

Presentation Outline

- Site Background & Current Status
 Skip Hull, USEPA/ Drew Hoffman, NHDES
- 2. Project Updates CLG, CES
- 3. Questions

Coakley Landfill Area

Coakley Landfill Site Plan

Background 1972 to 1994

June 1990 Record of Decision

- ROD issued to address source control (SC) only (OU1)
- No remedy selected for management of migration (MM) due to limited data for characterizing off-site migration
- Subsequent ROD would be issued for MM (OU2)
- Selected SC-4 as preferred remedy: Capping/ On-Site Groundwater Treatment
- ROD proposed that off-site groundwater monitoring network would be expanded as part of implementation of SC remedy
- March 1991 ESD modified landfill cap design

May 1992 Consent Decree

- US, NH and defendants enter into CD
- Detailed agreement for the implementation of remedy for OU1 as specified in June 1990 ROD (SC-4), as modified by 1991 ESD
- Scope of Work specified componants of the remedy including:
 - consolidation of contaminated wetland sediments
 - capping of landfill
 - treatment of groundwater
 - long-term monitoring

Background 1994 to 2015

- Based on data collected since 1990 ROD, 4 remedies were evaluated for MM ranging from No Action to GW Treatment
- Selected MM-2 as remedy for OU2:
 - institutional controls (such as deed restrictions, GMZ) to prevent use of contaminated groundwater
 - natural attenuation for the contaminated groundwater plume
 - groundwater monitoring
- The key element of the remedy is the ability of the groundwater contamination to naturally attenuate
- Did not include PFAS or 1,4-dioxane

January 1999 Consent Decree

• US, NH and defendants enter into CD

- Detailed agreement for the implementation of remedy for OU2 as specified in September 1994 ROD (MM-2)
- MM-2 remedy includes institutional controls, natural attenuation and groundwater monitoring

September 1999 Explanation of Significant Differences

- Modified the remedy for OU1 to eliminate onsite groundwater treatment from the SC-4 alternative selected
- Groundwater data collected to date demonstrated significant decline in levels of COCs in groundwater
- Groundwater treatment (P&T) determined to no longer be necessary in order to achieve cleanup goals
- ESD did not modify remedy for OU2

1,4 – Dioxane Timeline

- ▶ 1,4-Dioxane
 - 2008 NHDES established GW sampling requirements
 - 2009 1,4-dioxane discovered at Coakley
 - 2015 Incorporated as site COC through ESD
 - CLG sampling for 1,4-dioxane twice per year at expanded monitoring well network
 - No private wells exceed AGQS for 1,4-dioxane (3.0 ppb)

PFAS Timeline

- PFAS (per– and polyfluoroalkyl substances)
 - 2014 Discovered at Pease AFB (Haven Well closure)
 - 2016 present
 - Discovered near Saint Gobain (Merrimack/ Litchfield)
 - May EPA released revised Drinking Water Health Advisory
 - June NHDES emergency rule-making to adopt HA as AGQS
 - June/July CLG sampled PFASs at Coakley (HA/AGQS exceeded)
 - NHDES initiates private water supply sampling for PFAS and expands to the larger Seacoast area
 - October NHDES formally adopts AGQS for PFOA & PFOS
 - CLG sampling Coakley MWs, sediment & surface water and area private wells for PFAS 2 times per year

NHDES Sampling Efforts Private Wells

- MTBE able to expedite private well sampling
- NHDES trained personnel & contract laboratories
- 84 Private wells & 5 surface water locations
- All private wells sampled remain below EPA-Health Advisory/NH-AGQS for PFAS

Surface Water

 Risk-based Screening Levels (SLs) were calculated for incidental ingestion of surface water and sediment assuming exposure durations of 120 (conservative) and 45 days/yr (realistic) for PFOA, PFOS and PFBS

