UNITED STATES ENVIRONMENTAL PROTECTION AGENCY NEW ENGLAND REGION
 FIVE POST OFFICE SQUARE, SUITE 100, BOSTON, MA 02109

DATE: January 29, 2018
FROM: Christopher Smith, EPA Remedial Project Manager
SUBJECT: November 2017 Sawyer Street Groundwater Monitoring

Introduction

This Technical Memorandum summarizes the groundwater monitoring activities conducted at the Sawyer Street Confined Disposal Facility (CDF) in New Bedford, Massachusetts during the Fall 2017 monitoring period. The 2017 survey is a continuation of a multi-year program to monitor six groundwater monitoring wells located around the perimeter of the CDF. The wells are monitored semi-annually; numerous past reports for this sampling are posted on the New Bedford Harbor Superfund webpage. Results from the monitoring survey are used to evaluate the integrity of the CDF and assess potential trends in concentrations of polychlorinated biphenyls (PCBs) as Aroclors, selected metals (cadmium, chromium, copper, and lead), and volatile organic compounds (VOCs). Total suspended solids (TSS) concentrations are also measured.

Field Activity Summary

Groundwater samples were collected from the following six wells located around the perimeter of the CDF in the Fall of 2017: MW-1, MW-3, MW-4A, MW-5, MW-6, and MW-7A (Figure 1). All field activities were conducted according to the sampling analysis plan (SAP) developed for this investigation (Appendix A). All field activities were performed by EPA staff.

While these wells have been developed prior to sample collection in past sampling events, well development did not occur during this round of sampling. Groundwater sampling was performed on November 14-15, 2017, according to the United States Environmental Protection Agency (EPA) Region 1 Low Stress (flow) Purging and Sampling Groundwater Procedure for the Collection of Groundwater Samples from Monitoring Wells, Rev. 3 (EPA, 2010). A peristaltic pump was used to sample the wells. Dedicated sample tubing and bladder pumps were used at each well to minimize the risk of cross contamination between wells. The well was purged and in situ water quality parameters (i.e., temperature, specific conductivity, dissolved oxygen, pH , oxidation reduction potential, and turbidity) were monitored until they achieved a steady state (where possible). All measurements were recorded on field log sheets (Appendix B). After purging, groundwater samples were collected for PCBs, metals, VOC, and TSS analysis.

Field-based quality assurance / quality control (QA/QC) samples included one field replicate sample (from MW-1) and one trip blank (analyzed for VOCs only). Table 1 shows the number of samples taken and the analytical method used for testing in the laboratory.

Figure 1: Sawyer Street CDF Monitoring Well Locations

Table 1: Field sample data and laboratory analytical methods.

Parameter	Number of Samples	Sample Matrix	Analytical Method Reference	Sample Container	Sample Preservation	Holding Time
PCB Aroclors	7 Total (6) samples (1) field duplicate	Groundwater	$\begin{gathered} \text { EIASOP- } \\ \text { GCPESWALL7 } \end{gathered}$	$2 \times 1 \mathrm{~L}$ amber glass, Teflon lined cap	$4^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	7 days
VOCs	8 Total (6) samples (1) field duplicate (1) trip blank	Groundwater	$\begin{gathered} \text { EIASOP- } \\ \text { VOAGCMS9 } \end{gathered}$	$4 \times 40 \mathrm{~mL}$ amber glass, VOA teflon lined cap	$\begin{gathered} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{HCL}, \mathrm{pH} \\ 2,4^{\circ} \mathrm{C} \end{gathered}$	14 days
Metals	7 Total (6) samples (1) field duplicate	Groundwater	$\begin{aligned} & \text { EIASOP- } \\ & \text { OPTIMAS0 } \end{aligned}$	$\begin{aligned} & 1 \times 250 \mathrm{~mL} \\ & \text { plastic } \\ & \text { container } \end{aligned}$	$\begin{gathered} \mathrm{HNO}_{3}, \mathrm{pH}<2, \\ 4^{\circ} \mathrm{C} \end{gathered}$	180 days
TSS	7 Total (6) samples (1) field duplicate	Groundwater	INGTSS-TDSVRES6	$1 \times 1 \mathrm{~L}$ plastic container	$4^{\circ} \mathrm{C}$	7 days

Results

Table 2 shows the water quality analytical results. Full laboratory analytical results are shown in Appendix C.

Table 2: November 2017 Cell 1 Groundwater Sampling Analytical Results

Parameter	Units	RL	Well ID							Trip Blank
			MW-1	MW-1D	MW-3	MW-4A	MW-5	MW-6	MW-7A	
Total PCB (a)	$\mu \mathrm{g} / \mathrm{L}$	(b)	ND	NA						
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	10	ND	NA						
Chromium	$\mu \mathrm{g} / \mathrm{L}$	20	ND	NA						
Copper	$\mu \mathrm{g} / \mathrm{L}$	20	ND	NA						
Lead	$\mu \mathrm{g} / \mathrm{L}$	20	ND	NA						
TSS	mg / L	2.5	ND	ND	11	2.8	3.8	9.2	ND	NA
VOCs	$\mu \mathrm{g} / \mathrm{L}$	(c)	ND							

Notes:
(a) Total PCB calculated as sum of Aroclors 1016, 1221, 1232, 1242, 1248, 1254, 1260, 1262, and 1268.
(b) Individual PCB Aroclors were undetected in groundwater samples at concentrations above the laboratory reporting limit (see appendix C).
(c) RLs for VOCs are listed in Appendix C; no VOCs were detected in the groundwater samples.

Key:
RL: Reporting Limit; $\mu \mathrm{g} / \mathrm{L}$: micrograms per liter; mg/L: milligrams per liter; ND: Not Detected above Reporting Limit

Quality Control

Field based quality control included the collection of duplicate samples (one per parameter) and trip blanks for VOCs. Laboratory based QC followed the procedures outlined in the analytical method (see table 1). Neither the field or laboratory based QC results indicated any problems with the samples.

Discussion and Summary

Results from the November 2017 sampling event indicate that the integrity of the Sawyer Street CDF is maintained. With the exception of Total Suspended Solids, all parameters (PCBs, metals, VOCs) measured for in the monitoring wells were not detected. It should be noted that in past iterations of this sampling event, laboratories have achieved lower reporting limits for metals. Results from this sampling event should not be misinterpreted as showing that concentrations of metals have decreased to non-detect levels relative to lower reporting limits. Despite the higher reporting limits (for metals) in this round of analysis, the results show that contamination in the monitoring wells has not increased to a level which may raise concerns about the integrity of the Sawyer Street CDF. The Sawyer Street CDF monitoring wells will be sampled again in the Spring of 2018.

Appendix A
 Sampling Analysis Plan

New Bedford Harbor Superfund Site New Bedford, MA

Collection of Groundwater Samples
For the Analysis of PCB Aroclors, Volatile Organic Compounds, Metals, and Total Suspended Solids

Sampling and Analyses Plan (SAP)
November 2017

> U.S. Environmental Protection Agency - Region 1
> Office of Environmental Measurement \& Evaluation
> Environmental Investigations \& Analysis Unit

SAP Acceptance:

Plan Prepared By:
Christopher Smith, OSRR RPM

Plan Reviewed By:
Jerry Keefe,
EIA Team Leader
Plan Approved By:

> Christopher Smith, OSRR RPM

Laboratory Acceptance: \qquad
Date: \qquad

Date: \qquad

Plan Approved By:
Date: \qquad
Date

1. Project Name: New Bedford Harbor Superfund Site - Collection of Low Flow Groundwater Samples for the Analysis of PCB Aroclors, Volatile Organic Compounds, Metals, and Total Suspended Solids
2. Site ID: 2017 T 01R 303DD2 0143RA01
3. Project Requested By: Christopher Smith
4. Date of Request: August 2017
5. Date of Project Initiation: September 2017
6. Project Manager: Christopher Smith

7. Field Quality Assurance:

8. Site Description:

New Bedford Harbor is an 18,000 -acre urban estuary with sediment highly contaminated with polychlorinated biphenyls (PCBs) and heavy metals. From the 1940s until EPA banned the production of PCBs in the 1970s, two manufacturing facilities improperly disposed of industrial wastes containing PCBs, contaminating the harbor bottom for about six miles from the Acushnet River into Buzzards Bay. The harbor was placed on EPA's National Priorities List in 1982, and remediation is ongoing.

The portion of the site relevant to this sampling event is referred to as the "Pilot Confined Disposal Area" (CDF), a land based area used for the storage of remediation derived sediment and debris. This CDF is located along the shoreline immediately north of Sawyer Street (adjacent to the EPA field office) in New Bedford. The pilot CDF initially consisted of a $145,000 \mathrm{ft}^{2}$ primary cell and a $32,500 \mathrm{ft}^{2}$ secondary cell separated by a 400 ft long sheetpile wall. Since this original construction, the CDF has been used to store a variety of contaminated sediment and debris, and has undergone multiple reconfigurations. Currently, the CDF consists of three "cells" which were constructed for sediment storage (Cell 1) and water treatment operations (Cells 2 and 3), as well as a "Debris Disposal Area" (DDA). Figure 1 (attached) shows this current configuration. The DDA contains approximately $19,000 \mathrm{yd}^{3}$ of contaminated sediments (weighted PCB average between 200 and 260ppm) deposited from 1989-2014. Cell 1 contains PCB contaminated sediments as well as $6900 \mathrm{yd}^{3}$ of sediment that is contaminated with both PCBs and trichcloroethylene (TCE). Sampling in 2008 showed TCE levels in the cell ranging from 0.130ppm to 43ppm.

The Pilot CDF area is underlain by a low permeability clay layer, minimizing the risk of contaminant migration. Additionally, cell 1 is underlain with a 60 mil high density polypropylene (HDPE) liner. To ensure this design is protective of human health and the environment, the 2001 Explanation of Significant Differences (ESD) documented that groundwater monitoring would be performed. Baseline groundwater monitoring begin in 2001. The monitoring program consists of six wells, which are located around the perimeter of the

CDF (see Figure 1). Low-flow samples collected from these wells are tested for PCB aroclors, metals, VOCs, and total suspended solids. Historically, contaminant levels observed in these wells have been very low or undetectable.

Cell 1 and the debris disposal area, both capped with clean sediment, are currently used for equipment storage and construction staging operations. The monitoring wells are relatively easily accessible and not in the direct path of any ongoing activities in the area. Parking is available at EPA's Sawyer Street office, which is located directly to the west of the Pilot CDF (see Figure 1).

A. Objective and Scope Statement:

The sampling objective is to collect representative groundwater samples from the existing monitoring wells at the New Bedford Harbor Superfund Site. The sampling will consist of a single event utilizing the US EPA's Office of Environmental Measurement and Evaluation's (OEME) Environmental Investigation and Analysis (EIA) personnel. The collected groundwater samples will be analyzed by the OEME laboratory for PCB aroclors, Volatile Organic Compounds (VOCs), metals (cadmium, chromium, copper, and lead), and total suspended solids (TSS). These samples will also be accompanied by Trip blanks and Field Duplicates for Quality Assurance (QA) and Quality Control (QC).

B. Data Usage:

Contaminant levels will be compared to those collected in historical sampling events to ensure no significant amount of contamination is migrating from the Pilot CDF area to surrounding groundwater.

