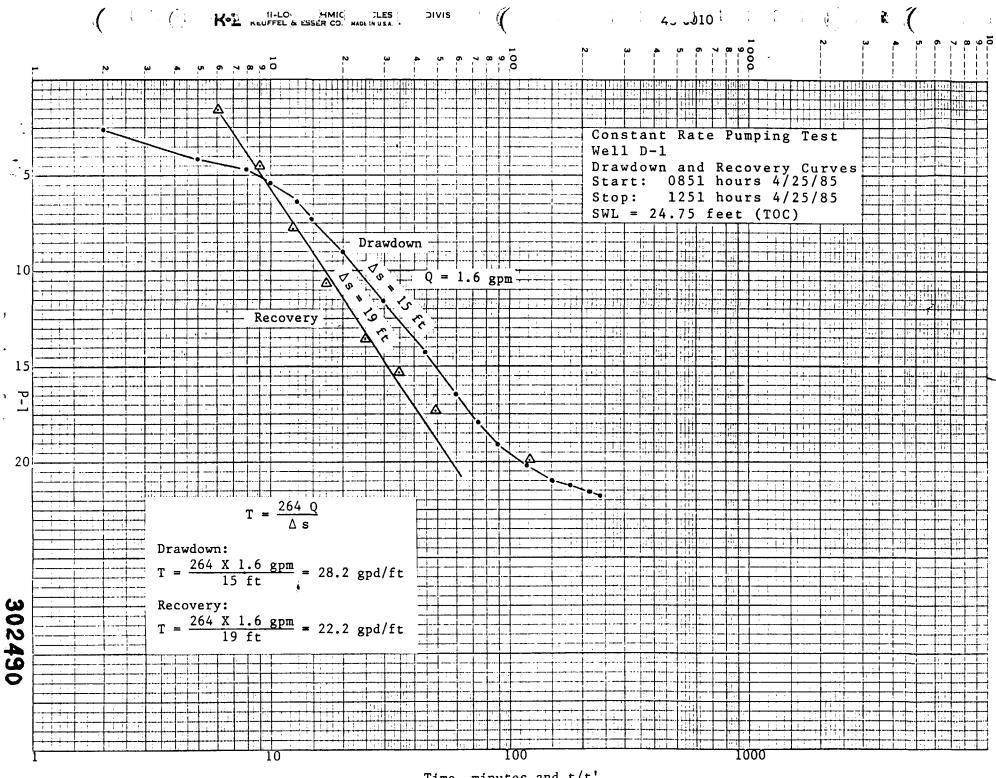


APPENDIX P PUMPING TEST DATA

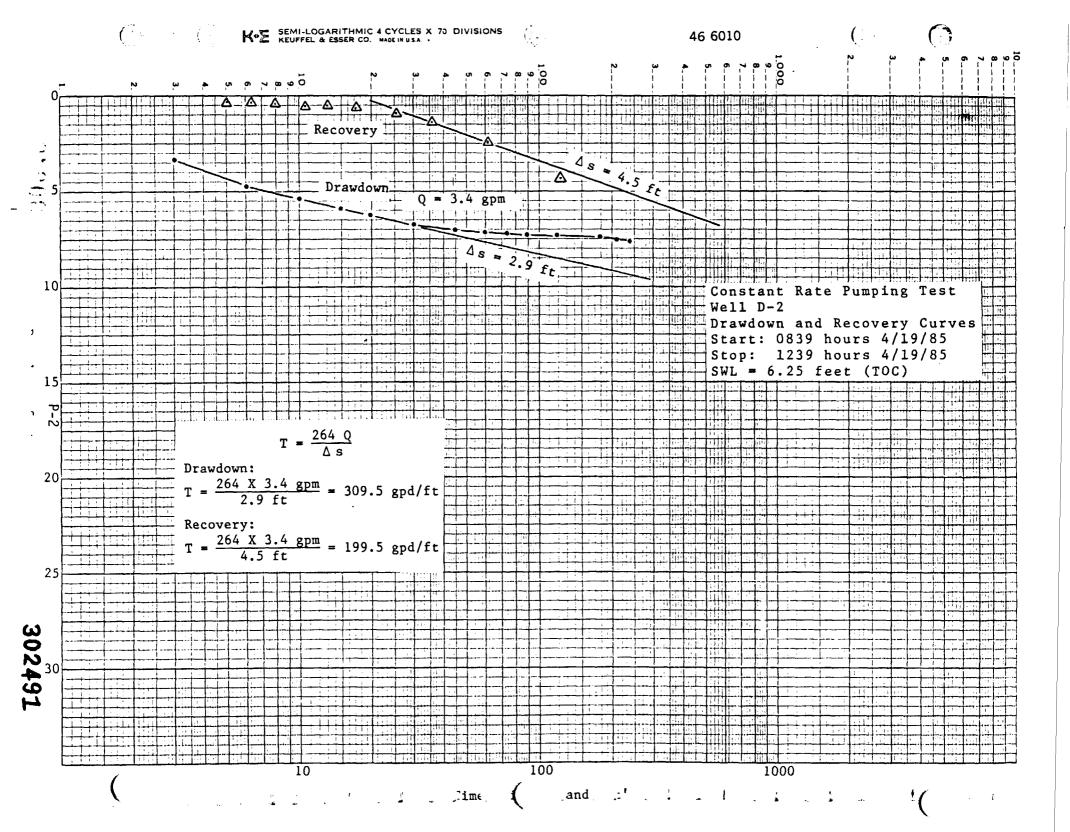
## 1

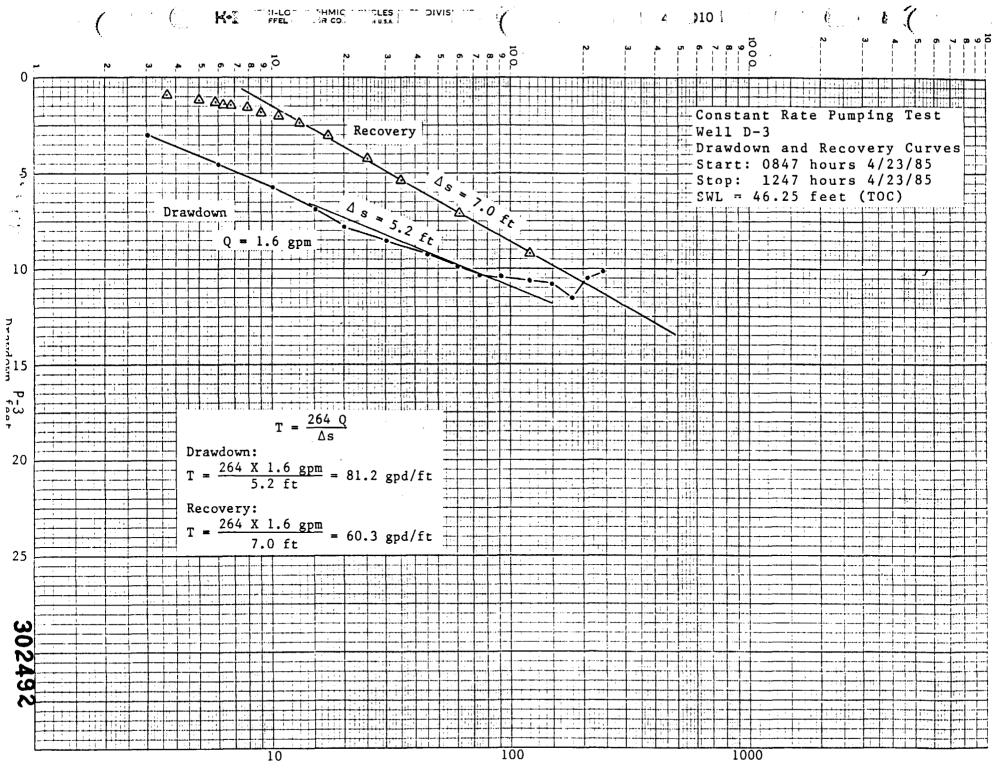
• • •

\_\_\_\_ نيبة

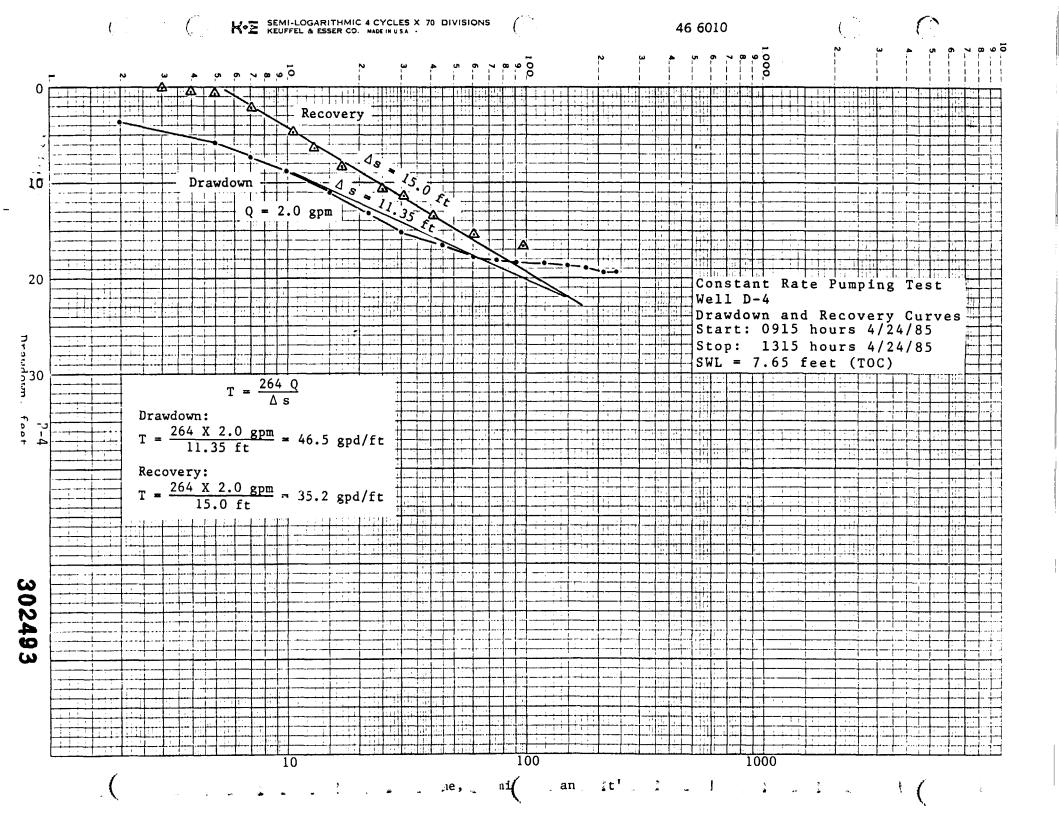

~ .

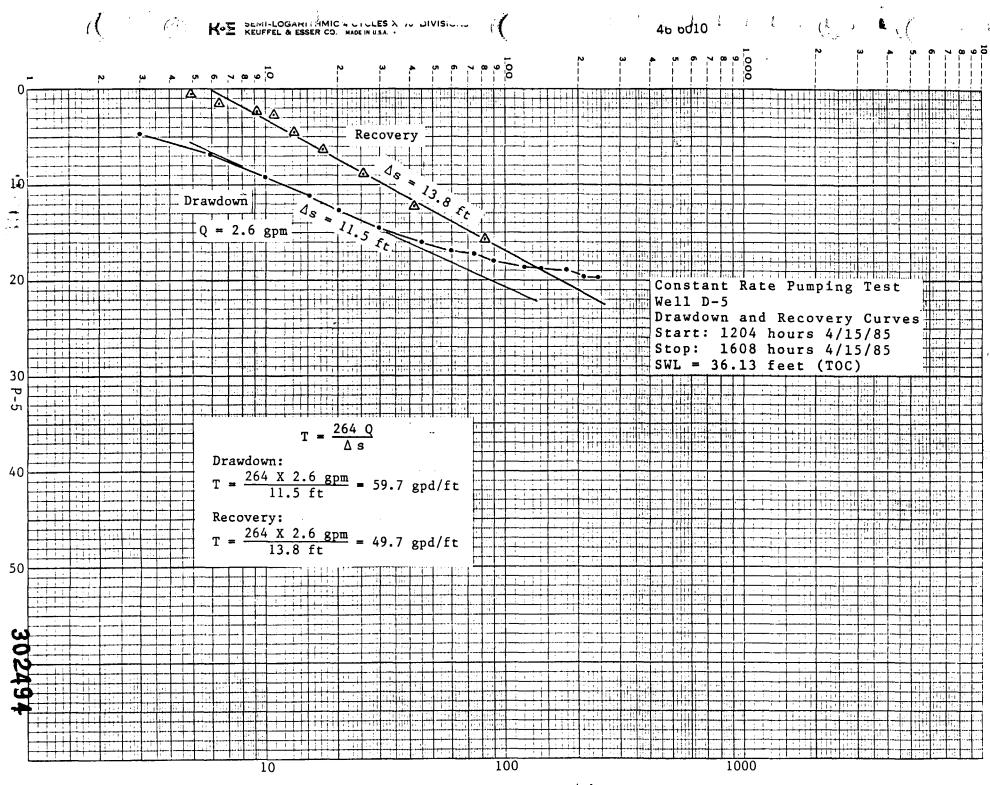
~ ~


---,


.

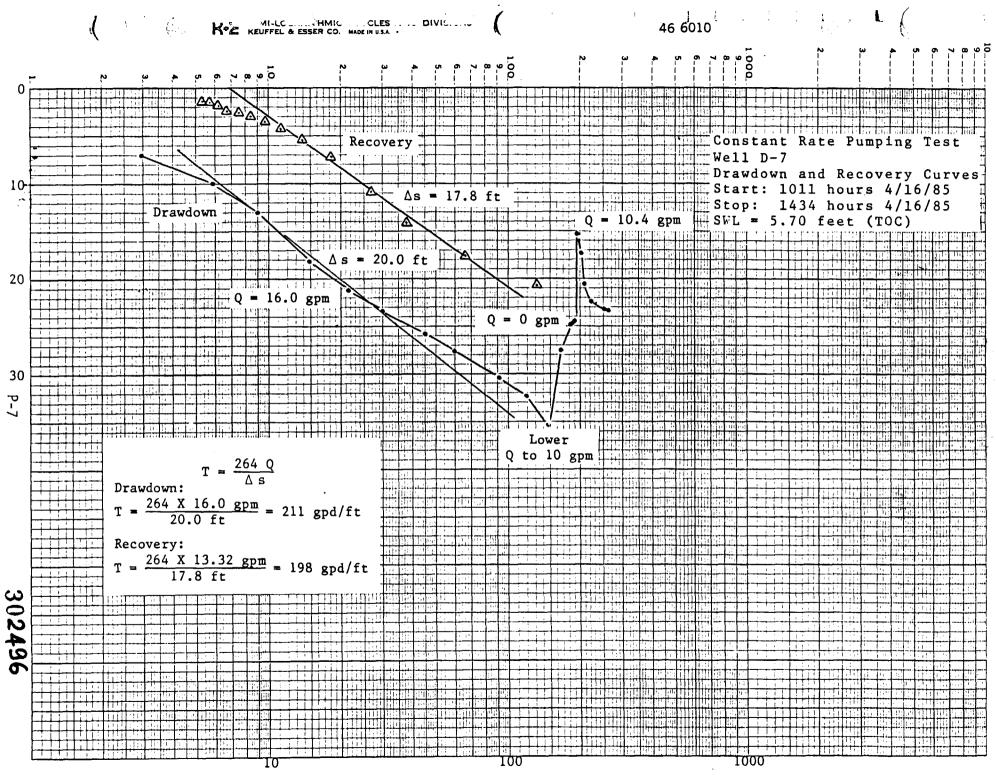
.



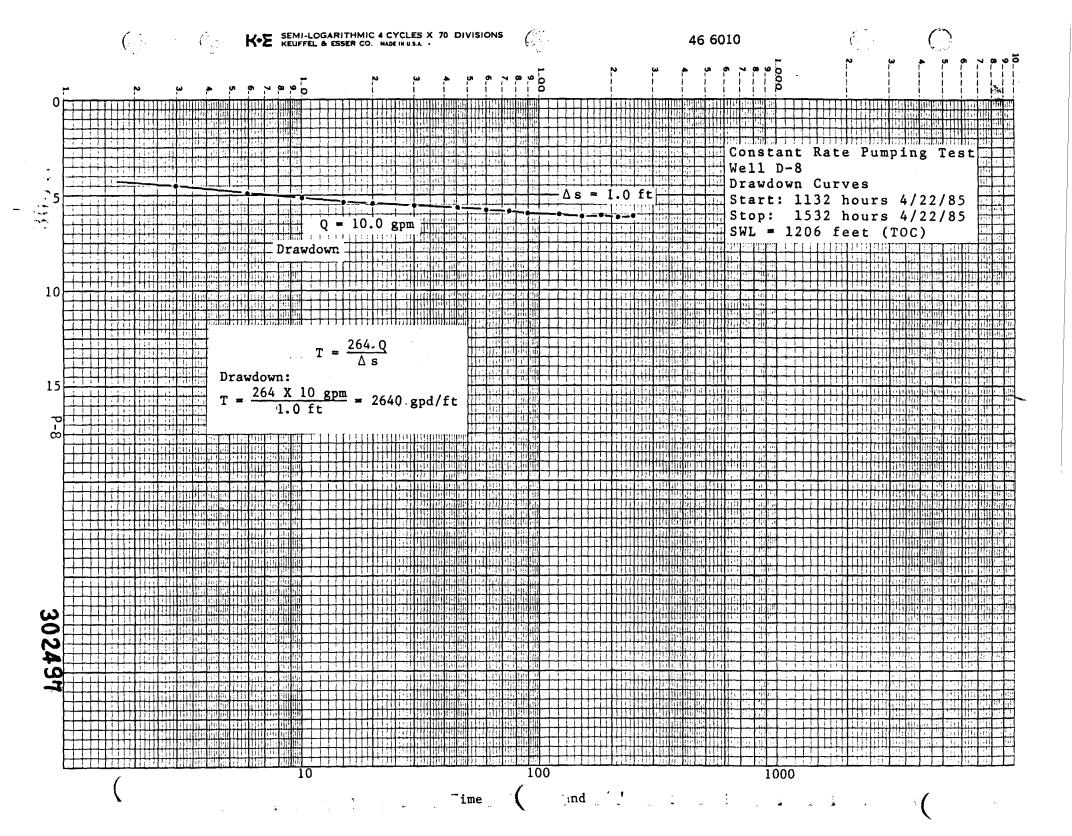


Time, minutes and t/t'

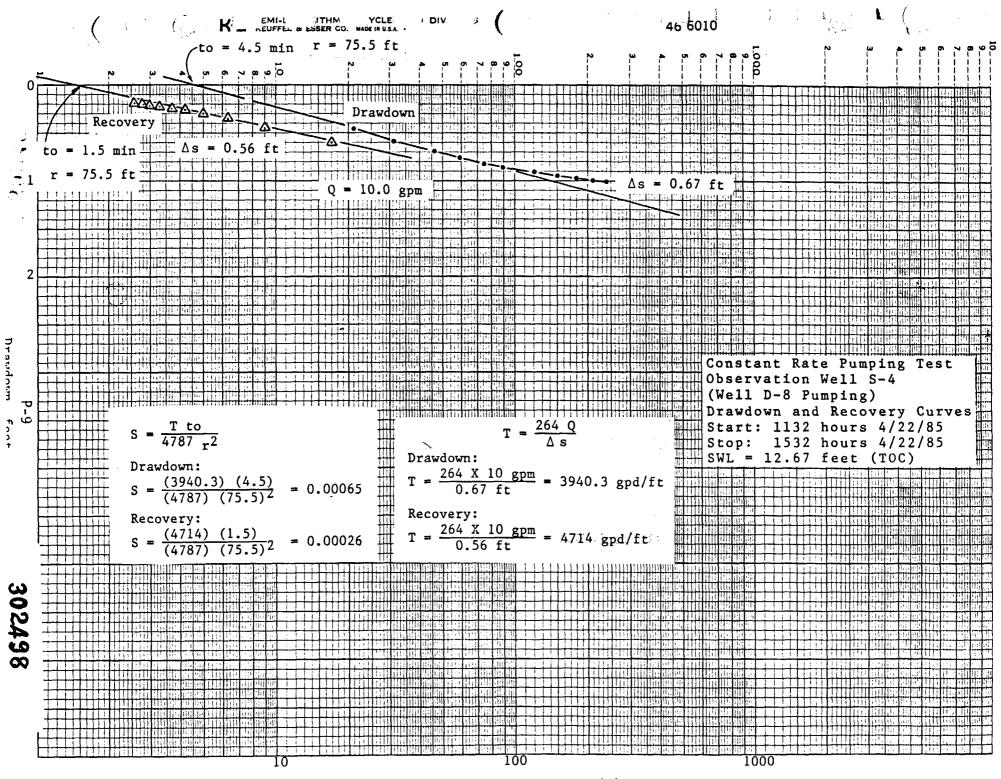




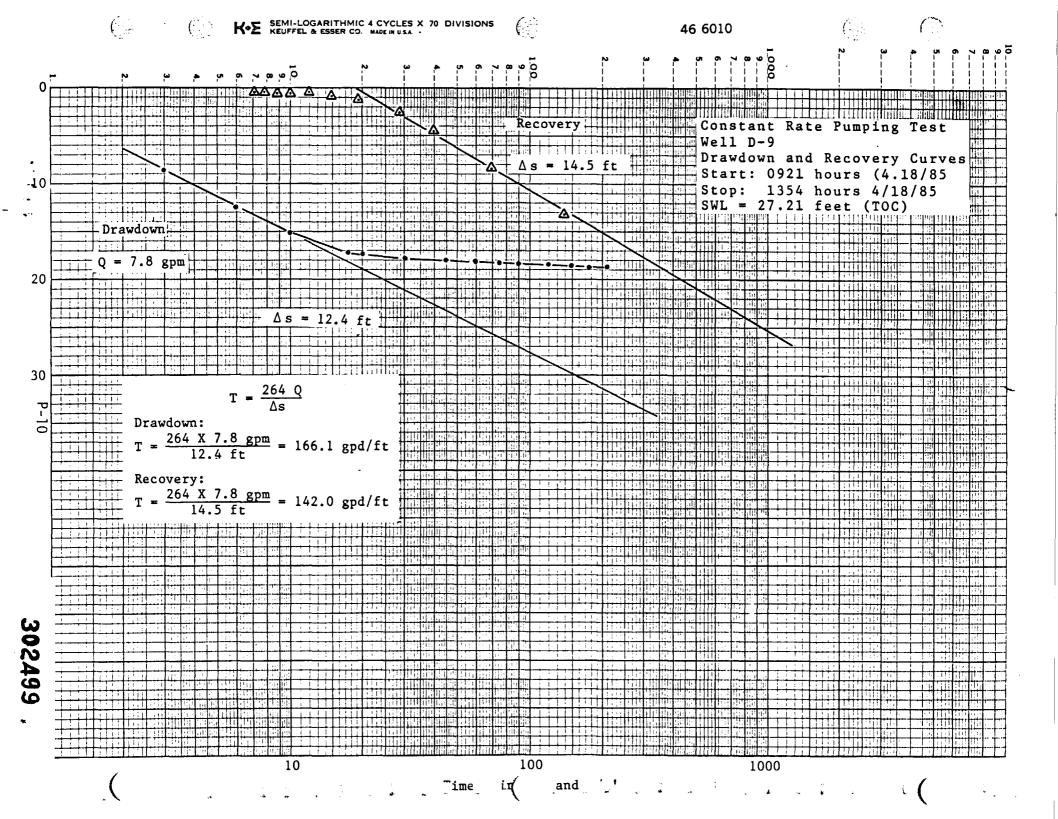


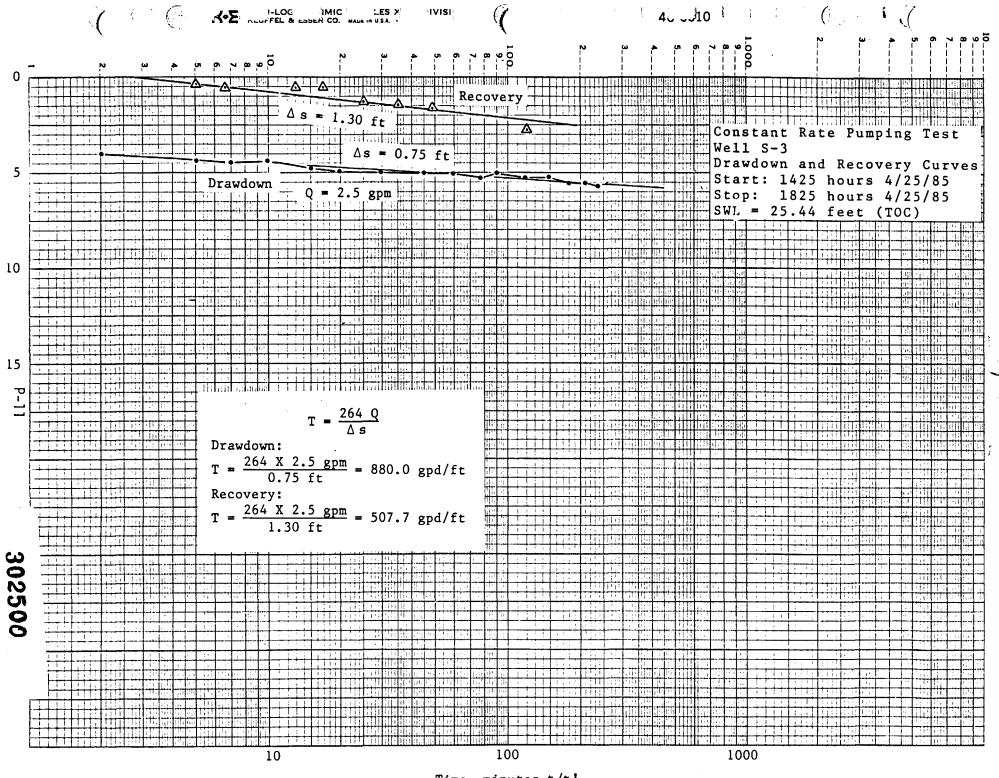




Time, minutes and t/t'







Time, minutes and t/t'





Time, minutes, and t/t'





Time, minutes t/t'

APPENDIX Q

1

۰, ۰

\_

\*

-----

\*\*,...

. **- 1** 

-----

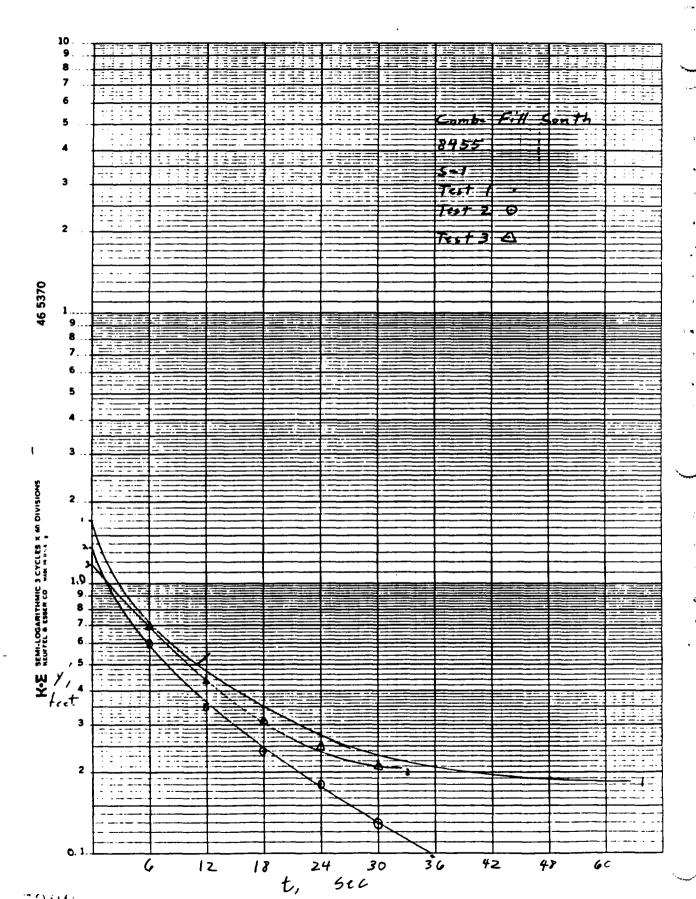
~

## SLUG TEST ANALYSES

iell Number	<u> </u>	Date _ 4,	17/85	Time	Ву	mge		
			Well D	ata				
	ell depth	24'	TOC/GL	6) Aquifer thickness (d) 5-2 _ 20, 3				
2) SWL $5.99/3.61$ 3) 1-2 (H) $20.39'$			TOC/GL	7) Casing stickup Z. 3r'				
) Effecti	ve well radiu	is (rw) C	. 42'	<ul> <li>8) Screen setting <u>14' 70 24'</u> TO</li> <li>9) Bottom of screen <u>24'</u> TO</li> </ul>				
) Depth t	o bedrock	24	TOC/GL	10) Screened	aquifer			
	Slug Data	<b>1</b>		interval	(L) 8 or 9-	2		
adius of s	lug (r <sub>s</sub> )	D. 097						
ength of a	lug (hg)	6.00'	-					
hart speed hart scale	11	m/min =1cm	-					
ransducer	depth _/5	. 19/	-					
lug depth ransducer		25' mV	-	Solution Met	hod Bin	mer + Rice 19		
·····		+ <u></u>	-					
		· · · · · · · · · · · · · · · · · · ·	T	· .	·····			
		<b>↓</b>						
-			1		· · · · · · · · · · · · · · · ·			
	· · · · · · · · · · · · · · · · · · ·	· ·		1				
پ								
feet								
χ,								
	·	• •	1					
	· · - · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	······				

Time, seconds

r.e. wright associates, inc.

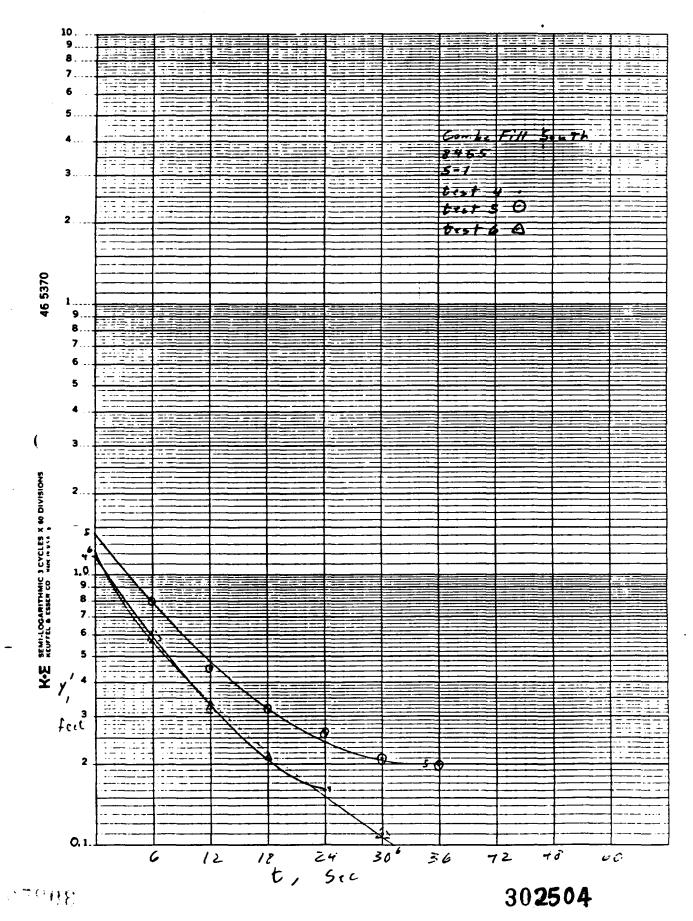

302502

C. D. Schart and and a state of the solution o

. . .

ł

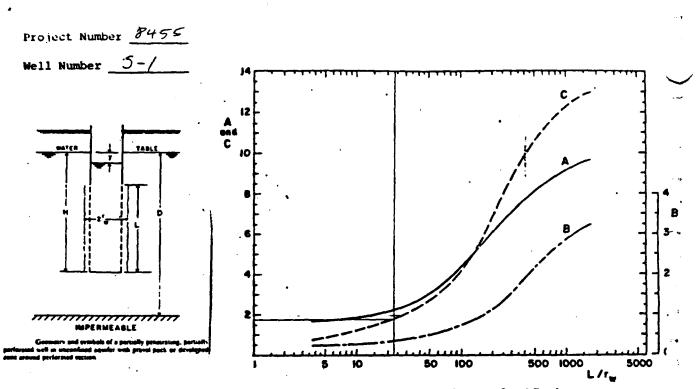
- 14




1

7041£

I


5



1. A. I.

Q-3

ر الله بلغ.....



Curves relating coefficients A. B. and C to L/r.

$$D = \frac{20.39}{10.0'}$$

$$H = \frac{10.0'}{20.39'}$$

$$H = \frac{20.39'}{0.42}$$

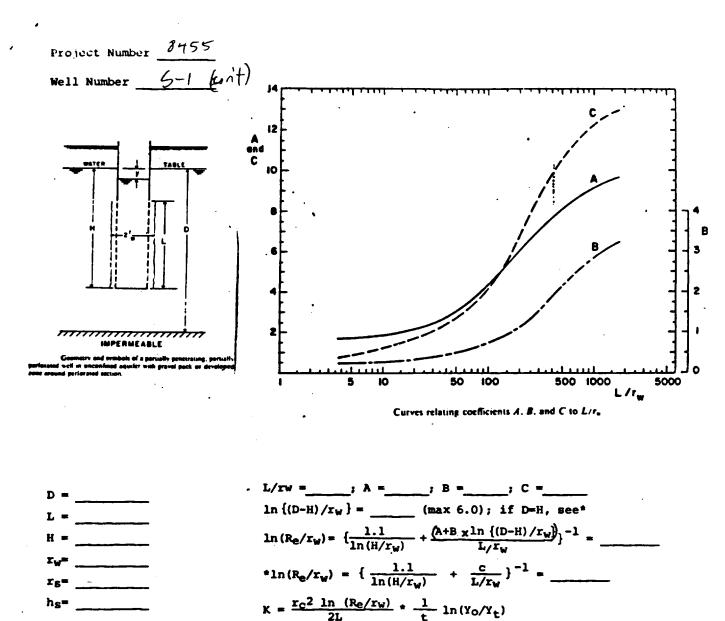
$$r_{s} = \frac{0.42}{0.097}$$

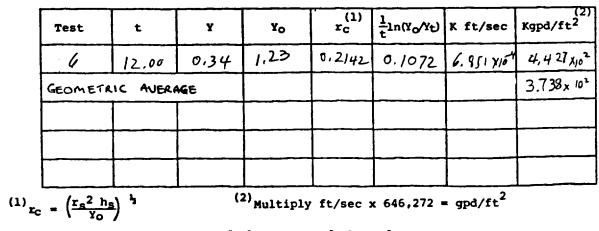
$$h_{s} = \frac{0.00'}{0.00'}$$

$$L/rw = \frac{23.7}{2L}; R = \frac{1}{2}; B = \frac{1}{2}; C = \frac{1}{2}; \frac{7}{2}$$

$$\ln \{(D-H)/r_W\} = \frac{1}{(max 6.0); \text{ if } D=H, \text{ see}^*}$$

$$\ln (R_e/r_W) = \{\frac{1.1}{\ln (H/r_W)} + \frac{(A+B \times \ln \{(D-H)/r_W\}}{L/r_W}\}^{-1} = \frac{1}{L/r_W}$$


$$*\ln (R_e/r_W) = \{\frac{1.1}{\ln (H/r_W)} + \frac{c}{L/r_W}\}^{-1} = \frac{2.79}{2L}$$


$$K = \frac{r_c^2 \ln (R_e/r_W)}{2L} * \frac{1}{L} \ln (Y_0/Y_L)$$

[	Test	t	Υ <sub>t</sub>	Yo	(1) rc	$\frac{1}{t}\ln(Y_0/Y_t)$	K ft/sec	(2) Kgpd/ft <sup>2</sup>
Ī	l	11,00	0,50	1.70	0,1822	0,113	5.1461.0 *	3,326×102
	2	14.00	0.3Z	1.35	0.2045	0.1028	5.990 X104	3 , 7 1 X 12
	3	16.00	0,34	1.18	6.2187	0,0778	5,183 X10+	3.3441/02
	4	14.00	0.28	1.18	0.2187	0.1027	6.84 7×10-4	
	5	17.00	0.34	1.42	0.1994	6.0841	4.657204	3,009 × 10 2
(1) r <sub>c</sub>	$r_{c} = \left(\frac{r_{s}^{2} h_{s}}{Y_{0}}\right)^{\frac{1}{2}}$ <sup>(2)</sup> Multiply ft/sec x 646,272 = gpd/ft <sup>2</sup>							

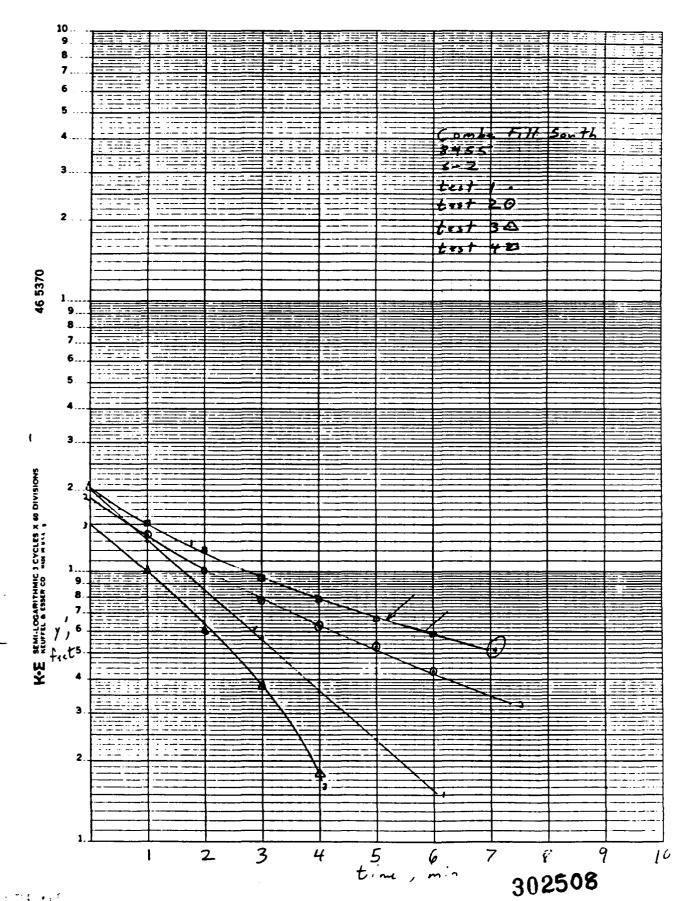
12005

r.e. wright associates, inc.



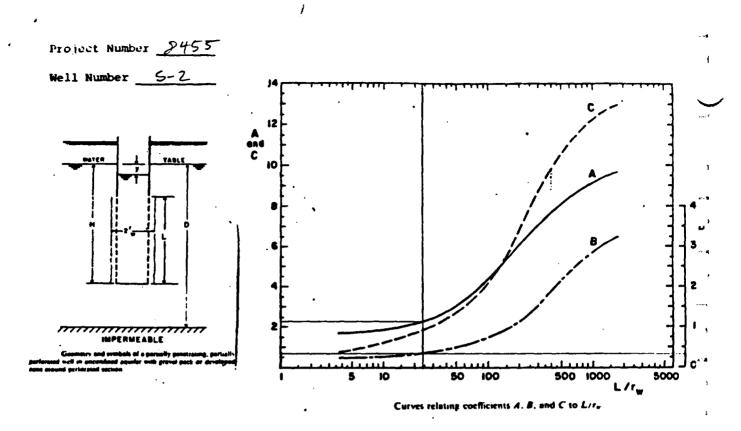


r.e. wright associates, inc.


302506

Combe Fill South Project Number 8455 Project Name\_ 4/17/8.5 Well Number 🖛 5-2 Date MUS Time By Well Data 51 1) Total well depth TOC/GL 6) Aquifer thickness (d) 5-2 34.82 19.557 7) Casing stickup 2) SWL TOC/GL 1,87 TOC/GL 3) 1-2 (H) 33, 32 8) Screen setting 41: 7 51 4) Effective well radius (rw) 0:42' . 9) Bottom of screen 5 1 TOC/GL 1 5) Depth to bedrock  $62.5^7$ TOC/GL 10) Screened aquifer interval (L) 8 or 9-2 10,0 Slug Data Radius of slug (r<sub>s</sub>) 0,017 Length of slug (hg) 001 Chart speed Chart scale 0= 1 Cm Transducer depth 29.55 11.75 Slug depth Solution Method  $B \neq R$ Transducer range 10m V <u>.</u>... 1 11 -----::::: -11 11 ÷ -÷ 11 4 11 Y, feet Ξź <u>...</u> 1111 . . . \_\_\_\_\_ 1 : . . . . . . ------1.4.1 Ξ . **.** . . . . 1.1.1.1 1 : 2 . . . . :::::: **:** : : ÷ ÷ ÷ ÷ :: ÷ : : ; 3.3 ÷ ÷ ÷ : : : : :

Time, seconds


## r.e. wright associates, inc.

¥ ..



1

· \*\* 112.



$$D = \frac{34, 92}{10.0'}$$

$$L = \frac{10.0'}{10.0'}$$

$$H = \frac{33, 32'}{10.0'}$$

$$r_{w} = \frac{0.42'}{0.097}$$

$$h_{s} = \frac{6.00'}{6.00'}$$

 $L/rw = \frac{23.7}{2L}; A = \frac{2.3}{2}; B = \frac{0.3}{2}; C = \frac{1}{10} \left( \frac{(D-H)}{r_W} \right) = \frac{1.50}{(max 6.0)}; \text{ if } D=H, \text{ see*}$   $\ln (R_e/r_W) = \left\{ \frac{1.1}{\ln (H/r_W)} + \frac{(A+B_X \ln \{(D-H)/r_W\}}{L/r_W} \right\}^{-1} = \frac{2.75}{10} + \frac{1}{10} \left( \frac{H}{r_W} \right)^{-1} = \frac{2.75}{(H/r_W)}$   $R_e/r_W = \left\{ \frac{1.1}{\ln (H/r_W)} + \frac{c}{L/r_W} \right\}^{-1} = \frac{1}{10} + \frac{c}{2L} + \frac{c}{2L} \ln (r_W)^{-1} = \frac{1}{2L} + \frac{c}{2L} + \frac{c}{$ 

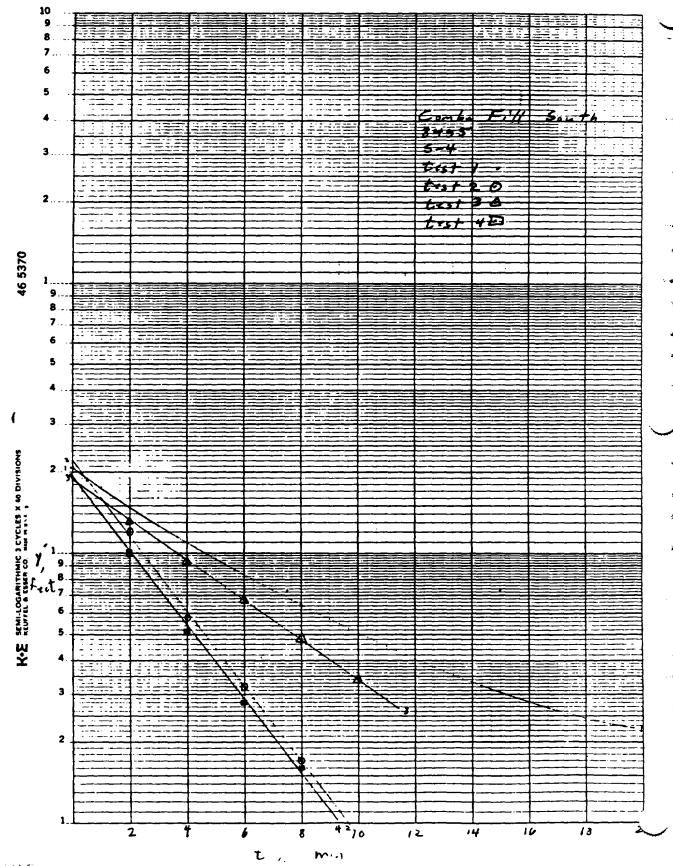
Test	t	¥ <sub>t</sub>	۲ <sub>0</sub>	(1) r <sub>c</sub>	$\frac{1}{t}\ln(Y_0/Y_t)$	K ft/sec	(2) Kgpd/ft <sup>2</sup>
1	170	0.60	2,00	0.1680	0.0071	2.745 ×10-5	1.774×10'
2	220	0.66	1,78	0.1733	0,0048	1.962×105	1.268×10
3	170	0.42	1.50	0,1940	0.0075	3.869×10-5	2.501 ×10'
4	310	0.64	2.04	6.1664	0.0036	1,373×10-5	8.931 × 10°
GEOME	TRIC AVE	RAGE					1.497 x 10'

 $^{(1)}r_{c} = \left(\frac{r_{s}^{2}h_{s}}{Y_{0}}\right)^{\frac{1}{2}}$ 

(2) Multiply ft/sec x 646,272 = gpd/ft<sup>2</sup>

r.e. wright associates, inc.

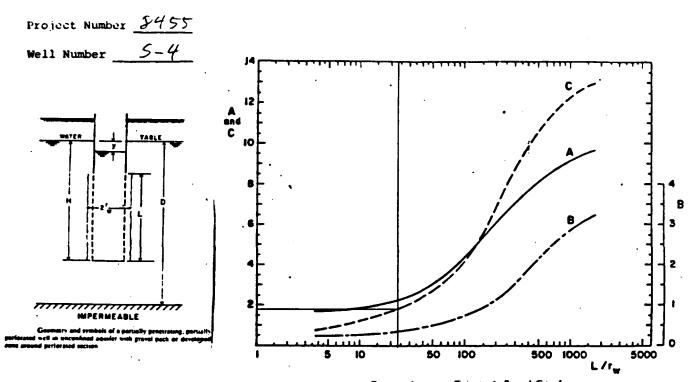
11 Number	<u> </u>	Date 4	117 185			Ву		my g
			Well D	ata				
Total w	ell depth	42'	TOC/GL	6) <b>A</b> quifer 7) Casing a	thickn	ess (d	) 5-2	31.65
SWL /	12,571/0,	35 1	TOC/GL	7) Casing a	tickup	_2	Z4	, 
I-2 (H) Effecti	31.65' ve well radiu	$(\mathbf{r}_{ij}) = 0$	421	8) Screen a 9) Bottom c	etting	<u>3</u>	2:10	<u> 421 T</u>
	o bedrock		TOC/GL	10) Screened	acuif	er		
				interval	(L) 8	or 9-	2	<u>, 0</u>
	Slug Data	- ,						
lius of s	lug (r <sub>s</sub> ) lug (h <sub>s</sub> )	0,097	<b>-</b> ·					
igui or s art speed	2	a oo:	- tist' 20	-Imin 41	oc-lh	-		
ILL RCATE	,,	= 1 cm	- + +++ .	2 0.5 cm/m 3 11 / 1	n in			
insducer	depth 2	2.701		م د ما		_		
ng depth	range / o	-, 70'	-	Solution Met	hođ	Bon	nz-	+ Rice
			-					
	۰.			•				
	+	<u> </u>						
	·	· · · · ·			:	:		
					· · · · · · · · · · · · · · · · · · ·		1	
						<u> </u>		
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·				{
َبِه								
feet								
~							+	
						1. <del>.</del> .		
		· · · · · · · · · · · · · · · · · · ·						
				- i			I	: 1


÷

٠.