□ PFOA & PFOS

 \square SW 120 day SL = 760 ng/L

 \square SED 120 day SL = 0.369 mg/kg

45 day SL = 2,030 ng/L

45 day SL = 0.98 mg/kg

PFBS

 \square SW 120 day SL = 760,000 ng/L

 \square SED 120 SL = 369 mg/kg

45 day SL = 2,030,000 ng/L

45 day SL = 980 mg/kg

Surface Water

- Sampling of surface water ongoing Results compared against surface water SLs, not AGQS
- □ Surface water samples at SW–5 and SW–103 > more conservative 120 day SL (760 ng/L):
 - \square SW-5 PFOS = 1,120 ng/L
 - \square SW-103 PFOS = 993 ng/L
- □ All surface water results < more realistic 45 day SL (2,030 ng/L)
- Leachate seep L-1 results down more than 80% (PFOS PFOA combined) April Sept 2017
- No PFBS results above SLs

Berrys Brook Surface Water Sampling Results for PFOA & PFOS

September 2017 results Locations approximate

Site-Specific SW Screening Levels	PFOA (ppt)	PFOS (ppf)
45 days/year (child)	2,030	2,030
120 days/year (child)	760	760

Sampler	PFOA	PFOS
(date)	(ppt)	(ppf)
CLG SW-4 (9/17/17)	145	

Maximum PFAS sample locations for

Fish Consumption SLs

- November 2017 EPA calculated risk-based SLs for standard recreational fish consumption rates for a child for PFOA, PFOS and PFBS
 - Most conservative exposure assumption for child
 - □ 6,000 mg/day, 350 days/year, 6 years (about 74 ounces per year)
 - SL PFOA & PFOS
 - 5.21E-03 mg/kg (0.00521 mg/kg of fish tissue consumed)
 - □ SL PFBS
 - □ 5.21 mg/kg

Overview of SLs for Recreational Ingestion of Surface Water, Sediment & Fish Tissue

	F	Risk-Base	ed Screeni	na I evels	
	Risk-Based Screening Levels				
	Surface Water (ug/L)		Sediment (mg/kg)		Fish (mg/kg)
Assumptions	120 day/yr	45 day/yr	120 day/yr	45 day/yr	6 grams/day
PFOS/PFOA	0.76	2.03	0.369	0.98	0.00521
PFBS	760	2030	369	983	5.21

Ongoing and Upcoming Activities

Ongoing Work

- February 2018 CLG submits data from geophysical testing and sampling of Chinburg well
 - All samples ND for 1,4-dioxane and PFOA, PFOS
 - Geophysical data can be used for bedrock investigation
- May 2018 Site-Wide GW/SW/SED sampling
- May 2018 Residential well sampling

Deep Bedrock Investigation

- January 2018 EPA directs CLG to initiate bedrock investigation
 - Investigation to determine extent of contaminant migration in bedrock
 - Investigating bedrock is an iterative process
 - Workplan submitted March 21, 2018
 - Technical meeting held March 30, 2018
 - Final workplan under development

Deep Bedrock Investigation

- Investigation will include:
 - Geophysical surveying of existing bedrock boreholes and surface features
 - Sampling of groundwater in bedrock
 - Installation of new bedrock wells
 - Geophysics
 - Sampling
 - Update bedrock mapping and determine extent of contaminant migration

DEEP BEDROCK EXPLORATION PLAN

Fish Tissue Sampling

- February 2018 EPA directs CLG to develop fish tissue sampling and analysis program
- Proposal submitted March 8, 2018
- CLG working with EPA, NHDES & NH F&G to finalize sampling program
- NH F&G stock brown trout in Berrys Brook estuary area ≈ 5 miles downstream in spring & fall
- NH F&G advisory for catch & release "abundance of caution"
- CLG sample fish tissue & compare results to site-specific SLs
- Sampling of warmwater, resident species present in the freshwater areas of Berrys Brook
- Sampling of brown trout from estuary area of Berrys Brook
- Survivability, exposure duration and catchability are factors for sampling brown trout
- Sampling to be initiated late spring/ summer 2018

Berrys Brook Estuary at Brackett Road Bridge

Coakley Landfill Contact Information

www.epa.gov/superfund/coakley

Richard Hull U.S. EPA – New England, Region 1 Tel. (617) 918–1882

E-mail: <u>Hull.Richard@epa.gov</u>

Andrew Hoffman, P.E. NH Department of Environmental Services Tel. (603) 271-6778

E-mail: Andrew.Hoffman@des.nh.gov

Jim Murphy U.S. EPA – New England, Region 1 Tel. (617) 918–1028

E-mail: <u>murphy.jim@epa.gov</u>

What Does That Number Mean?