C. Sampling Event Design:

Sampling Design:

EIA personnel will collect groundwater samples according to the United States Environmental Protection Agency (EPA) Region 1 Low Stress (flow) Purging and Sampling Groundwater Procedure for the Collection of Groundwater Samples from Monitoring Wells, Rev. 3 (EPA, 2010). Sample collection data will be logged in the field by EIA staff.

The monitoring wells selected by the Remedial Project Manager are shown on Figure 1. The table below contains relevant available well data:

Monitoring Well	Well Diameter (inches)	Well Depth (feet) 1	Water Table Depth (feet)	Length of Water Column (feet)
MW-1	2	23.96	16.78	7.18
MW-6	2	18.9	12.87	6.03
MW-3	2	23.94	14.49	9.45
MW-5	2	18.6	10.38	8.22
MW-4A	2	23.5	11.33	12.17
MW-7A	2	14.25	11.45	2.8

${ }^{1}$ Data is from Batelle's September 2016 sampling event, which should be relatively representative of conditions encountered on the site in the November 2017 sampling event.

Information concerning the depth and length of the screened intervals in these wells is not available. The EIA field staff will use their best judgement in placing the pump in the well for groundwater extraction. EIA staff will attempt to use a peristaltic pump to collect groundwater samples.

Field quality control (QC) samples will include the following:

- PCB Aroclors:
- One (1) field duplicate per 20 samples collected
- Volatile Organic Compounds (VOCs):
- One (1) Trip Blank
- One (1) field duplicate per 20 samples collected
- Metals (cadmium, copper, chromium, lead):
- One (1) field duplicate per 20 samples collected
- Total Suspended Solids (TSS):
- One (1) field duplicate per 20 samples collected
*Equipment blanks may be required if bladder pumps are employed. Peristaltic pumping methods will not require equipment blanks.
D. Monitoring Parameters:

$\underline{\text { Parameter }}$	Number of Samples ${ }^{1}$	Sample Matrix	Analytical Method Reference ${ }^{2}$	Sample Container	Sample Preservation	Holding Time
PCB Aroclors	7 Total (6) samples (1) field duplicate	Groundwater	EIASOPGCPESWALL7	$2 \times 1 \mathrm{~L}$ amber glass, Teflon lined cap	$4^{\circ} \mathrm{C}, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	7 days
VOCs	8 Total (6) samples (1) field duplicate (1) trip blank	Groundwater	$\begin{aligned} & \text { EIASOP- } \\ & \text { VOAGCMS9 } \end{aligned}$	4 x 40 mL amber glass, VOA teflon lined cap	$\begin{gathered} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}, \mathrm{HCL}, \mathrm{pH} \\ 2,4^{\circ} \mathrm{C} \end{gathered}$	14 days
Metals	7 Total (6) samples (1) field duplicate	Groundwater	$\begin{aligned} & \text { EIASOP- } \\ & \text { OPTIMAS0 } \end{aligned}$	$1 \times 250 \mathrm{~mL}$ plastic container	$\begin{gathered} \mathrm{HNO}_{3}, \mathrm{pH}<2, \\ 4^{\circ} \mathrm{C} \end{gathered}$	180 days
TSS	7 Total (6) samples (1) field duplicate	Groundwater	$\begin{gathered} \text { INGTSS-TDS- } \\ \text { VRES6 } \end{gathered}$	$1 \times 1 \mathrm{~L}$ plastic container	$4^{\circ} \mathrm{C}$	7 days

E. Data Quality Requirements:

The reporting/detection limits, accuracy, and precision required for the parameters listed above are discussed in the applicable laboratory SOPs.

7. EPA Project Organization and Responsibility:

The following is a list of key project personnel and their responsibilities:

Responsibility	Contact
Site RPM	Christopher Smith (OSRR)
Sampling Leader	
Sampling Personnel/QC	Jerry Keefe (EIA)
Laboratory Analyses	Dan Boudreau (EIA)
Data Evaluation/Lab QC	Dan Boudreau (EIA)
Overall Performance Coordination	
EIA Manager	Ernest Waterman (EIA)

8. Schedule of Tasks and Products:

Date	Activity
August 2017	Requests OEME field/lab support
November 13-14, 2017	Groundwater Sampling Event
November 2017	Laboratory Analysis
November/December 2017	Laboratory Data Review
December 2017	QA/QC'd Data to Project Manager

9. Special Training Requirements/Certification/Health \& Safety

Sampling Personnel

All sampling personnel will have completed the 40-hour OSHA HAZWOPER training and maintained the annual 8 -hour refresher training. The Sampling Leaders must have prior experience in the collection of field samples, proper preservation, shipping and chain of custody techniques.

Analytical Personnel
Analytical personnel will be determined by OEME.

Health and Safety

All EPA staff that performs sampling must be currently enrolled in EPA's medical monitoring program. All EPA field staff will wear the appropriate Personal Protective Equipment (PPE) during the sampling event. The contaminants of concern in the area present at very low or undetectable concentrations. Based several years of previous sampling efforts and existing information on levels of contamination, the respiratory protection will be OSHA "Level D" and may be adjusted based on site-specific field conditions and the professional judgment of sample leader. Below is a table showing results from the Fall 2016 sampling of these wells:

Parameter	Units	Well ID						MCP GW-3 Criteria(c)	Equipment Blank		Trip Blank
		MW-1	MW-3	$\begin{gathered} \hline \text { MW } \\ -4 \mathrm{~A} \end{gathered}$	MW-5	MW-6	$\begin{gathered} \hline \text { MW } \\ -7 \mathrm{~A} \end{gathered}$		Peristaltic	Bladder Pump	
Total PCB (a)	$\mu \mathrm{g} / \mathrm{L}$	- U(b)	- UJ(b)	- UJ(b)	- U(b)	- U(b)	- U(b)	10	- U (b)	- U (b)	NA
Cadmium	$\mu \mathrm{g} / \mathrm{L}$	0.5 U	4	0.5 U	0.5 U	NA					
Chromium	$\mu \mathrm{g} / \mathrm{L}$	1.34 U	2.23 J	1.11 J	5.59 J	2.27 J	1 U	300	1 U	2.87	NA
Copper	$\mu \mathrm{g} / \mathrm{L}$	1.68	19.5 J	15.1 J	7.01 J	1.79 J	2.33	NA	1 U	1 U	NA
Lead	$\mu \mathrm{g} / \mathrm{L}$	1 U	1 U	1 U	1 U	1 U	1 U	10	1 U	1 U	NA
TSS	mg / L	5.6	24.4	2.6	1 U	7.9	1 U	NA	NA	NA	NA
Cis-1,2dichloroethene (d)	$\mu \mathrm{g} / \mathrm{L}$	0.5 U	0.31 J	0.5 U	0.5 U	0.5 U	0.5 U	50,000	0.5 U	0.5 U	0.5 U

Notes:
Total PCB calculated as the sum of Aroclors 1016, 1221, 1232, 1242, 1248, 1254 and 1260; a value of zero (0) used in summation for non- detects.

- Individual PCB Aroclors were undetected in the groundwater samples at concentrations above the laboratory reporting limit (see Appendix B).
- MCP: Massachusetts Contingency Plan, Method 1 MCP GW-3 standard from 310 CMR 40.0974(2).
- VOCs undetected in the groundwater samples, except cis-1,2-Dichloroethene (MW-3) and Acetone (equipment blank)

Key:
$\mu \mathrm{g} / \mathrm{L}:$ micrograms per liter; mg / L : milligrams per liter; U : Chemical not detected at concentration above the laboratory reporting limit; J: Estimated value; NA: Not applicable

10. Data Representativeness/Comparability:

The contaminant levels in the collected samples will verify that the wastes in the Pilot CDF are not mobilizing into groundwater.

Data Comparability: The same field procedures and analytical methods will be used for each of the sample locations throughout the sampling event so that data can be compared. Field duplicates will be used to measure the precision of the method and heterogeneity of the sample matrix.

Data Completeness: The target requirement of valid data for completeness is 90%, however an evaluation of critical samples will determine if data are incomplete, and the Project Manager and EIA Field Team Leader will determine if additional sampling is needed.

11. Sampling Procedures:

EIA personnel will collect samples according to the US EPA OEME EIASOPGWSAMPLE1 Groundwater Low-Flow Sampling Standard Operating Procedure. The standard operating procedure calls for the implementation of peristaltic and/or bladder pumps and HDPE sampling tubing. All wells will be purged until monitoring parameters are stable, then a sample will be drawn. The Site is known for having compact soils and slow recharge rates, therefore, modified procedures may be required to collect samples. If any procedure described in this SAP and/or SOPs are inappropriate, inadequate or impractical and another procedure must be used to obtain a sample, the procedure will be documented in the field log book for the Site with a description of the circumstances requiring its use. This will also be
documented in a summary field report to the site RPM.

12. Sample Custody Procedures:

Samples collected will be handled in accordance with the OEME SOP for Evidence and Sample Management (OEMESOP-EVIDENCEMANAGEMENT\#). Each sample will be given a unique identification number which corresponds with the name of each well.
Samples will be handled by EIA chemistry staff according to the SOP for Sample Login, Tracking, and Sample Disposition (EIASOP-ADMLOG\#).

13. Calibration Procedures and Preventative Maintenance:

Equipment for field measurements (conductivity, pH , ORP, turbidity, temperature, and DO) will be calibrated on the day of sampling according to the manufacturer's recommendations and SOP ECASOP-YSISondes11. All calibrations will be documented in the field logbook and the equipment logbook. Sampling equipment will be checked for proper operations and cleanliness prior to use in the field. Decontamination will follow the EIASOP-
General_Decon\# SOP.

14. Documentation and Data Reporting:

Documentation

The Sampling Leader will be responsible for maintaining accurate Site-specific field logbooks that include the following information:

- Date, time, location, sample type, and name of sampler for each sample collected.
- Information on the Chain of Custody, sample container labels, sample tag numbers, etc.
- Other information which may be beneficial to the analyst such as matrix appearance, changes upon preservation, etc.
- Field equipment (field meters) utilized for this project will be documented by noting the EPA ID\# and/or equipment serial \# in a field logbook.
- Field observations and sampling data will be summarized in a report.

Data Reporting

The data will be tabulated and reported to the project manager in accordance to NERL procedures and the NERL QAP. EIA field reporting will be in accordance with EPA's SOP for Report Preparation, Review, and Distribution [EIASOP_Report Prep_Review_DistR\#], available on the OEME Lab SOP database.

15. Data Review:

Data will be reviewed by routine laboratory procedures as specified in the NERL QAPP (peer review by EIA chemist or review by the Chemistry Laboratory Services Coordinator for completeness). Data will be validated against the criteria presented in sections 8D, 8E, and 10 of this SAP. Any limitations on the use of data will be documented and explained.

16. Corrective Action:

Any corrective action will be determined by the Field Sampling Leader and documented in the field logbook as necessary and discussed with the Project Manager and EIA Field Team Leader. Any significant issues with laboratory performance identified by the laboratory will require that the Project Manager be notified immediately and appropriate corrective action taken.