- · · · ·

Time, seconds


r.e. wright associates, inc.



1

S CHE

Q-10



$$D = \frac{31.45}{10.00'}$$

$$H = \frac{31.65'}{10.00'}$$

$$F_{W} = \frac{0.42'}{10.00'}$$

$$F_{B} = \frac{0.00'}{6.00'}$$

$$L/rw = \frac{23}{1}, A = \frac{1}{1}; B = \frac{1}{1}; C = \frac{1}{1}, \frac{7}{1}$$

$$\ln \{(D-H)/r_{W}\} = \frac{1}{1}; B = \frac{1}{1}; C = \frac{1}{1}, \frac{7}{1}$$

$$\ln (R_{e}/r_{W}) = \{\frac{1.1}{\ln (H/r_{W})} + \frac{(A+B_{X}\ln \{(D-H)/r_{W})}{L/r_{W}}\}^{-1} = \frac{1}{1}$$

$$*\ln (R_{e}/r_{W}) = \{\frac{1.1}{\ln (H/r_{W})} + \frac{C}{L/r_{W}}\}^{-1} = \frac{3.03}{1}$$

$$K = \frac{r_{C}2}{2L} \frac{\ln (R_{e}/r_{W})}{2L} + \frac{1}{L} \ln (Y_{O}/Y_{L})$$

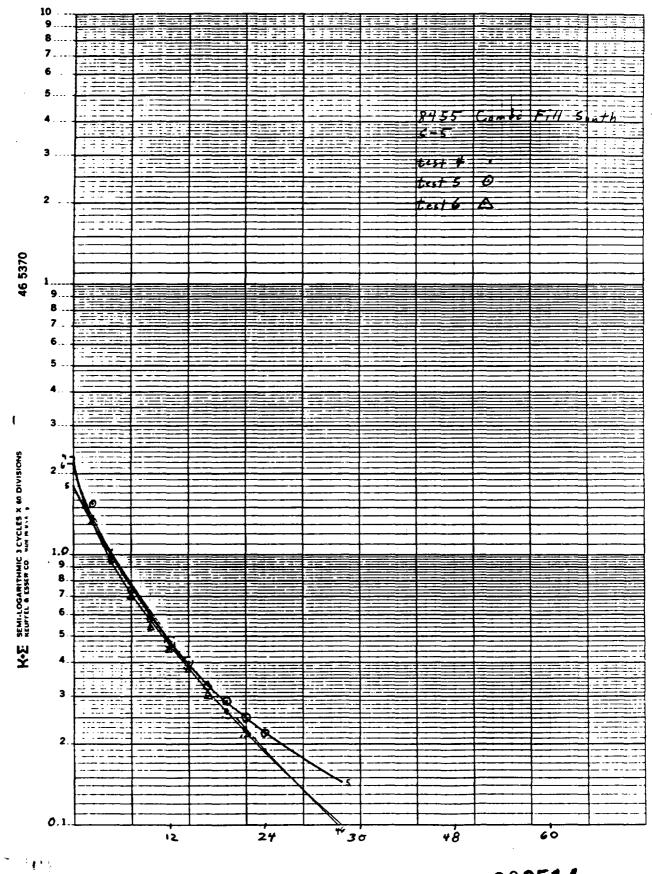
Test	t	Y	Yo	(1) r <sub>c</sub>	$\frac{1}{t}\ln(Y_0/Y_t)$	K ft/sec	(2 Kgpd/ft <sup>2</sup>
1	279.6	1,00'	2.08'	0.K47	0.0026	1,077×105	6.9.5° × 10
2	180.0	0.84'	2.20'	0.1102	0,6053	2,07 × 105	1.344×10
3	217.6	1.00 '	\$1.89'	0.172 <b>1</b>	0,0029	1,311 x11-5	8,475 210
4	219,6	0.60'	1.91'	0.1719	8,0053	2, 360 × 10 5	1.526 × 10
GEOME	TRIC AVI	ELAGE					1.048 x 10

$${}^{(1)}\mathbf{r}_{\rm C} = \left(\frac{\mathbf{r}_{\rm S}^2 \, \mathbf{h}_{\rm S}}{\mathbf{Y}_{\rm O}}\right)$$

r.e. wright associates, inc.

Well Numb	er <u>5-5</u>	Date	4/19/25		Project Nur		<u>~</u>
			Well I	Jata	~ (-y ~	rindy	
l) Total	well depth	29.0'	TOC/GL	6) Aquifer	thickness (d	1) 5-2 _ 23	3. 9 4'
2) SWL 3) 1-2 7	7.821 (H) <u>23</u>	5.06'	TOC/GL	7) Casing 8) Screen	stickup	2.76'	TOC/GL
4) Effec	tive well rac	lius (r <sub>w</sub> )	0,42	9) Bottom	setting of screen	291	TOC/GL
5) Depth	to bedrock _	29'	TOC/GL	10) Screene	d aquifer	2 101	-
	Slug Da	ata		interva	1 (L) 8 or 9-	-2	
Radius of							
Length of	slug (r <sub>s</sub> ) slug (h <sub>s</sub> )	6.00'					
Chart spe Chart sca		scm/min 1'=1cm					
Slug dept	h	17. 72'			thod <i>L</i>		p '
ransduce	r range	10 m V		solution Me	thod	in wer +	1.00
	· .						
	<u> </u>						
	· · · · · · · · · · · · · · · · · · ·		_				
	1.31						
-							
							-
feet							
							•
Υ,							
	· · · · ·		•				2
							I
		•			· · · · · · · · · · · · · · · · · · ·	<b></b>	ł
	• • • • • • • • • • • •						1

Time, seconds


# r.e. wright associates, inc.

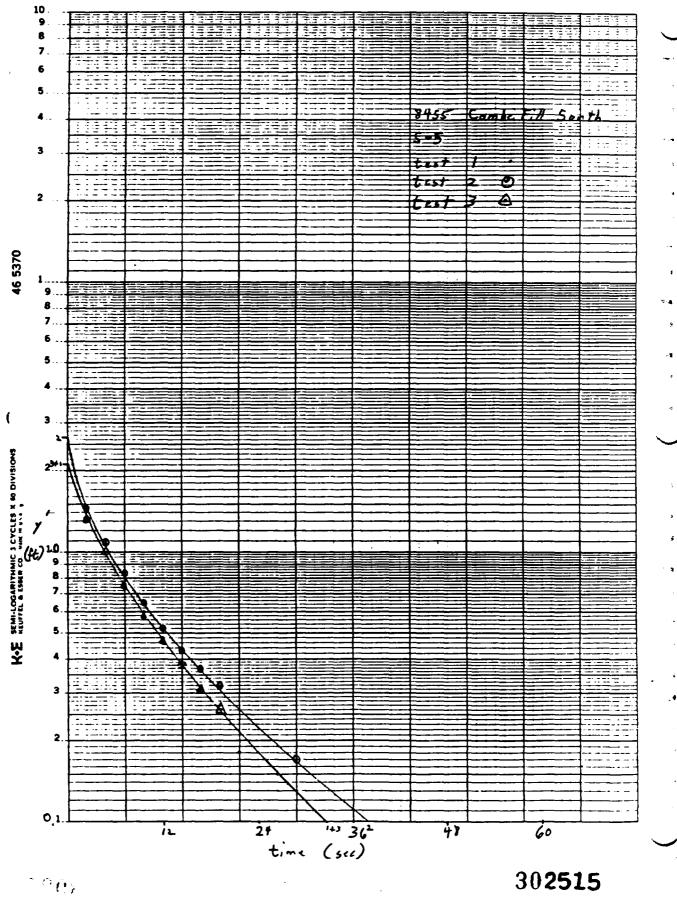
÷

1

ŀ

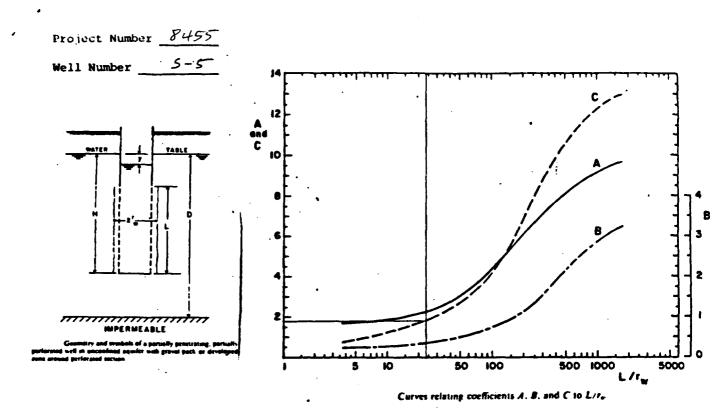
Q-12




1

302514

 $\sim$ 


÷

2.12.2.2.



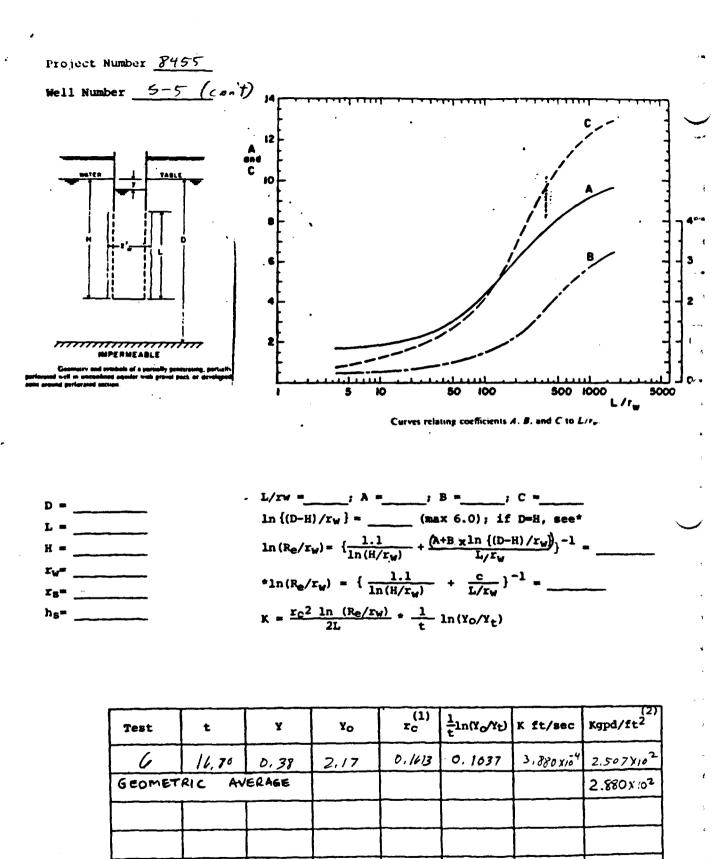
302515

I.



L/rw = 23.8;  $A = __; B = __; C = /.30$ ln {(D-H)/rw} = \_\_\_ (max 6.0); if D=H, see\* 23,94  $\ln (R_e/r_w) = \left\{ \frac{1.1}{\ln (H/r_w)} + \frac{(A+B_x \ln \{(D-H)/r_w\})}{L/r_w} \right\}^{-1} =$ 23.94' H = =ى:2 \* $\ln(R_{g}/r_{W}) = \left\{\frac{1.1}{\ln(H/r_{W})} + \frac{c}{L/r_{W}}\right\}^{-1} = 2.79$ 0.097 Is= 6.00'  $\kappa = \frac{r_{c}^{2} \ln (R_{e}/r_{W})}{2L} + \frac{1}{t} \ln (Y_{o}/Y_{t})$ hs=

Test	t	Y	Yo	(1) r <sub>c</sub>	$\frac{1}{t}\ln(Y_0/Y_t)$	K ft/sec	(2 Kgpd/ft <sup>2</sup>
1	6.00	0.86	2.10	0,1640	0.1488	5,752×104.	3, 717×102
2	18,00	0.26	2.65	0.1460	0, 1290	3,951×10-4	2.554×11
3	6,00	0.86	2.10	0.1640	0.148P	5.752×10-4	3, 7/7×10 2
4	16.80	0,40	2.30	0.1567	0.1041	3.6757.10-9	2.375 NIC
5	19,20	0,33	1.80	0.1771	0.0884	3.985710-4	2,575 × 10
$=\left(\frac{r_{g}^{2}}{1}\right)$	h <u>s</u> ) <sup>1</sup> 3	(	2) Multiply	y ft/sec :	x 646,272	= gpd/ft <sup>2</sup>	


$${}^{(1)}r_{\rm c} = \left(\frac{r_{\rm g}^2 h_{\rm g}}{Y_{\rm c}}\right)$$

201.1

10 500

r.e. wright associates, inc.

302516

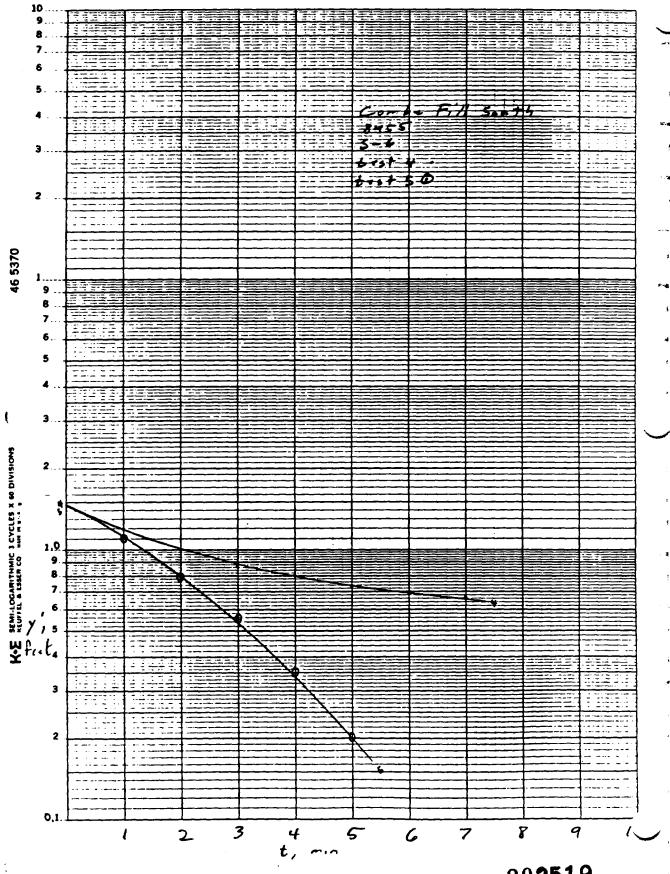


(2)<sub>Multiply ft/sec x 646,272 = gpd/ft<sup>2</sup> r.e. wright associates, inc.</sub>

 ${}^{(1)}r_{\rm c} = \left(\frac{r_{\rm s}^2 h_{\rm g}}{Y_{\rm o}}\right)^{\frac{1}{2}}$ 

Number	Comb 5-6	Date <u>4</u>	119/115	Time	Ву	S	
			Well Da	ata			
Effecti	vell depth <u>26.62</u> <u>40.09</u> ve well radiu o bedrock	us (rw) _0	TOC/GL TOC/GL , 42' TOC/GL	9) Bottom o 10) Screened	etting <u> </u>	4' p 64' 64'	
	Slug Data	<u>1</u>			(_,		
h of s speed scale ducer	$\frac{\log (h_g)}{\frac{1 c c}{\frac{1}{c}}}$ depth 36	- 1 min = 1 cm . 62'		trs + 2 trs + 3 s trs + 4 0	Transdac Hillproble	- mrssed Child	
depth ducer	26,	70'	-	Solution Met	-		
44022	· · ·		_	+ + ~	/		
					mystery S	nc 26.60	" ++st
	1		1	•			-
		1					-
				<u>.</u>			-
							_
							•
							<u>_i</u>
							4
							_
							ł
	· · · • • • • • • • •		· • • • • • • • • • • • • • • • • • • •	·····	· · · · · · · · · · · · · · · · · · ·		4
-							1
-							
-							
-							
- T							
fee t							
Y, feet							
							<u></u> / / / / / / / / / / / / / / / / /
							an 'n b b <del>b hand dat b balan</del> tert seal - <del>a a</del>

•


**نت**ت ا

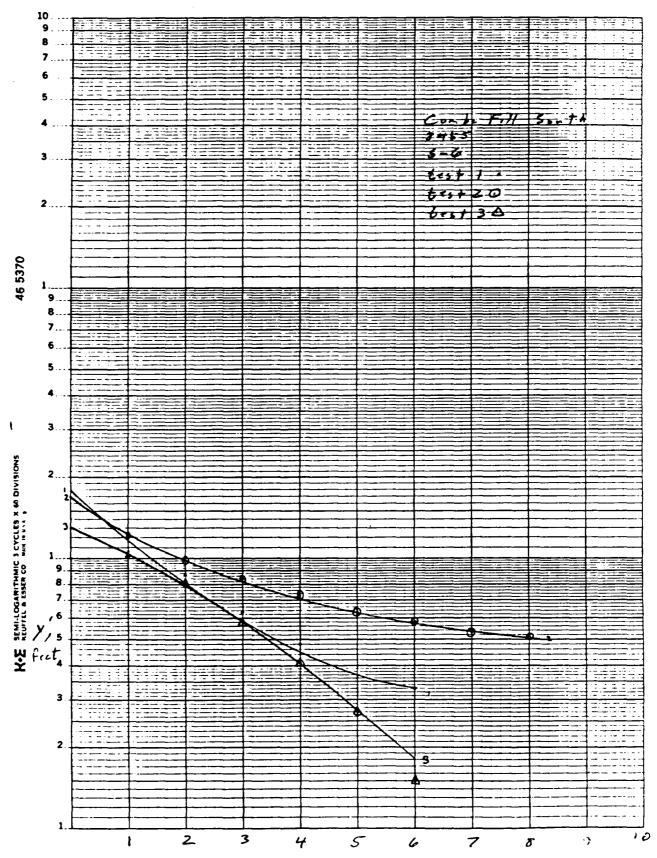
• •

( <sup>•</sup> ;

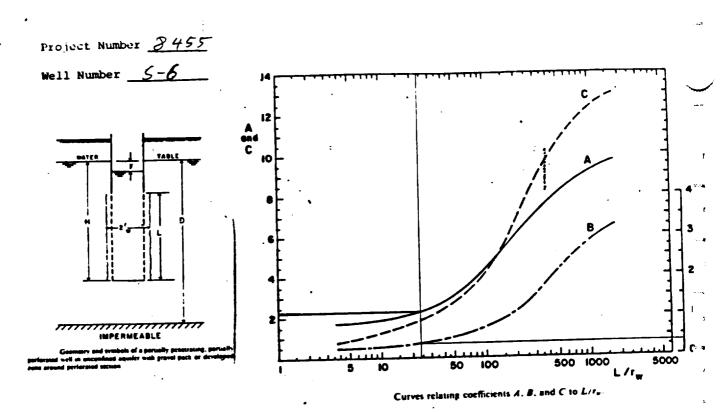
Time, seconds

r.e. wright associates, inc.




\* \* **1** = 5

ł


ø

Q-18

ź



. 1 .



$$D = \frac{44.34}{10.00'}$$
  

$$H = \frac{10.00'}{40.09'}$$
  

$$F_{W} = \frac{0.42'}{0.097'}$$
  

$$h_{s} = \frac{0.00'}{0.00'}$$

$$L/rw = \frac{27.9}{10}; A = \frac{2.3}{10}; B = \frac{0.3}{10}; C = \frac{1}{10} \left\{ \frac{(D-H)}{r_W} \right\} = \frac{2.3}{10} \left( \frac{max 6.0}{10}; \text{ if } D=H, \text{ see}^{+} \right)$$

$$\ln (R_e/r_W) = \left\{ \frac{1.1}{\ln (H/r_W)} + \frac{(A+B_x \ln \{(D-H)/r_W\})}{L/r_W} \right\}^{-1} = \frac{2.72}{10} \left( \frac{R_e}{r_W} \right)^{-1} = \frac{1.1}{\ln (H/r_W)} + \frac{1}{L/r_W} \left( \frac{1.1}{L/r_W} \right)^{-1} = \frac{1}{L/r_W}$$

$$K = \frac{r_c^2 \ln (R_e/r_W)}{2L} + \frac{1}{L} \ln (Y_0/Y_L)$$

Test	t	¥	Υ <sub>ο</sub>	(1) r <sub>c</sub>	$\frac{1}{t}\ln(Y_0/Y_t)$	K ft/sec	() Kgpd/ft <sup>2</sup>
	130,00	0.74	1.78	0.1781		2, 828×105	
2	190.00	0,80	1.67	0,1828	0.0039	1.7117105	
3	200,00	0.52	1.30	0,2084		2,710 ×10	<u>↓</u> ······
	150.00	0.94	1.47	0. 1960	0.0030	1.559 ×10	
 5	100.00	0.90	1.47	0.1960	0.0049		1.657310 1.440 × 10

 ${}^{(1)}r_{\rm c} = \left(\frac{r_{\rm s}^2 h_{\rm s}}{Y_{\rm o}}\right)^{-1}$ 

r.e. wright associates, inc.

124

302521

MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 1 of 7)

# Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
PRIORITY POLLUTANTS	
Volatiles	
Chloroform	Mfg fluorocarbon refrigerants and propellants and plastics Mfg anesthetics and pharmaceuticals Primary source for chlorodifluoromethane mfg Fumigant Solvent Mfg sweetener Fire extinguisher mfg Electronic circuitry mfg Analytical chemistry Insecticide
Trichlorofluoromethane	NA
1,1,1-Trichloroethane	NA
Methylene chloride -	<pre>Paint stripping and solvent degreasing Mfg aerosols, photographic film, synthetic fibers Extraction of naturally-occurring heat sensitive sub- stances Refrigerant in low-pressure refrigerators and air- conditioners Fumigant Solvent Textile and leather coatings Pharmaceutical Used in plastics processing Spotting agent Dewaxing Organic synthesis Blowing agent in foams</pre>
1,1-Dichloroethane	NA
Trichloroethane	Mfg 1,1-dichloroethylene Solvent for chlorinated rubber and various organic materials (fats, resins, oils, etc)

NA - Not available.

-----

~ -

~-

,~**~** 

· · •

. .

302522

1

# MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 2 of 7)

Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
Bromodichloromethane	Fire extinguisher fluid ingredient Solvent (fats, waxes, resins) Synthesis intermediate Heavy liquid for mineral and salt separations
Ben zene	Mfg styrene, phenol, detergents, organic chemicals, pesticide, plastics and resins, synthetic rubber, aviation fuel, pharmaceuticals, dyes, explosives, PCB, gasoline, tanning, flavors, and perfumes, paints and coatings Nylon intermediates Food Processing Photographic chemicals
Chloroethane	NA
Dichlorofluoromethane	NA
Toluene	Mfg benzene derivatives, caprolactam, saccharin, medicines, dyes, perfumes, TNT Used in solvent recovery plants Component of gasoline Solvent for paints and coatings, gums, resins, rubber and vinyl organosols Diluent and thinner in nitrocellulose lacquers Adhesive solvent in plastic toys and models Detergent mfg Asphalt and naphtha constituent
Trans-1,2-Dichloro- ethylene	Solvent for fats, phenols, camphor, etc Retards fermentation Rubber mfg Refrigerant Additive to dye and lacquer solutions Low temperature solvent for heat sensitive substances (caffeine) Constituent of perfumes, thermoplastics Used in organic synthesis and medicine

NA - Not available.

7 O ( ) ;

T

#### MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 3 of 7)

#### Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
1,2-Dichloroethane	Mfg of vinyl chloride Mfg of tetraethyl lead Intermediate insecticidal fumigant Tobacco flavoring Constituent in soaps and scouring compounds, wetting and penetrating agents, varnish and finish removers, metal degreaser, and paints Used in chemical synthesis and ore flotation
Chlorobenzene	Used in solvent recovery plants Intermediate in dyestuffs mfg Mfg aniline, insecticides, phenol, chloronitrobenzene
Carbon Tetrachloride	Fire extinguisher mfg Dry cleaning operations Mfg of refrigerants, aerosols, and propellants Mfg of chlorofluoromethanes Extractant Solvent Veterinary medicine Metal degreasing Fumigant Chlorinating organic compounds
1,2-Dichloropropane	NA
Ethyl benzene	Styrene mfg Acetophenone mfg Solvent Asphalt constituent Naphtha constituent
Tetrachloroethylene	Dry cleaning operations Metal degreasing Solvents for fats, greases, waxes, rubber, gums, caffeine from coffee Remove soot from industrial boilers Mfg paint removers, printing ink Mfg trichloroacetic acid Heat transfer medium Mfg of fluorocarbons

NA - Not available.

کسی

.....

\*\*\*\*

· ···

•

 $2.5 \, p_{\odot}$ 

1

#### MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 4 of 7)

#### Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
Trichloroethylene	Dry cleaning operations and metal degreasing Solvents for fats, greases, waxes, caffeine from coffee Solvents for greases and waxes from cotton, wool, etc. Solvent for cellulose, ester, and ethers Solvent for dyeing Refrigerant and heat exchange liquid Organic synthesis Fumigant Anesthetic
ACID/PHENOLIC	· ·
Pentachlorophenol	Mfg insecticides, algicides, herbicides, and fungicides Preservative of wood and wood products Mfg of sodium pentachlorophenate
Phenol	NA
BASE/NEUTRAL	
Di-n-butyl phthalate	Plasticizer mfg Plastics mfg recycling and processing Cosmetics Diluent in polysulfide dental impression materials Industrial stains mfg Explosive (propellant) component used in fuel matrix of double-base rocket propellant Textile lubricating agent Used in safety glass Insecticides Printing inks Paper coatings Adhesives
Bis(2-ethylhexyl) phthalate	Plasticizer mfg Plastics mfg recycling and processing Organic pump fluid

NA - Not available.

1-1-9

1

Î

MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 5 of 7)

#### Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
Diethyl phthalate	Plasticizer mfg Plastics mfg and processing Explosive (propellant) component Suitable for food package application (FDA) Dye application agent Diluent in polysulfide dental impression materials Solvent Wetting agent Camphor substitute, perfumery, alcohol denaturant Component in insecticidal sprays Mosquito repellant
1,4-Dichlorobenzene	Mfg moth repellants Mfg air deodorizers Mfg dyes and intermediates Pharmaceutical mfg Soil fumigant Pesticide
Isophorone	Solvent Intermediate for alcohols Raw material for 3,5-dimethylaniline Solvent for polyvinyl and nitrocellulose resins Lacquers, finishes mfg Pesticide mfg
1,2-Dichlorobenzene	NA
Benzo (a) Pyrene	NA
Di-n-octyl phthalate	NA
Butylbenzyl phthalate	Plasticizer mfg Plastics mfg
Benzo (b) fluoranthene	NA
BENZO (ghi) PERYLENE	
Chrysene	NA

NA - Not available.

-

· ....

د.

. . .

-

· · · · · · ·

i

# MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 6 of 7)

#### Combe Fill South RI/FS

CHEMICAL COMPOUND	MANUFACTURE/USAGE
Fluoranthene	NA
Indeno (1,2,3-cd) pyrene	NA
Phenanthrene	NA
Pyrene	NA
Acenaphthene	Dye mfg Plastics mfg Insecticide and fungicide mfg
PESTICIDES/PCB	
Alpha - Endosulfan	NA
4,4'-DDE	Impurity of DDT Degradation of DDT Pesticide Military product
4,4'-DDT	Pesticide
Aldrin	Insecticide
Dieldrin	Insecticide Stereoisomer of endrin Wool processing industry
Delta-BHC	NA
NON-PRIORITY POLLUTANTS	
Volatiles	
0-Xylene (ortho)	Mfg phthalic acid and anhydride mfg terephthalic acid for polyester Solvent recovery plants Specialty chemical mfg

NA - Not available.

Т

1

MANUFACTURE/USAGE ORGANIC COMPOUNDS (Page 7 of 7)

Combe Fill South RI/FS

#### CHEMICAL COMPOUND

.....

-

.....

173

MANUFACTURE/USAGE

NON-PRIORITY POLLUTANTS

Volatiles (continued)

0-Xylene (ortho)	Mfg isophthalic acid, aviation gas, protective coatings Solvent for alkyd resins, lacquers, enamels, rubber cements Dye mfg Insecticide mfg Pharmaceuticals Asphalt and naphtha constituent
Nonane	Organic synthesis Solvent Standardized hydrocarbon Jet fuel research Mfg paraffin products Rubber industry Paper processing industry Biodegradable detergents Distillation chaser
Acetone	Mfg smokeless powder Paints, varnishes, lacquers mfg Organic chemical mfg Pharmaceutical mfg Sealants and adhesives mfg Solvents for cellulose acetate, nitrocellulose, acetylene
2-Butanone	Solvent or swelling agent for resins Intermediate in mfg of ketones and amines Flush-off paint stripper Extraction and production of wax from lube oil fractions of petroleum Solvent in nitrocellulose coatings and vinyl films Cement dust

-----

\_

-...

MANUFACTURE/USAGE INORGANIC COMPOUNDS (Page 1 of 4)

Combe Fill South RI/FS

METALS	MANUFACTURE/USAGE
Ant imon y	Common constituent of alloys with other metals (lead and copper) Antimonial lead Fireproofing chemicals and compounds Ceramics and glassware Bearing metals and pigments Used against parasitic diseases and infections Fireworks
Arsenic	Pesticides Herbicides Cotton desiccants Wood preservatives A bronzing or decolorizing agent in glass manufacture In fabrication of opal glass and enamels Manufacture of dye stuffs Chemical warfare gases In purification of industrial gases (removal of sulfur) Additive in production of alloys A growth promoting agent in livestock industry A therapeutic agent
Beryllium 	Missile and nuclear reactor components Rocket nozzles Aircraft brakes Electronic relays Space optics Space vehicle reentry cones Windows in x-ray tubes Inertial guidance parts Classified weapon parts Current carrying springs Welding components Bearing sleeves Non-sparking tools and dies Underseas cable repeater and amplifier housing Diamond drill bit matrixes Watch-balance wheels Aircraft and spacecraft parts

i

-----

# MANUFACTURE/USAGE INORGANIC COMPOUNDS (Page 2 of 4)

Combe Fill South RI/FS

METALS	MANUFACTURE/USAGE
Beryllium (Continued)	Resistor cores Integrated circuit chip carriers Radio and laser tubes Fluorescent tube phosphors In aluminum alloys to impart strength and hardness With silver to form untarnishable alloys
Cadmium	Rustproofing of iron (coated by electroplating) Color pigments in plastics and paints Stabilizer in plastics (stearate) Automobile radiators Electrode components in NIFE alkaline accumulators Silver solders and welding electrodes Dentistry
Chromium	Tanning industry Pigment production and application Graphics industry Corrosion-resistant alloys and heavy duty steels Chromium plating material industries
Copper	Electrical equipment Component of many alloys Plumbing and heating Salts used in pesticides Coins and utensils
Le ad	Storage battery industry Alkyllead production Cable sheathing Pigments Alloys Solders
Mercury	Chlor-alkali industry Electrical equipment Paints Measurements and control systems Agriculture 302530 Dental practice Laboratories
· · · · · · ·	

7

# MANUFACTURE/USAGE INORGANIC COMPOUNDS (Page 3 of 4)

Combe Fill South RI/FS

METALS	MANUFACTURE/USAGE							
Mercury (Continued)	Detonators Mercury containing catalysts Preservatives in paper pulp industry Pharmaceuticals Cosmetic preparations Added as a germicide and fungicide in plastics, paints and pharmaceuticals Seed treatment							
Nickel	Steel production Production of acid resisting alloys Electroplating Nickel-cadmium batteries Electronic components Surgical and dental instruments Manufacture of nickel salts							
Selenium	Semiconductor technology and electrical engineering Glass industry Duplicating machines Inorganic pigments Additive to plastics, catalysers Rubber industries (vulcanizers) Stainless steel production Lubricants Fungicides Feed additive (inorganic salts) Dermatology Scanning of organs and tissues (radionuclides) Enamels and glazes							
Silver	Coins Jewelry Tableware Component of alloys and solders Photographic processing Electrical apparatus and mirrors							

302531

-

 $\overline{}$ 

\* \* \* \* \*

# MANUFACTURE/USAGE INORGANIC COMPOUNDS (Page 4 of 4)

Combe Fill South RI/FS

METALS	MANUFACTURE/USAGE
Silver (Continued)	Dentistry Treatment of burns Drinking water disinfectants and prophylactic agents against gonorrheal infections in newborns (silver salts) Pharmaceutical
Thallium	Used before as a rodenticide Electrical and electronics industry Photoelectric cells, lamps Semiconductors and scintillation counters As a catalyst in organic synthesis Optical systems (infared spectrometers and in crystals) Coloring glass Limited use in alloys Mineralogical analysis Pesticides Antiknock compound in gasoline
Zinc	Production of noncorrosive alloys and brass Galvanizing steel and iron products Automobile parts and household appliances Used in rubber Used as a white pigment Employed therapeutically for zinc deficiencies Pesticide

. . . . . . .

1

#### . APPENDIX T

(Page 1 of 5) CHARACTERIZATION OF ORGANIC COMPOUNDS

	at			
COBBE	 COUTH	81.75	•	

and the second of the second s

CORBE FILL SOUTH RI/FS

CMERICAL NARE In subury and a second	SYNONYN Bulleynau ywysarwy ar ar ar ywysarwyn ar	BOJLING Point (C)	MELTING POINT (C)	VHPOR PRESSURE (mHg) NHPH HHHHHHHHHHHHHHHHHHHHHHHH	Specific Gravity	\$0LUBILİTY (mg/1) '	NATRIX OCCURRENCE	NATURAL OR NAN-MADE	CARCINOGEN (C) MUTAGEN (M) TERATOGEN (T)
PRIORITY POLLUTANTS						1			
Volatiles Chloroform L	Trichleronethene	62.0 61.26 61.7	-64.0 -63.9	100 0 10.40 160 0 200 150.5 0 200 190 0 250	1.409 8 20C 1.49845 8 15C	10000 0 15 C 8000 0 20 C 8200 0 20C 9300 0 25 C	PHes Mes SHps	MAN-MADE NATURAL?	C?,T?
Trichlorofluoromethane	Fluorotnichloromethane fluorocarbon-11 freon-11	24.1 23.8	-111	245 0 30C 667 0 20C 0.904 atm 0 20C 1.29 atm 0 30C	1.494 8 17C 1.484 8 17.2C	=lightlý in weter 1100 € 200 1100 € 250	РШа; БИр; ЦИр; МИа; 1 <b>FD Ф</b> ЮМ;	NA	C7
1,1,1-Trichloroethene	Nathyl chloroforn Chlorotana Ganklana Baltana	74,1 71/01	-32.0 -32.5 -30.41	96 8 200 100 8 200 155 8 300	1.35 @ 20/4C 1.3376 @ 20/4C 1.3390	480-4400 8 20C insoluble in water	PUci IF8 & BN; SUp;	NA	c
Nethylene chloride	Dichoromethane Nathylene dichloride Nathylene dichloride Nathylene bichloride	39,75 39,8 40-42	-96,7 -97 -95	349 8 20C 362.4 8 20C 380 8 22C 500 8 30C	1.326 @ 20/4C	20000 0;20 C 16700 0:25 C 13200-20000 0 25 C slightly in mater	PWc; IFB; ITB; A; soils; MWc; LWc,p; SWc,p; SWsed,c,p;	NA	M2,0,T2
1,1-Dichloroethene	Ethylidene chloride Ethylidene dichloride	57.3 57.28	-97.4 -96.98	70 0 0C 180 0 20C 234 0 25C 270 0 30C	1.175 @ 20/4C 1.174 @ 20/4C	5500 @ 200	LHged,c; 7SWp; LWp; MWc,p; / PWc;	NA	NA
Trichloroethene	1,1,2~Trichloroethene Vinyl trichloride	114 113.77 133.77	-36.5 -35/-36.7	19 8 200 32 8 300 40 8 350 40 8 35.20	1.4416 <b>20/4</b> C 1.4397	4500 @ 200 slightlý in Water /	PHc:	NAN-NHDE	C,M>
Benzene	Bengol Phane Cyclohexetriene	60.1	5.0	45.5 0 10C 60 0 15C 76 0 20C 95.2 0 25C 100 0 26.1C 110 0 30C	0.8786 <b>20/4</b> C 0.87865	1750 0 10C 1780 0 20C 820 0 22C 1780 0 22C 1780 0 22C	MWC; SWp; LWC; A;	MAN-MADE NATURAL	n,c
Chloroethane	Ethylchloride Ronochloroethana Hydrochloric ether Ruriatic ether	12.3 12.27 12.4	-137 -138.3 -136.4	457 0 0C 700 0 10C 1000 0 20C 1.9 atm 0 30C	0.92 0 0/4C 0.8978	slightlý in weter 3330 m QC 5740 m ⊉OC slightlý in weter	MHC; LHC; SHp	NA	NA
Dichlorofluoromethene	Fluorocarbon-12 Fraon-12 Fluorodichloromethane Dichloromonofluoromethane	8.9/29.8 9.0	-135/-127 -158	1.6 atm 8 200 2.2 atm 8 300 4306 8 250	1.421 0C 1.405 0 9C	230 8 250 insoluble in water	MWc; LWp;	NA	NA
Toluene U	Rathylbenzene Phenylmethane Rathylbenzol Rathacide Toluol	110.4 110.6 110.0	-95.1 ~95 -94.5	10 8 6.4C 22 8 20C 26.7 8 25C 36.7 8 30C 40 8 31.8C	0.8669 @ 20/40	470 8 16C 515 8 20C 534.8 8'25C insoluble in water '	MWC,p; SWp; SWsød,p; LWC,p; A; LWsød,c;	MAN-HADE NATURAL	ND
Trans-1,2-dichlaroethan	trans-1,2-Dichloroathylene trans-Acatylene dichloride Dioform	48.0 47.5	-50.0	200 0 140	1.26	600 e 20C slightlý in water	Мыс,р; Зыр;	NR	NA
1,2-Dischloroethene	Ethylene dichloride Glycol dichloride Ethylene chloride Ethylene dichloride	03.5 03.47	-35.4 -35.36	40 0 10C 61 0 20C 105 0 30C	1.25 @ 20/4C 1.235 @ 20C	9200 @ 0C 8690 @ 20C #lightly in water	Muc,p; SUp;	MAN-MADE	C?
Carbon tetrechloride 🛛 🗰	Tetrethoromethane Nethane tatrachloride Perchloromethane Benginoform	76.54 76.8 76.7	-23.0 -22 -22.9	56 @ 10C 90 @ 20C 100 @ 23C 113 @ 25C 137 @ 30C	1.594 8 20746 1.59 8 206 1.597 8 206	785 9 200 800 9 200 1160 8 250 insolutie in water	Sµ <sub>P</sub> ; пµ <sub>P</sub> ;	NA	C?,n,T?

T-1

ł

.

				COMBE FILL SOUTH RI		*			
					医氯化化 医非正常 化化化化				
HEMI CAL	SYNONYM	BOILING Point (C)	HELTING POINT (C)	VAPOR PRESSURE (mmHg)	SPECIFIC GRAVITY	SOLUBILITY (Hg/1)	NATRIX OCCURRENCE	NATURAL OR MAN-MADE	CARCINOGEN (C) Mutagen (M) Teratogen (T)
	na na mana a sa ang ang ang ang ang ang ang ang ang an	132 131.7	-45.0	6.0 0 20C 11.72 0 20C 10 0 22.2C 11.6 0 25C 15 0 30C	1.106 @ 20/4C 1.1066 @ 20/4C 1.113 @ 15.5/15.5C	500 0 200 468 0 250 468 0 300 468 0 300 insoluble in water	Supj LWc,pj МШс;	NĤ	NO
1,2-Dichloropropens	Propylene chloride Propylene dichloride	96.8	-100 -100/-80	40 0 19.4C 42 0 20C 50 0 25C 66 0 30C	1.156 @ 20/20C 1.1593 @ 20/20C	2700 8 20C slightly in Mater	5Hp ;	NA	M7
Ethyl Lanzana	Phenylathane Ethylbensol Bensylathane	136.2	-94.97 -94.9	7 0 20C 10 0 25.9C 12 0 30C	0.8670 8 20/4C 0.8669 8 20/4	140 8 150 206 8 150 152 8 200 insoluble in water	SWp; LWc; A; MWc,p; LWsed,c;	MAN-MHDE	NG
L 'Tetrachlorosthene	Tetrachloroethylene Perchloroethylene Perchloroethene	121.2 121 121.4	-22.7/-19 -23.35	14 8 20C 15.8 8 22C 24 8 30C 45 8 40C	1.626 @ 20C 1.6311 @ 15/14C	150-200 # 200 150 # 250 insoluble in water	SWp; MWc,p; soils; A; LUsed,c;	MAN-MADE	C7,87
6 Trichloroethylene	Ethylana tatrachloride Trichloroethene Ethylana trichloride	86.7	-87 -86.8 -73	20 0 0C 57.9 0 20C 95 0 30C 100 0 32C	1.4642 8 20C 1.4649 8 20/4c	1100 角 200 1.1 0 250 slightlý in Mater	SWp; R; MWc,p;	MAN-MADE	M5"C5"15
Bronodichloromethane	Dichlorobronomethane	90.0 69.2-90.6	-57.1	50 0 20C 50 0 25C	1.980 @ 20/4C 1.971 @ 25/25C	SNOO @ 250 (assumed) insoluble in water	SHp ;	NAN-MHDE	NH
Acid/Phenolic							7		
Pentachi orophenol	Chlorophen Panchlorol FCP	310 (d)	190 186/191	0.00011 0 20C 40 0 211.2	1.978 <b>8</b> 22/4C	5 © 0C / / 14 0 20C / / 80 © 20C / / 35 © 50C / / 85 © 70C / / #lightly in water	IFB; PHc; soils;	MAN-MHDE	c7,1
Phenol	Carbolic acid Banzanol Mydranybanzene Phanyc acid Phanyc hydrate Phanyl hydrate	182 181.9 181.75	40/43 41 40.6 40.90	0.5293 @ 20C 0.2 @ 20C 0.53 @ 20C 1.0 @ 40C 1.0 @ 40.1C	1.072	82000 0 11C 93000 0 25C sol. in cold water mis. in hot water	MWc; SWc; LWc;	NA	H,C?
Øese/Neutrel -→ Di-n-butyl phthalate	Dibutyl phthalate Dibutyl-1,1-benzene dicarbox- ylate DBP	340	-35.0	0.1 0 115C 2.0 0 150C	1.047 # 20/20C 1.049 # 20/20C 1.0465	13 8 250 400 8 250 4500 8 250 28 8 250	SWsed,p; SWp; suils; ITB &6H; LWsed,c; PWc;	MAN-MADE NATURAL	c
Bis(2-athylhamyl) phthalate	n-Butyl phthalate Di (2-ethylhawyl)phthalate DENP Di (2-ethylhawyl)benzenedi carbowy- late	386 386.9 385	-50 -55	2.6E-10 0 200 <<0.01 0 200 1.2 0 2000	0.99 8 20/200	insoluble in water 0.4 @ 250 1.3 @ 70	soils; SHp: LHsed,c; JfB & ITB & Bh; SHsed,c,p: FHc: A;	MAN-MADE NATURAL?	r∕,c
Disthyl phthalata	Di-sec-octyl phthalate Ethyl phthalate DEP	298 302	-40.5	0.05 @ 70C 14 @ 163C 30 @ 162C 734 & 295C	1.120 @ 25/25C 1.110 1.1175	insoluble in water	IFB өөм; РМа; Sмр; Мма; LМр;	MAN-MADE NATURAL 7	۲7
1,4-Dichlorobenzene	p-Dichlorobenzene Paradichlorobenzene	174 173.4	53.1 63	0.6 4 20C 1.18 0 25C 1.6 0 30C 10 0 54.8C	1.4581 8 20/4C	79 @ 250 insoluble in water	Мыс; Sыр;	MAN-MADE	7

APPENDIX T (Page 2 of 5) HARACTERIZATION D'URGANIC COMPOU

.....

~

. .

``

.