Supplemental Information for Ecology's Water Quality Policy Forum

February 8, 2013

Risk level terminology that you will hear...

	Numeric	How to say it	What it means, under specified exposure assumptions	What are the exposure assumptions that are included in Washington's current human health-based criteria (the 1992
Increasing	10 ⁻⁶	Ten-to- the- minus-sixth	risk of one additional occurrence of cancer, in one million people	National Toxics Rule criteria)? 70 years of daily exposure to 6.5 g/day of fish and shellfish,
	10 ⁻⁵	Ten-to- the- minus-fifth	risk of one additional occurrence of cancer, in one hundred thousand people	and 2 liters/day of untreated surface waters, by a 154 lb. person.
protection	10 ⁻⁴	Ten-to- the- minus-fourth	risk of one additional occurrence of cancer, in ten thousand people	

Landfill Statistics

- Approximately 300 closed landfills
- Only eight have a liner

PFOA and PFOS

Perflourooctanoic acid (PFOA – C8) primarily used as a surfactant in the production of other fluorochemicals, including PTFE (Teflon®), and in related manufacturing processes; often produced as its ammonium salt, ammonium perfluorooctanoate (APFO)

 Perfluorooctane sulfonate (PFOS) has variety of uses including surface treatments, paper coatings, firefighting foam

Expansive Use of PFAS/PFCs

Commercial Products	Industrial Uses				
Cookware (Teflon®, Nonstick)	Photo Imaging				
Fast Food Containers	Metal Plating				
Candy Wrappers	Semiconductor Coatings				
Microwave Popcorn Bags	Aviation Hydraulic Fluids				
Personal Care Products (Shampoo, Dental	Medical Devices				
Floss)	Firefighting Aqueous Film-Forming Foam				
Cosmetics (Nail Polish, Eye Makeup)	Insect Baits				
Car wash treatment products	Printer and Copy Machine Parts				
Paints and Varnishes	Chemically Driven Oil Production				
Stain Resistant Carpet	Textiles, Upholstery, Apparel and Carpets				
Stain Resistant Chemicals (Scotchgard®)	Paper and Packaging				
Water Resistant Apparel (Gore-Tex®)	Rubber and Plastics				
Cleaning Products					
Electronics					
Ski Wax					

Home | My Account | View Cart | Site Map | Login

(860) 528-3519 Questions? Call or email us!

Consultants and distributors for leading car wash equipment manufacturers

Welcome! Please sign in or Register here.

Simoniz Shield Special Teflon Formulation Lemon

Product ID: ASCWS-T37760

A clear coat sealer containing Teflon" that will provide gloss and protection. It should be followed by a final rinse.

Choose One:	V

Quantity:

Add To Cart

CATEGORIES

- Complete Car Wash Systems
- Car Wash Components
- Parts & Supplies
- Chemicals & Solutions
- Detail Shop
- Manufacturers
- > Contractors
 - Your Feedback

EXPLODED PARTS VIEW

Point and click parts manuals for the Freestyler, Vector, Tunnel & other Car Wash Equipment.

CAR WASH INSTALLS

Check out some of our most recent and current car wash installations.

FREE RESOURCES

Downloadable content, catalogs, how to's and more!

