

## **New Bedford Harbor Superfund Site**

**U.S. Army Corps of Engineers New England District** 

#### **Draft Final Intertidal Work Plan for West Zone 4 Revision 1**

ACE-J23-35BG6000-M1-0084|1

October 2020





#### **New Bedford Harbor Superfund Site**

| Project no:      | 35BG6000                                                    |
|------------------|-------------------------------------------------------------|
| Document title:  | Draft Final Intertidal Work Plan for West Zone 4 Revision 1 |
| Document No.:    | ACE-J23-35BG6000-M1-0084                                    |
| Revision:        | 1                                                           |
| Date:            | October 2020                                                |
| Client name:     | U.S. Army Corps of Engineers New England District           |
| Project Manager: | Beth Anderson                                               |
| Author:          | Mike Morris                                                 |

Jacobs 103 Sawyer Street New Bedford, MA 02746 508-996-5462 508-996-6742 www.jacobs.com

#### Document history and status

| Revision | Date    | Description                                                 | Ву     | Review | Approved |
|----------|---------|-------------------------------------------------------------|--------|--------|----------|
| 1        | 10/8/20 | Updated figures to reflect L-014 and L-114 cap construction | ST, JP | ARS    | MWM      |
|          |         |                                                             |        |        |          |
|          |         |                                                             |        |        |          |
|          |         |                                                             |        |        |          |
|          |         |                                                             |        |        |          |



## **Table of Contents**

| Acrony | ms and Abbreviations       | . iii |
|--------|----------------------------|-------|
| 1.0    | Introduction               | . 1   |
| 2.0    | Parcel Description         | . 1   |
| 3.0    | Excavation                 | . 2   |
| 3.1    | Site Preparation           | . 2   |
| 3.2    | Excavation Plan            | . 2   |
| 3.3    | Post Excavation Compliance | . 3   |
| 4.0    | Backfill                   | . 4   |
| 5.0    | Schedule                   | . 5   |
| 6.0    | Air Monitoring             | . 5   |
| 7.0    | Restoration                | . 5   |
| 8.0    | References                 | . 6   |

#### Figures

| Figure 2-1  | Intertidal West Zone 4 Site Location and Features                                                                          |
|-------------|----------------------------------------------------------------------------------------------------------------------------|
| Figure 2-2a | Intertidal West Zone 4 Parcel 105-170 Existing Vegetation, Topography, and Excavation Area                                 |
| Figure 2-2b | Intertidal West Zone 4 Parcel 105-183 Existing Vegetation, Topography, and Excavation Area                                 |
| Figure 2-3a | Intertidal West Zone 4 Parcel 105-170 Sampling Locations with Excavation Footprint (0-1 ft Depth Interval)                 |
| Figure 2-3b | Intertidal West Zone 4 Parcel 105-183 Sampling Locations with Excavation Footprint (0-1 ft Depth Interval)                 |
| Figure 2-4a | Intertidal West Zone 4 Cross Section L-L' through L-014 Cap                                                                |
| Figure 2-4b | Intertidal West Zone 4 Cross Section M-M' through L-114 Cap                                                                |
| Figure 3-1  | Intertidal West Zone 4 Construction Site Plan                                                                              |
| Figure 3-2a | Intertidal West Zone 4 Parcel 105-170 Excavation Plan Showing Cut Depths and Pre-<br>Excavation Elevations                 |
| Figure 3-2b | Intertidal West Zone 4 Northern Portion Parcel 105-183 Excavation Plan Showing Cut<br>Depths and Pre-Excavation Elevations |
| Figure 3-2c | Intertidal West Zone 4 Southern Portion Parcel 105-183 Excavation Plan Showing Cut<br>Depths and Pre-Excavation Elevations |
| Figure 3-3a | Intertidal West Zone 4 Parcel 105-170 Compliance Survey Locations with Excavation<br>Footprint (0-1 ft Depth Interval)     |
| Figure 3-3b | Intertidal West Zone 4 Parcel 105-183 Compliance Survey Locations with Excavation<br>Footprint (0-1 ft Depth Interval)     |
| Figure 7-1a | Intertidal West Zone 4 Parcel 105-170 Proposed Wetland Cover Types and Topography                                          |
|             |                                                                                                                            |



| Figure 7-1b<br>Figure 7-2 | Intertidal West Zone 4 Parcel 105-183 Proposed Wetland Cover Types and Topography<br>West Zone 4 Conceptual Cross Section |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Tables                    |                                                                                                                           |
| Table 2-1a                | West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170                                         |
| Table 2-1b                | West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183                                         |
| Table 3-1a                | Compliance Survey Locations for West Zone 4 Parcel 105-170                                                                |
| Table 3-1b                | Compliance Survey Locations for West Zone 4 Parcel 105-183                                                                |
| Table 7-1a                | Proposed Restoration Acreages by Cover Type for Parcel 105-170                                                            |
| Table 7-1b                | Proposed Restoration Acreages by Cover Type for Parcel 105-183                                                            |
| Table 7-2a                | Parcel 105-170 Shrub Restoration Summary                                                                                  |
| Table 7-2b                | Parcel 105-183 Shrub Restoration Summary                                                                                  |
| Table 7-3                 | New England Coastal Salt Tolerant Grass Mix                                                                               |
| Appendix                  |                                                                                                                           |
| Appendix A                | West Zone 4 Pre-Excavation Tree and Shrub Inventories                                                                     |
| Appendix B                | Cross Sections                                                                                                            |
| Appendix C                | Schedule (to be provided at a later date)                                                                                 |



## **Acronyms and Abbreviations**

| CSO               | combined sewer overflow                                          |
|-------------------|------------------------------------------------------------------|
| су                | cubic yards                                                      |
| EPA               | U.S. Environmental Protection Agency                             |
| DDA               | Debris Disposal Area                                             |
| ft                | foot/feet                                                        |
| Generic Work Plan | Draft Final Generic Upper Harbor Intertidal Work Plan Revision 1 |
| GPS               | Global Positioning System                                        |
| ΙΑ                | immunoassay                                                      |
| mg/kg             | milligrams per kilogram                                          |
| NAE               | U.S. Army Corps of Engineers, New England District               |
| NBHSS             | New Bedford Harbor Superfund Site                                |
| PCB               | polychlorinated biphenyl                                         |
| PECC              | pre-excavation confirmatory congener                             |
| RAL               | remedial action level                                            |
| ROD               | Record of Decision                                               |
| RTK               | Real Time Kinematic                                              |
| sf                | square feet                                                      |
| TCLs              | target cleanup level                                             |
| тос               | Total Organic Carbon                                             |
| TSCA              | Toxic Substances Control Act                                     |
| UCL               | upper confidence limit                                           |



(intentionally blank)



### **1.0 Introduction**

This Work Plan for West Zone 4 provides information concerning shoreline remediation and restoration pursuant to the New Bedford Harbor Superfund Site (NBHSS), including maps and figures of the excavation areas, equipment access plans, sample locations, and existing and proposed wetland cover and topography. The *Draft Final Generic Upper Harbor Intertidal Work Plan Revision 1* (Generic Work Plan; Jacobs 2019a) describes the means and methods for intertidal excavation, material stabilization, drainage water management, transport and disposal of polychlorinated biphenyl (PCB)-contaminated intertidal sediments, restoration of excavated areas and post-remediation monitoring and maintenance. This zone-specific work plan provides additional detail and documents any deviations from the procedures in the Generic Work Plan. The remediation approach described in this work plan for West Zone 4 Parcel 105-183 may be superseded by a capping plan in development for adjacent subtidal Area L.

As described herein, certain areas of the sediment and soil on the parcels contain PCB contamination that exceeds the established target cleanup levels (TCLs) for intertidal sediment. The PCB TCLs are provided in the 1998 U.S. Environmental Protection Agency (EPA) Record of Decision (ROD) for the NBHSS (EPA 1998). The TCLs for intertidal shoreline areas in West Zone 4 are 25 milligrams per kilogram (mg/kg) for the top 1 foot (ft) (95% upper confidence limit [UCL] of the mean concentration), and 50 mg/kg below 1 ft landward of the mudflats (not-to-exceed value). This 25 mg/kg TCL has been applied because of the anticipated construction of a recreational public walking path along the Upper Harbor western shoreline. The TCL for Upper Harbor mudflats and subtidal areas is 10 mg/kg, which must be attained as an average on an Upper Harbor-wide basis. Sediment and soil with PCB concentrations exceeding the TCLs will be removed and disposed of in an off-site Toxic Substances Control Act (TSCA) permitted landfill. Following contaminated sediment removal, areas that originally supported vegetative cover will be backfilled with clean topsoil to the approximate original elevation and restored with a similar vegetation type. Unvegetated areas (i.e., mudflats) will be backfilled as needed to stabilize the shoreline.

## 2.0 Parcel Description

The intertidal management area referred to as West Zone 4 is located on the western shore of the Upper New Bedford Harbor in New Bedford, MA. West Zone 4 consists of two parcels: 105-170 and 105-183; portions of each parcel will be remediated. A site location map showing the West Zone 4 parcels and the limits of the planned excavations is provided in Figure 2-1.

Parcel 105-170 is comprised of a former industrial building converted to residences and a parking area in the western portion and undeveloped land in the eastern portion. The shoreline consists of mudflats, low marsh, scrub-shrub marsh and beach. The parcel is bounded to the north by Parcel 111-155; to the west by Riverside Avenue; to the south by Parcels 105-183, 105-135 and 105-206; and to the east by the Upper Harbor.

Parcel 105-183 is comprised of an industrial building and parking area in the northwest corner and undeveloped land in the eastern portion. The shoreline consists of mudflats, low marsh, scrub-shrub marsh and the invasive grass, *Phragmites australis*. The parcel is bounded to the north by Parcel 105-170; to the west and southwest by Parcels 105-135, 105-209, 105-208 and 105-207; to the south by Manomet Street, and to the east by the Upper Harbor, including two subtidal capped areas, L-014 Cap and L-114 Cap (Figure 2-1).