			CHINKHU	TERIZATION OF ORGANIC					
				COMBE FILL SOUTH RI/F					
CHENICAL NANE		BOILING POINT (C)	MELTING POINT (C)	VAPOR PRESSURE (MMHg)	SPECIFIC GRAVITY	SOLUBILITY (mg/l)	MATRIX Occurrence	NATURAL OR MAN-MADE	CARCINOGEN (C) Hutagen (M) Teratogen (T)
Isophorone	Isoctaphannan Isoctaphanan Isoforona Isoforona Isoforon Frimatyl cyclohamanna 3,3,3-Frimatyl -2-cyclohamana-1-ona	215	-8	0.38 8 200	0.9229	12000 € -7C insoluble in water	иманичина аконска аконс Мис ј	MAN-NADE	**************************************
1,2-Dichlorobenzene	Orthodichlerobenzene o-Dichlerobenzene Douthern E	160/183 180.5 179	-17 -17.5 -16.7/-18	1 0 20C 1.5 0 25C 1.9 0 30C	1.305 @ 20/4C 1.307 @ 20/20C	100 8 20C 145 8 25C	SHp; Mic;	NA	*
Benzo (a) pyrana	3,4-Benzopyrene	311 @ 10mm Hg 312	179	5 E-9 8 25C	NA	insoluble in meter 0.0038 0 250	soils; SWsed,c;	MAN-MADE	M7,C7,T7
Di-n-octyl phthalate	BaP Dioctyl-o-benzanedicarbonylate Octyl phthalata n-Dioctyl phthalata DOP	220 8 4mm	-25	<0.2 0 1500	NA	inscluble in water 3 @ 25C:	Lsed,c; SWsed,p; soils;	NATURAL MAN-MADE NATURAL?	т,с
Butylbensyl phthalate	Benzylbutyl phthalate BBP	377	-35	NA	NR	2.9 8 70	Lsed,c; SWsed,p;	MAN-MADE	NA
Benzo(b)fluoranthene	Benx (e) acephenenthrylene 2,3-Benzofluorenthene 3,4-Benzofluorenthene B(b)f	NA	168 167/168	1E-11 - 1E-6 @ 20C	NR	NA	SWsed,c;	NATURAL? MAN-MADE NATURAL	C7,8
Benzo(ghi)perylene	1,12-Benzoperylene	NA	222	1E-10 @ 20C	NA	0.00026 @ 250	SW#ed,c;	TAN-MADE	n
Chrysene	1,2-Benzophenanthrene Benz(a)phenanthrene 1,2,5,6-Dibenzonephthalene	468	256 254	1E-11 - 1E-6 @ 20C	1.274 8 20/4c	0.002 8 250	SWaad,c;	NATURAL MAN-MADE NATURAL	NR
Fluoranthene	Benzo(jk)fluorene Idryl	250 367	111 120 107	1E-6 to 1E-4 \$ 200 0.01 \$ 20c	NA	0.26 0 250	SWsed,c,p; LWsed,c;	NATURAL?	n
Indens(1,2,3-cd)pyrene	2,3-o-Phanylenepyrene 2,3-Phanylenepyrene	NR	162.5/164	1E-10 20C	NA	NA	SWeed,c;	MAN-MADE NATURAL	c?,n
Phenanthrene	Phenenthren	340 339	101 100	6.8E-4 @ 20C 1 @ 118.3C	1.025 1.179 @ 25C	1.6 0 15C 1.00 0 25C 1.29 0 25C insoluble in water	SWsed,c,p; LWsed,c;	NATURAL?	n
Pyrene	Benzo(def)phenenthrene	404	150 156	6.835-7 8 200	1.271 @ 230	D.14 8 25C D.132 0 25C insoluble in water	SWsed,c,p; LWsed,c;	MAN-MADE NATURAL	n,c
Acenaphthene	NA	NA	96	1E-3 to 1E-2 4 20C	NA	3.42 0 250	Süzed,pi	MHN-MADE NATURAL	NA
Naphthalene 2-Nathyl naphthalene	NA NA						LWc; MWc; LWsed,c		
Pasticide/PGB alpha-Endosulfan	Thiedan Cyclodan Beogrit	NR	108/110 70/100	0.009 8 80C 0.00001 8 25C	NA	0.164 0 7C 0.26 0 20C (pH 5.5) 0.15 0 22C (ph 7.2)	S⊔p;	NA	NO
د م ۱,۱'-۵۵۶ ن	6,7,8,9,10,10-havachloro-1,3,5a,6, 9,9a-havahydro-6,9,-wathano-2,4,3- banzo (a)dio wathi apin 3-owide 1,1-Dichloro-2,2-bis(p-chlorophenyl)		88/90	6.5E-6 8 20C	NA	0.53 0 250 0.6 0 70 14 ppb 0 250 120 ppb 0 250 40 ptb 0 250 1.2 W 250	soils;	NA Kdegradati of DDT)	NA an pi oduct

APPENDIX T (Page 3 of 5)	
CHARACTERIZATION OF ORGANIC	COMPOUNDS

 $\widehat{\phantom{a}}$ 

 $\sim$ 

and the second 
 $\sim$ 

( <sup>1</sup>) <sup>1</sup>

``

T-3

			يعد عد الد فوجو عن الأراب	CORDE FILL SOUTH R	l /FS	2			
HENICAL HRE	SYNONYM	BOILING POINT <c></c>	MELTING Point (C)	VAPOR PRESSURE (MMHg)	SPECIFIC GRAVITY	SOLUBILITY (mg/l) And rate and approximately	MATRIX Occurrence	NATURAL OR MAN-MADE	CARCINOGEN (C) Mutagen (m) Teratogen (t)
4,4'-DDT	innessania a supersense neurona a supersense 1, 1, 1-Trichloro-2,2-bis<4-chlorophe- ngl)-othone pp'-DDT Dichlorodiphenyl trichloroethane Chlorophane Dicophane Chlorophane Gesarol	105	106/109	1.5E-7 @ 20C 1.9E-7 @ 25C 7.3E-7 @ 30C	NA	5.5 ppb @ 25C 25 ppb @ 25C c1.2 ppb @ 25C	soils;	NA	M?,C?
Aldrin	Geuserol Neocld - Octalene	NA	104/105	2.31E-5 8 20C	NA	27 ppb 0 25-29C	soils;	NA	C7,F7
				6E-6 8 25C		17 ppb <b>0 25C</b> 180 ppb <b>0 25C</b> insoluble in water	·		
Dieldrin	Octelon NEOD	NA	175/176 150	1.78E-7 @ 20C 2.9E-6 @ 20C	1.75	186 ppb 0 25-290 195 ppb 0 250 200 ppb 0 250 200 ppb 0 26.50 insoluble in water	soils;	NA	N,C?,T?
Delts-BHC	delte-Hemachlorocyclohemane delte-Benzene hemachloride delta-HCH	NA	138/139	1.7E-3 8 20C 2E-2 8 20C	NA	8.64-15.7 @ 280 31.4 % 250 21.3 @ 250	SWeed,p;	Nfi	67
ON-PRIORITY POLLUTANTS (QUA	INTIFIED)								
Volatiles						1			
Xylene ▲. o-Xylene	ortho-Mylene o-Kylol 1,2-Xylene o-Tathyl toluene o-Dimethyl benzene 1,2-Dimethyl benzene	144.4	-25 -25.2	5 @ 20C 9 @ 30C	0.8802 <b>0</b> 20/4C	175 8 20C insoluble in water	SWp; A; L⊌sed,c	MAN-MADE NATURAL	NO
b. p-Hylene	para-Nylena p-Kylol p-Tathyl toluene p-Disethyl benzene l,4-Disethyl benzene l,4-Disethyl benzene	138.4 138.3	13.3 13/14	6.5 0 20C 10 0 27.3C 12 0 30C	0.0611 <b>0</b> 20/4C	196 Ø 25C insoluble in water !	SWp; A; LW#ed,c	NA	NA
c. m-Mylene	méta-Kylana m-Kylof 1,3-Kylana m-Mathyl toluana m-Dinathyl bonzana 1,3-Dinathyl bonzana	139	-47.9 -46/~53	6 0 20C 11 0 30C 10 0 28.3C	0.8642 <b>8</b> 20/4C	insoluble in water	SWp; R; LWeed,c	NÂ	NO
Nonane	NÁ	151 150.7 150.8	-53.7 -54 -51	3.22 0 20C 10 0 30C	0.7176 8 20/40	0.07 0 20C (dist.) 0.43 0 20C (selt) insoluble in mater	5 <b>4</b> p;	MAN-MADE	NA
Acetone	2-Propenone Diwethyl ketone DAK	56.2 56.48	-95 -94.6 -95.35	89 8 50 270 8 300 400 8 39.50	0.791 0 200 0.7972 0 150 0.7899	miscible in water	soils; A; LHsed,c; SWsed,c	NA	NH
2-Butanone	Ethylmathylkatone Nathylathylkatone MEK	79.6 79.57	-86.35 ~86.4 -85.9	77.5 8 200 71.2 8 200	0.005 8 20/40 0.00615 8 20/200 0.0054	353 g/l 8 10C 190 g/l 8 90C Very sol. in Water	soils; A;	NA	NA
4-Nety]+2-pentanone	lsobutyl methyl ketone Natylisobutylkatone Isopropyl acetone Hanarone	116.85 116/119 118	-04.7 -05/00 -00.2	6 0 200 16 0 200 10 0 300	0.7978 0 200 0.8017 0 20/40 0.803	17000 0 20C 19000 slightly in Meter	soils; A;	NH	NĤ

APPENDIX T (Page 4 of 5)

. .....

\_

n

`.

APPENDIX T	
(Page 5 of 5)	
CHARACTERIZATION OF ORGANIC	CONFOUNDS

...

Ł

1

1

		4			
	COMBE	FILL 5	OUTH	kI∕FS	
and that has been to	the set her her bes her he	and the set of the loss and	In the last last last last		

		BOILING	MELTING	VAPOR				NATURAL	CARCINOGEN (C)
CHERICAL NAME	SYNONYA	POINT	POINT	PRESSURE (mmHg)	SPECIFIC GRAVITY	SOLUBILITY	MATRIX	OR	NUTAGEN (N)
KHIIZ.	SYMUNYN	(()		Changy	GENVITY	(mg/1)	OCCURRENCE	MAN-MADE	TERATOGEN (T)
TENTATIVELY IDENTIFIED HALOGENAT	ED COMPOUNDS		~~~~~~	**********************		, , , , , , , , , , , , , , , , , , ,	변해 및 이상 및 이상 및 이상 및 이상 위에 이야 1	1 帝國民族制成總統制以下的制度的	(列列武治寺 《法武山央司朱元武武武的张武者
3,3,3-Trichloro-1-propens	3,3,3-Trichløropropene 3,3,3-trichløropropylane	114/115	-30	NA	1.369 0 20/200	insoluble in water (less than 10%)	SHc; PHc;	NA	NA
1-Chloro-2-propanel	Propylene chlorohydrin 1-Chloropropen-2-ol	126/127 127/133	NA	NA	1.115 0 20/20C 1.103 0 20C	miscible in mater	SHC: A:	NA	NA
1.1-Diphenul-4-fluorephthaled	LeNA	NA	NA	NA	NA	NR ,	PNci	NA	NA
Tetrachloroethane	Restylane tetrachloride	146		6.6Hbar 8 20C	1.5953 @ 20/4C	0.3g/100ml @ 25C	Puci	HAN-HADE	NA
	1,1,2,2-Tetrachloroethane	146.2	-36	5mm @ 20C		2900mg/1 @ 20C	•		
		146.4	-43.8	8.5 8 30C		slightly in water			
			-42.5			(less then 10%)			
1,3-Dichlorobenzene	meta-Dichlorobenzene	172	-24.8	NA	1.2004 <b>8</b> 20/4C	123 <b>0</b> 25c	Mile :	NA	NR
•	H-Dichlorobenzene	173	-24.7			insoluble in water (less than 102)			
Cis-2-bromocyclohemanol	NA	NA	NA	NA	NA	NA	MMc:	NA	NA
Fluorobi phenul	NR	NA	NR	NA	NA	NH	nuc:	NR	NB
4-Chloro-2-methul-benzenamine	NA NA	NA	NA	NA	NR	NA	MH-si	NH	NH
Dichlorofluoroethane	NA	NA	NA	NR	NA	NR	MWC:	NA	NB
2-Bromo-1,3-cyclopentenedion	n NA	NR	NA	NA	NA	NĤ	PH-1	NA	NA
2-Fluorophenol	NA	NR	NR	NA	NA	NR '	LHsed,c;	NA	NA
1,4-Dichlorobutane	Tetramethylene dichloride	153.9 161/163	-37.3	NA	1.1408 • 20/40	insoluble in water (less than 10%)	SHPS	NA	NH
1,1,2-Trichloro-1,2,2-tri-	Arklone	48	-35	270 @ 200	1.56 @ 250	NA	scils; MWp;	NB	NA
fluoroethane	R-113			400 8 30C					
3-Fluoro-2-propynenitrile	NA	NA	NA	NĤ	NA	NA '	soils: NWp:	NA	NR
1,3-Dichlorocyclobutane	NA	NR	NA	NA	NA	NA	soils; Nup;	NA	NA
1-Fluoro-4-methowy-banzene	NA	NA	NA	NA	NA	NA	soils; NHpi	NA	NH
2-Chloro-1, 1-difluoroethylene	NR	NA	NA	NA	NA	NR	soils;	NR	NA

NOTES: c-current RI/FS program sampling

C-current RL/FS program sampling p-previous sampling d-decomposes BM-below nanimum detection limit 7-unspecified, unknown, indefinite NR-not available IFB-Found in trip blanks IFB-Found in trip blanks ORC-OR/UC blanks TP-tast pits R-air, listed if contaminant greater than BM LU-leachate water (p and/or c), listed if contaminants greater than BM

ł

.

`.

usansusersestation and a set of the set

#### APPENDIX U

#### CHORACTERIZATION OF INDRGAMIC COMPOUNDS

{

्रस्त सार्वा	5PU(1F <b>1C</b> GERMITY	CARCENOUEN TERATOGUN HUTAGEN	HATKIX OCCURRENCE W. COMPLESOUTH	SOLUHAL KIY GegZi ( Solution States States States - 6		
· · · · · · · · · · · · · · · · · · ·	). Line of the second s					
NE COLO Historia monta	6.604 <b>8</b> 250	พก	SHp; SHawd.c; LHp; A;	5000 B.R.C. CHARGE		
H. Leni d	5.707 8 140 5.72 8 200	c,n,r	SWp; SWaed,c,p; soil*; MWa,p; LWand,c; LWp;	Forme many complexees with a number of organizes overy sol.		
Ռուցիննա	1.05 8 200	n,C?	SUp,e; SUswd,c,p; unilo; MUa; A; LUp;	Low col. For hydroxide		
Cardena Ciel	8.642 <b>8 70</b>	M,T,C?	SWp; SWead,c,p; soils; MWc,p; LWced,c; A; LWp;	rnzolukle in mater "Clom – depends en speciation"		
Станаци	7.20 0 280	m,c	SNaed,c,p; soila; LNp; Muc,p; LNawd,c; A; SNp;	insoluble in Mater Voery low solubility)		
Copper	8.92	M CCu ∉a1960)	SWa,p; SHrød,c,p; LHa,p; soils; MHa,p; LHsød,a; a.	insoluble in mater (low cot highly		
l aad	11.3437 @ 16C	H,T,C?	H; SWc,p; SWsed,c,p; (Wc,p; soils; MHc,p; (Wsed,c;	Ingoluble in Muter		
Nerculy	13.5939	n	н; Sup; Susad,p; Lup; Мис,p;	insoluble in meter		
Nicket	8.90	M,C,T	SHaad,c,p; soil <b>s;</b> AWc; LUp; LNaad,c; A; SMp;	insoluble in water		
Selenium	4.81 8 20/40	п,т	SNc,p; SNsed,p; NNc,p;	insoluble in water		
Silvar	10.5 8 20	NA	LHp; SHp; soil#; MHc,p;	insolution in water		
Thallium	11.85	M (T1 salts)	SUp; SHwed,p; MHc; soils; LHp;	insolutle in ester		
Zine	7.14	M7,07,17	SHe,p; SHved,c,p; soil;; МЧс,p; LЧ≢µd,c; LH⊂,p; Н;	insolutle in estar		
NADIOACTIVITY Grossmalpha	NA	MA	SHp; LHc,p;	NH		
Grossbeta	NA	NR	SHp; LHc,p;	NĤ		
NOTES: c-current p-provise dedecompe BM-balow P-unspeci NA-natau IFD-found IIB-found OAC-OAAO A-sir, 1: LH-lasch	Minimum detection 1 (find, unknown, inde vailable d in field blanks d in trip blanks	bling limit efinite : greater than BM c), listed if	<pre>(MMSEXERNEMERNEMERNEMERSENCE CREATENERSEE LHood Imachate mater sediment (p and/or c), listed if contaminants greater than BM MU-monitoring well mater (p and/or c), listed if contaminants greater than BM PU-potable mater (p and/or c), listed if contaminants greater than BM SHREd-surface mater sediment (p and/or c), listed if contaminants greater than BM soils-soil boring/rock coming, field hand sugering, unifor test pits, listed if contaminants greater than BM SU-surface mater (p and/or c), listed if contaminant, greater than BM</pre>			

(

. .

#### APPENDIX W CHEMICALS IN POTABLE WATER AT COMBE FILL SOUTH LANDFILL

..

i i

`.

(

•

CHEMICAL	CARCÍNÓGEN (C) MUTAGEN (M) Tératógen (t)	NATIONAL DRI Water Criteri McL Menerenan	RACL	CLEAN WATER ACT (*) WATER QUALITY CRITERIA FOR HUMAN MEALTH FISH AND ORIN'ING WATER	CLEAN WATER ACT () Water Quality Criteria For Human Health DFINKING Water Only Waterfamerater	CLEAN WATER ACT %5) Cancer Risk Concentration Dennentration	SDR HER 1 DRY	LTH ADVI: 10 Day	CHRONIC	ACCEPTABLE DAILY INFAKE VALUES "ADI" (Hg/day)	PRELIMINARY PROTECTIVE CONCENTRATION LIMITS (PPCL)	NEH JERSEY Groundwater Quality Criteria ch / Numaenthemate
PRIORITY POLLUTANTS Volatiles (ppb) Besene Carbon tetrachloride Chloroform 1,1-Dichloroethane 1,2-Dichloroethane Mathylane Chloride Tatrachloroethylene Tolsene Trachloroethylene 1,1-Trachloroethane	C7, n - 7 C C C C C NO C C 7	5 - - 5 - - 5 200	0 - - 0 - 2000 2000	0 (0.66) 0 (0.4) 0 (0.19) i 0 (0.94) 0 (0.19) 0 (0.19) 0 (0.19) 14300 0 (2.7) 14400	0 (0.67) 0 (0.42) 0 (0.19) i 0 (0.94) 0 (0.19) 0 (0.06) 15000 0 (2.0) 19000	0.66 	- - 2300 21500 2000	230 - - 175 2200 200	70 - - 20 340 75 1000	- - - - 30 -	0.673 - 4500 0.597 - - 15060 -	-
Rcid/phenclics (ppb) Pentechlorophenol Phenol	:	:	200 -	1010 3500	1010 3509	- - ,	-	Ξ	-	7	3500	-
Retals (ppm) Rotanony Rrenac Cadmium Chronium Coppar Lead Harcury Salenium Silver Zinc Miscellaneous (ppb) Cyanids Phenols Radioactivity (pCi/l) Gross Jata Nen-PRIOPITY FOLLUTANTS (QURNTIFIED)	ND C C - - - - NO NO NO	- 0.05 0.01 0.05 (total) - 0.05 0.002 0.01 0.05 5.0 - - 15 -	- 0.05 0.12 (total) 1.3 0.02 0.045 - - -	0.146 0 (0.0000022) 0.01 0.05 (+6) 170 (+33 1 (organoleptic) 0.05 0.000144 0.01 0.05 5 (orgenoleptic) 200000 -	0.146 0 (0.0000028) 0.01 0.05 (-6) 179 (-3) 1 (organoleptic) 0.01 0.01 0.01 0.05 5 (organoleptic) 200000 -	2.2				0.29 - 0.15 - 0.02 0.7 0.12 -	145 0.0449 0.000354 - - 2 - - - -	0.05 0.01 0.05 1.0 0.02 0.01 0.01 0.05 5 200 300
Volatilas (ppb) Dichlorodiflueromathana Trichlorofluoromathana	NŮ NO	-	-	:	-	-		Ξ	-	-	•	1
<ul> <li>No published information</li> <li>Insufficient data available to de</li> <li>Possible, data still under ravies</li> <li>Not carcinogenic nor mutagenic n</li> <li>RECL Racommended Hauinse Contaninae</li> <li>PCL Proliminary Protective Concent cancer risk of 1.0E-06</li> <li>ppm eng/l</li> <li>Concentration in parentheses co risk of 1.0E-06</li> <li>(b) Concentrations are for 1.0E-06</li> <li>(b) Concentrations are for 1.0E-06</li> </ul>	or teratogenic it Lavels iration Limits at presponds to a ca	rcinogenic	302539			、						

₩-1

· · ·

``

 $\sim$ 

0

 $\frown$ 

 $\sim$ 

 $\sim$ 

#### APPENDIX X CHEMICALS IN LEACHATE AT COMBE FILL SOUTH LANDFILL

7

、 、

 $\sim$ 

٠

CHENICAL	CARCINOGEN (C) MUTAGEN (M) TERATOGEN (T)	NATIONAL DRINK Water Criteria Acl Menuluman		CLEAN WATER ACT (.) Water Durlity Criteria For Munan Health Fish and Drinking Water Busubbusual Disking Mater	CLEAN WATER ACT (4) WATER GUALITY CRITERIA For Muman Mealth Drinking Water Only Drinking Water Only	CLEAN WATER ACT (45) CANCER RISK CONC. (595)	CLEAN WATER ACT Chemical Exposure For Aquatic Life (ppb) Mangadananananananana	RCCEPTABLE DAILY INTAKE VALUES "RDI" (ng/day) Regeneration	PRELIMINARY PROTECTIVE CUNCENTRATION LIMITS (PPCL)	NEH JERSEY Ambient Water Quality Criteria FN-2 Munaphumaenam
PRIORITY POLLUTANTS										
Volatiles (ppb)										
Benzene	C7,M	5	0	0 (0.66)	0 (0.67)	0.66	i	-	0.673	-
Chlorobensene	NO	-	-	468	468	-	50	1	500	-
Chloroethane	-	-	-	i	1	-	-	•	19000	-
1, 1-Di chlor oethane	NO	-	-	1	1	-	-	0.1	4500	-
Ethylbenzere	NO	-	680	1400	2400	-	i	9.5	4750	-
Nethylene Chloride	C7 C	•	-	0 (0.19) 0 (0.8)	0 (0.19)	-	1	-	-	-
Tetrachloroethylene	ND	-	2000	14300	0 (0.88)	-	<b>940</b>	<u>.</u>	-	-
Toluene Trans-1,2-dichloroethylene		-	70	1900	15000	-	1	30	15000	-
Trichlorosthylene	NO C \	5	c	0 (2.7)	0 <28>	2.7	21900	-	-	-
Vinyl Chloride	č.n	ĩ	ă	0 (2.0>	0 (2.0)	2	4 1 700	2	-	-
vingi chioride		-	•			-	•	•	-	-
Reid/Phenolscs (ppb)										
Phenol	-	-	-	3500	3500	- ,,	2560	7	3500	-
2,4-Dimethyl phenol	-	-	-	-	-	- '	-	-	365	-
Base/Neutrals (ppb)										
1,2-Dichlarotienzane	-		-	400	470	-	763	6.3	3150	-
1,4-Dichlorobenzene	-	750	750	400	470	-	763	-	-	-
Disthyl Phthelate	мо	2	:	350000 15000	434000 21000	-	3	-	-	-
Bis(2-ethylhenyl) phthelete	C	-	-	19000		-	-	-	-	-
Butyltangyl phthalata Napthalung	-	-	-	i.	-	-	620	-	-	-
Reportent	-	-		•	-		020	-	-	-
Metal# (ppm)										
Arsenir a a	c	0.050	0.050	0 (0.0000022)	0 (0.0000025)	0.0000022	40	-	0.0025	0.05
Deryllaum 🚺	C?	_	-	0 (0.0000037)	0 (0.0000039)	-	5.3	-	0.00395	-
Cadmium	-	0.010	0.005	0.01	0.01	-	e^[1.05(]n H>-8.53]	-	0.00449	0.01
Chronium 🖸	С	0.050 (total)	120 (total)	0.05 (+6)	0.05 (+6)	-	0.29 (+6)	0.15	0.000854	0.05 (to+al)
				170 (+3)	179 (+3)		44 (+3)			
Copper N	-	-	1.300	1 (organoleptic)	1 (organoleptic)	-	5.6	-	-	-
Laad	•	0.050	0.020	0.05	0.05	-	e^22.35(ln H)-9.48]	<b>-</b>	-	0.05
flarcury CN	-	0.002	0.003	0.000144	0.01	-	0.00057	0.02	2	-
Nackel VI	-	0.010	0.045	0.01	0.01	2	35	1.5	0,0304	
Selenium Thallium	-	0.010	0.045	0.013	0.0178	_	10	0.7 0.037	-	0.01
Zine	-	5.000	-	5 (organoleptic)	5 (organoleptic)	-	47		-	-
	-			• ••• •					-	-
Miscellaneous (ppb)										
Phenols	NO	-	-	-	-	-	2560	-	-	-
Cyanides	NO	-	-	200000	200000	-	-	-	-	-
Radioactivity (pCi/1)										
Gross alpha	-	15	-	-	-	-	-	-	-	-
Gross bets	-	-	-			-	-	•	-	-
NON-PRIORITY POLLUTANTS (QUANTIFIED)										
Volatiles (ppb)			-	_	_	-	-	-	_	
Trichlorofluoromethane	NO	-	-	-			-	-	-	-

 $\mathbf{n}$ 

 $\sim$ 

Concentration in parentheses corresponds to a carcinogenic risk of 1.0E-06
 Concentrations are for 1.0E-06 increased cencer risk levels

X-1

¢. <u></u> r r 1  $\frown$  $\square$  . ....

٠.

 $\sim$ 

::

والماديمين بستاسس الروال ماعد للدادات

and the second 
~

APPENDIX Y CHEMICALS IN SURFACE HATEK AT COMBE FILL SOUTH LANDFILL 

CMEMICAL	carcíno teratog	A (NATIONAL DRI Dygwater Criter Ign MCL Nymargergawyn	IA RHCL	CLEAN WATER ACT (J) Water Quality Criteria For Human Health Fism And Drinking Water Righthous Duby Ching Hater	CLEAN WATER AGT (=> Water Quality Criteria For Human Health Drinking Water Only Newnatereachdereforen	CLEAN WATER ACT Cherical Exposure For Aquatic Life	NEH JERSEY Amøient Hater Guality Criteria fu-2 Heenmandesta	(6) Clean Unter Act Canger Risk Cuncentration Memorial Action	ACCEPTABLE Daily Intake Values "Adi" (Ag/tg/day)	PRELIMINARY PROTECTIVE CONCENTRATION LIMITS (PPCL)
PRIORITY POLLUTANTS										
Volatilar (ppb)		_								
Benzene	C7,H	5	0	0 (0.66)	0 (0.67)	i		0.66	-	0.673
Carbon Tetrachloride	C7,M	5	5	0 (0.40)	0 (0.42)	1	- 1	0.40	-	-
Chloroform	63	-	-	0 (0.19)	0 (0.19)	1240	÷.	0.19	-	0.194
1, 1-Dichloroethene	ND	5	:	1	1	<b>.</b>			0.1	4500
1.2-Dichloroethene	63	2	0	o (0.94)	0 (0.94)	20000		0.94	-	0.507
1,2-Dictloropropane	NO	-	- 680	1100	1 2400	-		-	-	-
Ethylberizene	NU C?	-		0 (0.19)		3	-,	-	9.5	4750
flethylene Chloride		-	-	0 (0.8)	0 (0.19)			-	-	-
Tetrachloroathylene	C NO	<u>, -</u>	2000	14300	0 (0.86) 15000	ē40	- 1	-	-	-
Toluene	NO	`_	2000	14300	12000	1	-	-	30	15000
Trans-1,2-dichloroethylene Trichloroethylene	nu C	-	0	0 (2.7)	0 (2.8)	21900		Ξ.	-	-
Inichior detnylene	L	2	U	0 (2.7)	0 (2.8)	21400		2.7	-	-
Acid/Phanolics (ppb)										
Phanol	_	_	-	3500	3500	-	_ ``			
T NUMOL	-	-	-	3300	3000	-	-	-	-	-
Base/Neutrals (ppb)										
1,2-Dichlorotenzene	NO	_	-	400	470	50	_ ·	_		
1.4-Dichlorobenzene	NO	750	750	400	470	50	-	-	6.3	3150
Disthyl Phthalate	NO	-	-	350,000	434,000	3	-	-	-	-
Bis(2-athylhewyl) phthalate	-	-	-	15060	21000	-	-	-	-	-
brace anogradadis potentiata				15000	10.00			-	-	-
Pesticides/FLHs (ppb)										
a-endosulfan	-	-	-	74	139	0.056	0.056	-	-	-
					•••		0.000		-	-
Matals (ppm)							1			
Arsenic	с	0.05	0.05	0 (0.0000022)	0 (0,000025)	40	0.05	0.0000022	-	0.0025
Beryllium	Č?			0.0000037	0.0000039	-			2	0.00396
Cadmium	-	0.01	0.005	0.01	0.01	•^[1.05(1n H)-8.53]	0.01	-		0.00449
Chronium	c	0.05(total)	0.12(total)	0.05 (+6)	0.05 (+6)	0.29	0.05 (total)	-	0.15	0.000854
Line Co	-		•••••	170 (+3)	179 (+3)	44			0.15	0.000834
Copper	-	-	1,300	1 (organoleptic)	1 (organoleptic)	5.6	- +	-	-	_
	-	0.05	0.02	0.05	0.05	**[2.35(1n H)-9.40]	0.05	-	_	
Recury O	-	0.002	0.003	0.000144	0.01	0.00057		_	0.02	-
Selenium	-	0.01	0.045	0.01	0.01	35	0.01	-	0.7	-
Silver	-	0.05		0.05	0.05	0.12	0.05	-	0.12	
Zinc	-	-	-	5 (organoleptic)	5 (organoleptic)			•	0.12	-
				• • • •						
Hiscellaneous (ppb)										
Eyanides all	•	-	-	200000	200000					
Thenols .	-	-	-	-	-	-	-	-	-	-
Radioactivity (pCi/l)										
Gross alpha	-	-	-	-	-	-	-	-	-	-
Gross beta	-	•	-	-	-	-	-	-	-	-

No published information

 Insufficient data to datarmine
 Possible, data still under review
 No Not Carcinogan nor mutagen nor teratogen
 RECOMMENDED Review
 Recommended Review Contempont Levels
 REL Preliminary Protective Concentration Limits at increased cencer risk of 1.0E-06
 ppb =ug/l
 Concentrations in perenthases correspond to a carcinogenic risk of 1.0E-06
 Concentrations are for 1.0E-06 increased cencer risk levels

Y-1

#### APPENDIX Z

#### CHEMICALS IN HIR AT COMBE FILL SOUTH LANDFILL

٠,

n' al-Mil (1911). In Anno 20 Anno 1	CHREINOGENIC OD HHTHGENIC (M) TFRHIOGENIC (D) 2000-RENNERMERTEN	UNIT CANCER RISK 1.0xE-06 Noordenamerik	NJ RRELENT AIR OR MUINTENANCE AREA CRITERIN (Ug/H3) AREAREACTERINA
PHINELTY PULLATORIES			
Volatiloj			160 (65)
Beergawee	C2, <b>n</b>	6.9	•
E Chief Lienzame	NO	-	•
Bathylene Chioride	C?	0.10	
Let action octors and	Ü	1.7	
Let theme	NO	-	<b></b>
track to concert to the me	G	4.1	· •
Barner Manda al s			
bis C2s Ethytheogl0phthal also	C?	0.13	-
Diethyl phthat de	-	• .	
Di medantaji philici aka	C	0.13	
thet of a			
His bit we way	-	~	-
Beergllie	02,11	-	
Carlei un	02,H,T		¥***
Сы оніцн	e,ñ		•••
Depper	tti Calatta⊅	-	
Louis	02,8,6	•••	1.5 (a)
Nú diten 1	-	••	*188
Zásoc	C?,H?,T?	•.	
NON-PRIORITY DOLLUTONTS (QUANTIFIED)			
Valahiles			
Actome	-	~	•
De - De et anne en e		•	· •
Night concess	**		
Ends to the second s			

8

TENTRITYETY TOUNTLY LED HALOGENATED COMPOUNDS

Tel El orise Reprisportania

4 Hathy -2 Partmone

No published information

i Insufficient data available to determine

2 Possible, dota obili under review.

NN Not cardinagen nor mutagan nor teratugen "

- Car Discharby Main Ameraging period
- (b) Non-meth me hydrocarbons, primary and secondary standards; U-9 H.N. averaging period not to be enceeded more than once per tective months.
- 302542 RUTES: Upwind and downwind stations defined during spacific sampling days.
  - Increase risk of cancer from breathing as defined by CPERMUNEL.

Carbon Disulifide (a non priority volatile) was also found.

#### APPENDIX AA (Page 1 of 6)

#### ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfill<sup>a</sup> (Excluding related sampling events)<sup>b</sup>

	DATE	EVENT
	1940s	Small fill operation owned and operated by Filiberto family.
197	0-1971	Landfill operated by Filiberto Sanitation, Incor- porated.
Ju	1 1972	Fish kill in Trout Brook prompts Division of Fish and Game to request geologic investigation.
12 De	c 1972	"Certificate of Registration" issued to Chester Hills Incorporated for sanitary landfill operation on Parker Road in Chester Township.*
Fe	b 1973	Analyses by Washington Township completed for samples of 2 springs on the Tingue property.
18 Ma	r 1973	Inspection of Trout Brook to landfill by Chester officials leading to letter requesting action on part of New Jersey Department of Environmental Protection (NJDEP) to stop pollution of brook.
29 Ma	y 1973	Investigation of Trout Brook headwaters by NJDEP.
23 Ju	1 1973	Site inspection by NJDEP and Chester Township of Trout Brook and Tingue well. High bacterial counts were found in Trout Brook leading to recommenda- tions for additional leachate treatment and re- cycling.
Ju	1 1973	Chester Hills, Incorporated installs leachate collection and recirculation system.
6 Au	g 1974	NJDEP proposes locations of first four monitoring wells.

aRevisions and updates made to original chronology presented in RAMP.

<sup>b</sup>Summary of sampling events in association with the landfill are summarized in Appendix BB.

\* Note: Build of the past-1977 landfilled men is in Vlashington Township. Much of the use planned for use in Chectin Twy never way.

#### APPENDIX AA (Page 2 of 6)

#### ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfilla (Excluding related sampling events)<sup>b</sup>

	DATE	EVENT
	1976	Leachate collection and pumping system becomes inactive.
	1977	After much discussion, Chester Hills installs two observation wells.
27 J	an 1977	Chester Hills begins sampling of site monitoring wells for metals, phenols, cyanide, and conventional sanitary constituents; sampling continues every few months until May 1981 with some changes in sample location/designation.
5 S	ep 1978	Combe Fill, Incorporated submits "Application of Notification of Change in Ownership" to Solid Waste Administration.
15 J	an 1979	Sparks from operating doser ignite aerosol cans of hairspray, resulting in explosions and small fires.
26 S	ep 1979	Combe Fill Corporation cited for exceeding maximum allowable width of operating face, for inadequate daily cover, and for excavation of previously deposited refuse at Combe Fill South Landfill.
12 M	ay 1980	Chester Township files civil complaint against Combe Fill Corporation seeking to stop construction of a new access road. Judge Reginald Stanton issues restraining order against use of road.
D	ec 1980	Local citizens discover clearing of trees in preparation for filling in wetland area to west of site.
	1981	Chester Township Health Department steps up surveillance of landfill activities.

<sup>a</sup>Revisions and updates made to original chronology presented in

RAMP. <sup>b</sup>Summary of sampling events in association with the landfill are

3.1

Т

## APPENDIX AA (Page 3 of 6)

#### ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfilla (Excluding related sampling events)<sup>b</sup>

	DAT	E	EVENT
31	Jan 1	981	Combe Fill North Landfill closes, increasing truck traffic and aggravating problems at Combe Fill South Landfill.
6-19	Feb 1	981	Local citizens, township leaders, and environmental activist groups file protest with NJDEP director because of Combe Fill Corporation's activities in the wetland.
23	Feb 1	981	Chester and Washington Townships seek injunction against Combe Fill Corporation in Superior Court to prevent company from advancing fill into wetland area. Judge Stanton orders Combe Fill to halt wetland operations for two weeks.
8	Mar 1	981	Court reverses restraining order and permits clear- ing of wetland and other preparations but prohibits waste disposal in wetland for 30 days.
19	Mar 1		NJDEP issues an "Order Modifying Registration" requiring the suspension of operations in the wet- land until Combe Fill Corporation submits a revised design showing use of clean fill in the wetland, leachate collection systems, impermeable barriers, and additional monitoring wells that would provide for secure disposal.
19	Mar 1	981	U.S. Environmental Protection Agency issues cita- tion to Combe Fill Corporation for violation of Section 301(a) of the Clean Water Act, orders them to cease wetland activities, and requires them to obtain a Section 404 permit.
24	Mar 1	981	In a final ruling Judge Stanton orders that: (1) NJDEP designate areas suitable for fill

<sup>a</sup>Revisions and updates made to original chronology presented in

11. 11.

RAMP. bSummary of sampling events in association with the landfill are

## APPENDIX AA (Page 4 of 6)

## ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfill<sup>a</sup> (Excluding related sampling events)<sup>b</sup>

		DATE	EVENT
			(2) Sediment erosion permits under CWA are not applicable
			(3) NJDEP appoint an impartial project manager to oversee problems and complaints
			(4) NJDEP and Combe Fill Corporation decide whether wetland dumping is permissible
10	May	1981	Combe Fill Corporation cited for failure to control littering, for improper grading, and for insuffi- cient thickness of daily cover at Combe Fill South.
15	May	1981	NJDEP sets forth procedures for delineating wetland at site.
22	May	1981	Last recorded sampling and analyses of monitoring wells on site by Combe Fill Corporation.
8	Jun	1981	Combe Fill Corporation cited for failure to control littering and for inadequate daily cover at Combe Fill South Landfill.
28	Jul	1981	Combe Fill Corporation cited for inadequate cover at Combe Fill South.
17	Aug	1981	Combe Fill Corporation attorneys announce rate increase hearings with NJPUC scheduled for 18-21 August and 8-10 September 1981.
18	Sep	1981	Based on groundwater sampling on and around Combe Fill South Landfill, NJDEP issues a second "Order Modifying Registration" stating that groundwater contamination exists at the landfill and is likely to contaminate local water supplies. NJDEP orders that:

<sup>a</sup>Revisions and updates made to original chronology presented in RAMP.

<sup>b</sup>Summary of sampling events in association with the landfill are summarized in Appendix BB.

Т

## APPENDIX AA (Page 5 of 6)

1

٠.

25

-

## ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfilla (Excluding related sampling events)<sup>b</sup>

		(1)	Combe Fill Corporation submit revised engineering design including plan for proper closure and groundwater monitoring		
		(2)	Combe Fill South Landfill operation cease acceptance of all waste upon filling to elevations as marked by SWMA		
		(3)	Combe Fill Corporation ensure that revised design meets requirements of revised Solid Waste Management Act		
			ng winds limit acceptance of waste at Combe South Landfill.		
Oct	1981	Combe Fill Corporation officially declares bankruptcy and ceases acceptance of waste. Chester Township and NJDEP official temporarily assume responsibility of landfill. Landfill technically open.			
Oct	1981		e Fill South cited for failure to apply ate cover.		
Nov	1981	Official closure of Combe Fill South.			
Dec	1981	worki	e Fill South cited for failure to limit size of ing face, failure to control littering, and ure to apply adequate cover.		
May	1982		e Fill South cited for failure to control er and failure to apply final cover.		
Jun	1982	Geolo	ogic reconnaissance at Combe Fill South.		
Aug	1982	Terra South	ain conductivity investigation at Combe Fill 1.		
	Dot Dot Dot Nov Dec May Jun	Sep to Dct 1981 Dct 1981 Dct 1981 Nov 1981 Dec 1981 May 1982 Jun 1982 Aug 1982	<ul> <li>(3)</li> <li>Sep to Stron</li> <li>Dct 1981 Combender</li> <li>Dct 1981 Office</li> <li>Dec 1981 Combender</li> <li>Dec 1982 Combender</li> <li>Dec 1982 Terration</li> </ul>		

<sup>a</sup>Revisions and updates made to original chronology presented in

RAMP. <sup>b</sup>Summary of sampling events in association with the landfill are summarized in Appendix BB. 6.150

## APPENDIX AA (Page 6 of 6)

## ANNOTATED SITE CHRONOLOGY

Combe Fill South Landfill<sup>a</sup> (Excluding related sampling events)<sup>b</sup>

DATE	EVENT
12 Aug 1982	Mitre Ranking Form submitted by NJDEP to U.S. EPA.
20 Dec 1982	Combe Fill South proposed for inclusion on National Priorities List (Superfund Sites)
22 Dec 1982	Combe Fill Corporation bankruptcy hearing.
8 Sep 1983	Combe Fill South on the National Priorities List.
Dec 1983	Remedial Action Master Plan (RAMP) prepared for Combe Fill South.
Jul 1984	NJDEP awards remedial investigation/feasibility study (RI/FS) contract to consultant.
Sep 1984 to Jan 1985	Borings made on site and new monitoring wells installed as part of RI/FS.
Apr 1985 to Nov 1985	On-site environmental monitoring conducted and analyses performed as part of RI/FS.

<sup>a</sup>Revisions and updates made to original chronology presented in RAMP.
 <sup>b</sup>Summary of sampling events in association with the landfill are summarized in Appendix BB.

 $\mathcal{O}(\mathbf{r})$ 

#### APPENDIX BB (Page 1 of 4)

1

#### CHRONOLOGY OF ENVIRONMENTAL SAMPLING IN AND AROUND SITE

#### Combe Fill South Landfill<sup>a,b</sup>

DATE	SAMPLER	SAMPLED MEDIA	ANALYSES CONDUCTED
15 Nov 1973	NJDEP	Residential wells and surface waters (Trout Brook)	Metals, conventional pollutants <sup>c</sup> , phenols, and cyanide for sur- face water
26 Jul 1974	NJDOH	Surface waters (tributaries and ponds)	(Unknown - data not available)
8 Aug 1980	Washington Township	Surface waters (Trout Brook)	Metals, phenols, cyanide
10 Sep 1980	Chester Health Dept.	Combe monitoring wells	Metals
16 Oct 1980	Washington Township	Surface waters (Trout Brook)	Metals, coliform
28 Oct 1980	Borough of Madison	Residential wells	Metals, coliform, pH
6 Jan 1981	NJDEP	Combe monitoring wells	Metals
2 Feb 1981	Chester Health Dept.	Residential wells	Metals

<sup>a</sup>Excluding sampling by Chester Hills Corp. and Combe Fill Corp., operators \_of site.

<sup>b</sup>Excluding sampling associated with Remedial Investigation (see Chapter 1 of main text for this information).

<sup>C</sup>Conventional pollutants may include BOD<sub>5</sub>, total suspended solids, COD, \_total organic carbon, etc.

dVOA = Volatile organics.

- 4

Acid = Acid extractable organics.

B/N = Base/neutral extractable organics.

- Full PP = All priority pollutants.
- PCB = Polychlorinated biphenyls.

#### APPENDIX BB (Page 2 of 4)

#### CHRONOLOGY OF ENVIRONMENTAL SAMPLING IN AND AROUND SITE

#### Combe Fill South Landfilla,b

DATE	SAMPLER	SAMPLED MEDIA	ANALYSES CONDUCTED
3 Mar 1981	NJDEP	Surface waters leachate, and monitoring wells	VOA, B/N, metals, cyanide, conventional pollutants
3 Mar 1981	Borough of Madison	Residential wells	Metals, pH
23 Mar 1981	URWA	Surface waters/ leachate, Combe monitoring wells	Full PP, conventional pollutants, radio- activity
24-28 Mar 1981	Chester Health Dept.	Residential wells	Metals
28-30 Apr 1981	NJDEP	Surface water	Full PP
6 May 1981	NJDEP	Combe monitoring wells; residential wells	Metals, cyanide
28 May_1981	HALT	Residential wells	VOA, manganese
8-22 Jun 1981	HALT	Residential wells	VOA
12 Jun 1981	NJDEP	Residential wells	Acid, B/N, pesti- cides, PCB, metals, phenol, cyanide, chloride

<sup>a</sup>Excluding sampling by Chester Hills Corp. and Combe Fill Corp., operators of site.
 <sup>b</sup>Excluding sampling associated with Remedial Investigation (see Chapter 1 of main text for this information).

<sup>C</sup>Conventional pollutants may include BOD<sub>5</sub>, total suspended solids, COD, total organic carbon, etc.

dVOA = Volatile organics.

- Acid = Acid extractable organics.
- B/N = Base/neutral extractable organics.
- Full PP = All priority pollutants.
- PCB = Polychlorinated biphenyls.

• • • • • •

Т

#### APPENDIX BB (Page 3 of 4)

#### CHRONOLOGY OF ENVIRONMENTAL SAMPLING IN AND AROUND SITE

Combe Fill South Landfilla,b

	DATE	SAMPLER	SAMPLED MEDIA	ANALYSES CONDUCTED
12	Jun 1981	Jason Cotrell & Assoc.	Residential wells	Acid, B/N, pesti- cides, PCB, metals, phenol, cyanide, chloride
7	Jul 1981	Chester Health Dept.	Residential wells	Metals
10	Jul 1981	Chester Estates	Residential wells	Conventional pollu- tants
17	Jul 1981	NJDEP	Residential wells	VOA
28	Jul 1981	Chester Health Dept.	Residential wells	Conventional pollu- tants
1	Aug 1981	Chester Health Dept.	Residential wells	Heptachlor, hepta- chlor epoxide
9	Aug 1981	Townly Research (for Chester Health Dept.)	Residential wells	VOA
25	Aug 1981	Borough of Madison	Surface waters	Tannins
11	Sep 1981	Chester Health Dept.	Residential wells	Selenium
24	Sep 1981	NJDEP	Residential wells	Lead

<sup>a</sup>Excluding sampling by Chester Hills Corp. and Combe Fill Corp., operators of site.

<sup>b</sup>Excluding sampling associated with Remedial Investigation (see Chapter 1 of main text for this information).

<sup>c</sup>Conventional pollutants may include BOD<sub>5</sub>, total suspended solids, COD, total organic carbon, etc.

dvoa = Volatile organics.

= Acid extractable organics. Acid

- = Acid extractable organics. = Base/neutral extractable organics. B/N
- Full PP = All priority pollutants.
- PCB = Polychlorinated biphenyls.

302551

#### APPENDIX BB (Page 4 of 4)

i

#### CHRONOLOGY OF ENVIRONMENTAL SAMPLING IN AND AROUND SITE

#### Combe Fill South Landfilla,b

DATE	SAMPLER	SAMPLED MEDIA	ANALYSES CONDUCTED
8 Jun 1982	NJDEP	Residential wells with water filters	Conventional pollu- tants, metals, phenol, cyanide
16 Mar 1983	Chester Health Dept.	Leachate	VOA, metals, con- ventional pollutants
3 Feb 1984	NJDEP	Surface waters, residential wells	Full PP
9 Feb 1984	NJDEP	Surface waters	Full PP
16 Mar 1984	Borough of Madison	Residential wells	VOA
13 Apr 1984	NJDEP	Residential wells	Full PP
17 Jul 1984	Borough of Madison	Residential wells	VOA
21 Mar 1985	NJDEP	Residential wells, surface waters	Full PP

<sup>a</sup>Excluding sampling by Chester Hills Corp. and Combe Fill Corp., operators of site.

<sup>b</sup>Excluding sampling associated with Remedial Investigation (see Chapter 1 of of main text for this information).

<sup>C</sup>Conventional pollutants may include BOD<sub>5</sub>, total suspended solids, COD, total organic carbon, etc.

dVOA = Volatile organics.

Acid = Acid extractable organics.

B/N = Base/neutral extractable organics.

Full PP = All priority pollutants.

PCB = Polychlorinated biphenyls.

APPENDIX CC CHEMICAL ANALYSES

1

**1** 

#### INTRODUCTION

Appendix CC contains all sample chemistry data analyzed as part of this RI/FS on the Combe Fill South Landfill and any such data obtained during previous investigations of the landfill. The data have been organized to correspond to their discussion in the text and the following Table of Contents for this Appendix lists these data tables.

#### SAMPLE ANALYSIS

11.

The samples collected as part of this RI/FS were analyzed for the full priority pollutant scan (full PP) of chemicals plus forty tentatively identified compounds (+40). The priority pollutant scan consists of 28 volatile compounds, 11 acid/phenolic extractable organics, 46 base/neutral extractable organics, 25 pesticides/PCBs, 13 metals, and total phenolics and cyanide for a total of 125 compounds. The chemical 2,3,7,8-tetrachloro-dibenzo-p-dioxin (Dioxin), which is a priority pollutant, was not analyzed because it was not suspected to be present. The priority pollutant organics are identified by comparison of the sample spectrum to that of the known compound. A match of the spectra identifies the compound. The concentration of the compound is determined by comparing its peak height to the peak height of its standard on the mass spectrophotometer. Total phenol and cyanide are determined by wet chemistry methods, and the metals concentrations are determined by atomic adsorption spectrophotometry.

The forty tentatively identified compounds, consisting of 15 volatiles, 10 acid/phenolic extractables, and 15 base/neutral extractables, are selected on the basis of their estimated quantities. The spectra of greatest approximate quantity are selected by the analytical computer for tentative identification. These compounds

CC-i

are identified by comparing the individual spectrum to those spectra in the mass spectral library of the analytical computer. The computer selects the three most likely matches; the analyst makes the final determination on the identification. Because not all chemical spectra are included in the analytical library, the spectral match is only a "best fit" and is therefore identified as tentative. If no likely match is found, the compound is identified as an unknown. The concentration of the compound is estimated by comparing its peak height to that of the known internal standard. The concentration is computed based on the relative size; hence, the reason why the method is referred to as semi-guantitative.

#### REMEDIAL INVESTIGATION (RI) DATA TABLE FORMAT

The individual compounds were identified under their respective groups, i.e., volatiles, acid/phenolics, base/neutrals, pesticides/ PCBs, metals. In reporting the data, only those compounds detected in at least one sample on the page are reported. Cyanide and phenols are listed under the group "Miscellaneous" and are listed whether or not they are detected. The values for compounds are reported in three ways: (1) a numerical value = concentration, (2) ND = not detected, or (3) BM = below method detection limit. If a compound is listed as BM it means that the compound is detected but at a unguantifiable level below the method detection level. The detection level is listed next to the BM; therefore, BM @ 10 means the compound is detected but at a level below 10 ppb. If no compound was detected within a particular group, an ND appears next to the group name. The column next to a particular group or compound is left blank when that analysis was not done.

The tentatively identified compounds are subdivided into the three appropriate groups - volatiles, acid/phenolics, and base/neutrals. If a particular compound is identified, it is listed along with its

302555

CC-ii

estimated concentration; conversely, if it is not identified, a (-) is used to indicate that it was not found. If no compounds are identified within a group, a notation of "NF," meaning none found, is used.