Polishes & Sealants

This product is listed in these Categories...

previous | next

Client:	New Hampshire Department of Environmental Services				Service Reque	est: K1610470		
Project:	Regulated Car Wash				Date Collected: 09/01/16 11:40			
Sample Matrix:				Date Receiv	ed: 09/07/16 09:30			
Sample Matrix.	Water				Date Recen	cu. 05/07/10 05:50		
Sample Name:	22 LaFayette Rd (PWMW1)				Units: ng/L			
Lab Code:	K1610470-002				Ba	sis: NA		
Perfluorinated Sulfonic Acids and Perfluorinated Carboxylic Acids by HPLC/MS								
Analysis Method:	PFC/537M	LOCOL DDT	DEAC in	are	aun duyat	or at a		
Prep Method:	EPA 3535A	+9000 PPT	PFA3 III	gro	Junuwati	er at a		
		car wash						
Analyte Name		Result	MRL	Dil.	Date Analyzed	Date Extracted	Q	
HFPO-DA		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorobutanoic Acid		640	93	10	09/30/16 04:30	9/26/16	冰	
Perfluoropentanoic Acid		3400	46	10	09/30/16 04:30	9/26/16	*	
Perfluorobutane Sulfonate		5.3	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorohexanoic Acid		3500	46	10	09/30/16 04:30	9/26/16	*	
Perfluoroheptanoic Acid		1200	46	10	09/30/16 04:30	9/26/16	*	
Perfluorohexane Sulfonate		4.9	4.6	1	09/28/16 03:35	9/26/16	No.	
Perfluorooctanoic Acid		33	1.9	1	09/28/16 03:35	9/26/16	够	
Perfluorononanoic Acid		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorooctane Sulfonate		19	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorodecanoic Acid		350	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluoroundecanoic Acid		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorodecane Sulfonate		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorododecanoic Acid		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
Perfluorooctylsulfonamide		ND U	4.6	1	09/28/16 03:35	9/26/16	車車	
Perfluoro-n-tridecanoic acid		ND U	4.6	1	09/28/16 03:35	9/26/16	14c	
Perfluoro-n-tetradecanoic acid		ND U	4.6	1	09/28/16 03:35	9/26/16	ale:	
Perfluoroheptane sulfonate		ND U	4.6	1	09/28/16 03:35	9/26/16	*	
N-ethylperfluoro-1-octanesulfonamide		ND U	4.6	1	09/28/16 03:35	9/26/16	冰	
N-methylperfluoro-1-octanesulfonamide			4.6	1	09/28/16 03:35	9/26/16	*	
2-(N-ethylperfluoro-1-octanesulfonamido)-		lo)- ND U	4.6	1	09/28/16 03:35	9/26/16	塘	
ethanol							4 1	
2-(N-methylperfluoro-1-octanesulfonamido)		nido) ND U	4.6	1	09/28/16 03:35	9/26/16	*	

Hazardous Substances Analyzed

VOLATILE ORGANIC COMPOUNDS

Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride Acetone Carbon Disulfide 1.1-Dichloroethene 1,1-Dichloroethane Trans-1,2-Dichloroethene Chloroform 1,2-Dichloroethane 2-Butanone 1.1.1-Trihcloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane Trans-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene cis-1,3-Dichloropropene 2-Chloroethylvinylether Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes

PESTICIDES

Alpha-BHC Beta-BHC Delta-BHC Gamma-BHC (Lindane) Heptachlor Aldrin Heptachlor Epoxide Endosulfan I Dieldrin 4 , 4' - DDE Endrin Endosulfan II 4 . 4 ' - DDD Endrin Aldehyde Endosulfan Sulfate 4 . 4' -DDT Methoxychlor Endrin Ketone Chlordane Toxaphene

PCB'S

Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254 Aroclor-1260

EXTRACTABLE ORGANIC COMPOUNDS

bis(2-Chloroethyl)Ether

2-Chlorophenol

1.3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)Ether 4-Methylphenol N-Nitroso-di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic Acid bis(2-Chloroethoxy)Methane 2,4-Dichlorophenol 1.2.4-Trichlorobenzene 4-Chloroaniline Hexachlororobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Kexachlorocylcopentadiene 2,4,6-Trichlorophenol 2.4.5-Trichlorophenol 2-Chloronaphthalene 2-Nitroaniline Dimethyl Phthalate Acenaphthylene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene 2,6-Dimitrotoluene Diethyl Phthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4.6-Dimitro-2-methylphenol N-Nitrosodiphenylamine 4-Bromophenyl-phenylether Mexachlorobenzene Pentachlorophenol Phenanthrene Anthracene di-n-Butyl Phthalate Fluoranthene Pyrene Butyl Benzyl Phthalate 3.3'-Dichloropenzidine Benzo(a)Anthracene bis(2-Ethylhexyl)Phthalate Chrysene di-n-Octyl Phthalate Benzo(b)Fluoranthene Benzo(k)Fluoranthene Benzo(a)Pyrene Indeno(1,2,3-cd)Pyrene Dibenz(a,h)Anthracene Benzo(g,h,i)Pervlene

METALS

Aluminum Antimony Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead

Magnesium
Manganese
Mercury'
Nickel
Selenium
Silver
Sodium
Thallium
Vanadium
Zinc
Cyanide

Contaminants of Concern Identified at Coakley Landfill

Carcinogenic	Non-carcinogenic
Benzene	2-Butanone (MEK)
Tetrachloroethene	Phenol
Arsenic	Diethyl phthalate
1,4-Dioxane (added 2015)	Chlorobenzene
	Trans-1,2-dichloroethene
	Chromium
	Nickel

Areas with Public Water

Conceptual Understanding of OB & Shallow BR Groundwater Flow

Watershed Boundaries

1988 RI Figure 6 Cross-Section Orientation

Bedrock Geologic Map ('88 RI) APPROXIMATE LIMITS APPROXIMATE LIMITS OF FILL COAKLEY LANDFILL AILPOAD LEGEND: METAMORPHIC ROCKS: GENERALLY CONSIST OF SOFT TO HARD PHYLLITE, META-GRAYWACKE, QUARTZITE, AMPHIBOLITE, AND SCHIST. THESE ROCKS LIKELY CORRELATE WITH THE RYE GNEISS (LYONS ET AL., 1986). CBC CENTRAL SILICIC COMPLEX: GENERALLY CONSIST OF MODERATELY HARD TO HARD MUSCOVITÉ-BIOTITÉ GRANITÉ, QUARTZ-FELSPAR GRANITE MYLONTE GNEISS, AND VEIN +++ QUARTZ, COMPLEX LIKELY CORRELATES WITH THE BREAKFAST HILL GRANITE AND THE BREAKFAST HILL MEMBER OF THE RYE GNEISS (LYONS ET AL., 1988).

GRANITE MYLONITE GNEISS, AND VAIN QUARTZ.

BEDROCK BR: MODERATELY HARD TO HARD BAGALT DIKES.

49

Section C-C' ...

UNIT DESCRIPTION:

REFUSE: PLASTIC, WOOD, METAL, PAPER, AND OTHER COMMON REFUSE.

ICE CONTACT BAND AND GRAYEL DENSE, BROWN, FINE TO COARSE SUTRACE SILT. PROPORTIONS OF BAND AND GRAYEL YARY WIDELY W

MARINE DEPOSITS: MEDIUM DENSE, GRAY CLAY & SILT TO SOFT, GR LOCALLY STRATIFIED WITH FINE SAND.

GLACIALTILL: VERY DENSE, BROWN, FINE TO COARSE SAND, SOME FINE LITTLE SILT.

BEDROCK M.R. SOFT TO HARD PHYLLITE, META-GRAYWACKE, QUARTZI - 00 SCHIST.

BEDROCK CBC: MODERATELY HARD TO HARD MUSCOVITE-BIOTITE GIR A: GRANITE MYLONITE GNEISS, AND VAIN QUARTZ.

BEDROCK BR: MODERATELY HARD TO HARD BAGALT DIKES.

Bedrock Surface Contours ('88 RI)

Watershed Boundaries