The existing wetland vegetation for West Zone 4 was surveyed in 2017. The mapped survey results and the outlines of the excavation areas are provided in Figure 2-2a and Figure 2-2b. Sediment and soil samples collected



during the site investigation/characterization phase were analyzed for total PCBs by both immunoassay (IA) and congener methods. The analytical results summarized in Table 2-1a and Table 2-1b were used to support remediation planning. The PCB characterization sample locations used to delineate the extent of PCB contamination within West Zone 4 are shown in Figure 2-3a and Figure 2-3b. A subset of these locations was also designated as confirmatory sample locations, which are described further in Section 3.3.

Two subtidal caps abutting West Zone 4 were constructed in September 2020 (Figure 2-1). Prior to cap construction, portions of the West Zone 4 excavation area along the landward cap design boundaries were excavated and the material relocated to within the cap design footprints (Figures 2-4a and 2-4b). The excavated areas were backfilled with clean sand at 3H:1V to serve as a buffer between the remaining West Zone material and the caps. The sand buffer will protect the caps during future intertidal remedial excavation by minimizing sloughing of cap material and providing a clean interface. Some removal of backfill sand is anticipated in the buffer zone during the future West Zone 4 remediation. The relocated West Zone 4 material was isolated within the cap with approximately 2 ft of clean sand, containing high levels of Total Organic Carbon (TOC), and 1 ft of armor stone.

## 3.0 Excavation

#### 3.1 Site Preparation

Access to the portions of Parcels 105-170 and 105-183 requiring remediation will be through private property that is currently under access agreements obtained by EPA. Temporary roads will be built to create equipment access to the remediation areas. Approximately 1,100 linear ft of temporary access roads will be constructed. The roads will be approximately 15 ft wide. A construction site plan showing the excavation areas and temporary access roads is provided as Figure 3-1. The temporary access road in the northern portion of Parcel 105-183 will traverse a patch of *Phragmites*. As described in the Generic Work Plan, the access road will be constructed using a layer of geotextile fabric covered by either 12 inches of dense-grade aggregate or construction mats, which will prevent contact between the construction vehicles using the road and the *Phragmites*. The use of aggregate or mats will be determined in the field when the roads are cleared.

Prior to any site clearing or grubbing necessary to build the access roads to the excavation areas, mature, noninvasive tree and shrub species will be marked in the field and preserved when possible during construction. Native tree and shrub inventories for Parcels 105-170 and 105-183 are included as Appendix A. Other vegetation will be cleared from the site as necessary to permit access road construction and remedial excavation. Construction access was designed to minimize disturbance of the property to the maximum extent practicable.

#### 3.2 Excavation Plan

Using PCB data collected through multiple rounds of sampling, a 3-dimensional excavation model was developed as depicted in the West Zone 4 excavation plans in Figures 3-2a, 3-2b, and 3-2c. The horizontal and vertical extents of the excavations include all sample locations with total PCB concentrations exceeding TCLs (for non-mudflat locations), and mudflat locations with PCB concentrations exceeding the subtidal/mudflat remedial action level (RAL) of 30 mg/kg.<sup>1</sup> All of the 0-1 ft samples outside of the excavation areas have total PCB concentrations below 25 mg/kg except for WS408 in Parcel 105-170 (Figure 2-3a). The After-Action Report for WZ4 will include

<sup>&</sup>lt;sup>1</sup>The excavations in non-mudflat areas were designed to achieve a 95UCL of the mean PCB concentration in the 0-1 ft depth interval of <25 mg/kg and all PCB concentrations <50 mg/kg below 1 ft after remediation.



the calculated 95UCL for these parcels and document that it complies with the ROD's TCL. The vertical extent of contamination was not delineated at four locations on Parcel 105-183 as follows:

- INT239, INT240, and INT243: the maximum coring depth was 5 ft at these locations; the excavation depths will extend to 6 ft.
- S-3849: the maximum coring depth was 3 ft at this location; the excavation depth will extend to 4 ft.

The cut depth, areal extent of contamination and pre-excavation surface elevations for the excavation areas are shown on Figure 3-2a for Parcel 105-170 and on Figures 3-2b and 3-2c for Parcel 105-183. Following WZ4 material relocation during cap construction, the total area to be excavated is approximately 45,000 square feet (sf) and has a corresponding volume of 3,200 cubic yards (cy). The eastern (seaward) edge of the excavation areas have been adjusted to match the landward extent of subtidal dredging and capping. As represented in Figures 3-2b and 3-2c, the final cap areas for L-014 and L-114 increased from the design due to the presence of unanticipated debris in the excavated West Zone 4 material. The presence of debris resulted in a greater volume of relocated material. The L-014 and L-114 cap footprints were enlarged during construction to cover the relocated contaminated material and meet the cap layer design thickness and slope requirements. The southern end of the L-014 cap and the northern and southern ends of the L-114 cap now interface with contaminated material to be removed during West Zone 4 remedial action. The excavation along this interface is not anticipated to be greater than a 1.0 ft. cut; therefore, careful excavation along this unbuffered boundary should minimally impact the cap.

A combined sewer overflow (CSO) outfall and discharge channel bordered by rip rap and a deteriorated timber wall are located at the end of Manomet Street at the south end of Parcel 105-183. The outfall pipe will be extended east into the harbor during remediation to minimize potential impacts to the excavation from wet weather overflows. The excavation at the south end of Parcel 105-183 will approach but will not disturb or undermine the timber wall and rip rap on the north side of the CSO discharge channel. Several of the proposed excavations in West Zone 4 are narrow and up to 6 ft deep, and engineering controls may be required to stabilize the side slopes.<sup>2</sup> The nature of the engineering controls will be determined at the time of construction. Final excavation extents will be documented in the After-Action Report.

The onsite materials management and excavation water management procedures provided in Section 4.3 of the Generic Work Plan assume that the Debris Disposal Area (DDA) at Area C will be available to support remediation activities. If the DDA is not available, then an alternative staging and dewatering area will be identified.

#### 3.3 **Post Excavation Compliance**

Confirmation of compliance with the TCLs will be based on pre-excavation confirmatory congener (PECC) sampling and collection of post-excavation survey data to demonstrate that the excavation achieved the horizontal and vertical design limits. The PECC sample locations shown in Figures 2-3a and 2-3b include top-of-bank, excavation sidewall and excavation floor locations where PCB congener concentrations were previously determined to be below the TCLs. PECC sample results are shown in Tables 2-1a and 2-1b. In areas where the excavation extends to the base of shoreline rip rap, top-of-bank PECC samples were collected above the rip rap at approximate 100-ft intervals. Post-excavation confirmatory samples for mudflats that are subtidal after excavation will be collected as part of the subtidal confirmatory sampling program.

<sup>&</sup>lt;sup>2</sup> The vertical extent of contamination at sampling location S-3415 on Parcel 105-170 is 3.3 ft; however, this location is immediately adjacent to the edge of the excavation at the base of a rip rap slope. The planned excavation is 3 ft at this location due to sidewall stability concerns.



If the PECC approach is proven to be ineffective at a previous intertidal pilot test area (i.e., in East Zone 1 or West Zone 1), then post-excavation confirmatory samples will be collected at the PECC locations, and the excavation will not be backfilled until it is confirmed to be below the TCLs. However, if any areas of Parcel 105-183 show heavy oil staining or sheens within the excavation, the excavation will be backfilled immediately with topsoil with no post-excavation confirmatory sampling required.

Compliance survey locations are spaced at approximate 100-ft intervals along the excavation sidewalls and floors. Design elevation compliance measurements at the compliance survey locations will be made using a real-time kinematic (RTK) global positioning system (GPS) with vertical and horizontal accuracies of less than 0.1 ft. However, any areas of Parcel 105-183 that show heavy oil staining or sheens within the excavation will be backfilled immediately with topsoil without waiting for compliance surveying to occur. The steep-sided excavations that will be performed to access particularly deep areas of contaminated soil will also be backfilled rapidly to avoid wall failure. In these cases, the RTK GPS unit on the excavator bucket will be used to confirm that the design elevation was achieved. Compaction by heavy equipment after excavation will be avoided until target elevations are confirmed by RTK survey.

Tables 3-1a and 3-1b provide survey control tables to document the pre- and post-excavation compliance measurements and compliance survey locations are shown in Figures 3-3a and 3-3b. Additional removal will be performed if a post-excavation elevation survey indicates that a compliance survey location was not excavated to the target elevation. Additional removal will be performed as described in Section 4.5 of the Generic Work Plan.

## 4.0 Backfill

After verification that compliance with the TCLs and design elevations has been met, the excavations will be backfilled with clean manufactured topsoil. The topsoil will meet the quality requirements identified in the *Draft Final Topsoil Acceptance Plan* (Jacobs 2019b). Backfill in saltmarsh areas will consist of 12 inches of topsoil to support vegetation regrowth and achieve the restoration design provided in Section 7.0. Where excavation depth exceeds 1 ft, a 3-inch minus clean gravel substrate will be placed to within 1 ft of the target grade and topsoil will be placed on top of the substrate to bring the surface to the target elevation. A possible exception to this will be in areas where heavy oil staining or sheens are observed within the excavation. In such cases, topsoil will be used for the entire backfill (without any subgrade gravel). The high organic carbon content of the topsoil backfill (5 to 8 percent) will reduce the mobility of heavy oil contaminants. Excavated mudflats will be backfilled with gravel as needed to provide slope stability or drainage. A specification for the gravel backfill is provided in the Generic Work Plan.