Conventional sanitary and radioactivity analyses are listed under separate headings. Since most of these analyses are wet chemistry methods, the results are reported as < a detection limit instead of as ND. Again, a blank means the analysis was not done.

The subcontractor laboratories used during this RI/FS, primarily Environmental Testing and Certification (ETC) and U.S. Testing (UST), analyzed for some compounds that are either no longer, or never were, on the priority pollutant list. These compounds are listed with the priority pollutant organics in the data tables with footnotes indicating that they are not priority pollutants. The non-priority metals are listed under a separate heading "non-priority metals."

For all water and soil samples, concentrations of organic compounds, cyanides, and phenols are reported in parts per billion (ppb); metals and radioactivity are reported in parts per million (ppm) and picocuries per liter (pCi/l), respectively. Conventional sanitary analyses are reported in ppm except where noted. All chemical concentrations in air are reported in  $\mu$ g/m<sup>3</sup>. The quality control data for the air quality samples are reported as  $\mu$ g/tube or  $\mu$ g/filter, depending on which analysis was performed.

#### PREVIOUS SAMPLING DATA

اريري

The data that have been collected by previous investigators have also been summarized. The sampling dates for these samples are listed in Appendix BB. The data are presented in a fashion similar

1111

CC-iii

## 302556

to that for the RI/FS data described above. The data are organized by chemical group and only those compounds that were detected are reported. A blank indicates that the compound or group was not analyzed. For each station the range, average, and number of analyses are presented for each compound. In computing the average a zero is used for ND and a value of 1/2 the detection limit is used for BM. Chemical concentrations are reported in the same units for the previously sampled data as for the RI data described above. Non-priority metals and organics that were quantified are listed as "Other Metals" and "Other Organics," respectively.

As stated previously, the data are presented in the order in which they are discussed in the text. Thus, the soil data are presented first (soil boring/rock coring data, hand augered soil samples, and test pit data), groundwater samples second (monitoring well and potable well), leachate and surface water samples third, air quality samples fourth, and finally quality assurance/quality control (QA/QC) data for the various sample matrices (aqueous, soil/sediment, air). For the leachate and surface water surveys, the data are presented in the following order: RI/FS aqueous data, RI/FS sediment data, previous aqueous data, and previous sediment data.

ſ

302557

CC-iv

## TABLE OF CONTENTS

## Appendix CC

ون ا

**7**. 2344

Table No.	Title
CC-1	Summary of Soil Boring/Rock Coring Samples
CC-2	Summary of Hand Augered Soil Samples
CC-3	Summary of Soil Data on Test Pits
CC-4	Summary of Monitoring Well Samples
CC-5	Summary of Previous Monitoring Well Samples
CC-6	Summary of Resident Samples - Area South of Tanners Brook
CC-7	Summary of Resident Samples - Area North of Tanners Brook and West of Trout Brook
CC-8	Summary of Resident Samples - Area Northwest of Schoolhouse Lane on Parker Road and Schoolhouse Lane
CC-9	Summary of Resident Samples - Area on Parker Road between Trout Brook and Schoolhouse Lane
CC-10	Summary of Previous Residential Samples - Area South of Tanners Brook on East Valley Brook Road
CC-11	Summary of Previous Residential Samples - Area North of Tanners Brook on East Valley Brook Road
CC-12	Summary of Previous Residential Samples - Area West of Trout Brook
CC-13	Summary of Previous Residential Samples - Area on Parker Road Northeast of Schoolhouse Lane and Schoolhouse Lane
CC-14	Summary of Previous Residential Samples - Area on Parker Road Between Trout Brook and Schoolhouse Lane

# TABLE OF CONTENTS (Continued)

1

## Appendix CC

Table No.	Title
CC-15	Summary of Previous Residential Samples - Area at East Gate Road
CC-16	Summary of Leachate Seep Samples
CC-17	Summary of Sediment Data for Leachate
CC-18	Summary of Previous Leachate Seep Samples
CC-19	Summary of Surface Water Samples
CC-20	Summary of Surface Water Sediment Samples
CC-21	Summary of Previous Surface Water Samples
CC-22	Summary of Previous Surface Water Sediment Samples
CC-23	Summary of Air Quality Data
CC-24	Summary of Quality Control Data for Aqueous Matrices
CC-25	Summary of Quality Control Data for Sediments/Soils
CC-26	Summary of Quality Control Data for Air Quality Samples

302559

.

Lawler, Matusky & Skelly Engineers

Т

#### TABLE CC-1 (Page 1 of 3)

#### SUMMARY OF SOIL BORING/ROCK CORING SAMPLES

#### Combe Fill South Landfill

Т

	PIEZOMETER SB-2 SAMPLE INTERVAL, FT		PIEZOMETER SB-3 SAMPLE INTERVAL, FT		PIEZOMETER SB-4	
PARAMETERS	36-38	42-48	12-14	28-30	14-16	TERVAL, FT 22-44
DATE SAMPLED	11/21/84	11/21/84	11/15/84	11/15/84	11/27/84	11/27/84
VOLATILES, ppb						
Carhon tetrachloride Chloroform Methylene chloride Tetrachloroethylene Toluene	ND 580 3360 ND 400	ND 680 3900 ND 500	ND ND 810 960	350 530 610 ND 470	ND 6000 ND 1400 3000	ND 5600 ND ND ND
ACID/PHENOLICS, ppb						
Pentachlorophenol Phenol	ND ND	BM @ 825 ND	BM @ 825 BM @ 825	BM @ 825 ND	BM @ 825 ND	ND ND
BASE/NEUTRALS, ppb						
Butyl benzylphthalate Diethylphthalate Di-n-butylphthalate Phenanthrene	350 BM @ 330 500 BM @ 330	ND ND 720 ND	ND ND 6000 ND	ND ND 450 ND	ND ND 560 ND	ND ND 570 ND
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND
METALS, ppm						
Arsenic Cadmium Chromium Copper Nickel Zinc	2.6 1.1 ND 3.9 ND 16.0	2.6 4.7 ND 120.0 5.0 61.0	2.9 3.7 ND 56.0 ND 91.0	2.4 2.4 5.9 31.0 ND ND	ND 1.1 ND 20.0 6.4 13.0	ND 3.4 ND 71.0 14.0 38.0
MISCELLANEOUS, ppb						
Cyanides Phenols	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

ND = Not detected. BM = Below method detection limit.

ŝ

#### TABLE CC-1 (Page 2 of 3)

#### SUMMARY OF SOIL BORING/ROCK CORING SAMPLES

Combe Fill South Landfill

1

η.

	PIEZOMETER SB-2 SAMPLE INTERVAL, FT		PIEZOMETER SB-3 SAMPLE INTERVAL, FT		PIEZOMETER SB-4	
PARAMETERS	SAMPLE INT 36-38	42-48	12-14	28-30	SAMPLE IN 14-16	ITERVAL, FT 22-44
DATE SAMPLED	11/21/84	11/21/84	11/15/84	11/15/84	11/27/84	11/27/84
TENTATIVELY IDENTIFIED VOLATILES, ppb						
Unknown(s)	-	-	2500, 2100	-	-	-
1,1,2-Trichloro-1,2,2-tri- fluoroethane (Freon TF)	2550	2700	16000	12000	50000	68000
Arsenous acid, tris (trimethylsilyl) ester	1700	3300	-	-	-	-
<pre>1-(3.Beta.)-cholest-5-en-3yl)~ 2-pyrrolidinone</pre>	-	-	2200	-	-	-
3-Fluoro-2-propymenitrile	-	-	2600	-	-	-
Isocyanatomethane	-	-	18000	-	5500	39000
1-3-Dichlorocyclobutane	-	-	5100	-	_	
Tetrahydre-2-(iodomethyl)-6- methoxy-2H-pyran-4-0l	-	-	8400	-	-	-
1,4-Phenylenebis [trimethy] sila	ne –	-	34000	-	-	-
1,1 <sup>1</sup> -(1,2-Ethanediyl) bis-naphthalene	-	-	4600	-	-	-
3,4-Dihydro-3,4-dihydroxy-2- methyl-2H-naphtho [2,3,3] furo S-iodione	- n-	-	4100	-	-	-
5-Ethoxy-1~(phenylmethyl) 1-H-benzenedazol-4-ol	-	-	4900	-	-	-
1,2,3,4-Tetramethyl-trans cyclobutene	-	-	4600	-	-	-
1-Fluoro-4-methoxy-benzene	-	-	3000	-	-	-
TENTATIVELY IDENTIFIED ACIDS/BASE/ NEUTRALS, ppb						
Unknown(s)	-	540, 360, 120	33000, 170000, 5300	580, 340	-	380
<pre>1-(1,1-Dimethylethyl)-2-methyl- 1,3-propane-2-methyl-propanoic acid</pre>	930		-	-	1000	1200
4,5,6,7-Tetrahydro-2,2-methyl- 1H-1,3-diazepine	24000	-	-	-	-	-
Dioctylester hexanedioic acid	-	860	6700	810	1400	-

a de la companya de la

. .

- = Not found.

. .

ŝ

302561

\_

#### TABLE CC-1 (Page 3 of 3)

#### SUMMARY OF SOIL BORING/ROCK CORING SAMPLES

## Combe Fill South Landfill

	PIEZOMET SAMPLE INT	ERVAL, FT	SAMPLE IN	TER SB-3 TERVAL, FT		TER SB-4 ITERVAL, FT
PARAMETERS	36-38	42-48	12-14	28-30	14-16	22-44
DATE SAMPLED	11/21/84	11/21/84	11/15/84	11/15/84	11/27/84	11/27/84
TENTATIVELY IDENTIFIED ACIDS/BASE/ NEUTRALS, ppb (Continued)						
Bis (2-Methylpropyl) ester 2-butenedioic acid(e)	-	160	-	-	-	-
4-Methylphenol	-	-	8300	-	-	-
2,6-Bis (1-dimethylethyl)- 4-methylphenol	-	-	17000	-	-	-
Tricarbonyl [N-(phenyl-2- pyridinylmethylene) benza- mine, N, N <sup>1</sup> ] iron	-	-	6200	-	-	-
Trans-decahydro-10A-methyl- benzocyclo octenone	-	-	38000	680	-	-
Heneicosane	-	-	8100	-	-	-
2,5-Dimethyl phenanthrene	-	-	5900	-	-	-
2,3-Dimethyl phenanthrene	-	-	4400	-	-	-
Doscosane	-	-	8900	-	-	-
2,6,10,15-Tetramethyl heptadecane	÷ -	-	9600	-	-	-
1-Dotriacontanol	-	-	18000	-	-	-
2,3-Dihydro-2-methyl-5-phenyl- benzofuran	-	-	21000	-	-	-
4-Methyl-2-hexanol	-	-	-	340	-	-
Dicyclohexyl ester hexamedioic acid	-	-	-	-	-	610
Silver (1+) salt benzene- propanoic acid	-	-	-	-	-	360
6-Deoxy-3-O-methyl 1-glucose	-	-	-	-	-	360

- = Not found.

#### TABLE CC-2 (Page 1 of 3)

(

. <u>1</u> 1 1 1 . . . **1** (

#### SUMMARY OF SOIL DATA ON HAND AUGERED SOIL SAMPLES

Combe Fill South Landfill

PARAMETER	FIELD A 4 WHITE	FIELD A A HORIZON COMPOSITE	FIELD A B HORIZON COMPOSITE	FIELD A (LOC 5) B HORIZON	FIELD B (LOC 5) B_HORIZON	FIELD B (LOC 6) A HORIZON	FIELD B (LOC 3) A HORIZON	FIELD B A HORIZON COMPOSITE	FIELD B B HORIZON COMPOSITE	FIELD C A HORIZON COMPOSITE	FIELD C B HORIZON COMPOSITE	FIELD A (LOC 6) A HORIZON
DATE SAMPLED	8/21/85	8/22/85	8/22/85	8/21/85	8/22/85	8/22/85	8/22/85	8/22/85	8/22/85	8/23/85	8/23/85	8/21/85
VOLATILES, ppb												
Acetone <sup>a</sup> Carbon disulfide <sup>a</sup> Methylene chloride Tetrachloroethylene	50000 ND 580 <sup>b</sup> ND	ND ND 3 <sup>b</sup> ,c ND	120 ND 3 <sup>b</sup> ,c ND	110 ND 4 <sup>b</sup> ,c ND	ND ND 4b,c 4 <sup>c</sup>	210 ND 5 <sup>b</sup> 3 <sup>b</sup> ,c	190 ND 6 <sup>b</sup> 6 <sup>b</sup>	61 ND 6 <sup>b</sup> 3 <sup>b</sup> ,c	180 ND 6 <sup>b</sup> 3 <sup>b</sup> ,c	ND 3c 8b 6b	160 16 11 <sup>b</sup> 5 <sup>b</sup>	170 6 8 <sup>b</sup> 5 <sup>b</sup> ,c
ACID/PHENOLICS, ppb												
Pentachlorophenol	ND	150 <sup>c</sup>	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
BASE/NEUTRALS, ppb												
Benzo (A) pyrene Bis (2-ethylhexyl) phthalate	310 <sup>c</sup> 1200	ND 2200	ND 150 <sup>C</sup>	ND 960	ND 110 <sup>C</sup>	ND 110 <sup>C</sup>	ND 150 <sup>C</sup>	ND 110 <sup>C</sup>	ND 150 <sup>c</sup>	ND 330 <sup>c</sup>	ND 240 <sup>c</sup>	ND 770
Di-n-butyl phthalate Di-n-octyl phthalate	160 <sup>b</sup> , <sup>c</sup> ND	ND 150 <sup>C</sup>	ND ND	ND ND	ND ND	ND ND	ND ND	110d ND	ND ND	ND ND	ND ND	ND ND
PESTICIDES/PCBs, ppb												
4,4'-DDE 4,4'-DDT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	11 17
METALS, ppm												
Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Silver Thallium Zinc	12 ND 4.7 33 37 ND 15 ND ND 48c	18 3.0 3.9 57 27 ND 17 ND 3.6 67	26 1.6 1.9 50 35 14 ND 14 ND 5.1 52	29 3.3 3.1 46 74 17 ND 21 ND 4.5 60	26 1.1 2.0 22 40 14 ND 10 41 ND 8310	18 1.4 4.0 22 25 0.1 13 ND ND 62	18 1.2 2.4 21 26 0.1 9.0 ND ND 60	21 1.5 2.8 21 24 29 0.1 14 ND ND 62	23 1.0 3.2 27 22 11 0.1 12 ND ND 44	12 1.0 2.0 12 15 16 0.2 ND ND ND 46	9.7 1.0 2.1 9.1 7.0 9.7 0.1 ND ND ND ND 33	20 1.7 2.7 25 20 2 0.1 13 ND ND 54

<sup>a</sup>Non-priority organic quantified. <sup>b</sup>Found in method blank.

<sup>C</sup>Estimated value. Value is below method detection limit.

.

ND = Not detected.

#### TABLE CC-2 (Page 2 of 3)

#### SUMMARY OF SOIL DATA ON HAND AUGERED SOIL SAMPLES

Combe Fill South Landfill

PARAMETER	FIELD A (LOC 4) WHITE	FIELD A A HORIZON COMPOSITE	FIELD A B HORIZON COMPOSITE	FIELD A (LOC 5) B HORIZON	FIELD B (LOC 5) B HORIZON	FIELD B (LOC 6) A HORIZON	FIELD B (LOC 3) A HORIZON	FIELD B A HORIZON COMPOSITE	FIELD B B HORIZON COMPOSITE	FIELD C A HORIZON COMPOSITE	FIELD C B HORIZON COMPOSITE	FIELD (LOC 6 A HORIZ
DATE SAMPLED	8/21/85	8/22/85	8/22/85	8/21/85	8/22/85	8/22/85	8/22/85	8/22/85	8/22/85	8/23/85	8/23/85	8/21/8
MISCELLANEOUS, ppb												
Cyanides Phenols	ND ND	ND ND	ND ND	ND ND	ND ND	ND 1000	ND ND	ND ND	ND 1200	ND ND	ND ND	ND ND
TENTATIVELY IDENTIFIE VOLATILES, ppb	D				NF							
Unknown(s)	-	8,25	6,24	6,25		7,13,6	15,15,6	5	19,25	8	12	8
2-propanol Trimethylsilanol	625 -	- 8	- 9	2		-	-	-	17	-	22	15
TENTATIVELY IDENTIFIE ACIDS/BASE/ NEUTRALS, ppb	D											
,	3900,2860, 11440,1560, 22880,624, 2246,1248, 2445,590, 2424,1040, 520,780,936, 1716,12986	1340,600, 540	1440,1060, 990,5550, 11600,760, 1370,3040, 3950,4640, 4710,4180, 2890,2050, 1220		540,1030	20300, 4980,940 1480,810	1060, 13700, 1110,850, 300	820,5760, 700	5830, 910	740,5640, 1020	680, 6120	5040,6
3-Hexen-2-one	-	-	-	-	-	4190	-	5590	-	7120	6410	4480
5- (2-Propenyl)-1,3 benzodioxole		-	-	-	-	4190	-	-	-	-	-	-
5-Methyl-3-hexen-2-		690	-	-	-	-	-	-	-	-	-	-
2 (2-Hydroxypropoxy propanol	/)-1 1820	-	-	-	-	-	-	-	-	-	•	-
4-Methyl-3-penten-2		3180	5780	8070	10300	5380	-	-	-	-	~	-
4-Hydroxy-4-methyl- pentanone	-2	2830	-	-	5650	-	1900	-	1010	-	-	-
4-Methyl octane	-	550	-	1290	-	-	-		_	-	-	-
	-	1570	3570	3510	4230	2290	3700	3210	4150	3150	3210	2480
3-Methyl octane 1-Methylethyl benze	one -	690	420	17800	16400	11880	16100	12810	15300	14000	14700	12100

→ = Not found.
 ND = Not detected.
 NF = None found.

•

#### TABLE CC-2 (Page 3 of 3)

: ] : | : | (

#### SUMMARY OF SOIL DATA ON HAND AUGERED SOIL SAMPLES

Combe Fill South Landfill

	FIELD A	FIELD A	FIELD A	FIELD A	FIELD B	FIELD B	FIELD B	FIELD B	FIELD B	FIELD C	FIELD C	FIELD A
PARAMETER	(LOC 4) WHITE	A HORIZON COMPOSITE	B HORIZON COMPOSITE	(LOC 5) B HORIZON	(LOC 5) B HORIZON	(LOC 6) A HORIZON	(LOC 3) A HORIZON	A HORIZON COMPOSITE	B HORIZON COMPOSITE	A HORIZON COMPOSITE	B HORIZON COMPOSITE	(LOC 6) A HORIZON
DATE SAMPLED	8/21/85	8/22/85	8/22/85	8/21/85	8/22/85	8/22/85	8/22/85	8/22/85	8/22/85	8/23/85	8/23/85	8/21/85
NON-PRIORITY METALS,	ppm											
Aluminum	23800	49100	30800	43600	37000	28300	27200	27800	29900	20600	19400	24400
Barium	77	450	81	77	138	139	124	135	90	63	56	94
Calcium	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cobalt	5.2	22	20	29	18	12	11	11	13	5.2	4.2	12
Iron	24000	46100	36600	59800	36300	30200	24300	27000	36100	18100	20000	27400
Magnesium	72200	6640	3720	3860	3620	2420	2260	2300	2950	1630	1560	2520
Manganese	351ª	442	280	514	501	852	672	813	361	142	105	883
Potassium	10000	4300	2090	2040	1590	952	857	926	1020	731	612	798
Sodium	1880 <sup>a</sup>	358	287	199	451	166	127	124	150	122	116	177
Tin	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	48ª	85	46	108	66	48	45	47	60	19	16	44
CONVENTIONALS												
pH (units)	8.18		6.70	6.05	6.30	5.47	5.70	5.80	6.12	5.88	6.35	6.00
Solids (%)	36	87	84	87	90	90	89	8 <b>9</b>	88	93	93	82

 $^{a}$ Value is estimated because of interferences. ND = Not detected.

## TABLE CC-3 (Page 1 of 2)

## SUMMARY OF SOIL DATA ON TEST PITS

Combe Fill South Landfill

	TP-1 COMPOSITE	TP-1 DISCRETE	TP-2 COMPOSITE	TP-3 COMPOSITE
PARAMETER	0-9 FT	9-11 FT	0-12 FT	0-12 FT
DATE SAMPLED	8/27/85	8/27/85	8/27/85	8/27/85
VOLATILES, ppb				
Acetone <sup>a</sup> 2-Butanone <sup>a</sup> Methylene chloride 4-Methyl-2-pentanone <sup>a</sup> Tetrachloroethylene	ND ND 375 ND 55	90b 270 100b 28 6b	52 <sup>b</sup> ND 20 <sup>b</sup> ND 6 <sup>b</sup>	120 <sup>b</sup> ND 23 <sup>b</sup> ND 5 <sup>b</sup>
ACIDS/PHENOLICS, ppb	ND	ND	ND	ND
BASE/NEUTRALS, ppb				
Bis (2-ethylhexyl) phthalate	120 <sup>c</sup>	370c	1300	ND
PESTICIDES/PCBs, ppb				
Aldrin Dieldrin	ND ND	ND ND	132 76	ND ND
METALS, ppm				
Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Zinc	71 1.5 2.9 22 34 ND 7.7 47 <sup>d</sup>	52 1.5 ND 19 26 ND 7.2 38 <sup>d</sup>	42 1.5 13 24 37 30 12 148 <sup>d</sup>	38 1.0 1.3 16 20 10 7.5 50 <sup>d</sup>
MISCELLANEOUS, ppb				
Cyanides Phenols	ND ND	ND ND	ND ND	ND ND

<sup>a</sup>Non-priority organic quantified. <sup>b</sup>Found in method blank. <sup>c</sup>Estimated value. Value is below method detection limit. <sup>d</sup>Value is estimated because of interferences.

ND = Not detected.

أتسن

.

---<u>,</u>

## TABLE CC-3 (Page 2 of 2)

## SUMMARY OF SOIL DATA ON TEST PITS

Combe Fill South Landfill

······································	TP-1	TP-1	TP-2	TP-3
	COMPOSITE	DISCRETE	COMPOSITE	COMPOSITE
PARAMETER	0-9 FT	9-11 FT	0-12 FT	0-12 FT
DATA SAMPLED	8/27/85	8/27/85	8/27/85	8/27/85
TENTATIVELY IDENTIFIED VO	LATILES, ppb			
Unknown(s)	11	9	11	27,12
Ethoxy benzene	-	-	-	30
Trimethyl silanol	13	-	16	28
Hexane 3-Methyl-2-butanone	6	12 6	-	-
3-Methy 1-2-but anone	_	0	_	-
TENTATIVELY IDENTIFIED AC	IDS/BASE/NEUT	RALS, ppb		
Unknown(s)	434,6080, 428,260	360,6500	5460,2040, 3100,3100, 3400,3120, 5300,2680, 2370,940, 560,1120,940 1730,2400	1580,1750, 14900
4-Methyl-3-penten-2-one	2389	-	1290	-
3-Methyl octane	706	970	830	-
1-Methylethyl benzene	8360	9350	7100	5300
3-Hexane-2-one	-	3700	-	-
4-Hydroxy-4-methyl- 2-pentanone	-	-	-	4900
Sulfur	-	640	_	_
		0.0		
NON-PRIORITY METALS, ppm				
Aluminum	53600	39900	29400	20400
Barium	123	170	104	64
Calcium	ND	ND	ND	ND
Cobalt Iron	16 47600	30 37900	21 40400	12 29800
Magnesium	2100 <sup>a</sup>	1360 <sup>a</sup>	2710a	2300 a
Manganese	298 a	 939a	380a	293a
Potassium	2090	1740	1960	1410
Sodium	197	108	219	186
Tin	ND	ND	ND	ND
Vanadium	69	52	64	43
CONVENTIONALS				
pH (Units)	4.85	5.20	6.36	7.05
Solids (%)	85	83	82	86

 $a_{Value}$  is estimated because of interferences. - = Not found.

ı.

#### TABLE CC-4 (Page 1 of 10)

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

PARAMETER	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	D-9
DATE SAMPLED	8/28/85	8/28/85	9/4/85	8/28/85	8/28/85	8/29/85	9/4/85	9/4/85	9/4/85
VOLATILES, ppb									
Benzene Chlorobenzene Chloroethane Chloroform Dichlorodifluoromethane <sup>a</sup> 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethylene 1,2-Dichloropropane Ethylbenzene Methylene chloride Tetrachloroethylene Toluene Trans-1,2-dichloroethylene Trichloroethylene Trichlorofluoromethane <sup>a</sup> Vinyl chloride	ND ND ND ND ND ND ND ND S.92 ND ND ND ND ND ND ND ND ND	ND ND 209 23.7 6.41 7.98 6.41 ND ND 183 14.3 ND 8.34 BM @ 10 ND	ND ND ND ND ND ND ND ND ND ND ND ND ND N	ND ND 82.6 ND ND ND ND ND ND ND ND ND ND ND ND ND	16.9 ND ND 14.0 10.6 40.5 ND ND 16.7 6.89 ND 25.8 2.72 ND	39.1 BM @ 6 ND 13.8 BM @ 4.7 37.2 ND ND ND 10.4 BM @ 4.1 ND 47.5 26.0 ND BM @ 10	66.4 9.88 22.5 ND ND ND ND 34.2 23.8 ND 1140 ND ND ND	31.5 10.8 74.3 ND 13.5 14.8 11.2 ND BM @ 6 11.7 22.6 ND ND ND ND	18.6 ND BM @ 10 ND 84.8 30.2 4.54 ND ND 16.4 ND ND ND ND ND ND
ACID/PHENOLICS, ppb		110	115		HD			ND.	110
2,4-Dimethylphenol 2-Nitrophenol Phenol	ND ND ND	ND ND 2.35	ND ND ND	ND ND ND	ND ND 2.75	ND ND ND	ND ND ND	3.12 BM @ 3.7 ND	ND ND ND
BASE/NEUTRALS, ppb									
Bis (2-chloroethyl) ether Bis (2-ethylhexyl) phthalate 1,2-Dichlorobenzene 1,4-Dichlorobenzene Di-ethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Isophorone Naphthalene N-nitrosodiphenylamine	ND BM @ 11 ND ND BM @ 11 BM @ 11 ND ND ND	ND ND ND BM @ 4.6 ND ND 21.9 ND ND	ND ND ND ND ND ND ND ND	ND BM @ 10 ND ND BM @ 10 ND ND ND	ND ND BM @ 4.5 BM @ 10 BM @ 10 ND ND ND	ND BM @ 11 ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND	BM @ 5.9 BM @ 10 5.58 14.2 BM @ 10 BM @ 10 ND ND 3.24 BM @ 2	ND BM @ 10 1.92 ND BM @ 10 ND ND ND

<sup>a</sup>Non-priority organic quantified.

ND = Not detected.

BM = Below method detection limit.

.

ی د م د م

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

PARAMETER	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	D-9
DATE SAMPLED	8/28/85	8/28/85	9/4/85	8/28/85	8/28/85	8/29/85	9/4/85	<b>9/</b> 4/85	<b>9/4</b> /85
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND	ND	ND	ND
METALS, ppm									
Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	ND ND ND 0.04 0.009 BM @ 0.0002 ND ND ND ND ND ND O.02	ND ND ND 0.007 BM @ 0.005 0.0002 ND BM @ 0.005 ND ND 0.03	0.01 B	ND ND ND ND	BM @ 0.01 ND ND BM @ 0.006 0.008 BM @ 0.0002 ND ND ND ND ND O.09	ND BM @ 0.002 ND BM @ 0.006 0.008 BM @ 0.0002 ND ND ND ND 0.02		ND ND ND BM @ 0.009 BM @ 0.005 ND ND BM @ 0.01 ND BM @ 0.04	ND ND ND BM @ 0.01 BM @ 0.009 0.014 ND ND ND ND ND ND ND
MISCELLANEOUS, ppb	0.02	0.05	DH 6 0.04	no.	0.05	0.02	0.50	54 6 0.04	0.07
Cyanides Phenols	ND ND	29.5 ND	ND ND	ND ND	ND ND	ND ND	ND 428	ND ND	ND ND
TENTATIVELY IDENTIFIED VOLATILES, ppb	NF	NF	NF	NF					
Unknown(s) Dichlorofluoromethane Methoxy ethane Carbon disulfide 1,1'-Oxybis ethane 2,4-Dimethyl-2-pentanol Trimethyl-silanol 2,2'-oxybis-propane 1,3-Dichlorobenzene Dichlorobenzene 2-Butanol 2-Hexanone 1,4-Dioxane 2-Propanone Tetrahydrofuran 2-Butanone 4-Methyl-2-pentanone 1,3-Trimethyl-2-oxabicyclo					174	33.6 11.8 38.8 65.5 - - - - - - - - - - - - - - - - - -	32.4, 25 	34.6 	46.8

- = Not found.

NF = None found. ND = Not detected.

BM = Below method detection limit.

•

**,** .

. .

## TABLE CC-4 (Page 3 of 10)

SUMMARY OF MONITORING WELL SAMPLES

PARAMETER     D-       DATE SAMPLED     8/28       TENTATIVELY IDENTIFIED     ACIDS, ppb       Unknown(s)     5.3       Alcohol     6.1       2,4,6-(1H,3H,5H)-pyrimi-     -       dinetrione, 5-ethyl-5-phenyl     -       3-Methoxy-1,1'-biphenyl     -       2-Methyl-benzenesulfonamide     -	/85	D-2 8/28/85	D-3 9/4/85	D-4	D-5	D-6	D-7		
TENTATIVELY IDENTIFIED ACIDS, ppb Unknown(s) 5.3 Alcohol 6.1 2,4,6-(1H,3H,5H)-pyrimi- dinetrione, 5-ethyl-5-phenyl 3-Methoxy-1,1'-biphenyl -		8/28/85	9/4/85	0 (00 (05				<u>D-8</u>	D-9
ACIDS, ppb Unknown(s) 5.3 Alcohol 6.1 2,4,6-(1H,3H,5H)-pyrimi dinetrione, 5-ethyl-5-phenyl 3-Methoxy-1,1'-biphenyl -				8/28/85	8/28/85	8/29/85	9/4/85	9/4/85	9/4/85
Alcohol 6.1 2,4,6-(1H,3H,5H)-pyrimi dinetrione, 5-ethyl-5-phenyl 3-Methoxy-1,1'-biphenyl -									
2,4,6-(1H,3H,5H)-pyrimi- dinetrione, 5-ethyl-5-phenyl 3-Methoxy-1,1'-biphenyl -		4.8, 7.4	4.6	4.7, 4.5	4.6, 15.9, 7.8, 7.0, 5.7		13.11, 26.95, 8.74, 8.56, 48.81	60, 41, 245, 42	168, 49, 231
2,4,6-(1H,3H,5H)-pyrimi- dinetrione, 5-ethyl-5-phenyl 3-Methoxy-1,1'-biphenyl -		6.6	-	6.0	-	-	-	-	-
3-Methoxy-1,1'-biphenyl -		17.8	-	-	-	18.3	-	-	-
		-	-	-	-	45.4	-	-	-
		-	-	-	-	4.47	-	-	-
Di-methylpropanoic acid -		-	-	-	-	-	-	35	-
1,1-Dimethyl ethyl benzoic acid -		-	-	-	-	-	-	33	74
1,1-Dioxide-1,2-benziso thrazol-one		-	-	-	-	-	-	108	-
Propanoic acid -		-	-	-	-	-	-	-	23
Methylpropylester propanoic - acid		-	-	-	-	-	-	-	64
Trichloromethane (chloroform) -		-	-	-	-	-	-	-	-
Benzene -		-	-	-	-	-	7.87	-	-
Cis-2-bromocyclohexanol -		-	-	-	-	-	-	-	-
Fluorobiphenyl -		-	-	-	-	-	-	-	-
2-Methylhexanoic acid -		-	-	-	-	-	-	-	-
Benzenepropanoic acid -		-	-	-	-	-	~	-	-
Dimethylethylmethyl-benzenamide -		-	-	-	-	-	-	-	-
Ethylmethyl benzene-sulfonamide -		-	-	-	-	-	-	-	-
Tetrahydromethoxy-pyridorndol one		-	-	-	-	-	-	-	-
Trihydroxyxanthenone -		-	-	-	-	-	-	-	-
Methyl cyclohexane -		-	-	-	-	-	-	-	-
2,3-Dimethyl naphthalene -		-	-	-	-	-	-	-	-
Acetic acid -		-	-	-	-	-	8.66	-	-
Methylbenzene (toluene) -		-	-	-	-	-	6.59	-	-
Methyl carboxylic acid - Unknown carboxylic acid -			-				10.89		

- = Not found.

(

.

 ,

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

PARAMETER	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	D-9
DATE SAMPLED	8/28/85	8/28/85	9/4/85	8/28/85	8/28/85	8/29/85	9/4/85	9/4/85	9/4/85
TENTATIVELY IDENTIFIED BASE/NEUTRALS, ppb						NF			
Unknown(s)	7, 5, 6, 4, 54	-	8	7.93	5.35		30.55, 15.62, 33.85, 19.35, 20.14, 19.68, 574.31	10,11 6, 8, 25, 26, 19, 29, 7, 13, 12	34.5, 4 8, 23, 16, 8, 74
Methylbenzene (toluene)	64	57.2	-	58 <b>.9</b> 7	57.24		-	-	
Tetrachloroethene (tetrachloro- ethylene)	-	5.7	-	-	2.50		-	-	-
3,3,5-Trimethyl cyclohexanone	-	12.5	-	-	-		-	-	
Dichloromethane (methylene chloride)	-	-	75	-	-		-	_	-
Dioctylesterhexanidioic acid	-	-	-	24.33	38.70		-	_	
Dodecanoic acid	-	-	-	-	2.14		-	_	-
Tetraethylesterdiphosphoric acid	- t	-	-	-	-		-	14	-
4-Ethoxybenzenamine	-	-	-	_	-		-	25	-
4-Chloro-2-methyl-benzenamine	-	-	-	-	-		-	25 9	-
N-(1,1-dimethylethyl)-3- methyl benzamide	-	-	-	-	-		-	21	29
Chlorobenzene	-	-	-	-	-		_		
Dimethybenzene (xylene)	-	-	-	-	-		_	-	-
Trimethylester phosphoric acid	-	-	-	-	-		_	-	-
Trimethylbicycloheptanone	-	-	-	-	_			-	-
2.4.6-Cyclohepta-trien-1-one	-	-	-	-	-		-	-	-
2-Hexen-1-ol	-	_	_	_	-		63.21	-	-
2-Heptanone	_	_	_	_			16.50	-	-
1,3,3-Trimethyl bicyclo-	_	_	_	_	_		19.54	-	-
[2.2.1] heptan-2-one					-		19.04	-	-
1,7,7-Trimethyl bicyclo- [2.2.1] heptan-2-one	-	-	-	-	-		93.46	-	-
5-Methyl-2-(1-methylethyl) -, (1.alpha., 2.beta.,	-	-	-	-	-		19.34	-	-
<pre>5.alpha.)-cyclohexanol) 4-Methyl-1-(methylethyl)- 3-cyclohexen-1-ol</pre>	-	-	-	-	-		18.61	-	-
Hexahydro-2H- azepin-2-one	-	-	-	-	-		14.33	-	-
1-[2-(1-Methoxy-1-methylethoxy) -1-methylethyl]-2-propanol	-	-	-	-	-		19.95	-	-

NF = None found. - = Not found.

**-** - - - -

.

#### TABLE CC-4 (Page 5 of 10)

(

SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

PARAMETER	D-1	D-2	D-3	D-4	D-5	D-6	D-7	D-8	D-9
DATE SAMPLED	8/28/85	8/28/85	9/4/85	8/28/85	8/28/85	8/29/85	9/4/85	9/4/85	9/4/85
CONVENTIONALS, ppm									
pH (units) Temperature (°C) Specific conductance (µmhos/cm) - field Nitrate as N	7.1 14.1 95	6.0 14.1 270 <0.1	6.6 16.7 125 <0.1	6.8 14.4 100	6.7 15.0 380	6.2 25 650 <0.1	6.6 20.4 3850 <0.1	6.7 19.9 2020 <0.1	6.6 19.2 1600 <0.1
TOC Specific conductance ("mhos/cm) - lab		3.2, 3.0 300, 320	1.7, 1.5 147, 142			5.5, 5.3 497, 490	440, 440 4000, 4000	41, 40 2033, 2033	24, 24 1688, 1688
BOD COD TSS TDS Hardness Alkalinity Ammonia as N TKN Total coliform (C/100 ml) Fecal coliform (C/100 ml)		<2 15 8 210 120 120 <0.05 1.6 4 0	2 7 31 110 62 54 <0.05 0.86 27 0			6 14 22 470 200 88 <0.05 1.1 CFG 0	510 1500 130 3900 2100 980 0.29 6.1 34 0	28 120 79 1530 680 540 0.29 4.6 IND 0	18 72 23 1400 790 360 <0.05 2.2 10 0
RADIOACTIVITY, pCi/l									
Gross a Gross B		<0.8 2.5 ± 1.6	2.3 ± 1.4 2.6 ± 1.6			0.9 ± 1.8 3.5 ± 1.8			

Blank = Not run.

CFG = Confluent growth. IND = Confluent growth without total coliforms.

•

#### TABLE CC-4 (Page 6 of 10)

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill (Page 6 of 10)

PARAMETER	S-1	S-2	S-3	S-4	S-5	S-6	DW-2	DW-4
DATE SAMPLED	9/4/85	9/5/85	8/29/85	9/4/85	8/28/85	8/28/85	9/5/85	9/5/85
VOLATILES, ppb								
Benzene	64.7	BM @ 4.4	80.2	BM @ 4.4	ND	BM @ 4.4	ND	252
Chlorobenzene	ND	30.3	21.1	18.2	ND	ND	ND	BM @ 6
Chloroethane	ND	ND	BM @ 10	62.0	ND	ND	ND	ND
Chloroform	ND	ND	ND	ND	57.5	ND	ND	155
Dichlorodifluoromethane <sup>a</sup>	BM @ 100	ND	89.7	ND	25.8	ND	ND	BM @ 10
1,1-Dichloroethane	65.2	ND	51.4	BM @ 4.7	ND	ND	ND	ND
1,2-Dichloroethane	ND	ND	ND	6.10	ND	ND	ND	14.2
1,1-Dichloroethylene	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	ND	ND	BM @ 6	ND	ND	ND	ND	ND
Ethylbenzene	ND	ND	BM @ 7.2	ND	ND	ND	ND	ND
Methylene chloride	59.8	5.84	29.8	12.0	11.6	11.6	10.7	22.0
Tetrachloroethylene	ND	ND	BM @ 4.1	ND	ND	ND	ND	5.58
Toluene	1370	ND ND	68.2	ND	ND	ND	ND	ND
Trans-1,2-dichloroethylene	ND	ND	8.02 4.04	ND ND	ND ND	ND	ND	17.5
Trichloroethylene	ND ND	ND	4.04 ND	ND	BM @ 10	ND ND	ND	56.8
Trichlorofluoromethane <sup>a</sup>	ND	ND	BM @ 10	ND	ND ND	ND	ND	BM @ 10
Vinyl chloride	NU	NU	BM @ 10	NU	ND	NU	ND	BM @ 10
ACID/PHENOLICS, ppb								
2,4-Dimethylphenol	ND	ND	ND	ND	ND	ND	ND	ND
2-Nitrophenol	ND	ND	ND	ND	ND	ND	ND	ND
Phenol	ND	ND	ND	BM @ 1.5	ND	ND	ND	ND
BASE/NEUTRALS, ppb								
Bis (2-chloroethyl) ether	ND	ND	ND	BM @ 5.8	ND	ND	ND	ND
Bis (2-ethylhexyl) phthalate	ND	BM @ 11	ND	ND	BM @ 10	ND	ND	ND
1.2-Dichlorobenzene	ND	9.77	ND	7.25	ND	ND	ND	ND
1,4-Dichlorobenzene	ND	39.4	ND	10.1	ND	ND	ND	ND
Di-ethyl phthalate	ND	ND	10.2	ND	ND	ND	ND	ND
Di-n-butyl phthalate	ND	BM @ 11	ND	BM @ 10	ND	ND	ND	BM @ 10
Di-n-octyl phthalate	ND	ND	ND	ND	ND	ND	ND	ND
Isophorone	ND	ND	ND	ND	ND	ND	ND	ND
Naphthalene	ND	ND	3.16	ND	ND	ND	ND	ND
N-nitrosodiphenyl amine	ND	ND	ND	ND	ND	ND	ND	ND

1. (

. .

•

<sup>a</sup>Non-priority organic quantified. ND = Not detected. BM = Below method detection limit.

.

\_

#### TABLE CC-4 (Page 7 of 10)

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

<u>S-1</u>	<u>S-2</u>	<u> </u>	S-4	5-5	<u>S-6</u>	DW-2	DW-4
9/4/85	9/5/85	8/29/85	9/4/85	8/28/85	8/28/85	<b>9/</b> 5/85	9/5/85
ND	ND	ND	ND	ND	ND	ND	ND
ND ND 0.01 BM @ 0.01 ND ND BM @ 0.01 BM @ 0.005 0.05	0.01 0.014 ND	0.03 0.022 BM @ 0.0002	ND BM @ 0.003 0.02 0.009 ND 0.03 ND BM @ 0.01 ND 0.04	ND ND BM @ 0.02 0.01 0.028 BM @ 0.0002 ND BM @ 0.005 ND ND ND	ND ND 0.04 0.017 BM @ 0.0002 BM @ 0.009 ND ND ND ND 0.04	ND ND BM @ 0.009 0.011 ND ND ND BM @ 0.005 ND	ND ND BM @ 0.009 ND ND ND ND BM @ 0.005 BM @ 0.04
ND 270	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
				NF		NF	NF
1270	- - - - 108 - - - - - - -	128 20.1 138 - - - - - - - - - - - - - - - - - - -	617 29.7 32.6 - - 29.8		21.2		
	9/4/85 ND ND ND ND 0.01 BM @ 0.01 BM @ 0.01 BM @ 0.005 0.05 ND 270 254 - - - - - - - - - - - - - - - - - - -	9/4/85 9/5/85 ND ND ND ND ND BM @ 0.01 0.01 0.01 BM @ 0.01 0.014 ND BM @ 0.01 ND BM @ 0.01 ND BM @ 0.01 ND ND BM @ 0.005 ND 0.05 0.10 ND ND 270 ND 254 - - - - - - - - - - - - - -	9/4/85         9/5/85         8/29/85           ND         ND         ND         ND           ND         ND         ND         ND           ND         BM @ 0.01         0.02         0.01           ND         BM @ 0.01         0.02         0.03           BM @ 0.01         0.014         0.022         ND           ND         BM @ 0.01         0.02         ND           ND         BM @ 0.01         0.02         ND           ND         BM @ 0.01         0.02         ND           ND         BM @ 0.001         0.02         ND           BM @ 0.01         ND         BM @ 0.009         BM @ 0.009           BM @ 0.005         ND         BM @ 0.005         0.24           ND         ND         ND         ND           270         ND         ND         ND           254         -         69.3, 105, 11.           -         -         138           -         -         -           -         -         -           -         -         -           -         -         -           -         -         -	9/4/85         9/5/85         8/29/85         9/4/85           ND         ND         ND         ND         ND           ND         BM @ 0.01         0.02         0.03           0.01         0.01         0.02         0.03           D         ND         BM @ 0.001         0.02         0.009           ND         ND         BM @ 0.002         ND         ND           ND         ND         ND         BM @ 0.002         ND           ND         ND         ND         ND         ND           ND         ND         ND         ND         ND           BM @ 0.005         ND         BM @ 0.005         ND         ND           0.05         0.10         0.24         0.04	9/4/85         9/5/85         8/29/85         9/4/85         8/28/85           ND         ND         ND         ND         ND         ND         ND           ND         BM @ 0.01         0.02         0.03         0.02         0.01           BM @ 0.01         0.02         0.03         ND         BM @ 0.002         ND         BM @ 0.002           ND         ND         ND         BM @ 0.002         ND         BM @ 0.002         ND         BM @ 0.002           ND         ND         ND         ND         ND         BM @ 0.001         ND           ND         ND         ND         ND         ND         ND         ND           ND         ND         ND         ND         ND         ND         ND           270         ND         ND         ND         ND         ND           270         <	9/4/85         9/5/85         8/29/85         9/4/85         8/28/85         8/28/85         8/28/85           ND         ND         ND         ND         ND         ND         ND         ND           ND         ND         ND         ND         ND         ND         ND         ND           ND         ND         ND         ND         ND         ND         ND         ND           ND         BM @ 0.01         0.02         0.03         BM @ 0.02         ND         ND           D         0.01         0.02         0.02         0.01         0.04         0.02         0.017           ND         ND         BM @ 0.002         ND         BM @ 0.002         BM @ 0.002         BM @ 0.0002           ND         ND         ND         ND         ND         BM @ 0.002         ND         BM @ 0.002           ND         ND         ND         ND         ND         ND         ND         ND           BM @ 0.005         ND         ND         ND         ND         ND         ND         ND           Color         0.05         0.10         0.24         0.04         ND         ND         ND	9/4/85         9/5/85         8/29/85         9/4/85         8/28/85         8/28/85         9/5/85           ND         ND

NF = None found.

- = Not found.

ND = Not detected.

BM = Below method detection limit.

. . . . .

#### SUMMARY OF MONITORING WELL SAMPLES

#### Combe Fill South Landfill

PARAMETER	S-1	<u>S-2</u>	<u>S-3</u>	S-4	<u>S-5</u>	<u>S-6</u>	DW-2	DW-4
DATE SAMPLED	9/4/85	<b>9</b> /5/85	8/29/85	<b>9/4</b> /85	8/28/85	8/28/85	9/5/85	<b>9/</b> 5/85
TENTATIVELY IDENTIFIED ACIDS, ppb								
Unknown(s)	188, 245, 351	37.56, 19.13, 215.9, 9.99, 280.3, 12.95	283.7, 90.95, 65.56, 67.81, 183.95, 497.48, 534.76	173, 73, 36, 140	8.36, 39	4.64, 36.5	9, 21	12.2, 1
Alcohol	-	-	-	-	-	-	-	-
2,4,6-(1H,3H,5H)-primi- dinetrione,5-ethyl-5-phenyl	-	-	-	-	-	-	-	-
3-Methoxy-1,1'-biphenyl	-	-	-	-	-	4.59	-	-
2-Methyl-benzenesulfonamide	-	-	-	-	-	-	-	-
Di-methylpropanoic acid	-	-	-	-	-	-		-
1,1-Dimethylethylbenzoic acid	-	-	-	-	-	-	-	-
1,1-dioxide-1,2-benziso- thralzol-one	-	-	-	128	-	-		
Propanoic acid	95	-	-	-	-	-	-	-
Methylpropylester propanoic acid	-	-	-	-	-	-	-	-
Trichloromethane (chloroform)	-	22.1	-	-	-	-	-	
Benzene	-	184.4	183.75	-	-	•	_	-
Cis-2-bromocyclohexanol	-	8.94	-	-	-	-	-	-
Fluorobiphenyl	-	14.03	-	-	-	-	-	_
2-Methylhexanoic acid	-	-	280.85	-	-	-	-	-
Benzenepropanoic acid	732	-	156.84	-	-	•	-	-
Dimethylethylmethyl-benzenamide	- 9	-	-	59	-	-	-	-
Ethylmethyl benzene-sulfonamide	; -	-	-	<b>~</b> 225	-	-	-	-
Tetrahydromethoxy-pyridoindol- one	-	-	-	40	-	-	-	-
Trihydroxyxauthenone	-	-	-	87	-	-	-	-
Methyl cyclohexane	-	-	-	-	-	-	10	7.4
2,3-Dimethyl naphthalene	-	-	-	-	-	-	-	4.7
Methyl hexanoic acid	427	-	-	-	-	-	-	-
4-Methyl phenol	116	-	-	-	-	-	~	-
Hexanoic acid	150	-	-	-	-	-	-	-
Benzoic acid	319	-	-	· <u>-</u>	-	-	-	-

. . .