17. Analytical Reports:

Preparation and sign-off on analytical reports is the responsibility of the EIA Chemistry staff and the Laboratory Services Coordinator. Reports will be delivered to:

Christopher Smith
Remedial Project Manager (OSRR)
smith.christopher@epa.gov

FIGURES

Figure 1. Sawyer Street CDF Monitoring Well Locations

Appendix B
 Field Data Sheets

New Budford tarbor
Ow Sumpin Sawyer Strect locationi

$$
1 .|14-15| 2017
$$

Supplers
1114 - J.14ek, W. Sommer, chris Smith (RPM)
1115 - J.kerf, W. Somele

1. Pump dial setting (Eor examole: hertw, cycles/mine etc).
2. uSiemens per cm(same as umhos/cm) at $25^{\circ} \mathrm{C}$.
3. Oxidation reduction potential (atam in fot sin).

$$
\text { EIA Pimp } \# \neq 2
$$

Well purging-FIELD WATER QUALITY MEASUREMENTS FORM

Location (Site/Facility Name) \qquad \qquad Well Number \qquad Date Field Personnel \qquad Sampling Oxganization US FएA Identify MP											
$\begin{aligned} & \begin{array}{l} \text { clock } \\ \text { Time } \end{array} \\ & 24 \mathrm{HR} \end{aligned}$	Water Depth below MP ft	$\begin{aligned} & \text { Pump } \\ & \text { inai } \end{aligned}$	Purge Rate $m 1 / m i n$	Cum. Volume purged 1iters	Temp. ${ }^{\circ} \mathrm{C}$	spec. Cond. ${ }^{2}$ $\mu s / \mathrm{cm}$	pis	orpy $E h^{3}$ mv	$\begin{aligned} & \text { DO } \\ & \mathrm{mg} / \mathrm{h} \end{aligned}$	$\begin{aligned} & \text { Turb- } \\ & \text { idity } \\ & \text { NTU } \end{aligned}$	Comments Stured prijus, at $14: 35$ thated up to cell at 14:38
1445	$13.2{ }^{1}$	2.25	02		13.8	1407	72	-171.6	9.60	45.1	
1455	$13.2{ }^{1}$	2.25	99	≈ 2	13.8	1624	7.19	-172.9	0,43	39.4	incensed famf speed
505	13.2	2.5	128		13.9	1780	7.20	-170.2	C.31	9.42	deviosel pumi afert
1510	13.2	2.25	130		13.8	1818	7.20	-164.6	0.36	5.27	
1520	13.2	2.25	120	≈ 4	13.9	1888	7.20	-1637	0.29	4.51	
1525	13.25	225	120		14.2	1850	7.21	-1634	0.25	3.38	slowel pump
1530	13.25	2.00	108	$i 6$	14.0	1880	120	-1626	0.25	2.35	
								F			
				,	Colle	lon 6					$P 1 D=O$ for voc
					VOL, 134, PCa, Mahls (tobit Dissdlad)						

1. Pump dial setting (for example: hextm, cycles/min, etc).
2. μ Siemens per cm(same as umhos/cm)at $25^{\circ} \mathrm{C}$.
3. Oxidation reduction potential (atand in for gn).

Appendix C Laboratory Results

Laboratory Report

November 22, 2017

Chris Smith - Mail Code OSRR07-1
Jerry Keefe - EIA / OEME
US EPA New England Region 1

Project Number: 17110029
Project: New Bedford Harbor- New Bedford, MA
Analysis:PCBs in Water Low Level
EPA Chemist: Aaron Zimmer

Date Samples Received by the Laboratory: 11/16/2017
Analytical Procedure:
All samples were received and logged in by the laboratory according to the USEPA New England Laboratory SOP for Sample Log-in.
Sample preparation and analysis was done following the EPA Region I SOP, EIASOP-PESWALL7.
The SOP is based on "Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, Method 608 - Organochlorine Pesticides and PCBS".

The analysis was carried out using high resolution capillary column chromatography. The 30 meter dual capillary system consists of J\&W DB-5 and J\&W DB-1701 columns both with a 0.25 mm ID.

Data were reviewed in accordance with the internal verification procedures described in the EPA New England Quality Manual for NERL.

Results relate only to the items tested or to the samples as received by the Laboratory. This analytical report shall not be reproduced except in full, without written approval of the laboratory.

If you have any questions please call me at 617-918-8340.
Sincerely,

Digitally signed by DANIEL BOUDREAU

DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, cn=DANIEL BOUDREAU, dnQualifier=0000001239

17110029\$PCBW
$\mathbf{R L}=$ Reporting limit
$\mathbf{N D}=$ Not Detected above Reporting limit
$\mathbf{N A}=$ Not Applicable due to high sample dilutions or sample interferences
$\mathbf{N C}=$ Not calculated since analyte concentration is ND.
$\mathbf{J}=$ Estimated value
$\mathbf{J 1}=$ Estimated value due to MS recovery outside accceptance criteria
$\mathbf{J 2}=$ Estimated value due to LFB result outside acceptance criteria
$\mathbf{J 3}=$ Estimated value due to RPD result outside acceptance criteria
$\mathbf{J 4}=$ Estimated value due to LCS result outside acceptance criteria
$\mathbf{E}=$ Estimated value exceeds the calibration range
$\mathbf{L}=$ Estimated value is below the calibration range
$\mathbf{B}=$ Analyte is associated with the lab blank or trip blank contamination. Values are qualified when the observed concentration of the contamination in the sample extract is less than 10 times the concentration in the blank.
$\mathbf{R}=$ No recovery was calculated since the analyte concentration is greater than four times the spike level.
$\mathbf{P}=$ The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
$\mathbf{C}=$ The identification has been confirmed by GC/MS.
$\mathbf{A}=$ Suspected Aldol condensation product.
$\mathbf{N}=$ Tentatively identified compound.

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-7A	Matrix:	GW
Lab Sample ID:	AB71235	$\mathrm{pH}:$	6
Date of Collection:	$11 / 14 / 2017$	Volume Extracted:	962 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 21 / 2017$	Extract Dilution:	1

	Compound	Concentration $\mathbf{u g} / \mathbf{L}$	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.52	
$11104-28-2$	Aroclor-1221	ND	0.52	
$11141-16-5$	Aroclor-1232	ND	0.52	
$53469-21-9$	Aroclor-1242	ND	0.52	
$12672-29-6$	Aroclor-1248	ND	0.52	
$11097-69-1$	Aroclor-1254	ND	0.52	
$11096-82-5$	Aroclor-1260	ND	0.52	
$37324-23-5$	Aroclor-1262	ND	0.52	
$11100-14-4$	Aroclor-1268	ND	0.52	
Surrogate Compounds		Recoveries (\%)	QC Ranges	
$2,4,5,6-$ Tetrachloro-m-xylene		57	$40-106$	
Decachlorobiphenyl			97	$27-128$

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-01
Lab Sample ID:	AB71236
Date of Collection:	$11 / 14 / 2017$
Date of Preparation:	$11 / 20 / 2017$
Date of Analysis:	$11 / 21 / 2017$

Matrix:	GW
$\mathrm{pH}:$	6
Volume Extracted:	985 mL
Final Volume:	5 mL
Extract Dilution:	1

	Compound	Concentration $\mathbf{u g} / \mathbf{L}$	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.51	
$11104-28-2$	Aroclor-1221	ND	0.51	
$11141-16-5$	Aroclor-1232	ND	0.51	
$53469-21-9$	Aroclor-1242	ND	0.51	
$12672-29-6$	Aroclor-1248	ND	0.51	
$11097-69-1$	Aroclor-1254	ND	0.51	
$11096-82-5$	Aroclor-1260	ND	0.51	
$37324-23-5$	Aroclor-1262	ND	0.51	
$11100-14-4$	Aroclor-1268	ND	0.51	
Surrogate Compounds		Recoveries (\%)	QC Ranges	
$2,4,5,6-$ Tetrachloro-m-xylene		56	$40-106$	
Decachlorobiphenyl			57	$27-128$

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-01D
Lab Sample ID:	AB71237
Date of Collection:	$11 / 14 / 2017$
Date of Preparation:	$11 / 20 / 2017$
Date of Analysis:	$11 / 21 / 2017$

Matrix:	GW
pH:	6
Volume Extracted:	949 mL
Final Volume:	5 mL
Extract Dilution:	1

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-4A	Matrix:	GW
Lab Sample ID:	AB71238	$\mathrm{pH}:$	6
Date of Collection:	$11 / 15 / 2017$	Volume Extracted:	956 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 21 / 2017$	Extract Dilution:	1

CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.52	
$11104-28-2$	Aroclor-1221	ND	0.52	
$11141-16-5$	Aroclor-1232	ND	0.52	
$53469-21-9$	Aroclor-1242	ND	0.52	
$12672-29-6$	Aroclor-1248	ND	0.52	
$11097-69-1$	Aroclor-1254	ND	0.52	
$11096-82-5$	Aroclor-1260	ND	0.52	
$37324-23-5$	Aroclor-1262	ND	0.52	
$11100-14-4$	Aroclor-1268	ND	0.52	

Surrogate Compounds
2,4,5,6-Tetrachloro-m-xylene
Decachlorobiphenyl

Recoveries (\%) QC Ranges
65 40-106
100 27-128

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-05	Matrix:	GW
Lab Sample ID:	AB71239	$\mathrm{pH}:$	6
Date of Collection:	$11 / 15 / 2017$	Volume Extracted:	948 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 22 / 2017$	Extract Dilution:	1

CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.52	
$11104-28-2$	Aroclor-1221	ND	0.52	
$11141-16-5$	Aroclor-1232	ND	0.52	
$53469-21-9$	Aroclor-1242	ND	0.52	
$12672-29-6$	Aroclor-1248	ND	0.52	
$11097-69-1$	Aroclor-1254	ND	0.52	
$11096-82-5$	Aroclor-1260	ND	0.52	
$37324-23-5$	Aroclor-1262	ND	0.52	
$11100-14-4$	Aroclor-1268	ND	0.52	

Surrogate Compounds
2,4,5,6-Tetrachloro-m-xylene
Decachlorobiphenyl

Recoveries (\%) QC Ranges
66
40-106
27-128

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-03	Matrix:	GW
Lab Sample ID:	AB71240	$\mathrm{pH}:$	7
Date of Collection:	$11 / 15 / 2017$	Volume Extracted:	964 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 22 / 2017$	Extract Dilution:	1

CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.52	
$11104-28-2$	Aroclor-1221	ND	0.52	
$11141-16-5$	Aroclor-1232	ND	0.52	
$53469-21-9$	Aroclor-1242	ND	0.52	
$12672-29-6$	Aroclor-1248	ND	0.52	
$11097-69-1$	Aroclor-1254	ND	0.52	
$11096-82-5$	Aroclor-1260	ND	0.52	
$37324-23-5$	Aroclor-1262	ND	0.52	
$11100-14-4$	Aroclor-1268	ND	0.52	

Surrogate Compounds
2,4,5,6-Tetrachloro-m-xylene
Decachlorobiphenyl

Recoveries (\%) QC Ranges
40-106
27-128

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

PCBs in Water Low Level

Client Sample ID:	MW-06	Matrix:	GW
Lab Sample ID:	AB71241	$\mathrm{pH}:$	6
Date of Collection:	$11 / 15 / 2017$	Volume Extracted:	966 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 22 / 2017$	Extract Dilution:	1

CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.50	
$11104-28-2$	Aroclor-1221	ND	0.50	
$11141-16-5$	Aroclor-1232	ND	0.50	
$53469-21-9$	Aroclor-1242	ND	0.50	
$12672-29-6$	Aroclor-1248	ND	0.50	
$11097-69-1$	Aroclor-1254	ND	0.50	
$11096-82-5$	Aroclor-1260	ND	0.50	
$37324-23-5$	Aroclor-1262	ND	0.50	
$11100-14-4$	Aroclor-1268	ND	0.50	