The gravel substrate and topsoil will be delivered to the restoration areas by over-the-road dump trucks and offloaded into stockpiles near the excavation areas. A clean, decontaminated all-terrain dump truck or tracked excavator will transport the topsoil for spreading. Post-backfill saltmarsh topography will closely match the pre-excavation topography with a tolerance of +/- 0.3 ft as described in Section 7.0. The surface may be restored to an elevation of 0.1 to 0.2 ft above the planned grade to allow for natural soil compaction. During the restoration process, the elevation of the placed topsoil will be checked periodically with the GPS Rover and with the excavator bucket. Elevation measurements will be taken after each area is backfilled, prior to relocating the excavator.



## 5.0 Schedule

The anticipated durations of the remedial activities included in this Work Plan are listed below. A more detailed construction planning schedule will be provided as Appendix C prior to initiation of field activities.

| Activity            | Anticipated Duration |
|---------------------|----------------------|
| Excavation          | 2 months             |
| Restoration         | 1 month              |
| After Action Report | 3 months             |

## 6.0 Air Monitoring

The evaluation of existing PCB congener data (Tables 2-1a and 2-1b) indicates that the maximum PCB concentration at Parcel 105-183 is 2,360 mg/kg. Airborne PCB monitoring will be conducted in accordance with the guidelines provided in the *Draft Final Ambient Air Monitoring Plan for Remediation Activities Revision 2* (Jacobs 2018a).

## 7.0 Restoration

All excavated areas except mudflats will be backfilled, regraded, and revegetated to best replicate the preremediation conditions as outlined in the Generic Work Plan (Jacobs 2019a). Portions of areas originally mapped as scrub shrub marsh will be revegetated with low marsh, high marsh, or upland species depending on the elevation. The pre-construction wetland cover conditions shown on Figure 2-2b for Parcel 105-83 include a stand of the non-native invasive grass *Phragmites*. *Phragmites* that occurs within the excavation area will be removed and disposed of with the excavated sediment and the topography will be modified slightly to achieve a restoration design that includes transitions from low marsh to high marsh to scrub shrub marsh to upland. Mudflats will be backfilled to pre-excavation elevations to approximately 10 ft seaward of the low marsh/mudflat boundary, then sloped downward to meet the existing harbor bottom. As specified in the Generic Work Plan, upland areas impacted by remediation activities (i.e., access roads) will be seeded with conservation seed mix. Any trees removed as part of access road construction or excavation will be replaced at the same or nearby suitable location. A pre-construction tree and shrub inventory of plants within the excavation area and access road area is included in Appendix A.

Proposed restored vegetation types within the remediation areas are shown in plan view in Figure 7-1a and Figure 7-1b. A conceptual cross section is provided in Figure 7-2 and construction cross sections are provided in Appendix B. Tree and shrub species identified for restoration are included in the planting notes included in Figures 7-1a and 7-1b. The existing and proposed post-restoration acreages of each cover type are included in Tables 7-1a and 7-1b and shrub restoration area summaries are provided in Tables 7-2a and 7-2b. Areas to be restored as upland within the backfilled excavations on Parcel 105-183 will be seeded with the coastal salt-tolerant seed mix shown in Table 7-3. As depicted in Figures 7-1a and 7-1b, coir logs will run the entire length of the excavated areas on the seaward edge of the restored low marsh along both Parcels 105-170 and 105-183.

Planting of trees, shrubs and 2-inch bare-root salt grass plugs will be conducted after excavation and backfill in accordance with favorable weather conditions and within the planting season from approximately April 15 to



June 30 or in the early fall (Jacobs 2019a). Salt grass plants will be obtained from a nursery that that can provide plugs grown from a Northeastern U.S. genotype seed stock.

Herbivory deterrents will be used to protect the seedlings during the establishment period. A combination fence and rope grid system similar to the one installed at the Pierce Mill Cove intertidal restoration area will be constructed (Jacobs, 2018b). If unforeseen conditions are identified that could affect the ability of the restoration to achieve the success standards adopted for the program, appropriate adaptive management measures will be developed and implemented in coordination with the U.S. Army Corps of Engineers, New England District (NAE) and EPA.

No mechanical removal of *Phragmites* is proposed outside of excavation boundaries. All remaining areas of *Phragmites* within 30 ft of the restored marsh will be treated with herbicide in accordance with the guidelines in the Generic Work Plan to promote a *Phragmites* free buffer. Monitoring and maintenance in restored areas will be performed as described in the Generic Work Plan (Jacobs 2019a). At the conclusion of all restoration activities, final vegetation and topographic surveys will be conducted to document the as-built elevation and vegetative cover conditions.

## 8.0 References

- U.S. Environmental Protection Agency (EPA). 1998 (September). *Record of Decision for the Upper and Lower Harbor Operable Unit, New Bedford Harbor Superfund Site*. USEPA Region 1 – New England.
- Jacobs. 2019a (May). Draft Final Generic Upper Harbor Intertidal Work Plan Revision 1. ACE-J23-35BG2000-M1-0109.
- ——— 2019b (January). Draft Final Topsoil Acceptance Plan. ACE J23 35BG2000 M1-0076.
- ——— 2018a (April). Draft Final Ambient Air Monitoring Plan for Remediation Activities Revision 2. ACE-J23-35BG2000-M17-0016.

# **Figures**















| <u> </u> | · · · · · · · · · · · · · · · · · · · |           |                      |        |
|----------|---------------------------------------|-----------|----------------------|--------|
|          |                                       |           |                      | 53     |
|          |                                       |           | 3                    |        |
|          |                                       |           |                      |        |
|          |                                       |           | 2                    | 23     |
|          |                                       |           | -                    |        |
|          |                                       |           |                      |        |
| No.      | Revision                              | Dat       | .e                   | App.   |
| Client,  | 'Owner:                               |           |                      |        |
| Issued   | for:                                  |           |                      |        |
| Drawin   | g Title:                              |           |                      |        |
|          | Cross Section                         | 1.11      |                      |        |
|          |                                       |           |                      |        |
|          | L014 Final Asbuilt Dra                | wing      |                      |        |
|          | Do                                    | te:       | 10-1                 | 9-2020 |
|          | 20076                                 | ale:      |                      | 2323   |
|          |                                       | or 19727  |                      |        |
|          | De                                    | signed    | By:                  |        |
|          |                                       | awn by:   |                      | SAT    |
|          |                                       | ecked     |                      |        |
|          | Ch                                    | IECKEU I  | Jy.                  | 1      |
|          |                                       | oject Nur |                      | 1      |
|          | Pr                                    |           |                      |        |
|          | Pr<br>Sh<br>Dr                        | oject Nur | nber:<br>of<br>mber: |        |



Vertical Scale in Feet



|                |                 | -       |
|----------------|-----------------|---------|
|                |                 | 1       |
| 2              |                 |         |
|                |                 |         |
|                |                 |         |
|                |                 |         |
|                |                 |         |
| No. Revision   | Date            | App.    |
| Client/Owner:  |                 |         |
| Issued for:    |                 |         |
| Drawing Title: |                 |         |
| Cross Section  | NA_NA'          |         |
|                |                 |         |
| L114 Final Asb | built           |         |
|                | Date: 10-       | 19-2020 |
|                | Scale:          |         |
|                |                 |         |
|                | Designed By:    |         |
|                | Drawn by:       | SAT     |
|                | Checked by:     |         |
|                | Project Number: |         |
|                | Sheet of        |         |
|                | Drawing Number: |         |
|                | Figure 2        | -4b     |



## Legend



Temporary Gravel Access Road

— MHHW (1.99ft NAVD88)

MLLW (-1.97ft NAVD88)

Parcel Boundary

Proposed Limits of Excavation

Excavation Extent with Sand Backfill and Cap

Final Extent Engineered Cap Aerial Photography Green Seal 2018 and MassGIS 2014 0 50 100 Feet 1:1,200 **JACOBSS Intertidal West Zone 4 Construction Site Plan** New Bedford Harbor Superfund Site October 2020 Figure 3-1

MHHW and MLLW Elevations NAVD88 ft. (Green Seal, 2018)



Parcel Boundary

4

3

2

1



Intertidal West Zone 4 Parcel 105-170 Excavation Plan Showing Cut Depths and Pre-Excavation Elevations New Bedford Harbor Superfund Site

October 2020

Figure 3-2a

Pre-Excavation, MHHW and MLLW Elevations NAVD88 ft. and Basemap Photography Sources: Green Seal 2018 and MassGIS 2014