1 (

- ⇒ Not found.

• •

\_

#### TABLE CC-4 (Page 9 of 10)

1 (

#### SUMMARY OF MONITORING WELL SAMPLES

Combe Fill South Landfill

PARAMETER	S-1	S-2	<u>S-3</u>	S-4	S-5	<u>S-6</u>	0W-2	DW-4
DATE SAMPLED	9/4/85	<b>9/</b> 5/85	8/29/85	9/4/85	8/28/85	8/28/85	9/5/85	9/5/85
ENTATIVELY IDENTIFIED BASE/NEUTRALS, ppb					NF	N;		
Unknown(s)	21.13, 20.45 15.86	5, 8, 14, 21	20.4, 8.97, 6.99, 9.7, 12.8, 16, 15.4, 8.03, 18.3, 28.9, 10.7	7, 16, 6,,5.5 6, 7, 5, 8, 12, 13			4.3, 8	5.96
Methylbenzene (toluene)	-	-	-	-			-	-
Tetrachloroethene (tetrachlor- ethylene)	-	-	-	-			-	-
3.3.5-Trimethyl cyclohexane	-	-	-	-			-	-
Dichloromethane (methylene chloride)	-	89	-	653			-	-
Dioctylesterhexanidioic acid	-	-	-	-			-	-
Dodecanoic acid	-	-	-	-			-	-
Tetraethylesterdiphosphoric acid	d -	-	-	17			-	-
4-Ethoxybenzenamine	-	-	-	-			-	_
4-Chloro-2-methyl-benzenamine	-	-	-	-			-	_
N-(1,1-dimethylethyl)-3- methyl benzamide	-	-	-	20			-	-
Chlorobenzene	_	6	10.9	5			_	_
Dimethybenzene (xylene)	-	-	7.9	-			_	-
Trimethylester phosphoric acid	-	-	15.5	_			_	-
Trimethylbicycloheptanone	-	-	12.9	_			-	-
2,4,6-cycloheptatrien-1-one	_	_	-	6			-	•
2-Hexanone	36.43	_	_	-			-	-
1,2-Dimethyl benzene	19.98	_	_				-	-
Cyclohexanol	182.55	_	_	_			-	-
Cyc Tohex anone	38.71	-		-			-	-
3,3,5-Cyc lohex anone	13.52	-	_	_			-	-
1,3,3-Trimethyl bicyclo	14.5	-	_	-			-	-
[2.2.1] heptan-2-one	14.5	-	-	-			-	-
Alpha., alpha., 4-trimethyl-	118.57		_					
cyclohexane methanol	110.57	-	-	•			-	-
5-methyl-2-(1-methylethyl)-	21.62							
(1.alpha.,2.beta.,5.alpha.) cyclohexanol	21.02	-	-	-			-	-
Hydrocarbon	15.63	-	-	-			-	-
1.1'-oxybis (2-methoxy) ethane	14.92	-	-	-			-	-
Hexahydro-2H-azepin-2-one	13.81	-	-	-			-	-
1-[2-(2-Methoxy-1-methylethoxy)	16.23	-	-	-			_	-
-1-methylethoxyl]-2-propanol)	10.20						-	-

NF = None found. - = Not found.

.

#### TABLE CC-4 (Page 10 of 10)

#### SUMMARY OF MONITORING WELL SAMPLES

#### Combe Fill South Landfill

PARAMETER	S-1	S-2	S-3	S-4	<u>S-5</u>	S-6	DW-2	DW-4
DATE SAMPLED	9/4/85	9/5/85	8/29/85	9/4/85	8/28/85	8/28/85	9/5/85	9/5/85
CONVENTIONALS, ppm								
pH (units) Temperature (°C) Specific conductance (µmhos/cm) - field Nitrate as N TOC Specific conductance (µmhos/cm) - lab BOD COD TSS TDS Hardness Alkalinity Ammonia as N TKN Total coliform (C/100 ml) Fecal coliform (C/100 ml)	7.5 20.2 2520	7.6 19.2 550	6.3 19.7 1950 <0.1 190, 200 1892, 1895 320 480 630 2200 1030 510 <0.05 3.7 TNTC 0	7.6 21 2000 < 0.1 31, 32 1992, 1972 20 110 62 1580 730 360 < 0.05 3.2 4 0	6.6 14.8 55	6.7 14.0 45	6.0 13.2 71	6.8 14.8 140
RADIOACTIVITY, pCi/l								
Gross a Gross B			13 ± 12 <5.1	13 ± 7.8 4.8 ± 7.7				

Blank = Not run.

TNTC = Too numerous to count.

. ....

.

- (

.

#### TABLE CC-5 (Page 1 of 4)

#### SUMMARY OF PREVIOUS MONITORING WELL SAMPLES

Combe Fill South Landfill

.

	•		
		•	
•			

1

							MONITOR	RING WELL	NUMBER						
	L/	DW-1 ANDFILL GA		T0	DW-2 P OF DRIV		FILIB	DW-3 ERTO SENI			DW-4 R POWERLI RTH BOUND	ARY		DW-5 R POWERLIN UTH BOUNDA	RY
COMPOUND OR GRO	UP RANGE	AVERAGE	NO. OF ANALYSE	5 RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	NO. OF ANALYSES	RANGE		NO. OF ANALYSES
VOLATILES, ppb															
Carbon tetrac 1,2-Dichloroe Tetrachloroet Trichloroethy	thane hylene									338 12 100 46	338 12 100 46	1 1 1 1	1 35 ND ND ND	135 ND ND ND	1 1 1 1
METALS, ppm															
Arsenic Cadmium Chromium	ND-0.003 ND-0.13	0.0006 0.031	5 8	ND-0.004 ND	0.0008 ND	5 6	ND ND-0.22	ND 0.03	4 8	0.005 ND	0.0001 ND	5 7	ND-0.013 ND-0.004		5 7
Copper Lead Mercury Selenium	ND-0.2 ND-0.12 ND-0.002 ND	0.05 0.055 0.00067 ND	3	ND ND-0.02 ND ND	ND 0.004 ND ND	3 7 3 3	ND-1.4 ND-0.06 ND ND	0.395 0.024 ND ND	4 7 2 3	ND-0.014 ND-0.11 ND-0.002 ND	0.022 0.001 ND	4 7 3 3	ND-0.02 ND-0.05 ND-0.006 ND	0.0095 0.012 0.0023 ND	8 8 4 3
Silver Zinc	ND 0.07-3.2	ND 0.764	3 5	ND ND-1.4	ND 0.35	3 4	ND 0.02-4.0	ND 0 1.11	3 5	ND ND-1.0	ND 0.248	3 5	ND 0.03-1.5	ND 0.627	3 5
MISCELLANEOUS,	ррр														
Cyanides Phenols	ND-110 ND-100	37.5 9.3	6 14	ND-120 ND-60	37.6 5.0	5 12	ND-40 ND-60	13.4 4.3	5 14	ND-30 ND-20	10.0 1.67	5 12	ND-20 ND-10	4 2.1	5 11
CONVENTIONALS,	ppm														
pH (Units) DO BOD COD TDS Hardness Nitrate as N	6.5-7.3 5.9-9.8 0-13 0-32 72.5-380 56-236 0.22-0.8	7.0 8.6 4.0 65.0 215.8 101.1 0.305	3 7 14 14 14 14 14 6	7.0-7.3 8.0-9.7 0-42 0-290 43-439 12-132 0.15-0.30	7.15 8.66 10.1 73.5 107.7 39.4 0.27	2 5 12 12 12 12 12 5	6.4-7.4 3.8-9.4 0-17 0-260 63-167 17-200 0.04-0.5	97.5 69.2	3 7 14 14 14 14 14 6	7.8 3.3-6.7 0-29 0-200 31-230 20-152 0.5-1.0	7.8 5.1 6.6 35.8 71.0 47.4 0.36	1 6 13 13 12 13 5	7.5 5.7-8.9 0-14 0-760 100-470 32-175 0.1-1.0	7.5 7.2 5.2 84.4 208.7 208.7 0.55	1 6 12 12 11 11 11 4

Blank = Not run.

30257

ND = Not detected.

BM = Below method detection limit.

Note: In computing averages the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

) ) ( **E** 

#### TABLE CC-5 (Page 2 of 4)

#### SUMMARY OF PREVIOUS MONITORING WELL SAMPLES

Combe Fill South Landfill

			. <u> </u>				MONITOR	ING WELL	NUMBER				·····		
	LA	DW-1 NDFILL GA	RAGE	тор	DW-2 OF DRIV		FILIBE	DW-3 RTO SENIO			DW-4 R POWERLI RTH BOUND	ARY		DW-5 POWERLI JTH BOUND	NE ON IARY
COMPOUND OR GROUP	RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	No. OF ANALYSES	RANGE	AVERAGE	No. OF ANALYSE:
CONVENTIONALS, pp	m														
Turbidity (NTU)	0.3-7.6	2.7	3	0.4-2.4	1.15	3	0,26-0.34	0.3	3	2.4-45	16.6	3	0.38-260	88.1	3
Phosphates	0-0.06	0.025	4	0-0.07	0.043	2	0-0.04	0.018	3 4	0-0.12	0.08	3	0-0.13	3 0,08	3
Total coliform	0	0	9	0	0	7	0	0	9	0-3	0.378	8	0-12	2.1	7
(c/100 ml)			•	0	0	7	0	0	•	0	•	<u>^</u>	•		_
Fecal coliform (c/100 ml)	0	0	9	0	0	/	0	0	9	0	0	8	0	0	7
Fecal streptoco (c/100 ml)	ccus 0-4	0.44	9	0	0	7	0-32	3.6	9	0	0	8	0-30	4.6	7
Chloride	32-162	72.7	14	3.7-160	30.2	12	3-88	15.2	14	2-82	14.0	13	5.9-108	52.5	12
Fluoride	0-0.47	0.16	3	0-0.05	0.028	3	0-0.03	0.018	3 3	0.02-0.1	0.053	3	0-0.01		
Sulfate	0-10	5	5	1-4.3	2.6	4	3-15	7.3	5	0-5.6	1.65	ă	0-19	6.25	, J
Ammonia N	0-0.3	0.1	3	0	0	3	0	0	3	0	0	3	0	0	2
Suspended solid			-					-		13	13	ĩ	304	304	1
OTHER METALS, ppm															
Chromium+6	ND-0.04	0.012	5	0-0.05	0.02	4	0-0.05	0.012	2 5	0-0.0	2 0.0058	6	0-0.09	93 0.033	5
Barium	ND-0.28	0.17	3	0-0.20	0.13	3	0-0.62	0.347	3	0-0.2		3	0-0.26		-
Iron	ND-11.5	1.40	14	0-8.5	0.85	12	0-0.94	0.232	14		15 2.43	13	0-58	7.28	12
Manganese	ND-0.1	0.042		0-0.05	0.013	4	0-0.2	0.068		0-0.0		۵.	0-0.12		
Sodium	8-16	10.9	3	4.5-6	5.1	3	6.5-95	7.67	3	2.5-5.0	3.8	3	5-16	9.8	3
Aluminum	0 10		-			-			-	0.274	0.274	ĭ	18.29	18.29	1
OTHER ORGANICS, p	pb														
Ether soluble	ND-400	230	3	ND-500	330	3	0-500	300	3	0-250	150	3	0-150	83	3

(

ND = Not detected.

Blank = Not run.

30**2579** 

ź.

Note: In computing averages the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

. . **.** . .

an an an an an an an an an an an an Array a 🕹 👘

#### SUMMARY OF PREVIOUS MONITORING WELL SAMPLES

Combe Fill South Landfill

			MONITORING	WELL NU	MBER			
		SW-4		SW-2				
COMPOUND OR GROUP	RANGE	AVERAGE	No. OF ANALYSES	RANGE	AVERAGE	No. OF ANALYSES		
VOLATILES, ppb								
Chlorobenzene	ND	ND	1	BM	1	1		
1.1-Dichloroethane	11	11	1	8	8	1		
1.2-Dichloroethane	22	22	ī	14	14	ī		
Ethylbenzene	ND	ND	1	10	10	ī		
Tetrachloroethylene	6	6	1	ND	ND	ī		
Toluene	4	4	ī	13	13	ī		
Trans-1,2-dichloro- ethylene	ND	ND	ī	35	35	ī		
ACID/PHENOLICS, ppb	ND	ND	1	ND	ND	1		
BASE/NEUTRALS, ppb	ND	ND	1	ND	ND	1		
PESTICIDES/PCBs, ppb	ND	ND	1	ND	ND	1		
METALS, ppm								
Arsenic	ND	ND	1	0.02	0.02	1		
Cadmium	ND	ND	1	0.01	0.01	1		
Chromium	ND	ND	ī	0.02	0.02	i		
Lead	0.02	0.02	î	ND	ND	ĩ		
Mercury	ND	ND	ī	ND	ND	ĩ		
MISCELLANEOUS, ppb								
Cyanides	ND	ND	1	ND	ND	1		
Phenols	ND	ND	1	160	160	1		

ND = Not detected.

BM = Below method detection limit.

Note: In computing averages the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

## SUMMARY OF PREVIOUS MONITORING WELL SAMPLES

Combe Fill South Landfill

			MONITORING	WELL NU	MBER	
		SW-4			SW-2	
COMPOUND OR GROUP	RANGE	AVERAGE	NO. OF ANALYSES	RANGE	AVERAGE	NO. OF ANALYSES
CONVENTIONALS, ppm						
BOD	0	0	1	5.7	5.7	1
COD	55	55	1	65	65	1
TDS	96	96	1	472	472	1
Hardness	28	28	1	279	279	1
Total coliform (c/100 ml)	22	22	1	0	0	1
Fecal coliform (c/100 ml)	60	60	1	0	0	1
Fecal streptococcus (c/100 ml)	0	0	1	0	0	1
Chloride	8.7	8.7	1	99	99	1
TKN	0	0	1	1.4	1.4	1
Nitrate	0.77	0.77	1	0	0	1
Nitrite	0	0	1	0.015	0.015	1
OTHER METAL, ppm						
Manganese	0.02	0.02	1	9.4	9.4	1

Note: In computing averages the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

-

۳

.

# EPA REGION II SCANNING TRACKING SHEET

DOC ID # <u>39887</u>

# DOC TITLE/SUBJECT: PRELIMINARY REMEDIAL INVESTIGATION / FEASIBILITY STUDY (RI/FS) - VOLUME II -APPENDICES (CONFIDENTIAL) Pages 302582-302607

THIS PORTION OF THE DOCUMENT CONTAINS CONFIDENTIAL INFORMATION AND CAN BE LOCATED IN THE

# SUPERFUND RECORDS CENTER

290 BROADWAY, 18<sup>TH</sup> FLOOR NEW YORK, NY 10007

# TABLE CC-16 (Page 1 of 5)

## SUMMARY OF LEACHATE SEEP SAMPLES

Combe Fill South Landfill

PARAMETER	L-1	L-2	L-3	L-3	L-6	L-7	L-7	L-8	L-8
DATE SAMPLED	8/13/85	10/17/85	8/13/85	10/17/85	10/17/85	8/13/85	10/17/85	8/13/85	10/17/85
FLOW, L/min.		0.2		0.07	0.03		0.1		0.2
VOLATILES, ppb									
Acrolein Benzene Chlorobenzene Chloroethane 1,2-Dichloroethane Ethylbenzene Methylene chloride Toluene 1,1,1-Trichloroethane Trichlorofluoromethane <sup>a</sup> Vinyl chloride	ND 14.7 36.4 ND 11.9 2.8 BM @ 6.0 BM @ 3.8 ND ND	ND ND ND BM @ 2.8 ND 14.2 BM @ 6.0 ND ND ND	ND 36.2 25.3 12.0 ND 42.7 ND ND ND ND ND	BM @ 100 28.1 30.1 15.3 ND 56.0 12.8 15.1 ND BM @ 10 BM @ 10	ND 10.1 29.4 ND 60.8 BM @ 2.8 BM @ 6 ND ND ND ND	ND 48.8 ND ND 75.3 136 1510 ND ND ND	BM @ 100 34.2 6.56 ND ND 53.9 12.6 245 ND ND ND	ND 77.3 7.09 ND 49.6 ND 8.41 ND ND ND	ND 60.7 8.11 ND ND 46.0 13.2 8.10 ND 10.7 ND
ACID/PHENOLICS, ppb									
2,4-Dichlorophenol 2,4-Dimethylphenol Phenol	ND ND 2.92	BM @ 2.7 ND ND		ND ND ND	ND 7.09 ND		ND ND ND		ND ND ND
BASE/NEUTRALS, ppb									
Acenaphthene Bis (2-ethylhexyl)	BM @ 2 ND	ND 8M @ 10		ND 12.5	ND BM @ 11		ND ND		ND BM @ 11
phthalate Butyl Benzylphthalate 1,4-Dichlorobenzene Diethyl phthalate Di-n-butyl phthalate Naphthalene	ND ND BM @ 11 ND 17.7	46 ND 8M @ 10 ND ND		BM @ 10 19.1 BM @ 10 BM @ 10 11.2	29.4 11.7 ND ND 8.86		ND BM @ 4.6 ND ND ND		60.0 6.73 ND ND 21.1
↔ PESTICIDES/PCBs, ppb	ND	ND		ND	ND		ND		ND
D METALS, ppm									
Arsenic Cadmium Chromium Copper	ND ND ND BM @ 0.01	ND ND ND ND		ND ND BM @ 0.01 BM @ 0.01	ND ND BM @ 0.01 0.01		ND 0.02 0.03 0.04		BM @ 0.01 ND BM @ 0.01 BM @ 0.01

<sup>a</sup>Non-priority organic quantified. Blank = Not run.

> ND = Not detected.

= Below method detection limit. BM

É

#### TABLE CC-16 (Page 2 of 5)

## SUMMARY OF LEACHATE SEEP SAMPLES

Combe Fill South Landfill

PARAMETER	L-1	L-2	L-3	L-3	L-6	L <b>-7</b>	L-7	L-8	L-8
DATE SAMPLED	8/13/85	10/17/85	8/13/85	10/17/85	10/17/85	8/13/85	10/17/85	8/13/85	10/17/85
<pre>&gt;METALS, ppm (Continued)</pre>									
Lead Mercury Nickel Selenium Zinc	0.009 ND ND ND 0.050	ND ND BM @ 0.05 BM @ 0.09		BM @ 0.05 ND 0.03 ND BM @ 0.09	ND ND 0.04 ND 0.1		0.3 0.0004 0.19 ND 2.6		BM @ 0.05 0.0004 0.04 ND 0.6
MISCELLANEOUS, ppb									
Cyanides Phenols	ND 100	47.2 ND		31.1 257	38.3 247		28.1 418		ND 254
TENTATIVELY IDENTIFIED VOLATILES, ppb		NF							
Unknown(s)	23.6, 38 48.6	47,	-	69,30	25.4, 11.8, 23.3, 57.6, 15.6, 110	9839.0, 32 53.3	2.0, 43	52.3	49, 49
1,2-Dimethylbenzene (0-Xylene)	251		309	-	246	-	111	66.5	-
1,3-Dimethylbenzene (M-Xylene)	71.7		112	178	364	-	-	-	-
Carbon dioxide	-		887 <b>4</b>	-	-	-	-	3803.8	-
Tetrahydrofurane	-		115	-	-	-	-	51.8	-
1,1'-Oxybisethane	-		46.1	-	-	-	-	165	-
1,3,3-Trimethyl-bicyclo [2.2.1] heptan-2-one	-		86.4	-	-	-	-	-	
1,3,3-Trimethyl-2- oxabicyclo [2.2.2] octane	-		-	-	-	-	-	35.4	-
Dimethylbenzene (Xylene	) -		-	-	-	-	-	-	245
3-Methoxy-l-propene	-		-	-	20.1	-	-	-	-
Trimethyl-hydrazine	-		-	-	13.1	-	39	-	-
(1S,3S,6R)-(-)-4-Carene	-		-	-	-	-	120	-	-
TENTATIVELY IDENTIFIED AC	IDS, ppb								
Unknown(s)	5,33,8,20 4,7,4,32, 41	9, 26,9,20		79.54, 131.4, 33.91, 29.85, 56.84, 49.33, 30.44, 25.27, 904.17, 84.51, 64.51, 25.56	76, 62, 75, 286, 164, 85, 87, 71, 45, 71, 58, 47	30 35 68	9, 49, 55, 19, 9, 35, 49, 31,		155, 298, 61.4 32.1, 95.8, 42.0 25.9, 26.2, 53.2 25.1, 248

í

Blank = Not run.

- = Not found.

NF = None found.

BM = Below method detection limit.

—

# TABLE CC-16 (Page 3 of 5)

ا د.

# SUMMARY OF LEACHATE SEEP SAMPLES

Combe Fill South Landfill

PARAMETER	L-1	L-2	L-3	L-3	L-6	L-7	L-7	L-8	L-8
DATE SAMPLED	8/13/85	10/17/85	8/13/85	10/17/85	10/17/85	8/13/85	10/17/85	8/13/85	10/17/85
TENTATIVELY IDENTIFIED AC	IDS, ppb (co	ontinued)							
Dimethyl benzoic acid	33	-		-	-		-		-
1,4-Dimethyl- naphthalene	24	-		-	-		-		-
Decahydro-2,3-dimethyl- naphthalene	-	-		23.59	-		-		-
2-(2-Butoxy-ethoxyl)- ethanol	-	-		41.55	-		-		-
1,5-Dibromopentane	-	-		-	-		-		49.7
Diethylester phosphoric acid	-	-		52.86	-		-		30.8
Cyclohexane	-	-		-	-		-		47.4
N-(1,1-dimethy1- ethy1) benzamide	-	-		•	-		-		56.9
1,3,3-Trimethyl bicyclo [2,2,1]-heptan-2-one	-	-		-	56		-		-
Alkane(s)	-	-		-	63, 38	]	.3, 12, 15, 22		-
2,2-Dimethylbenzene methanol	-	-		•	-		42		-
<pre>1 -[2(2-Methoxy-1-meth- oxy)-1-methylethoxy 2-propano!</pre>	-	-		-	-		30		-
1-Chloro-2-nitrobenzene	-	17		-	-		-		-
4-Hydrophenyl esterthio cyanic acid	-	19		-	-		-		-
Alkene	-	12		-	-		-		-
TENTATIVELY IDENTIFIED BASE/NEUTRALS, ppb									
Unknown(s)	14,22,15	12, 62, 9, 20, 16		39, 460, 94, 41, 40, 100, 68, 180, 45, 2000	38.6, 203, 188, 75.8, 59.7, 69.5, 38.2, 89.5, 33.7, 32.		54, 120, 55, 82 57, 51, 94, 78, 67, 512		100, 220, 25 45, 23, 22 250, 14
2,2,4-Trimethyl-1,3- dioxolane	19	-		-	-		-		-
Methylbenzene (Toluene) 3-Methylene-2-penta- none	22 90	-		-	-		-		-
Tetrachloroethene (Tetrachloroethylene)	91	-		-	-		-		-
1,3-Dimethylbenzene (M-Xylene)	53	-		-	33.6		-		-

Blank = Not run. - = Not found.

•

.

Æ

# TABLE CC-16 (Page 4 of 5)

# SUMMARY OF LEACHATE SEEP SAMPLES

Combe Fill South Landfill

PARAMETER	L-1	L-2	L-3	L-3	L-6	L-7	L-7	L-8	L-8
DATE SAMPLED	8/13/85	10/17/85	8/13/85	10/17/85	10/17/85	8/13/85	10/17/85	8/13/85	10/17/85
TENTATIVELY IDENTIFIED BASE/NEUTRALS, ppb (continued)									
1,2,4-Trimethyl-benzen	e 19	-		_	-		-		
1,3,3-Trimethylbicyclo	- 18	-		140	54.1		-		-
[2.2.1] heptane-2-one	<u>;</u>								•
1,7,7-Trimethylbicyclo	- 70	-		-	-		-		-
[2.2.1] heptane-2-on	2 500								
2-(2-Butoxyethoxy) ethanol	538	-		-	-		-		-
1-Methylnaphthalene	35	-		-	-		-		_
2-Methylnaphthalene	29	-		-	-		-		_
1,7-Dimethylnaphthalen		-		-	-		-		-
1,2,3-Trimethylbenzene		-		84	-		-		27
Tetramethylester	-	-		-	-		-		14
disphosphoric acid									
1-[2-(2-Methoxy-	-	-		-	-		-		21
ethoxy)-1-methyl-									
ethoxyl-2-propanol									
N-(1,1-dimethylethyl)-	-	-		-	-		-		36
3-methyl-benzamide									• .
Phlhalazin-l-one	-	-		140	- 88.2		-		14
2(3H)-benzothiazolone	-	13		140	71.2		-		35 _
2,2,4-Trimethyl-1,3- pentanediol	-	-		-	/1.2		72		-
2,3-Dihydro-6-methyl-		_		_	40.1				
4H-1-benzopyron-4-on	-	-			40.1		-		-
Cyclohexene	-	-		62	-		-		
1,4-Dioxane	-	-		54	-		-		-
1-Methyl-3-(1-methyl-	-	-		-	-		61		-
ethyl) benzene									
Tetraethylester di-	-	-		-	-		110		-
phosphoric acid									
X,X,4-Trimethyl cyclo-	-	•		-	-		553		-
hexene methonol	_								
1-[2-(2-Methoxy-1-meth	y1	-		-	-		63		-
ethoxy-1-methylethyo	<b>∀</b> }-								
2 propanol 2-(2-methoxypropoxy)-1									
- T- (F-weenex)hi ohov) - t.		-		-	-		141		-
propanol 2,6-Bis(1,1-dimethylet	byl) -	9		_	_				
-4-methylphenol	iyi) -	7		-	-		-		-

and a second 
1 (

Blank = Not run.

و ا میں انہوں انہوں

\_

- \_= Not found.

# TABLE CC-16 (Page 5 of 5)

e **j** 

SUMMARY OF LEACHATE SEEP SAMPLES

Combe Fill South Landfill

1

PARAMETER	L-1	L-2	L-3	L-3	L-6	L-7	L-7	L-8	L-8
DATE SAMPLED	8/13/85	10/17/85	8/13/85	10/17/85	10/17/85	8/13/85	10/17/85	8/13/85	10/17/85
CONVENTIONALS, ppm									
pH (Units) Temp. (°C) Spec. Cond. (⊭mhos/cm)- field	6.3 19.4 2700	6.6 20.0 800		7.0 18.0 4420	7.1 17.0 4800		7.1 17.0 9000		6.95 19.0 4900
Salinity (ppt) TOC Spec. cond (#mhos/cm) lab	1.5	0.2 90, 87 780, 780	3 565	3.0 10, 280 6, 5787	3.1		6.1 1600, 1600 11000, 11000		3.1 470,460 5500,5700
Alkalinity Hardness BOD COD Nitrate as N Ammonia as N TKN TDS		300 180 9 48 1.3 25 25 498 14		2400 800 70 530 <0.1 240 300 2990 140			4700 1020 360 2300 <0.1 670 880 7640 1700		2800 900 76 630 <0.1 260 270 3520
TSS Total Coliform (C/100 ml Fecal Coliform (C/100 ml	)	3500 0		900 0			14000 0		450 10000 0
RADIOACTIVITY, pCi/l									
Gross <i>a</i> Gross <i>B</i>		<1.0 21 <u>+</u> 2.7		30 ± 17 243 ± 24					

Blank = Not run.

**.** .

ũ (

# TABLE CC-17 (Page 1 of 3)

SUMMARY OF SEDIMENT DATA FOR LEACHATE

Combe Fill South Landfill

1

00

.

					TION			
PARAMETERS	LS-1	LS-2	LS-3	LS-4	L\$-5	LS-6	LS-7	LS-8
DATE SAMPLED	8/13/85	8/13/83	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
VOLATILES, ppb								
Acetone <sup>a</sup> Ethylbenzene Methylene chloride Tetrachloroethylene Toluene Total xylenes <sup>a</sup>	64 ND 45,C ND ND ND	ND 75,c ND ND ND	63 ND 55,c ND ND ND	34 ND 55,c ND ND ND	25 ND 4 <sup>b</sup> ,c ND ND ND	55 ND 5 <sup>b</sup> ,c ND ND ND	ND ND ND ND ND ND	43 9 3b,c 5c 9 24
ACID/PHENOLICS, ppb	ND	ND	ND	ND	ND	ND	ND	ND
BASE/NEUTRALS, ppb								
Bis (2-ethylhexyl) phthalate	220¢	330c	1000	170	250	480	1900	6600
Butylbenzene phthalate	ND	ND	ND	ND	ND	ND	68000	ND
Di-n-butyl phthalate Di-n-octyl phthalate Fluoranthene 2-Methylnaphthalene <sup>a</sup> Naphthalene Phenanthrene Pyrene	44° ND ND 180° 44° 44° ND	81 <sup>C</sup> ND 81 <sup>C</sup> ND ND ND ND	83 210 41 41 41 83 41	ND ND ND 84 ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	ND ND ND ND ND ND	ND ND ND ND ND ND
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND	ND	ND
METALS, ppm								
Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Zinc	25 1.3 2.8 21 15 6.3 7.4 45d	21 1.8 8.8 15 21 25 ND 213d	27 1.6 3.1 12 17 5.7 ND 51d	42 2.0 5.8 22 35 3.5 9.5 202 <sup>d</sup>	48 1.6 4.0 33 14 3.8 6.5 154d	41 1.7 13 15 15 6.1 3.6 58d	39 1.6 7.0 46 22 7.6 22 105 <sup>d</sup>	35 1.3 5.9 24 29 69 9.4 366 <sup>d</sup>

<sup>a</sup>Non-priority organic quantified.

bFound in method blank. CEstimated value. Value is below method detection limit.

dyalue is estimated because of interferences.

ND = Not detected.

## TABLE CC-17 (Page 2 of 3)

# SUMMARY OF SEDIMENT DATA FOR LEACHATE

#### Combe Fill South Landfill

					TION			
PARAMETERS	LS-1	LS-2	LS-3	LS-4	LS-5	LS-6	LS-7	LS-8
DATE SAMPLED	8/13/85	8/13/83	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
MISCELLANEOUS, ppb								
Cyanides Phenols	ND ND	ND ND	ND ND	ND ND	NÐ ND	ND ND	ND ND	ND ND
TENTATIVELY IDENTIFIED VOLATILES, ppb		NF		NF	NF		NF	
Unknown(s) Trimethyl silanol Tetrahydrofuran	10		380 25 17			- 9 -		270,10 - -
TENTATIVELY IDENTIFIED ACIDS/BASE/NEUTRALS, ppb								
Unknown(s)	5816, 459,311,326, 456,640,480, 1440,1600, 1173	6145, 1122, 17206, 1745, 720, 4022	305, 458, 5498, 7102, 535,11607, 382,806, 2843,1034	8330, 730, 3870, 660	1765, 7294, 18118, 710,387, 645,310, 609	518, 8593, 6108, 2899, 15944, 311,414, 828	3178, 1222, 15278, 856, 5749,1291, 939,939, 3385,17600, 16070,12626, 2678,6431, 5754,4591	3864, 1600, 10400, 12712, 3032, 13389
4-Hydroxy-4- methyl-2-pentanone	7270	10837	4123	7670	9294	-	11367	13200
2-Fluorophenol 1-Methylethenyl- benzene	4362 306	-	305	-	-	-	-	-
Sulfur, mol. (58) 3-Methyl octane 2-Methyl-l-pentene	560 - -	-	- - -	•	1882	-	-	- -

ND = Not detected. - = Not found. NF = None found.

. .

\_

• ....

4 . . ŝ

.

# TABLE CC-17 (Page 3 of 3)

al de la compañía de

# SUMMARY OF SEDIMENT DATA FOR LEACHATE

Combe Fill South Landfill

				STA	TION			
PARAMETERS	LS-1	LS-2	LS-3	LS-4	LS-5	LS-6	LS-7	LS-8
DATE SAMPLED	8/13/85	8/13/83	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
NON-PRIORITY METALS, ppm								
Aluminum	21200	1680Ò	19400	37500	23000	38600	24200	22600
Barium	127	137	130	91	151	133	62	145
Calcium	195	ND	ND	ND	ND	ND	ND	13600
Cobalt	6.6	9.5	8.7	14	12	9.4	11	11
Iron	36100	126800	38900	45700	80600	38900	35700	51400
Magnesium	1750a	2810ª	2480ª	2700ª	2370ª	2450a	2470a	3540a
Manganese	248	217	272	386	556	369	282	660
Potassium	1640	1950	1840	2660	2400	2600	2820	3350
Sodium	385	450	602	354	617	983	776	1130
Tin	22	45	25	22	23	18	15	17
Vanadium	40a	26ª	37 a	72a	35 a	47 a	49a	38 a
CONVENTIONALS							•	
pH (Units)	8.0	6.8	8.2	7.27	7.26	8.21	8.31	7.78
Solids (%)	75	75	75	79	65	74	79	59

<sup>a</sup>Value is estimated because of interferences. ND = Not detected.

# TABLE CC-18 (Page 1 of 2)

#### SUMMARY OF PREVIOUS LEACHATE SEEP SAMPLES

Combe Fill South Landfill

		TE SEEP BR. TRO	UT BK. (I) <sup>a</sup>		NR. POWER	LINE (X)	LEACHATE POND WEST OF FILL AREA (Y)		
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES
OLATILES, ppb									
Benzene	ND	ND	1	33	33	1	46	46	1
Chlorobenzene	ND	ND	1	BM	5	1	52	52	1
Chloroethane	ND	ND	ī	ND	NĎ	ī	iī	11	ī
Chloroform	ND	ND	ī	BM	5	ī	ND	ŇĎ	ī
Dichlorodifluoro- methane <sup>b</sup>	ND	ND	ī	549	549	i	18	18	ī
1.1-Dichloroethane	160	160	1	56	56	1	BM	5	1
1,2-Dichloropropane	ND	ND	1	BM	5	1	ND	ND	1
Ethylbenzene	ND	ND	1	ND	ND	1	265	265	1
Methylene chloride	280	280	ī	BM	5	ĩ	BM	5	ī
Tetrachloroethylene	BM	1	1	23	23	ī	BM	5	ī
Toluene	9	9	ī	75	75	ī	313	313	ī
Trans-1,2-dichloro- ethylene	ND	ND	ī	26	26	ī	BM	5	ĩ
1,1,1-Trichloroethane	ND	ND	1	BM	5	1	BM	5	1
Trichloroethylene			_	16	16	1	BM	5	1
Trichlorofluoromethan	e <sup>b</sup> ND	ND	1	143	143	1	26	26	ī
Vinyl chloride			-	BM	5	ī	15	15	ī
ACID/PHENOLICS, ppb	ND	ND	1	ND	ND	1	ND	ND	1
BASE/NEUTRALS, ppb									
1,2-Dichlorobenzene	ND	ND	1	25	25	1	ND	ND	1
1,4-Dichlorobenzene	ND	ND	ĩ	BM	5	1	14	14	1
Diethyl phthalate	54	54	ī	ND	NĎ	ĩ	ND	ND	ī
Di-n-butyl phthalate	ŇD	ND	î	ND	ND	i	BM	5	ī
Naphthalene	BM	5	i	ND	ND	i	ND	NĎ	i
PESTICIDES/PCBs, ppb									
∝-Endosulfan	BM	0.5	1	ND	ND	1	ND	ND	1
IETALS, ppm									
Antimony				ND	ND	1	BM	0.03	1
Arsenic	BM	0.0	05 1	BM	0.00	25 1	0.0	09 0.009	1
Beryllium				0.0	11 0.01	1 1	0.0	26 0.026	1
Cadmium	BM	0.0	05 1	0.0			BM	0.002	
Chromium	BM	0.0		0.0			0.1		ī
Copper			-	0.0	65 0.06	5 1	0.1		ī
Lead	0.0	02 0.0	2 1	0.2		1	0.3		ī
Mercury	BM	0.0		0.0		-	0.0		
Nickel			-	0.0			0.0		
Selenium				ND	ND	ī	0.0		
Thallium				BM	0.00		0.0		
Zinc				1.4		i	2.3		ī

<sup>a</sup>Letter refers to location of station on Figure 5-2.

<sup>b</sup>Non-priority organic quantified.

ND - Not detected. BM - Below method detection limit. Blank - Not run.

فتتعه

. . ...

- .*..* .....

نيد . .

-----

+----

\_\_\_\_

. -

~

Note: In computing averages, the values used for BM are 1/2 the detection limit and a zero value is used for NDs.

.

23/12

## 1 TABLE CC-18 (Page 2 of 2)

## SUMMARY OF PREVIOUS LEACHATE SEEP SAMPLES

Combe [ill South Landfill

çı. -

<u></u>		TE SEEP BR. TRO	FLOWING UT BK. (I)		NR. POWER			LEACHATE POND WEST OF FILL AREA (Y)			
			# 0F	-		# 0F			# 0F		
COMPOUND OR GROUP	RANGE	AVERAGE	ANALYSES	RANGE	AVERAGE	ANALYSES	RANGE	AVERAGE	ANALYSES		
MISCELLANEOUS, ppb											
Cyanides	ND	ND	1	ND	ND	1	ND	ND	1		
Phenols	ND	ND	1	ND	ND	1	130	130	1		
CONVENTIONALS, ppm											
BOD	0	0	1								
COD	17	17	1								
TDS	107	107	1								
Hardness	45	45	1								
TOC	12	12	1								
Total Coliform (c/100ml)	14	14	1								
Fecal Coliform (c/100ml)	46	46	1								
Fecal Streptococcus (c/100ml)	0	0	1								
Chloride	13.6	13.6	1								
TKN	4.2	4.2	1								
Nitrate as N	ND	ND	1								
OTHER METALS, ppm											
Manganese	0.27	0.27	1								
OTHER ORGANICS, ppb											
1,4-Dichlorobutane	ND	ND	1								
Heptane	ND	ND	1								
Nonane	ND	ND	1								
m, p-Xylene	ND	ND	1								
o-Xylene	ND	ND	1								
RADIOACTIVITY, pCi/l	ND	ND	1								
Gross a	1.18	1.18	1								
Gross B	2.56		ī								

aLetter refers to location of station on Figure 5-2.

ND - Not detected.

30011

1

Blank - Not run. Note: In computing averages, the values used for BM are 1/2 the detection limit and a zero value is used for NDs.

302617

. .

. ŧ

.....

. · a

e,

# TABLE CC-19 (Page 1 of 3)

(

#### SUMMARY OF SURFACE WATER SAMPLES

Combe Fill South Landfill

PARAMETER	W-1 WEST BRANCH TROUT BROOK AT PARKER ROAD	W-2 EAST BRANCH TROUT BROOK AT PARKER ROAD	W-3 UNNAMED TRIBUTARY AT WASHINGTON TURNPIKE	W-4 TANNERS BROOK NEAR VALLEY BROOK ROAD	W-5 TANNERS BROOK AT WASHINGTON TURNPIKE	W-6 TROUT BROOK AT STATE PARK ROAD	W-7 BLACK RIVER AT ROUTE 206	W-8 BLACK RIVER 120 YDS BELOW CONFLUENCE WITH TROUT BK
DATE SAMPLED	8/13/85	10/17/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
FLOW, cfs	0.25			0.31	0.91	2.10	7.72	11.97
VOLATILES, ppb								
Methylene chloride Tetrachloroethylene Toluene Trichlorofluoromethane <sup>a</sup>	BM @ 2.8 ND BM @ 6.0 ND	ND ND ND ND	BM @ 2.8 ND ND ND	ND ND ND ND	BM @ 2.8 ND ND ND	3.39 ND ND BM @ 10.0	3.06 BM @ 4.1 ND ND	BM @ 2.8 ND ND ND
ACID/PHENOLICS, ppb								
Phenol	ND	ND	ND	3.64	ND	9.05	2.20	ND
BASE/NEUTRALS, ppb								
Bis(2-ethylhexyl) phthalate Diethyl phthalate Di-n-butyl phthalate Isophorone	ND BM @ 10 ND BM @ 2.2	BM @ 10 ND BM @ 10 ND	ND ND ND ND	ND BM @ 10 BM @ 10 ND	ND ND ND ND	ND ND BM @ 10 ND	ND ND ND ND	ND ND BM @ 10 ND
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND	ND	ND
METALS, ppm								
Beryllium Copper Lead Selenium Thallium Zinc	ND ND ND ND NO 0.02	ND ND ND BM @ 0.05 ND	ND ND 8M @ 0.005 ND 8M @ 0.02	0.002 ND BM @ 0.005 ND ND 0.03	ND BM @ 0.01 BM @ 0.005 ND ND 0.04	ND ND ND ND ND 0.05	ND ND BM @ 0.005 ND ND BM @ 0.02	ND ND 8M @ 0.005 ND ND 8M @ 0.02
MISCELLANEOUS, ppb								
Cyanides Phenols	ND ND	ND 108	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

<sup>a</sup>Non-priority organic quantified.

•

Blank = Not run.

ND = Not detected.

BM = Below method detection limit.

the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the se

# TABLE CC-19 (Page 2 of 3)

## SUMMARY OF SURFACE WATER SAMPLES

Combe Fill South Landfill

PARAMETER	W-1 WEST BRANCH TROUT BROOK AT PARKER ROAD	W-2 EAST BRANCH TROUT BROOK AT PARKER ROAD	W-3 UNNAMED TRIBUTARY AT WASHINGTON TURNPIKE	W-4 TANNERS BROOK NEAR VALLEY BROOK ROAD	W-5 TANNERS BROOK AT WASHINGTON TURNPIKE	W-6 TROUT BROOK AT STATE PARK ROAD	W-7 BLACK RIVER AT ROUTE 206	W-8 BLACK RIVER 120 YDS BELOW CONFLUENCE WITH TROUT BK
DATE SAMPLED	8/13/85	10/17/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
TENTATIVELY IDENTIFIED VOLATILES, ppb	NF				NF	NF	NF	NF
Unknown 3,4,4-Trimethy1-2-pentene		133	2084 -	- 29				
TENTATIVELY IDENTIFIED ACIDS, ppb								
Unknown(s)	29,19,31,25	6.3, 6.6, 38,41,5.3 5 3 77	3	5,35,16	10,29,4	7,85,51,5,4,9	42,14,5	11
3,3,3-Trichloro-1-propene Benzenemethanol 1-Chloro-2-propanol Alkane(s) Alkene Alcohol Fluoro-1,1'-biphenyl 2-Methyl-1(1)-dimethyl- 2-methyl-1,3-pro- panediylester propanoic acid Bis(2-Methylethy) ester- 1,2-benzene-dicadoxylic acid TENTATIVELY IDENTIFIED BASE/ NEUTRALS, ppb	-	5.3, 77 6.6 - - 6.2, 19 21 12 36 5.3 14	-	4 18 - - - -	4	- 58 - - - -	15 - - - -	-
Unknown(s) 1,4-Dioxane 2,2,4-Trimethyl-1,3-dioxolane 4-Methyl-2-pentene Methylbenzene (Toluene) 4-Methyl-3-penten-2-one Tetrachloroethene (Tetra- chloroethylene) 3,3,3-Trichloro-1-propene	10,10,4,8,11 11 21 5 18 53 24 9		11	22,5,10,13,5 23 33 50 140 12	28,6,6,6 22 25 80 71 12	13 - - - -	24,6,7,8,5 - 48 7 32 46 82 11	3.5,6.5 - - - - - -

.

Blank = Not run.

- ≈ Not found.

NF = None found.

.....

. . .

. . .

.

## TABLE CC-19 (Page 3 of 3)

#### SUMMARY OF SURFACE WATER SAMPLES

Combe Fill South Landfill

1

PARAMETER	W-1 WEST BRANCH TROUT BROOK AT PARKER ROAD	W-2 EAST BRANCH TROUT BROOK AT PARKER ROAD	W-3 UNNAMED TRIBUTARY AT WASHINGTON TURNPIKE	W-4 TANNERS BROOK NEAR VALLEY BROOK ROAD	W-5 TANNERS BROOK AT WASHINGTON TURNPIKE	W-6 TROUT BROOK AT STATE PARK ROAD	W-7 BLACK RIVER AT ROUTE 206	W-8 BLACK RIVER 120 YDS BELOW CONFLUENCE WITH TROUT BK
DATE SAMPLED	8/13/85	10/17/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
TENTATIVELY IDENTIFIED BASE/ NEUTRALS, ppb (Continued)		NF						
Trichloroethene (Trichloro-	-		-	7	8	-	20	-
ethylene) 3-Penten-2-one 2-Butoxyethanol Benzene	-		- - -	9 11 -		- - 31.8	-	- - -
RADIOACTIVITY, pCi/l								
Gross α Gross β		<1.0 6.4 <u>+</u> 1.7					<0.8 <0.8	
CONVENTIONALS								
pH (Units) Temp. (°C) Spec. Cond. (µmhos/cm) Salinity (ppt)	7.2 19.6 410 0.0	7.1 12.2 270 0.0	7.2 17.7 94 0.0	7.5 22.3 111 0.0	7.4 19.0 100 0.0	7.6 20.1 203 0.0	6.9 18.1 278 0.0	8.0 27.5 263 0.0

Blank = Not run.

- = Not found.

NF = None found.

## TABLE CC-20 (Page 1 of 2)

and the second of the second 
#### SUMMARY OF SURFACE WATER SEDIMENT SAMPLES

Combe Fill South Landfill

	WS-1 WEST BRANCH TROUT BROOK	WS-3 UNNAMED TRIBUTARY AT WASHINGTON	WS-4 TANNERS BROOK AT VALLEY	WS-5 TANNERS BROOK AT WASHINGTON	WS-6 TROUT BROOK AT STATE	WS-7 BLACK RIVER AT ROUTE 206	WS-8 BLACK RIVER 120 YDS BELOW CONF.
PARAMETER	AT PARKER ROAD	TURNPIKE	BROOK ROAD	TURNPIKE	PARK ROAD	CROSSING	WITH TROUT BROOK
DATE SAMPLED	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
VOLATILES, ppb							
Methylene chloride Acetone <sup>a</sup>	ND 3р°с	ND 19 <sup>b</sup>	2b,c ND	3b,c ND	ND ND	6 <sup>b</sup> , <sup>c</sup> ND	ND ND
ACID/PHENOLICS, ppb	ND	ND	ND	ND	ND	ND	ND
BASE/NEUTRALS, ppb							
Benzo(A) pyrene Benzo(B) fluoranthene Benzo (G,H,I) perylene Bis (2-ethylhexyl) phthalat Chrysene Fluoranthene Indeno (1,2,3-CD) pyrene Phenanthrene Pyrene	ND ND ND ND ND ND ND ND ND	ND ND 390 ND 530 ND ND 430	ND ND ND ND ND ND ND ND	950 670 360 79 990 1200 400 990 790	ND ND 170 ND ND ND ND ND	ND ND ND ND ND ND ND ND	ND ND ND 280 ND 160 240
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND	ND
METALS, ppm							
Arsenic Beryllium Cadmium Chromium Copper Lead Nickel Zinc	5.7 0.6 2.0 4.2 ND 2.2 ND 29d	14 0.9 2.3 164 16 2.0 80 50 <sup>d</sup>	6.0 ND 2.6 2.1 3.5 22 ND 20 <sup>d</sup>	9.7 ND 1.8 4.3 9.1 48 ND 151 <sup>d</sup>	13 0.9 2.4 27 18 20 7.6 32d	13 1.0 13 90 29 13 44 139 <sup>d</sup>	26 0.6 7.5 11 23 19 5.5 91 <sup>d</sup>
MISCELLANEOUS, ppb							
Cyanides Phenols	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND

000

Í

302621

ANon-priority pollutant quantified.

<sup>d</sup>Found in method blank. <sup>C</sup>Estimated value. Value is below method detection limit. <sup>d</sup>Value is estimated because of interferences.