Surrogate Compounds
2,4,5,6-Tetrachloro-m-xylene
Decachlorobiphenyl

Recoveries (\%) QC Ranges
83 40-106
49 27-128

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Blank for PCBs Water

Client Sample ID:	N/A	Matrix:	GW
Lab Sample ID:	N/A	$\mathrm{pH}:$	DI
Date of Collection:	N/A	Volume Extracted:	1000 mL
Date of Preparation:	$11 / 20 / 2017$	Final Volume:	5 mL
Date of Analysis:	$11 / 21 / 2017$	Extract Dilution:	1

CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
$12674-11-2$	Aroclor-1016	ND	0.50	
$11104-28-2$	Aroclor-1221	ND	0.50	
$11141-16-5$	Aroclor-1232	ND	0.50	
$53469-21-9$	Aroclor-1242	ND	0.50	
$12672-29-6$	Aroclor-1248	ND	0.50	
$11097-69-1$	Aroclor-1254	ND	0.50	
$11096-82-5$	Aroclor-1260	ND	0.50	
$37324-23-5$	Aroclor-1262	ND	0.50	
$11100-14-4$	Aroclor-1268	ND	0.50	

Surrogate Compounds
2,4,5,6-Tetrachloro-m-xylene
Decachlorobiphenyl

Recoveries (\%) QC Ranges
40-106
27-128

New Bedford Harbor- New Bedford, MA

MATRIX SPIKE (MS) RECOVERY

Sample ID: AB71236

PARAMETER	SPIKE ADDED ug/L	SAMPLE CONCENTRATION ug/L	MS CONCENTRATION ug/L	$\begin{gathered} \mathrm{MS} \\ \% \\ \mathrm{REC} \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ (\% \text { REC }) \end{gathered}$
Aroclor-1016	3.0	ND	3.0	100	70-130
Aroclor-1260	3.0	ND	3.3	110	70-130

New Bedford Harbor- New Bedford, MA

Laboratory Duplicate Results

Sample ID: AB71235

	SAMPLE RESULT $u g / L$	SAMPLE DUPLICATE RESULT PARAMETER	PRECISION RPD $\%$	QC

New Bedford Harbor- New Bedford, MA

Laboratory Fortified Blank (LFB) Results

PARAMETER	LFB AMOUNT SPIKED ug/L	$\begin{gathered} \text { LFB } \\ \text { RESULT } \\ \text { ug/L } \end{gathered}$	$\begin{gathered} \text { LFB } \\ \text { RECOVERY } \\ \% \end{gathered}$	
Aroclor-1016	3.0	2.2	73	46-113
Aroclor-1260	3.0	3.2	107	66-118

Comments:

New Bedford Harbor- New Bedford, MA

LABORATORY FORTIFIED DUPLICATE (LFB Dup) RECOVERY

	LFB Dup CONCENTRATION ug/L	LFB Dup RECOVERY $\%$	RPD $\%$	QC LIMITS RPD
Aroclor-1016	3.1	103	34	50
Aroclor-1260	3.3	110	3	50

Samples in Batch: AB71235, AB71236, AB71237, AB71238, AB71239, AB71240, AB71241

CHAIN OF CUSTODY RECORD

11 Technology Drive
North Chelmsford, MA 01863-2431

Laboratory Report

January 09, 2018

Chris Smith - Mail Code OSRR07-1
Jerry Keefe - EIA / OEME
US EPA New England Region 1

Project Number: 17110029
Project: New Bedford Harbor- New Bedford, MA
Analysis:Total Recoverable Metals in Water by ICP
EPA Chemist: Allison Connors

Date Samples Received by the Laboratory: 11/16/2017
Analytical Procedure:
All samples were received and logged in by the laboratory according to the USEPA New England Laboratory SOP for Sample Log-in.
Sample preparation and analysis was done following the EPA Region I SOP, EIASOP-OPTIMAS0.

Samples were prepared following the EPA Region I SOP, EIASOP-INGMETALSPREP8
The sample preparation and analysis SOP's are based on Methods 3010A or 3005A and 6010B as stated in "Test Methods for Evaluating Solid Waste, 3rd ed., Final Update III, 7/92 and 12/96."

The samples were analyzed using a Perkin Elmer Dual View Inductively Coupled Plasma - Optical Emission Spectrometer.

Data were reviewed in accordance with the internal verification procedures described in the EPA New England Quality Manual for NERL.

Results relate only to the items tested or to the samples as received by the Laboratory. This analytical report shall not be reproduced except in full, without written approval of the laboratory.

If you have any questions please call me at 617-918-8340.
Sincerely,
$\mathbf{R L}=$ Reporting limit
$\mathbf{N D}=$ Not Detected above Reporting limit
$\mathbf{N A}=$ Not Applicable due to high sample dilutions or sample interferences
$\mathbf{N C}=$ Not calculated since analyte concentration is ND.
$\mathbf{J}=$ Estimated value
$\mathbf{J 1}=$ Estimated value due to MS recovery outside accceptance criteria
$\mathbf{J 2}=$ Estimated value due to LFB result outside acceptance criteria
$\mathbf{J 3}=$ Estimated value due to RPD result outside acceptance criteria
$\mathbf{J 4}=$ Estimated value due to LCS result outside acceptance criteria
$\mathbf{E}=$ Estimated value exceeds the calibration range
$\mathbf{L}=$ Estimated value is below the calibration range
$\mathbf{B}=$ Analyte is associated with the lab blank or trip blank contamination. Values are qualified when the observed concentration of the contamination in the sample extract is less than 10 times the concentration in the blank.
$\mathbf{R}=$ No recovery was calculated since the analyte concentration is greater than four times the spike level.
$\mathbf{P}=$ The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
$\mathbf{C}=$ The identification has been confirmed by GC/MS.
$\mathbf{A}=$ Suspected Aldol condensation product.
$\mathbf{N}=$ Tentatively identified compound.

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-7A		Lab Sample ID:	AB71235
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/29/2017		Amount Prepared	50 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Prepared:	50 mL			
Final Volume:	50 mL			
CAS Number	Compound	$\begin{gathered} \text { Concentration } \\ \mathbf{u g} / \mathbf{L} \end{gathered}$	$\mathbf{R L}$ $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-01	Lab Sample ID: AB71236	
Date of Collection:	$11 / 14 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-01D	Lab Sample ID: AB71237	
Date of Collection:	$11 / 14 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution:	1
Wet Weight Prepared:	N / A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-4A	Lab Sample ID: AB71238	
Date of Collection:	$11 / 15 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-05	Lab Sample ID: AB71239	
Date of Collection:	$11 / 15 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-03	Lab Sample ID: AB71240	
Date of Collection:	$11 / 15 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

New Bedford Harbor- New Bedford, MA

Total Recoverable Metals in Water by ICP

Client Sample ID:	MW-06	Lab Sample ID: AB71241	
Date of Collection:	$11 / 15 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Laboratory Reagent Blank

Client Sample ID:	N/A	Lab Sample ID:	N/A
Date of Collection:	N/A	Matrix:	GW
Date of Preparation:	$11 / 29 / 2017$	Amount Prepared: 50 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution:	1
Wet Weight Prepared:	N / A	$\mathrm{pH}:$	<2
Volume Prepared:	50 mL		
Final Volume:	50 mL		
			RL

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY
New Bedford Harbor- New Bedford, MA

MATRIX SPIKE (MS) RECOVERY

Sample ID: AB71238

PARAMETER	$\begin{gathered} \text { SPIKE } \\ \text { ADDED } \\ \mathrm{ug} / \mathrm{L} \\ \hline \end{gathered}$	SAMPLE CONCENTRATION ug/L	MS CONCENTRATION ug / L	$\begin{gathered} \mathrm{MS} \\ \% \\ \mathrm{REC} \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ (\% \text { REC }) \\ \hline \end{gathered}$
Cadmium	250	ND	243	97	75-125
Chromium	500	ND	464	93	75-125
Copper	500	ND	480	96	75-125
Lead	500	ND	464	93	75-125

New Bedford Harbor- New Bedford, MA

Laboratory Duplicate Results

Sample ID: AB71235

	SAMPLE	SAMPLE DUPLICATE	PRECISION	
PARAMETER	RESULT	RESULT	RPD	QC
PAR	ug/L	NC	LIMITS	
Cadmium	ND	ND	NC	20
Chromium	ND	ND	NC	20
Copper	ND	ND	NC	20
Lead	ND	ND		20

New Bedford Harbor- New Bedford, MA

Laboratory Fortified Blank (LFB) Results

	LFB AMOUNT SPIKED ug/L	LFB RESULT ug/L	LFB RECOVERY $\%$	QC LIMITS $\%$
PARAMETER	250	246	98	$85-115$
Cadmium	500	490	98	$85-115$
Chromium	500	500	100	$85-115$
Copper	500	495	99	$85-115$
Lead				

Comments:

Samples in Batch: AB71235, AB71236, AB71237, AB71238, AB71239, AB71240, AB71241

CHAIN OF CUSTODY RECORD

11 Technology Drive
North Chelmsford, MA 01863-2431

Laboratory Report

January 10, 2018

Chris Smith - Mail Code OSRR07-1
Jerry Keefe - EIA / OEME
US EPA New England Region 1

Project Number: 17110029
Project: New Bedford Harbor- New Bedford, MA
Analysis:Dissolved Metals in Water by ICP
EPA Chemist: Allison Connors

Date Samples Received by the Laboratory: 11/16/2017
Analytical Procedure:
All samples were received and logged in by the laboratory according to the USEPA New England Laboratory SOP for Sample Log-in.
Sample preparation and analysis was done following the EPA Region I SOP, EIASOP-OPTIMAS0.

Samples were prepared following the EPA Region I SOP, EIASOP-INGMETALSPREP8
The sample preparation and analysis SOP's are based on Methods 3010A or 3005A and 6010B as stated in "Test Methods for Evaluating Solid Waste, 3rd ed., Final Update III, 7/92 and 12/96."

The samples were analyzed using a Perkin Elmer Dual View Inductively Coupled Plasma - Optical Emission Spectrometer.

Data were reviewed in accordance with the internal verification procedures described in the EPA New England Quality Manual for NERL.

Results relate only to the items tested or to the samples as received by the Laboratory. This analytical report shall not be reproduced except in full, without written approval of the laboratory.

If you have any questions please call me at 617-918-8340.
Sincerely,

$$
\begin{aligned}
& \text { Digitally signed by DANIEL BOUDREAU } \\
& \text { DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, } \\
& \text { cn=DANIEL BOUDREAU, dnQualifier=0000001239 } \\
& \text { Date: } 2018.01 .10 \text { 16:19:42-05'00' }
\end{aligned}
$$

$\mathbf{R L}=$ Reporting limit
$\mathbf{N D}=$ Not Detected above Reporting limit
$\mathbf{N A}=$ Not Applicable due to high sample dilutions or sample interferences
$\mathbf{N C}=$ Not calculated since analyte concentration is ND.
$\mathbf{J}=$ Estimated value
$\mathbf{J 1}=$ Estimated value due to MS recovery outside accceptance criteria
$\mathbf{J 2}=$ Estimated value due to LFB result outside acceptance criteria
$\mathbf{J 3}=$ Estimated value due to RPD result outside acceptance criteria
$\mathbf{J 4}=$ Estimated value due to LCS result outside acceptance criteria
$\mathbf{E}=$ Estimated value exceeds the calibration range
$\mathbf{L}=$ Estimated value is below the calibration range
$\mathbf{B}=$ Analyte is associated with the lab blank or trip blank contamination. Values are qualified when the observed concentration of the contamination in the sample extract is less than 10 times the concentration in the blank.
$\mathbf{R}=$ No recovery was calculated since the analyte concentration is greater than four times the spike level.
$\mathbf{P}=$ The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
$\mathbf{C}=$ The identification has been confirmed by GC/MS.
$\mathbf{A}=$ Suspected Aldol condensation product.
$\mathbf{N}=$ Tentatively identified compound.