Figure 7-1a





## **Tables**

Sample Sample Depth Top Depth **Total PCB** Final Bottom (ft) Sample Date Parcel (ft) Description (mg/kg) Qualifier Sample ID Station ID Aroclor 1254 - Immunoassay 105-170 S-15L-INT230-10-20 INT230 7/13/2015 1.0 2.0 6.1 Aroclor 1254 - Immunoassav 0.50 U 105-170 S-15L-INT230-10-20-REP INT230 1.0 2.0 7/13/2015 105-170 S-15L-INT230-20-30 INT230 2.0 3.0 7/13/2015 Aroclor 1254 - Immunoassay 5.2 INT230 105-170 S-15L-INT230-20-30-REP 2.0 3.0 7/13/2015 Aroclor 1254 - Immunoassay 6.6 105-170 S-15L-INT231-00-10 INT231 0.0 1.0 7/13/2015 Aroclor 1254 - Immunoassay 1878 D 105-170 S-15L-INT231-10-20 INT231 1.0 2.0 7/13/2015 Aroclor 1254 - Immunoassay 467 D 105-170 S-15L-INT232-00-10 INT232 0.0 1.0 7/13/2015 Aroclor 1254 - Immunoassay 0.50 U 105-170 S-15L-INT232-10-20 INT232 2.0 7/13/2015 Aroclor 1254 - Immunoassav 0.50 U 1.0 105-170 S-15L-INT233-00-10 INT233 0.0 7/13/2015 Aroclor 1254 - Immunoassay 6.0 1.0 INT233 23.0 105-170 S-15L-INT233-10-20 1.0 2.0 7/13/2015 Total 139 PCB cong (excl non-detects) 105-170 S-15L-INT233-20-26 **INT233** 2.0 2.6 7/13/2015 Aroclor 1254 - Immunoassay 6.9 Aroclor 1254 - Immunoassay 105-170 S-15L-INT234-00-10 **INT234** 0.0 1.0 7/10/2015 0.50 105-170 S-15L-INT234-10-20 INT234 2.0 7/10/2015 Total 139 PCB cong (excl non-detects) 39.0 1.0 105-170 S-15L-INT234-20-30 INT234 2.0 3.0 7/10/2015 Aroclor 1254 - Immunoassay 8.0 S-15L-INT235-00-10 INT235 1.0 7/13/2015 Aroclor 1254 - Immunoassay 77.5 D 105-170 0.0 105-170 S-15L-INT235-10-20 INT235 1.0 2.0 7/13/2015 Aroclor 1254 - Immunoassay 1218 D 0.0 105-170 S-15L-INT236-00-10 INT236 1.0 7/10/2015 Total 139 PCB cong (excl non-detects) 0.30 105-170 S-15L-INT236-10-20 INT236 1.0 2.0 7/10/2015 Total 139 PCB cong (excl non-detects) 2.4 105-170 S-15L-INT236-20-30 INT236 2.0 3.0 7/10/2015 Aroclor 1254 - Immunoassay 0.50 105-170 S-15L-INT236-30-40 INT236 3.0 4.0 7/10/2015 Aroclor 1254 - Immunoassay 0.50 U 105-170 S-15L-INT237-00-10 INT237 0.0 1.0 7/13/2015 Aroclor 1254 - Immunoassay 25.4 D INT237 1.0 1.5 41.0 105-170 S-15L-INT237-10-15 7/13/2015 Total 139 PCB cong (excl non-detects) 11/2/2001 105-170 S-3415-2.0-3.0 S-3415 2.0 3.0 Total 18 NOAA PCB cong (excl non-detects) 203 Total 18 NOAA PCB cong (excl non-detects) 105-170 S-3415-3.0-3.3 S-3415 3.0 3.3 11/2/2001 98.8 11/2/2001 105-170 S-3415-3.3-3.5 S-3415 3.3 3.5 Total 18 NOAA PCB cong (excl non-detects) 46.8 105-170 S-3429-1.0-2.0 S-3429 1.0 2.0 11/5/2001 6.2 Total 18 NOAA PCB cong (excl non-detects) 105-170 S-0925-1 S-925 10/23/2000 Total 18 NOAA PCB cong (excl non-detects) 676 0.0 1.0 S-925 105-170 S-0925-2 1.0 2.0 10/23/2000 Total 18 NOAA PCB cong (excl non-detects) 72.8 105-170 S-0925-2DUP S-925 1.0 2.0 10/23/2000 Total 18 NOAA PCB cong (excl non-detects) 161 105-170 S-0926-1 S-926 0.0 1.0 10/11/2000 Total 18 NOAA PCB cong (excl non-detects) 83.2 2.0 33.8 105-170 S-0926-2 S-926 1.0 10/11/2000 Total 18 NOAA PCB cong (excl non-detects) 105-170 S-0926-3 S-926 2.0 3.0 10/11/2000 Total 18 NOAA PCB cong (excl non-detects) 25.7 105-170 S-WS406-18FSP15-00-10 WS406 0.0 1.0 12/11/2018 Total 209 PCB cong (excl non-detects) 13.4 105-170 S-WS406-18FSP15-10-20 WS406 1.0 2.0 12/11/2018 PCB from Immunoassay (Aroclor 1254) 6.9 105-170 S-WS407-18FSP15-20-30 WS407 2.0 3.0 12/12/2018 Total 209 PCB cong (excl non-detects) 46.7 105-170 S-WS407-18FSP15-30-40 WS407 3.0 4.0 Total 209 PCB cong (excl non-detects) 25.0 12/12/2018 5.0 105-170 S-WS407-18FSP15-40-50 WS407 40 12/12/2018 PCB from Immunoassay (Aroclor 1254) 4.4

 Table 2-1a

 West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170

Table 2-1a West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-170

|         |                       |            | Sample<br>Depth Top | Sample<br>Depth |             |                                       | Total PCB | Final     |
|---------|-----------------------|------------|---------------------|-----------------|-------------|---------------------------------------|-----------|-----------|
| Parcel  | Sample ID             | Station ID | (ft)                |                 | Sample Date | Description                           | (mg/kg)   | Qualifier |
| 105-170 | S-WS408-18FSP15-00-10 | WS408      | 0.0                 | 1.0             |             | Total 209 PCB cong (excl non-detects) | 33.3      |           |
| 105-170 | S-WS408-18FSP15-10-20 | WS408      | 1.0                 | 2.0             |             | PCB from Immunoassay (Aroclor 1254)   | 2.0       | J         |
| 105-170 | S-WS409-18FSP15-20-30 | WS409      | 2.0                 | 3.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 9.7       | J         |
| 105-170 | S-WS409-18FSP15-30-40 | WS409      | 3.0                 | 4.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 5.2       | J         |
| 105-170 | S-WS409-18FSP15-40-50 | WS409      | 4.0                 | 5.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 6.8       | J         |
| 105-170 | S-WS410-18FSP15-00-10 | WS410      | 0.0                 | 1.0             | 12/11/2018  | Total 209 PCB cong (excl non-detects) | 1.2       |           |
| 105-170 | S-WS410-18FSP15-10-20 | WS410      | 1.0                 | 2.0             | 12/11/2018  | PCB from Immunoassay (Aroclor 1254)   | 2.4       | J         |
| 105-170 | S-WS411-18FSP15-20-30 | WS411      | 2.0                 | 3.0             | 12/13/2018  | Total 209 PCB cong (excl non-detects) | 155       |           |
| 105-170 | S-WS411-18FSP15-30-40 | WS411      | 3.0                 | 4.0             | 12/13/2018  | Total 209 PCB cong (excl non-detects) | 2.5       |           |
| 105-170 | S-WS411-18FSP15-40-50 | WS411      | 4.0                 | 5.0             |             | PCB from Immunoassay (Aroclor 1254)   | 10.0      | J         |
| 105-170 | S-WS426-18FSP15-00-10 | WS426      | 0.0                 | 1.0             | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 49.1      |           |
| 105-170 | S-WS426-18FSP15-10-20 | WS426      | 1.0                 | 2.0             | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 27.8      |           |
| 105-170 | S-WS427-18FSP15-00-10 | WS427      | 0.0                 | 1.0             | 12/11/2018  | Total 209 PCB cong (excl non-detects) | 3.7       |           |
| 105-170 | S-WS427-18FSP15-10-20 | WS427      | 1.0                 | 2.0             | 12/11/2018  | PCB from Immunoassay (Aroclor 1254)   | 2.5       | J         |
| 105-170 | S-WS428-18FSP15-00-10 | WS428      | 0.0                 | 1.0             | 12/11/2018  | Total 209 PCB cong (excl non-detects) | 3.1       |           |
| 105-170 | S-WS428-18FSP15-10-20 | WS428      | 1.0                 | 2.0             | 12/11/2018  | PCB from Immunoassay (Aroclor 1254)   | 1.1       | J         |
| 105-170 | S-WS429-18FSP15-00-10 | WS429      | 0.0                 | 1.0             | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 55.3      |           |
| 105-170 | S-WS429-18FSP15-10-20 | WS429      | 1.0                 | 2.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 1.3       | J         |
| 105-170 | S-WS429-18FSP15-20-30 | WS429      | 2.0                 | 3.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 0.74      | JB        |
| 105-170 | S-WS429-18FSP15-30-40 | WS429      | 3.0                 | 4.0             | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 81.2      |           |
| 105-170 | S-WS429-18FSP15-40-50 | WS429      | 4.0                 | 5.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 5.4       | J         |
| 105-170 | S-WS429-18FSP15-50-60 | WS429      | 5.0                 | 6.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 7.4       | J         |
| 105-170 | S-WS430-18FSP15-00-10 | WS430      | 0.0                 | 1.0             | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 23.9      |           |
| 105-170 | S-WS430-18FSP15-10-20 | WS430      | 1.0                 | 2.0             | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 4.7       | J         |
| 105-170 | S-WS431-18FSP15-20-30 | WS431      | 2.0                 | 3.0             | 1/31/2019   | Total 209 PCB cong (excl non-detects) | 73.3      |           |
| 105-170 | S-WS431-18FSP15-30-40 | WS431      | 3.0                 | 4.0             | 1/31/2019   | PCB from Immunoassay (Aroclor 1254)   | 4.4       | J         |
| 105-170 | S-WS431-18FSP15-40-50 | WS431      | 4.0                 | 5.0             | 1/31/2019   | PCB from Immunoassay (Aroclor 1254)   | 1.2       | JB        |
| 105-170 | S-WS432-18FSP15-00-10 | WS432      | 0.0                 | 1.0             | 3/13/2019   | Total 209 PCB cong (excl non-detects) | 38.4      |           |
| 105-170 | S-WS433-18FSP15-00-10 | WS433      | 0.0                 | 1.0             | 3/13/2019   | Total 209 PCB cong (excl non-detects) | 8.6       |           |

Notes:

Pre-excavation confirmatory congener samples are shaded green. D - reported value is from a dilution; U - not detected; J - estimated value; B - contaminant detected in the blank.

Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

 Table 2-1b

 West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

|         |                    |            | Sample    | Sample      |             |                                           |           |           |
|---------|--------------------|------------|-----------|-------------|-------------|-------------------------------------------|-----------|-----------|
|         |                    |            | Depth Top | Depth       |             |                                           | Total PCB | Final     |
| Parcel  | Sample ID          | Station ID | (ft)      | Bottom (ft) | Sample Date |                                           | (mg/kg)   | Qualifier |
|         | S-15L-INT238-00-10 | INT238     | 0.0       | 1.0         |             | Total 139 PCB cong (excl non-detects)     | 25.0      |           |
| 105-183 | S-15L-INT238-10-20 | INT238     | 1.0       | 2.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 1.6       |           |
|         | S-15L-INT238-20-30 | INT238     | 2.0       | 3.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 0.50      |           |
| 105-183 | S-15L-INT239-00-10 | INT239     | 0.0       | 1.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 47.1      | D         |
| 105-183 | S-15L-INT239-10-20 | INT239     | 1.0       | 2.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 275       | D         |
| 105-183 | S-15L-INT239-20-30 | INT239     | 2.0       | 3.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 82.2      | D         |
| 105-183 | S-15L-INT239-30-40 | INT239     | 3.0       | 4.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 86.0      | D         |
| 105-183 | S-15L-INT239-40-50 | INT239     | 4.0       | 5.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 495       | D         |
| 105-183 | S-15L-INT240-00-10 | INT240     | 0.0       | 1.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 4.9       |           |
| 105-183 | S-15L-INT240-10-20 | INT240     | 1.0       | 2.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 2.8       |           |
| 105-183 | S-15L-INT240-20-30 | INT240     | 2.0       | 3.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 1305      | D         |
| 105-183 | S-15L-INT240-30-40 | INT240     | 3.0       | 4.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 148       | D         |
| 105-183 | S-15L-INT240-40-50 | INT240     | 4.0       | 5.0         | 7/10/2015   | Aroclor 1254 - Immunoassay                | 40.7      | D         |
| 105-183 | S-15L-INT241-00-10 | INT241     | 0.0       | 1.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 1.7       |           |
| 105-183 | S-15L-INT241-10-20 | INT241     | 1.0       | 2.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 1.2       |           |
| 105-183 | S-15L-INT241-20-30 | INT241     | 2.0       | 3.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 1.7       |           |
| 105-183 | S-15L-INT242-00-10 | INT242     | 0.0       | 1.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 1.2       |           |
| 105-183 | S-15L-INT242-10-20 | INT242     | 1.0       | 2.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 4.4       |           |
| 105-183 | S-15L-INT242-20-30 | INT242     | 2.0       | 3.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 2.4       |           |
| 105-183 | S-15L-INT243-00-10 | INT243     | 0.0       | 1.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 57.5      | D         |
| 105-183 | S-15L-INT243-40-50 | INT243     | 4.0       | 5.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 83.9      | D         |
| 105-183 | S-15L-INT244-00-10 | INT244     | 0.0       | 1.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 1.0       |           |
| 105-183 | S-15L-INT244-10-20 | INT244     | 1.0       | 2.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 0.90      |           |
| 105-183 | S-15L-INT244-20-30 | INT244     | 2.0       | 3.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 0.90      |           |
| 105-183 | S-15L-INT245-00-10 | INT245     | 0.0       | 1.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 79.9      | D         |
| 105-183 | S-15L-INT245-10-20 | INT245     | 1.0       | 2.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 274       | D         |
| 105-183 | S-15L-INT245-20-30 | INT245     | 2.0       | 3.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 434       | D         |
| 105-183 | S-15L-INT245-30-40 | INT245     | 3.0       | 4.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 61.8      | D         |
| 105-183 | S-15L-INT245-40-50 | INT245     | 4.0       | 5.0         | 7/8/2015    | Aroclor 1254 - Immunoassay                | 34.3      | D         |
| 105-183 | S-15L-INT246-00-10 | INT246     | 0.0       | 1.0         | 7/9/2015    | Total 139 PCB cong (excl non-detects)     | 11.0      |           |
| 105-183 | S-15L-INT246-10-20 | INT246     | 1.0       | 2.0         | 7/9/2015    | Total 139 PCB cong (excl non-detects)     | 18.0      |           |
|         | S-15L-INT246-20-30 | INT246     | 2.0       | 3.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 6.0       |           |
| 105-183 | S-15L-INT246-30-40 | INT246     | 3.0       | 4.0         | 7/9/2015    | Aroclor 1254 - Immunoassay                | 0.50      | U         |
|         | S-3439-1.1-1.6     | S-3439     | 1.1       | 1.6         | 8/24/2001   | Total 18 NOAA PCB cong (excl non-detects) | 41.6      |           |
| 105-183 | S-3439-1.6-2.1     | S-3439     | 1.6       | 2.1         | 8/24/2001   | Total 18 NOAA PCB cong (excl non-detects) | 0.91      |           |
| 105-183 | S-3810-0.0-1.0     | S-3810     | 0.0       | 1.0         | 11/2/2001   | Total 18 NOAA PCB cong (excl non-detects) | 24.7      |           |
| 105-183 | S-3845-0.0-1.0     | S-3845     | 0.0       | 1.0         | 11/14/2001  | Total 18 NOAA PCB cong (excl non-detects) | 122       |           |

Table 2-1bWest Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

|         |                       |            | Sample    | Sample      |             |                                           |           |           |
|---------|-----------------------|------------|-----------|-------------|-------------|-------------------------------------------|-----------|-----------|
|         |                       |            | Depth Top | Depth       |             |                                           | Total PCB | Final     |
| Parcel  | Sample ID             | Station ID | (ft)      | Bottom (ft) | Sample Date |                                           | (mg/kg)   | Qualifier |
|         | S-3845-1.0-2.0        | S-3845     | 1.0       | 2.0         |             | Total 18 NOAA PCB cong (excl non-detects) | 260       |           |
| 105-183 | S-3845-2.0-3.0        | S-3845     | 2.0       | 3.0         | 11/14/2001  | Total 18 NOAA PCB cong (excl non-detects) | 28.6      |           |
| 105-183 | S-3849-0.0-1.0        | S-3849     | 0.0       | 1.0         | 11/14/2001  | Total 18 NOAA PCB cong (excl non-detects) | 109       |           |
| 105-183 | S-3849-1.0-2.0        | S-3849     | 1.0       | 2.0         | 11/14/2001  | Total 18 NOAA PCB cong (excl non-detects) | 312       |           |
| 105-183 | S-3849-2.0-3.0        | S-3849     | 2.0       | 3.0         | 11/14/2001  | Total 18 NOAA PCB cong (excl non-detects) | 213       |           |
| 105-183 | S-0923-1              | S-923      | 0.0       | 1.0         | 10/23/2000  | Total 18 NOAA PCB cong (excl non-detects) | 0.91      |           |
| 105-183 | S-0923-2              | S-923      | 1.0       | 2.0         | 10/23/2000  | Total 18 NOAA PCB cong (excl non-detects) | 0.62      |           |
| 105-183 | S-0924-1              | S-924      | 0.0       | 1.0         | 10/23/2000  | Total 18 NOAA PCB cong (excl non-detects) | 200       |           |
| 105-183 | S-0924-2              | S-924      | 1.0       | 2.0         | 10/23/2000  | Total 18 NOAA PCB cong (excl non-detects) | 416       |           |
| 105-183 | S-0924-3              | S-924      | 2.0       | 3.0         | 10/23/2000  | Total 18 NOAA PCB cong (excl non-detects) | 260       |           |
| 105-183 | S-WS412-18FSP15-30-40 | WS412      | 3.0       | 4.0         |             | Total 209 PCB cong (excl non-detects)     | 57.4      |           |
| 105-183 | S-WS412-18FSP15-40-50 | WS412      | 4.0       | 5.0         |             | Total 209 PCB cong (excl non-detects)     | 75.8      |           |
| 105-183 | S-WS412-18FSP15-50-60 | WS412      | 5.0       | 6.0         |             | Total 209 PCB cong (excl non-detects)     | 5.0       |           |
|         | S-WS412-18FSP15-60-70 | WS412      | 6.0       | 7.0         |             | PCB from Immunoassay (Aroclor 1254)       | 3.5       | J         |
| 105-183 | S-WS412-18FSP15-70-80 | WS412      | 7.0       | 8.0         |             | PCB from Immunoassay (Aroclor 1254)       | 3.3       | J         |
|         | S-WS412-18FSP15-80-90 | WS412      | 8.0       | 9.0         |             | PCB from Immunoassay (Aroclor 1254)       | 9.8       |           |
|         | S-WS413-18FSP15-00-10 | WS413      | 0.0       | 1.0         |             | Total 209 PCB cong (excl non-detects)     | 0.12      |           |
| 105-183 | S-WS413-18FSP15-10-20 | WS413      | 1.0       | 2.0         |             | PCB from Immunoassay (Aroclor 1254)       | 3.5       | J         |
| 105-183 | S-WS413-18FSP15-20-28 | WS413      | 2.0       | 2.8         |             | PCB from Immunoassay (Aroclor 1254)       | 3.3       |           |
| 105-183 | S-WS414-18FSP15-30-40 | WS414      | 3.0       | 4.0         |             | PCB from Immunoassay (Aroclor 1254)       | 93.0      |           |
|         | S-WS414-18FSP15-40-50 | WS414      | 4.0       | 5.0         |             | PCB from Immunoassay (Aroclor 1254)       | 19.0      |           |
|         | S-WS414-18FSP15-50-60 | WS414      | 5.0       | 6.0         |             | Total 209 PCB cong (excl non-detects)     | 89.5      | -         |
| 105-183 | S-WS414-18FSP15-60-70 | WS414      | 6.0       | 7.0         |             | PCB from Immunoassay (Aroclor 1254)       | 5.7       | J         |
| 105-183 | S-WS415-18FSP15-00-10 | WS415      | 0.0       | 1.0         |             | Total 209 PCB cong (excl non-detects)     | 228       | -         |
|         | S-WS415-18FSP15-10-20 | WS415      | 1.0       | 2.0         |             | PCB from Immunoassay (Aroclor 1254)       | 93.0      | JD        |
|         | S-WS415-18FSP15-20-30 | WS415      | 2.0       | 3.0         |             | PCB from Immunoassay (Aroclor 1254)       | 91.0      |           |
|         | S-WS415-18FSP15-30-40 | WS415      | 3.0       | 4.0         |             | Total 209 PCB cong (excl non-detects)     | 64.8      |           |
|         | S-WS415-18FSP15-40-50 | WS415      | 4.0       | 5.0         |             | Total 209 PCB cong (excl non-detects)     | 63.4      |           |
|         | S-WS415-18FSP15-50-60 | WS415      | 5.0       | 6.0         |             | Total 209 PCB cong (excl non-detects)     | 32.6      |           |
| 105-183 | S-WS415-18FSP15-60-70 | WS415      | 6.0       | 7.0         |             | Total 209 PCB cong (excl non-detects)     | 4.7       |           |
|         | S-WS416-18FSP15-00-10 | WS416      | 0.0       | 1.0         |             | Total 209 PCB cong (excl non-detects)     | 5.0       |           |
|         | S-WS416-18FSP15-10-20 | WS416      | 1.0       | 2.0         |             | PCB from Immunoassay (Aroclor 1254)       | 7.4       | JD        |
|         | S-WS417-18FSP15-00-10 | WS417      | 0.0       | 1.0         |             | Total 209 PCB cong (excl non-detects)     | 1.5       |           |
| 105-183 | S-WS417-18FSP15-10-20 | WS417      | 1.0       | 2.0         |             | PCB from Immunoassay (Aroclor 1254)       | 3.6       | .]        |
|         | S-WS418-18FSP15-10-20 | WS418      | 1.0       | 2.0         |             | Total 209 PCB cong (excl non-detects)     | 32.3      | <u> </u>  |
| 105-183 | S-WS418-18FSP15-20-30 | WS418      | 2.0       | 3.0         |             | Total 209 PCB cong (excl non-detects)     | 21.0      |           |
|         | S-WS418-18FSP15-30-40 | WS418      | 3.0       | 4.0         |             | PCB from Immunoassay (Aroclor 1254)       | 7.4       | חו        |

Table 2-1b West Zone 4 Pre-Excavation PCB Characterization Sample Results for Parcel 105-183

|         |                                    |                     | Sample     | Sample |             |                                       |             |           |
|---------|------------------------------------|---------------------|------------|--------|-------------|---------------------------------------|-------------|-----------|
| Descal  | Occurred to JD                     |                     | Depth Top  | Depth  |             | Description                           | Total PCB   | Final     |
| Parcel  | Sample ID<br>S-WS418-18FSP15-40-50 | Station ID<br>WS418 | (ft)       |        | Sample Date |                                       | (mg/kg)     | Qualifier |
|         |                                    |                     | 4.0        | 5.0    |             | PCB from Immunoassay (Aroclor 1254)   | 17.0        |           |
|         | S-WS418-18FSP15-50-60              | WS418               | 5.0        | 6.0    |             | PCB from Immunoassay (Aroclor 1254)   | 8.2         |           |
|         | S-WS418-18FSP15-60-70              | WS418               | 6.0<br>7.0 | 7.0    |             | PCB from Immunoassay (Aroclor 1254)   | 2.6<br>0.70 |           |
|         | S-WS418-18FSP15-70-80              | WS418               |            | 8.0    |             | PCB from Immunoassay (Aroclor 1254)   |             |           |
|         | S-WS418-18FSP15-80-90              | WS418               | 8.0        | 9.0    |             | PCB from Immunoassay (Aroclor 1254)   | 1.9         | J         |
|         | S-WS419-18FSP15-00-10              | WS419               | 0.0        | 1.0    |             | Total 209 PCB cong (excl non-detects) | 7.1         |           |
|         | S-WS419R-18FSP15-00-10-REP         |                     | 0.0        | 1.0    |             | Total 209 PCB cong (excl non-detects) | 2.5         |           |
|         | S-WS419-18FSP15-10-20              | WS419               | 1.0        | 2.0    |             | PCB from Immunoassay (Aroclor 1254)   | 12.0        |           |
|         | S-WS419R-18FSP15-10-20-REP         |                     | 1.0        | 2.0    |             | PCB from Immunoassay (Aroclor 1254)   | 12.0        |           |
|         | S-WS420-18FSP15-20-30              | WS420               | 2.0        | 3.0    |             | PCB from Immunoassay (Aroclor 1254)   | 93.0        |           |
|         | S-WS420-18FSP15-30-40              | WS420               | 3.0        | 4.0    |             | PCB from Immunoassay (Aroclor 1254)   | 70.0        |           |
|         | S-WS420-18FSP15-40-50              | WS420               | 4.0        | 5.0    |             | PCB from Immunoassay (Aroclor 1254)   | 89.0        | JD        |
|         | S-WS420-18FSP15-50-60              | WS420               | 5.0        | 6.0    |             | Total 209 PCB cong (excl non-detects) | 179         |           |
|         | S-WS420-18FSP15-60-70              | WS420               | 6.0        | 7.0    |             | Total 209 PCB cong (excl non-detects) | 35.9        |           |
|         | S-WS420-18FSP15-70-80              | WS420               | 7.0        | 8.0    |             | PCB from Immunoassay (Aroclor 1254)   | 14.0        |           |
|         | S-WS420-18FSP15-80-90              | WS420               | 8.0        | 9.0    |             | PCB from Immunoassay (Aroclor 1254)   | 4.5         | J         |
|         | S-WS421-18FSP15-00-10              | WS421               | 0.0        | 1.0    |             | Total 209 PCB cong (excl non-detects) | 0.71        |           |
|         | S-WS421-18FSP15-10-20              | WS421               | 1.0        | 2.0    |             | PCB from Immunoassay (Aroclor 1254)   | 3.8         | J         |
|         | S-WS422-18FSP15-00-10              | WS422               | 0.0        | 1.0    |             | Total 209 PCB cong (excl non-detects) | 2.2         |           |
| 105-183 | S-WS422-18FSP15-10-20              | WS422               | 1.0        | 2.0    |             | Total 209 PCB cong (excl non-detects) | 130         |           |
| 105-183 | S-WS422B-18FSP15-20-30             | WS422B              | 2.0        | 3.0    | 3/13/2019   | Total 209 PCB cong (excl non-detects) | 2360        |           |
| 105-183 | S-WS422B-18FSP15-30-40             | WS422B              | 3.0        | 4.0    | 3/13/2019   | Total 209 PCB cong (excl non-detects) | 250         |           |
| 105-183 | S-WS422B-18FSP15-40-50             | WS422B              | 4.0        | 5.0    | 3/13/2019   | Total 209 PCB cong (excl non-detects) | 10.9        |           |
| 105-183 | S-WS423-18FSP15-20-30              | WS423               | 2.0        | 3.0    | 1/16/2019   | Total 209 PCB cong (excl non-detects) | 0.89        |           |
| 105-183 | S-WS423-18FSP15-30-40              | WS423               | 3.0        | 4.0    | 1/16/2019   | PCB from Immunoassay (Aroclor 1254)   | 1.5         | J         |
| 105-183 | S-WS424-18FSP15-00-10              | WS424               | 0.0        | 1.0    | 12/12/2018  | Total 209 PCB cong (excl non-detects) | 5.5         |           |
| 105-183 | S-WS424-18FSP15-10-20              | WS424               | 1.0        | 2.0    |             | PCB from Immunoassay (Aroclor 1254)   | 1.3         | J         |
| 105-183 | S-WS424-18FSP15-20-30              | WS424               | 2.0        | 3.0    | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 1.7         | J         |
| 105-183 | S-WS424-18FSP15-30-40              | WS424               | 3.0        | 4.0    | 12/12/2018  | PCB from Immunoassay (Aroclor 1254)   | 1.7         | J         |
|         | S-WS425-18FSP15-20-30              | WS425               | 2.0        | 3.0    |             | PCB from Immunoassay (Aroclor 1254)   | 92.0        |           |
|         | S-WS425-18FSP15-30-40              | WS425               | 3.0        | 4.0    |             | Total 209 PCB cong (excl non-detects) | 54.3        |           |
| 105-183 | S-WS425-18FSP15-40-50              | WS425               | 4.0        | 5.0    |             | Total 209 PCB cong (excl non-detects) | 10.1        |           |
| Notes:  |                                    |                     |            |        |             |                                       |             |           |

Pre-excavation confirmatory congener samples are shaded green. D - reported value is from a dilution; U - not detected; J - estimated value; B - contaminant detected in the blank.

Total 18 NOAA PCB congeners multiplied by a factor of 2.6.

| Parcel  | Station ID | Location | Easting  | Northing  | Design Elevation | Post-Excavation<br>Elevation | ∆<br>(ft) |
|---------|------------|----------|----------|-----------|------------------|------------------------------|-----------|
| 105-170 | WS406      | Sidewall | 814910.3 | 2704682.0 | 2.5              | TBD                          | TBD       |
| 105-170 | WS408      | Sidewall | 814879.9 | 2704614.0 | 2.1              | TBD                          | TBD       |
| 105-170 | WS430      | Sidewall | 814931.1 | 2704707.0 | -0.4             | TBD                          | TBD       |
| 105-170 | WS433      | Sidewall | 814928.5 | 2704742.0 | -1.0             | TBD                          | TBD       |
| 105-170 | WS434      | Sidewall | 814894.1 | 2704872.4 | -0.5             | TBD                          | TBD       |
| 105-170 | WS435      | Sidewall | 814917.1 | 2704852.7 | -3.1             | TBD                          | TBD       |
| 105-170 | WS436      | Sidewall | 814925.8 | 2704781.4 | -2.4             | TBD                          | TBD       |
| 105-170 | WS437      | Sidewall | 814937.7 | 2704754.9 | -2.9             | TBD                          | TBD       |
| 105-170 | WS438      | Sidewall | 814899.5 | 2704987.5 | -1.4             | TBD                          | TBD       |
| 105-170 | WS439      | Sidewall | 814931.3 | 2704608.7 | -3.1             | TBD                          | TBD       |
| 105-170 | WS440      | Sidewall | 814857.0 | 2704517.9 | 2.0              | TBD                          | TBD       |
| 105-170 | WS441      | Sidewall | 814923.7 | 2704514.5 | -2.7             | TBD                          | TBD       |
| 105-170 | WS457      | Sidewall | 814883.1 | 2704932.5 | 0.6              | TBD                          | TBD       |
| 105-170 | WS458      | Sidewall | 814904.7 | 2704923.3 | -0.3             | TBD                          | TBD       |
| 105-170 | WS426      | Floor    | 814892.5 | 2704911.1 | -0.7             | TBD                          | TBD       |
| 105-170 | S-926      | Floor    | 814927.0 | 2704799.0 | -2.0             | TBD                          | TBD       |
| 105-170 | WS407      | Floor    | 814927.5 | 2704654.3 | -0.4             | TBD                          | TBD       |
| 105-170 | INT237     | Floor    | 814911.0 | 2704562.0 | -0.9             | TBD                          | TBD       |
| 105-170 | WS411      | Floor    | 814899.6 | 2704519.5 | -2.4             | TBD                          | TBD       |

Table 3-1aCompliance Survey Locations for West Zone 4 Parcel 105-170

Notes:

Elevation measurements at sidewall locations will be taken at the base of the sidewall (bottom of the excavation).

Locations WS434 through WS441 and WS457-WS458 are compliance survey locations only (no associated PCB sample data).

MA - Massachusetts; NAD83 - North American Datum 1983; NAVD88 - North American Vertical Datum 1988; ft - feet; TBD - to be determined.

 $\Delta$  - difference between post-excavation elevation and design elevation.
| Parcel  | Station ID | Location | Easting  | Northing  | Design Elevation | Post-Excavation<br>Elevation | Δ<br>(ft) |
|---------|------------|----------|----------|-----------|------------------|------------------------------|-----------|
| 105-183 | WS442      | Sidewall | 814852.2 | 2704449.1 | 2.1              | TBD                          | TBD       |
| 105-183 | WS443      | Sidewall | 814909.8 | 2704435.5 | -2.3             | TBD                          | TBD       |
| 105-183 | WS444      | Sidewall | 814849.0 | 2704355.5 | 2.5              | TBD                          | TBD       |
| 105-183 | WS445      | Sidewall | 814921.1 | 2704351.3 | -2.3             | TBD                          | TBD       |
| 105-183 | WS446      | Sidewall | 814879.4 | 2704262.4 | 1.0              | TBD                          | TBD       |
| 105-183 | WS447      | Sidewall | 814930.7 | 2704279.0 | -2.5             | TBD                          | TBD       |
| 105-183 | WS448      | Sidewall | 814965.2 | 2704221.0 | 0.5              | TBD                          | TBD       |
| 105-183 | WS449      | Sidewall | 814982.9 | 2704198.2 | -3.7             | TBD                          | TBD       |
| 105-183 | WS450      | Sidewall | 814983.7 | 2704117.5 | 1.1              | TBD                          | TBD       |
| 105-183 | WS451      | Sidewall | 814999.3 | 2704105.4 | -4.6             | TBD                          | TBD       |
| 105-183 | WS452      | Sidewall | 814982.3 | 2704018.3 | -0.3             | TBD                          | TBD       |
| 105-183 | WS453      | Sidewall | 815001.9 | 2704013.9 | -4.7             | TBD                          | TBD       |
| 105-183 | WS454      | Sidewall | 815015.0 | 2703921.5 | -2.0             | TBD                          | TBD       |
| 105-183 | WS455      | Sidewall | 814975.0 | 2703921.5 | 3.6              | TBD                          | TBD       |
| 105-183 | WS456      | Sidewall | 815013.4 | 2703863.9 | -3.2             | TBD                          | TBD       |
| 105-183 | WS412      | Floor    | 814878.8 | 2704431.3 | -4.3             | TBD                          | TBD       |
| 105-183 | WS415      | Floor    | 814907.0 | 2704333.3 | -4.0             | TBD                          | TBD       |
| 105-183 | WS418      | Floor    | 814933.8 | 2704256.5 | -1.2             | TBD                          | TBD       |
| 105-183 | WS420      | Floor    | 814987.1 | 2704052.7 | -5.1             | TBD                          | TBD       |
| 105-183 | WS423      | Floor    | 814996.1 | 2703922.8 | -1.0             | TBD                          | TBD       |
| 105-183 | WS425      | Floor    | 814988.9 | 2704129.7 | -3.7             | TBD                          | TBD       |

Table 3-1bCompliance Survey Locations for West Zone 4 Parcel 105-183

Notes:

Elevation measurements at sidewall locations will be taken at the base of the sidewall (bottom of the excavation).

Locations WS442 through WS456 are compliance survey locations only (no associated PCB sample data).

MA - Massachusetts; NAD83 - North American Datum 1983; NAVD88 - North American Vertical Datum 1988; ft - feet; TBD - to be determined.

 $\Delta$  - difference between post-excavation elevation and design elevation.

| Habitat Type      | Existing Pre-<br>Construction Area<br>[acres] | Proposed Area of<br>Restoration<br>[acres] |
|-------------------|-----------------------------------------------|--------------------------------------------|
| Low Marsh         | 0.197                                         | 0.209                                      |
| High Marsh        | 0.000                                         | 0.027                                      |
| Scrub-Shrub Marsh | 0.136                                         | 0.102                                      |
| Mudflat/subtidal  | 0.010                                         | 0.005                                      |
| Beach             | 0.006                                         | 0.006                                      |
| TOTAL             | 0.349                                         | 0.349                                      |

Table 7-1aProposed Restoration Acreages by Cover Type for Parcel 105-170

| Habitat Type      | Existing Pre-<br>Construction Area<br>[acres] | Proposed Area of<br>Restoration<br>[acres] |
|-------------------|-----------------------------------------------|--------------------------------------------|
| Low Marsh         | 0.307                                         | 0.309                                      |
| High Marsh        | 0.000                                         | 0.127                                      |
| Scrub-Shrub Marsh | 0.120                                         | 0.047                                      |
| Mudflat/Subtidal  | 0.017                                         | 0.017                                      |
| Upland            | 0.008                                         | 0.058                                      |
| Phragmites        | 0.105                                         | 0.000                                      |
| TOTAL             | 0.558                                         | 0.558                                      |

Table 7-1bProposed Restoration Acreages by Cover Type for Parcel 105-183

# Table 7-2aParcel 105-170 Shrub Restoration Summary

| Scientific Name     | Common Name             | On-Center Spacing<br>Requirements (inches) | Number of Proposed<br>Plants | Shrub Restoration Area |
|---------------------|-------------------------|--------------------------------------------|------------------------------|------------------------|
| Iva frutescens      | high-tide bush          | 36"                                        | 27                           | Area 1                 |
| Myrica pensylvanica | northern bayberry       | 36"                                        | 34                           | Area 2                 |
| Clethra alnifolia   | sweet pepperbush        | 36"                                        | 34                           | Area 2                 |
| Rhus glabra         | smooth sumac            | 48"                                        | 19                           | Area 2                 |
|                     |                         |                                            |                              |                        |
|                     | Total Proposed Trees/Sh | 114                                        |                              |                        |

<sup>1</sup>Additional plantings will be required for the scrub-shrub marsh restoration.

# Table 7-2bParcel 105-183 Shrub Restoration Summary

| Scientific Name | Common Name            | On-Center Spacing<br>Requirements (inches) | Number of Proposed<br>Plants <sup>1</sup> | Shrub Restoration Area |
|-----------------|------------------------|--------------------------------------------|-------------------------------------------|------------------------|
| Iva frutescens  | high-tide bush         | 36"                                        | 66                                        | Area 1                 |
| Lindera benzoin | northern spicebush     | 36"                                        | 66                                        | Area 1                 |
|                 | Total Proposed Trees/S | 132                                        | J                                         |                        |

<sup>1</sup>Additional plantings will be required as part of the Scrub-Shrub marsh restoration area.

| Table 7-3                                   |  |  |  |  |  |
|---------------------------------------------|--|--|--|--|--|
| New England Coastal Salt Tolerant Grass Mix |  |  |  |  |  |

| Botanical Name      | Common Name                  | Wetland Indicator Status |
|---------------------|------------------------------|--------------------------|
| Elymus canadensis   | Canada Wild Rye              | FACU+                    |
| Festuca rubra       | Red Fescue                   | FACU                     |
| Panicum amarum      | Atlantic Coastal Panic Grass | FACU-                    |
| Andropogon gerardii | Big Bluestem                 | FAC                      |
| Sorghastrum nutans  | Indian Grass                 | UPL                      |
| Panicum virgatum    | Switch Grass                 | FAC                      |
| Juncus tenuis       | Path Rush                    | FAC                      |

# **Appendix A**

West Zone 4 Pre-Excavation Tree and Shrub Inventories Appendix A Parcel 105-170



| Subject     | Parcel 105-170 Native Tree and Shrub<br>Inventory                                    | Project Name            | New Bedford Harbor Superfund Site |
|-------------|--------------------------------------------------------------------------------------|-------------------------|-----------------------------------|
| Attention   | Marie Esten USACE                                                                    | Project No.             | 35BG6000                          |
| From        | Jessica Rebholz                                                                      | Document Control<br>No. | ACE-J23-35BG6000-M1-0084          |
| Date        | 18 September 2019                                                                    |                         |                                   |
| Attachments | <ul> <li>Figure 1 Parcel 105-170 Pre-Excavation 1<br/>(inventory results)</li> </ul> | Free and Shrub Inventor | y, Tables 3-1, 3-2, and 3-3       |

## 1.0 Background

Jacobs conducted an inventory of existing trees and shrubs on Parcel 105-170 in the intertidal remediation area (Figure 1) on 28 November 2018 and 12 September 2019. The purpose of the inventory was to identify existing trees and shrubs that would be removed in association with site remediation activities, including construction of the gravel access road and areas of excavation associated with contaminated sediment and soil removal. The information collected from this inventory is intended to be used to inform selection of proposed native woody species for future restoration plantings.

#### 2.0 Methods

For the purposes of the inventory, trees were defined as any nonclimbing, woody plant that had at least one erect perennial stem (trunk) with a diameter at breast height (DBH) of 3.0 inches or greater, regardless of height. Jacobs' wetland biologists walked the planned remediation portions of Parcel 105-170 and identified all trees within the proposed excavation area and proposed access road. Tree locations were recorded using a Trimble Geo 7X GPS, capable of sub-meter accuracy.

For the purposes of the inventory, shrubs were defined as any nonclimbing, woody plant with a DBH less than 3.0 inches. Shrubs were inventoried according to dominant shrub types that appeared to constitute similar species diversity and percent areal cover.

#### 3.0 Results

Eastern red cedar (*Juniperus virginiana*), black locust (*Robinia pseudoacacia*), and choke cherry (*Prunus virginiana*) were the three tree species identified within Parcel 105-170. Eastern red cedar and choke cherry are considered native and non-invasive, while black locust is considered non-native and invasive. A total of 5 trees were identified (Table 3-1) within Parcel 105-170.

Two shrub areas were identified within Parcel 105-170 and included high-tide bush (*Iva frutescens*), staghorn sumac (*Rhus hirta*), poison ivy (*Toxicodendron radicans*), and northern bayberry (*Myrica pensylvanica*), all of which are native and non-invasive species (Tables 3-2, 3-3). It is worth noting that a portion of proposed access road will be constructed through a large stand of *Phragmites australis* and *Reynoutria japonica* (Japanese knotweed), two extremely invasive species found throughout the intertidal zones.

#### 4.0 Conclusion

The species makeup of Parcel 105-170 is comprised of both native and non-native trees and native, non-invasive shrubs.



Table 3-1Existing Tree Inventory for Parcel 105-170

| Scientific Name      | Common Name       | Tree Count<br>(≥3" DBH) | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> |
|----------------------|-------------------|-------------------------|-----------------------|--------------------------------|
| Juniperus virginiana | eastern red cedar | 1                       | no                    | native, county documented      |
| Prunus virginiana    | choke cherry      | 1                       | no                    | native, county documented      |
| Robinia pseudoacacia | black locust      | 3                       | yes                   | non-native, county documented  |
|                      | Total             | 5                       |                       |                                |

<sup>2</sup>PLANTS Database | USDA PLANTS, USDA-NRCS, plants.sc.egov.usda.gov/java/.

Table 3-2Existing Shrub Cover for Parcel 105-170, Area 1

| Scientific Name | Common Name   | Area 1<br>Percent Areal Cover | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> | Upland/Wetland |
|-----------------|---------------|-------------------------------|-----------------------|--------------------------------|----------------|
| Iva frutescens  | hightide bush | 90%                           | no                    | native, county documented      | wetland        |

Table 3-3Existing Shrub Cover for Parcel 105-170, Area 2

| Scientific Name        | Common Name       | Area 2<br>Percent Areal Cover | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> | Upland/Wetland |
|------------------------|-------------------|-------------------------------|-----------------------|--------------------------------|----------------|
| Rhus hirta             | staghorn sumac    | 10%                           | no                    | native, county documented      | upland         |
| Toxicodendron radicans | poison ivy        | 15%                           | no                    | native, county documented      | both           |
| Myrica pensylvanica    | northern bayberry | 20%                           | no                    | native, county documented      | both           |

Appendix A Parcel 105-183



| Subject    | Parcel 105-183 Native Tree and Shrub<br>Inventory   | Project Name            | New Bedford Harbor Superfund<br>Site  |
|------------|-----------------------------------------------------|-------------------------|---------------------------------------|
| Attention  | Marie Esten USACE                                   | Project No.             | 35BG2000                              |
| From       | Jessica Rebholz                                     | Document Control<br>No. | ACE-J23-35BG6000-M1-0084              |
| Date       | 27 September 2019                                   |                         |                                       |
| Attachment | ts: Figure 1 Parcel 105-183 Pre-Excavation results) | Tree and Shrub Invento  | ry, Tables 3-1 through 3-4 (inventory |

## 1.0 Background

Jacobs conducted an inventory of existing trees and shrubs on Parcel 105-183 in the intertidal remediation area (Figure 1) on 28 November 2018. An additional inventory was taken on 12 September 2019. The purpose of the inventory was to identify existing trees and shrubs that would be removed in association with site remediation activities, including construction of the gravel access road and areas of excavation associated with contaminated sediment and soil removal. The information collected from this inventory is intended to be used to inform selection of proposed native woody species for future restoration plantings.

## 2.0 Methods

For the purposes of the inventory, trees were defined as any nonclimbing, woody plant that had at least one erect perennial stem (trunk) with a diameter at breast height (DBH) of 3.0 inches or greater, regardless of height. Jacobs' wetland biologists walked the planned remediation portions of Parcel 105-183 and identified all trees within the proposed excavation area and proposed access road. Tree locations were recorded using a Trimble Geo 7X GPS, capable of sub-meter accuracy.

For the purposes of the inventory, shrubs were defined as any nonclimbing, woody plant with a DBH less than 3.0 inches. Shrubs were inventoried according to dominant shrub types that appeared to constitute similar species diversity and percent areal cover.

#### 3.0 Results

Eastern red cedar (*Juniperus virginiana*) was the dominant tree species within Parcel 105-183. Eastern red cedar is considered native and non-invasive. A total of 7 red cedar trees were identified (Table 3-1), and a total of 8 trees were identified within Parcel 105-183.

Three (3) shrub areas were identified within Parcel 105-183 (Tables 3-2 through 3-4). Nearly all the species identified within the shrub areas were native and non-invasive, with *lva frutescens* being the dominant shrub across Parcel 105-183. Of note, the proposed access road will be constructed through a large stand of *Phragmites australis* and . Both are extremely invasive grasses found throughout the intertidal zones.

#### 4.0 Conclusion

The species makeup of Parcel 105-183 is comprised almost entirely of native, non-invasive trees and shrubs.

| Legend       Autumn olive         • Eastern red cedar       MHHW       Proposed Access Road         • MLLW       0-1' Excavation Area       Parcel Boundary | 0 50 100<br>Feet<br>Basemap Data Source:<br>Green Seal Environmental, MassGIS<br>September 2019<br>Vertical Datum:<br>NAVD88 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|



Table 3-1Existing Tree Inventory for Parcel 105-183

| Scientific Name      | Common Name       | Tree Count<br>(≥3" DBH) | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> |
|----------------------|-------------------|-------------------------|-----------------------|--------------------------------|
| Elaeagnus umbellata  | autumn olive      | 1                       | yes                   | non-native, county documented  |
| Juniperus virginiana | Eastern red cedar | 7                       | no                    | native, county documented      |
|                      | Total             | 8                       |                       |                                |

<sup>2</sup>PLANTS Database | USDA PLANTS, USDA-NRCS, plants.sc.egov.usda.gov/java/.

# Table 3-2Existing Shrub Cover for Parcel 105-183, Area 1

| Scientific Name | Common Name   | Area 1<br>Percent Areal Cover | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> | Upland/Wetland |
|-----------------|---------------|-------------------------------|-----------------------|--------------------------------|----------------|
| lva frutescens  | hightide bush | 90%                           | no                    | native, county documented      | wetland        |

<sup>1</sup>According to "The Evaluation of Non-Native Plant Species for Invasiveness in Massachusetts": https://www.mass.gov/files/documents/2016/08/tm/invasive-plantlist.pdf

Table 3-3Existing Shrub Cover for Parcel 105-183, Area 2

| Scientific Name        | Common Name        | Area 2<br>Percent Areal Cover | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> | Upland/Wetland |
|------------------------|--------------------|-------------------------------|-----------------------|--------------------------------|----------------|
| Elaeagnus umbellata    | autumn olive       | 20%                           | yes                   | non-native, county documented  | upland         |
| Toxicodendron radicans | poison ivy         | 30%                           | no                    | native, county documented      | both           |
| Iva frutescens         | high-tide bush     | 25%                           | no                    | native, county documented      | wetland        |
| Juniperus virginiana   | eastern red cedar  | 5%                            | no                    | native, county documented      | upland         |
| Lindera benzoin        | northern spicebush | 15%                           | no                    | native, county documented      | both           |

Table 3-4Existing Shrub Cover for Parcel 105-183, Area 3

| Scientific Name        | Common Name        | Area 3<br>Percent Areal Cover | Invasive <sup>1</sup> | Native/Non-Native <sup>2</sup> | Upland/Wetland |
|------------------------|--------------------|-------------------------------|-----------------------|--------------------------------|----------------|
| lva frutescens         | high-tide bush     | 70%                           | no                    | native, county documented      | wetland        |
| Toxicodendron radicans | poison ivy         | 10%                           | no                    | native, county documented      | both           |
| Lindera benzoin        | northern spicebush | 15%                           | no                    | native, county documented      | wetland        |

Appendix B Cross Sections











## CREATED: 7/14/2019

LAST SAVED:12/13/2019

**BY:ENGLANLL** 













CREATED: 7/14/2019

LAST SAVED:12/13/2019

**BY:ENGLANLL** 



















FIGURE 11

LEGEND:

3.





── 1-foot Contour Mean Lower Low Water Mean Higher High Water Parcel Boundary

Proposed Beach

# Proposed High Marsh

Proposed Low Marsh Minimal Backfill as Needed for Drainage or Slope Stability Proposed Scrub-Shrub Marsh



0

Basemap Data Source: Green Seal Environmental, MassGIS



100

Feet

October 2019

Vertical Datum: NAVD88

Intertidal West Zone 4 Parcel 105-170 **Cross Section Locations** New Bedford Harbor Superfund Site