ND = Not detected.

## TABLE CC-20 (Page 2 of 2)

SUMMARY OF SURFACE WATER SEDIMENT SAMPLES

PARAMETER	WS-1 WEST BRANCH TROUT BROOK AT PARKER ROAD	WS-3 UNNAMED TRIBUTARY AT WASHINGTON TURNPIKE	WS-4 TANNERS BROOK AT VALLEY BROOK ROAD	WS-5 TANNERS BROOK AT WASHINGTON TURNPIKE	WS-6 TROUT BROOK AT STATE PARK ROAD	WS-7 BLACK RIVER AT ROUTE 206 (ROSSING	WS-8 BLACK RIVER 120 YDS BELOW CONF WITH TROUT BROOK
DATE SAMPLED	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85	8/13/85
TENTATIVELY IDENTIFIED VOLATILES, ppb		NF	NF	NF		NF	NF
Trimethyl silanol Unknown	10				120		
TENTATIVELY IDENTIFIED ACIDS/BASE/NEUTRALS, ppb							
Unknown(s)	4553, 2226, 15581	10000, 7543, 3703, 21120	7768, 604, 2331, 13293	3617, 4174, 1739, 10713	4675, 4748 1899, 11249	929, 1062, 743: 9158, 3584, 22440, 796	3 3491, 4655, 1673, 11200
4-Hydroxy-4-methyl-	5666	-	5352	-	-	-	-
2~pentanone Sulfur, mol.(58)	-	640	-	-	-	-	-
NON-PRIORITY METALS, ppm							
Aluminum Barium Calcium Cobalt Iron Magnesium Manganese Potassium Sodium Tin Vanadium	4910 17 ND 4.3 9500 509a 148 522 153 17 17a	8940 38 ND 6.5 15700 1420 <sup>a</sup> 185 888 210 18 25 <sup>a</sup>	3040 16 ND 5580 364ª 84 359 267 17 11ª	1720 16 89 ND 32300 3010 <sup>a</sup> 216 196 150 19 ND	8630 51 4380 9.5 16700 5190 <sup>a</sup> 1140 1600 280 20 39 <sup>a</sup>	11300 99 2250 10 14600 1780 <sup>a</sup> 483 846 341 41 31 <sup>a</sup>	6790 57 ND 8.7 29000 2020a 909 1030 430 15b 39a
CONVENTIONALS							
pH (units) Solids (%)	6.82 80	6.20 77	7.18 81	7.17 82	7.40 79	6.61 44	7.40 80

~

Combe Fill South Landfill 1

-

AValue is estimated because of interferences.

- = Not found. ND = Not detected.

NF = None found.

#### TABLE CC-21 (Page 1 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

Combe Fill South Landfill

· <u>····································</u>							SURFA	CE WATER	STATION						
		R. TROUT ORTH OF RESIDEN	CE)	W. BR (IN	. TROUT B FLOW TO P	OND)		R. TROUT ABOVE BRI	IDGE)		TROUT BK RNER OF L	ANDFILL)		BR. TROUT TINGUE DR	IVEWÀÝ)
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES
VOLATILES, ppb															
Benzene Carbon tetrachloride Chlorobenzene Chloroform 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane Ethylbenzene Methylene chloride Tetrachloroethylene Toluene Trans-1,2-dichloro- ethylene										ND ND-128 ND ND ND ND ND ND ND ND ND	ND 64 ND ND ND ND ND ND ND	2 2 2 2 2	141 ND BM 11 112 12 14 12 8M BM 350 15	141 ND 5 11 12 12 14 12 5 5 1350 15	1 1 1 1 1 1 1 1 1 1 1
1,1,1-Trichloroethane Trichloroethylene Trichlorofluoromethane <sup>b</sup>										ND ND ND	ND ND ND	2 2 2	BM 14 16	5 14 16	1 1 1
ACID/PHENOLICS, ppb										ND	ND	1	ND	ND	1
BASE/NEUTRALS, ppb 1,2-Dichlorobenzene 1,4-Dichlorobenzene Diethyl phthalate Di-n-butyl phthalate	303									ND-9	4.5	2	74 16 11 BM	74 16 11 5	1 1 1 1
PESTICIDES/PCBs, ppb α-endosulfan	30 <b>2623</b>									1	1	1	ND	ND	1
METALS, ppm															
Antimony Arsenic Cadmium Chromium	ND ND ND	ND ND ND	1 1 1	ВМ ВМ 0.01	0.0005 0.005 0.01	5 1 1 1	0.012 0.01 0.02	0.012 0.01 0.02	1 B 1 1	M-0.008 ND-BM 0.05	0.0065 0.0025 0.05	2 2 1	BM ND ND BM	0.03 ND ND 0.0035	1 1 1 1

 $^{\rm a}Letter$  refers to location of station on Figures in Chapter 5.  $^{\rm b}Non-priority$  organic quantified. ND - Not detected.

BM - Below method detection limit.

Blank - Not run.

## TABLE CC-21 (Page 2 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

#### Combe Fill South Landfill

		BR. TROUT	PF (A)d				SURFA	CE WATER	STATION						
		NORTH OF 1 RESIDENC	TINGUE CE)		. TROUT B FLOW TO P	OND)	W. B (	R. TROUT ABOVE BRI	BK. (E) [DGE) # OF	W. BR. (SE CC	TROUT BK	ANDFILL)		BR. TROUT I TINGUE DR	IVEWAY)
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSE
METALS, ppm (Contine	ued)														
Copper Lead Mercury Selenium Silver Thallium	ND 0.007 ND	ND 0.007 ND	1 1 1	BM BM BM	0.025 0.0005 0.0005		BM BM 0.001	0.025 0.0005 0.001		0.007 ID-0.02 ID-BM	0.007 0.005 0.0005	1 2 2	ND BM ND BM 0.006 BM	ND 0.005 ND 0.0025 0.006 0.0025	1 1 1 1 1
Zinc	0.05	0.05	1							0.031	0.031	1	0.069	0.069	ĩ
MISCELLANEOUS, ppb															
Cyanides Phenols	ND 40	ND 40	1 1	ND 20	ND 20	1 1	ND 10	ND 10	1 1	ND-5 ND	2.5 ND	2 1	ND ND	ND ND	1 1
CONVENTIONALS, ppm															
pH (Units) DO BOD COD TDS Hardness Alkalinity TSS Turbidity TOC Phosphates Total Coliform (c Fecal Streptococc (c/100ml)	/100ml) 0	6.3 6.7 0 27 83 19 5 4 2.5 170 0 1600									2.5 34 581 235 20 15 44 1 0	2 2 1 1 2 2 2 2			
Chloride TS TKN Sulfate Ammonia as N Nitrate as N Ash	10 88 2 9 0 0 0	10 88 2 9 0 0 0	1 1 1 1 1 1							18-106 70 1.03 8.9	62 70 1.03 8.9	2 1 1			

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5.

ND - Not detected.

BM - Below method detection limit.

Blank - Not run.

Note: In computing averages, the values used for BM are 1/2 the detection limit and a zero value is used for NDs.

and the second 
## TABLE CC-21 (Page 3 of 10)

.

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

Combe Fill South Landfill

							SURFA	CE WATER	STATION						
• . • •		R. TROUT	CE)		R. TROUT E	OND)		R. TROUT ABOVE BRI	DGE )		TROUT BK			BR. TROUT TINGUE DE	
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSE
OTHER METALS, ppm															
Aluminum				ND	ND	1	ND	ND	1	1.418	1.418	1			
Barium Chromium+6 Iron Manganese Magnesium	ND 3 ND 4.3	ND 3 ND 4.3	1 1 1 1	NU	NU	I	NU	NU	1	0.005 0.952 4.98	0.005 0.952 4.98	1 1 1			
OTHER ORGANICS, ppb															
Heptane Ether soluble	3000	3000	1							ND-18	9	2			
RADIOACTIVITY, pCi/l															
Gross a Gross <i>B</i>										3.21 2.47±1.	.8	1 1			

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5.

ND - Not detected.

Blank - Not run.

## TABLE CC-21 (Page 4 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

Combe Fill South Landfill

			TROUT BK (UPSTREAM INGUE HOU	ISE)	W. BR	. TROUT E	R POND)	E.BR (	CE WATER . TROUT E NORTHWEST OWNSHIP L	K. (C) OF .INE)		TROUT BK	RS)		. TROUT B PROPERTY	BOUNDAR
<u>co</u>	MPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSE	S RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYS
٧O	LATILES, ppb															
	Benzene	ND-1.1	0.7	3	ND	ND	1				ND-7	3.5	2	11	11	1
	Carbon tetrachloride	ND	ND	3	ND	ND	1				ND-184	92	2	ND	ND	1
	Chlorobenzene	ND	ND	3	ND	ND	1				ND	ND	2	ND	ND	1
	Dichlorobromomethane	ND	ND	3	ND	ND	1				ND-78	39	2	ND	ND	1
	1.1-Dichloroethane	ND-12	4	3	ND	ND	1				ND-11	5.5	2	ND	ND	ī
	Methylene chloride	ND	ND	3	BM	5	1				ND	ND	2	ND	ND	ī
	Tetrachloroethylene	ND-2	0.67		ND	ND	1				ND	ND	2	ND	ND	ĩ
	Toluene	ND-14.		3	ND	ND	ī				ND-2	1	2	ND	ND	i
	Trans-1,2-dichloro- ethylene	ND	ND	3	ND	ND	ī				ND-21	10.5	2	120	120	i
AC	ID/PHENOLICS, ppb	ND	ND	1	ND	ND	1				ND	ND	1	ND	ND	1
BA	SE/NEUTRALS, ppb															
	Bis (2-ethylhexyl) phthalate	ND	ND	1	ND	ND	1				90	90	1	ND	ND	1
PE	STICIDES/PCBs, ppb	ND	ND	1	ND	ND	1				ND	ND	1	ND	ND	1
ME	TALS, ppm															
	Arsenic	ВМ	0.005	1	BM BM	0.0025	1 1	ND	ND	2	BM-0.02	0.01	2	0.0	1 0.01	. 1
	Beryllium	DM 0 004	0.004-			0.0025	1	ND	ND	2	DM 0 01	0.005	<u>^</u>			
	Cadmium	BM-0.004	0.0043		BM BM	0.0025	1	ND	ND	2	BM-0.01		2	0.0		
	Chromium	0.005-0.1	0.037	3			1	ND		2	0.02	0.02	1	BM	0.01	. 1
	Copper	ND 0 10	0.043	2	0.031	0.031	1	0.004	ND	1	0.016	0.016	1			
	Lead	ND-0.13	0.043	3	0.27	0.27	1				0.006-0.02		2	0.0		
	Mercury	BM-0.001	0.0017	5			1	ND	ND	1	ND-BM	0.0013	2	BM	0.00	1 1
	Nickel				0.013	0.013	1									
	Thallium				BM	0.0025	1	0.05	0.05							
	Zinc				0.25	0.25	1	0.05	0.05	1	0.107	0.107	1			

1 L L

.

. . . . .

.

#### TABLE CC-21 (Page 5 of 10)

( The second states and the second states are second states and the second states are second are second states are second states are second states are second are s

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

•					Co	mbe Fill	South Lar	ndfill							
·+- 							SURFAC	E WATER	STATION						
		TROUT BK (UPSTREAM INGUE HOL	ISE)	W. BF	R. TROUT E BUTARY NEA	R POND)	(1	. TROUT B IORTHWEST )WNSHIP L	OF INE)	E. BR.	TROUT BK. (HEADWATE	RS)		. TROUT E PROPERTY	BOUNDARY
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSE
MISCELLANEOUS, ppb															
Cyanides Phenols	ND ND	ND ND	1 1	ND ND	ND ND	1 1	ND-3 30	1.5 30	2 1	6-70 ND	38 ND	2 1	30 ND	30 ND	1 1
CONVENTIONALS, ppm															
pH (units) DO BOD COD TDS	0-37.2 25-76.4 197-221	22.4 57.9 211.7	3 3 3				6.4 0.2-0.3 31 274	6.4 3 0.25 3 31 274	2 2 1 1 1	8.3-92 105-305 552	50.2 205 552	2 2 1	1.2 50 359	1.2 50 359	1 1 1
Hardness TSS <sup>.</sup> TOC	190 8	190 8	1				84	84	1	232-356 54 46	294 54 46	2 1 1	163 26	163 26	1
Total Coliform (c/100m) Fecal Coliform (c/100m) Fecal Streptococcus	) 0-400	167 0 0	3 3 3				<2000 <200 200	<2000 <200 200	2 2 2	0-1600 0-22 0-49		2 2 2	0 0 0	0 0 0	1 1 1
(c/100ml) Turbidity Alkalinity Phosphates							51-140 145-165 1	5 155 1	2 2 1						
Chloride TS	13.6	13.6	1				37-41 358	39 358	1	109-132 946	120.5 946	2 1	91	91	1
TKN Sulfate	34	34	1				4 4	4 4	2				7	7	1
Nitrate as N Ammonia as N Ash	1.9	1.9	1				0 2.5-3 54	0 2.75 54	1 2 1	37.7	37.7	1	13.3	13.3	1

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5.

ND - Not detected.

# TABLE CC-21 (Page 6 of 10)

## SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

#### Combe Fill South Landfill

·····		·					SURFA	CE WATER	STATION	· · ·			<u> </u>	<u> </u>	
	(ι	IROUT BK JPSTREAM IGUE HOU	SE)	W. BR	. TROUT E	R POND)	()	. TROUT B NORTHWEST DWNSHIP L	OF INE)		TROUT BK. (HEADWATER	<u> (S)</u>		. TROUT E	BOUNDARY)
COMPOUND OR GROUP	RANGE A	VERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES
OTHER METALS, ppm															
Aluminum Iron Manganese Magnesium Chromium+6	6 0.44-2	6 1.48	2 3				40-70 2.92 17 ND	55 2.92 17 ND	2 1 1 2	0.09) 33.73 1.35 0.016	33.73 1.35	1 1	1.2	1.2	1
OTHER ORGANICS, ppb															
1,4-dichlorobutane Heptane Nonane m, p-Xylene o-Xylene Propylbenzene Ethyl soluble	ND ND-14.5 ND ND ND	ND 9.3 ND ND ND	1 3 1 1 1				8000	8000	1	ND-20 ND-21 ND-252 ND-19 ND-22 ND-21	10.5 2 126	2 2 2 2 2 2	ND ND ND ND ND	ND ND ND ND ND	1 1 1 1 1
RADIOACTIVITY, pCi/l															
Gross æ Gross Ø	40.9 33.4	+ 11 - 3.7	1 1							2.94 34.9 <u>-</u>		1 1	2.2 14 <u>+</u>		1

 $^{\rm a} {\rm Letter}$  refers to location of station on Figures in Chapter 5. ND - Not detected.

Blank - Not run.

## TABLE CC-21 (Page 7 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

#### Combe Fill South Landfill

• •  (

•

					1			CE WATER							
	( T F	R. TROUT B RIBUTARY A PARKER ROA	BOVE	(30 y	OUT BK. ds BELOW . & W. B		(100	ROUT BK. Yds UPST LONG HILL	REAM OF	( 50	TROUT BK. Yds UPST E AT RANG	(T) REAM OF ER STATION	(10	TROUT BK. ( )0 Yds UPS1 )F BLACK R1	RÉAM
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYS
VOLATILES, ppb															
Methylene chloride Trans-1,2-dichloro- ethylene	ND BM	ND 5	1 1				NÐ ND	ND ND	1 1	BM ND	1.4 ND	1 1	BM ND	1.4 ND	1 1
1,1,1-Trichloroethane Trichlorofluoromethaneb	BM BM	5 5	1 1				ND ND	ND ND	1 1	ND ND	ND ND	1 1	ND ND	ND ND	1 1
ACID/PHENOLICS, ppb	ND	ND	1				ND	ND	1	ND	ND	1	ND	ND	1
BASE/NEUTRALS, ppb	ND	ND	1				ND	ND	1	NÐ	ND	1	ND	ND	1
PESTICIDES/PCBs, ppb	ND	ND	1				ND	ND	1	ND	ND	1	ND	ND	1
METALS, ppm															
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Silver Thallium Zinc	BM BM 0.006 0.021 0.023 0.12 0.32 0.0007 0.022 8M ND BM 0.59	0.03 0.002 0.006 0.021 0.022 0.12 0.32 0.000 0.022 ND 0.002 0.002 0.59	5 1 1 1 1 07 1 25 1 1	ND ND ND 0.005 ND 0.025	ND	1	ND ND ND ND ND ND ND ND ND ND	ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1	nd Nd Nd Nd Nd Nd Nd Nd Nd Nd	ND ND ND ND ND ND ND ND ND ND ND	1 1 1 1 1 1 1 1 1 1 1 1 1 1	ND BM ND ND ND ND ND ND ND ND ND	ND 0.002 ND ND ND ND ND ND ND ND ND ND ND ND	15 1 1 1 1 1 1 1 1 1 1 1 1 1 1
MISCELLANEOUS, ppb Cyanides Phenols	ND ND	ND ND	1 1	3 ND	3 ND	1 1	ND ND	ND ND	1 1	ND ND	ND ND	1 1	ND ND	ND ND	1 1

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5. <sup>b</sup>Non-priority organic quantified. ND - Not detected.

BM - Below method detection limit.

Blank - Not run.

#### TABLE CC-21 (Page 8 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

Combe Fill South Landfill

	(1	R. TROUT E RIBUTARY PARKER RC	NEAR DAD)	(30	ROUT BK. yds BELOW . & W. BR	CONF.	τ (100	CE WATER ROUT BK. Yds UPST ONG HILL	(S) REAM OF RD)	( 50	TROUT BK Yds UPS1 AT RANGE	TRÉAM OF ER STATION)	(10	ROUT BK. O Yds UPS BLACK RI	TRÉAM VER)
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSE
CONVENTIONALS, ppm															
pH (Units) DO BOD COD TDS TSS Turbidity Alkalinity Phosphates Total Coliform (c/100ml) Fecal Coliform (c/100ml) Fecal Streptococcus (c/100ml) Chloride TS Sulfate Nitrate as N Ammonia as N				6.3 9.8 0 12 75 19 19 35 1.2 330 80 140 13 88 8 1.5 0 13	9.8 0 12 75 19 19 35										
OTHER METALS, ppm															
Chromium+6 Iron Manganese Magnesium				ND 0.6 ND 3.6	ND 0.6 ND 3.6	1 1 1 1									
OTHER ORGANICS, ppb															
Ether soluble				3000	3000	1									

aLetter refers to location of station on Figures in Chapter 5.

ND - Not detected.

Blank - Not run.

#### TABLE CC-21 (Page 9 of 10)

i.

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

#### Combe Fill South Landfill

	·	<u> </u>	SURFACE WAT	ER STATION	· · · · · · · · · · · · · · · · · · ·	
		ACK RIVER	(V)a	В	LACK RIVE	
		Yds UPST			Yds DOWNS	
	_CONF.	WITH TRO		CONF.	WITH TRC	
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES
VOLATILES, ppb						
Benzene	ND	ND	1	ND	ND	1
Chlorobenzene	ND	ND	1	ND	ND	1
Chloroethane	ND	ND	1	ND	ND	1
Chloroform	ND	ND	1	ND	ND	1
Dichlorodifluoro-	ND	ND	1	ND	ND	1
methane <sup>a</sup>						
1,1-Dichloroethane	ND	ND	1	ND	ND	1
1,2-Dichloropropane	ND	ND	1	ND	ND	1
Ethylbenzene	ND	ND	1	ND	ND	1
Methylene chloride	ND	ND	1	BM	1.4	1
Tetrachloroethylene	ND	ND	1	ND	ND	1
Toluene	ND	ND	1	ND	ND	1
Trans-1,2-dichloro- ethylene	ND	ND	1	ND	ND	1
1,1,1-Trichloroethane	ND	ND	1	ND	ND	1
Trichloroethylene	ND	ND	1	ND	ND	ī
Trichlorofluoromethaneb	ND	ND	1	ND	ND	ĩ
Vinyl chloride	ND	ND	1	ND	ND	ī
ACID/PHENOLICS, ppb	ND	ND	1	ND	ND	1
BASE/NEUTRALS, ppb						
1,2-Dichlorobenzene	ND	ND	1	ND	ND	1
1.4-Dichlorobenzene	ND	ND	1	ND	ND	1
Diethyl phthalate	ND	ND	1	ND	ND	1
Di-n-butyl phthalate	ND	ND	i	ND	ND	1
Naphthalene	ND	ND	1	ND	ND	1
PESTICIDES/PCBs, ppb						
α-Endosulfan	ND	ND	1	ND	ND	1

aLetter refers to location of station on Figures in Chapter 5.  $^{b}\ensuremath{\text{Non-priority}}$  organic quantified.

ND - Not detected.

ł

1

BM - Below method detection limit.

Note: In computing averages, the values used for BM are 1/2 the detection limit and a zero value is used for NDs.

÷

#### TABLE CC-21 (Page 10 of 10)

#### SUMMARY OF PREVIOUS SURFACE WATER SAMPLES

#### Combe Fill South Landfill

				ATER STATION		
		ACK RIVER			LACK RIVE	
		Yds UPST			Yds DOWNS	
	_CONF.	WITH TRO		CONF.	WITH TRO	
			# 0F			# 0F
COMPOUND OR GROUP	RANGE	AVERAGE	ANALYSES	RANGE	AVERAGE	ANALYSES
METALS, ppb						
Antimony	ND	ND	1	ND	ND	1
Arsenic	ND	ND	1	ND	ND	1
Beryllium	ND	ND	1	ND	ND	1
Cadmium	ND	ND	1	ND	ND	1
Chromium	ND	ND	1	ND	ND	1
Copper	ND	ND	1	ND	ND	1
Lead	BM	0.00	)25 1	ND	ND	1
Mercury	ND	ND	1	BM	0.000	015 1
Nickel	ND	ND	1	ND	ND	1
Selenium	ND	ND	1	ND	ND	1
Thallium	ND	ND	1	ND	ND	1
Zinc	ND	ND	1	ND	ND	1
MISCELLANEOUS, ppb						
Cyanides	ND	ND	1	ND	ND	1
Phenols	ND	ND	1	ND	ND	1

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5.

and the second 
ND - Not detected.

BM - Below method detection limit.

Note: In computing averages, the values used for BM are 1/2 the detection limit and a zero value is used for NDs.

. .

•••

i (

#### TABLE CC-22 (Page 1 of 2)

## SUMMARY OF PREVIOUS SURFACE WATER SEDIMENT SAMPLES

Combe Fill South Landfill

		<pre>     TROUT B     AT TINGUE     DRIVEWAY) </pre>			BR. TROUT UTARY ABOV	E POND)	E. BR. TROUT BK. (R) (TRIBUTARY ABOVE PARKER ROAD)			
COMPOUND OR GROUP	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	
VOLATILES, ppb										
Benzene Methylene chloride Toluene 1,1,1-Trichloroethane	8M 66 341 8M	25 66 341 25	1 1 1 1	ND BM BM BM	ND 25 25 25	1 1 1 1	BM 51 ND ND	25 51 ND ND	1 1 1	
ACID/PHENOLICS, ppb	ND	ND	1	ND	ND	1	ND	ND	1	
BASE/NEUTRALS, ppb										
Acenaphthene Bis (2-ethylhexyl) phthalate Butylbenzyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Phenanthrene Fluoranthene Pyrene	ND ND ND ND ND ND ND	ND ND ND ND ND ND ND	1 1 1 1 1 1 1	BM ND ND BM ND ND ND	5000 ND 5000 ND 5000 ND ND	1 1 1 1 1 1 1	ND 17,400 BM BM BM 8M ND ND	ND 17,400 1850 1850 1850 1850 ND ND	1 1 1 1 1 1 1	
PESTICIDES/PCBs, ppb										
Delta-BHC	ND	ND	1	BM	5000	1	ND	ND	1	
METALS, ppm										
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Thallium Zinc	BM BM ND 5.4 2.6 11 0.5 3.3 BM BM 24	3.5 10 0.25 ND 5.4 2.6 11 0.5 3.3 0.25 0.25 24	1 1 1 1 1 1 1 1 1 1 1 1	BM 4.6 1.2 BM 11 10 73 0.2 6.6 3.8 BM 57	3.5 4.6 1.2 0.25 11 10 73 0.2 6.6 3.8 0.25 57	1 1 1 1 1 1 1 1 1 1 1	7 100 BM 27 26 49 (*.2 1 3 BM 110	7 100 0.25 27 26 49 0.2 17 3 0.25 110	1 1 1 1 1 1	
MISCELLANEOUS, ppb	ND	ND	1	ND	ND	1	ND	ыо	,	
Cyanides Phenols	ND	ND	1	ND	ND	1 1	ND ND	ND ND	1 1	

<sup>a</sup>Letter refers to location of station on Figures in Chapter 5.

ND - Not detected.

BM - Below method detection limit. Note: In computing averages, the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

302633

ء ي ي م م م م

#### TABLE CC-22 (Page 2 of 2)

## SUMMARY OF PREVIOUS SURFACE WATER SEDIMENT SAMPLES

Combe Fill South Landfill

	(100	TROUT BK. (ds UPSTRE/ ONG HILL F	AM OF RD) <b>A</b>	(50 Yds	TROUT BK UPSTREAI RANGER S	M BRIDGE TATION)	( 300	ACK RIVER Yds UPSTR . WITH TRC	EAM OF
COMPOUND OR GROUP			# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES	RANGE	AVERAGE	# OF ANALYSES
VOLATILES, ppb									
Benzene Methylene chloride Toluene 1,1,1-Trichloroethane	ND 22.6 ND ND	ND 22.6 ND ND	1 1 1 1	ND 8 ND ND	ND 8 ND ND	1 1 1 1	20.8	20.8	1
ACID/PHENOLICS, ppb	ND	ND	1	ND	ND	1	ND	ND	1
BASE/NEUTRALS, ppb									
Acenaphthene Bis (2-ethylhexyl) phthalate Butylbenzyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate Phenanthrene Fluoranthene Pyrene	ND ND ND ND ND BM BM	ND ND ND ND ND 22 19	1 1 1 1 1 1 1	ND ND ND ND ND ND BM	ND ND ND ND ND ND 19	1 1 1 1 1 1 1	ВМ 355 303	270 355 303	1 1 1
PESTICIDES/PCBs, ppb							ND	ND	1
Delta-BHC	ND	ND	1	ND	ND	1			
METALS, ppm									
Antimony Arsenic Beryllium Cadmium Chromium Copper Lead Mercury Nickel Selenium Thallium Zinc	10 BM 0.6 BM 18 30 28 ND 10 ND ND 60	10 0.5 0.6 0.15 18 30 28 ND 10 ND 10 ND 60	1 1 1 1 1 1 1 1 1 1 1 1	BM 1.4 0.3 BM 18 14 12 ND 9 0.6 ND 52	4 1.4 0.3 0.15 18 14 12 ND 9 0.6 ND 52	1 1 1 1 1 1 1 1 1 1 1 1	10 1.6 0.3 BM 10 30 9.6 7 BM BM 55	10 1.6 0.3 0.15 10 30 9.6 7 0.3 0.25 55	1 1 1 1 1 1 1 1 1 1
MISCELLANEOUS, ppb			_		_				
Cyanides Phenols	ND ND	ND ND	1 1	ND ND	ND ND	1 1	500 100	500 100	1 1

ND - Not detected. BM - Below method detection limit. Note: In computing averages, the values used for BM are 1/2 the detection limit, and a zero value is used for NDs.

Bly ' - not run.

302**634** 

•

\_\_\_\_

÷

#### TABLE CC-23 (Page 1 of 7)

( in the second se

#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

PARAMETER	A-3ª	A-4a	A-4ª DUPLICATE	A-5a	A-5	A-5 DUPLICATE	A-6	A-7	A-8	A-9	A-10	A-11	A-11 DUPLICATE
DATE SAMPLED	7/24/84	7/24/84	7/24/84	7/24/84	9/17/85	9/17/85	9/17/85	9/17/85	9/18/85	9/19/85	9/18/85	9/19/85	9/19/85
VOLATILESD, µg/m <sup>3</sup>													
Acetone <sup>C</sup>					ND	2	ND	ND	ND		ND		
Benzene	144	ND	ND	ND	ND	ND	ND	2	ND		ND		
2-Butanone <sup>C</sup>					1	ND	ND	0.9	1		1		
Carbon disulfide <sup>c</sup>					ND	1	ND	ND	ND		ND		
Chlorobenzene	ND	BM @ 60	ND	ND	ND	ND	ND	ND	ND		ND		
Chloroform	ND	BM @ 60	ND	ND	ND	ND	ND	ND	ND		ND		
Ethylbenzene	276	ND	ND	ND	19	10	16	14	22		11		
Methylene chloride	BM @ 60	BM @ 60	ND	BM @ 60	ND	1	ND	ND	5		ND		
Tetrachloroethylene	BM @ 60	BM @ 60	ND	ND	4	3	ND	5	7		7		
Toluene	216	BM @ 60	ND	BM @ 60	46	27	12	34	49		22		
Trans-1,2-dichloro- ethylene	BM @ 60	ND	ND	ND	ND	ND	ND	ND	ND		ND		
Trichloroethylene	BM @ 60	BM @ 60	ND	ND	ND	ND	ND	ND	2		2		
Xylenes <sup>C</sup>					86	46	360	65	89		30		
	$\boldsymbol{\omega}$										••		
ACID/PHENOLICS <sup>d</sup> , µg/m <sup>3</sup>	0				ND	ND	ND	ND	ND	ND	ND	NÐ	ND
BASE/NEUTRALS <sup>d</sup> , µg/m <sup>3</sup>	26												
Bis-2-ethylhexyl-	Ś				0.009e	0.011e	0.004e	0.006 <sup>e</sup>	0.059	ND	0.056	0.005 <sup>e</sup>	0.011 <sup>e</sup>
phthalate District state	J				ND	0.004 <sup>e</sup>	0.002e	ND	0.013e	ND	0.011e	0.002e	10
Diethyl phthalate					ND	ND	ND	ND	ND	ND			ND
Di-n-butylphthalate					au	NU	טוי	nu	NU	טא	ND	0.002e	ND
PESTICIDES/PCBsd, µg/m3					ND	ND	ND	ND	ND	ND	ND	ND	ND

<sup>a</sup>Data converted from ppm to  $\mu$ g/m<sup>3</sup>. (1ppm = 1  $\mu$ g/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> =  $\mu$ g/m<sup>3</sup>. <sup>b</sup>Volatiles analyses were done using either charcoal (24 Jul 84) or Tenax (all other dates) tubes. <sup>C</sup>Non-priority organic quantified. <sup>d</sup>Samples collected on filters.

<sup>e</sup>Estimated value. Value is below method detection limit.

ND = Not detected.

= Below method detection limit. BM

Blank = Not run.

#### TABLE CC-23 (Page 2 of 7)

#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

PARAMETER	A-3ª	A-4a	A-4 a DUPLICATE	A-5a	A-5	A-5 DUPLICATE	A-6	A-7	A-8	A-9	A-10	A-11	A-11 DUPLICATE
DATE SAMPLED	7/24/84	7/24/84	7/24/84	7/24/84	9/17/85	9/17/85	9/17/85	9/17/85	9/18/85	9/19/85	9/18/85	9/19/85	9/19/85
METALS <sup>b</sup> , µg/m <sup>3</sup>													
Antimony Beryllium Cadmium Chromium Copper Lead Nickel Zinc					ND 0.0049 0.0052 0.0071 0.059 0.191 ND 19.5	ND 0.0048 0.0073 0.012 0.043 0.194 ND 18.2	ND 0.0045 0.0073 0.019 0.067 0.252 0.013 16.4	ND 0.0041 0.0073 0.0079 0.132 0.077 0.014 15.9	ND 0.0044 0.0034 0.013 0.147 0.057 ND 16.1	ND 0.0044 0.015 0.0077 0.406 0.281 0.014 15.3	ND 0.0058 0.0036 0.020 0.154 0.448 0.011 18.4	ND 0.0034 0.013 0.036 0.083 ND 17.3	ND 0.0034 0.014 0.012 0.036 0.088 0.014 17.5
MISCELLANEOUS <sup>b</sup> , µg/m <sup>3</sup>													
Cyanides					ND	ND	ND	ND	ND	ND	ND	ND	ND
TENTATIVELY IDENTIFIED ( (#g/m <sup>3</sup> )	/OLATILESC		NF										
Unknown(s)	-	-		-	4.4, 3.1, 3.5, 3.0, 7.6, 5.6	339, 23, 8.5, 8.5, 4.8	225, 8.2, 14.7, 41, 74, 16, 34, 28	1.8, 1. 1.8, 1.	9, 7.6, 8	.8,	2.0, 2.0, 1.6, 1.1, 2.0, 5.0, 1.5, 3.0, 5.2, 10.5		•
0.1K								7.3	11.7		,		
2-Propanone	-	-		-	4.8	-	32.7	1.8	2.7		-		
Tetrachloroethylene 2-Propenylidene- cyclobutene	-	-		-	-	- :	229	-	-		-		
Acetic acid ethylether	· -	-		-	-	-	-	2.3	-		-		
Methylcyclopentene	-	•		-	-	-	-	1.8	1.8		-		
Dichloromethane (methylene chloride)	-	-		-	-	-	-	-	-		3.2		
Dimethoxymethane	-	-		-	-	-	-	-	1.8		-		
Heptane	-	-		-	-	-	-	-	2.3		-		
Hexane Trichlorofluoro- methane	đ	-		-	-	-	-	-	2.9		-		

aData converted from ppm to  $\mu g/m^3$ . (lppm = 1  $\mu g/g \times 0.0012 g/cm^3 \times 10^6 cm^3/m^3 = \mu g/m^3$ .

<sup>b</sup>Samples collected on filters.

 $^{\rm CVolatiles}$  analyses were done using either charcoal (24 Jul 84) or Tenax (all other dates) tubes.  $^{\rm d}{\rm Compound}$  identified but not quantified.

.

- Blank = Not run.
- = Not detected. ND
- = Not found. -

\$	, ,	(	,	j i	٢.	Ĺ	`	6	ľ N

TABLE CC-23 (Page 3 of 7)

					INDEE OO	LO (Luge O	,						
				-	SUMMARY OF	AIR QUALIT	Y DATA						
					Combe Fil	1 South Lan	dfill						
··•													
PARAMETER	A-3ª	A-4a	A-4ª DUPLICATE	A-5a	A-5	A-5 DUPLICATE	A-6	A-7	A-8	A-9	A-10	A-11	A-11 DUPLICAT
DATE SAMPLED	7/24/84	7/24/84	7/24/84	7/24/84	9/17/85	9/17/85	9/17/85	9/17/85	9/18/85	9/19/85	9/18/85	9/19/85	9/19/85
TENTATIVELY IDENTIFIED V µg/m <sup>3</sup> (Continued)	OLATILESC	,											
1,1,2-Trichloro- 1,2,2-trifluoro-	с	-		с	-	-	-	-	-		-		
methane (Freon TF) 1,1-Dichloro-1- nitroethane	с	-		-	-	-	-	-	-		-		
1-Ethyl-N, N-di- methyl-1-(1-methyl- 2-propenyl)- boranamine	с	-		-	-	-		-	-		-		
2,2,3-Trimethylhexane	С	-		-	-	-	-	-	-		-		
2,3,3,4-Tetramethyl-	с	-		-	-	-	-	-	-		-		
pentane													
1-(Hexyloxy)-2-methyl-	с	-		-	-	-	-	-	-		-		
hexane													
3,4,5-Trimethy1-1-	С	-		-	-	-	-	-	-		-		
hexane	<u>,</u>												
3,4-Nonadiene	c c	- c		-	-	-	-	-	-		-		
1-(Hexyloxy)-5-	C	č		-	-	-	-	-	-		-		
methylhexane 1,1,3-Trimethylcyclo- pentane	-	с		-	-	-	-	-	-		-		
1,3,5-Cycloheptatriene 1,3-Dimethyl-cis- cyclohexane	-	c c		-	-	-	-	-	-		-		
DENTATIVELY IDENTIFIED ACIDS/BASE/NEUTRALS, # Unknowns(s)	g/m <sup>3</sup>				0.023, 0.153, 0.031, 0.104, 0.010, 0.011, 0.014, 0.016, 0.020	0.041, 0.380, 0.026, 0.295, 0.203, 0.561, 0.018, 0.017, 0.017, 0.023	0.046, 0.055, 0.476, 0.236, 0.649, 0.021, 0.030, 0.023, 0.023, 0.043, 0.050	0.018, 0.048, 0.039, 0.025, 0.270, 0.010, 0.020, 0.025, 0.036, 0.010	0.017, 0.061, 0.028, 0.030, 0.017, 0.017, 0.023, 0.025, 0.007, 0.008	0.163, 0.013, 0.061	0.010, 0.111, 0.013, 0.044, 0.036, 0.011, 0.028, 0.033, 0.016, 0.036	0.033, 0.410, 0.215, 0.725, 0.029, 0.021, 0.023	0.053, 0.011, 0.290, 0.226, 0.087, 0.011, 0.016

0.011

0.010

<sup>a</sup>Data converted from ppm to  $\mu$ g/m<sup>3</sup>. (1ppm = 1  $\mu$ g/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> =  $\mu$ g/m<sup>3</sup>. <sup>b</sup>Volatiles analyses were done using either charcoal (24 Jul 84) or Tenax (all other dates) tubes. <sup>c</sup>Compound identified but not quantified. <sup>d</sup>Samples collected on filters. - = Not found. Blank = Not run.

## TABLE CC-23 (Page 4 of 7)

#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

PARAMETER	<u>A-3a</u>	A-4a	A-4ª DUPLICATE	A-5a	A-5	A-5 DUPLICATE	A-6	<u>A-7</u>	A-8	A-9	A-10	<u>A-11</u>	A-11 DUPLICATE
DATE SAMPLED	7/24/84	7/24/84	7/24/84	7/24/84	<b>9/1</b> 7/85	9/17/85	9/17/85	9/17/85	9/18/85	9/19/85	9/18/85	<b>9/1</b> 9/85	9/19/85
TENTATIVELY IDENTIFIED ACIDS/BASE/NEUTRALS, <sup>b</sup> ug/m <sup>3</sup> (Continued)													
4-Hydroxy-4-					0.158	-	0.316	-	0.198	0.145	0.251	0.362	-
<pre>methyl-2-pentanone (1-Methylethyl) benzene</pre>	e				0.315	-	-	0.034	0.021	0.184	-	-	0.424
1-Chloro-2-propanone					-	0.089	-	-	-	-	-	-	-
2-Methyl-1-pentene					-	-	-	-	-	-	-	-	0.031
NON-PRIORITY METALS <sup>b</sup> , µg.	/m3												-
Aluminum					13.6	13.1	11.5	10,9	11.1	10.5	13.4	11.6	12.1
Barium					26.4	25.1	22.4	21.6	21.8	20.7	25.3	22.9	23.4
Calcium					9.39	8.69	8.01	7.73	8.2	7.53	9.44	8.68	8 <b>.94</b>
Cobalt					0.012 0.742	0.0096 0.810	0.014 1.33	0.0082 0.813	0.0063 0.977	0.0039 0.775	0.015	0.0053	0.0068
Iron Magnesium					1.03	0.913	0.944	0.813	0.988	1.15	1.86 1.23	0.780 1.05	0.983 1.09
Manganese					0.021	0.017	0.030	0.022	0.037	0.023	0.052	0.027	0.028
Potassium					16.0	15.2	13.3	13.2	13.3	12.2	15.5	13.3	13.4
Sodium					52.7	48.4	42.8	41.8	42.6	38.4	49.1	41.5	42.6
Tin					ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium					ND	ND	ND	ND	0.0054	ND	0.007	0.0058	0.0076

E LA L

.

<sup>a</sup>Data converted from ppm to µg/m<sup>3</sup>. (1ppm = 1 µg/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> = µg/m<sup>3</sup>. <sup>b</sup>Samples collected on filters. ND = Not detected. - = Not found. Blank = Not run.

#### TABLE CC-23 (Page 5 of 7)

and the second 
#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

		A-12							- <b>*</b>		
PARAMETER	A-12	DUPLICATE	A-13	U/D-5-UWª	U/D-2-DWa	U/D-3-UW	U/D-1-DW	U/D-4-UW	U/D-2-DW	U/D-1-UW	U/D-3-0
DATE SAMPLED	9/18/85	9/18/85	9/19/85	7/24/84	7/24/84	9/17/85	9/17/85	9/18/85	9/18/85	9/19/85	9/19/8
VOLATILES <sup>b</sup> , µg/m <sup>3</sup>											
Acetone <sup>C</sup> Benzene 2-Butanone <sup>C</sup> Carbon disulfide <sup>C</sup>	ND ND 1 ND	ND ND 0.70 ND		ND	ND	ND ND 1 ND	ND ND 2 ND	2 ND 1 ND	ND ND ND ND		
Chlorobenzene Chloroform Ethylbenzene Methylene chloride	ND ND 11 ND	ND ND 7 2		ND ND ND BM @ 60	ND ND ND BM @ 60	ND ND 10 ND	ND ND 13 ND	ND ND 9 2	ND ND 10 ND		
4-Methyl-2-pentanone <sup>c</sup> Tetrachloroethylene Toluene Trans-1,2-dichloro-	ND 5 21 ND	ND 4 15 ND		ND BM @ 60 ND	ND BM @ 60 ND	ND 6 29 ND	ND 18 47 ND	ND 6 20 ND	1 6 22 ND		
ethylene Trichloroethylene Xylenes	ND 35	0.9 34		ND ND	ND ND	ND 52	ND 59	1 44	ND 48		
ACID/PHENOLICS <sup>e</sup> , µg/m <sup>3</sup>	ND	ND				ND	ND	ND	ND		
BASE/NEUTRALS <sup>e</sup> , µg/m <sup>3</sup>											
Bis-2-ethylhexyl-	0.007d	0.009d	0.006 <sup>d</sup>			0.040	0.008d	ND	0.004d	0.022 <sup>d</sup>	0.055
phthalate Diethyl phthalate Di-n-butylphthalate	0.014 <sup>d</sup> 0.007 <sup>d</sup>	0.009d 0.007d	0.002d 0.004d			0.003d ND	ND ND	0.005d 0.003 <sup>d</sup>	0.011d ND	0.003d ND	0.004 0.002
PESTICIDES/PCBs <sup>e</sup> , µg/m <sup>3</sup>	ND	ND	ND			ND	ND	ND	ND	ND	ND
METALS <sup>e</sup> , g/m <sup>3</sup>											
Antimony Beryllium Cadmium Chromium Copper	0.069 0.0057 0.0072 0.287 0.145	ND 0.0059 0.0054 0.026 0.139	ND 0.0035 0.0094 0.012 0.087			ND 0.0078 0.020 0.020 0.223	0.042 0.0064 0.0093 0.011 0.164	ND 0.0086 0.004 0.011 0.057	0.061 0.005 0.0047 0.017 0.047	ND 0.0069 0.0066 0.013 0.162	ND 0.005 0.010 0.025 0.139

**O** 

<sup>a</sup>Data converted from ppm to  $\mu$ g/m<sup>3</sup>. (1ppm = 1  $\mu$ g/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> =  $\mu$ g/m<sup>3</sup>. <sup>b</sup>Volatiles analyses were done using either charcoal (24 Jul 84) or Tenax (all other dates) tubes. <sup>C</sup>Non-priority organic quantified. <sup>d</sup>Estimated value. Value is below method detection limit.

eSamples collected on filters.

ND = Not detected.

BM = Below method detection limit.

Blank = Not run.

#### TABLE CC-23 (Page 6 of 7)

#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

PARAMETER	A-12	A-12 DUPLICATE	<u>A-13</u>	U/D-5-UWa	U/D-2-DW <sup>a</sup>	U/D-3-UW	<u>U/D-1</u> -DW	U/D-4-UW	U/D-2-DW	U/D-1-UW	U/D-3-DI
- DATE SAMPLED	9/18/85	9/18/85	9/19/85	7/24/84	7/24/84	9/17/85	9/17/85	9/18/85	9/18/85	9/19/85	9/19/8
	ed)										
Lead Nickel Zinc	0.141 0.029 20.5	0.086 0.0093 19.2	0.051 0.018 13.1			0.155 0.025 25.3	0.259 0.026 23.8	0.621 0.011 25.9	0.458 0.015 15.6	0.091 ND 24.6	0.191 0.066 18.1
MISCELLANEOUS <sup>b</sup> , µg/m <sup>3</sup>											
Cyanides	ND	ND	ND			ND	ND	ND	ND	ND	ND
TENTATIVELY IDENTIFIED	VOLATILESC	,µg/m <sup>3</sup>			NF						
Unknown(s)	1.8, 1.8, 1.6, 1.2, 2.0, 1.3,	1.6, 1.1, 1.1, 1.1, 0.6, 1.1, 2.6, 3.0, 3.7, 9.6, 5.1		-		1.7, 1.5, 2.0, 2.1, 2.1, 3.2, 1.2, 3.5, 2.1, 2.1, 3.5, 7.1, 11.2, 4.4	4.2, 3.8, 9.7, 3.4, 9.7, 7.7,	2.2, 1.1, 1.4, 4.5, 3.1, 4.0, 4.9, 13.0	2.1, 2.0		
2-Butene Trichloromethane	-	1.1		-		-	3.0 3.7	-	-		
(chloroform) Acetic acid ethylethe 2-Propanone Dimethoxymethane Trichloroethylene 1,1,2-Trichloro-	r - 1.4	1.1 1.3 -		- - d		2.2	8.9	1.1 2.2 -	1.8		
1,2,2-trifluoro- ethane (Freon TF) 1,1-Dichloro-1- nitroethane	-	-		d		-	-	-	-		
2-Methyl-3-(1-methyl- ethyl)-oxirane Hexane	-	-		-		-	4.2	-	-		

. 1

<sup>a</sup>Data converted from ppm to  $\mu$ g/m<sup>3</sup>. (lppm = 1  $\mu$ g/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> =  $\mu$ g/m<sup>3</sup>. <sup>b</sup>Samples collected on filters.

CVolatiles analyses were done using either charcoal (24 Jul 84) or Tenax (all other data) tubes. dCompound identified but not quantified.

ND = Not detected.

.

.

- = Not found. -
- Blank = Not run.

NF = None found.