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-7A		Lab Sample ID:	AB71235
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/30/2017		Amount Prepared	40 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1.1
Wet Weight Prepared:	N/A		pH:	<2
Volume Prepared:	40 mL			
Final Volume:	44 mL			
CAS Number	Compound	Concentration \qquad	$\mathbf{R L}$ $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-01		Lab Sample ID:	AB71236
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/30/2017		Amount Prepared	. 40 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1.1
Wet Weight Prepared:	N/A		pH:	<2
Volume Prepared:	40 mL			
Final Volume:	44 mL			
CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-01D	Lab Sample ID: AB71237	
Date of Collection:	$11 / 14 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 30 / 2017$		Amount Prepared: 40 mL
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution:	1.1
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	40 mL		
Final Volume:	44 mL		
			RL
CAS Number	Compound	Ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-4A		Lab Sample ID:	AB71238
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/30/2017		Amount Prepared	40 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1.1
Wet Weight Prepared:	N/A		pH :	<2
Volume Prepared:	40 mL			
Final Volume:	44 mL			
CAS Number	Compound	Concentration \qquad	$\mathbf{R L}$ $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-05		Lab Sample ID:	AB71239
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/30/2017		Amount Prepared	40 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1.1
Wet Weight Prepared:	N/A		pH:	<2
Volume Prepared:	40 mL			
Final Volume:	44 mL			
CAS Number	Compound	Concentration ug/L	RL $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-03	Lab Sample ID: AB71240	
Date of Collection:	$11 / 15 / 2017$	Matrix:	GW
Date of Preparation:	$11 / 30 / 2017$	Amount Prepared: 40 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution: 1.1	
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	40 mL		
Final Volume:	44 mL		
			RL
CAS Number	Compound	ug/L	
$7440-43-9$	Cadmium	ND	10
$7440-47-3$	Chromium	ND	20
$7440-50-8$	Copper	ND	20
$7439-92-1$	Lead	ND	20

New Bedford Harbor- New Bedford, MA

Dissolved Metals in Water by ICP

Client Sample ID:	MW-06		Lab Sample ID:	AB71241
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/30/2017		Amount Prepared	40 mL
Date of Analysis:	12/28/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1.1
Wet Weight Prepared:	N/A		pH :	<2
Volume Prepared:	40 mL			
Final Volume:	44 mL			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $\mathbf{u g} / \mathbf{L}$	Qualifier
7440-43-9	Cadmium	ND	10	
7440-47-3	Chromium	ND	20	
7440-50-8	Copper	ND	20	
7439-92-1	Lead	ND	20	

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Laboratory Reagent Blank

Client Sample ID:	N/A	Lab Sample ID:	N/A
Date of Collection:	N/A	Matrix:	GW
Date of Preparation:	$11 / 30 / 2017$	Amount Prepared: 40 mL	
Date of Analysis:	$12 / 28 / 2017$	Percent Solids:	N/A
Dry Weight Prepared:	N/A	Extract Dilution:	1.1
Wet Weight Prepared:	N/A	$\mathrm{pH}:$	<2
Volume Prepared:	40 mL		
Final Volume:	44 mL		
			RLL

New Bedford Harbor- New Bedford, MA

MATRIX SPIKE (MS) RECOVERY

Sample ID: AB71238

	SPIKE ADDED ug/L	SAMPLE CONCENTRATION ug/L	MS CARAMETER	CONCENTRATION ug/L	MS $\%$ REC
ND	QIMITS $(\%$ REC $)$				
Cadmium	250	ND	241	96	$75-125$
Chromium	500	ND	508	102	$75-125$
Copper	500	ND	483	97	$75-125$
Lead	500		463	93	$75-125$

New Bedford Harbor- New Bedford, MA

Laboratory Duplicate Results

Sample ID: AB71235

	SAMPLE	SAMPLE DUPLICATE	PRECISION	
PARAMETER	RESULT	RESULT	RPD	QC
PAR	ug/L	NC	LIMITS	
Cadmium	ND	ND	NC	20
Chromium	ND	ND	NC	20
Copper	ND	ND	NC	20
Lead	ND	ND		20

New Bedford Harbor- New Bedford, MA

Laboratory Fortified Blank (LFB) Results

	LFB AMOUNT	LFB	LFB	QC
SPIKED				
PARAMETER	ug/L	RESULT	Rg/L	$\%$
Cadmium	250	243	97	LIMITS
Chromium	500	477	95	$85-115$
Copper	500	497	99	$85-115$
Lead	500	488	98	$85-115$

Comments:

Samples in Batch: AB71235, AB71236, AB71237, AB71238, AB71239, AB71240, AB71241

CHAIN OF CUSTODY RECORD

United States Environmental Protection Agency
Office of Environmental Measurement \& Evaluation

Laboratory Results

November 27, 2017

Chris Smith - Mail Code OSRR07-1
Jerry Keefe - EIA / OEME
US EPA New England Region 1

Project No: 17110029
Project: New Bedford Harbor- New Bedford, MA
Analysis: Total Suspended Solids in Water
EPA Chemist: Inna Germansderfer

Date Samples Received by the Laboratory: 11/16/2017

Analytical Procedure:
All samples were received and logged in by the laboratory according to the USEPA New England Laboratory SOP for Sample Log-in.

Sample preparation and analysis was done following the EPA Region I SOP, INGTSS-TDS-VRES6.

The SOP is based on SM 2540 D.

Results relate only to the items tested or to the samples as received by the Laboratory. This analytical report shall not be reproduced except in full, without written approval of the laboratory.

Data were reviewed in accordance with the internal verification procedures described in the EPA New England Quality Manual for NERL.

If you have any questions please call me at 617-918-8340.
Sincerely,

Digitally signed by DANIEL BOUDREAU

DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff, cn=DANIEL BOUDREAU, dnQualifier=0000001239
$\mathbf{R L}=$ Reporting limit
ND = Not Detected above Reporting limit
NA = Not Applicable due to high sample dilutions or sample interferences
$\mathbf{N C}=$ Not calculated since analyte concentration is ND.
$\mathbf{J}=$ Estimated value
$\mathbf{J 1}=$ Estimated value due to MS recovery outside accceptance criteria
$\mathbf{J 2}=$ Estimated value due to LFB result outside acceptance criteria
$\mathbf{J 3}=$ Estimated value due to RPD result outside acceptance criteria
$\mathbf{J 4}=$ Estimated value due to LCS result outside acceptance criteria
$\mathbf{E}=$ Estimated value exceeds the calibration range
$\mathbf{L}=$ Estimated value is below the calibration range
$\mathbf{B}=$ Analyte is associated with the lab blank or trip blank contamination. Values are qualified when the observed concentration of the contamination in the sample extract is less than 10 times the concentration in the blank.
$\mathbf{R}=$ No recovery was calculated since the analyte concentration is greater than four times the spike level.
$\mathbf{P}=$ The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
$\mathbf{C}=$ The identification has been confirmed by GC/MS.
$\mathbf{A}=$ Suspected Aldol condensation product.
$\mathbf{N}=$ Tentatively identified compound.

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Total Suspended Solids in Water

Matrix: GW

Sample Number	Lab ID	Collected	Analysis	Concentration $\mathbf{m g} / \mathbf{L}$	RL mg/L	Qualifier
MW-7A	AB71235	$11 / 14 / 201713: 55$	$11 / 20 / 2017$	ND	2.5	

Comments:

MW-01	AB71236	$11 / 14 / 201716: 40$	$11 / 20 / 2017$	ND	2.5

Comments:

MW-01D	AB71237	$11 / 14 / 201716: 40$	$11 / 20 / 2017$	ND	2.5

MW-4A	AB71238	$11 / 15 / 201710: 50$	$11 / 20 / 2017$	$\mathbf{2 . 8}$	2.5

MW-05	AB71239	$11 / 15 / 201711: 50$	$11 / 20 / 2017$	$\mathbf{3 . 8}$	2.5
Comments:					

MW-03	AB71240	$11 / 15 / 201715: 25$	$11 / 20 / 2017$	$\mathbf{1 1}$	2.5
Comments: MW-06 AB71241 $11 / 15 / 2017$ $15: 35$ $11 / 20 / 2017$ $\mathbf{9 . 2}$ 2.5					
Comments:					

Blank	$11 / 20 / 2017$	ND	2.5
Comments:			

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Laboratory Duplicate Results

		SAMPLE	SAMPLE DUP	PRECISION	QC
SAMPLE ID	PARAMETER	RESULT	RESULT	RPD	LIMITS
AB71237	Total Suspended Solids in Water	mg / L	mg / L	$\%$	(\%RPD)

CHAIN OF CUSTODY RECORD

Laboratory Report

January 03, 2018

Chris Smith - Mail Code OSRR07-1
Jerry Keefe - EIA / OEME
US EPA New England Region 1

Project Number: 17110029
Project: New Bedford Harbor- New Bedford, MA
Analysis:VOAs in Water
EPA Chemist: Joseph Montanaro

Date Samples Received by the Laboratory: 11/16/2017
Analytical Procedure:
All samples were received and logged in by the laboratory according to the USEPA New England Laboratory SOP for Sample Log-in.
Sample preparation and analysis was done following the EPA Region I SOP, EIASOP-VOAGCMS9.
Samples were analyzed by GC/MS. Samples were introduced to the GC via a Tekmar pre-concentrator and an Archon autosampler. The analysis SOP is based on US EPA Method 8260B, method 5030B, rev 2.0 SW-846, Rev 2.0,1996. Method 624, 40CFR Part 136 Appendix A, July 1, 1992, and USEPA CLP SOW for Organic Analysis OLM04.2, 1999.

Data were reviewed in accordance with the internal verification procedures described in the EPA New England Quality Manual for NERL.

Results relate only to the items tested or to the samples as received by the Laboratory. This analytical report shall not be reproduced except in full, without written approval of the laboratory.

If you have any questions please call me at 617-918-8340.
Sincerely,
Digitally signed by DANIEL BOUDREAU
DN: c=US, o=U.S. Government, ou=USEPA, ou=Staff,
cn=DANIEL BOUDREAU, dnQualifier=0000001239
17110029\$VOAMW
Date: 2018.01.03 11:08:15-05'00'
$\mathbf{R L}=$ Reporting limit
$\mathbf{N D}=$ Not Detected above Reporting limit
$\mathbf{N A}=$ Not Applicable due to high sample dilutions or sample interferences
$\mathbf{N C}=$ Not calculated since analyte concentration is ND.
$\mathbf{J}=$ Estimated value
$\mathbf{J 1}=$ Estimated value due to MS recovery outside accceptance criteria
$\mathbf{J 2}=$ Estimated value due to LFB result outside acceptance criteria
$\mathbf{J 3}=$ Estimated value due to RPD result outside acceptance criteria
$\mathbf{J 4}=$ Estimated value due to LCS result outside acceptance criteria
$\mathbf{E}=$ Estimated value exceeds the calibration range
$\mathbf{L}=$ Estimated value is below the calibration range
$\mathbf{B}=$ Analyte is associated with the lab blank or trip blank contamination. Values are qualified when the observed concentration of the contamination in the sample extract is less than 10 times the concentration in the blank.
$\mathbf{R}=$ No recovery was calculated since the analyte concentration is greater than four times the spike level.
$\mathbf{P}=$ The confirmation value exceeded 35% difference and is less than 100%. The lower value is reported.
$\mathbf{C}=$ The identification has been confirmed by GC/MS.
$\mathbf{A}=$ Suspected Aldol condensation product.
$\mathbf{N}=$ Tentatively identified compound.

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

Page 3 of 31
New Bedford Harbor- New Bedford, MA
VOAs in Water

Client Sample ID:	MW-7A		Lab Sample ID:	AB71235
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared:	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

Page 4 of 31
New Bedford Harbor- New Bedford, MA
VOAs in Water

Client Sample ID:	MW-7A		Lab Sample ID:	AB71235
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	105	$74-136$
Toluene-D8	97	$85-118$
1,4-Bromofluorobenzene	91	$78-111$

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA
Laboratory Blank for \$VOAMW

Client Sample ID:	N/A
Date of Collection:	N/A
Date of Preparation:	$11 / 16 / 2017$
Date of Analysis:	$11 / 16 / 2017$
Dry Weight Prepared:	N/A
Wet Weight Prepared:	N/A
Volume Extracted:	5.0 mL
Final Volume:	N / A

Lab Sample ID: N/A
Matrix: GW
Amount Prepared: 5.0 mL
Percent Solids: N/A
Extract Dilution: 1
$\mathrm{pH}: \quad \sim 6$
GPC Factor: N/A

CAS Number	Compound	Concentration ug/L	$\begin{gathered} \mathbf{R L} \\ \mathbf{u g} / \mathbf{L} \end{gathered}$	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA
Laboratory Blank for \$VOAMW

Client Sample ID:	N/A
Date of Collection:	N/A
Date of Preparation:	$11 / 16 / 2017$
Date of Analysis:	$11 / 16 / 2017$
Dry Weight Prepared:	N/A
Wet Weight Prepared:	N / A
Volume Extracted:	5.0 mL
Final Volume:	N / A

Lab Sample ID: N/A
Matrix: GW
Amount Prepared: 5.0 mL
Percent Solids: N/A
Extract Dilution: 1
$\mathrm{pH}: \quad \sim 6$
GPC Factor: N/A

| CAS Number | Compound | Concentration
 $\mathbf{u g} / \mathbf{L}$ | RL
 $\mathbf{u g} / \mathbf{L}$ |
| :--- | :--- | :--- | :--- | Qualifier

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	107	$74-136$
Toluene-D8	99	$85-118$
1,4 -Bromofluorobenzene	94	$78-111$

Comments: Laboratory blank is associated with all samples in this project.

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

Page 7 of 31
New Bedford Harbor- New Bedford, MA
VOAs in Water

Client Sample ID:	MW-01		Lab Sample ID:	AB71236
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared:	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	$\begin{gathered} \text { Concentration } \\ \mathrm{ug} / \mathrm{L} \end{gathered}$	RL ug/L	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-01		Lab Sample ID:	AB71236
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	107	$74-136$
Toluene-D8	99	$85-118$
1,4-Bromofluorobenzene	93	$78-111$

VOAs in Water

Client Sample ID:	MW-01D		Lab Sample ID:	AB71237
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared:	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-01D		Lab Sample ID:	AB71237
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ ug / L	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	107	$74-136$
Toluene-D8	99	$85-118$
1,4-Bromofluorobenzene	90	$78-111$

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-4A		Lab Sample ID:	AB71238
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared:	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	$\begin{gathered} \text { Concentration } \\ \mathrm{ug} / \mathrm{L} \end{gathered}$	RL ug/L	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-4A		Lab Sample ID:	AB71238
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	RL ug/L	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	109	$74-136$
Toluene-D8	97	$85-118$
1,4-Bromofluorobenzene	92	$78-111$

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-05		Lab Sample ID:	AB71239
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $u g / L$	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-05		Lab Sample ID:	AB71239
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ ug / L	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	109	$74-136$
Toluene-D8	98	$85-118$
1,4-Bromofluorobenzene	90	$78-111$

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-03		Lab Sample ID:	AB71240
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $u g / L$	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-03		Lab Sample ID:	AB71240
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $\mathbf{u g} / \mathbf{L}$	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	109	$74-136$
Toluene-D8	97	$85-118$
1,4-Bromofluorobenzene	90	$78-111$

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-06		Lab Sample ID:	AB71241
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared:	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	$\begin{gathered} \text { Concentration } \\ \mathrm{ug} / \mathrm{L} \end{gathered}$	RL ug/L	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	MW-06		Lab Sample ID:	AB71241
Date of Collection:	11/15/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\begin{array}{r} \mathbf{R L} \\ \mathbf{u g} / \mathbf{L} \end{array}$	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	112	$74-136$
Toluene-D8	96	$85-118$
1,4-Bromofluorobenzene	89	$78-111$

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	Trip Voa's		Lab Sample ID:	AB71242
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $u g / L$	Qualifier
74-87-3	Chloromethane	ND	1.0	
75-01-4	Vinyl Chloride	ND	1.0	
74-83-9	Bromomethane	ND	1.0	
75-00-3	Chloroethane	ND	1.0	
75-69-4	Trichlorofluoromethane	ND	1.0	
60-29-7	Ethyl Ether	ND	1.0	
67-64-1	2-Propanone (acetone)	ND	1.0	
76-13-1	1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	1.0	
75-35-4	1,1-Dichloroethylene	ND	1.0	
75-15-0	Carbon Disulfide	ND	1.0	
75-71-8	Dichlorodifluoromethane	ND	1.0	
75-09-2	Methylene Chloride	ND	1.0	
107-13-1	Acrylonitrile	ND	1.0	
1634-04-4	Methyl-t-Butyl Ether	ND	1.0	
156-60-5	Trans-1,2-Dichloroethylene	ND	1.0	
75-34-3	1,1-dichloroethane	ND	1.0	
108-05-4	Vinyl Acetate	ND	1.0	
78-93-3	2-Butanone (MEK)	ND	1.0	
594-20-7	2,2-Dichloropropane	ND	1.0	
156-59-2	cis-1,2-Dichloroethylene	ND	1.0	
67-66-3	Chloroform	ND	1.0	
74-97-5	Bromochloromethane	ND	1.0	
109-99-9	Tetrahydrofuran	ND	1.0	
71-55-6	1,1,1-Trichloroethane	ND	1.0	
107-06-2	1,2-Dichloroethane	ND	1.0	
56-23-5	Carbon tetrachloride	ND	1.0	
71-43-2	Benzene	ND	1.0	
10061-01-5	c-1,3-dichloropropene	ND	1.0	
108-88-3	Toluene	ND	1.0	
10061-02-6	t-1,3-Dichloropropene	ND	1.0	
79-00-5	1,1,2-Trichloroethane	ND	1.0	
124-48-1	Dibromochloromethane	ND	1.0	
108-90-7	Chlorobenzene	ND	1.0	
563-58-6	1,1-Dichloropropene	ND	1.0	
79-01-6	Trichloroethylene	ND	1.0	
78-87-5	1,2-Dichloropropane	ND	1.0	
75-27-4	Bromodichloromethane	ND	1.0	
74-95-3	Dibromomethane	ND	1.0	
108-10-1	4-Methyl-2-Pentanone(MIBK)	ND	1.0	
142-28-9	1,3-Dichloropropane	ND	1.0	
127-18-4	Tetrachloroethylene	ND	1.0	
106-93-4	1,2-Dibromoethane	ND	1.0	

New Bedford Harbor- New Bedford, MA

VOAs in Water

Client Sample ID:	Trip Voa's		Lab Sample ID:	AB71242
Date of Collection:	11/14/2017		Matrix:	GW
Date of Preparation:	11/16/2017		Amount Prepared	5 mL
Date of Analysis:	11/16/2017		Percent Solids:	N/A
Dry Weight Prepared:	N/A		Extract Dilution:	1
Wet Weight Prepared:	N/A		pH :	<2
Volume Extracted:	5 mL		GPC Factor:	N/A
Final Volume:	N/A			
CAS Number	Compound	Concentration ug/L	$\mathbf{R L}$ $u g / L$	Qualifier
591-78-6	2-Hexanone	ND	1.0	
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0	
100-41-4	Ethylbenzene	ND	1.0	
108-38-3/106-42-3	M/P Xylene	ND	2.0	
95-47-6	Ortho Xylene	ND	1.0	
100-42-5	Styrene	ND	1.0	
75-25-2	Bromoform	ND	1.0	
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	
98-82-8	Isopropylbenzene	ND	1.0	
108-86-1	Bromobenzene	ND	1.0	
96-18-4	1,2,3-Trichloropropane	ND	1.0	
103-65-1	N -Propylbenzene	ND	1.0	
95-49-8	2-Chlorotoluene	ND	1.0	
106-43-4	4-Chlorotoluene	ND	1.0	
98-06-6	Tert-Butylbenzene	ND	1.0	
108-67-8	1,3,5-Trimethylbenzene	ND	1.0	
95-63-6	1,2,4-Trimethylbenzene	ND	1.0	
135-98-8	Sec-Butylbenzene	ND	1.0	
541-73-1	1,3-Dichlorobenzene	ND	1.0	
99-87-6	Para-Isopropyltoluene	ND	1.0	
106-46-7	1,4-Dichlorobenzene	ND	1.0	
95-50-1	1,2-Dichlorobenzene	ND	1.0	
104-51-8	N-Butylbenzene	ND	1.0	
96-12-8	1,2-Dibromo-3-Chloropropane	ND	1.0	
120-82-1	1,2,4-Trichlorobenzene	ND	1.0	
87-68-3	Hexachlorobutadiene	ND	1.0	
91-20-3	Naphthalene	ND	1.0	
87-61-6	1,2,3-Trichlorobenzene	ND	1.0	

Surrogate Compounds	Recoveries (\%)	QC Ranges
1,2-Dichloroethane-D4	112	$74-136$
Toluene-D8	96	$85-118$
1,4-Bromofluorobenzene	89	$78-111$

US ENVIRONMENTAL PROTECTION AGENCY

NEW ENGLAND LABORATORY
New Bedford Harbor- New Bedford, MA

MATRIX SPIKE (MS) RECOVERY

Sample ID: AB71235

PARAMETER	SPIKE ADDED ug/L	SAMPLE CONCENTRATION ug/L	MS CONCENTRATION ug/L	$\begin{gathered} \mathrm{MS} \\ \% \\ \mathrm{REC} \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ (\% \text { REC }) \end{gathered}$
1,1,1,2-Tetrachloroethane	20.0	ND	21.0	105	67-129
1,1,1-Trichloroethane	20.0	ND	22.0	110	75-139
1,1,2,2-Tetrachloroethane	20.0	ND	21.0	105	50-142
1,1,2-Trichloro-1,2,2-Trifluoroetha	20.0	ND	21.0	105	55-135
1,1,2-Trichloroethane	20.0	ND	21.0	105	62-142
1,1-Dichloroethylene	20.0	ND	21.0	105	80-138
1,1-Dichloropropene	20.0	ND	21.0	105	73-131
1,1-dichloroethane	20.0	ND	22.0	110	61-152
1,2,3-Trichlorobenzene	20.0	ND	20.0	100	49-143
1,2,3-Trichloropropane	20.0	ND	21.0	105	53-135
1,2,4-Trichlorobenzene	20.0	ND	21.0	105	63-131
1,2,4-Trimethylbenzene	20.0	ND	21.0	105	79-142
1,2-Dibromo-3-Chloropropane	20.0	ND	20.0	100	28-122
1,2-Dibromoethane	20.0	ND	21.0	105	53-139
1,2-Dichlorobenzene	20.0	ND	20.0	100	74-129
1,2-Dichloroethane	20.0	ND	21.0	105	61-142
1,2-Dichloropropane	20.0	ND	21.0	105	71-126
1,3,5-Trimethylbenzene	20.0	ND	22.0	110	77-140
1,3-Dichlorobenzene	20.0	ND	20.0	100	78-127
1,3-Dichloropropane	20.0	ND	21.0	105	63-130
1,4-Dichlorobenzene	20.0	ND	19.0	95	72-131
2,2-Dichloropropane	20.0	ND	20.0	100	50-139
2-Butanone (MEK)	20.0	ND	19.0	95	29-163
2-Chlorotoluene	20.0	ND	21.0	105	74-134
2-Hexanone	20.0	ND	19.0	95	36-141
2-Propanone (acetone)	20.0	ND	15.0	75	29-164
4-Chlorotoluene	20.0	ND	21.0	105	68-141
4-Methyl-2-Pentanone(MIBK)	20.0	ND	19.0	95	35-139
Acrylonitrile	20.0	ND	23.0	115	42-150
Benzene	20.0	ND	21.0	105	78-134
Bromobenzene	20.0	ND	20.0	100	76-126
Bromochloromethane	20.0	ND	21.0	105	62-140
Bromodichloromethane	20.0	ND	21.0	105	62-133
Bromoform	20.0	ND	20.0	100	31-133
Bromomethane	20.0	ND	20.0	100	58-148
Carbon Disulfide	20.0	ND	22.0	110	66-135
Carbon tetrachloride	20.0	ND	21.0	105	62-146
Chlorobenzene	20.0	ND	21.0	105	74-139
Chloroethane	20.0	ND	21.0	105	65-145
Chloroform	20.0	ND	21.0	105	60-144
Chloromethane	20.0	ND	21.0	105	58-134
Dibromochloromethane	20.0	ND	21.0	105	34-140
Dibromomethane	20.0	ND	21.0	105	67-125
Dichlorodifluoromethane	20.0	ND	20.0	100	30-132
Ethyl Ether	20.0	ND	23.0	115	58-145
Ethylbenzene	20.0	ND	21.0	105	73-143
Hexachlorobutadiene	20.0	ND	19.0	95	56-144
			$17110029 \$ \mathrm{VOAMW}$		

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

MATRIX SPIKE (MS) RECOVERY

Sample ID: AB71235

PARAMETER	SPIKE ADDED ug/L	SAMPLE CONCENTRATION ug/L	MS CONCENTRATION ug/L	$\begin{gathered} \text { MS } \\ \% \\ \text { REC } \end{gathered}$	QC LIMITS (\% REC)
Isopropylbenzene	20.0	ND	22.0	110	73-139
M/P Xylene	40.0	ND	43.0	108	79-136
Methyl-t-Butyl Ether	20.0	ND	22.0	110	50-144
Methylene Chloride	20.0	ND	22.0	110	70-144
N-Butylbenzene	20.0	ND	22.0	110	68-143
N -Propylbenzene	20.0	ND	22.0	110	72-149
Naphthalene	20.0	ND	19.0	95	33-154
Ortho Xylene	20.0	ND	22.0	110	80-129
Para-Isopropyltoluene	20.0	ND	21.0	105	71-140
Sec-Butylbenzene	20.0	ND	22.0	110	75-148
Styrene	20.0	ND	20.0	100	61-148
Tert-Butylbenzene	20.0	ND	22.0	110	71-139
Tetrachloroethylene	20.0	ND	19.0	95	45-145
Tetrahydrofuran	20.0	ND	24.0	120	37-143
Toluene	20.0	ND	21.0	105	77-142
Trans-1,2-Dichloroethylene	20.0	ND	21.0	105	79-139
Trichloroethylene	20.0	ND	20.0	100	65-143
Trichlorofluoromethane	20.0	ND	21.0	105	58-161
Vinyl Acetate	20.0	ND	18.0	90	22-173
Vinyl Chloride	20.0	ND	19.0	95	68-139
c-1,3-dichloropropene	20.0	ND	19.0	95	51-144
cis-1,2-Dichloroethylene	20.0	ND	22.0	110	59-154
t-1,3-Dichloropropene	20.0	ND	19.0	95	47-145

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

MATRIX SPIKE DUPLICATE (MSD) RECOVERY

Sample ID:AB71235

PARAMETER	MSD SPIKE ADDED	MSD CONCENTRATION ug/L	$\begin{gathered} \text { MSD } \\ \% \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ \text { RPD } \end{gathered}$
1,1,1,2-Tetrachloroethane	20.0	20.0	100	4.88	40
1,1,1-Trichloroethane	20.0	21.0	105	4.65	16
1,1,2,2-Tetrachloroethane	20.0	21.0	105	0.00	40
1,1,2-Trichloro-1,2,2-Trifluoroetha	20.0	20.0	100	4.88	40
1,1,2-Trichloroethane	20.0	21.0	105	0.00	40
1,1-Dichloroethylene	20.0	20.0	100	4.88	35
1,1-Dichloropropene	20.0	21.0	105	0.00	40
1,1-dichloroethane	20.0	21.0	105	4.65	40
1,2,3-Trichlorobenzene	20.0	21.0	105	4.88	40
1,2,3-Trichloropropane	20.0	21.0	105	0.00	40
1,2,4-Trichlorobenzene	20.0	21.0	105	0.00	40
1,2,4-Trimethylbenzene	20.0	21.0	105	0.00	40
1,2-Dibromo-3-Chloropropane	20.0	19.0	95	5.13	40
1,2-Dibromoethane	20.0	21.0	105	0.00	40
1,2-Dichlorobenzene	20.0	20.0	100	0.00	40
1,2-Dichloroethane	20.0	21.0	105	0.00	23
1,2-Dichloropropane	20.0	21.0	105	0.00	40
1,3,5-Trimethylbenzene	20.0	21.0	105	4.65	40
1,3-Dichlorobenzene	20.0	20.0	100	0.00	40
1,3-Dichloropropane	20.0	21.0	105	0.00	40
1,4-Dichlorobenzene	20.0	19.0	95	0.00	21
2,2-Dichloropropane	20.0	20.0	100	0.00	40
2-Butanone (MEK)	20.0	20.0	100	5.13	40
2-Chlorotoluene	20.0	20.0	100	4.88	40
2-Hexanone	20.0	19.0	95	0.00	40
2-Propanone (acetone)	20.0	14.0	70	6.90	40
4-Chlorotoluene	20.0	20.0	100	4.88	40
4-Methyl-2-Pentanone(MIBK)	20.0	20.0	100	5.13	40
Acrylonitrile	20.0	23.0	115	0.00	40
Benzene	20.0	20.0	100	4.88	14
Bromobenzene	20.0	19.0	95	5.13	40
Bromochloromethane	20.0	20.0	100	4.88	40
Bromodichloromethane	20.0	21.0	105	0.00	21
Bromoform	20.0	20.0	100	0.00	40
Bromomethane	20.0	19.0	95	5.13	40
Carbon Disulfide	20.0	21.0	105	4.65	40
Carbon tetrachloride	20.0	21.0	105	0.00	19
Chlorobenzene	20.0	20.0	100	4.88	40
Chloroethane	20.0	19.0	95	10.0	40
Chloroform	20.0	21.0	105	0.00	16
Chloromethane	20.0	20.0	100	4.88	40
Dibromochloromethane	20.0	21.0	105	0.00	36
Dibromomethane	20.0	20.0	100	4.88	40
Dichlorodifluoromethane	20.0	19.0	95	5.13	40
Ethyl Ether	20.0	23.0	115	0.00	40
Ethylbenzene	20.0	21.0	105	0.00	40
Hexachlorobutadiene	20.0	19.0	95	0.00	40
Isopropylbenzene	20.0	21.0	105	4.65	40

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

MATRIX SPIKE DUPLICATE (MSD) RECOVERY

Sample ID:AB71235

PARAMETER	MSD SPIKE ADDED	MSD CONCENTRATION ug/L	$\begin{gathered} \text { MSD } \\ \% \\ \text { REC } \end{gathered}$	$\begin{gathered} \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ \text { RPD } \end{gathered}$
M/P Xylene	40.0	41.0	102	5.71	40
Methyl-t-Butyl Ether	20.0	22.0	110	0.00	40
Methylene Chloride	20.0	21.0	105	4.65	40
N-Butylbenzene	20.0	21.0	105	4.65	40
N -Propylbenzene	20.0	21.0	105	4.65	40
Naphthalene	20.0	20.0	100	5.13	40
Ortho Xylene	20.0	21.0	105	4.65	40
Para-Isopropyltoluene	20.0	20.0	100	4.88	40
Sec-Butylbenzene	20.0	21.0	105	4.65	40
Styrene	20.0	20.0	100	0.00	40
Tert-Butylbenzene	20.0	21.0	105	4.65	40
Tetrachloroethylene	20.0	18.0	90	5.41	40
Tetrahydrofuran	20.0	24.0	120	0.00	40
Toluene	20.0	20.0	100	4.88	40
Trans-1,2-Dichloroethylene	20.0	20.0	100	4.88	40
Trichloroethylene	20.0	20.0	100	0.00	22
Trichlorofluoromethane	20.0	20.0	100	4.88	40
Vinyl Acetate	20.0	19.0	95	5.41	40
Vinyl Chloride	20.0	18.0	90	5.41	19
c-1,3-dichloropropene	20.0	19.0	95	0.00	40
cis-1,2-Dichloroethylene	20.0	21.0	105	4.65	40
t-1,3-Dichloropropene	20.0	19.0	95	0.00	40

US ENVIRONMENTAL PROTECTION AGENCY
 NEW ENGLAND LABORATORY

New Bedford Harbor- New Bedford, MA

Laboratory Duplicate Results

Sample ID: AB71235

PARAMETER	SAMPLE RESULT ug/L	SAMPLE DUPLICATE RESULT ug/L	$\begin{gathered} \text { PRECISION } \\ \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \mathrm{QC} \\ \text { LIMITS } \end{gathered}$
1,1,1,2-Tetrachloroethane	ND	ND	NC	30
1,1,1-Trichloroethane	ND	ND	NC	30
1,1,2,2-Tetrachloroethane	ND	ND	NC	30
1,1,2-Trichloro-1,2,2-Trifluoroetha	ND	ND	NC	30
1,1,2-Trichloroethane	ND	ND	NC	30
1,1-Dichloroethylene	ND	ND	NC	30
1,1-Dichloropropene	ND	ND	NC	30
1,1-dichloroethane	ND	ND	NC	30
1,2,3-Trichlorobenzene	ND	ND	NC	30
1,2,3-Trichloropropane	ND	ND	NC	30
1,2,4-Trichlorobenzene	ND	ND	NC	30
1,2,4-Trimethylbenzene	ND	ND	NC	30
1,2-Dibromo-3-Chloropropane	ND	ND	NC	30
1,2-Dibromoethane	ND	ND	NC	30
1,2-Dichlorobenzene	ND	ND	NC	30
1,2-Dichloroethane	ND	ND	NC	30
1,2-Dichloropropane	ND	ND	NC	30
1,3,5-Trimethylbenzene	ND	ND	NC	30
1,3-Dichlorobenzene	ND	ND	NC	30
1,3-Dichloropropane	ND	ND	NC	30
1,4-Dichlorobenzene	ND	ND	NC	30
2,2-Dichloropropane	ND	ND	NC	30
2-Butanone (MEK)	ND	ND	NC	30
2-Chlorotoluene	ND	ND	NC	30
2-Hexanone	ND	ND	NC	30
2-Propanone (acetone)	ND	ND	NC	30
4-Chlorotoluene	ND	ND	NC	30
4-Methyl-2-Pentanone(MIBK)	ND	ND	NC	30
Acrylonitrile	ND	ND	NC	30
Benzene	ND	ND	NC	30
Bromobenzene	ND	ND	NC	30
Bromochloromethane	ND	ND	NC	30
Bromodichloromethane	ND	ND	NC	30
Bromoform	ND	ND	NC	30
Bromomethane	ND	ND	NC	30
Carbon Disulfide	ND	ND	NC	30
Carbon tetrachloride	ND	ND	NC	30
Chlorobenzene	ND	ND	NC	30
Chloroethane	ND	ND	NC	30
Chloroform	ND	ND	NC	30
Chloromethane	ND	ND	NC	30
Dibromochloromethane	ND	ND	NC	30
Dibromomethane	ND	ND	NC	30
Dichlorodifluoromethane	ND	ND	NC	30
Ethyl Ether	ND	ND	NC	30
Ethylbenzene	ND	ND	NC	30
Hexachlorobutadiene	ND	ND	NC	30
Isopropylbenzene	ND	ND	NC	30
M/P Xylene	ND	ND	NC	30
Methyl-t-Butyl Ether	ND	ND	NC	30

New Bedford Harbor- New Bedford, MA
Laboratory Duplicate Results
Sample ID: AB71235

PARAMETER	SAMPLE RESULT ug/L	SAMPLE DUPLICATE RESULT ug/L	$\begin{gathered} \text { PRECISION } \\ \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \end{gathered}$
Methylene Chloride	ND	ND	NC	30
N-Butylbenzene	ND	ND	NC	30
N -Propylbenzene	ND	ND	NC	30
Naphthalene	ND	ND	NC	30
Ortho Xylene	ND	ND	NC	30
Para-Isopropyltoluene	ND	ND	NC	30
Sec-Butylbenzene	ND	ND	NC	30
Styrene	ND	ND	NC	30
Tert-Butylbenzene	ND	ND	NC	30
Tetrachloroethylene	ND	ND	NC	30
Tetrahydrofuran	ND	ND	NC	30
Toluene	ND	ND	NC	30
Trans-1,2-Dichloroethylene	ND	ND	NC	30
Trichloroethylene	ND	ND	NC	30
Trichlorofluoromethane	ND	ND	NC	30
Vinyl Acetate	ND	ND	NC	30
Vinyl Chloride	ND	ND	NC	30
c-1,3-dichloropropene	ND	ND	NC	30
cis-1,2-Dichloroethylene	ND	ND	NC	30
t-1,3-Dichloropropene	ND	ND	NC	30

New Bedford Harbor- New Bedford, MA
Laboratory Fortified Blank (LFB) Results

PARAMETER	LFB AMOUNT SPIKED ug/mL	$\begin{gathered} \text { LFB } \\ \text { RESULT } \\ \mathrm{ug} / \mathrm{mL} \end{gathered}$	$\begin{gathered} \text { LFB } \\ \text { RECOVERY } \\ \% \end{gathered}$	
1,1,1,2-Tetrachloroethane	20	20.0	100	79-136
1,1,1-Trichloroethane	20	20.0	100	75-146
1,1,2,2-Tetrachloroethane	20	20.0	100	62-141
1,1,2-Trichloro-1,2,2-Trifluoroeth:	20	20.0	100	56-130
1,1,2-Trichloroethane	20	20.0	100	75-138
1,1-Dichloroethylene	20	20.0	100	75-136
1,1-Dichloropropene	20	20.0	100	77-137
1,1-dichloroethane	20	20.0	100	76-142
1,2,3-Trichlorobenzene	20	19.0	95	64-143
1,2,3-Trichloropropane	20	19.0	95	66-133
1,2,4-Trichlorobenzene	20	20.0	100	80-131
1,2,4-Trimethylbenzene	20	21.0	105	74-155
1,2-Dibromo-3-Chloropropane	20	18.0	90	37-139
1,2-Dibromoethane	20	20.0	100	72-135
1,2-Dichlorobenzene	20	19.0	95	85-128
1,2-Dichloroethane	20	20.0	100	74-138
1,2-Dichloropropane	20	20.0	100	83-124
1,3,5-Trimethylbenzene	20	21.0	105	80-145
1,3-Dichlorobenzene	20	20.0	100	84-130
1,3-Dichloropropane	20	20.0	100	77-129
1,4-Dichlorobenzene	20	19.0	95	82-128
2,2-Dichloropropane	20	19.0	95	32-171
2-Butanone (MEK)	20	23.0	115	38-179
2-Chlorotoluene	20	20.0	100	78-134
2-Hexanone	20	19.0	95	45-158
2-Propanone (acetone)	20	22.0	110	14-209
4-Chlorotoluene	20	20.0	100	75-144
4-Methyl-2-Pentanone(MIBK)	20	19.0	95	40-144
Acrylonitrile	20	22.0	110	52-154
Benzene	20	20.0	100	83-130
Bromobenzene	20	19.0	95	85-126
Bromochloromethane	20	19.0	95	69-137
Bromodichloromethane	20	20.0	100	70-143
Bromoform	20	19.0	95	51-136
Bromomethane	20	18.0	90	65-140
Carbon Disulfide	20	21.0	105	68-140
Carbon tetrachloride	20	21.0	105	70-144
Chlorobenzene	20	20.0	100	84-131
Chloroethane	20	20.0	100	70-134
Chloroform	20	20.0	100	76-141
Chloromethane	20	19.0	95	63-123
Dibromochloromethane	20	20.0	100	39-154
Dibromomethane	20	20.0	100	79-124
Dichlorodifluoromethane	20	19.0	95	37-117
Ethyl Ether	20	22.0	110	67-140
Ethylbenzene	20	20.0	100	81-133
Hexachlorobutadiene	20	18.0	90	68-146
Isopropylbenzene	20	21.0	105	78-137
M/P Xylene	40	42.0	105	68-155
Methyl-t-Butyl Ether	20	21.0	105	63-144
Methylene Chloride	20	20.0	100	75-140
N-Butylbenzene	20	20.0	100	69-147
N-Propylbenzene	20	21.0	105	76-138

New Bedford Harbor- New Bedford, MA

Laboratory Fortified Blank (LFB) Results

	LFB AMOUNT SPIKED $\mathrm{ug} / \mathrm{mL}$	LFB RESULT $\mathrm{ug} / \mathrm{mL}$	LFB RECOVERY $\%$

Comments:

New Bedford Harbor- New Bedford, MA

LABORATORY FORTIFIED DUPLICATE (LFB Dup) RECOVERY

COMPOUND	LFB Dup CONCENTRATION ug/L	$\begin{gathered} \text { LFB Dup } \\ \text { RECOVERY } \\ \% \end{gathered}$	$\begin{gathered} \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ \text { RPD } \end{gathered}$
1,1,1,2-Tetrachloroethane	21	105	5	50
1,1,1-Trichloroethane	21	105	5	50
1,1,2,2-Tetrachloroethane	22	110	10	50
1,1,2-Trichloro-1,2,2-Trifluoroetha	20	100	0	50
1,1,2-Trichloroethane	21	105	5	50
1,1-Dichloroethylene	21	105	5	52
1,1-Dichloropropene	21	105	5	50
1,1-dichloroethane	21	105	5	50
1,2,3-Trichlorobenzene	24	120	23	50
1,2,3-Trichloropropane	21	105	10	50
1,2,4-Trichlorobenzene	23	115	14	50
1,2,4-Trimethylbenzene	21	105	0	50
1,2-Dibromo-3-Chloropropane	20	100	11	50
1,2-Dibromoethane	21	105	5	50
1,2-Dichlorobenzene	20	100	5	50
1,2-Dichloroethane	21	105	5	50
1,2-Dichloropropane	21	105	5	50
1,3,5-Trimethylbenzene	22	110	5	50
1,3-Dichlorobenzene	20	100	0	50
1,3-Dichloropropane	21	105	5	50
1,4-Dichlorobenzene	19	95	0	50
2,2-Dichloropropane	21	105	10	50
2-Butanone (MEK)	26	130	12	50
2-Chlorotoluene	20	100	0	50
2-Hexanone	22	110	15	50
2-Propanone (acetone)	24	120	9	50
4-Chlorotoluene	21	105	5	50
4-Methyl-2-Pentanone(MIBK)	20	100	5	50
Acrylonitrile	24	120	9	50
Benzene	21	105	5	50
Bromobenzene	20	100	5	50
Bromochloromethane	20	100	5	50
Bromodichloromethane	21	105	5	50
Bromoform	20	100	5	50
Bromomethane	18	90	0	50
Carbon Disulfide	21	105	0	50
Carbon tetrachloride	21	105	0	50
Chlorobenzene	21	105	5	34
Chloroethane	20	100	0	50
Chloroform	21	105	5	50
Chloromethane	21	105	10	50
Dibromochloromethane	21	105	5	50
Dibromomethane	21	105	5	50
Dichlorodifluoromethane	19	95	0	50
Ethyl Ether	23	115	4	50
Ethylbenzene	21	105	5	50
Hexachlorobutadiene	21	105	15	50
Isopropylbenzene	22	110	5	50
M/P Xylene	43	108	2	50
Methyl-t-Butyl Ether	22	110	5	50
Methylene Chloride	21	105	5	50
			17110029\$VOAMW	

New Bedford Harbor- New Bedford, MA

LABORATORY FORTIFIED DUPLICATE (LFB Dup) RECOVERY

COMPOUND	LFB Dup CONCENTRATION ug/L	$\begin{gathered} \text { LFB Dup } \\ \text { RECOVERY } \\ \% \end{gathered}$	$\begin{gathered} \text { RPD } \\ \% \end{gathered}$	$\begin{gathered} \text { QC } \\ \text { LIMITS } \\ \text { RPD } \end{gathered}$
N-Butylbenzene	22	110	10	50
N -Propylbenzene	22	110	5	50
Naphthalene	22	110	15	50
Ortho Xylene	22	110	5	50
Para-Isopropyltoluene	21	105	5	50
Sec-Butylbenzene	22	110	5	50
Styrene	20	100	0	50
Tert-Butylbenzene	22	110	5	50
Tetrachloroethylene	19	95	0	50
Tetrahydrofuran	25	125	13	50
Toluene	21	105	5	50
Trans-1,2-Dichloroethylene	21	105	5	50
Trichloroethylene	20	100	0	27
Trichlorofluoromethane	21	105	5	50
Vinyl Acetate	19	95	11	50
Vinyl Chloride	19	95	0	50
c-1,3-dichloropropene	20	100	5	50
cis-1,2-Dichloroethylene	21	105	5	50
t-1,3-Dichloropropene	20	100	5	50

Samples in Batch: AB71235, AB71236, AB71237, AB71238, AB71239, AB71240, AB71241, AB71242

CHAIN OF CUSTODY RECORD