## TABLE CC-23 (Page 7 of 7)

#### SUMMARY OF AIR QUALITY DATA

Combe Fill South Landfill

PARAMETER	A-12	A-12 DUPLICATE	A-13	U/D-5-UWa	U/D-2-DWa	U/D-3-UW	U/D-1-DW	U/D-4-UW	U/D-2-DW	U/D-1-UW	U/D-3-DW
DATE SAMPLED	9/18/85	9/18/85	9/19/85	7/24/84	7/24/84	9/17/85	9/17/85	9/18/85	<b>9/1</b> 8/85	9/19/85	9/19/85
TENTATIVELY IDENTIFI ACIDS/BASE/NEUTRAL	ED <sup>b</sup> S, µg/m <sup>3</sup>										
	0.018,0.022, 0.014,0.152, 0.063,0.04, 0.014,0.031, 0.052,0.011, 0.031,0.026	0.052,0.03, 0.177,0.026, 0.017,0.023,	0.274, 0.267, 0.130, 0.540,			0.060, 0.587, 0.280, 0.844, 0.027, 0.021, 0.039, 0.095, 0.089	0.018, 0.362, 0.258, 0.086, 0.458, 0.012, 0.027, 0.027, 0.027, 0.045, 0.018	0.018, 0.144, 0.142, 0.016	0.019, 0.110, 0.039, 0.025, 0.014, 0.011, 0.014	0.077, 0.450, 0.423, 0.110, 0.271, 0.986, 0.030	0.095, 0.012, 0.012, 0.012, 0.321, 0.181, 0.015, 0.025
4-Hydroxy-4-methyl	- 0.305	-	-			-	-	-	0.238	-	0.223
2-pentanone (1-Methylethyl)- benzene	0.044	0.044	-			-	-	0.019	0.029	-	0.476
Phosphoricacid- tributhylester	0.017	-	-			-	-	-	0.009	-	-
1-Chloro-2-propand 3-Methyloctane	one - -	-	-			-	0.036 0.181	:	-	-	-
NON-PRIORITY METALS	),µg/m <sup>3</sup>										
Aluminum Barium Calcium Cobalt Iron Magnesium Manganese Potassium Sodium Tin Vanadium	15.7 28.2 11.1 0.017 3.76 1.84 0.063 17.5 54.7 ND 0.011	13.4 26.5 9.7 0.014 1.17 1.11 0.043 15.9 50.1 ND ND	0.883 17.6 6.88 ND 0.627 0.763 0.019 10.4 33.7 ND ND			16.9 34.7 12.3 0.017 1.81 1.52 0.043 20.9 67.6 ND ND	16.9 32.7 11.5 0.012 0.872 1.26 0.031 19.2 60.1 ND ND	18.6 35.5 12.5 0.014 2.16 1.46 0.045 20.9 66.6 ND ND	11.2 21.4 7.85 0.0066 1.64 0.970 0.017 13.2 42.4 ND 0.0057	16.8 33.4 11.9 0.017 0.762 1.22 0.020 19.7 63.0 ND	12.4 24.7 9.03 0.012 1.41 1.04 0.034 14.9 47.4 ND ND

<sup>a</sup>Data converted from ppm to  $\mu$ g/m<sup>3</sup>. (1ppm = 1  $\mu$ g/g x 0.0012 g/cm<sup>3</sup> x 10<sup>6</sup> cm<sup>3</sup>/m<sup>3</sup> =  $\mu$ g/m<sup>3</sup>. <sup>b</sup>Samples collected on filters. ND = Not detected. - = Not found. Plank = Not

Blank = Not run.

			Т	ABLE CC-24	(Page 1	of 3)					
		SUMMA	RY OF QUAL	LITY CONTR	OL DATA FO	DR AQUEOUS	MATRICES				
			Co	ombe Fill	South Land	dfill					
No para Jerres A											
PARAMETER	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK
DATE SAMPLED	8/13/8	5 8/13/85	8/20/85	8/20/85	8/21/85	8/21/85	8/22/85	8/22/85	8/28/85	8/28/ <b>85</b>	8/29/85
VOLATILES, ppb											
Methylene chloride 1,1,1-Trichloroethane Trichlorofluoromethane <sup>a</sup>	BM @ 2 N N	) ND	ND ND ND	ND ND ND	5.80 ND ND I	ND ND 3M@10	4.40 ND ND	14.2 ND ND	6.93 ND ND	ND ND ND	BM @ 2.8 ND ND
ACID/PHENOLICS, ppb											
Pentachlorophenol Phenol	N N		ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
BASE/NEUTRALS, ppb											
Bis (2-ethylhexyl) phtha Diethyl phthalate Di-n-butyl phthalate	late N N BM@	D BM @ 10	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND	ND ND ND
PESTICIDES/PCBs, ppb	N	D ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

<sup>a</sup>Non-priority organic quantified.

ND = Not detected.

BM = Below method detection limit.

## TABLE CC-24 (Page 2 of 3)

## SUMMARY OF QUALITY CONTROL FOR AQUEOUS MATRICES

			Combe	Fill South	Landfill					
PARAMETER	FIELD BLANK	TR I P BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TR I P BL ANK	FIELD BLANK	POTABLE WATER
DATE SAMPLED	8/29/85	9/4/85	9/4/85	9/5/85	9/5/85	9/25/85	9/25/85	10/17/85	10/17/85	8/28/85
VOLATILES, ppb										
Methylene chloride 1,1,1-Trichloroethane Trichlorofluoromethaneb	11.4 ND ND	3.20 ND ND	3.80 ND ND	BM @ 2.8 ND ND	BM @ 2.8 ND ND	20.5 BM @ 3.8 ND	9.79 BM @ 3.8 ND	3.50 ND ND	3.82 ND ND	24.8 ND ND
ACID/PHENOLICS, ppb										
Pentachlorophenol Phenol	ND ND	ND ND	10.5 ND	ND ND	10.2 21.5	ND ND	ND ND	ND ND	ND 7.49	ND ND
BASE/NEUTRALS, ppb										
Bis (2-ethylhexyl)	ND	ND	ND	ND	ND E	BM @ 10	BM @ 10	BM @ 10	BM @ 10	BM @ 10
phthalate Butyl benzyl	ND	ND	ND	ND	ND	ND	ND	ND	17.2	ND
phthalate Di-ethyl phthalate Di-n-butyl phthalate	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 11.8
PESTICIDES/PCBs, ppb	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
METALS, ppm										
Copper Lead Mercury Selenium Zinc									BM @ BM @	0.006 0.005 0.0002 0.005 0.005 0.02

302643

<sup>a</sup>Water from polyethylene container with metal spigot, used for steam cleaning of equipment.

bNon-priority organic quantified.

ND = Not detected.

BM = Below method detection limit.

Blank = Not run.

1

,

## TABLE CC-24 (Page 3 of 3)

and the second 
### SUMMARY OF QUALITY CONTROL DATA FOR AQUEOUS MATRICES

COMBE FILL SOUTH LANDFILL

PARAMETER	FIELD BLANK	TRIP BLANK	FIELD BLANK	TR I P BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	POTABLE WATER <sup>a</sup>
DATE SAMPLED	8/29/85	9/4/85	9/4/85	9/5/85	9/5/85	9/25/85	9/25/85	10/17/85	10/17/85	8/28/85
MISCELLANEOUS, ppb										
Cyanides Phenols										ND ND
TENTATIVELY IDENTIFIED VOLATILES, ppb										NF
TENTATIVELY IDENTIFIED ACIDS, ppb										
Unknown(s) Alcohol 2-Bromo-1,3-cyclopentandi	one									6.1,8.5 6.2 16.2
TENTATIVELY IDENTIFIED BASE/NEUTRALS, ppb										
Unknown(s)									9.6,4 7.1,6	9,6.8,22, 1.6,8.3, 5,6.1,6.9, 1,7.3
Methylbenzene (toluene) Dioctylesterhexanedioic a	cid								, <u>-</u>	41.5 78.3

aWater from polyethylene container with metal spigot, used for steam cleaning of equipment.

ND = Not detected.

ξ Γ<sup>α</sup>τατατά βατα το β

Blank = Not run.

NF = None found.

•

## SUMMARY OF QUALITY CONTROL DATA FOR SEDIMENTS/SOILS

Combe Fill South Landfill

PARAMETERS	TRIP BLANK	FIELD BLANK	TR I P BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK
DATE SAMPLED	11/15/84	11/15/84	11/21/84	11/21/84	11/27/84	11/27/84
VOLATILES, ppb						
Benzene Chloroform Ethyl benzene Methylene Chloride Tetrachloroethylene Toluene 1,1,1-Trichloroethane Trichloroethylene	ND BM @ 10 ND 95 BM @ 10 BM @ 10 ND ND	BM @ 10 BM @ 10 ND 87 ND ND ND ND ND	ND BM @ 10 BM @ 10 36 BM @ 10 BM @ 10 BM @ 10 ND	ND 22 ND 29 ND 8M @ 10 ND ND	ND BM @ 10 ND ND BM @ 10 ND ND	ND BM @ 10 ND BM @ 10 BM @ 10 ND BM @ 10
TENTATIVELY IDENTIFIED VOLATILES, ppb			NF		NF	NF
Unknown(s) Methoxy cyclo-butane 2-Chloro-1,1-difluoro- ethylene	21	280 97		-		
Arsenous Acrid, tris (trimethylsilyl) erter				22		

ND = Not detected.

BM = Below method detection limit.

NF = None found. - = Not found

.

### TABLE CC-25 (Page 2 of 3)

## SUMMARY OF QUALITY CONTROL DATA FOR SEDIMENTS/SOILS

,					Combe	Fill Sou	th Landfi	11					
( <b>1</b> ) }	PARAMETERS	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	F I ELD BLANK	TR I P BLANK ª	FIELD BLANK	TRIP BLANK	F I ELD BLANK	TR I P BLANK	FIELD BLANK
	DATE SAMPLED	8/13/85	8/13/85	8/20/85	8/20/85	8/21/85	8/21/85	8/22/85	8/22/85	8/23/85	8/23/85	8/27/85	8/27/85
	VOLATILES, ppb												
	Acetoneb Methylene chloride 2-Methyl-2-pentanone Tetrachloroethylene	ND ND 21 ND	260 <sup>C</sup> 50 <sup>C</sup> ND ND	ND 3C ND 3d	ND 9C ND 15	12 3C,d ND ND	43 11 <sup>c</sup> ,d ND ND		25 17 <sup>c</sup> ND ND	ND ND ND 4 d	ND 14C ND 4d	ND 94 c ND 5 c	6000 <sup>C</sup> 24000 <sup>C</sup> ND ND
	ACIDS/PHENOLICS, ppb	ND	ND										
	BASE/NEUTRALS, ppb												
	Bis(2-ethylhexyl) phthalate	64	ND										
	PESTICIDES/PCBs, ppb	ND	ND										
	METALS, ppm												
	Arsenic Cadmium Chromium Copper Nickel Zinc	4.8 19 20 5.8 9.5 25e	ND 19 10 ND 35e										
	MISCELLANEOUS, ppb												
	Cyanides Phenols	ND ND	ND ND										
	TENTATIVELY IDENTIFIED VOLATILES, ppb												
	Unknown(s) Trimethyl silanol Trichlorofluoro- methane	10	8 9 -	9 - -	8 - -	8,25 - -	7,25 13		10,25	16 - -	10 	15 	2900,2080 3750 3750

.

<sup>a</sup>No trip blank taken this day. <sup>b</sup>Non-priority organic quantified. <sup>C</sup>Found in method blank. <sup>d</sup>Estimated value. Value is below method detection limit. <sup>e</sup>Value is estimated because of interferences. Blank = Not run. - = Not found. ND = Not detected.

. .

## TABLE CC-25 (Page 3 of 3)

and the second 
### SUMMARY OF QUALITY CONTROL DATA FOR SEDIMENTS/SOILS

Combe Fill South Landfill

ł

PARAMETERS	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK	TRIP BLANK <sup>a</sup>	FIELD BLANK	TRÍP BLANK	FIELD BLANK	TRIP BLANK	FIELD BLANK
DATE SAMPLED	8/13/85	8/13/85	8/20/85	8/20/85	8/21/85	8/21/85	8/22/85	8/22/85	8/23/85	8/23/85	8/27/85	8/27/85
TENTATIVELY IDEN ACIDS/BASE/NEU												
Unknown(s)	1158,3352, 3718,1707, 9387	686,285 1795,81										
4-Hydroxy-4- methyl-2-pen	-	3274										
NON-PRIORITY METALS, ppm												
Aluminum Barium Calcium Cobalt Iron Magnesium Potassium Sodium Tin Vanadium	347 10 227 ND 275 161 <sup>b</sup> 693 26500 41 17 <sup>b</sup>	390 10 545 ND 213 220 <sup>b</sup> 718 2260 59 16 <sup>b</sup>										
CONVENTIONALS												
pH (Units)	7.43	8.15	7,26	7,56	6.95	7.05		6.97	7.0	8 7.12	7.04	7.2

<sup>a</sup>No trip blank taken this day. <sup>b</sup>Value is estimated because of interferences.

Blank = Not run.

- = Not found.

## TABLE CC-26 (Page 1 of 2)

### SUMMARY OF QUALITY CONTROL DATA FOR AIR QUALITY SAMPLES

Combe Fill South Landfill

PARAMETER	TRIP BLANK	TR IP BL ANK	TRIP BLANK	TRIP BLANK	FILTER <sup>a</sup> BLANK
DATE SAMPLED	7/24/84	9/17/85	9/18/85	9/19/85	
VOLATILES <sup>b</sup> , µg/tube					
Ethylbenzene Methylene chloride Tetrachloroethylene Toluene Total xylenes <sup>C</sup>	ND BM @ 0.05 ND BM @ 0.05	0.110 ND 0.350 0.500	ND ND 0.050 0.170 ND		
ACID/PHENOLICS <sup>d</sup> , µg/filter		ND	ND	ND	ND
BASE/NEUTRALS <sup>d</sup> , µg/filter					
Bis(2-ethylhexyl) phthalate Diethyl phthalate Di-n-butyl phthalate Di-n-octyl phthalate		11 <sup>e</sup> 95 16e ND	18e 35 10e ND	55 19 ND ND	98 ND ND 10 <sup>e</sup>
PESTICIDES/PCBs <sup>d</sup> , µg/filter		ND	ND	ND	ND
METALS <sup>d</sup> ,µg/filter					
Beryllium Cadmium Chromium Copper Lead Nickel Zinc		4.8 7.4 12 7.3 12 9.4 19900	5.6 5.3 13 10 15 6.7 19000	3.8 11 9.6 23 17 21 13700	3.2 5.6 28 ND 9.2 ND 14600
MISCELLANEOUS <sup>d</sup> ,µg/filter					
Cyanides		ND	ND	ND	ND

<sup>3026</sup> 4

<sup>a</sup>Filter blank data reported because of likely contamination of filters with metals. <sup>b</sup>Tenax or charcoal tube analyzed. For 7/24/85 units are µg of constituent. <sup>C</sup>Non-priority organic quantified. <sup>d</sup>Analysis of filter. 00

;

<sup>e</sup>Estimated value. Value is below method detection limit.

ND = Not detected.

BM = Below method detection limit.

## TABLE CC-26 (Page 2 of 2)

### SUMMARY OF QUALITY CONTROL DATA FOR AIR QUALITY SAMPLES\_\_\_\_

	Combe Fill South La	ndfill		
TR I P BLANK	TRIP BLANK	TR I P BLANK	TRIP BLANK	FILTER BLANK <sup>a</sup>
7/24/84	9/17/85	9/18/85	9/19/85	
ATILES <sup>b</sup> ,µg/tube				
	38.5, 0.0786, 0.3357, 0.0644, 0.0682, 0.1288, 0.0806, 0.0847	13.25, 0.1369, 0.4107, 0.1548, 0.1857, 0.1726, 0.2738, 0.0964, 0.1667, 0.2321, 0.125, 0.0567, 0.0667, 0.1429, 0.2429		
ne	1.0 0.1629	-		
g/filter				
	15, 139, 60 55, 23, 82, 493	35, 293, 293, 602, 16	15, 43, 206, 19, 16, 9,	84, 333, 28
tanone	336 40 - -	- 145 20	7, 16 - - 47 -	- - 19 69
lter				
	14500 27800 9350 9.2 306 970 12 16900 53500	13000 26200 9020 14 298 840 11 15700 50700	9200 18500 6620 ND 537 753 21 11400 36400	10300 19500 7020 ND 607 2500 11 11900 37300
	BLANK 7/24/84 ATILES <sup>b</sup> , µg/tube ne g/filter tanone	$\frac{\text{TRIP}}{\text{BLANK}} \qquad \frac{\text{TRIP}}{\text{BLANK}} \\ 7/24/84 \qquad 9/17/85 \\ ATILESb, \mu g/tube38.5, 0.0786, 0.3357, 0.0644, 0.0682, 0.1288, 0.0806, 0.0847 \\ 0.0682, 0.1288, 0.0806, 0.0847 \\ \text{Determine} \qquad 1.0 \\ 0.1629 \\ \text{g/filter} \qquad 15, 139, 60 \\ 55, 23, 82, 493 \\ \text{tanone} \qquad 336 \\ 40 \\ - \\ - \\ - \\ \text{Iter} \qquad 14500 \\ 27800 \\ 9350 \\ 9.2 \\ 306 \\ 970 \\ 12 \\ \end{bmatrix}$	BLANK         BLANK         BLANK $7/24/84$ $9/17/85$ $9/18/85$ ATTLES <sup>b</sup> , $\mu$ g/tube         38.5, 0.0786, 0.4107, 0.1548, 0.4107, 0.1548, 0.0682, 0.1288, 0.1857, 0.1726, 0.0806, 0.0847         0.2738, 0.0964, 0.1667, 0.2321, 0.125, 0.0567, 0.125, 0.0567, 0.125, 0.0567, 0.125, 0.0567, 0.1429, 0.2429           ne         1.0         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $0.1629$ -         - $145$ -         20 $-$ -         20 $-$ -         20 $-$ -         145 $-$ 20         - $-$ 13000         26200 $9.2$ 14         306 $9.2$ 14         306	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

<sup>a</sup>Filter blank data reported because of likely contamination of filters with metals. <sup>b</sup>Tenax or charcoal tube analyzed. For 7/24/85 units are "g of constituent. <sup>C</sup>Analysis of filter. - = Not found.

.

.

÷

APPENDIX DD

کمیت

••••

•

.

ŧ.,

PUBLIC HEALTH ASSESSMENT WORKSHEETS

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 p. 1 of 18

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

an tha grad a frida a 👔 🌔

Chemical	Koc	Ground Wate (mg/l)		Sı	urface Wate (mg/l)	r		Soil (wg/kg)			Air (nig/m3	 }	-
(CAS No.)	Value	<u>_Range Repres a/_</u>	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/	<u>i</u>
Chloreterm	31	0-0.209 C.209	<u> </u>	0-0.011	0		<u>0-5,99</u> 5	<u> </u>					L
flucromation	e 159	0-0.187 0	. <u></u>	0-0.143	0					·		1 	
ethane	152	0-0.0244 0		_			·					·	
Methylene Chleride	8.8	0-0.415 0.17607		<u>18 ;</u> 0	6 <u>000</u> 33		0-3864	0.1/38		U-0.0043	0		L
2-4 Dimethyl-	•	0-0 00312 0		0-0.071	0	-		~					

<u>a</u>/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/A = Feasibility Study document, B = Remedial investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### **INSTRUCTIONS**

- 1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in doveloping the data for this worksheet; also indicate any concerns about the monitoring data: Graundwater includes deep shallow and residential wells. Surface water includes leachate. Selps. Panges include prenious and RI duta Brownwater : Representative is well D-2; nange includes all RI and prenious monitoring and potentie well dota Surface water : Representative is RI statics W-6 minus RI station W-7 (backgrouped). Large is all RI and preprior RI statics W-6 minus RI station waters and leachate minus RI Soil: Representative of RI statics W-7. Soil: Representative of RI Field Alumence minus RI Field Canadage (backgrouped), Range Local XI water and surface minus RI Field Canadage (backgrouped), Range Local XI bocker and station W-7. Soil: Representative of RI Field Alumence minus RI Field Canadage (backgrouped), Range Local XI water and Surface water static provides and accessed soil Samples Surface RI Field Canadage.

## COMDE FILL SOUTH LANDFILL WORKSHELT 3-1 p 2 of 18

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	кос	Ground Wate (mg/l)	r	S	urface Wate (mg/l)	r		Soil (mg/kg)		Air (mg/m3)		
(CAS NO.)	Value	Range Repres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
1,1-Dichloru-	30	0-0.0652 0.00641		0-0-160	0							<u> </u>
Trichlero- ethane	56									·		<u> </u>
Benzene	83	<u>0-0.352 0</u>		0-0.141	_0_					0-0,144	t_ <u>0</u> _	
Chorosthane		<u>C-C-0743</u> O		0-0.0153	0_					·		·
Dichloroditlucm Methane	58	0-0.0237 0.0237		C-0-549	<u>0</u>						-	L

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

<u>C</u>/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

30265

Ň

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

ASSUMPTIONS (CONV.)

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

Air: Residentative - RI downwindanerage minus RI upwind anerage (backylaund) Range = RI Site derta minus RI upwind data (background).

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 p. 3 of 18

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

and the second 
Chemical	Koc	Ground Wate (mg/l)			urface Water (mg/l)			Soil (mg/kg)			Air (mg/m3)	
(CAS NO.)	Value	<u>Range Repres a/</u>	Ref b/	Range	<u>Repres u/</u>	Hef b/	Range c/	Repres c/	<u>Ref b/</u>	Range	Repres	Ref b/
Tolvene	300	0-1.37 0		0-1.51	0		0-2.995	<u> </u>		0-0.200	0.0067	<u> </u>
Trans 1,2-Dichlor ethène	59	0-0.0475 0		0-0.120	0			*******				••
1,2 Dichiono-	14	0-0.0405 0.00798		0-0.012	<u> </u>							<u> </u>
Carbon Tetrachkride	llo_	0-0.338 0		0 <u>-0.18</u> 4	0		••					
Chlorchinzene	330	6-00303 0		0-0.652	0							-

<u>a</u>/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

 $\vec{c}$ / Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

- 1. Write down each chemical found at the sile with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 p. 4 of 18

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND Koc VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	Кос	Gr	round Water (my/l)			urface Wate (mg/l)			Soil (mg/kg)			Air (wg/m3	)
(CAS NO.)	Value	<u>Range</u> P	<u>Repres a/</u>	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	<u>Ref b/</u>	Range	Repres	Ref b/
propune_	51				0-0.014	0							L
	lico	0-0.010	<u> </u>		0-0.265	<u> </u>		0 <u>-0.069</u>	U		0.0.270	0.001	
	364	<u>v-0.100</u>	0,0143		<u>0-0.02</u> 3	<u> </u>		0-1.395	0		0 <u>-0.00</u> 3	<u>0.004</u>	
Trichlero- ethylene	126	0.0568	0.00834		0-0.016	<u> </u>					<u>0-6.00</u> 17	_0_	
Bremedichlon-	· ·	·-			0-0628	C ·							

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

302654

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).

4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 2. 50718

1 (

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	Koc	C	round Water (mg/l)	·	Su	rface Water (mg/l)	r		Suil (mg/kg)			Air (mg/m3)		-
(CAS NO.)	Value	Range	Repres a/	Ref b/	Range I	Repres a/	Ref b/	Range c/		Hef b/	Range	Repres	Ref b/	ĺ
Pentuchicru pbenci_	5 <u>300</u> 0	0-0.154	0					0-0,150	0.030	****				Η
Phenol Dinbutyl-	14.2	0-0.018	0.00335		0-0.00685	0 <u>.006</u> 85								L
philadite.	IZEGEO	<u> </u>	<u> </u>		_0	0		0-6.0	0.032		0 <u>-0.000</u> 0	ι <u> </u>		Н
Bis Cachylneryl phthalate		0	0		0-0.090	<u></u>	•	0-17.115	0.771		<u> </u>	<u> </u>		
Diethyl-	14.2	0-0.0102	<u> </u>		0-0.054	<u> </u>					O-pociel	0.0000013	,	

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

c/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

- 1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 p 6 0 F 18

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemica I	Koc		nd Wate mg/l]	r		urface Water (my/l)			5011 [ <u>09789</u> ]			Air (mg/m3	)
(CAS NO.)	<u>Value</u>	<u>Range Rep</u>	res a/	Ref b/	Range	<u>Repres a/</u>	Ref b/	<u>Range c/</u>	Repres c/	Kef b/	Range	Repres	Ref b/
1,4 Dichlere - benzeue	1700	0-0-0394	<u> </u>		6-0.0191	6							
Is phorene		0-0.0219 0			<u> </u>	_0							-
1,2 Dichluro-	1700	0.0.00977	<u> </u>		0-0.014	_0_							
Benzo (a) DYPEDI Dioctyl	55 <u>00.0</u> 0						·	0-0.950	0.062				<u> </u>
Dioctyl Phthalata		_			-	· <b></b>		0-0.210	0,030				

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

c/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

7

1. Write down each chemical found at the site with its CAS Number and Koe value (see Appendix C).

2. If more than 20 chemicals are listed, identify those with the ten highest koc values with an H and those with the ten lowest Koc values with an L.

3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).

4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 P. 7 OF 18

{

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES

Chemical	Кос		Ground Wate (mg/l)	r	S	Surface Water (mg/l)	r		Soit (mg/kg)			Air (mg/m3	)
[CAS NO.]	Value	Range	Repres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
phthelate					0-0.060	0		0-68.0	<u> </u>				
	<u>55000</u> 0						<u> </u>	0-0.670	0				<u> </u>
Benze (ghi) perylene	16 <u>0000</u>					-		0-0.360	0	****	<u> </u>		. <u></u> H
Flycranthene Indenc (123 nd)	35000	. <u></u>						0-1.2	<u>C</u>	<u> </u>			<u> </u>
Dyrene	Herecco.							0-040	0		·		H

<u>a</u>/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

- 1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.

3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).

4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value,

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data;

) ]

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 p. 8 of 18

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES

Chemical	Koc		Ground Wate (mg/l)	r	S	urface Water (mg/l)			Soil (#g/kg)			Air (mg/m3	
(CAS NO.)	Value	Range	Repres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
Phencinthrene	400				•			0-0.990	_0_			•••••	
Pyrene	<u>38006</u>				*			0-0.796		*			
Accomptible	4600												
& Endealfan		•		<u></u>	0-0.001	<u> </u>			·				~
+,+'- DDE	4400000					<u> </u>		0-0.011	0.0022			·	- H

<u>a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values</u> reported as below detection limit.

b/A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

 $\bar{c}$ / Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as

representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

302658

2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.

3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., Ri report).

۲

4. Determine a "representative" concentration and order it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

s 👗 🧰 👘 👉

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 2.4 0 F 18

E

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical Koc		und Water (mg/l)			Surface Water (mg/l)			Soil (mg/kg)			Air (mg/m3)	
(CAS No,) Value	Range Rer	pres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
4,4'DDT 243000							0-0.017	0.0034				<u> </u>
Aldrin 96000				<u> </u>			0-0.132	0				<u> </u>
Dieldrin 1700							0.076	<u> </u>				·
Delta-BHC 6600												
Antimony -	0-0.03	00	*****	D	<u> </u>		0-10	<u> </u>		0-0.000069	o.coust	

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

c/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as

representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

- 1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheat; also indicate any concerns about the monitoring data;

# COMBE FILL SOUTH LANDFILL

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES

Chemical	Koc	Ground (mg		S	urface Wale (mg/l)	r		Soil (mg/kg)			Air (wg/m3	)
(CAS No.)	Value	Range Repre	sa/ Refb	/ Range	Repres a/	Ref b/	<u>Range c/</u>	Repres c/	Ref b/	Range	Repres	Ref b/
Arsenic		0-0.02	<u>&gt;</u>	0-0.01	0		<u>D-89.15</u>	10.2				
Berylium		0-0.0005 (	)	0-0.026	_0		0-10	<u>0,9</u> 2		<u> </u>	<u> </u>	
Cadmn		0-0.72 0	<u> </u>	0-0.021	0		0-10.95	1.21		0-00000	040	
Chromium		0-0.03 0	<u> </u>	0-0.13	<u>D</u>	• ·	6-16.45	31.65		0-0.00025	<u>6 0</u>	<u>.</u>
Copper		0-1.4 0.1	007	0-0.14	0		0-109	32.8		0-0.00025	90	

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/A = feasibility Study document, B = Remedial Investigation document. Page numbers (ullow document designation.

Q/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

302660

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each cliemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 PHONE 18

È.

and the second 
SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	 Кос	Ground Water (mg/l)	r	S	urface Water (mg/l)			Soil (mg/kg)			Air (aq/m3)	
(CAS No. ]	Value	Range Repres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
LEAD		D-2.25 D		0-0,33	0		0-56.55	10.35		0-0.000159	0.000014	
MERCURY		0-0.006 0.0002		0-0.001	_0		0-0.35	D		•••••		
NICKEL		0-0.03 0		0-0.19	_0		0-70.5	16.0		0-0.000017	0.000034	
SELENIUM		0-0.07 0		0-0008	_0	*	0-3.8	_C				
SILVER		D-0.004 0		0-0.006	0 .		0-41	0			-	_

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/A = Feasibility Study document, B = Remedial Invostigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

.

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

302661

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 P.12 OF 18

ີ ເ

SCORING FOR INDICATOR CHEMICAL SELECTION: CUNCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	Koc	Gr	ound Water (mg/l)	r		irface Wate (my/l)			Soil (mg/kg)			Air <u>(mg/m3</u>	1
(CAS NO.)	Value	Range R	epres a/	Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Ranye	Repres	Ref b/
Thallium		0	<u> </u>	<u></u>	0-0.012	D		0-5.1	2.64	<b></b> -			
Zine		0-4.0	0.03	<u> </u>	0-2.6	0.05		0-291.5	16.7	<u> </u>	<u> </u>	0	
Phonels		0-0.428	0		0-0.418	0		0-1.2	0				
Cyanides		D-0.120	0.0295		0-0,070	_0	·						
ROSS & - (pG)	k) -	0-13±7	80		0-40.9±	11 0		-	-		-	-	

a/ Nean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

- 1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).
- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., k) report).
- 4. Determine a "representative" concentration and enter it; Indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

COMBL FILL SOUTH LANDFILL WORKSHILL 3-1 p. 13 07 18

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND Koc VALUES IN VARIOUS FAVITRONMENTAL MEDIA

Chemical	Koc		und Water (mg/l)	Ref b/		ace Wate	Ref b/		Soil (mg/kg)	Sec 14	9.0000	Air 1mg/m3	
(CAS NO.)	Value	nange ni	pres a/	Rei UZ	<u>Rangé Re</u>	pres a/	0707	Nange C/	Repres c/	<u>Ref b/</u>	Range	Repres	<u>Ref b/</u>
GRUSS B		$D = 13 \pm 2.0$	<u>2.5±1.6</u>		1.18-243±17	D							
1,1-Dichlosoethylene		0-000641	<u> </u>										
c'hrysene -	kc,000				·			0-0.990	0				
Hepfane			-		0-,000021	0	•	• •				-	
Propylbenzene	-			and the second s	0-0.000011	0.		-	-	د		-	<del>~</del>

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

.

.

i

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., R) report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data;

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 DI4 0 F 18

λ.

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical H	00		Ground Wate (mg/l)			Surface Wate (my/l)			Soil (mg/kg)			Air (my/m3	)
	alue	Range	<u>Repres a/</u>	<u></u>	Ratigo	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Kange	Repres	Ref b/
3 Floure -> - propynenitrile	· <b></b>						•••••	0-2.6	Ø				
1,3-Dichteresyclo								0-5.1	0	<u> </u>			
1- Flouroy methox	Y							D-3.0	0				
2 Chloro-1,1- difluercethylene							·						
arthy   nupthelene	-	~	-		~		-	0-0.180	~	-	-	-	_

a) Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = Feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

302664

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., R) report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 0.15 0/ 18

CARLANDA CARLANCE

## SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	Кос	G	round Water (mg/l)		ومعرفين وموجوعها	urface Wate (mg/l)			Suil (mg/kg)			Air (mg/m3	)
(CAS NO.)	Value	Range	Repres a/	Ref b/	<u>Range</u>	Repres a/	Ref b/	Range_c/	Repres c/	Ref b/	Range	Repres	Ref b/
dichiorefluere ineliane		0-1128	<u> </u>	al - alla al - alla su									
2-bruno-1,3-eyela Puntunadioix													
2-Fluerophenel								0 - 4.362	6				
1,4 - dichlore in time	<u> </u>				0-0.010	0							
1,1,2-trichlere-1,4,7 telEluscestore	, ,							0-68,0	٥				

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C),

.

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 0 16 0 f 18

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical	Koc		round Wate (mg/l)			urface Wate (mg/l)			Soil (mg/kg)			Air (mg/m3)	)
(CAS NO.)	Value	Range	<u>Repres a/_</u>	Ref b/	Range	<u>Repres a/</u>	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
4-Mithy1-2- Pentanona								0-0.028	<u> </u>				
3,3,3 trichloro- 1- propine		0-0.013	50	<u> </u>	0-0.012	0							
1-chloro-2 proponel					0-0.074	<u> </u>					0-0.02003g	0.000012	
te trady loo alioclome	hy 1)-6 -	-mathoxy-2	2H-14-14-4	-0[	.~		·	0-8.4	0	·			
Tetrachlore stium	- 118	0-0.005	0			<u> </u>		<del></del> -					

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

30266

σ

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

COMBE FILL SOUTH LANDFILL WORKSHEET 3-1 p. 17 of 18

and the second 
4

SCORING FOR INDICATOR CHEMICAL SELECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical Koc	Ground (mg/	1)		urface Wate (mg/l)			Soii (mg/kg)			Air (mg/m3	)
(CAS No.) Value	Range Repres	a/ Ref b/	Range	Repres a/	Ref b/	Range c/	Repres c/	Ref b/	Range	Repres	Ref b/
Dichlorobenzine	0-0.105 0										
Naphthalene	0-0.00324 0		0-0,0177	۵		00.084	0				
Cis-2-brunceyelo	0-0.00894 0	. <u></u>				*****					
fluerob.phenel _	0-0.01403 0				·						
t-chisis-2-methyl- benzenamine	D-0.009 D			,	-						

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

c/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

a

 $|\mathbf{1}_{i}|^{2} = \left[1 - \frac{1}{2} \left[\mathbf{1}_{i} - \mathbf{1}_{i}\right] + \frac{1}{2} \left[\mathbf{1}_$ 

- If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten 2. lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value. 4.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

## COMBE FILL SOUTH LANDFILL WORKSHELT 3-1 2.18 54 18

## SCURING FOR INDICATOR CHEMICAL STLECTION: CONCENTRATIONS AND KOC VALUES IN VARIOUS ENVIRONMENTAL MEDIA

Chemical Koc			ound Water (mg/l)			urface Wale (My/l)	-		Sort (mg/kg)			Air {mg/m3	1
(CAS NO.) Val	ue	<u>Range R</u>	epres a/	Ref b/	<u>Range</u>	Repres a/	Ref b/	Range c/	Repres c/	<u></u>	Range	Repres	Ref b/
1-1-bypheny/ flure			-		0-0.000036	0		·-	~			-	
155 Dibromojvatane					0-0.000045	<u> </u>							
1-chloro -2 nitrobinzenie				0	1-0,000017	0							
4- Fluro-1, 1'- Bystingy	_ (	)-0,0×206	0								<u> </u>		

a/ Mean of reported values used as representative concentration for surface and ground water; zero used for all values reported as below detection limit.

b/ A = feasibility Study document, B = Remedial Investigation document. Page numbers follow document designation.

C/ Soil concentration range is across surface, subsurface soils, and sediments; mean of the surface soil values used as representative concentration; zero used for all values reported as below detection limit.

#### INSTRUCTIONS

1. Write down each chemical found at the site with its CAS Number and Koc value (see Appendix C).

-

302668

- 2. If more than 20 chemicals are listed, identify those with the ten highest Koc values with an H and those with the ten lowest Koc values with an L.
- 3. Indicate the range of concentrations for each chemical in each medium and the source of the information (e.g., RI report).
- 4. Determine a "representative" concentration and enter it; indicate in footnotes the basis of the representative value.

#### ASSUMPTIONS

-j°

List all the major assumptions made in developing the data for this worksheet; also indicate any concerns about the monitoring data:

4

٠

# COMBERENTET S-2 plot 22

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	M <sup>1</sup> ₽\	s_b∕ ₁	a_b/ T
chleretorm	_ <u>Pč</u>	<u></u>	5.71×10-2	2.86 x 10.6	5.71 ×10-1
	NC	- معرب ، 			
trichlarsfluoromethine	NC.				
Wil-trichlarsethere	NC	.2	7.33 + 10.4	3.47× 10""	7.33 x 10-3
methylene chloride	PC	62			

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

302669

# COMBE FILL SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <sub>1</sub> ₽/	s_ <u>b</u> /	a <u>b</u> /
Methylene Chloride	NC	10	9.30×10-4	4.60×10-3	9.20 + 10-3
1.1 - Dichloroethane	NC	<u>۲</u>	2.58×10-2	1.29×10-4	2.58× 10-1
Trichlorouthane	pc	Ċ	8.57× 10-3	4.79×10-1	8.57 + 10" 2
	NC				
Benzene	PC	A	7.43 × 10-3	3.71×10-7	7.43×10-2

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

## 

# COMBE FILL SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	, <sup>1</sup> ₽	د <u>۵</u> / ۱	a_b∕ T
benzene	NC	5 x, > / 10 air	1.17 VID-1	5.85×10-6	1.18 x 102
chloroethane			<u> </u>		
dichlorod, flooramethane	NC				—
treas- 12-2. chi contry lene	NC	7 5	5-25×10-3 5-21× 10-2	J. 65 x 10- 1 2-65 x 10-6	5.20 × 10-2 5.29 × 10-1
2, + - dimethyl provid	~	-			

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.

•

b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <sub>Ţ</sub> 堕∕	s_b/ T	a_ <u>b</u> / T
1,2-Dichloroethane	PC	<u>B2</u>	6.57×10-3	3,29×10-7	6.57×10-2
	NC	10 w, 5/ gair	1.76×10-2	8.80 - 10-7	1.10 × 100
Carbon Tetrachloride	PC	<u>B2</u>	1. <u>11×10</u> °	5.57×10-5	1.11×101
	NC	<u>10</u>	3.17×10-1	1. <u>59 × 1</u> 0-5	3.17× 100
Churobenzene	NC	4 w, s/ air	1.43×10-1	7.14×10-6	2,74×10-1

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.

b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). if there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

1 (

. 4

List all the major assumptions made in developing the data for this worksheet:

# COMBERETILL SOUTH LANDFILL

SCORING FOR INDICATOR CHEMICAL SELECTION:

TOXICITY INFORMATION

Chemica I	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	۳ <sup>1</sup> <u>۳</u>	s_ <u>b</u> / T	a <u>b</u> / T
1,2 - Dichloropropane	NL	10	1.00 × 10-1	5.00 x 10-6	1.00 × 10°
Ethyl Benzene	NC		1.10×10-2.	5.57 ×10-7	1.10×10-1
Tetrachlorcothylene	PC	Br	5.14× 10-3	3.57×10-7	5-14 4 10-2
F	NC	7 w, 5/10cir	9.67~10-3	4.81×10-7	2.15×10-2
Trichloroethylene	PC	B7	5.14 x 10-3	2.57+10-7	5.14 x 10-2

a/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.

b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

٠,

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

5

# COMBE FILL SOUTH LANDFILL

SCORING	FOR INDICATOR	CHEMICAL	SELECTION:
	TOXICITY II	FORMATION	1

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <u></u> ₽/	\$ <u></u> T	a <u>b</u> / T
Trichlocoethylene	NC	5 w, s/ 4 a17	1.05 × 10°	5.36× 10-5	2.96 × 10
Bromodichloromethane					
Rentachlorophenol	NC				
Phenol	NC				
Dibuty phthalate	NC	8	3.81×10-2	1.90 × 10-6	3.11 x 10-

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

Data takan irum Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values,
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

# COMBERET SOUTH LANDFILL

1

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

.

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <u></u> <u></u> 1	s_b∕ ⊺	a <u>b</u> /
Bis (2-2thylh=xyl) puthalate					
Piethyl phthalate	NC	4	2.67×10-4	1.34 10-8	2.67 × 10-3
1.4-Dichlorobenzene	NC	4 w15/5-417	-5.19 × 10-3	2.W×10-6	3.61×10-1
Isephorone					
1.2 - Dichlorobenzene	NC	4 w, s / 5 air	5.19 x 10-2	2.60×10-6	3.61 × 10-1

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

## INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

. .

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

.

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	م <sup>1</sup> <i>p</i> \	s_ <u>b</u> /	a_ <u>b</u> /
Benzo (a) pyrene.	PC	<u>B2</u>	1.43 × 101	7.14 × 10-4	1.43×102
	NC	gwis/ liair	2.67×101 .	1,33×10-3	1.91×10'
Diactyl phthalate	<u> </u>				<u> </u>
Butylbenzyl phthalate					
Benzo (h) Fluoranthene	PC	B2	4.29 × 10"	2.14×10-4	4.29×10'

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

.

List all the major assumptions made in developing the data for this worksheet:

# COMBERET SOUTH LANDFILL

an an an an an an an Anna Anna Anna 🐮 🌔

### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	, <sup>t</sup> ₽\	\$ <u>b</u> /	a_ <u>b</u> / T
Bonzo (b) flooranthene	NC				
Benze (3h.) perylene	<u>P2</u>			·	
	NC	· · · · · · · · · · · · · · · · · · ·			·
Fluoranthene	PC				
	NC	······			~~

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	م <sup>1</sup> p\	s <u>b</u> / T	a b/ T
Ind. no (1,2,3-cd) pyrene	PC	<u></u>			
	NC		*		
he ounthrene	PC	D			
	110		، ــــــــــــــــــــــــــــــــــــ	·	
Pyrenk	PC				

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
 b/ Data taken from Appendix C.

•

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

302678

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	۸ <sup>1</sup> p\	\$ <u>b</u> / T	a <u>b</u> / T
Pyrenk	Nic				
Acompositione Norphthaleae	PC+NC				
& - Endusulfan Chrysene	PC		1.13 × 10-1	7-14 = 10-4	1.43-104
4,4'-DDE *	<u>ρς</u>	<u> </u>	1.69 × 10-1		

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). . If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	Å <sup>1</sup> ₽\	s_b/	a_ <u>b</u> /
4.4'-DDE	NC				
4,4'-DDT	PC	B2	1.60× 10-1	8.00×10-4	1.60 x 10°
	NC				
Aldrin	pe	82			<u>-</u>
	NC	6	3.39 × 10°	1.69×10-4	3.39 x 10'

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
 b/ Data taken from Appendix C.

۰,

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the I values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

». **به** ا

3

SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

.

Chemicat	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <sub>Ţ</sub> <u>Þ</u> /	s <u>b</u> /	a <u>b</u> /
Dieldrin	PC	B2	3.71 × 10°	1.86×10-4	3.71×101
	NC				
Delta BIK	PC	D			
	NC				***
Antimony	NC	10w,5/8air	4.35×10°	2.17×10-4	2.29×102

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	م <sup>1</sup> <i>p</i> \	s_ <u>b</u> /	a_b/
Arsenic	<u>Pc</u>	_A	.3, 71 x 10°	1.86×10-4	<u>3.71×1</u> 0'
	NC	9	1.80×10'	9.00×10-4	1.80×10-2
Berylium	PC	Dw.5/BJair	NA	NA	4.86 × 10°
	NC	_ws/gair			1.45× 104
Cadmium	PC	DWis/Blair	NA	NA	1.71 ~ 10'

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

-

# 302682

.

**.** .

1

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <u></u> ₽/	s_b∕ T	a_b/ T
(admium	NC	10 w, s/8 air	4.45 × 10°	2.23×10-4	3.59 K 102
Chiomium (+3)	NC			·	
(16)	PC	Dw, s/Aair	NA	NA	5.43 × 10-1
(+6)	NC	- w,s/ 8 air		_	2.50 × 10'
Copper	NC	5	7.14 × 10-1	3,57× 10-5	7.14×100

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	w_ <u>b</u> /	\$ <u></u> <u></u> ₽/	a_b/ T
Lead	NC	10	8.93×10-1	4.46 K10-5	8,93×10°
Mercury	NC	7 ws/gair	1.84 . 101	9.21×10-4	1.8(x10)
Nickel	PC	Dwis/Aair	NA	NA	3.14×10-1
	NC	10	4.76 x 10°	2.13×10-4	1.57 × 107
Selenium	NC	10	1.05×102	5.26 × 10-3	1.05×103

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

# COMBENEET SOUTH LANDFILL

and the second 
#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemica I	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩₽́	s <sup>1</sup> ₽∖	a <u>b</u> / T
Silver	NC	<u> </u>	w?.00x 10'	1.00×10-3	2.00×102
Thallion	NC				
Zine	NC	8	1.07 × 10-1	5.33×10-6	1,07×100
Phenols	NC	3 wis/ 10 air	1.00×10-1	5.02×10-6	2.49×10°
Cyanides	NC				

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3~1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

# COMBERENT SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <sub>1</sub> ₽/	s_ <u>b</u> ∕ ⊺	a <sub>t</sub> b∕
Xylenes	NC		·		
Nonane			•	·	
Acetone	NC		·····	-	
2 - Butanone					
-Niethyl-2-pentanone -Methyl-naphthalené					

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b) Data taken from Appendix C.

١

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

and the ground the term 🕼 🌾

# SCORING FOR INDICATOR CHEMICAL SELECTION:

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <u></u> <u></u> 1	s_b/ T	a_b∕ T
3.3.3 Trienlore Triepene					
1-chlore-3-propanol					~
Tetrachloraethane	PC	<u>_</u>	4.86×10-2	2.4.3×10-6	4.86 × 10-1
· · · · · · · · · · · · · · · · · · ·	NC	5	4.55×10-1	2-27×10-5	4.55 × 10°

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.

b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

302687

10 C ...

#### COMBE FILL SOUTH LANDFILL HORKSHEET 3-2 20 07 22 SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <sub>1</sub> ₽∕	s <sub>Ţ</sub> <u>b</u> /	a_b∕ ĭ
Dichlorobenzene	NC	4w, \$ / 5 uir	5.19×10-2	2.60 × 10-4	3.61×10-1
cis-2-Bromocyclo- hexanol					
Flucrobiphenol					
4-Chluro-2-methyl benzenamine	_			-	
Dicklorofluoromethane	-				_

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
<u>b</u>/ Data taken from Appendix C.

١

#### INSTRUCTIONS

- Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

COMBERENTEL SOUTH LANDFILL

#### SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

. •

Chemical	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	۸ <sup>1</sup> <u>۲</u>	s_b∕ ĭ	a_ <u>b</u> )7 T
2-Brime-1,3-eyela pentanedicae					
2-Fiverophenol					
1,4-Dichlorobutane	-				
1,1,2-Trichloro-1,2,2- triflucrosthure					
3-Fivoro-2- propynenitrile	•				

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.

b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- Record the rating value or EPA category for each compound in each class (see Appendix C). If there
  are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

List all the major assumptions made in developing the data for this worksheet:

-----

SCORING FOR INDICATOR CHEMICAL SELECTION: TOXICITY INFORMATION

Chemíca I	Toxicologic Class	Rating Value/EPA Category <u>a</u> /	₩ <u>₽</u> /	\$ <u></u> 1	a <u>b</u> / T
1,3 - dichlerocyclobutane					
1-flucio - 4-methoxyhenzene	<u> </u>	······································			
2-Churchild flucio ethylare			* 		
heptice					<u> </u>
Freque benzenk					

<u>a</u>/ Rating value is for severity of effect for noncarcinogens, range in 1(low) to 10(high); EPA category is a qualitative weight-of-evidence designation for potential carcinogens; explanation of the categories is presented in Exhibit D-2, Appendix D. Information taken from Appendix C.
b/ Data taken from Appendix C.

#### INSTRUCTIONS

- 1. Record compounds from Worksheet 3-1, then refer to Appendix C and note whether they are classed as PC or NC or both.
- 2. Record the rating value or EPA category for each compound in each class (see Appendix C). If there are route-specific differences, record both values.
- 3. Record the T values from Appendix C.

#### ASSUMPTIONS

ي جاھيت ور 1

List all the major assumptions made in developing the data for this worksheet:

# 

#### COMBE FILL SOUTH LANDFILL WORKSHEET 3-3 0 + 4

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR CARCINOGENIC EFFECTS

	Ground C	Water T	Surfac C	e Water T	Sa C	i   T		ir Ct	15	Va lue		itative lank
Chemical	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Chloroform	0.012	0.017	6.28 10-4		1.71×10-5			····	0.0120	0.017	4	(8.)
Benzene	1.57×10-3		1.05×10-3	·			0.0107		0.0126		3	(A)
1,2 - Dichloruethane	2.66×10-4	<u>5.24</u> ×10-5	7.88 + 10-5						2. <u>66x1</u> 0-4	5.24× 10-5	5	<u>4</u> (B2)
	<u></u>	<del></del>										

#### INSTRUCTIONS

.

- 1. List all of the chemicals to be considered as potential carcinogens.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate a CT based on both the maximum and representative concentration for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values. Also, enter their EPA weight-of-evidence category in parentheses next to their rank.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

#### COMBE FILL SOUTH LANDFILL WORKSHEET 3-3 p. 2 J 4

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR CARCINOGENIC EFFECTS

		d Water CT	Surfac (	e Water		Dil CT	Ai	r	IS	Value		tative ank
Chemical	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Carbon Tetrachlunde	0.375		0.204				<u> </u>	·	0.375			(32
Tetrachillacthylene	5.14, 10-4	7 <u>35 x 10-5</u>	1.18× 10-4		3.59 × 10-7		1.542×10-4	J.156x 10	4 6.686x10	# <u>2.791×10-4</u>	<u>_6</u>	<u>3</u> (B2)
Trichloroethylene	2.42×10"	4.387×16-5	8.724×10-5				8 175×10-5		3 <u>744 x</u> 10-	4 4.237 - 10 5	_7_	<u>6</u> (B2)
Benzoln) Fyrene					6.753×10-4	4.427 * 10	·	·	6.783×10	44.477e10-5	5_	(دھ <u>) ج</u>
Benzu (b) floranthene					1.434 x 10"4		•••••		1.434 x: 10-4	1	9	(B2)

#### INSTRUCTIONS

1. List all of the chemicals to be considered as potential carcinogens.

302692

- 2. Calculate concentration times toxicity (CI) values using the information from Worksheets 3-1 and 3-2. Calculate a CT based on both the maximum and representative concentration for all media in which the chemical was detected.
- Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values. Also, enter their EPA weight-of-evidence category in parentheses next to their rank.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

and an a state of the state of

(

### SOUTH LANDFILL WORKSHEET 3-3 0 3 074 COMBE FIL

# SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR CARCINOGENIC EFFECTS

		d Water CT	Surfa	ce Water CT		OII CT	A	CT ·	15	Value		tative ank
Chemical	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Icsenic	0.0747		0.0371		0.0166	<u>0.00190</u>			0.0908	0.00190	2	<u>2</u> (A)
admicim							6.84×10-	5	6-84×10	s	10	(D/E
Vickle	<u> </u>				<u> </u>	5,	338×10-6	7.536×10	5.338x10	6 7.5364/0-4	13	<u>7</u> (D)
hyrsene		<u> </u>			7.069x10	-			7.069×10-6	·	12	
1								,				•

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered as potential carcinogens.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate a CT based on both the maximum and representative concentration for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- u. Rank the compounds based on both their maximum and representative IS values. Also, enter their EPA weight-of-evidence category in parentheses next to their rank.

#### ASSUMPTIONS

30269 List all major assumptions made in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL WORKSHEET 3-3 p. 4 of 4

#### SCORING FOR INDICATOR CHEMICAL SELECTION; CALCULATION OF CT AND IS VALUES FOR CARCINOGENIC EFFECTS

	Groun	d Water CT		ce Water CT	So C	Dil 21		Air CT	IS	Value		itative lank
Chemical	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
4,4'-DDE					5.473210-8	1.195×10-8			5.973×10	\$ 1.195×16-8	15	9 (87
4,4'-DDT	-			~	1.36×10-7	2.7.2×10-8			1.36 × 107	2.72 × 10-8	14	<u> </u>
Dieldrin					1.414×10-5				1.414×10-5	·	11	(62
										<u> </u>		

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered as potential carcinogens.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate a CT based on both the maximum and representative concentration for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values. Also, enter their EPA weight-of-evidence category in parentheses next to their rank.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

۰.

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 p.10+8

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

Chemical	Ground C		Surfac C	e Water T	So C	) i   ;T	Ai C	r T	IS	Value _		tative ank
	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
1,1,1-Trichloroethane	1.784×10-5	·							1.789 10-5			
Methylene chloride	3.818×10-4	1.620×10-4	2 55 Yx 10-1	3.036×10-1	1.777×10	7 <u>5.23</u> 5x10	" <u>3:456 x 105</u>		4.215 × 104	1.620×10-4		13
1,1-Dichlorsethane	1.682410-3	1.654 × 10-4	4.1.28× 10-3						4-128×10-3	1.654 210-4		12
Benzene	0.0.79		0.016				16.992		17.07			

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- Rank the compounds based on both their maximum and representative IS values.

ASSUMPTIONS No List all major assumptions made in developing the data for this worksheet:

ů S S

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 p. 2068

SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

#### Ground Water Surface Water Soil Air Tentative CT CT ÇT CT IS Value Rank Repres Max Repres Max Repres Chemical Max Repres Max Max Repres Max Repres 7.85.7×10.3 3.484×10-4 7.787,10 Tolucne. 7.124 /0-3 0.0104 3.434.10-4 15 0.01825 9 6.348×103 6.345 × 10-3 2.513 + 10-3 Trans -12 - dichlowethylene ----7.128× 10-4 2.112 x 10 7.128x 10-1 1.404 + 10 1.404 × 10 14 ha - Dichleroethone Carbon Tetrachleride 0.1071 0.6583 0.1071 13

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

WORKSHEET 3-4 p. 3 of 8

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

Chemica I	Ground	l Water ST	Surfac C	e Water T	Se	Dił CT	A	ir Cī	15	Value		itative Jank
	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Chleropenzene	4.333-10-3		7.436×10-5			<u> </u>			7.436×15	-3		
1,2 - Dichleropropunz	· ·		1.4 x 10-3				<u> </u>		1.4 x 10-3		<b></b>	
Ethyl benzene	1.1 x 10-4		2.915×10-3		4.968×104		0.0297	1.1 × 10-4	0.0326	1.1×10-4	-14	15
Tetrachloroethylene	9.62×10-4	1. <u>376×10-4</u>	2.213×10-4		6.71×10-7		8 <u>25 × 10-5</u>	111 10-4	1.045 x 10	3 2.476 × 10-4		_11_

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT
  values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

WORKSHEET 3-4 p.4 of8

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

Chemica I	Ground	Water T	Surfac C	e Water T	Sa	DII CT	Ai C	r T	IS	Value		tative ank
	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Trichleroathilene	0.0546	8.757 × 10-3	0.0168				0.0503		0.1100	<u>8.757 × 10-3</u>	1.2.	2
<u>Di-n-butyl philmin</u> te					1.14,10-5	6.08×10-8	2286x 10-6			6.05 × 10-8		
Diethyl Phtychate	2.723×10-6		1.442 10	<u> </u>			2. <u>67 x 10</u> . S	3.4.71x 10	1 1.4 <u>45×10</u> -5	3.471 × 10-4	<u></u>	
1,4-Dichlardbenzanz	2.045×10-3		9 <u>.913×</u> 10 <sup>-4</sup>					<u></u>	2.045×10-3		<u></u>	

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest C? value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 p. 5078

and the second 
.

**#** 

1

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

Chemical	Ground	Water T	Surfac C	e Water I	Sa	ii T	A	lir CT	IS	Value		tatíve ank
	Max	Repres	Max	Repres	Max	Repres	Max	Repręs	Max	Repres	Max	Repres
1,2 - Dichlorobenzene	5.071 × 10-4		3.841×103	·					3.341× 10-3			
Benzo (a) pyrene					1.264 × 10-3	8-246×10	-5	·	1.264×10-3	8.246×10-5		
Alden					2 23! x 10-5				2.231 × 10-5			
Antimony	0.1305				2.17×10-3	<u> </u>	0.0158	7.786 - 10-	0.1485	7.786× 10-3	9	3

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 p. 6 0 4 8

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARGINOGENIC EFFECTS

Chemica I	Groun	d Water CT	Surfac	e Water CT		oil CT	Ai	r T	1	S Value		tative ank
	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Arsenie	0.360		0,180		0.0802	9.13 , 10-3			0.4402	9.18 × 10-3	7	
Cadmium	c. <u>974</u>		0.0935		2.442×10	3 2.(18× 10-4	1.436×10-3		0.9829	2.698× 10 4	5	10
Capper	0.9994	4 998 10	3 0.01946		3.891 × 10-3	and the state of t	1.849×103		1.005	6.169 × 10-3	4	5
Lead	2.009		0.2947		2.522 + 10-2	4.16.16 × 154	1.42× 15-3	1.250,10	4 2.012	5.866×154	3	_7_

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative IS values.

#### ASSUMPTIONS

# 

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 p. 7 of 8

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

Chemical		d Water CT	Surfac (	ce Water CT	S	OII Ct	Ai C	r T	15	S Value		tative ank
	Max	Repres	Max	Repres	Max	Repres	Ma×	Repres	Max	Repres	Max	Repres
Mercury	0.1104	3.68×10-	<u>3 0.0184</u>		3.224× 10	-4			0.1107	3.45× 10-3	<u></u>	6
Nickel	0.1278		0 <u>.8094</u>		U.0150	3. 108 × 10-3	2.669× 10	3.768 × 10-3	0.8271	7.176× 10-3	<u>_</u>	4
Selenium	2.1		0.84	· · · · · · · · · · · · · · · · · · ·	0.0200				2,12		<u>}</u>	
Silver	0.08		0.12		0.041				0.161		10	

`

#### INSTRUCTIONS

1. List all of the chemicals to be considered for noncarcinogenic effects.

3.4.0.

302701

- Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT 2. values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Racord the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative is values.

#### ASSUMPTIONS

List all major assumptions made in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL WORKSHEET 3-4 0.8 018

#### SCORING FOR INDICATOR CHEMICAL SELECTION: CALCULATION OF CT AND IS VALUES FOR NONCARCINOGENIC EFFECTS

	Groun	d Water CT	Surfa	ce Water Cl	Sa	) i l T	A	lir CT	11	S_Value		itative lank
Chemical	Max	Repres	Max	Kepres	Max	Repres	Max	Repres	Max	Repres	Max	Repres
Zine	0.428	3,21×10-3	<u>0.278</u> 2	5 <u>,35x103</u>	1.554×10-3	<u>8.401,0105</u>			0.4296	5,439 x 10-3	8	8
						<b>-</b>			<u> </u>			
······································		<u></u>		<del>.</del>								
	<del></del>						<del>_</del>	<del></del>	<del></del>			<u> </u>

#### INSTRUCTIONS

- 1. List all of the chemicals to be considered for noncarcinogenic effects.
- 2. Calculate concentration times toxicity (CT) values using the information from Worksheets 3-1 and 3-2. Calculate CT values based on both maximum and representative concentrations for all media in which the chemical was detected.
- 3. Sum the CT values across media, keeping the two types of concentration separate. Use only the highest CT value of ground water and surface water if both were contaminated. Record the sums in the IS column.
- 4. Rank the compounds based on both their maximum and representative iS values.

#### ASSUMPTIONS

Ust all major assumptions made in developing the data for this worksheet:

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 p.10f7

tha an an that the the total the

# SCORING FOR INDICATOR CHEMICAL SELECTION: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representative Values

Chemicai	<u>15 V</u> PC	la i ue s NC	Rani PC	king NC	Water Solubility (mg/l)	Vapor Pressure (mm Hg)	Henry's Law Constant (atm-m3/mole)	Koc	GW	<u>Haif-Life</u> Sw	(Days) Soil	Air	IC
Chloroform	0.01.2				8.2×103	1.51×102	2.87×10-3	3L		0.3-30		80	·+-
Methylene chiorde		1. <u>6241</u> 04		13	.2 x 104	3.62×102	2.03× 103	8.8		1.2-5.8		53,2	<u>+</u>
Toluene		-3.454×10	4	9_	5.35,102	2.01×10'	6. <u>37×1</u> 0-3	300		0.17		1.3	+-
1,2 -Dichlorow Hane	5.24×10	15 <u>1.404×</u> 10	<u>ч_ц</u>	14	8.51×103	6.4 × 10'	9.75×10-4	14		0.17		<u>36-127</u>	+

#### INSTRUCTIONS

- List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking. 1.
- Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant. Koc. and half-lives in 2. air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.

30270

In the last column indicate with a + those chemicals which have been selected as indicator chemicals. 5.

#### ASSUMPTIONS

List all major assumptions made in the development of data for this worksheet:

Greater weight given to compounds found in groundwater for final selection. Benzene added to final indicator list although not "representations", but occurs in groundwater upgradient of pusceptible private wells. Arsenic was eliminated as an indicator chemical during second iteration of evaluation.

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 p. 2 of 7

scoring for indicator chemical selection: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representation Values

Chemica I	<u>15 V</u> PC	alues NC	<u>Rar</u> PC	nking NC	Water Solubility (mg/l)	Vapor Pressure (mm Hg)	Henry's Law Constant (atm-m3/mole)	Koc	GW	<u>Haif-Life</u> Sw	(Days) Soil	Air	IC
tetrachicroethylene	2.741,10	4 2.476×10	-3	<u>_11</u>	1.5x102	1.78×10'	2.54×10-2	364	·	<u>1-30</u>	·	47	<u>+</u>
Fichloruethylene	4 2874 10-	5 8.757, 10-2	<u> </u>	2	1.1 x 103	<u>5:79 x 1</u> 0'	9 <u>.1×10</u> -3	136		1-90		<u>3.7</u>	<u>.+-</u>
benza (a) purene	\$ 427 x 10	5 8.246×10-2	5_5		1.2 × 10-3	5.6 x 10-9	1.55x10-6	55x106	<u> </u>	0.4	420-450	1-6	-a
arsenic	0.0019	9.18×10-3	2			0.0				Persistent	+	5	<u>+</u>

# INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.
- 5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

ASSUMPTIONS 30270 List all major assumptions made in the development of data for this worksheet: Arsonic clininated from indicator chemical list cluring second iteration of evaluation.

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 p 3 0 + 7

SCORING FOR INDICATOR CHEMICAL SELECTION: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representative Values

Chemical	<u>is ya</u> PC	lues NC	<u>Ranl</u> PC	king NC	Water Solubility (mg/l)	Vapor Pressure (mm Hg)	Henry's Law Constant (atm-m3/mole)	Кос	GW	Haif-Lif Sw	e (Days) Soil	Alr	IC
4,4'-DDE 4,4'-DDT	1 <u>.195×10-8</u> 2.77×10-8		9 8		4 <u>×10</u> -7 5 <u>×10</u> -3	<u>6.5 x 10</u> -6 5.5 x 10-6		4 <u>400</u> 000 2 <u>4300</u> 0	·	56-110	1000-5500		
nickel 1,1-dichioroethone	7 <u>536×1</u> 5-6	7 <u>176×</u> 10 <sup>-9</sup> 1 <u>.654×</u> 10-9		<u>4</u> _11_	<u> </u>	· <u>0.0</u> 1. <u>82 x 10</u> 2	<u></u> <u>7:31 x 10<sup>-3</sup></u>	<u> </u>		<u> </u>		<u> </u>	± ± +

. INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- 2. Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- Document any changes in ranking made because of exposure factors. 4.
- 5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

#### ASSUMPTIONS

302705 List all major assumptions made in the development of data for this worksheet:

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 p. 4 0 7

#### scoring for indicator chemical selection: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Bused on Repressontective Values

Chemical	<u>IS Values</u> PC NC	<u>Ranking</u> PC I	Water 1Solubility NC(mg/l)	Vapor Pressure (mm Hg)	Henry's Law Constant (atm-m3/mole)	Koc	CW	Half-Life Sw	(Days) Soil	Alr	IC
ethylben zene	<u> </u>	-4	5 1.52 × 102	7.0	6.43× 10-3	1100		<u>1.5-7,5</u>		1.46	
antimony cudmicm	<u> </u>		<u>3</u> <u>-</u> 0 <u>-</u>	1.0 0.0		· · · · · · · · · · · · · · · · · · ·		<u>Pers</u> <u>Cers</u>		<u>4.8</u> 4.8	 

#### INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- 2. Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.
- 5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

#### ASSUMPTIONS

Ust all major assumptions made in the development of data for this worksheet: **N706** 

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 P. 507

#### scoring for indicator chemical selection: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representative Values

ter en la companya de 
Chemical	IS Values PC NC	<u>Ranking</u> PC NC	Water Solubility (mg/l)	Vapor Pressure (mm Ho)	Henry's Law Constant (atm-m3/mole)	Koc	GW	<u>Half-Life</u> SW	e (Days) Soil	Air	IC
Chemical			······································	······							10
Copper	6.169×10-3	5_		0.0	<u> </u>		·				<u>.+</u>
lead	.5.86k210-4	7		0,0				pers		4.8	· <del>†•</del>
mercury	3.68,10-3	<u></u> 6		2.0×10	3	<u> </u>		pers		4.8	+
zinc	5.439 . 10-3		<u> </u>	6.0				pers		4.8.2	» <u>+</u>

#### · INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- 2. Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.

5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

#### ASSUMPTIONS

) List all major assumptions made in the development of data for this worksheet:

- 7

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 0 07

EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representation Values

	IS V	alues	Rani	kina	Water Solubility	Vapor Pressure	Henry's Law Constant			Half-Life	(Davs)		
Chemical	PC	NC	PC	NC	(mg/l)	(mm Hg)	(atm-m3/mole)	Koc	GW	SW	Soil	Air	IC
benzene	0.cl2ie	17.021	_3_	1	1.75×103	952×10'	5.54 10-3	83	·	1-6		6	
Carbon tetrachicride	0.375	0.1071		13	7.57 x 122	9 x 10'	2.4.210-2	110		0 <u>,3-3</u> 00		8:30	+
benze(b)fiveranthene	1-434,1		9		1.4×10-2	5×10-7	1,19 × 10-5	554600		1-2		5,5	
dieldrin	1.414,15	۶ 	11		1. <u>95 x 10-1</u>	1 <u>.78 x 10</u> -7	4.58 4 10-7	1700					

# INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement -- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.
- 5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

#### ASSUMPTIONS

### COMBE FILL SOUTH LANDFILL WORKSHEET 3-5 p. 7 0 / 7

健

SCORING FOR INDICATOR CHEMICAL SELECTION: EVALUATION OF EXPOSURE FACTORS AND FINAL CHEMICAL SELECTION Based on Representative Values

PC			ling	Solubility	Pressure	Constant			Half-Life	a (Days)		
	NC	PC	NC	(mg/l)	(mm Hg)	(atm-m3/mole)	Koc	GM	รพ	Soil	Air	IC
069×10	-6	12		1.8×10-3	6.3×10-9	1.05×10-6	200000	·	4.4		5.5	
	2.12		2		0.0							+
<u></u>	0.161		/0		<u>C.Q</u>		<u> </u>					
											<u></u>	
	<u>CE9x</u> 10		2.12	2.12 2	2.12	$\frac{2.12}{2} = \frac{2}{2} = 0.0$	2.12 2 0.0 -	$\frac{2.12}{2}$ $\frac{2}{2}$ $\frac{-}{0.0}$ $\frac{-}{-}$ $\frac{-}{-}$	$\frac{2.12}{2}  \frac{2}{2}  \frac{2}{2}  \frac{2}{2}  \frac{0.0}{2}  \frac{2}{2}  \frac{2}{2}  \frac{1}{2}  \frac{0.0}{2}  \frac{1}{2}  \frac{1}{2}$	$\frac{2.12}{2} = \frac{2.12}{2} = 0.0 = \frac{1}{2} = \frac{1}{2}$	$\frac{2.12}{2} = \frac{2.12}{2} = 0.0 = \frac{2.12}{2}	$\frac{2.12}{2} = \frac{2.12}{2} = 0.0 = \frac{2.12}{2}

#### INSTRUCTIONS

- 1. List the top 10 to 15 PC and NC based on IS scores, giving their IS values and their ranking.
- 2. Refer to Appendix C and record each chemical's solubility, vapor pressure, Henry's law constant, Koc, and half-lives in air, water, and soil.
- 3. Select the final indicator chemicals. Use your judgement ~- if a compound has a high water solubility and a long half-life yet is ranked lower than a compound with minimal water solubility and a short half-life, you may wish to move it up in the ranking (refer to Section 3.2 for additional guidance on the final selection).
- 4. Document any changes in ranking made because of exposure factors.
- 5. In the last column indicate with a + those chemicals which have been selected as indicator chemicals.

#### ASSUMPTIONS

U List all major assumptions made in the development of data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p. 1 of 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemica i	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate		
chloroform	A.r	ALL	.00007 mg/m3	.025 nay/m3		
					······	
	SW	T. P.K.	<u> </u>	<u> </u>		
		W.BR.T.CK	,00138	<u> </u>		
	Gul	W. Schoolhouse LN.	10291 mg/1	.182 my/1		
		LTHER	.00046			······································
	<u>Gw</u>	ENRY CHILDING TO GE.	<u>+0791</u> mg/1 0 -00066	.182 m/j/1 .640 .6657		

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

### COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 2.20\$ 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
benzene	Air	ALL	100073 prylm3	<u>.048 mijlin</u> 3	
	SW	<u> </u>		<u> </u>	 
	Gw	M. SCHOCLIMISE LN. EARLY CHILPHOLD CONTER	my/1	<u></u>	 
		DAMER CONTRACT	<u>`</u> `	<u></u>	 

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

( ) ), **) € 1 € ) 1 1 №. (** 1 ) (

### COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p. 3 of 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
tetrachiloroethylene	Air	ALL	.00035 mg/m3	<u></u>	 ······································
				**************************************	
	<u>_Sw</u>	<u>TBK</u> UNNAMED W.B.C. T.A.K	0mg/1 	nny!i 	
	GW				
		Wischercharde in Early Childhood Center CTHERS	* <u> </u>	<u>-00990</u> mg]1 -045 -0067	المین به است. بینمانه است. بینمانه است.

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

# COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p. 4 of 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemica I	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
1, 2-Jichlorcethane	AIR	ALL	<u></u>	<u> </u>	 
	 S w	TBK_	 	 	 
		UNNAMED TRIB W. B.S. T. BK			 
	GW	EARLY CITLEDY SUD CENTER	<u></u>	<u></u>	
	<u></u>	<u>ctures</u>		·C185	 and the second s

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/t, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

د. در به این د

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p. 5 of 10 CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Retease Medium	£xpo <b>sure</b> Point	Best Estimate	Upper Bound Estimate	
trichloroethylene	AIR	ALL	.cco24 mg/m3	015 mg lm3	 · · · · · · · · · · · · · · · · · · ·
	<b></b>				
	SW	TBK UNINAMED TRIB	<u> </u>	$\frac{0}{1014}$	 
	GW	WI.BR.T.BK		·	 <u> </u>
	<u>_G W</u>	W <u>. Scholch</u> owe Ln. E.ARL <u>y Ch., eh</u> rod Center _ <u>CINENC</u>	<u></u>	<u>.0284 mili</u> <u></u> .010 .	

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p. 6 0. 1 / 0 CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
arsenie	AIR	ALL	<u> </u>	<u> </u>	 
	<u>Sul</u>	T AK Uninenic IR.B	<u>-0005 my</u> 11 -0- -0037	<u></u>	 
		W BRT. Pr			
	<u>G u)</u>	W <u>SCHOOHR</u> IG LN EARLY <u>CHOOHR</u> IG GLATR <u>L'THÉRS</u>	<u> </u>	<u>- 1005 100011</u> - <u>1007</u> - 1005	 

#### INSTRUCTIONS

1. List all indicator chemicals.

2. List all release media for each chemical: air, ground water, surface water, soil.

3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/1, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

"No arsonic found in D-2 + DW-4 whose aneroug concentrations are irred in thes rolumn. for gw so assumed some as "others." b Arsenic eliminated as indicator chemical during second iteration of evaluation. List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p.7 of 10

CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
n.ekel	AIR	ALL	<u> </u>	-0000003.451.m3	 
	<u></u>	LINNANED TRIB	<u> </u>	<u> </u>	
		W. <u>BR.T.B</u> K		<u></u>	
······································	<u> </u>	W. <u>Schochou</u> se LN EARCY CHILDROED CONTE DITHERS	R Mg11	<u>121</u> ing// <u>005</u>	 
		<u> </u>		······································	 

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

302716

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p.8 24 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemica I	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate		
toluene	<u>Fir</u>	ALL	.(1212 m) m	CK7 ing/m3		
<u> </u>	<u>5 w</u>	T BK	<u> </u>	$\frac{0}{1.35} m_{\rm p} l l$		
	. <u> </u>	WBRTEK		1.3.5	<del></del>	
	<b>C</b>		i.			
	Gw	4. SCHOOLHUSE LN EARLY CHADIECD CENT	$\frac{D}{C}$	<u>- 10040 ing</u> 11 		
		OTHERS	0	.00d2		

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrat ons are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

( . . . . .

List all major assumptions in developing the data for this worksheet:

7

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 p.9 of 10

#### CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
1,1-dichloroethane	AIR	ALL	<u> </u>	<u>i malma</u>	
	<u></u>				
	<u>Sh</u>	TBK UNNAMED TEB	$\frac{0}{-0}$ myli	<u> </u>	 
		W. BR. I. P. L	0155		
	GW	Wi Denou House LN	mill	.0037 mg 11	 
		CARLIN CHILD HOLD COL	мел. <u>О</u>	<u> </u>	 
		······			 

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 4-4 , 10 of 10

CONTAMINANT CONCENTRATIONS AT EXPOSURE POINTS

Chemical	Release Medium	Exposure Point	Best Estimate	Upper Bound Estimate	
methylene chluride	AIR	ALL	10064 mg/m 3	.0114 mgl.n3	 
	SW	T. BK UNNAMED TRIP. N. BR T. BK	<u>-00078 mg/1</u> -0 -00125	<u>.0614 mm/1</u> 	 
	Givi				
		W. <u>SCHOOLHE</u> ST IN EN <u>RELLCHLOOM</u> ERCEMER <u>COTLER</u>	100051	1210 Ang <sup>1</sup> 1 011 1210	
		- <del></del>		<u> </u>	 

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List all release media for each chemical: air, ground water, surface water, soil.
- 3. List all exposure points for each release medium. Indicate significant exposure point with an asterisk.

Note that air concentrations are in mg/m3 units, water concentrations are in mg/l, and fish concentrations are in mg/kg.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

#### CAUCULATE AIR INTAKES

# Exposure Point: Western Schoolhouse Lane p. 10f3

Chemical	Human Intake Factor (m3/kg/day)	Short-Term & Concentration (my/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ی Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
Chiero Ferm	0.29	0.005	1.45 110 3		<u>\$,0007</u>	203×10-5
benzeue	0.29	0.048	0.0139		0 000 72	2.09×10-4
tetrachiloroell	ylenx 0, 29	0.015	4 35 × 10-3		0.00035	1.0.7 10-4
1,2-dichierse the	v c 39	_D			0	<u> </u>

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CD) = Concentration x Intake factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a Adult analoge daily intake 5 "Upper bound" sotimate c"Best "estimate.

1. 1. 1. 1.

#### CALCULATE AIR INTAKES

Exposure Point: Western Schulhouse Lane p. 2013

. .

. . . . . . . . . .

\$1

	a	Ġ			C	
Chemicat	Human Intake Factor (m3/kg/day)	Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
+ ruchlorerthy lige	4.29	6.015	4.35 x 10-3		Q C0024	6.96×10-5
Arsenic	0.29	0	<u> </u>			<u>· 0</u>
nickel	0.29	0,000008	232 × 10-6		<u>C</u>	<u> </u>
toluzne	1.24	<u>۲ ۶۵،۵</u>	<u>U. 0257</u>		1.00212	6.15 x 10-4

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

		Short-term		Human
SDI	=	Concentration	×	intake
				Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake Factor

> ۲. ۱۰۰۰ ۲۰۰۰

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

**.** . . . .

Arsenic eluminated as indicator chemical during second iteration evaluation.

302721

#### CALCULATE AIR INTAKES

# Exposure Point: Western Schoolbrose Lane p.3 of 3

1ŝ

÷

Chemical	Human Intake Factor (m3/kg/day)	Short-lerm Concentration (my/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ے Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
1,1-dichinezthane	<u>0.29</u>	D	0		<u>P</u>	<u> </u>
ricthyleneclipride	0.29	0,0004	1.16×10-4		0.0004	1.16×15-4
	- <u></u>					·
				<u> </u>		

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

		Long-term		Human
CDI	=	Concentration	×	Intake
				factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year,

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

#### CAECULATE AIR INTAKES

+ 1 j + 1 l

\$ 1

#### p,1 of 3 Exposure Point: Larly Ch. Idhood Center a 6 \_\_ Short-Term Subchronic Long-term Human Duration Chronic Intake Factor Concentration Daily Intake (fraction Concentration Daily Intake (mg/m3)(mg/kg/day) (m3/kg/day) of year) Chemical (mg/m3)(mg/kg/day) 2.5 x16-3 .00.5 Chiv: from 2.5 10:007 3.5 8 10 5 , 6.24 0.5 ,048 ,01072 3.6.10 henzené tetrachionertinglene 0.5 7.5x10"3 1.75 x 10-5 .015 ,00035 1,2-dichloros thine Ü 25 Û

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

		Long-term		Human
CDI	=	Concentration	×	Intake
				factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

C Anerage inhalation for child. 5 "Upper bound" estimate C "Best" estimate

11 cm

#### CALCULATE AIR INTAKES

			e: Early Children	aced Center	p.Zof3	
Chemical	Human Intake Factor (m3/kg/day)	Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ٹ Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
Lichlerer thyle	rk <u>6:5</u>	.015	7.5 × 10-3		. 00024	(,3 = 10-4
J.rsence	0.5	_0	<u>· 0</u>		<u> </u>	$\mathcal{L}$
mekel	0.5	0.10000 8	4 x 10-6		<u> </u>	0
toluene	0.5	<u>C 087</u>	,0435		0.00212	1.06 x 12-3

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	-	Long-term Concentration	×	Human In <b>take</b> Factor
				1401

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

& Arsenic eliminated as indicator chemical during second iteration of evaluation.

#### CALCULATE AIR INTAKES

**\***,\*

		Exposure Poin	: Early Childha	<u>d Center</u>	p.3 of -3	
Chemical	م Human Intake Factor (m3/kg/day)	よ Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
1,1 - dichlerezthar	ne <u>Cin</u>		<u> </u>		<u> </u>	<u> </u>
methylene chilori	te <u>05</u>	.0004	2×10-4		0.0004	2×10-4
					<u></u>	
<u> </u>					<u> </u>	

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

		Short-term		Human
SDI	=	Concentration	×	Intake
				factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

#### CALCULATE AIR INTAKES

Exposure Point: Residents to NE, E+S within asmile p. 10f3 n 6 Human Short-Term Subchronic Duration Long-term Chronic Concentration Daily Intake (fraction Intake Factor Concentration Daily Intake 1 - 7 / 1 - 4 4 - - - 1 (mn/m3) Ima (ka /dau) of voor) 

ing 👔 👔 👔 👔 👘 👘 👔

CHERICAL	(ms/kg/uay)	(my/ma)	(mg/kg/uay)	or years	(mg/ms)	(mg/kg/day)
Chiccofrom	0.75	11005	145x10 3		6,00007	2.03 415
benzene	<u>0.39</u>	6.048	0.0.39	<u> </u>	0.00072	3.04 6 4
tetrachierustu,	ene <u>0.29</u>	0.015	4.35×11.3	1 <del></del> .	0.00035	1.02 × 10-4
1,2-dichiscostian	e <u>1.24</u>	<u> </u>	0		<u> </u>	0

#### INSTRUCTIONS

1. List all indicator chemicals.

-----

- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a Anerage adult inhalation 6 "leppe-bound" estimate 2 "Best" estimate

3⊌⇔≞∙

#### CALCULATE AIR INTAKES

-----

\*

.

		Exposure Poin	c: Residents to NE	E+5 within a	55 mile p.20	<del>/</del> .3
Chemical	حہ Human Intake Factor (m3/kg/day)	ゟ Shurt-lerm Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
trichlerezthyle	n2 <u>0,79</u>	0.015	4.35×10-3		. 0,00024	6.116 2 3-3-
arsenie.	0-29	· 0	0			<u> </u>
Dickel	0.29	0.000008	2.32 × 10-6			<u>_</u>
tolsene	629	0.087	0.0252		0.00212	6.15 x 10-4

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

. . . . . .

		Long-term		Human
CDI	=	Concentration	×	intake
				Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet: I Arsenic eliminated as indicator chemical during second iteration evaluation.

302727

U com

#### CALCULATE AIR INTAKES

en la companya de la

		Exposure Poin	e: Residents to NE	E, E, + Swithing	0.5 mile 23	of3
Chemical	ی Human Intake Factor (m3/kg/day)	لا Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
11 - d. chloresther	e <u>0.20</u>		<u> </u>			
methylene dilin	nde <u>Q.29</u>	0.0004	1.16 × 10-4		0.0004	1.16 8 10-4
				<u></u>		
		. <u></u>				

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.

.

3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

.

#### CALCULATE AIR INTAKES

## Exposure Point: Recreational Users of Hackle barney State Park

		Ь			C-	
Chemica I	Human Intake Factor (m3/kg/day)	Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
Chloroferm_	0.39	.00007	07.03 X10-5	101		
benzene	0,29	0.0007.2	2.09×10-4			
te trachloroett	ylance 0.39	0.00035	1.02 - 10-4		<u></u>	
1.2. dichlore tha	NR <u>0.24</u>					<del>41</del>

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a merage adult mhalation b "Upper baund" estimate. c "Best" estimate

302729

3-1-5.

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-1 p. 2 of 3

#### CALCULATE AIR INTAKES

Exposure Point: Recercational Users of Hackle barney State Park

34

Chemical	UMAAN Human Intake Factor (m3/kg/day)	6 Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term C Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
triantersettingere	0,24	0.00024	6.96 810-5		• • • • • • • • • • • • • • • • • • • •	
Acsinc	0 29	<u> </u>	<i>D</i>	<u> </u>		······
nickel	0.29	0				
teluzat	0.29	0.00712	C.15 x 10-4			<del></del>

#### INSTRUCTIONS

1. List all indicator chemicals.

- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration x Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

. .

List all major assumptions in developing the data for this worksheet: Arsenic climinated as indication chemical during second iteration evaluation

#### CALCULATE AIR INTAKES

Exposure Point: Recreational Users of Hack 14 harney State Park

ting) i transformation i tra

1 -

Chemica I	Human Human Intake Factor (m3/kg/day)	لا Short-Term Concentration (mg/m3)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/m3)	Chronic Daily Intake (mg/kg/day)
hidden and the second	6.24					
methylant Ularia	0.29	0,0004	116×10-4			
					<u></u>	
	<del></del>					

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in air (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI = Concentration x Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

and the second sec

CALCULATE GROUND-WATER INTAKES

Exposure Point: Western Schoelhouse Lane.

Chemical	یں Human Intake factor (I/kg/day)	ら Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ے Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
chiproform	.029	0/18.2	5.28 x 10-3		0.0241	8.44 x 10-4
Nenzene	.029	0.126	3.65 × 10-3		·	
tetrachloreethyle	ne .029	0.00494	2.83×10-4		0.00167	4.84 210-5
1,2-dichloroethan	e <u>. c29</u>	0.0037	1.07 × 10-4		0.00938	2.77 × 10-4

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

n general services and services a

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year:

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a Adult average daily ingestion. b "Upper-bound" concentration c "Best-estimate" concentration

## COMBE FILL SOUTH LANDFILL p. 2 of 3

#### WORKSHEET 5-2

CALCULATE GROUND-WATER INTAKES

Exposure	Point:	Western Sel	nocthouse L	ape.

Chemica I	Human Intake factor (l/kg/day)	ら Short-lerm Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ڑے Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
trichicrothylene	1079	0.0784	5.24 × 10-4		0.00093	2.70 × 11-5
Arsenic	<u>.c.29</u>	0.005	145×10-4		0	<u> </u>
nickel	·079	0.01	2.9 × 10-4		0.005	145 × 10-4
toluene.	,029	0.0042	1.22 × 10-4		0	<u> </u>

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.

3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human = Concentration x SDI Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration x Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

TING CONTRACTOR CONTRACTOR

Arsenic was climinated as indicater chemical during second iteration

302733

i

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-2 p. 3 of 3

CALCULATE GROUND-WATER INTAKES

Exposure Point: Western Schoolhouse Lane

a 6					C			
Chemical	Human Intake Factor (I/kg/day)	Short-Term Concentration (my/1)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)		
1,2 - dichleroethu	ne <u>.0.29</u>	<u>c-cr37</u>	9.25 x 10-2		0	<u> </u>		
<u>methylene Chloride</u>	.029	0.210	6.09 10-3		<u> </u>	<u> </u>		
<del></del>					·			
<del></del>			<u> </u>					

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

		Short-term		Human
SDI	=	Concentration	x	Intake
				Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake
				Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

COMBE FILL SOUTH LANDFILL WORKSHEET 5-2 0.1 0 f 3

CALCULATE GROUND-WATER INTAKES

	E×I	posure Point: <u>É</u>	arly Childhood	Center		
Chemical	سن Human Intake Factor (!/kg/day)	占 Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	ے Long-term Concentration (mg/i)	Chronic Daily Intake (mg/kg/day)
chlareform	05_	0.040	2.10-3		0	<u> </u>
benzine	.05	_0	<u> </u>		·	0
tetrachlorce h	hylene	0.005	2.5 × 10-4	·	<u> </u>	_0
1,2-dichloroethun	e <u>105</u>	0	<u> </u>		0	<u> </u>

#### INSTRUCTIONS

1. List all indicator chemicals,

- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration x Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intak <del>o</del> Factor
				Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a Using "12 normal child ingestion b "upper-bound" estimate concentration c "Best-estimate" concentration

302735

-

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-2 p. Z of 3

CALCULATE GROUND-WATER INTAKES

Exposure Point: Early Childhood Center

Chemical	Human Intake Factor (I/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
trichlenveth	ylene .05	0	_0		<u></u>	<u>e</u>
trichlervieth arsenic	.05	2.0017	8.5 × 10-5		<u>0</u>	<u> </u>
nickel	.05	0 005	2.5 × 10-4		_0	<u> </u>
toluene			<u> </u>		_0	<u> </u>

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.

3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI Concentration x = Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration xIntake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

302736

3

List all major assumptions in developing the data for this worksheet:

Arsenic was eliminated as andicator chemical during second iteration

1

# 

## COMBE FILL SOUTH LANDFILL

WORKSHEET 5-2 p. 3 0 + 3

CALCULATE GROUND-WATER INTAKES

Exposure Point: Early Childhood Center

Chemica I	Human Intake Factor (l/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
1,1-d. chlarizethan	L <u>105</u>	0	0	·	<u></u>	<u></u>
me thy here chloride	05_	0.014	70810-4		0	<u> </u>
					<u></u>	

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- List the short-term and long-term concentration of each chemical in ground water (from Worksheet 2. 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration x Intake Factor

4. Determine chronic daily intake (CDI) using the following formula;

Long-term <u>អបតាខក</u> CD1 = Concentration x Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL

p.1 0/3 WORKSHEET 5-2

CALCULATE GROUND-WATER INTAKES

Exposure Point: Residents to NEE+5 within 0.5 m. 12

Ar b				C_			
Chemical	Human Intake Factor (l/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)	
chicisterm	<u>1029</u>	6.02.17	2.03,10-3		D.COULU	1.91 + 10:-5	
benzene	1029	0.001	3-19 - 10-5		• _ <u>0</u>	<u> </u>	
tetrachicroethyle	ne .029	<u>c.cc(7</u>	1.94×10-4		0	<u></u>	
1.2- dielsprusthar	<u>e ,029</u>	0.0185	5.37 × 15-4			<u>0</u>	

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI Concentration × Intake = Factor

4. Determine chronic dally intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
-----	---	----------------------------	---	---------------------------

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

"Ameray: adult daily intake b"Upper-bound" estimate concentration. c "Bet-estimate" concentration

#### CALCULATE GROUND-WATER INTAKES

#### Exposure Point: Residents to NE, E+S with n6.5 m. k

	a b					
Chemical	Human Intake Factor (1/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
trichiercetuulane	·c 29	2.010	2.9 × 10-4		0.00413	1.20 -10-0
Ursenic	4531	0.005	1.45 × 10-4		0.0014	406×10-5
nichel	<u> </u>	D:01	2.7 × 10-4		00017	4.93, 10-5
toluene	.679	0.1042	1.22 × 10-4			<u> </u>

#### INSTRUCTIONS

1. List all indicator chemicals.

7 [

171

- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration x Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	-	Long-term Concentration	×	Human Intake Factor
				100101

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

d'Arsenic was eliminated as societator chemical during second iteration evaluation.

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-2 p. 3 of 3

CALCULATE GROUND-WATER INTAKES

Exposure Point: Residents to N.C. Ed Swithin O.S. M.K.						
Chemical	ひん Human Intake Factor (I/kg/day)	Short-Term Concentration (Mg/1)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	උ Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
11 - dichierce lhane		<u>2_</u>	()		0	0
methylene chierit	<u>pro.</u>	0.21	6.04 × 10-3		0 00051	1-48 × 10 5
					<u></u>	<u> </u>
······					<u></u>	

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in ground water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration x Intake factor

4. Determine chronic daily intake (CDI) using the following formula:

		Long-term		Human
CDI	=	Concentration	×	Intake
				factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-3 p. 10 f 3

and a second state of the 
CALCULATE SURFACE WATER INTAKES

Exposure Point:	Kesidents to NE Eas within asmile
-----------------	-----------------------------------

Chemical	0- Human Intake Factor (I/kg/day)	ろ Short-Term Concentration (mg/i)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
(hloroferm	0.014	0	<u> </u>	, DI	NA	NA
benzene	6.014	0	0	01	·	
tetrachiercell	y'me c.c.y	0	0	.01		
1,2-dickloreetha	ne <u>0014</u>	0	0	101	<u>/</u>	

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

2 Using 1/2 normal intake for adults b"Best-estimate" at Trant Brook NA- Not applicable

CALCULATE SURFACE WATER INTAKES

### Exposure Point: Residents to NEE & S within as mile

Chemical	Human Intake Factor (I/kg/day)	b Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
trichlorcethylene	<u>-014</u>	<u></u>	0	. 01	NA	NA
arsine	014	0.0005	7×10-4	01		<u> </u>
nickel	. 014	0	<u> </u>	. Cl		
toluine	.014	<u> </u>	C	<u> </u>	$\underline{\vee}$	$- \psi$

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

		Short-term		Human
SDI	=	Concentration	x	Intake
				Factor

4. Determine chronic daily intake (CD1) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
				ractor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

A Hisenic eliminated as indicator chemical during second iteration evaluation

<u>}</u>

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-3 P 3 0 7 3

in the state of th

CALCULATE SURFACE WATER INTAKES

Exposure Point: Residents to NE, E.S. within 0.5 mile

Chemical	ھے Human Intake Factor (I/kg/day)	Short-Term <sup>5</sup> Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
1.1-decis prosethane methylene chlorie		<u>D</u> <u>D. 00078</u>	<u>D</u> 1,092 x 10-5		NA V	NA

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
				10000

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-3 p. 10f\_3

CALCULATE SURFACE WATER INTAKES

Exposure Point: Recreational Wersd Hacklehamay Stuk Park

and the second sec

Chemical	سم Human Intake Factor (I/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long~term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
chloroform	.014	<u> </u>	0		NA	NA
benzene	.014	0	<i>U</i>		·	
tetrachloroethy	lene joint	0	<u> </u>			
1,2-d. chie, vetra	ne .014	<u> </u>	<i>D</i>	0[		

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
				100001

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a lloing "Iz normal daily adult intake b "Best-estimate" concentrations at Traut Brook NA= Not Applicable

#### WORKSHEET 5-3 p.2 of 3

CALCULATE SURFACE WATER INTAKES

Exposure Point: Recreational Users of Hucklekiney State Park

Chemical	مے Human Intake Factor (1/kg/day)	6 Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
trichlorgettylene	,014	<u> </u>	0	, 01	NA	NA
arsenic	, 014	0.0005	7.0 × 10-6	. 01		<u> </u>
Cickel	.014	<u>0</u>	<u> </u>	101		
Tolvene	014	<u> </u>	<u></u>	. 01		

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- List the short-term and long-term concentration of each chemical in surface water (from Worksheet 2. 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Human Short-term = Concentration x Intake SDI Factor

4. Determine chronic dally intake (CDI) using the following formula:

		Long-term		Human
CDI	Ŧ	Concentration	×	Intake
				Factor

Include duration of subchronic exposure represented by the intake estimate, in fraction of year. 5.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

∞ مت در

Arsenic was eliminated as indicator chemical during second iteration evaluation.

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-3 p. 3 of 3

CALCULATE SURFACE WATER INTAKES

Exposure Point: Recreational Users of Hicklebarney State Park

Chemical	Human Intake Factor (I/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
h <u>l-dichterwettu</u> ne methylicne chlorid		U	0 1.09 × 10 <sup>-5</sup>	, 0 I	 	NA
<u></u>	<del></del>		<u> </u>			
·····						

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- 2. List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
				ractur

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

302746

3000

#### COMBE FILL SOUTH LANDFILL p.10f 3 WORKSHEET 5-3

CALCULATE SURFACE WATER INTAKES

#### Exposure Point: Western Schoolheuse Lane

Chemical	یں Human Intake Factor (I/kg/day)	Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
chiecoterm	,014	0	U	.01	NA	NA
bunzane	,014	0	00	.01		
tetrach croethy	lene ory	<u> </u>	00			
1.2-dichicmetha	ne .014	0	<u>0</u>	.01		

#### INSTRUCTIONS

1. List all indicator chemicals.

, J

- List the short-term and long-term concentration of each chemical in surface water (from Worksheet 2. 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human = Concentration x Intake SDI Factor

4. Determine chronic daily intake (CDI) using the following formula:

CDI	=	Long-term Concentration	×	Human Intake Factor
				Tactor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

a Using 1/2 normal adult injestion 6 "Bost-astimate" concentration at unnumeral tributary NA = Not Applicable

## COMBE FILL SOUTH LANDFILL WORKSHEET 5-3 p. 2 of 3

#### CALCULATE SURFACE WATER INTAKES

Exposure Point: Carly Childhood Center

Chemíca I	Human Intake Factor (I/kg/day)	لے Short-Term Concentration (mg/l)	Subchronic Daily intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
tetrachureeth		_0	<u>()</u>		NA	NA
argined	.05	0.0005	2-5 x 10-5	:01		
niekul	.05	<u></u> )	<u>U</u>	.01		
towene	_ 65_	<u> </u>	<u> </u>	.01		

#### INSTRUCTIONS

- 1. List all indicator chemicals.
- List the short-term and long-term concentration of each chemical in surface water (from Worksheet 2. 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

		Short-term		Human	
SDI	=	Concentration	×	Intake	
				Factor	

4. Determine chronic daily intake (CDI) using the following formula:

		Long-term		Human
CDI	=	Concentration	×	Intake
				Factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet:

Arsenic eliminated as indicator chemical during second iteration evaluation.

ξ, Į

31.00

			LL SOUTH LAND			
		WO	RKSHEET 5-3 P	3073		
		CALCULATE S	URFACE WATER IN	TAKES		
	E	xposure Point:	Early Childhad a	<u>enter</u>		
Chemical	ہے Human Intake Factor (I/kg/day)	ら Short-Term Concentration (mg/l)	Subchronic Daily Intake (mg/kg/day)	Duration (fraction of year)	Long-term Concentration (mg/l)	Chronic Daily Intake (mg/kg/day)
1,1-dichlorcethan	2 .05	<u> </u>	0		NA	NA
methylene ohlerd	.05	0.00078	39×10-5		/	V
	<del></del>			••••••		

#### INSTRUCTIONS

1. List all indicator chemicals.

۲

- 2. List the short-term and long-term concentration of each chemical in surface water (from Worksheet 4-4) in the appropriate column.
- 3. Determine subchronic daily intake (SDI) using the following formula:

Short-term Human SDI = Concentration × Intake Factor

4. Determine chronic daily intake (CDI) using the following formula:

Long-term Human CDI = Concentration × Intake factor

5. Include duration of subchronic exposure represented by the intake estimate, in fraction of year.

#### ASSUMPTIONS

List all major assumptions in developing the data for this worksheet: