SYOSSET LANDFILL 2018 ANNUAL POST-CLOSURE SUMMARY REPORT

Ground Water-Monitoring Program

TOWN OF OYSTER BAY DEPARTMENT OF PUBLIC WORKS SYOSSET, NEW YORK 11791

February 2019

LOCKWOOD KESSLER & BARTLETT, INC. SYOSSET, NEW YORK 11791

SYOSSET LANDFILL

2018 ANNUAL POST-CLOSURE SUMMARY REPORT

GROUND WATER-MONITORING PROGRAM

February 2019

Prepared by: Lockwood, Kessler and Bartlett, Inc. One Aerial Way Syosset, NY 11791

Prepared for:

Town of Oyster Bay Department of Public Works 150 Miller Place Syosset, NY 11791

SYOSSET LANDFILL 2018 ANNUAL POST-CLOSURE SUMMARY REPORT

GROUND WATER-MONITORING PROGRAM

TABLE OF CONTENTS

<u>Section</u>	on	<u>Page No.</u>
SECTION 1	INTRODUCTION	1
SECTION 2	RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR	3
SECTION 3	RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT	4
3.1	Horizontal Ground Water-Flow Directions and Gradients 3.1.1 Shallow Zone 3.1.2 Intermediate Zone 3.1.3 Deep Zone	4 4 5 5
3.2	Vertical Hydraulic Gradients	5
3.3	Influence of the Buried Glacial Valley on Ground Water- Flow Patterns	6
SECTION 4	RESULTS OF TASK 3 – GROUND-WATER MONITORING	8
4.1	Results of Field Parameter Measurements	9
4.2	Results of Volatile Organic Compound (VOC) Analyses	10
4.3	Results of NYSDEC Part 360 Leachate Indicator Analyses	11
4.4	Results of USEPA Target Analyte List (TAL) and Cyanide Analyses	12
SECTION 5	COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS	14
5.1	Temporal Variation in Water-Level Elevations	14
5.2	Temporal Variation in Ground-Water Quality	15
5.3	Results of Trend Analyses	16
SECTION 6	CONCLUSIONS AND RECOMMENDATIONS	17

TABLE OF CONTENTS (CONT'D)

LIST OF TABLES

Table Number and Title Follows Page

1.	Summary of Water-Level Results	4
2.	Summary of Construction Details for Monitoring Wells Installed at and near the Syosset Landfill	4
3.	Summary of Field Parameter Monitoring Results	9
4.	Summary of Volatile Organic Compound (VOC) Results	10
5.	Summary of Leachate Indicator Parameter Results	11
6.	Summary of Total and Dissolved Metals Results	12
7.	Changes in Ground-Water Elevations	14
8.	Comparison of Current Total VOC Results to Previous Results	15
9.	Comparison of Current Leachate Indicator Parameter Exceedances to Previous Exceedances	15
10.	Comparison of Filtered Sample Inorganic Parameter Exceedances to Previous Exceedances	15
11.	Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters	16

LIST OF FIGURES

Figure Number and Title Follows Page 1. Ground Water-Monitoring Well Location Plan 1 2. Potentiometric Surface of the Shallow Zone of the Magothy 4 Aquifer on March 14, 2018 3. Potentiometric Surface of the Intermediate Zone of the Magothy 4 Aquifer on March 14, 2018 4. Potentiometric Surface of the Deep Zone of the Magothy 4 Aquifer on March 14, 2018 5. Location of Syosset Landfill Relative to Regional Ground-Water 6 Divide 6. Generalized Structure Contour Map of the Top of the Magothy 6 Formation

LIST OF APPENDICES

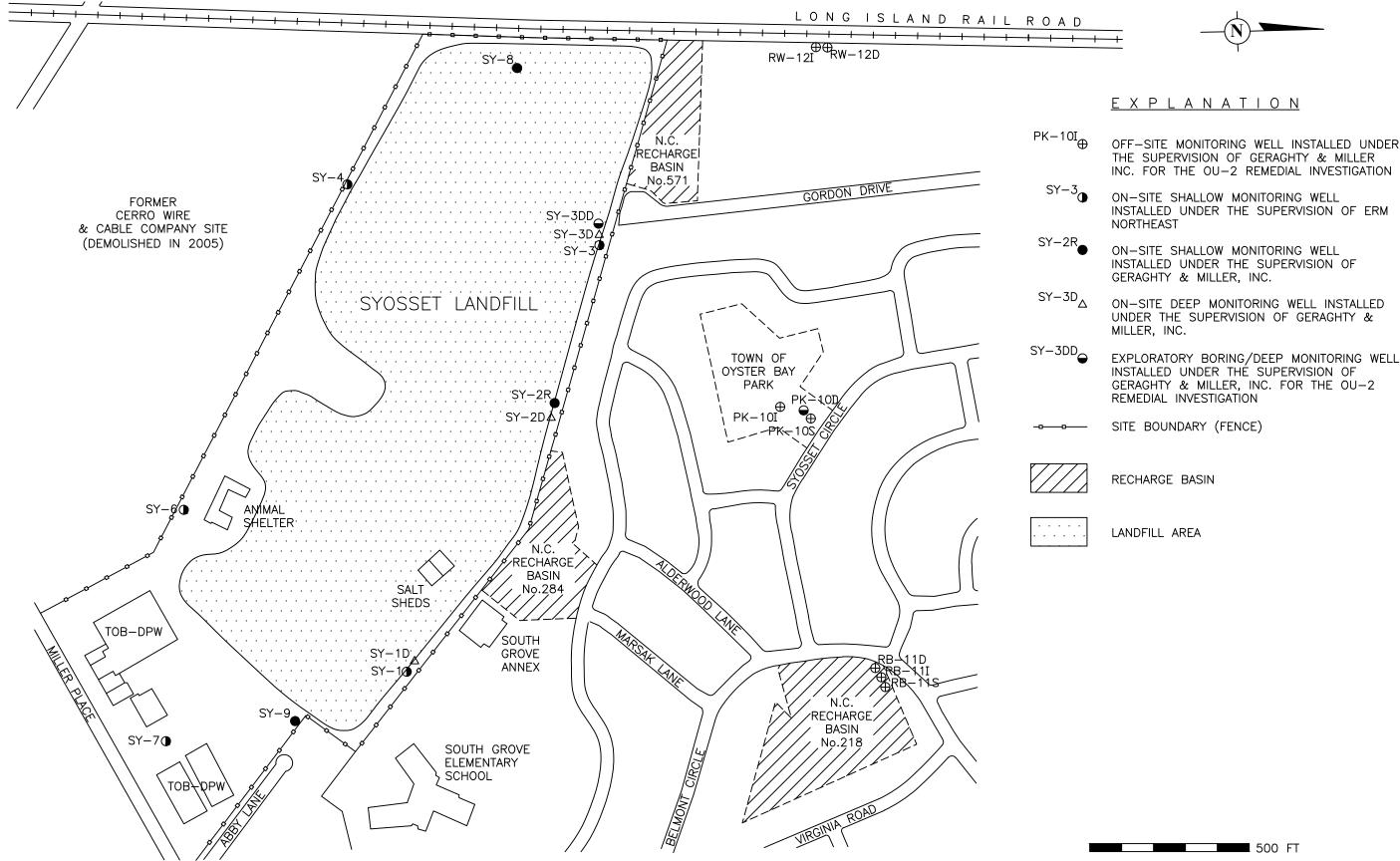
Appendix A: Completed Well Inspection Checklist Forms

Appendix B: Validated Laboratory Data

Appendix C: Trend Analysis Charts

SECTION 1

INTRODUCTION


The Town of Oyster Bay (Town) is required to perform ground-water monitoring at the Syosset Landfill (Landfill) during the post-closure period pursuant to two Records of Decision (RODs) from the United States Environmental Protection Agency (USEPA) Region II for the Landfill. These RODs are enforceable under a Consent Decree (CV-90-4183) entered into by Town and the USEPA.

The scope of the ground water-monitoring program is specified in Section 4 (Groundwater Monitoring System) of the Post-Closure Monitoring and Maintenance Operations Manual (O&M Manual), prepared by Lockwood, Kessler and Bartlett, Inc. (LKB), dated April 2003. The results of the annual groundwater monitoring program have been reported in a separate volume of the Syosset Landfill Annual Post-Closure Summary Reports each year due to the length of the report. In 2018, the Ground Water-Monitoring Program Volume of the 2018 Annual Summary Report is being published separately based on a request from the USEPA.

The main purpose of the ground water-monitoring program is to track ground water-flow and quality conditions now that capping has been completed, to ensure that the Landfill continues to not pose a threat to public health and the environment via the ground-water pathway. The Landfill was removed from the National Priorities List on April 28, 2005.

The USEPA's Fourth Five-Year Review Report was published in February 2017. In this report, the USEPA concluded that the remedies implemented for the site are protective of human health and the environment. In addition, the USEPA granted a reduction in the frequency of post-closure groundwater monitoring from annually to once every fifth quarter enabling the monitoring of groundwater once in each quarter during a Five-Year Review period. In 2018, groundwater monitoring was performed during the first quarter which was five quarters after the previous groundwater monitoring event conducted in the fourth quarter of 2016.


The ground water-monitoring system for the Landfill is comprised of 20 wells. The locations of the wells are indicated in Figure 1. As shown in this figure, thirteen of the wells are located onsite, along the upgradient (south) boundary, within, and along the downgradient (north) boundary of the Landfill. The other eight wells are located offsite, downgradient of the Landfill, in three clusters. The on-site wells are screened in either the shallow, intermediate or deep zone of the Magothy Aquifer, which is the uppermost aquifer. The overlying Upper Glacial Formation is unsaturated beneath the Landfill, and all of the off-site downgradient wells are screened in the Magothy Aquifer.

UNDER THE SUPERVISION OF GERAGHTY &

ON-SITE SHALLOW MONITORING WELL

ON-SITE SHALLOW MONITORING WELL INSTALLED UNDER THE SUPERVISION OF ERM NORTHEAST

THE SUPERVISION OF GERAGHTY & MILLER INC. FOR THE OU-2 REMEDIAL INVESTIGATION

OFF-SITE MONITORING WELL INSTALLED UNDER

The post-closure monitoring well network is comprised of the following 11 wells:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

This Report presents the results of the 2018 annual ground water-monitoring round, which was performed on March 14th, 26th, 27th and 28th. The scope of work for this monitoring round followed Section 4.0 of the O&M Manual, and incorporated the recommendations in the 2016 ground water-monitoring round report.

Sections 2.0 through 4.0 of this Report summarize the results of monitoring well inspections, water-level measurements and ground-water sampling, respectively. Section 5.0 compares the 2018 results to the previous annual post-closure monitoring results obtained since 2003, and to the 1988 OU-1 RI and 1993 OU-2 RI results. Conclusions and recommendations based on the results are provided in Section 6.0. Each section is supported by tables, figures and appendices, as appropriate.

SECTION 2

RESULTS OF TASK 1 – WELL INSPECTION, MODIFICATION AND/OR REPAIR

Prior to performing the 2018 ground water-monitoring round, the 20 existing monitoring wells were located and inspected. All appeared to be in usable condition, and no significant modifications or repairs were required to the 11 wells that are monitored for ground-water quality. Well SY-9 was found to still be dry, which is consistent with the fact that the water-table elevation site-wide decreased by approximately one foot since the 2016 monitoring round. The inspection information for each existing ground water-monitoring well was recorded on a Well Inspection Checklist form, copies of which are presented in Appendix A.

SECTION 3

RESULTS OF TASK 2 – WATER-LEVEL MEASUREMENT

The 2018 synoptic water-level round was performed on March 14th. Measurements were made to the nearest 0.01-feet utilizing an electronic water-level meter. Water-level measurements were obtained from 19 of the 20 site monitoring wells. Well SY-9 could not be measured because it was dry due to the ongoing near-record low water table.

The 2018 water-level data are summarized in Table 1. Monitoring well construction details are provided in Table 2. Ground water-flow maps for the shallow, intermediate, and deep zones of the Magothy Aquifer in the vicinity of the Landfill, based on the 2018 water-level measurements, are provided in Figures 2, 3 and 4, respectively.

3.1 Horizontal Ground Water-Flow Directions and Gradients

3.1.1 Shallow Zone

As shown in Figure 2, the overall horizontal ground water-flow direction in the shallow zone of the Magothy Aquifer beneath the Landfill is from south to north. Downgradient of the Landfill, horizontal ground water-flow directions converge in the vicinity of Well Cluster PK-10 and then shift direction to the north-northwest. Moreover, based on the ground water-flow directions shown in Figure 2, Well Cluster RW-12 is located sidegradient to, rather than directly downgradient of, the Landfill.

The converging ground water-flow pattern observed in the shallow zone of the Magothy Aquifer downgradient of the Landfill is attributed to the influence of a buried glacial valley that begins beneath the western half of the Landfill and appears to trend to the north-northeast. The Upper Glacial Formation is unconfined and more permeable than the Magothy Formation, which is locally semi-confined. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the section of Magothy Formation in contact with the buried glacial valley and into the Upper Glacial Formation, resulting in the converging flow pattern observed. The buried glacial valley is discussed in more detail in Section 3.3 below.

The horizontal hydraulic gradient for the shallow zone of the Magothy Aquifer, calculated by dividing the difference in water-level elevation between Well SY-6 and Well PK-10S in 2018 (1.65 feet) by the distance between the two wells (1,975 feet), is 0.0008. This gradient similar to the gradients observed from 2013 through 2016, and during the pre-2011 monitoring rounds, and therefore appears to represent typical conditions. In contrast, in 2011 and 2012, lower horizontal hydraulic gradients were observed in this aquifer zone. They were attributed to the unusually rapid rises in the water-table elevation in late 2011 and late 2012 due to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in those years.

Table 1Summary of Water-Level ResultsSyosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well No.	MP Elev.	MP Description	WL Depth	WL Elev.	Verti	cal Gradient (ft/ft)
		On-Site	e Wells			
SY-1	198.48	Top of 2-inch steel casing.	120.80	77.68	-0.0023	(SY-1 / SY-1D)
SY-1D	197.02	Top of 4-inch PVC cap.	119.21	77.81		
SY-2R	190.86	Top of 4-inch PVC casing.	113.52	77.34	0.0045	(SY-2R / SY-2D)
SY-2D	190.91	Top of 3-inch PVC casing.	113.91	77.00		
SY-3	193.96	Top of 2-inch steel casing.	116.51	77.45	0.0085	(SY-3 / SY-3D)
SY-3D	194.47	Top of 3-inch PVC casing.	117.48	76.99	0.0008	(SY-3D / SY-3DD)
SY-3DD	193.95	Top of 2-inch PVC casing.	117.24	76.71		
SY-4	192.39	Top of 2-inch steel casing.	114.00	78.39		
SY-6	186.94	Top of 2-inch steel casing.	108.63	78.31		
SY-7	197.46	Top of 2-inch steel casing.	118.57	78.89		
SY-8	197.94	Top of 4-inch PVC cap.	119.86	78.08		
SY-9	202.41	Top of 4-inch PVC casing.	Dry	<79.50*		
		Off-Site	e Wells			
PK-10S	188.73	Top of 4-inch PVC casing.	112.07	76.66	0.0015	(PK-10S / PK-10I)
PK-10I	187.10	Top of 4-inch PVC casing.	110.76	76.34	0.0000	(PK-10I / PK-10D)
PK-10D	188.25	Top of 4-inch PVC casing.	111.91	76.34		
RW-12I	197.32	Top of 4-inch PVC casing.	121.20	76.12	0.0009	(RW-12I / RW-12D)
RW-12D	197.29	Top of 4-inch PVC casing.	121.30	75.99		·
RB-11S	189.91	Top of 4-inch PVC cap.	112.64	77.27	0.0044	(RB-11S / RB-11I)
RB-11I	190.32	Top of 4-inch PVC cap.	113.99	76.33	-0.0001	(RB-111 / RB-11D)
RB-11D	190.60	Top of 4-inch PVC cap.	114.26	76.34		

Notes:

Water-level data collected on March 14, 2018.

MP - Measuring Point.

* Approximate elevation of bottom of well screen.

Table 2

Summary of Construction Details for Monitoring Wells Installed at and Near the Syosset Landfill (Reference: OU-2 RI Report, 1993)

Well Designation	Completion Date	Well Diam e ter (inch es)	Total Depth (feet below land surface)	Screen Setting (feet below land surface)	Interval Gravel Packed (feet below land surface)	Interval Sealed With Bentonite Pellets (feet below land surface)	Interval Sealed With Bentonite Slurry/Vokclay (feet below land surface)	Height of Measuring Point (a) (relative to land surface)	Elevation of Measuring Point (b) (feet above mean sea level)	Well Casing and Scr ee n Material
SY-1 (c)	10/19/82	2	135	125 - 135 (d)	35 - 135 (d)	34 - 35	8 - 34 (e)	-0.15	101 50	Disak shad
SY-1D	2/2/88	4	218	182 - 192	179 - 218	177 - 179	2 - 177		194.52	Black steel
SY-2R	2/12/88	4	150	115 - 125	112 - 150	110 - 112	2-117	+2.31	197.36	PVC
SY-2D	2/9/88	3	215	190 - 200	187 - 215	185 - 187	2 - 185	+1.95	187.12	PVC
SY-3 (c)	10/20/82	2	145	135 - 145	47 - 145 (d)	45 - 47		+2.18	186.33	PVC
SY-3D	2/25/88	3	240	189 - 199	184 - 240	181 - 184	4 - 45 (e) 2 - 181	-0.50	191.38	Black steel
SY-3DD	12/9/92	2	540	530 - 640	517 - 540	512 - 517 (f)		+2.45	194.74	PVC
SY-4	10/20/82	2	153	143 - 153 (d)	57 - 153 (d)	54 - 57	2 - 512	0	194.23	PVC, stainless steel
SY-5 (c) (h)	10/20/82	2.5	135	125 - 135 (d)	• • •	54 - 57 44 - 46	4 - 54 (e)	-0.20	193.32	Black steel
SY-6 (c)	10/19/82	2	145	135 - 145 (d)	46 - 135 (d) 31 - 145 (d)	44 - 40 28 - 31	5 - 44 (e)	+4.20	188.07	Galvanized steel
SY-6D	3/9/88	4	215	195 - 205			5 - 28 (e)	-0.10	185.92	Black steel
SY-7 (c)	10/21/82	2	145		192 - 215	190 - 192	3 - 192	-0.30	185.60	PVC
SY-8	12/19/87	4	142	135 - 145 (d) 127 - 137	52 - 145 (d)	49 - 52	5 - 49 (e)	-0.25	197.46	Black steel
SY-9	1/29/88	7	142		125 - 142	122 - 125	2 - 122	+2.25	195.84	PVC
N-3	11/10/87	2	140	110 - 120	107 - 140	105 - 107	2 - 105	-0.70	199.41	PVC
∿-4 (h)	11/18/87	2		105 - 115	102 - 120	100 - 102	2 - 100	+2.63	190.61	PVC
PK-10S	3/25/93	2	120	104 - 114	102 - 120	100 - 102	2 - 100	+2.56	192.82	PVC
PK-103	4/14/93	:	149	139 - 149	5 - 149	(i)	(i)	-0.40	188.70	PVC, stainless steel
PK-10D		:	362	352 - 362	346.5 - 363	341.5 - 346.5 (f)	2 - 341.5 (g)	0	187.62	PVC, stainless steel
R-115	12/31/92 8/26/93	:	499	489 - 499	477 - 500	472 - 477 (f)	2 - 472 (g)	0	188.23	PVC, stainless steel
RB-11		1	143	133 - 143	120 - 144	115 - 120 (f)	2 - 115 (g)	0	189.91	PVC, stainless steel
RB-11D	8/19/93 8/9/93	1	358.5	348.5 - 358.5	339 - 359	333 - 339 (f)	2 - 333 (g)	0	190.32	PVC, stainless steel
	+	:	503	493 - 503	487 - 509	480 - 487 (I)	2 - 480 (g)	0	190.60	PVC, stainless steel
RW-121	10/7/93	•	360	350 - 360	338 - 364	330 - 338 (f)	2 - 330 (g)	0	197.76	PVC, stainless steel
RW-12D	9/27/93	4	500	490 - 500	482 - 508	475 - 482 (f)	2 - 482 (g)	0	197.72	PVC, stainless steel

(a) The measuring point of each well is the top of the well casing.

(b) Survey performed to U.S. Geological Survey (USGS) datum,

(c) Well installed during the ERM-Northeast site investigation.

(d) It appears that this interval consists of formation collapse.

(e) Information not available as to whether grout or backfill (drill cuttings) was used to fill the annular space in this interval.

(f) #00 Sand used above J. Morie, Co. No. 1 Sand.

(g) Volclay grout sealant used (composed of 100 percent bentonite).

(h) Destroyed.

(i) Well PK-10S was installed in the initial PK-10I borehole, which had collapsed at 328 feet due to unstable formation; PK-10S was constructed with the gravel pack extending to within 5 feet of land surface to allow for the gravel pack to stabilize before a permanant seal was installed. PK-10S is currently sealed at the land surface with a steel plate and rubber gasket. Gravel can be monitored/added through a 1-inch diameter access port.

PVC Polyvinyl chloride.

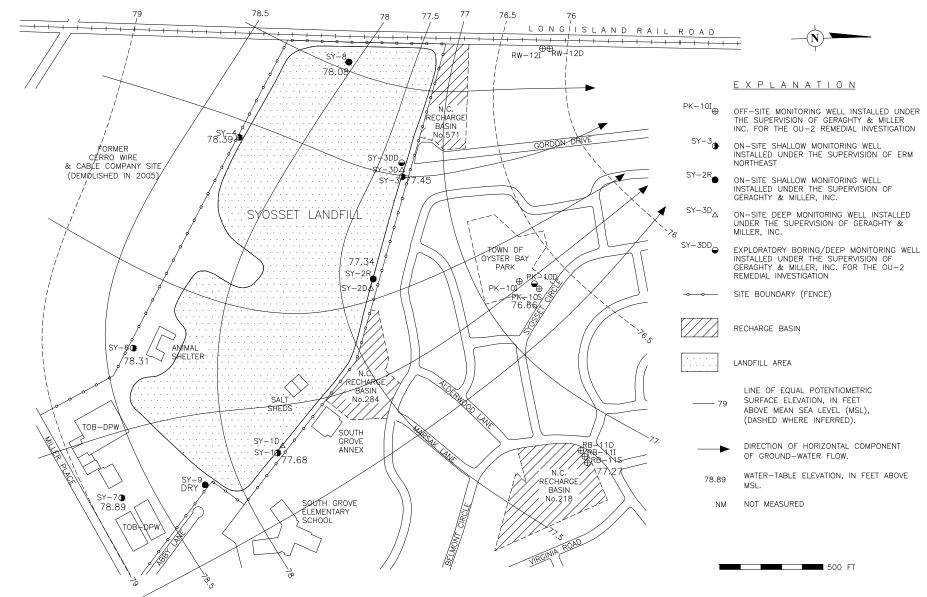


FIGURE 2

POTENTIOMETRIC SURFACE OF THE SHALLOW ZONE OF THE MAGOTHY AQUIFER ON MARCH 4, 2018 SYOSSET LANDFILL, SYOSSET, NY

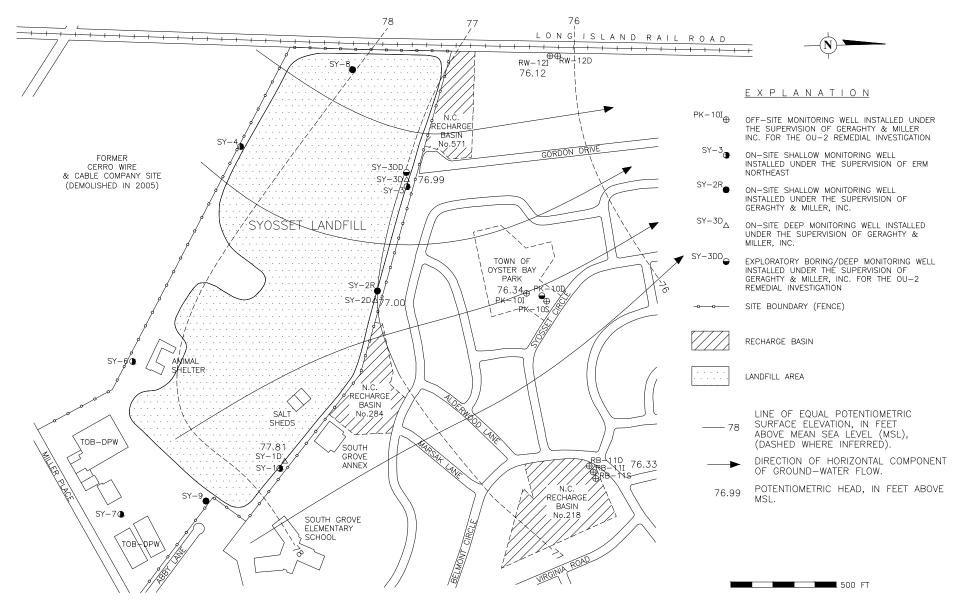


FIGURE 3

POTENTIOMETRIC SURFACE OF THE INTERMEDIATE ZONE OF THE MAGOTHY AQUIFER ON MARCH 14, 2018 SYOSSET LANDFILL, SYOSSET, NY

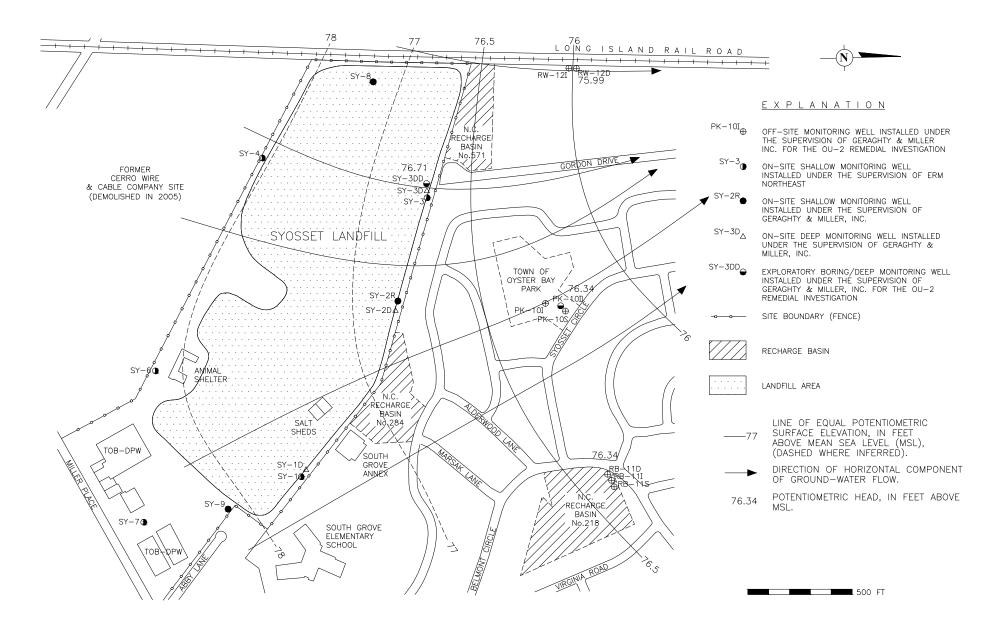


FIGURE 4

DEEP POTENTIOMETRIC SURFACE ZONE OF THE MAGOTHY AQUIFER ON MARCH 14, 2018 SYOSSET LANDFILL, SYOSSET, NY

3.1.2 Intermediate Zone

As shown in Figure 3, based on the 2018 data, horizontal ground water-flow directions in the intermediate zone of the Magothy Aquifer are also generally from south to north beneath the Landfill. They also converge slightly downgradient of the Landfill in the vicinity of Well Cluster PK-10, although the degree of convergence is much less than is observed in the shallow zone of the Magothy Aquifer, and then also shift direction to the north-northwest.

The horizontal hydraulic gradient for the intermediate zone of the Magothy Aquifer, based on difference in water-level elevation in Wells SY-1D and PK-10I (1.47 feet) and the distance between the wells (1,400 feet), is 0.0010, which is similar to, but slightly higher than, the shallow zone gradient.

3.1.3 Deep Zone

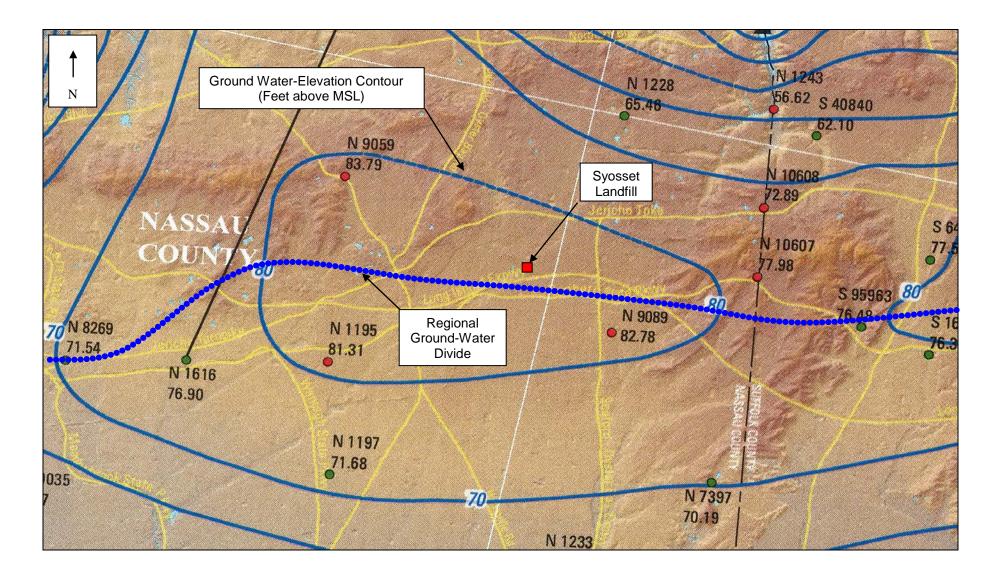
As shown in Figure 4, based on the 2018 data, the horizontal ground water-flow direction in the deep zone of the Magothy Aquifer is generally from south-southeast to north-northwest in the vicinity of the Landfill. This flow direction is based on data from just four downgradient wells and should therefore be considered approximate. However, it is consistent with the shallow and intermediate zone results, as well as the results from previous monitoring rounds. The convergence noted in the shallower zones of the Magothy Aquifer is not observed in this zone. This finding is consistent with the fact that the deep zone of the Magothy Aquifer is not bisected by the buried glacial valley.

The horizontal hydraulic gradient for the deep zone of the Magothy Aquifer, based on the difference in the water-level elevation in Wells SY-3DD and RW-12D (0.72 feet) and the distance between the wells (900 feet), is 0.0008, which is consistent with the horizontal hydraulic gradients in the shallow and intermediate zones of the aquifer.

3.2 Vertical Hydraulic Gradients

Vertical hydraulic gradients are an indication of whether vertical ground water-flow directions, in the absence of confining units, are upward, downward or negligible. Vertical hydraulic gradients calculated using the available 2018 water-level data are included in Table 1. A positive value indicates a downward gradient, whereas a negative value indicates an upward gradient. The vertical hydraulic gradients shown in Table 1 indicate that downward gradients predominate, and that the highest-magnitude downward gradients occur between the shallow and intermediate zones of the Magothy Aquifer at On-Site Downgradient Well Clusters SY-2 and SY-3, and at Off-Site Downgradient Well Cluster RB-11. The vertical hydraulic gradient between the shallow and intermediate zones of the Shallow zone well at this location.

A slightly upward gradient was observed between the shallow and intermediate zones of the Magothy Aquifer at Well Cluster SY-1 again in 2018. During pre-2016 monitoring rounds, downward gradients were observed at this location. The slightly upward gradients observed in 2016 and 2018 are attributed to a localized response of the shallow zone of the Magothy Aquifer to below-average recharge from precipitation.

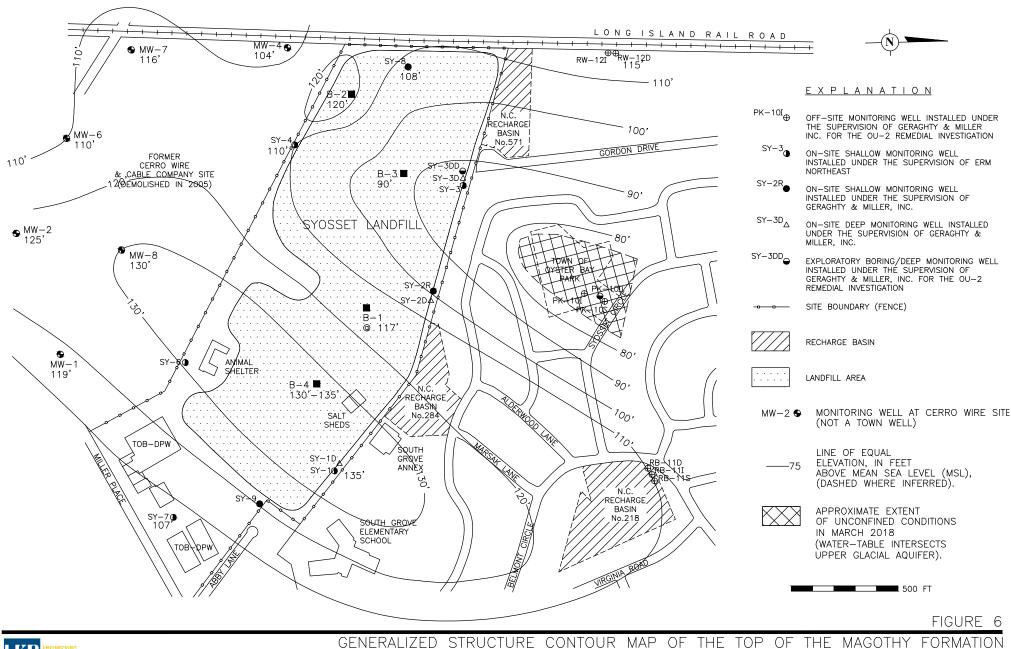

Vertical hydraulic gradients between the intermediate and deep zones of the Magothy Aquifer are lower in magnitude and varied from downward to slightly upward at the three downgradient well clusters for which data are available.

The predominance of downward vertical hydraulic gradients indicates the potential for ground water to migrate vertically downward in the absence of hydraulic barriers such as clay layers. Comparison of the average vertical gradient between the shallow and intermediate zone wells at each cluster (0.002) to the horizontal gradient of the shallow zone of the Magothy Aquifer (0.0008) indicates that it is 2.5 times higher. This finding is consistent with the Landfill being located near the regional ground-water divide, as shown in Figure 5. Typically, ground water-flow directions in such areas have a strong downward component. For this reason, assessment of impacts to the intermediate and deep zone wells must also take ground water-flow patterns in the shallow zone of the Magothy Aquifer into consideration.

3.3 Influence of the Buried Glacial Valley on Ground Water-Flow Patterns

Figure 6 shows a generalized structure contour map of the top of Magothy Formation based on the well boring logs from the OU-1 and OU-2 RIs. As shown in Figure 6, a trough in the Magothy Formation begins beneath the western portion of the Landfill and extends off-site, apparently to the north-northeast. This feature was formed by erosion of the Magothy Formation by the overlying Upper Glacial Formation, and is known as a buried glacial valley.

Due to differences in the hydraulic properties of Upper Glacial and Magothy Formations, the buried glacial valley influences local ground water-flow patterns. Specifically, the Upper Glacial Formation is more permeable than the Magothy Formation, which is finergrained and contains localized clay layers that can cause semi-confined conditions. Therefore, in the vicinity of the buried glacial valley, ground water tends to flow out of the Magothy Aquifer and into the Upper Glacial Formation due to the hydraulic pressure differential between the formations. The influence of the buried glacial valley is most pronounced where it intersects the water table. Comparison of the structural contours in Figure 6 to the water-level data in Figure 2 indicates that the buried glacial valley gets deeper to the north-northeast and intersects the water table downgradient of the Landfill. This finding explains the converging ground water-flow patterns in the shallow and intermediate zones of the Magothy Aquifer downgradient of the Landfill.



Source: Sheet 1 of USGS Scientific Investigations Map 3326, showing water table-elevation contours during April-May 2013.

FIGURE 5

LOCATION OF SYOSSET LANDFILL RELATIVE TO REGIONAL GROUND-WATER DIVIDE

SYOSSET LANDFILL, SYOSSET, NY

Moreover, it should be noted that as a result of the tendency for horizontal ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer to converge downgradient of the Landfill, there is potential for contamination that is not associated with the Landfill to migrate into the area downgradient of the Landfill. For example, in 2005, the gasoline service station located on the northwest corner of the intersection of South Oyster Bay Road and Miller Place replaced its underground storage tanks. LKB personnel noted that the excavated soil stockpile exhibited a very strong gasoline odor, indicating that a release had occurred. This gasoline service-station site could potentially be a source of the gasoline-related VOCs that were previously detected periodically at Well Cluster PK-10.

Also during 2005, the former Cerro Wire site, located adjacent to and upgradient of the Landfill, and comprised of a large industrial building, water tower and paved parking areas, was demolished and a large quantity of contaminated soil was reportedly removed. The site was an open excavation for most of 2005, but was eventually regraded, covered with topsoil and seeded, and is presently vacant land. The changes at the Cerro Wire site in 2005 have resulted in increased recharge directly upgradient of the Landfill and could potentially result in contamination from that site migrating north beneath the Landfill. Moreover, redevelopment of the former Cerro Wire site is currently being proposed. Future excavation associated with that redevelopment could also potentially influence ground-water conditions beneath the Landfill.

SECTION 4

RESULTS OF TASK 3 – GROUND-WATER MONITORING

The 2018 ground water-quality monitoring round was performed on March 26th, 27th and 28th, and included the following 11 wells specified in the O&M Manual:

- SY-6 (Upgradient Well);
- SY-2R, SY-2D, SY-3, SY-3D and SY-3DD (On-Site Downgradient Wells); and
- PK-10S, PK-10I, PK-10D, RW-12I and RW-12D (Off-Site Downgradient Wells).

These ground water-monitoring wells were purged and sampled utilizing the modified low-flow procedure. The purge water from the off-site downgradient wells was collected and disposed of at a licensed facility. Daily trip blanks, a field blank, a matrix spike/matrix spike duplicate, and an anonymous duplicate sample from Well SY-3, labeled "Well SY-5", were also collected.

The samples were analyzed for the following parameters:

- USEPA Target Compound List (TCL) of Volatile Organic Compounds (VOCs)
- NYSDEC Part 360 Baseline Field and Leachate Indicator Parameters
- Total and Dissolved USEPA Target Analyte List (TAL) Inorganic Parameters
- Total Cyanide

The ground-water samples were collected by LKB. The water purged from the off-site downgradient wells was collected and disposed of by Eastern Environmental Solutions, Inc. of Manorville, New York. Laboratory analyses were performed by CHEMTECH of Mountainside, New Jersey. The results were validated by Environmental Data Services, Inc. of Virginia Beach, Virginia.

The field parameter readings and validated laboratory results are summarized in Tables 3 through 7. The monitoring results are compared to NYSDEC Part 703 Ambient Water Quality Standards and Guidelines for Class GA (potable) ground water, except for the parameters arsenic and total dissolved solids (TDS). The results for arsenic and TDS are compared to the Federal MCL for arsenic and SMCL for TDS, respectively, because they are more stringent than the NYSDEC standards for these parameters. The data usability summary reports and validated laboratory data are provided in Appendix B.

4.1 Results of Field Parameter Measurements

Prior to collecting the field parameter readings, a minimum of one well casing volume plus ten percent was purged from each well. Field parameters were then monitored continuously utilizing a YSI Professional Handheld Multiparameter Water Quality Meter equipped with a flow-through cell until the readings stabilized. Turbidity was also monitored with a Hach portable turbidity meter. The final field readings are provided in Table 3. Review of Table 3 indicates noticeable differences for certain field parameters in certain downgradient wells, relative to Well SY-6. The specific differences vary by well and are summarized in the table below:

Well No.	Field Parameter Difference(s) Relative to Upgradient Well SY-6
SY-2R	Higher conductivity, lower pH.
SY-2D	Higher conductivity, lower dissolved oxygen (DO).
SY-3	Higher conductivity, lower DO; negative oxidation-reduction potential (ORP).
SY-3D	Higher temperature and conductivity; lower DO; negative ORP, odor.
SY-3DD	Lower conductivity; higher DO.
PK-10S	Lower temperature, conductivity and pH.
PK-10I	Higher conductivity; lower DO.
PK-10D	Higher conductivity; lower DO.
RW-12I	Higher conductivity; lower DO.
RW-12D	Higher conductivity; lower DO.

Most of these differences, while noticeable, actually represent relatively minor ground water-quality impacts; and most occurred in the on-site downgradient wells. Overall, these findings are consistent with previous years' field parameter results. No significant potentially Landfill-related differences were noted for Well SY-3DD. Turbidity was also lower in all of the downgradient wells relative to Upgradient Well SY-6.

Standards exist for two of the field parameters – pH and turbidity. The pH of ground water in nine of the 11 wells, including the upgradient well, was lower than the 6.5-standard unit range minimum. These results are attributed to naturally-occurring low-pH of the ground water on Long Island. The turbidity of the ground water in all of the downgradient wells was less than the 5-NTU limit. The only exceedance for turbidity occurred in Well SY-6 and is attributed to its shallower depth and the low water table.

Table 3Summary of Field Parameter Monitoring ResultsSyosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Downgradi	ent Wells				
Field Parameter	Units	Quality	Well			On-Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Temperature	°C		15.2	14.2	14.5	16.5	17.1	15.7	13.1	15.7	14.5	14.1	14.8
Conductivity	μS/cm		319	1,470	1,434	1,460	1,923	32.9	126	1,989	469	1,791	965
Dissolved Oxygen	mg/L		5.54	3.78	1.41	0.39	0.59	7.66	5.48	0.46	0.53	0.66	0.59
рН	SU	6-5-8.5	<u>6.13</u>	5.23	<u>5.85</u>	6.50	6.56	<u>5.61</u>	<u>5.38</u>	<u>5.93</u>	<u>5.40</u>	<u>6.44</u>	<u>5.73</u>
Oxidation-Reduction Potential	mV		153	63.6	123	-97.9	-57.6	91.6	170	205	191	95.5	157
Field Observations	NA		Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,	Clear,
			No Odor	No Odor	Slight Odor	No Odor	Strong Odor	No Odor	No Odor	No Odor	No Odor	No Odor	No Odor
Turbidity	NTU	5	<u>11.50</u>	2.61	2.71	1.72	0.67	0.81	0.69	0.36	0.25	0.63	0.22

Notes:

1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.

°C = Degrees Celcius.

 μ S/cm = microSiemens per centimeter.

milligrams per Liter = milligrams per Liter.

SU = Standard Units.

mV = milliVolts.

NA = Not applicable.

NTU = Nephelometric Turbidity Units.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

4.2 Results of Volatile Organic Compound (VOC) Analyses

The 2018 VOC results are summarized in Table 4. As shown in Table 4, VOCs detections in Upgradient Well SY-6 were limited to a low, estimated concentration of acetone. Regarding the on-site downgradient wells, VOCs were not detected in Wells SY-2R, SY-2D, SY-3 and SY-3DD. VOCs were detected in Well SY-3D, but were limited to low, primarily estimated concentrations of four VOCs that are much lower than their respective Class GA ground-water standards. The four VOCs detected in Well SY-3D were the solvents acetone, cis-1,2-dichloroethene and trichloroethene (TCE), and the aromatic hydrocarbon chlorobenzene.

At Off-Site Downgradient Well Cluster PK-10, VOCs were not detected in the shallow zone well, Well PK-10S. VOCs were detected in the two deeper wells, Wells PK-10I and PK-10D, but were limited to relatively low, primarily estimated, concentrations of one to three VOCs in each well. The VOCs detected in these two wells were chlorobenzene, chloroform and TCE, all at concentrations lower than their respective Class GA ground-water standard or guidance value, as applicable.

At Off-Site Downgradient Well Cluster RW-12, a number of chlorinated solvents and aromatic hydrocarbons were detected in both wells. For the most part, the same VOCs were detected in both wells, however the highest concentration of most of the VOCs occurred in the deep zone well, Well RW-12D. Total VOC concentrations in these two wells were 29.5 ug/L and 47.0 ug/L, respectively. These results represent decreases of approximately 45 and 51 percent, respectively, relative to the 2016 results, but are still consistent with the historical results for these wells.

The concentrations of three VOCs in Well RW-12I (chlorobenzene, 1,2-dichlorobenzene and 1,4-dichlorobenzene) and five VOCs in Well RW-12D (chlorobenzene, 1,2-dichlorobenzene, 1,4-dichlorobenzene, 1,1-dichloroethane and cis-1,2-dichloroethene) were higher than their respective Class GA ground-water standards. However, with the exception of the chlorobenzene detections, which exceeded the 5-ug/L Class GA standard by factors of approximately two and three in Wells RW-12I and RW-12D, respectively, the VOC exceedances in these two wells were low in magnitude.

In summary, the VOC results from the 2018 post-closure monitoring round continue to indicate that the Landfill is not a significant source of VOCs. Specifically, VOC detections in the on-site downgradient wells were limited to low, primarily estimated concentrations of three VOCs in Well SY-3D. Moreover, the fact that most of the VOCs detected at Off-Site Downgradient Well Cluster RW-12 are not present in the on-site downgradient wells indicates that they are not Landfill-related. This finding is consistent with the ground water-flow directions shown in Figures 2 through 4, which indicate that Well Cluster RW-12 is located sidegradient to, rather than directly downgradient of, the Landfill.

Table 4 Summary of Volatile Organic Compound (VOC) Results Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

								ngradient	Wells					
Analyte	Units	Quality	Well						1			Off-Site	1	
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
1,1,1-Trichloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2,2-Tetrachloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2-Trichloroethane	ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1,2-Trichlorotrifluoroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,1-Dichloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3	5.4
1,1-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.8 J	<0.2
1,2,3-Trichlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2,4-Trichlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromo-3-chloropropane	ug/L	0.04	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dibromoethane	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichlorobenzene	ug/L	3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<u>3.1</u>	<u>4.8</u>
1,2-Dichloroethane	ug/L	0.6	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,2-Dichloropropane	ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
1,3-Dichlorobenzene	ug/L	3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	1.2	1.7
1,4-Dichlorobenzene	ug/L	3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	4.9	6.6
2-Butanone	ug/L	50 ^{GV}	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<1.3	<2.5	<2.5	<2.5	<2.5	<2.5
		50 ^{GV}		-	-						<2.5	<2.5	<2.5	<2.5
2-Hexanone	ug/L		<1.9	<1.9	<1.9 <1	<1.9	<1.9 <1	<1.9 <1	<1.9 <1	<2.5 <1	<2.5	<2.5 <1	<2.5	
4-Methyl-2-pentanone	ug/L	 GV	<1	<1		<1								<1
Acetone	ug/L	50 ^{GV}	4.4 J	<0.5	<0.5	<0.5	<0.5	10.2	<0.5	<1	<1	<1	<1	<1
Benzene	ug/L	1	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.51 J	<0.2
Bromochloromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5
Bromodichloromethane	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromoform	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Bromomethane	ug/L	5	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2	<0.2 J	<0.2 J	<0.2 J	<0.2 J	<0.2 J
Carbon disulfide	ug/L	60 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Carbon tetrachloride	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.24 J	<0.2	<0.2	2.1	0.59 J	9.7	18.3
Chloroethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	< 0.5	< 0.5
Chloroform	ug/L	7	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	3.2	<0.2	0.99 J
Chloromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
cis-1,2-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.35 J	<0.2	<0.2	<0.2	<0.2	2.7	5.2
cis-1,3-Dichloropropene	ug/L	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2
Cyclohexane	ug/L		<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dibromochloromethane	ug/L	50 ^{GV}	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Dichlorodifluoromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Ethylbenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Isopropylbenzene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
m&p-xylenes	ug/L	10*	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methyl acetate	ug/L		<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
-	-	10 ^{GV}												
Methyl tert-butyl ether	ug/L		< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.35	< 0.5	< 0.5	< 0.5	< 0.5	< 0.5
Methylcyclohexane	ug/L		<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Methylene chloride	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
o-xylene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Styrene	ug/L	5	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	< 0.2
Tetrachloroethene	ug/L	5	< 0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	< 0.2	1.8	0.67 J
Toluene	ug/L	5	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	< 0.2	<0.2
trans-1,2-Dichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
trans-1,3-Dichloropropene	ug/L	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	0.2 J	<0.2	<0.2	<0.2	0.23 J	0.84 J	0.62 J
Trichlorofluoromethane	ug/L	5	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	< 0.2	<0.2	<0.2	<0.2	<0.2
Vinyl chloride	ug/L	2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.96 J	1.9
No. of Target VOCs Detected ³ :	out of 51	N/A	1/51	0/51	0/51	0/51	0/51	4/51	0/51	0/51	1/51	3/51	12/51	11/51
Total VOC Concentration ⁴ :	ug/L		4.4 J	ND	ND		ND	10.8 J	ND	ND	2.1			47.0 J

Notes:

ug/L = micrograms per Liter. 1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.

2 = Duplicate sample collected from Well SY-3.

3 = m- and p-xylene counted as one VOC, total excludes total xylenes.

4 = Based on all target VOCs detected, including estimated concentrations.

J = Estimated concentration.

Bold and Underlined = Exceeds ground water-quality standard or guidance value.

* = Based on 5-ug/L limit for eash isomer.

NA = Not applicable.

ND = None detected.

-- = No standard or guidance value.

4.3 Results of NYSDEC Part 360 Leachate Indicator Analyses

The leachate indicator parameters analyzed for included alkalinity, ammonia, BOD (biological oxygen demand), bromide, chloride, color, COD (chemical oxygen demand) total hardness, nitrate, total phenols, sulfate, TDS, TKN (total Kjeldahl nitrogen), and TOC (total organic carbon).

As shown in Table 5, compared to Upgradient Well SY-6, the concentrations of every leachate indicator parameter except BOD, bromide, nitrate, total phenols and sulfate were noticeably higher in Wells SY-3 and SY-3D, which monitor the shallow and intermediate zones of the Magothy Aquifer, respectively, at the downgradient Landfill boundary. Elevated levels of leachate-related contaminants were not detected in Well SY-3DD, which monitors the deep zone of the Magothy Aquifer at the downgradient Landfill boundary. At On-Site Downgradient Well Cluster SY-2, only chloride and TDS were present at concentrations significantly higher than in Upgradient Well SY-6.

Comparison of the leachate parameter results for the upgradient and on-site downgradient wells to the Class GA ground-water standards indicates that Landfill-related exceedances in these wells were limited to: chloride and TDS in Wells SY-2R and SY-2D; color in Well SY-2D; and ammonia, chloride, color and TDS in Wells SY-3 and SY-3D. No exceedances occurred in Upgradient Well SY-6 or in On-Site Downgradient Well SY-3DD.

Comparison of the leachate indicator parameter results for the off-site downgradient wells to the Class GA ground-water standards indicates that exceedances were limited to: ammonia, chloride and TDS in Well PK-10I; and ammonia and TDS in Wells RW-12I and RW-12D. No exceedances occurred in Wells PK-10S and PK-10D.

Based on comparison of the leachate indicator parameter results for the on-site and offsite downgradient wells, most of the parameters detected at elevated concentrations in the on-site downgradient wells were detected at similar concentrations in Off-Site Downgradient Well PK-10I, indicating Landfill-related impacts in this well. However, this comparison also indicates that most of the parameters (e.g., alkalinity, ammonia, bromide, COD, hardness, nitrate, sulfate, TKN and TOC) were detected at higher concentrations in one or both wells at Well Cluster RW-12 than in the on-site downgradient wells. Moreover, at least one parameter (e.g., chloride) detected at relatively high concentrations in most on-site downgradient wells and Downgradient Off-Site Well PK-10I, was detected at much lower concentrations in Well Cluster RW-12. These disparities, together with the VOC and ground water-flow direction results, suggest that the leachate indicator parameters detected at Well Cluster RW-12 are not Landfill-related.

Taken as a whole, the 2018 leachate indicator parameter results indicate that the Landfill continues to be a relatively minor source of the Part 360 leachate-related contaminants.

Table 5 Summary of Leachate Indicator Parameter Results Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

		Water ¹	Upgradient					Dow	ngradient	Wells				
Analyte	Units	Quality	Well			On-	Site					Off-Site		
		Standard	SY-6	SY-2R	SY-2D	SY-3	SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
Alkalinity	mg/L		118	114	47.8	232	221	220	3.8	7.8	130	24.8	892	90.8
Ammonia	mg/L	2	0.087 J	0.078 J	0.11	<u>11.3</u>	<u>11.1</u>	<u>18.7</u>	0.053 J	0.059 J	<u>3.6</u>	0.067 J	<u>69.6</u>	<u>5</u>
BOD	mg/L		<2	<2	<2	<2	<2	<2	3.8	<2	<2	<2	<2 J	<2 J
Bromide	mg/L	2	<0.066	<0.066	<0.066	0.28 J	0.28 J	0.42 J	<0.066	<0.066	0.85	0.7	1.9	1.1
Chloride	mg/L	250	6.9	<u>461</u>	<u>461</u>	<u>372</u>	<u>365</u>	<u>508</u>	4.8	12.3	<u>583</u>	112	144	206
COD	mg/L		<5	6.59 J	15.5	15.5	12.5	14.5	<5	<5	<5	<2.43	31.4	<2.43
Color	cu	15	<5	<5	<u>20</u>	<u>300</u>	<u>300</u>	<u>400</u>	<5	<5	<5	<5	5 J	5 J
Hardness, Total	mg/L		161	80.5	105	191	188	186	6.42 J	40.9	186	92.8	338	277
Nitrate	mg/L	10	1.9	2.5	1.4	<0.027	<0.027	<0.027	0.72	3.2	<0.027	4.2	0.41 J	9.6 J
Phenols, Total	mg/L	0.001	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.01 J	<0.05 J	<0.01	<0.01	<0.01	<0.01	<0.01
Sulfate	mg/L	250	38.7	36.6	15.7	36.2	35.1	40.5	<0.75	17.6 J	36 J	22.4 J	64.4	183
TDS	mg/L	500*	208	<u>808</u>	<u>779</u>	<u>859</u>	<u>815</u>	<u>1,034</u>	56	87	<u>1,147</u>	261	<u>842 J</u>	<u>733</u>
TKN	mg/L		0.25 J	0.24 J	0.26 J	10.5 J	10.8 J	8.1 J	0.24 J	0.17 J	5.6	0.26 J	67	5.3
TOC	mg/L		1.8	2.2	2.2	5.3	4.8	4.5	0.63	0.62	2.6	1.3	17.2	5.2

Notes:

1 = NYSDEC Part 703 Ambient Water Quality Standards or Guidance Value (GV) for Class GA (Potable) ground water.

2 = Duplicate sample collected from Well SY-3.

* = TDS limit is Federal SMCL, which is more stringent than the 1,000-mg/L NYSDEC limit for Class GA ground water.

mg/L = milligrams per Liter.

cu = color units.

J = Estimated concentration.

BOD = Biological oxygen demand.

COD = Chemical oxygen demand.

TDS = Total dissolved solids.

TKN = Total Kjeldhal nitrogen.

TOC = Total organic carbon.

Bold & Underlined = Exceeds ground water-quality standard or guidance value.

-- = No standard or guidance value.

4.4 Results of USEPA Target Analyte List (TAL) and Cyanide Analyses

The samples were analyzed for both total and dissolved TAL parameters, and total cyanide. The RCRA (Resource Conservation and Recovery Act) and PPL (Priority Pollutant List) metals, which are a subset of 14 of the more toxic metals, are included in the TAL parameters. The results are summarized in Table 6, and the RCRA and PPL metals are identified with asterisks.

As shown in Table 6, of the 24 parameters analyzed for, three (antimony, cadmium and selenium) were not detected. Of the 21 detected parameters, 12 (aluminum, barium, chromium, cobalt, copper, cyanide, lead, mercury, nickel, silver, vanadium and zinc), were only detected sporadically and/or at low concentrations less than their respective Class GA standard or guidance value. The highest concentration of one other parameter (zinc) was detected in the upgradient well. The remaining nine detected TAL parameters include four RCRA/PPL metals (arsenic, beryllium, selenium and thallium) and calcium, iron, magnesium, manganese, potassium and sodium. The results for these nine parameters are discussed below.

Arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at total and dissolved concentrations higher than the 10-ug/L federal MCL. Comparison of the total and dissolved results for these two wells indicates that the arsenic is in dissolved form. The only other detections of arsenic occurred in Off-Site Downgradient Wells PK-10D, RW-12I and RW-12D, and were primarily limited to low, estimated concentrations that are much lower than the federal MCL. The dissolved arsenic concentration in Well RW-12I was slightly higher than the MCL, however since the total arsenic concentration in Well RW-12I was much lower than the MCL, this dissolved arsenic exceedance is considered to be spurious.

Beryllium was only detected in On-Site Downgradient Well SY-2R, at total and dissolved concentrations slightly higher than the 3-ug/L Class GA guidance value. Comparison of the total and dissolved results indicates that the beryllium is in dissolved form.

Selenium was only detected in filtered samples from Off-Site Downgradient Wells RW-12I and RW-12D, at estimated concentrations. The dissolved selenium concentration in Well RW-12I is slightly higher than the 10-ug/L standard, but is likely spurious as total selenium was not detected in unfiltered samples from this well cluster.

Thallium was only detected at low, estimated concentrations in the unfiltered duplicate sample from Well SY-3, the unfiltered sample from Well PK-10I, and in the filtered sample from Well SY-3DD. However, these detections are higher than the 0.5-ug/L Class GA standard and may be Landfill-related.

Calcium, iron, magnesium, manganese, potassium and sodium were each detected in one or more downgradient wells at concentrations noticeably higher than in Upgradient Well SY-6. Except for sodium, which had a more widespread occurrence, the highest

Table 6Summary of Total and Dissolved Metals ResultsSyosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Analuta	Linita	Water ¹	Upgradient	Vell On-Site Off-Site										
Analyte	Units	Quality	SY-6	SY-2R	SY-2D	SY-3	Sile SY-5 ²	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
		Standard	51-0	51-2R					31-300	PK-103	PK-101	PK-10D		RVV-12D
Aluminum	ug/L		17.7 J	267	325	13.8 J	13.1 J	7.2 J	<200	10.7 J	17.6 J	<200	22.0 J	13.0 J
Antimony*	ug/L	3	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	<10.0	<10.0	<u>41.3</u>	<u>42.5</u>	<u>18.7</u>	<10.0	<10.0	<10.0	3.0 J	<10.0	3.4 J
Barium*	ug/L	1,000	84.1 J	75.7 J	82.4 J	155 J	152 J	194 J	<200	14.9 J	60.1 J	34.2 J	60.0 J	77.1 J
Beryllium*	ug/L	3 ^{GV}	<5.0	<u>3.5 J</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L		40,900	24,300	32,100	44,900	44,000	50,000	1,530 J	12,000	50,000	24,000	70,900	71,700
Chromium*	ug/L	50	2.5 J	1.4 J	<10.0	<10	<10.0	<10.0	2.7 J	1.4 J	<10.0	1.2 J	1.4 J	<10.0
Cobalt	ug/L		<50.0	5.1 J	<50.0	<50.0	<50.0	18.6 J	<50.0	<50.0	98.0	3.1 J	<50.0	<50.0
Copper*	ug/L	200	20.4 J	3.9 J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0
Cyanide	ug/L	200	<10.0	3.7 J	<10.0	<10.0	<10.0	<10.0	2.7 J	<10.0	<10.0	<10.0	<10.0	<10.0
Iron	ug/L	300	212	40.9 J	158	36,200	35,700	23,200	<100	17.9 J	<100	<100	137	<100
Lead*	ug/L	25	3.7 J	<10.0	2.6 J	3.8 J	3.9 J	2.3 J	2.0 J	2.2 J	<10	<10.0	<10.0	<10.0
Magnesium	ug/L		14,400	4,820	5,960	19,200	18,900	14,900	632 J	2,660 J	14,900	7,990	39,100	23,800
Manganese	ug/L	300	26.3	32.4	<u>453</u>	<u>3,790</u>	<u>3,720</u>	<u>897</u>	2.4 J	15.0 J	<u>1,530</u>	24.9	52	12.8 J
Mercury*	ug/L	0.7	<0.20	<0.20	<0.20	0.062 J	0.059 J	0.16 J	<0.20	<0.20	<0.44	<0.20	<0.20	<0.20
Nickel*	ug/L	100	5.2 J	28.3 J	<40.0	<40.0	<40.0	<40.0	13.1 J	3.7 J	3.6 J	12.3 J	7.4 J	3.6 J
Potassium	ug/L		<5,000	1,750 J	4,590 J	15,100	14,900	24,500	<5,000	<5,000	16,400	<5,000	68,900	2,920 J
Selenium*	ug/L	10	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0 J	<35.0 J	<35.0 J	<35.0	<35.0
Silver*	ug/L	50	<10.0	<10.0	<10.0	0.91 J	0.94 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium	ug/L	20,000	6,940	<u>267,000</u>	<u>233,000</u>	<u>224,000</u>	<u>218,000</u>	<u>282,000</u>	3,210 J	6,250	<u>316,000</u>	<u>55,900</u>	<u>140,000</u>	<u>137,000</u>
Thallium*	ug/L	0.5	<25.0	<25.0	<25.0	<25.0	<u>4.3 J</u>	<25.0	<25.0	<25.0	<u>3.7 J</u>	<25.0	<25.0	<25.0
Vanadium	ug/L		2.8 J	<50.0	<50.0	<50.0	<50.0	<50.0	3.8 J	<50.0	<50.0	<50.0	<50.0	<50.0
Zinc*	ug/L	2,000 ^{GV}	1,260	53.5 J	11.9 J	<60.0	6.5 J	3.1 J	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
					DISSOL	VED MET	FALS RE	SULTS						
Aluminum	ug/L		<200	230	19.3 J	20.9 J	21.0 J	<200	<200	<200	20.4 J	9.7 J	26.7 J	24.7 J
Antimony*	ug/L	3	<60.0	<60.0	<60.0	60	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0	<60.0
Arsenic*	ug/L	10**	<10.0	3.5 J	3.3 J	<u>53.5</u>	<u>56.1</u>	<u>16.0</u>	<10.0	<10.0	<10.0	<10.0	<u>10.8</u>	3.7 J
Barium*	ug/L	1,000	80.3 J	72.8 J	79.2 J	153 J	154 J	192 J	<200	13.7 J	59.7 J	32.5 J	60.3 J	74.3 J
Beryllium*	ug/L	3 ^{GV}	<5.0	<u>3.4 J</u>	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Cadmium*	ug/L	5	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
Calcium	ug/L		39,600	23,400	30,500	43,800	43,900	49,000	1,500 J	11,700	50,000	23,200	70,400	70,200
Chromium*	ug/L	50	<10.0	1.6 J	<10.0	<10.0	<10.0	<10.0	1.8 J	<10.0	<10.0	<10.0	<10.0	<10.0
Cobalt	ug/L		<50.0	4.7 J	<50.0	<50.0	<50.0	18.6 J	<50.0	<50.0	92.1	2.7 J	<50.0	<50.0
Copper*	ug/L	200	19.6 J	<25.0	<25.0	<25.0	<25.0	<25.0	<25.0	2.5 J	<25.0	2.8 J	2.6 J	<25.0
Iron	ug/L	300	65.2 J	16.3 J	<100	<u>34,900</u>	<u>35,500</u>	<u>23,000</u>	<100	<100	<100	<100	106	<100
Lead*	ug/L	25	<10.0	2.6 J	3.9 J	2.7 J	3.2 J	2.5 J	3.1 J	<10.0	<10.0	1.9 J	<10.0	<10.0
Magnesium	ug/L		14,100	4,270 J	5,470	17,600	17,600	14,600	636 J	2.700 J	15,000	7,750	38,500	23,200
Manganese	ug/L	300	25.2	30.2	<u>361</u>	<u>3,740</u>	<u>3,750</u>	<u>874</u>	2.1 J	<15.0	<u>1,550</u>	24.6	50.1	12.4 J
Mercury*	ug/L	0.7	0.040 J	<0.20	<0.20	< 0.20	0.039 J	0.039 J	0.043 J	<0.20	<0.37	<0.20	<0.20	<0.20
Nickel*	ug/L	100	4.3 J	26.0 J	<40.0	<40.0	<40.0	<40.0	9.9 J	2.7 J	2.8 J	10.9 J	6.8 J	3.3 J
Potassium Solonium*	ug/L		<5,000 <35.0	<5,000	4,070 J	14,400	14,600	24,300	<5,000	<5,000	16,200	<5,000	67,000	2,660 J
Selenium*	ug/L	10		<35.0	<35.0	<35.0	<35.0	<35.0	<35.0	<35.0 J	<35.0 J	<35.0 J	<u>12.9 J</u>	6.4 J
Silver*	ug/L	50	<10.0	<10.0	<10.0	<10.0	0.79 J	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0	<10.0
Sodium Thallium*	ug/L	20,000	7,100	<u>247,000</u>	<u>211,000</u>	<u>208,000</u>	<u>206,000</u>	<u>278,000</u>	3,250 J	5,920	<u>313,000</u>	<u>53,600</u>	<u>137,000</u>	<u>134,000</u>
	ug/L	0.5	<25.0 <50.0	<25.0	<25.0 <50.0	<25.0	<25.0	<25.0	<u>2.1 J</u>	<25.0	<25.0	<25.0	<25.0 <50.0	<25.0
Vanadium	ug/L	 2,000 ^{GV}		<50.0		<50.0	<50.0	<50.0	<50.0	<50.0	<50.0	<50.0		<50.0
Zinc*	ug/L	∠,000	1,220	51.7 J	17.4 J	<60.0	5.0 J	7.8 J	4.6 J	12.7 J	13.5 J	13.5 J	10.0 J	9.4 J

Notes:

ug/L = micrograms per Liter.

1 = NYSDEC Part 703 Ambient Water Quality Standard or Guidance Value (GV) for Class GA (Potable) ground water.

2 = Duplicate sample collected from Well SY-3.

J = Estimated concentration.

Bold & Underlined = Exceeds ground water-quality standard or guidance value.

* = RCRA/PPL metal.

** = USEPA MCL, revised downward from 50 ug/L effective January 2006. NYSDEC TOGS 1.1.1 Ambient Water Quality Standard is 25 ug/L.

-- = No standard or guidance value.

concentrations of these parameters occurred in Wells SY-3, SY-3D, PK-10I, RW-12I and/or RW-12D.

Comparison of the results for the on-site and off-site downgradient wells indicates that Landfill-related off-site impacts are minimal. For example, arsenic was only detected at significant concentrations in two on-site downgradient wells. The highest concentrations of iron, manganese and sodium also occurred in on-site downgradient wells, whereas the highest concentrations of calcium, magnesium and potassium occurred in Off-Site Downgradient Well Cluster RW-12. The differences in the results for the on-site downgradient wells and Off-Site Downgradient Well Cluster RW-12. The differences in the results for the on-site downgradient wells and Off-Site Downgradient Well Cluster RW-12 suggest that certain parameters detected at Well Cluster RW-12 are not Landfill-related. Review of Table 6 also indicates that overall, the detected TAL parameters were present at similar concentrations in unfiltered and filtered samples. This indicates that the detected TAL parameters are primarily present in ground-water in dissolved form.

Taken as a whole, the TAL parameter and total cyanide results indicate that the Landfill continues to be a relatively minor source of certain metals/inorganic parameters, but is not a significant source of the RCRA/PPL metals. The only Landfill-related exceedances for the RCRA/PPL metals in 2018 were for arsenic in Wells SY-3 and SY-3D, beryllium in Well SY-2R, and possibly thallium in Wells SY-3 and PK-10I. The arsenic and beryllium exceedances appear to be limited to the downgradient landfill boundary as exceedances for these parameters did not occur in the deeper on-site downgradient wells. The thallium exceedances may be Landfill-related but are for sporadic low, estimated concentrations.

SECTION 5

COMPARISON OF CURRENT MONITORING RESULTS TO PREVIOUS MONITORING RESULTS

The 2018 ground water-monitoring results were compared to previous post-closure monitoring results, and the OU-1 RI and the OU-2 RI results, to determine if ground water-flow patterns and/or quality conditions have changed significantly since the Landfill was capped. This entailed 1) comparison of the current and historical post-closure water-level data, 2) comparison of the current and previous overall results for each parameter group, 3) comparison, on a well-to-well basis, of the current and previous results for Landfill-related exceedances of the ground-water standards or guidance values, and 4) trend analyses for the leachate indicator parameters that have historically been detected on a regular basis.

5.1 Temporal Variation in Water-Level Elevations

The 2018 water-level results are compared to post-closure water-level data collected since 2003 in Table 7. Review of Table 7 indicates that in March 2018 water-level elevations were, on average: 0.75 feet higher relative to 2003 data, -1.21 feet lower relative to 2005 data, -6.62 feet lower relative to the 2006 data, -7.89 feet lower relative to the 2007 data, -7.48 feet lower relative to the 2008 data, -6.58 feet lower relative to the 2009 data, -9.16 feet lower relative to the 2010 data, -10.47 feet lower relative to the 2011 data, -8.37 feet lower relative to the 2012 data, -6.97 feet lower relative to the 2013 data, -6.51 feet lower relative to the 2014 data, -4.74 feet lower relative to the 2015 data, and -0.97 feet lower relative to the 2016 data. These changes are attributed to natural temporal variations in recharge from precipitation, such as the below-normal precipitation in 2015 and 2016, and the increased recharge directly upgradient of the Landfill since 2005 resulting from the demolition work at the former Cerro Wire property.

Comparison of the current ground water-contour maps (Figures 2, 3 and 4) to previous post-closure ground water-contour maps indicates that, overall, ground water-flow directions are similar. One notable difference is that during the period from 2005 through 2008, ground water-flow directions in the shallow and intermediate zones of the Magothy Aquifer showed less convergence downgradient of the Landfill. This difference is attributed to the fact that the water-table elevation rose at a faster than normal rate during that period, which temporarily masked the influence of the buried glacial valley on ground water-flow patterns. The other notable difference is that in 2011 and 2012, water-level contours in the shallow and intermediate zones of the aquifer beneath the eastern half of the Landfill extended further south (upgradient) than is typically observed. This difference is attributed to the above-normal infiltration from the hurricanes and nor'easters that occurred earlier in these years.

Table 7Changes in Ground-Water ElevationsSyosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well					Wat	ter Level E	levation (ft	. above M	ean Sea L	evel)										Change ir	Water Ele	evation (ft.)				
Number	2003	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2018	'16' to '18	'15' to '18	'14 to '18	'13 to '18						'07 to '18	'06 to '18	'05 to '18	'03 to '18
													On-Site	e Wells:													
SY-1	77.63	79.59	84.87	86.16	85.87	84.63	87.04	88.63	86.20	85.02	84.86	82.78	78.74	77.68	-1.06	-5.10	-7.18	-7.34	-8.52	-10.95	-9.36	-6.95	-8.19	-8.48	-7.19	-1.91	0.05
SY-1D	77.16	79.27	84.62	85.87	85.32	84.48	86.94	88.34	86.13	84.89	84.47	82.63	78.79	77.81	-0.98	-4.82	-6.66	-7.08	-8.32	-10.53	-9.13	-6.67	-7.51	-8.06	-6.81	-1.46	0.65
SY-2R	76.65	78.62	84.06	85.35	84.73	83.91	86.48	87.95	85.81	84.36	83.95	82.15	78.30	77.34	-0.96	-4.81	-6.61	-7.02	-8.47	-10.61	-9.14	-6.57	-7.39	-8.01	-6.72	-1.28	0.69
SY-2D	76.35	78.41	83.31	85.02	84.57	83.61	86.30	87.67	85.60	84.15	83.64	81.92	78.14	77.00	-1.14	-4.92	-6.64	-7.15	-8.60	-10.67	-9.30	-6.61	-7.57	-8.02	-6.31	-1.41	0.65
SY-3	76.77	78.46	84.09	85.27	84.85	83.98	86.70	88.16	85.97	84.35	84.10	82.22	78.36	77.45	-0.91	-4.77	-6.65	-6.90	-8.52	-10.71	-9.25	-6.53	-7.40	-7.82	-6.64	-1.01	0.68
SY-3D	76.04	77.94	83.53	84.74	84.28	83.46	86.14	87.44	85.47	83.86	83.28	81.67	77.92	76.99	-0.93	-4.68	-6.29	-6.87	-8.48	-10.45	-9.15	-6.47	-7.29	-7.75	-6.54	-0.95	0.95
SY-3DD	75.43	77.67	83.24	84.41	84.05	83.25	85.91	86.94	85.22	83.59	82.82	81.31	77.66	76.71	-0.95	-4.60	-6.11	-6.88	-8.51	-10.23	-9.20	-6.54	-7.34	-7.70	-6.53	-0.96	1.28
SY-4	78.04	79.71	84.80	86.24	85.69	84.91	87.40	90.19	86.79	85.55	85.11	83.15	79.31	78.39	-0.92	-4.76	-6.72	-7.16	-8.40	-11.80	-9.01	-6.52	-7.30	-7.85	-6.41	-1.32	0.35
SY-6	77.92	79.98	84.96	86.40	85.88	85.13	87.43	87.84	85.63	85.65	85.16	83.20	79.35	78.31	-1.04	-4.89	-6.85	-7.34	-7.32	-9.53	-9.12	-6.82	-7.57	-8.09	-6.65	-1.67	0.39
SY-7	NA	NA	NA	86.83	86.27	85.48	87.71	89.21	86.82	85.91	85.90	83.64	79.88	78.89	-0.99	-4.75	-7.01	-7.02	-7.93	-10.32	-8.82	-6.59	-7.38	-7.94	NA	NA	NA
SY-8	77.34	78.62	84.40	98.91*	85.28	97.62*	87.02	109.06*	86.23	84.55	84.61	82.56	78.60	78.08	-0.52	-4.48	-6.53	-6.47	-8.15	NA	-8.94	NA	-7.20	NA	-6.32	-0.54	0.34
SY-9	NA	NA	86.21	87.57	87.16	86.31	88.60	88.73	86.44	85.53	85.13	83.11	Dry	Dry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
													Off-Site	e Wells:													
PK-10S	75.84	77.95	83.38	84.52	84.12	83.24	85.98	87.20	85.31	83.7	83.22	81.46	77.77	76.66	-1.11	-4.80	-6.56	-7.04	-8.65	-10.54	-9.32	-6.58	-7.46	-7.86	-6.72	-1.29	0.82
PK-10I	75.31	77.47	83.01	84.12	83.78	82.89	85.57	86.69	84.88	83.27	82.67	81.00	77.31	76.34	-0.97	-4.66	-6.33	-6.93	-8.54	-10.35	-9.23	-6.55	-7.44	-7.78	-6.67	-1.13	1.03
PK-10D	75.32	77.45	83.04	84.10	83.72	82.86	85.55	86.63	84.86	83.25	82.57	80.97	77.32	76.34	-0.98	-4.63	-6.23	-6.91	-8.52	-10.29	-9.21	-6.52	-7.38	-7.76	-6.70	-1.11	1.02
RW-12I	74.99	77.07	82.57	83.65	83.32	82.50	85.28	86.32	84.64	82.90	82.21	80.70	77.04	76.12	-0.92	-4.58	-6.09	-6.78	-8.52	-10.20	-9.16	-6.38	-7.20	-7.53	-6.45	-0.95	1.13
RW-12D	74.66	76.76	82.46	83.57	83.29	82.46	85.25	86.27	84.58	82.82	82.06	80.59	76.97	75.99	-0.98	-4.60	-6.07	-6.83	-8.59	-10.28	-9.26	-6.47	-7.30	-7.58	-6.47	-0.77	1.33
RB-11S	76.71	78.57	83.85	85.16	85.28	83.78	86.33	87.65	85.40	84.04	83.91	81.95	NM	77.27	NA	-4.68	-6.64	-6.77	-8.13	-10.38	-9.06	-6.51	-8.01	-7.89	-6.58	-1.30	0.56
RB-11I	NA	77.58	82.88	84.20	83.82	82.84	85.48	86.61	84.74	83.22	82.56	80.99	NM	76.33	NA	-4.66	-6.23	-6.89	-8.41	-10.28	-9.15	-6.51	-7.49	-7.87	-6.55	-1.25	NA
RB-11D	75.55	77.74	83.26	84.34	83.95	83.07	85.64	86.67	84.87	83.32	82.60	81.16	77.47	76.34	-1.13	-4.82	-6.26	-6.98	-8.53	-10.33	-9.30	-6.73	-7.61	-8.00	-6.92	-1.40	0.79
													A	verages:	-0.97	-4.74	-6.51	-6.97	-8.37	-10.47	-9.16	-6.58	-7.48	-7.89	-6.62	-1.21	0.75

Notes:

* - These water-level data for Well SY-8 appear to be anomalous, and were not used.

NM - Not measured.

NA - Not available.

Monitoring was not performed in 2017.

5.2 Temporal Variation in Ground-Water Quality

The 2018 ground water-quality results are also consistent with the previous post-closure monitoring results and the OU-1 and OU-2 RI results; and continue to indicate that the Landfill is not a significant source of VOCs or toxic metals, but that relatively minor Landfill-related impacts are present in Off-Site Downgradient Well PK-10I. Moreover, based on comparison of the results for on-site and off-site wells, and ground water-flow directions, the elevated levels of VOCs and certain leachate indicator and inorganic parameters at Well Cluster RW-12 do not appear to be Landfill-related. The gasoline-related VOCs detected in Well PK-10S in 2003 and 2008 were not detected in 2018. Semivolatile organic compounds, pesticides and polychlorinated biphenyls were not detected during the July 2003 initial (baseline) post-closure monitoring round, and with USEPA approval samples are no longer collected and analyzed for these parameters.

The 2018 total VOC results are compared to previous results in Table 8. Review of Table 8 indicates that relative to 2016, total VOC concentrations were similar or slightly lower in every well except On-Site Downgradient Well SY-3 and Off-Site Downgradient Wells RW-12I and RW-12D. In Well SY-3D, the total VOC concentration increased relative to 2016, primarily due to acetone. In Wells RW-12I and RW-12D, total VOC concentrations decreased substantially relative to 2016 but are still consistent with the historical results for these wells. Overall, total VOC concentrations in the downgradient wells continue to exhibit stable or decreasing trends. Moreover, no exceedances of a VOC ground water-quality standard or guidance value have occurred in an on-site downgradient well since 2003.

The 2018 exceedances for leachate indicator parameters are compared to previous exceedances in Table 9. Review of Table 9 indicates that these exceedances were similar to the 2016 results. Overall, the parameters for which exceedances are noted have been stable or decreasing over time in every well. This finding indicates that, with respect to exceedances of the ground-water standards and guidance values for leachate indicator parameters, ground water-quality conditions downgradient of the Landfill have been relatively consistent since 1993. Moreover, the relatively small number of exceedances listed in Table 9 demonstrates that the Landfill is not a significant source of Part 360 leachate indicator parameters at concentrations exceeding the Class GA ground water-quality standards or guidance values.

With respect to metals/inorganic parameters, the exceedances noted in the <u>filtered</u> samples from each well since 1993 are compared in Table 10. The results for the filtered samples are utilized because LKB noted that there were marked differences in the total results versus the dissolved results for certain samples collected during the OU-2 RI. This most likely was due to the presence of entrained sediment in the unfiltered samples as they were not collected utilizing a low-flow method. For this reason, only the results for the filtered samples are compared.

Table 8Comparison of Current Total VOC Results to Previous ResultsSyosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well	Dec. 1993	Jul. 2003	Dec. 2005	Dec. 2006	Dec. 2007	Dec. 2008	Nov. 2009	Dec. 2010	Nov. 2011	Dec. 2012	Dec. 2013	Sept. 2014	Dec. 2015	Dec. 2016	Mar. 2018
-	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC	Total VOC						
Number	Results	Results	Results	Results	Results	Results	Results	Results	Results						
							Upgradie	ent Well							
SY-6	0.0	3.6	1.2	1.4	0.0	0.0	0.65	0.50	1.80	0.40	0.00	0.0	0.50	0.0	4.4 J
						On	-Site Downg	gradient We	lls						
SY-2R	0.6	3.6	0.0	0.2	0.0	4.2	0.0	0.0	0.0	0.0	0.72	0.0	0.0	0.0	0.0
SY-2D	7.9	2.8	4.9	3.9	2.1	1.5	0.0	0.0	0.25	0.0	0.2 / 0.0*	0.0	0.0	0.24	0.0
SY-3	10.7	23.9	0.7	1.6	5.5	74.0	1.3	1.77	4.5 / 0.8*	0.0	1.26	0.0	0.74	1.04	0.0 / 0.0*
SY-3D	11.4	20.9	6.0	3.8	3.9	2.2	1.9	7.98	2.9	0.7 / 0.0*	0.42	0.0	1.58	1.01 / 0.95*	10.8
SY-3DD	0.0	10.0	0.0	0.6	0.0	0.0	1.9	11.2	2.9	0.44	0.0	0.0	2.03	0.57	0.0
						Off	-Site Down	gradient We	lls						
PK-10S	13.9	218	0.3	0.5	0.0	102	0.5	0.0	0.0	0.0	0.0	0.0	1.1	0.0	0.0
PK-10I	15.6	33.4	17.0	15.0	11.0	13.6	7.7	5.25	3.4	2.7	4.34	2.2	4.3	7.99	2.10
PK-10D	6.5	21.8	1.8	2.0	3.1	10.2	5.1	5.41	4.4	3.9	1.69	2.7	4.27	5.18	4.02 J
RW-12I	260	154	134	88.0	72.6	72.2	62.4	66.4	53.1	69.5	62.5	30.7	41.0	53.9	29.5 J
RW-12D	31.9	200	111	73.0	65.8	87.6	60.8	41.3	64.0	80.5	64.4	34.8	63.2	96.5	47.0 J

Notes:

Results are in units of ug/L.

Totals include estimated concentrations, totals for 2003-2010 include TICs.

* = Results for duplicate sample.

Monitoring was not performed in 2017.

Table 9 Comparison of Current Leachate Indicator Parameter Exceedances to Previous Exceedances Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Well Number	Exceedances In July/Dec.'93	Exceedances In July 2003	Exceedances In Dec. 2005	Exceedances In Dec. 2006	Exceedances In Dec. 2007	Exceedances In Dec. 2008	Exceedances In Nov. 2009	Exceedances In Dec. 2010	Exceedances In Nov. 2011	Exceedances In Dec. 2012	Exceedances In Dec. 2013	Exceedances In Sept. 2014	Exceedances In Dec. 2015	Exceedances In Dec. 2016	Exceedances In Mar. 2018
							Upg	radient Well							
SY-6	None Noted	Color	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted
							On-Site Do	wngradient W	ells						
SY-2R	Chloride and TDS	Color	Bromide (Slight)	Chloride and TDS	Chloride and TDS	Bromide Chloride and TDS	Chloride and TDS	None Noted	None Noted	Chloride and TDS	None Noted	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS	Chloride and TDS
SY-2D	Ammonia	Ammonia	Ammonia	Ammonia (Very Slight)	Ammonia (Very Slight)	None Noted	None Noted	TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride and TDS	Chloride Phenols and TDS	Chloride and TDS	Chloride, Color and TDS
SY-3	Ammonia Chloride and TDS	Ammonia Chloride Color and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia and TDS	Ammonia and Color	Ammonia Color and TDS	Ammonia Color, Phenols and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia Color and TDS	Ammonia, Color Phenols and TDS	Ammonia, Color and TDS	Ammonia, Chloride, Color and TDS
SY-3D	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride, Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color and TDS	Ammonia Chloride Color, Phenols and TDS	Ammonia Chloride Color and TDS	Ammonia, Chloride, Color and TDS
SY-3DD	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted
							Off-Site Do	wngradient W	ells						
PK-10S	Sulfate*	Color	None Noted	None Noted	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	Phenols	None Noted
PK-10I	Ammonia Chloride and TDS	Ammonia Color and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride Phenols and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Chloride and TDS	Ammonia Bromide Chloride and TDS	Ammonia, Chloride and TDS
PK-10D	None Noted	None Noted	Color	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Phenols	None Noted	None Noted	Phenols	None Noted	None Noted
RW-12I	Ammonia	Ammonia Bromide and TDS	Ammonia and Color	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide Phenols and TDS	Ammonia Bromide and TDS	Ammonia, Color Phenols and TDS	Ammonia Bromide and TDS	Ammonia and TDS
RW-12D	Ammonia and TDS	Ammonia and TDS	Ammonia Color and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia and TDS	Ammonia Pheniols and TDS	Ammonia and TDS	Ammonia Phenols and TDS	Ammonia and TDS	Ammonia Bromide and TDS	Ammonia and TDS

<u>Notes</u>: * = Not Landfill-related.

Table 10 Comparison of Filtered Sample Inorganic Parameter Exceedances to Previous Exceedances Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

NA / 11	I														
Well Number	Exceedances In July/Dec.'93	Exceedances In July 2003	Exceedances In Dec. 2005	Exceedances In Dec. 2006	Exceedances In Dec. 2007	Exceedances In Dec. 2008	Exceedances In Nov. 2009	Exceedances In Dec. 2010	Exceedances In Nov. 2011	Exceedances In Dec. 2012	Exceedances In Dec. 2013	Exceedances In Sept. 2014			Exceedances In Mar. 2018
Tunibol	0019/2001.00		11 200. 2000	11 200. 2000	11 200. 2007	11 200. 2000	Upgradi			11 200. 2012	11 200. 2010	11 Oopti 2011	III 200. 2010	III 200. 2010	In Mar. 2010
SY-6	Sodium	None Noted	Iron	Iron	Iron and Zinc	Iron and Zinc	Iron and Zinc	Zinc	Antimony and Zinc	Zinc	None Noted	Zinc	Iron and Zinc	None Noted	None Noted
							On-Site Down	gradient Wells							
SY-2R	Iron and Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium and Thalliun	Sodium	Antimony and Sodium	Sodium	Sodium	Sodium	Beryllium, Nickel and Sodium	Beryllium and Sodium	Beryllium and Sodium
SY-2D	Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Antimony Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
SY-3	Antimony Arsenic, Iron Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Iron Manganese and Sodium	Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium
SY-3D	Iron Magnesium Manganese and Sodium	Magnesium Manganese and Sodium	Manganese and Sodium	Iron Magnesium Manganese and Sodium	Iron Magnesium Manganese and Sodium	Arsenic, Iron Magnesium Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Antimony, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese Sodium and Thallium	Arsenic, Iron Manganese and Sodium	Arsenic, Iron Manganese and Sodium
SY-3DD	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	Thallium	None Noted	Thallium
							Off-Site Down	gradient Wells				-		-	
PK-10S	Iron and Sodium	None Noted	Selenium (slight)	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted	None Noted
PK-10I	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese Sodium and Thallium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium	Manganese and Sodium
PK-10D	Nickel*	Nickel*	Mercury* and Nickel*	Nickel* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium (slight)	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury* and Sodium	Mercury*, Iron and Sodium		Sodium
RW-12I	Sodium	Sodium	Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium Sodium and Thallium	Iron Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Magnesium and Sodium	Arsenic** Selenium and Sodium
RW-12D	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium	Sodium

Notes:

* = Not Landfill-related.

** = This exceedance is spurious, as an exceedance for total arsenic did not occur in the unfiltered sample from Well RW-12I.

The 2003 iron results were qualified as rejected by data validator. The 2003 iron concentrations in Wells SY-3, SY-3D, RW-12I and RW-12D likely exceeded the limit but are not listed above. Prior to 2006, the limit for arsenic was 25 ug/L. In 2006 it was lowered to 10 ug/L (new MCL). The 2003 arsenic concentrations in Wells SY-3 and SY-3D exceeded the current limit.

Review of Table 10 indicates that the overall distribution of exceedances for dissolved metals/inorganic parameters is similar for all 14 post-closure monitoring rounds since 2003, particularly in the off-site downgradient wells. Taken as a whole, the results of this comparison indicate that the Landfill is not a significant source of the most toxic metals, and is only a relatively minor source of the other metals/inorganic parameters at concentrations exceeding the Class GA ground-water standards and guidance values.

5.3 Results of Trend Analyses

Trend analyses were performed to further assess post-closure changes in ground water-quality conditions. The trend analyses were performed for nine NYSDEC Part 360 leachate indicator parameters that have been detected on a relatively consistent basis during the post-closure monitoring rounds. A series of nine graphs showing the trends for each parameter in all wells from 2003 through 2018 is provided in Appendix C. These results are also summarized in Table 11. The prior results from the 1988 OU-1 RI ground water-monitoring events and the 1993 OU-2 RI ground water-monitoring events, if available for a parameter and/or well, are also summarized in Table 11. Table 11 also identifies long-term trends (based on all available data) and trends since 2005 (to differentiate changes that may be related to the 2005 demolition work at the upgradient former Cerro Wire Site) for each parameter and well, and summarizes the numbers of parameters with flat, decreasing or increasing trends in each well for both timeframes.

Review of the 2003 to 2018 trend graphs in Appendix C, and the Long-Term Trend Summary in Table 11, indicates that over the long term, a majority of the parameters in a majority of the wells exhibit flat or decreasing trends. In fact, none of the wells now have more parameters with increasing trends than flat and decreasing trends combined over the long term.

Review of the Trend Since 2005 Summary in Table 11 shows that since 2005 no wells have more parameters with increasing trends than flat or decreasing trends combined either. Based on this finding, the short-term impacts previously attributed to the increased recharge associated with the demolition work at the former Cerro Wire Site in 2005 have dissipated, as predicted in the 2008 Report, and ground water-quality conditions downgradient of the Landfill continue to be stable or improving over time.

Table 11

Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

	Upgradient			`	rage To		dient Wells				
Date*	Well			On-Site					Off-Site		_
	SY-6	SY-2R	SY-2D	SY-3	SY-3D Alkalinity	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
OU1 RI 5/2/1988	72	26	270	880	1,300	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	66	26	280	890	1,200	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	195	39 25	100	716	1,180	14 0.6	23	404	25	167	74
OU2 RI 12/1/1993 6/26/2003	202 99	35 11	82 66	727 710	1,020 140	9.6 6.0	24 11	419 350	18 22	162 100	80 170
12/27/2005	22	13	71	150	510	8.8	12	320	22	680	230
12/27/2006	48	12	66	190	390	7.8	12	270	23	680	210
12/21/2007	56	8.8	56	180	350	6.6	6.0	220	22	950	180
12/29/2008 11/3/2009	48 57	18 30	66 52	250 200	310 270	6.0 6.32	10 12	150 130	24 28	950 510	140 110
12/6/2010	44	22	46	190	240	8.64	13	95	26	980	70
11/15/2011	51	11	45	160	220	5.9	10	84	24	1,000	98
12/13/2012 11/11/2013	55 50.1	17 9.84	42 37.7	140 172	220 217	6 8.24	11 13.3	76 90.3	20 22.7	920 876	93 86.5
9/24/2014	49.1	9.92	34.6	180	232	6.16	12.2	91	24.2	858	87.3
12/4/2015	69.8	10.2	31.1	164	244	4.56	11.6	104	22.5	845	89.8
12/8/2016 3/27/2018	109 118	29.2 114	31.9 47.8	366 232	466 220	5.04 3.8	9.36 7.8	122 130	20.8 24.8	805 892	101 90.8
Long-Term Trend:	Flat	Flat	Dec.	Dec.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Flat
Trend Since 2005:	Inc.	Flat	Flat	Inc.	Dec.	Flat	Flat	Dec.	Flat	Inc.	Dec.
OU1 RI 5/2/1988	0.05	0.05	18	91	Ammonia	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	0.05	0.05	18	91 90	130 130	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 11/2/1993	0.06	0.04	4.9	68	146	0.04	0.35	39	0.04	16	0.04
OU2 RI 12/1/1993	0.09	0.26	7.0	123	84	0.04	0.05	38	0.04	15	0.11
6/26/2003 12/27/2005	0.29 0.2	0.26 0.2	2.7 2.8	61 4.3	9.9 40	0.3 0.2	0.2 0.2	32 21	0.26 0.2	4.7 55	4.8 8.9
12/27/2005	0.2 0.2	0.2	2.8 2.1	4.3 4.3	40 39	0.2	0.2	21 19	0.2	55 47	8.9 6.8
12/21/2007	0.23	0.33	2.2	7.5	40	0.2	0.2	15	0.2	84	8.1
12/29/2008	0.2	0.33	1.9	9.7	38	0.20	0.35	15	0.24	89	9.9
11/3/2009 12/6/2010	0.27 0.05	0.29 0.1	1.77 1.4	4.38 9.8	3.92 21	0.20 0.12	0.30 0.04	4.51 3.2	0.27 0.12	4.08 74	5.90 3.1
11/15/2011	0.03	0.03	0.74	7.96	26.9	0.051	0.04	3.58	0.12	100	5.26
12/13/2012	0.07	0.091	0.751	7.78	15.7	0.09	0.05	4.17	0.049	83.1	6.1
11/11/2013	0.073	0.188	0.604	8.84	15.2	0.15	0.075	3.2	0.12	73.6	5.7
9/24/2014 12/4/2015	0.062 0.113	0.05 0.093	0.378 0.224	8.1 7.6	14.5 12.5	0.042 0.066	0.050 0.063	4.93 4.18	0.05 0.13	76.5 78.4	5.79 5.09
12/8/2016	0.083	0.045	0.073	10.9	16.3	0.042	0.09	5.21	0.067	82.5	5.75
3/27/2018	0.087	0.078	0.11	11.3	18.7	0.053	0.059	3.6	0.067	69.6	5
Long-Term Trend: Trend Since 2005:	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Dec. Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat
				Chemi	cal Oxygen						
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988 OU2 RI 11/2/1993	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	2.5	2.5	2.5	45	6	2.5	2.5	29	2.5	2.5	13
12/27/2005 12/27/2006	38 2.5	2.5 2.5	2.5 2.5	5 8	25 27	2.5 2.5	2.5 2.5	2.5 15	2.5 2.5	39 46	17 27
12/21/2007	2.5	2.5	2.5	38	21	2.5	2.5	9.13	2.5	65	18
12/29/2008	5.92	5.92	2.5	26	22	2.5	2.5	2.5	2.5	16	18
11/3/2009	2.5	5.98	2.5	38	26	2.5	2.5	5.98	2.5	67	9.83
12/6/2010 11/15/2011	2.5 1.20	2.5 1.20	2.5 3.79	10.8 11.6	18.1 14.6	2.5 1.20	2.5 4.77	2.5 5.75	2.5 2.81	62.2 71.4	2.5 16.5
12/13/2012	1.255	5.56	6.55	2.58	17.3	1.25	1.25	1.25	1.25	54.1	7.68
11/11/2013	3.03	4.97	4	11.8	18.5	2.5	2.5	7.88	2.5	52.5	9.82
9/24/2014 12/4/2015	2.5 5	2.5 6.59	2.5 15.5	5.76 15.5	5.76 14.5	2.5 2.5	2.5 2.5	9.76 2.5	2.5 2.5	52.8 31.4	10.8 2.5
Long-Term Trend:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
	20	50	220	00	Chloride	NI/A	NI/A	NI/A	NI/A	NI/A	NI/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	30 20	52 57	220 200	99 110	340 330	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 11/2/1993	43	449	108	136	269	4.2	15	291	14	106	122
OU2 RI 12/1/1993	34	613	97	176	265	4.5	14	287	14.2	118	139
6/26/2003 12/27/2005	19 18	140 180	120 160	380 380	300 510	3.5 4.1	7.8 10	19 340	19 47	26 190	150 160
12/27/2005	3.4	470	140	380 430	680	4.1 3.3	8.9	340 350	47 64	190	190
12/21/2007	7.2	480	150	490	770	3.9	11	390	90	240	190
12/29/2008	10 7 8	640 420	170 200	210 160	820	4.3	7.2	370 450	91 120	170	170
11/3/2009 12/6/2010	7.8 14	420 160	200 230	160 170	910 860	4.1 4.71	7.9 9.09	450 440	120 110	190 170	200 170
11/15/2011	4.7	220	310	180	820	4.5	13	490	110	170	200
12/13/2012	12	400	320	230	800	4.6	14	470	120	170	200
11/11/2013	9.54	218	291	228	820 740	4.15	12.5	469 504	118	160 162	199
9/24/2014 12/4/2015	7.47 5.14	322 399	278 252	200 190	749 524	4.22 4.5	14.6 11.8	504 506	133 128	163 146	207 197
12/8/2016	4.94	398	266	199	549	4.75	11.8	556	119	140	210
3/27/2018	6.9	461	461	372	508	4.8	12.3	583	112	144	206
Long-Term Trend: Trond Since 2005:	Flat Flat	Inc. Flat	Inc.	Inc.	Inc.	Flat Flat	Flat Flat	Inc.	Inc.	Flat	Flat Flat
Trend Since 2005:	Flat	Flat	Inc.	Dec.	Dec.	Flat	Flat	Inc.	Inc.	Dec.	Flat

(Page 1 of 3)

Table 11

Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

(Page 2 of 3) Upgradient Downgradient Wells											
Date*	Upgradient Well			On-Site		Downgrad	dient Wells		Off-Site		
	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
OU1 RI 5/2/1988	100	50	150	330	Hardness 440	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	80	54	120	370	460	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	176	138	68.4	362	470	7.6	68.8	285	12.2	169	132
OU2 RI 12/1/1993 6/26/2003	181 120	121 54	58.4 51	348 200	468 490	6.6 6.0	67.8 53	312 220	12.2 22	164 42	144 250
12/27/2005	36	54 58	69	200 96	490 271	0.0 10	33 42	175	49	348	260
12/27/2006	52	178	70	350	359	6.1	42	187	70	350	317
12/21/2007	50	83	74	207	365	5.0	39	195	90	479	316
12/29/2008 11/3/2009	100 102	109 57	96 84	185 159	330 273	11 7	46 46	180 162	114 110	453 412	276 223
12/6/2010	66	36	97	159	266	7	43	165	111	409	208
11/15/2011	59.9	84.4	92.3	136	220	7.3	43.4	150	109	410	249
12/13/2012 11/11/2013	77.3 64	127 47.4	121 92.7	140 122	112 229	6.68 5.63	42.3 39.8	166 157	112 101	6.62 371	110 246
9/24/2014	85.13	124	76	131	211	5.73	38.9	160	117	347	253
12/4/2015	135	128	69.7	139	190	6.36	40.2	197	127	427	308
12/8/2016 3/27/2018	156 161	105 80.5	76.1 105	166 191	192 186	6.76 6.42	39.4 40.9	181 186	99.2 92.8	357 338	273 277
Long-Term Trend:	Flat	Flat	Flat	Dec.	Dec.	Flat	Flat	Dec.	JINC.	Inc.	Inc.
Trend Since 2005:	Inc.	Flat	Flat	Dec.	Dec.	Flat	Flat	Flat	Flat	Dec.	Flat
	50	50	47	40	Sulfate	N1/A	N1/A	N1/A	N1/A	N1/A	N1/A
OU1 RI 5/2/1988 OU1 RI 6/6/1988	50 40	50 54	47 68	42 16	22 14	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A
OU2 RI 11/2/1993	10	56	23	33	27	1.8	40	89	16	31	32
OU2 RI 12/1/1993	20	58	17	26 20	23	11.9	51	110	12	34	54
6/26/2003 12/27/2005	12 1	29 29	19 22	20 40	64 41	1 1	1,800 29	21 67	2.8 1	1 79	18 120
12/27/2006	5.9	23 94	76	90	96	1.5	23	120	1	120	170
12/21/2007	6.5	39	13	36	42	1.5	21	46	8.1	64	130
12/29/2008 11/3/2009	75 54	36 33	16 12	38 36	45 41	0.7 1.6	22 27	1.5 28	8.4 9.64	58 61	130 190
12/6/2010	54 20	33 34	12	36 35	41 41	1.6 2.21	27	28 37	9.64	63	190 220
11/15/2011	19	27	14	34	40	2.1	20	37	10	64	180
12/13/2012	20	30	17	39	41	2.1	18	37	12	65	180
11/11/2013 9/24/2014	15.8 47.2	33.8 31.1	13.2 11	43.1 37.3	44.7 46.6	2.01 1.93	17.8 18.3	39.3 39.6	10.7 13.6	61.7 65.3	230 191
12/4/2015	72.7	26.8	11.1	39.1	45.9	1.83	17.1	36.6	17.9	62.1	204
12/8/2016	42.3	34.3	10.7	42.2	47.4	1.95	18.2	35.9	20.4	71	199
3/27/2018 Long-Term Trend:	38.7 Flat	36.6 Flat	15.7 Flat	36.2 Flat	40.5 Flat	0.38 Flat	17.6 Dec.	36 Flat	22.4 Flat	64.4 Flat	183 Inc.
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Inc.
OU1 RI 5/2/1988	210	210	670	Total Di 820	ssolved Sol 1,400	ids (TDS) N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	180	230	630	830	1,400	N/A	N/A N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	287	861	282	726	1,240	44	162	918	87	345	320
OU2 RI 12/1/1993	323	850	299	757	1,400	54	181	1,020	85	408	511
6/26/2003 12/27/2005	175 64	360 490	334 380	1,373 790	821 1,200	125 42	172 130	1,004 940	114 160	177 940	536 710
12/27/2006	69	930	320	950	1,400	26	120	880	200	890	750
12/21/2007	83	750	330	1,000	1,400	11	85	840	210	1,000	680
12/29/2008 11/3/2009	170 190	1,100 800	380 390	650 470	1,700 1,800	10 44	90 100	880 910	270 300	1,100 1,100	690 630
12/6/2010	130	800 474	505	470 512	1,680	44 30	95	910	275	1,300	631
11/15/2011	99	458	596	511	1,620	24	95	985	301	1,470	684
12/13/2012	131	753	653 602	611	1,570	31	89 06	950	314	1,310	725
11/11/2013 9/24/2014	94 158	417 720	602 564	708 556	1,800 1,472	9 29	96 105	944 997	298 372	1,110 994	694 756
12/4/2015	215	773	503	545	1,236	27	90	1,074	324	1,027	773
12/8/2016 3/27/2018	198 208	787 808	554 779	538 859	1,138 1,034	28 56	86 87	1,175 1,147	307 261	974 842	805 733
Long-Term Trend:	Flat	lnc.	Inc.	Dec.	Flat	Flat	Dec.	1,147 Inc.	Inc.	842 Inc.	Inc.
Trend Since 2005:	Inc.	Flat	Inc.	Dec.	Dec.	Flat	Flat	Inc.	Inc.	Flat	Inc.
OU1 RI 5/2/1988	N/A	N/A	N/A	Total N/A	Kjeldhal Ni N/A	trogen N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A N/A	N/A	N/A	N/A N/A
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	1	1	2.49	93	11	1	1	37	1	3.53	5.12
12/27/2005 12/27/2006	0.5 0.57	0.5 0.66	0.5 1.32	3.8 2.61	51 15	0.5 0.63	0.5 0.56	21 6.16	0.5 0.59	40 19	7 16
12/21/2007	1.5	1.5	4.3	10	49	1.1	1.4	18	1.6	95	9.7
12/29/2008	1.5	1.5	3.8	11	40	1.6	1.8	12	1.51	100	8.82
11/3/2009 12/6/2010	0.5 0.486	0.5 0.5	1.25 1.9	13 16	34 40	0.5 0.2	0.5 0.2	11 6.9	0.5 0.222	55 140	7.45 2.7
11/15/2011	0.466	0.5	0.758	7.8	40 25	0.2 0.1	0.2	8.9 3.9	0.222	94	2.7 5.8
12/13/2012	0.25	0.3	0.86	8.1	17	0.1	0.1	3.7	0.22	84	5.2
11/11/2013	0.102	0.181	0.608	8.4	17.5	0.243	0.3	4.8	0.224	81.5	5.5
9/24/2014 12/4/2015	0.208 0.177	0.230 0.355	0.588 0.429	9.7 12.5	14.4 16.6	0.172 0.5	0.2 0.251	4.89 4.9	0.296 0.432	84.5 99.4	5.79 5.72
12/8/2016	0.338	0.354	0.228	10.8	15.8	0.16	0.24	4.82	0.432	77	5.66
3/27/2018	0.25	0.240	0.26	10.5	8.1	0.24	0.17	5.6	0.26	67	5.3
Long-Term Trend: Trend Since 2005:	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Flat Flat	Inc. Flat	Flat Flat
TIERU SIRCE 2003.	i idl	i idl	i idl	i idl	i idl	i idl	i idl	i ial	ial	i ial	i ial

(Page 2 of 3)

Table 11

Trend Analysis Summary for Selected Part 360 Leachate Indicator Parameters Syosset Landfill 2018 Annual Post-Closure Ground Water-Monitoring Report

Upgradient Downgradient Wells											
Date*	Well			On-Site					Off-Site		
	SY-6	SY-2R	SY-2D	SY-3	SY-3D	SY-3DD	PK-10S	PK-10I	PK-10D	RW-12I	RW-12D
				Tota	al Organic C	arbon					
OU1 RI 5/2/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU1 RI 6/6/1988	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 11/2/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
OU2 RI 12/1/1993	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
6/26/2003	1.24	0.74	1.05	17	3.19	0.4	0.4	5.17	0.4	1.27	6.73
12/27/2005	8.88	1.03	1.31	2.61	9.72	0.4	0.603	5.21	0.58	17	8.43
12/27/2006	0.4	0.5	0.459	2.43	6.51	0.4	0.4	3.65	0.4	16	7.27
12/21/2007	0.75	1.13	0.88	2.63	6.13	0.4	0.438	3.18	0.527	3.83	8.14
12/29/2008	1.49	1.21	1.08	3.55	6.4	0.4	0.701	2.63	0.885	4.34	7.23
11/3/2009	2.81	2.13	1.55	7.09	9.57	0.4	0.721	3.04	1.06	41	7.01
12/6/2010	1.2	1.1	0.859	3	4.3	0.196	0.416	1.7	0.944	24	3.3
11/15/2011	0.79	0.88	1	2.6	3.8	0.29	0.82	1.7	1	27	4.5
12/13/2012	1.2	1.3	1.2	3.7	4.3	0.35	0.71	2.1	1.3	22	5.6
11/11/2013	1.25	1.2	0.863	4.27	4.1	0.755	0.903	2.33	1.36	22	4.39
9/24/2014	1.55	1.07	0.84	4.2	5.25	0.236	0.566	2.25	1.53	21.9	4.81
12/4/2015	2.18	1.53	1.05	3.65	5.04	0.705	0.567	2.43	1.37	19.9	4.78
12/8/2016	2.01	1.94	4.23	4.23	4.91	0.311	0.522	2.41	1.1	19.4	4.42
3/27/2018	1.8	2.2	2.2	5.3	4.5	0.63	0.62	2.6	1.3	17.2	5.2
Long-Term Trend:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
Trend Since 2005:	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat	Flat
				Long-T	erm Trend S	Summary					
Total Flat:	9	7	6	5	6	9	7	5	6	5	6
Total Decreasing:	0	0	1	3	3	0	2	2	0	0	0
Total Increasing:	0	2	2	1	1	0	0	2	3	4	3
				Trend S	Since 2005 S	Summary					
Total Flat:	6	9	7	5	5	9	9	6	7	6	6
Total Decreasing:	0	0	0	3	4	0	0	1	0	2	1
Total Increasing:	3	0	2	1	0	0	0	2	2	1	2

(Page 3 of 3)

Notes:

All results are in units of milligrams per Liter (mg/L). N/A = Not Available (Well not installed yet, not sampled during monitoring round, or sample not analyzed for that parameter).

* = Approximate date (Monitoring rounds typically take place over several days).

SECTION 6

CONCLUSIONS AND RECOMENDATIONS

Based on the above results from the 2018 annual post-closure ground water-monitoring round, LKB concludes the following:

- 1. The ground water-monitoring system, specifically the existing monitoring well network and modified low-flow purging and sampling method specified in the O&M Manual, continues to provide ground water-flow and ground water-quality data of sufficient quantity and quality to monitor the Landfill during the post-closure period.
- 2. The Landfill is not a significant source of VOCs or the toxic RCRA/PPL metals, and is only a relatively minor source of certain leachate-related contaminants and the other TAL inorganic parameters at concentrations exceeding Class GA ground-water standards and guidance values.
- 3. Although arsenic was detected in On-Site Downgradient Wells SY-3 and SY-3D at concentrations exceeding the federal MCL, the fact that arsenic was not detected in the deeper well at this cluster (Well SY-3DD) and was only detected at very low, estimated total concentrations in two of the five off-site downgradient wells (Wells PK-10D and RW-12D) indicates that off-site impacts are negligible. The slight exceedance for dissolved arsenic in the filtered sample from Well RW-12I is spurious because total arsenic was only detected at a low, estimated concentration in the unfiltered sample from this well.
- 4. Although an exceedance for beryllium occurred in Well SY-2R again in 2018 it was still relatively low in magnitude, and the limit for beryllium is a guidance value rather than an actual standard. Moreover, beryllium was not detected in any of the other wells. Therefore, there are no off-site impacts from beryllium.
- 5. Although a low-magnitude exceedance for dissolved selenium occurred in the filtered sample from Off-Site Downgradient Well RW-12I, this detection is spurious because total selenium was not detected in the unfiltered sample from this well.
- 6. Exceedances for total thallium occurred in the duplicate sample from On-Site Downgradient Well SY-3D, but not the actual sample, and in Off-Site Downgradient Well PK-10I. An exceedance for dissolved thallium also occurred in the filtered sample from On-Site Downgradient Well SY-3DD. Based on the pattern of these exceedances they are likely Landfill-related, but since they are relatively low in magnitude and are based on estimated, possibly spurious concentrations, they are not considered to be significant.

- 7. Overall, the current results show stable or improving ground water-quality conditions at the downgradient well locations relative to the previous post-closure monitoring rounds, the 1988 OU-1 RI results and the 1993 OU-2 RI results. This finding indicates that the selected remedy has been effective in mitigating ground water-quality impacts associated with the Landfill.
- 8. Based on the distribution of contaminants in ground water and ground water-flow directions, the majority of the contaminants detected in Well Cluster RW-12 do not appear to be Landfill-related. This conclusion is consistent with the conclusions of previous post-closure monitoring reports and the OU-2 RI Report.
- 9. Taken as a whole, the results of the 2018 ground water-monitoring round continue to support the de-listing of the Landfill from the NPL, which occurred on April 28, 2005.
- 10. The stable or improving ground water-quality conditions in the upgradient well and on-site downgradient wells continue to indicate that ground-water conditions have equilibrated following the demolition work at the adjacent former Cerro Wire property in 2005.

Following the 2016 monitoring round, which was performed during the fourth quarter, the USEPA reduced the frequency of ground-water monitoring from annually to once every fifth calendar quarter, to provide one round of data for each calendar quarter during a Five-Year Review period. Accordingly, monitoring was not required in 2017 and the 2018 monitoring round was performed during the first quarter. The next round of ground-water monitoring will therefore be performed during the second quarter of 2019.

Based on the above information, LKB recommends that the following work items be implemented during the 2019 annual monitoring round.

- 1. Continue to collect the duplicate sample from one of the on-site downgradient wells as these wells exhibit the highest degree of Landfill-related impacts.
- 2. Continue to collect and dispose of the purged ground water from the off-site downgradient wells, but discharge the purged ground water from the on-site wells onto the ground surface due to the low levels of contaminants encountered.
- 3. Continue to evaluate ground-water quality conditions at the upgradient well and the on-site downgradient wells for influences related to future development and related construction activities at the former Cerro Wire property which may increase recharge directly upgradient of the Landfill.

APPENDIX A

Completed Well Inspection Checklist Forms

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		<u>(Presumed, under veg/soil)</u>
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\square		
	Lock – Intact	\square		
4.	Steel Casing (Stick-up) Straight	\square		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		On inside of lid

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	OK
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	120.80'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-1D</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

5. Depth to Water from Top of PVC

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under veg/soil)
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\square		
5.	Designated Leveling Point Clearly Marked	\bowtie		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\square		
8.	Well is Clearly Marked	\square		
	CHECKLIST FOR I INSIDE OF EXIS			F
1.	Bottom of Well from Top of PVC Casing	N/A	\	
2.	Stick-Up	<u> </u>		
3.	Bottom of Well Below Grade	<u>N/A</u>		
4.	Remarks on Integrity of Casing	OK		

119.21'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-2R</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		<u>(Presumed, under veg/soil)</u>
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	ОК
3.	Bottom of Well Below Grade	N/A
6.	Remarks on Integrity of Casing	ОК
De	pth to Water from Top of PVC	113.52'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-2D</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		<u>(Presumed, under veg/soil)</u>
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\bowtie		Casing lid missing
	Lock – Intact		\boxtimes	No Lock
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	ОК
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	Grip-Plug Present, Casing Kinked
5.	Depth to Water from Top of PVC	<u>113.91'</u>

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-3</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\bowtie		<u>(Presumed, under veg/soil)</u>
	Cracked		\square	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\square		
	Lock – Intact	\square		
4.	Steel Casing (Stick-up) Straight	\square		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		<u>On Cap</u>

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	ОК
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-3D</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		<u>(Presumed, under veg/soil)</u>
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		Inside of Lid

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	ОК
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	117.48'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-3DD</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	Remarks
1.	Cement Seal			
	Intact	\bowtie		<u>(Presumed, under veg/soil)</u>
	Cracked		\boxtimes	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Casing lid hinge broken
	Lock – Intact	\boxtimes		Not locked, broken hinge
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\bowtie		
8.	Well is Clearly Marked	\bowtie		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	OK
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	_117.24'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-4</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		(Presumed, under rip-rap)
	Cracked		\boxtimes	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\square		
	Lock – Intact	\square		
4.	Steel Casing (Stick-up) Straight		\square	Slightly bent, but okay
5.	Designated Leveling Point Clearly Marked		\boxtimes	No room on steel
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	ОК
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-6</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	<u>OK</u>
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	_108.53'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-7</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	Road sand in curb box
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact		\boxtimes	Not used, flush mount
	Lock – Intact		\boxtimes	N/A, curb box
4.	Steel Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	<u>OK</u>
5.	Depth to Water from Top of PVC	<u>118.57'</u>

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-8</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		<u>(Presumed, under veg/soil)</u>
	Cracked		\boxtimes	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		Intact, but lower than PVC
	Lock – Intact		\square	Cannot lock
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>
2.	Stick-Up	OK
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	<u>OK</u>
5.	Depth to Water from Top of PVC	_119.86'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>SY-9</u> DATE: <u>3/14/2018</u> PERSONNEL: <u>J. Maggio and R. Chen</u> CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\bowtie		(Presumed, under new soil)
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\square		
	Lock – Intact	\boxtimes		
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked		\square	

Bottom of Well from Top of PVC Casing	<u>N/A</u>
Stick-Up	ОК
Bottom of Well Below Grade	N/A
Remarks on Integrity of Casing	ОК
Depth to Water from Top of PVC	Dry
	Bottom of Well from Top of PVC Casing

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-10S</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\square		
8.	Well is Clearly Marked	\boxtimes		Inside of Lid, Closet to Road

1.	Bottom of Well from Top of PVC Casing _	<u>N/A</u>
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	<u>N/A</u>
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	112.07'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-101</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted
4.	PVC Casing (Stick-up) Straight	\square		
5.	Designated Leveling Point Clearly Marked		\boxtimes	
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		Closest to ball court

1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	110.76'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>PK-10D</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Needs new bolts
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	<u>N/A (Flush-Mount)</u>
3.	Bottom of Well Below Grade	<u>N/A</u>
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	111.91'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RW-121</u> DATE: <u>3/14/2018</u> PERSONNEL: <u>J. Maggio and R. Chen</u>

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\bowtie		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\boxtimes	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\square		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	<u>N/A</u>
4.	Remarks on Integrity of Casing	OK
5.	Depth to Water from Top of PVC	121.20'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RW-12D</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	<u>N/A (Flush-Mount)</u>
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	_121.30'

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-11S</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\boxtimes	
	Missing		\boxtimes	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\square		
	Lock – Intact	\boxtimes		Bolted, flush-mount
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	<u>N/A</u>
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	112.64

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-111</u> DATE: <u>3/14/2018</u> PERSONNEL: J. Maggio and R. Chen

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		Yes	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked	\boxtimes		

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	_N/A
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	113.99

2018 GROUNDWATER MONITORING WELL INSPECTION CHECKLIST

WELL NO. <u>RB-11D</u> DATE: <u>3/14/2018</u> PERSONNEL: <u>J. Maggio and R. Chen</u>

CHECKLIST FOR INSPECTION OF OUTSIDE OF EXISTING WELLS

		<u>Yes</u>	<u>No</u>	<u>Remarks</u>
1.	Cement Seal			
	Intact	\boxtimes		
	Cracked		\square	
	Missing		\square	
2.	Ponding of Water Around Cement Seal		\square	
3.	Protective Steel Pipe & Lock (if used)			
	Pipe – Intact	\boxtimes		
	Lock – Intact	\boxtimes		Bolted
4.	PVC Casing (Stick-up) Straight	\boxtimes		
5.	Designated Leveling Point Clearly Marked	\boxtimes		
6.	PVC Cap Vented Properly	\boxtimes		
7.	Well is Protected	\boxtimes		
8.	Well is Clearly Marked		\bowtie	

1.	Bottom of Well from Top of PVC Casing	N/A
2.	Stick-Up	N/A (Flush-Mount)
3.	Bottom of Well Below Grade	<u>N/A</u>
4.	Remarks on Integrity of Casing	ОК
5.	Depth to Water from Top of PVC	_114.26'

APPENDIX B

Validated Laboratory Results

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:	Lockwood, Kessler, & Bartlett, Syosset, New York
SDG:	J2083
Laboratory:	ChemTech, Mountainside, New Jersey
Site:	Syosset Landfill, Syosset, New York
Date:	May 28, 2018

	VOCs/S ³	VOCs/Cyanide/Wet Chemistry		
EDS ID	Client Sample ID Laboratory Sample ID		Matrix	
1β	SY-6-20180326	J2083-01	Water	
2	SY-3DD-20180326	J2083-02	Water	
3*	TB-20180326	J2083-03	Water	

* - VOC only β - SVOC, Cyanide, and Wet Chemistry only

	Total &	& Dissolved Metals/Mercury	
EDS ID Client Sample ID		Laboratory Sample ID	Matrix
1T	SY-6-20180326	J2083-01	Water
2T	SY-3DD-20180326	J2083-02	Water
4D	SY-6-20180326	J2083-04	Water
5D	SY-3DD-20180326	J2083-05	Water

T - Total Metals & Mercury & Cyanide

D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for four water samples and one aqueous trip blank sample collected on March 26, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

Analysis	<u>Method References</u>
VOCs	USEPA SW846 8260C
SVOCs	USEPA SW846 8270D SIM
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0

Analysis	Method References
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
 recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation

• Field Duplicate sample precision

Overall Usability Issues

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

 The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	None	All ND
TB-20180326	None - ND		12	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	· · · · · · · · · · · · · · · · · · ·	-	-

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The method blanks exhibited the following contamination.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		
PBW001 (Total)	Potassium	90.6	None	All ND
PBW001 (Dissolved)	Potassium	272	None	All ND

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		-) (M

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The MS/DUP samples exhibited acceptable percent recoveries (%R) and RPD values.

ICP Serial Dilution

• The ICP serial dilution exhibited acceptable %D values.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Ammonia as N	10%/-120%/200	None	4X Rule Applies
	TKN	294%/304%/OK	J/UJ	All Samples
	Phenolics	58%/59%/OK		

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

EDS Sample ID #1 exhibited a high concentration of sulfate and was flagged (OR) for over • the calibration range by the laboratory. The sample was diluted and reanalyzed and the dilution result for this compound should be used for reporting purposes.

Field Duplicate Sample Precision

Field duplicate samples were not collected. ٠

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

<u>llancy Weaver</u> Dated: <u>5/29/18</u> Nancy Weaver Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Report of Analysis Client: Lockwood, Kessler, & Bartlett Date Collected: 03/26/18 Project: Syosset Landfill Date Received: 03/27/18 Client Sample ID: SY-3DD-20180326 SDG No.: J2083 Lab Sample ID: J2083-02 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: DB-624UI ID: 0.18 Level : LOW File ID/Qc Batch: **Dilution**: Prep Date Date Analyzed Prep Batch ID VX000477.D 1 03/27/18 23:18 VX032718 **CAS** Number Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units TARGETS 75-71-8 Dichlorodifluoromethane 1 U 0.2 0.2 1 ug/L 74-87-3 Chloromethane U 0.2 1 0.2 1 ug/L 75-01-4 Vinyl Chloride 1 U 0.2 0.2 1 ug/L 74-83-9 Bromomethane U 1 0.2 0.2 1 ug/L 75-00-3 Chloroethane 1 U 0.2 0.5 1 ug/L 75-69-4 Trichlorofluoromethane U 1 0.2 0.2 1 ug/L 76-13-1 1,1,2-Trichlorotrifluoroethane 1 U 0.2 0.2 1 ug/L 75-35-4 1,1-Dichloroethene 0.2 1 U 0.2 1 ug/L 67-64-1 5 Acetone U 0.5 5 1 ug/L 75-15-0 Carbon Disulfide 1 U 0.2 0.2 1 ug/L 1634-04-4 Methyl tert-butyl Ether I U 0.35 0.5 1 ug/L 79-20-9 Methyl Acetate 1 U 0.2 0.5 1 ug/L 75-09-2 Methylene Chloride 1 U 0.2 0.2 1 ug/L 156-60-5 trans-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L 75-34-3 1,1-Dichloroethane U 0.2 0.2 1 I ug/L 110-82-7 Cyclohexane 1 U 0.2 0.2 1 ug/L 78-93-3 2-Butanone 5 U 5 1.3 2.5 ug/L 56-23-5 Carbon Tetrachloride U 1 0.2 0.2 1 ug/L 156-59-2 cis-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L 74-97-5 Bromochloromethane 1 U 0.2 0.5 1 ug/L 67-66-3 Chloroform 1 U 0.2 0.2 1 ug/L 71-55-6 1,1,1-Trichloroethane U 0.2 1 0.2 1 ug/L 108-87-2 Methylcyclohexane 1 U 0.2 1 0.2 ug/L 71-43-2 Benzene U 1 0.2 0.2 1 ug/L 107-06-2 1.2-Dichloroethane U 1 0.2 0.2 1 ug/L 79-01**-**6 Trichloroethene 1 U 0.2 0.2 1 ug/L 78-87-5 1,2-Dichloropropane 1 U 0.2 0.2 1 ug/L 75-27-4 Bromodichloromethane 1 U 0.2 0.2 1 ug/L 5 108-10-1 4-Methvl-2-Pentanone U 5 1 1 ug/L 108-88-3 Toluene 1 U 0.2 0.2 1 ug/L 10061-02-6 t-1,3-Dichloropropene U 0.2 0.2 1 1 ug/L 10061-01-5 cis-1,3-Dichloropropene 1 U 0.2 0.2 ug/L I.

		Report o	f Analysi	S			2
Client:	Lockwood, Kessler, & Bar	tlett		Date	Collected:	03/26/18	
Project:	Syosset Landfill				Received:	03/27/18	
-							
Client Sample ID:	SY-3DD-20180326			SDG		J2083	
Lab Sample ID:	J2083-02			Matri	X:	Water	
Analytical Method:	SW8260			% Mo	oisture:	100	
Sample Wt/Vol:	5 Units: mL			Final	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	ומווכ
GC Column:		.18			L.		oupt
de column.	DB-02401 ID : 0.	18		Level	1:	LOW	
File ID/Qc Batch:	Dilution:	Prep Date	_	Date Analyz	ed	Prep Batch ID	
VX000477.D	1			03/27/18 23	:18	VX032718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
91-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	I	U	0.2	0,2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
5-47-6	o-Xylene	1	U	0,2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	I	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	I	U	0.2	0.2	1	ug/L
41-73-1	1,3-Dichlorobenzene	I	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
5-50-1	1,2-Dichlorobenzene	Ĩ	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							-
7060-07-0	1,2-Dichloroethane-d4	57.4		61 - 141		115%	SPK: 50
868-53-7	Dibromofluoromethane	50.9		69 - 133		102%	SPK: 50
037-26-5	Toluene-d8	48.3		65 - 126		97%	SPK: 50
60-00-4	4-Bromofluorobenzene	40.4		58 - 135		81%	SPK: 50
TERNAL STAND			_				
63-72-4	Pentafluorobenzene	108916	5.68				
40-36-3	1,4-Difluorobenzene	195587	6.87				
114-55-4	Chlorobenzene-d5	188577	10.12				
855-82-1	1,4-Dichlorobenzene-d4	97748	12.09				

3 **Report of Analysis** Client: Lockwood, Kessler, & Bartlett Date Collected: 03/26/18 Project: Syosset Landfill Date Received: 03/27/18 Client Sample ID: TB-20180326 SDG No.: J2083 Lab Sample ID: J2083-03 Matrix: Water Analytical Method SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: DB-624UЛ ID: 0.18 Level : LOW File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VX000476.D 1 03/27/18 22:52 VX032718 **CAS Number** Parameter Conc. Qualifier MDL LOD LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane U 1 0.2 0.2 1 ug/L 74-87-3 Chloromethane U 0.2 1 0.2 1 ug/L 75-01-4 Vinyl Chloride 1 U 0.2 0.2 1 ug/L 74-83-9 Bromomethane U 1 0.2 0.2 1 ug/L 75-00-3 Chloroethane 1 U 0.2 0.5 1 ug/L 75-69-4 Trichlorofluoromethane U 1 0.2 0.2 1 ug/L 76-13-1 1,1,2-Trichlorotrifluoroethane 1 U 0.2 0.2 1 ug/L 75-35-4 1,1-Dichloroethene U 0.2 1 0.2 1 ug/L 67-64-1 5 Acetone U 0.5 5 1 ug/L 75-15-0 Carbon Disulfide 1 U 0.2 0.2 1 ug/L 1634-04-4 Methyl tert-butyl Ether U 1 0.35 0.5 1 ug/L 79-20-9 Methyl Acetate 1 U 0.2 0.5 1 ug/L 75-09-2 Methylene Chloride 1 U 0.2 0.2 1 ug/L 156-60-5 trans-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L 75-34-3 1,1-Dichloroethane U 0.2 0.2 1 1 ug/L 110-82-7 Cyclohexane U 0.2 1 0.2 1 ug/L 78-93-3 2-Butanone 5 U 5 1.3 2.5 ug/L 56-23-5 Carbon Tetrachloride U 1 0.2 0.2 1 ug/L 156-59-2 cis-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L 74-97-5 Bromochloromethane U 0.2 0.5 1 1 ug/L 67-66-3 Chloroform 1 U 0.2 0.2 1 ug/L 71-55-6 1,1,1-Trichloroethane U 1 0.2 0,2 1 ug/L 108-87-2 Methylcvclohexane U 0.2 1 0.2 1 ug/L 71-43-2 Benzene U 0.2 0.2 1 1 ug/L 107-06-2 1,2-Dichloroethane U 0.2 1 0.2 1 ug/L 79-01-6 Trichloroethene U 0.2 0.2 1 1 ug/L 78-87-5 1,2-Dichloropropane U 0.2 1 0.2 1 ug/L 75-27-4 Bromodichloromethane 1 U 0.2 0.2 1 ug/L 5 108-10-1 4-Methyl-2-Pentanone U 5 1 1 ug/L 108-88-3 Toluene 1 U 0.2 0.2 1 ug/L 10061-02-6 t-1,3-Dichloropropene U 0.2 0.2 1 1 ug/L 10061-01-5 cis-1,3-Dichloropropene U 0.2 0.2 1 ug/L

3 **Report of Analysis** Client: Lockwood, Kessler, & Bartlett Date Collected: 03/26/18 Project: Syosset Landfill Date Received: 03/27/18 TB-20180326 Client Sample ID: SDG No.: J2083 Lab Sample ID: J2083-03 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: DB-624UI ID: 0.18 Level : LOW File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VX000476.D 1 03/27/18 22:52 VX032718 **CAS** Number Parameter Conc. **Oualifier MDL** LOD LOQ / CRQL Units 79-00-5 1,1,2-Trichloroethane 0.2 1 U 0.2 1 ug/L 591-78-6 2-Hexanone 5 U 1.9 2.5 5 ug/L 124-48-1 Dibromochloromethane 1 U 0.2 0.2 1 ug/L 106-93-4 1.2-Dibromoethane 1 U 0.2 0.2 1 ug/L 127-18-4 Tetrachloroethene 1 U 0.2 0.2 1 ug/L 108-90-7 Chlorobenzene U 1 0.2 0.2 1 ug/L 100-41-4 Ethyl Benzene U 1 0.2 0.2 1 ug/L 179601-23-1 m/p-Xylenes 2 U 0.4 2 0.4 ug/L 95-47-6 o-Xylene U 1 0.2 1 0.2 ug/L 100-42-5 Styrene U 1 0.2 0.2 1 ug/L 75-25-2 Bromoform U 0.2 0.2 1 1 ug/L 98-82-8 Isopropylbenzene 1 U 0.2 0.2 1 ug/L 79-34-5 1,1,2,2-Tetrachloroethane U 1 0.2 0.2 1 ug/L 541-73-1 1,3-Dichlorobenzene U 0.2 1 0.2 1 ug/L 106-46-7 1,4-Dichlorobenzene U 0.2 1 0.2 1 ug/L 95-50-1 1.2-Dichlorobenzene U 0.2 0.2 1 1 ug/L 96-12-8 1,2-Dibromo-3-Chloropropane U 1 0.2 0.2 1 ug/L 120-82-1 1,2,4-Trichlorobenzene U 1 0.2 0.2 1 ug/L 87-61-6 1,2,3-Trichlorobenzene 1 U 0.2 0.2 1 ug/L **SURROGATES** 17060-07-0 1.2-Dichloroethane-d4 57.1 61 - 141 114% SPK: 50 1868-53-7 Dibromofluoromethane 50.3 69 - 133 101% SPK: 50 2037-26-5 Toluene-d8 47.3 65 - 126 95% SPK: 50 460-00-4 4-Bromofluorobenzene 39.6 58 - 135 79% SPK: 50 **INTERNAL STANDARDS** 363-72-4 Pentafluorobenzene 106725 5.68 540-36-3 1.4-Difluorobenzene 191166 6.87 3114-55-4 Chlorobenzene-d5 184621 10:12

12.09

93036

1,4-Dichlorobenzene-d4

3855-82-1

EPA SAMPLE NO.

SY-6-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group		Contract: EPW1	4030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2083	
Matrix:	WATER			Lab Sample ID:	J2083-01	
🖁 Solids:);			Date Received:	03/27/2018	
Analytical	Method: IC	P-AES				

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	17.7	J	03/29/2018	1636
7440-36-0	Antimony	60.0	U	03/29/2018	1636
7440-38-2	Arsenic	10.0	U	03/29/2018	1636
7440-39-3	Barium	84.1	J	03/29/2018	1636
7440-41-7	Beryllium	5.0	U	03/29/2018	1636
7440-43-9	Cadmium	5.0	U	03/29/2018	1636
7440-70-2	Calcium	40900		03/29/2018	1636
7440-47-3	Chromium	2.5	J	03/29/2018	1636
7440-48-4	Cobalt	50.0	U	03/29/2018	1636
7440-50-8	Copper	20.4	J	03/29/2018	1636
7439-89-6	Iron	212		03/29/2018	1636
7439-92-1	Lead	3.7	J	03/29/2018	1636
7439-95-4	Magnesium	14400		03/29/2018	1636
7439-96-5	Manganese	26.3		03/29/2018	1636
7440-02-0	Nickel	5.2	J	03/29/2018	1636
7440-09-7	Potassium	5000	U	03/29/2018	1636
7782-49-2	Selenium	35.0	U	03/29/2018	1636
7440-22-4	Silver	10.0	U	03/29/2018	1636
7440-23-5	Sodium	6940		03/29/2018	1636
7440-28-0	Thallium	25.0	U	03/29/2018	1636
7440-62-2	Vanadium	2.8	J	03/29/2018	1636
7440-66-6	Zinc	1260		03/29/2018	1636
Hardness	Hardness (total)	161		03/29/2018	1636

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

SY-3DD-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract: EPW1	4030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2083
Matrix:	WATER			Lab Sample ID:	J2083-02
<pre>% Solids:</pre>				Date Received:	03/27/2018
Analytical	Method: ICP-	-AES			

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAC No.	Analysta	Generatusti		Data Dualua 1	
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1640
7440-36-0	Antimony	60.0	U	03/29/2018	1640
7440-38-2	Arsenic	10.0	U	03/29/2018	1640
7440-39-3	Barium	200	U	03/29/2018	1640
7440-41-7	Beryllium	5.0	U	03/29/2018	1640
7440-43-9	Cadmium	5.0	U	03/29/2018	1640
7440-70-2	Calcium	1530	J	03/29/2018	1640
7440-47-3	Chromium	2.7	J	03/29/2018	1640
7440-48-4	Cobalt	50.0	U	03/29/2018	1640
7440-50-8	Copper	25.0	U	03/29/2018	1640
7439-89-6	Iron	100	U	03/29/2018	1640
7439-92-1	Lead	2.0	J	03/29/2018	1640
7439-95-4	Magnesium	632	J	03/29/2018	1640
7439-96-5	Manganese	2.4	J	03/29/2018	1640
7440-02-0	Nickel	13.1	J	03/29/2018	1640
7440-09-7	Potassium	5000	U	03/29/2018	1640
7782-49-2	Selenium	35.0	U	03/29/2018	1640
7440-22-4	Silver	10.0	U	03/29/2018	1640
7440-23-5	Sodium	3210	J	03/29/2018	1640
7440-28-0	Thallium	25.0	U	03/29/2018	1640
7440-62-2	Vanadium	3.8	J	03/29/2018	1640
7440-66-6	Zinc	60.0	U	03/29/2018	1640
Hardness	Hardness (total)	6.42	J	03/29/2018	1640

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.	

4D

SY-6-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Con	sulting Grou	ıp	Contract: EI	PW14030		
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2083
Matrix:	WATER			Lab Sample I	D: J2083-	-04	
🖁 Solids:				Date Receive	d: 03/27	/2018	
Analytical	Method: TCP	-AES					

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1652
7440-36-0	Antimony	60.0	Ū	03/29/2018	1652
7440-38-2	Arsenic	10.0	U	03/29/2018	1652
7440-39-3	Barium	80.3	J	03/29/2018	1652
7440-41-7	Beryllium	5.0	U	03/29/2018	1652
7440-43-9	Cadmium	5.0	U	03/29/2018	1652
7440-70-2	Calcium	39600		03/29/2018	1652
7440-47-3	Chromium	10.0	U	03/29/2018	1652
7440-48-4	Cobalt	50.0	U	03/29/2018	1652
7440-50-8	Copper	19.6	J	03/29/2018	1652
7439-89-6	Iron	65.2	J	03/29/2018	1652
7439-92-1	Lead	10.0	U	03/29/2018	1652
7439-95-4	Magnesium	14100		03/29/2018	1652
7439-96-5	Manganese	25.2		03/29/2018	1652
7440-02-0	Nickel	4.3	J	03/29/2018	1652
7440-09-7	Potassium	5000	U	03/29/2018	1652
7782-49-2	Selenium	35.0	U	03/29/2018	1652
7440-22-4	Silver	10.0	U	03/29/2018	1652
7440-23-5	Sodium	7100		03/29/2018	1652
7440-28-0	Thallium	25.0	U	03/29/2018	1652
7440-62-2	Vanadium	50.0	U	03/29/2018	1652
7440-66-6	Zinc	1220		03/29/2018	1652

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

50

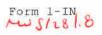
SY-3DD-20180326

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group		Contract: EPW1	4030	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2083
Matrix:	WATER			Lab Sample ID:	J2083-05
<pre>% Solids:</pre>				Date Received:	03/27/2018
Analytical	Method: ICP-	AES			

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1656
7440-36-0	Antimony	60.0	U	03/29/2018	1656
7440-38-2	Arsenic	10.0	U	03/29/2018	1656
7440-39-3	Barium	200	U	03/29/2018	1656
7440-41-7	Beryllium	5.0	U	03/29/2018	1656
7440-43-9	Cadmium	5.0	U	03/29/2018	1656
7440-70-2	Calcium	1500	J	03/29/2018	1656
7440-47-3	Chromium	1.8	J	03/29/2018	1656
7440-48-4	Cobalt	50.0	U	03/29/2018	1656
7440-50-8	Copper	25.0	U	03/29/2018	1656
7439-89-6	Iron	100	U	03/29/2018	1656
7439-92-1	Lead	3.1	J	03/29/2018	1656
7439-95-4	Magnesium	636	J	03/29/2018	1656
7439-96-5	Manganese	2.1	J	03/29/2018	1656
7440-02-0	Nickel	9.9	J	03/29/2018	1656
7440-09-7	Potassium	5000	U	03/29/2018	1656
7782-49-2	Selenium	35.0	U	03/29/2018	1656
7440-22-4	Silver	10.0	U	03/29/2018	1656
7440-23-5	Sodium	3250	J	03/29/2018	1656
7440-28-0	Thallium	2.1	J	03/29/2018	1656
7440-62-2	Vanadium	50.0	U	03/29/2018	1656
7440-66-6	Zinc	4.6	J	03/29/2018	1656


NOTE: Hardness (total) is reported in mg/L

			EPA SAMPLE NO.
	FORM 1	- IN	SY-6-20180326
	INORGANIC ANALY:	SIS DATA SHEET	
Lab Name:	Chemtech Consulting Group	Contract: EPW140	30
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.:
Matrix:	WATER	Lab Sample ID:	J2083-01
% Solids:		Date Received:	03/27/2018
Analytical	Method: CVAA		

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1708

NOTE: Hardness (total) is reported in mg/L

	FORM 1	- IN	SY-3DD-20180326
	INORGANIC ANALY	SIS DATA SHEET	2
Lab Name:	Chemtech Consulting Group	Contract: EPW140	030
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2083
Matrix:	WATER	Lab Sample ID:	J2083-02
<pre>% Solids:</pre>		Date Received:	03/27/2018
Analytical	Method: CVAA		

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) 👔 👘 ug/L

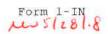
CAS No.	Analyte	Concentration Q		Date Analyzed	Time Analyzed	
7439-97-6	Mercury	0.20	U	04/04/2018	1710	

NOTE: Hardness (total) is reported in mg/L

Comments:

EPA SAMPLE NO.

٦


Г

			EPA SAMPLE NO.	
	FORM 1 INORGANIC ANALYS		SY-6-20180326	
Lab Name:	Chemtech Consulting Group	Contract: EPW1403	30	ער
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2083	
Matrix:	WATER	Lab Sample ID: J	2083-04	
% Solids:		Date Received: 0	3/27/2018	
Analytical	Method: CVAA			

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.040	J	04/04/2018	1713

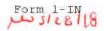
NOTE: Hardness (total) is reported in mg/L

					EPA SAMPLE NO.	
			FORM 1		SY-3DD-20180326	
			INORGANIC ANALY	SIS DATA SHEET		5 D
Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract: EPW1	4030	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :	SDG No.:	
Matrix:	WATER			Lab Sample ID:	J2083-05	
<pre>% Solids:</pre>	s .			Date Received:	03/27/2018	
Analytical	Method: CVAA	A				

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration Q		Date Analyzed	Time Analyzed	
7439-97-6	Mercury	0.043	J	04/04/2018	1715	

NOTE: Hardness (total) is reported in ${\rm mg/L}$



						EPA SAMPLE NO	
			FORM 1	- IN		SY-6-20180326	
		1	INORGANIC ANALY:	SIS DATA SHEET			
Lab Name:	Chemtech (Consulting Grou	<u>p</u>	Contract: EP	W14030)	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :		SDG No.: J	2083
Matrix:	WATER			Lab Sample ID): J20	083-01	
<pre>% Solids:</pre>				Date Received	a: 03	/27/2018	
Analytical	Method: S	pectrophotome	try				

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	No. Analyte Concentration		Q	Date Analyzed	Time Analyzed	
57-12-5	Cyanide	10.0	U	04/02/2018	1614	

NOTE: Hardness (total) is reported in mg/L

						EPA SAMPLE NO.	
			FORM 1			SY-3DD-2018032	6
		:	INORGANIC ANALY	SIS DATA SH	EET		- 2
Lab Name:	Chemtech	Consulting Grou	p	Contract:	EPW14	030	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.: J2	083
Matrix:	WATER			Lab Sample	ID:	J2083-02	
% Solids:	-			Date Recei	ved:	03/27/2018	
Analytical	Method:	Spectrophotome	try				
Concentrat	ion Units	(µg/L, mg/L, mg/	kg dry weight o	or μg) :	ug/L		

CAS No.	Analyte	Concentration Q		Date Analyzed	Time Analyzed
57-12-5	Cyanide	2.7	J	04/02/2018	1549

NOTE: Hardness (total) is reported in mg/L

CHEIMTECH

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/26/18 14:30
Project:	Syosset Landfill	Date Received:	03/27/18
Client Sample ID:	SY-6-20180326	SDG No.:	J2083
Lab Sample ID:	J2083-01	Matrix:	WATER
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	118		1	0.4	1	2	mg/L		04/04/18 14:34	SM2320 B
Ammonia as N	0.087	J	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		03/27/18 12:53	300.0
Chloride	6.9		1	0.075	0.075	0.15	mg/L		03/27/18 12:53	300.0
Nitrate line DL	1.9		1	0.027	0.065	0.13	mg/L		03/27/18 12:53	300.0
Sulfate	42.6	OR	1	0.13	0.375	0.75	mg/L		03/27/18 12:53	- 300.0
BOD5	2	U	T	2	2	2	mg/L		03/28/18 10:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/02/18 12:02	SM5220 D
Color	5	U	1	5	5	5	cu		03/28/18 09:52	SM2120 B
Phenolics	0.05 🗸	1 V	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	208		1	0.031	5	10	mg/L		03/27/18 16:00	SM2540C
TKN	0.25 🍠	¥	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
										B or C plus NH3
										G
TOC	1.8		1	0.08	0.25	0.5	mg/L		03/28/18 13:21	SM5310B

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	* = indicates the duplicate analysis is not within control limits.
LOD = Limit of Detection	E = Indicates the reported value is estimated because of the presence
D = Dilution	of interference.
Q = indicates LCS control criteria did not meet requirements	OR = Over Range
H = Sample Analysis Out Of Hold Time	N =Spiked sample recovery not within control limits

			Re	eport of An	alysis			IDL
Client:	Lockwood	, Kessler, & B	artlett			Date Collected:	03/26/18	3 14:30
Project:	Syosset La	Indfill				Date Received:	03/27/18	3
Client Sample ID:	SY-6-2018	0326DL				SDG No.:	J2083	
Lab Sample ID:	J2083-01D	DL				Matrix:	WATER	
					_	% Solid:	0	
Parameter	Conc. Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Sulfate	38.7 1	2 0.26	0.75	1,5	mg/L		03/27/18 15:2	26 300.0

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

10000 OENIOUEM

- J = Estimated Value
- B = Analyte Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
 - OR = Over Range

NUSISIO

N =Spiked sample recovery not within control limits

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/26/18 16:00	
Project:	Syosset Landfill	Date Received:	03/27/18	
Client Sample ID:	SY-3DD-20180326	SDG No.:	J2083	
Lab Sample ID:	J2083-02	Matrix:	WATER	
		% Solid:	0	

Parameter	Conc. (Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	3,8		1	0.4	1	2	mg/L		04/04/18 14:45	SM2320 B
Ammonia as N	0,053	J	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		03/27/18 13:24	300.0
Chloride	4.8		1	0.075	0.075	0.15	mg/L		03/27/18 13:24	300.0
Nitrate	0.72		I	0.027	0.065	0.13	mg/L		03/27/18 13:24	300.0
Sulfate	0.75	U	1	0.13	0.375	0.75	mg/L		03/27/18 13:24	300.0
BOD5	3.8		1	2	2	2	mg/L		03/28/18 10:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/02/18 12:02	SM5220 D
Color	5	U	1	5	5	5	cu		03/28/18 10:14	SM2120 B
Phenolics	0.05 V 7	V	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	56		1	0.031	5	10	mg/L		03/27/18 16:00	SM2540C
TKN	024 J	V	1	0.096	0.25	0,5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
							Ũ			B or C plus NH3 G
TOC	0.63		1	0.08	0.25	0.5	mg/L		03/28/18 12:02	SM5310B

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
 - OR = Over Range
- $M_{\rm V}$ S/28 18 N = Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:	Lockwood, Kessler, & Bartlett, Syosset, New York
SDG:	J2116
Laboratory:	ChemTech, Mountainside, New Jersey
Site:	Syosset Landfill, Syosset, New York
Date:	May 28, 2018

VOCs/SVOCs/Wet Chemistry						
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix			
1	SY-3D-20180327	J2116-01	Water			
1RE*	SY-3D-20180327RE	J2116-01RE	Water			
1DL1ß	SY-3D-20180327DL1	J2116-01DL1	Water			
1DL2β	SY-3D-20180327DL2	J2116-01DL2	Water			
2MS	J2116-01MS	J2116-02	Water			
3MSD	J2116-01MSD	J2116-03	Water			
4	SY-3-20180327	J2116-04	Water			
4DL1β	SY-3-20180327DL1	J2116-04DL1	Water			
5	SY-2R-20180327	J2116-05	Water			
5DL1β	SY-2R-20180327DL1	J2116-05DL1	Water			
5DL2β	SY-2R-20180327DL2	J2116-05DL2	Water			
6	SY-5-20180327	J2116-06	Water			
6DL1β	SY-5-20180327DL1	J2116-06DL1	Water			
6DL2β	SY-5-20180327DL2	J2116-06DL2	Water			
7	SY-2D-20180327	J2116-07	Water			
7DL1β	SY-2D-20180327DL1	J2116-07DL1	Water			

* - VOC only β - Wet Chemistry only

	Total & D	Dissolved Metals/Mercury/Cn	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1T	SY-3D-20180327	J2116-01	Water
2TMS	SY-3D-20180327MS	J2116-02	Water
3TMSD	SY-3D-20180327MSD	J2116-03	Water
4T	SY-3-20180327	J2116-04	Water
5T	SY-2R-20180327	J2116-05	Water
6T	SY-5-20180327	J2116-06	Water
7T	SY-2D-20180327	J2116-07	Water
8D	SY-3D-20180327	J2116-08	Water
9DMS	SY-3D-20180327MS	J2116-09	Water
10DMSD	SY-3D-20180327MSD	J2116-10	Water
11D	SY-3-20180327	J2116-11	Water
12D	SY-2R-20180327	J2116-12	Water
13D	SY-5-20180327	J2116-13	Water
14D	SY-2D-20180327	J2116-14	Water

T - Total Metals & Mercury & Cyanide

D - Dissolved Metals & Mercury only

A Data Usability Summary Review was performed on the analytical data for ten water samples collected on March 27, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u>	<u>Method References</u>
VOCs	USEPA SW846 8260C
SVOCs	USEPA SW846 8270D SIM
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
 recoveries

- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples except for the following.

Sample ID	Date Sampled	Date Extracted	# of Days	Qualifier
1RE	3/27/18 (1100)	4/10/18 (1853)	>14	J/UJ

Note: Reanalyzed outside HT due to CCAL deficiency in original analysis. The original analysis results should be used for reporting.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Except 1RE

Method Blank

• The method blanks were free of contamination.

Field Blank

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	4-6

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable,

Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifier
None	ND	ND	-	

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		141	÷

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). For severely low surrogate recoveries (<10%), non-detected results in the affected samples are rejected (R) and are unusable for project objectives.

EDS Sample ID	Compound	%R	Qualifier
5	Terphenyl-d14	173%	None - Sample ND

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J).

MS/MSD Sample ID	Compound	MS %R/MS %R/RPD	Qualifier	Affected Samples
2	1,4-Dioxane	17%/67%/119	J	2

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifier
1,4-Dioxane	0.46	0.45	2%	None

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		
PBW001 (Total)	Potassium	90.6	None	All Associated >10X
PBW001 (Dissolved)	Potassium	272	U	12

<u>Field Blank</u>

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		÷	-

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The MS/MSD samples exhibited acceptable percent recoveries (%R) and RPD values.

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate results are summarized below. The precision was acceptable.

	Total N	Ietals/Hg/Cn		
Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifie
Aluminum	13.8	13.1	5%	None
Arsenic	41.3	42.5	3%	1
Barium	155	152	2%	
Calcium	44,900	44,000	2%	7
Iron	36,200	35,700	1%	1
Lead	3.8	3.9	3%	
Magnesium	19,200	18,900	2%	
Manganese	3,790	3,720	2%	
Potassium	15,100	14,900	1%	1
Silver	0.91	0.94	3%	
Sodium	224,000	218,000	3%	1
Thallium	25.0U	4.3	NC	1
Zinc	60.0U	6.5	NC	1
Hardness*	191 mg/L	188 mg/L	2%	
Mercury	0.062	0.059	5%	

	Dissolv	ed Metals/Hg		
Compound	SY-3-20180327 ug/L	SY-5-20180327 ug/L	RPD	Qualifie
Aluminum	20.9	21.0	0%	None
Arsenic	53.5	56.1	5%	
Barium	153	154	1%	
Calcium	43,800	43,900	0%	
Iron	34,900	35,500	2%	None
Lead	2.7	3.2	17%	
Magnesium	17,600	17,600	0%	
Manganese	3,740	3,750	0%	
Potassium	14,400	14,600	1%	
Silver	10.0U	0.79	NC	
Sodium	208,000	206,000	1%	1
Zinc	60.0U	5.0	NC	
Mercury	0.20U	0.039	NC	

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended holding time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
	_	mg/L		-
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.4	None	-

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• The following table presents MS/MSD samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
1	Sulfate	-85%/-109%/OK	None	4X Rule Applies
	Chloride	-1,600%/-1,667%/OK	None	
	Ammonia as N	10%/-120%/200	None	
	TKN	294%/304%/OK	J	All Samples
	Phenolics	58%/59%/OK	ŬJ	All Samples

Laboratory Control Samples

The LCS sample exhibited acceptable recoveries. •

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, sulfate, and/or TKN • and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision

Field duplicate results are summarized below. The precision was acceptable. ٠

Compound	SY-3-20180327 mg/L	SY-5-20180327 mg/L	RPD	Qualifier
Alkalinity	232	221	5%	None
Ammonia as N	11.3	11.1	2%	
Bromide	0.28	0.28	0%	
Chloride	372	365	2%	
Sulfate	36.2	35.1	3%	1
COD	15.5	12.5	21%	1
Color	300	300	0%	1
TDS	859	815	5%	1
TKN	10.5	10.8	3%	1
TOC	5.3	4.8	10%	1

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mary Weaver Dated: 5/29/18 Nancy Weaver

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

Report of Analysis

Client: Lockwood, Kessler, & Bartlett Date Collected: 03/27/18 Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-3D-20180327 SDG No .: J2116 Lab Sample ID: J2116-01 Matrix: Water Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: **RXI-624** ID: 0.25 LOW Level : File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047446.D 1 04/07/18 18:44 VN040718 CAS Number Parameter Conc. **Oualifier MDL** LOD LOQ / CRQL Units **TARGETS** Dichlorodifluoromethane U 1 75-71-8 1 0.2 0.2 ug/L 74-87-3 Chloromethane U 0.2 0.2 1 1 ug/L U 75-01-4 Vinyl Chloride 1 0.2 0.2 1 ug/L 45 X 74-83-9 Bromomethane 1 0.2 0.2 1 ug/L 75-00-3 Chloroethane 1 U 0.2 0.5 1 ug/L U 0.2 1 75-69-4 Trichlorofluoromethane 1 0.2 ug/L 76-13-1 0.2 1,1,2-Trichlorotrifluoroethane 1 U 0.2 1 ug/L 75-35-4 1,1-Dichloroethene 1 U 0.2 0.2 1 ug/L 10.2 0.5 5 67-64-1 Acetone 1 ug/L 75-15-0 Carbon Disulfide U 0.2 0.2 1 1 ug/L Methyl tert-butyl Ether I U 0.35 0.5 1 1634-04-4 ug/L 79-20-9 Methyl Acetate 1 U 0.2 0.5 1 ug/L 75-09-2 Methylene Chloride 1 U 0.2 0.2 1 ug/L 156-60-5 trans-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L 75-34-3 1,1-Dichloroethane 1 U 0.2 0.2 1 ug/L 110-82-7 Cyclohexane 1 U 0.2 0.2 1 ug/L 78-93-3 2-Butanone 5 U 1.3 2.5 5 ug/L 56-23-5 Carbon Tetrachloride 1 U 0.2 1 0.2 ug/L 156-59-2 cis-1,2-Dichloroethene 1 U 0.2 0.2 1 ug/L Bromochloromethane 74-97-5 1 U 0.2 0.5 1 ug/L 67-66-3 Chloroform 1 U 0.2 0.2 1 ug/L 71-55-6 1,1,1-Trichloroethane 1 U 0.2 0.2 1 ug/L 108-87-2 Methylcyclohexane 1 U 0.2 0.2 1 ug/L 71-43-2 Benzene 1 U 0.2 0.2 1 ug/L 107-06-2 1.2-Dichloroethane 1 U 0.2 1 0.2 ug/L 79-01-6 Trichloroethene 0.2 J 0.2 0.2 1 ug/L 78-87-5 1,2-Dichloropropane U 0.2 0.2 1 1 ug/L 75-27-4 Bromodichloromethane 1 U 0.2 0.2 1 ug/L 5 5 4-Methyl-2-Pentanone U 108-10-1 1 1 ug/L 108-88-3 Toluene 1 U 0.2 0.2 1 ug/L 10061-02-6 t-1,3-Dichloropropene 1 U 0.2 0.2 1 ug/L 10061-01-5 cis-1,3-Dichloropropene 1 U 0.2 0.2 1 ug/L

Report of Analysis Client: 03/27/18 Lockwood, Kessler, & Bartlett Date Collected: Project: Syosset Landfill Date Received: 03/28/18 Client Sample ID: SY-3D-20180327 SDG No.: J2116 Water Lab Sample ID: J2116-01 Matrix: Analytical Method: SW8260 % Moisture: 100 Sample Wt/Vol: 5 Units: mL Final Vol: 5000 uL Soil Aliquot Vol: VOCMS Group1 uL Test: GC Column: RXI-624 ID: 0.25 Level : LOW File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047446.D 1 04/07/18 18:44 VN040718 CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units 79-00-5 1,1,2-Trichloroethane U 0.2 0.2 1 1 ug/L 5 U 5 591-78-6 2-Hexanone 1.9 2.5 ug/L 124-48-1 Dibromochloromethane 1 U 0.2 0.2 1 ug/L 106-93-4 1,2-Dibromoethane 1 U 0.2 0.2 1 ug/L 127-18-4 Tetrachloroethene 1 U 0.2 0.2 1 ug/L 108-90-7 Chlorobenzene 0.24 J 0.2 0.2 1 ug/L Ethyl Benzene 1 U 0.2 0.2 1 100-41-4 ug/L m/p-Xylenes 2 U 0.4 0.4 2 ug/L 179601-23-1 95-47-6 o-Xylene 1 IJ 0.2 0.2 1 ug/L U 0.2 100-42-5 Styrene 1 0.2 1 ug/L 75-25-2 U 0.2 Bromoform 0.2 1 1 ug/L U 98-82-8 Isopropylbenzene 1 0.2 0.2 1 ug/L 79-34-5 1,1,2,2-Tetrachloroethane 1 U 0.2 0.2 1 ug/L U 541-73-1 1,3-Dichlorobenzene 1 0.2 0.2 1 ug/L U 0.2 0.2 1 106-46-7 1,4-Dichlorobenzene 1 ug/L 95-50-1 1.2-Dichlorobenzene U 0.2 0.2 1 I ug/L 96-12-8 1,2-Dibromo-3-Chloropropane U 0.2 0.2 1 1 ug/L 1.2.4-Trichlorobenzene U 0.2 120-82-1 1 0.2 1 ug/L 1,2,3-Trichlorobenzene U 0.2 87-61-6 1 0.2 1 ug/L **SURROGATES** 1,2-Dichloroethane-d4 107% 17060-07-0 53.6 61 - 141 SPK: 50 Dibromofluoromethane 102% 1868-53-7 51.2 69 - 133 SPK: 50 2037-26-5 Toluene-d8 52.5 65 - 126 105% SPK: 50 460-00-4 4-Bromofluorobenzene 51.9 58 - 135 104% SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 7.66 363-72-4 1137740 540-36-3 1,4-Difluorobenzene 8.59 1886090 Chlorobenzene-d5 3114-55-4 1777050 11.41 3855-82-1 1,4-Dichlorobenzene-d4 13.35 742088

RE **Report of Analysis** Client: Lockwood, Kessler, & Bartlett Date Collected 03/27/18 Project: Syosset Landfill Date Received: 03/28/18 SY-3D-20180327RE SDG No.: Client Sample ID: J2116 Lab Sample ID: J2116-01RE Matrix: Water Analytical Method: SW8260 % Moisture: 100 5 Sample Wt/Vol: Units: mL Final Vol: 5000 Soil Aliquot Vol: Test: VOCMS Group1 uL GC Column: **RXI-624** ID: 0.25 Level : LOW File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047502.D 1 04/10/18 18:53 VN041018 CAS Number Parameter Conc. Qualifier **MDL** LOD LOQ / CRQL Units **TARGETS** 75-71-8 Dichlorodifluoromethane uJ 1 W 0.2 0.2 1 ug/L 74-87-3 Chloromethane U 1 0.2 0.2 1 ug/L Vinvl Chloride U 75-01-4 0.2 0.2 1 1 ug/L 74-83-9 Bromomethane U 0.2 0.2 1 1 ug/L 75-00-3 Chloroethane 1 0.2 0.5 1 ug/L 75-69-4 Trichlorofluoromethane 0.2 0.2 1 1 ug/L 76-13-1 1,1,2-Trichlorotrifluoroethane 1 11 0.2 0.2 1 ug/L 75-35-4 1,1-Dichloroethene 0.2 0.2 1 1 ug/L 67-64-1 Acetone 5 0.5 1 5 11 ug/L 75-15-0 Carbon Disulfide 0.2 0.2 1 ug/L 1634-04-4 Methyl tert-butyl Ether 0.35 0.5 1 1 ug/L 79-20-9 Methyl Acetate 1 0.2 0.5 1 ug/L 75-09-2 Methylene Chloride 0.2 1 0.2 1 ug/L 156-60-5 trans-1,2-Dichloroethene 0.2 1 0.2 1 ug/L 75-34-3 1,1-Dichloroethane 0.2 0.2 1 1 ug/L Cvclohexane 110-82-7 1 0.2 0.2 1 ug/L 5 5 78-93-3 2-Butanone Ľ 1.3 2.5 ug/L Carbon Tetrachloride 56-23-5 1 U 0.2 0.2 1 ug/L 0.35 J cis-1,2-Dichloroethene 156-59-2 0.2 0.2 1 ug/L NJ Bromochloromethane 74-97-5 1 U 0.2 0.5 1 ug/L U Chloroform 67-66-3 0.2 1 0.2 1 ug/L 71-55-6 1,1,1-Trichloroethane 0.2 1 0.2 1 ug/L 108-87-2 Methylcvclohexane 1 0.2 0.2 1 ug/L 71-43-2 Benzene 0.2 0.2 1 1 ug/L 107-06-2 1,2-Dichloroethane 1 0.2 0.2 1 ug/L 79-01-6 Trichloroethene 0.2 0.2 1 1 ug/L 78-87-5 1,2-Dichloropropane 0.2 0.2 1 1 ug/L 75-27-4 Bromodichloromethane 1 0.2 0.2 1 ug/L 108-10-1 4-Methyl-2-Pentanone 5 5 1 1 ug/L Toluene 108-88-3 1 0.2 0.2 1 ug/L 10061-02-6 t-1,3-Dichloropropene 0.2 0.2 1 1 ug/L 10061-01-5 0.2 cis-1,3-Dichloropropene 0.2 1 ug/L

CHEIMTECH

(R9 **Report of Analysis** Client: Lockwood, Kessler, & Bartlett Date Collected 03/27/18 Project: Syosset Landfill Date Received: 03/28/18 SY-3D-20180327RE Client Sample ID: SDG No.: J2116 Lab Sample ID: J2116-01RE Matrix: Water ongul val Analytical Method: SW8260 % Moisture: 100 5 Sample Wt/Vol: Units: mL Final Vol: 5000 Soil Aliquot Vol: uL Test: VOCMS Group1 GC Column: **RXI-624** ID: 0.25 LOW Level : File ID/Qc Batch: Dilution: Prep Date Date Analyzed Prep Batch ID VN047502.D 1 04/10/18 18:53 VN041018 **CAS** Number Parameter Conc. Qualifier MDL LOQ / CRQL LOD Units NJ 79-00-5 1.1.2-Trichloroethane 1 0.2 0.2 1 ug/L 591-78-6 2-Hexanone 5 1.9 2.5 5 ug/L 124-48-1 Dibromochloromethane 1 1 0.2 0.2 1 ug/L 106-93-4 1.2-Dibromoethane 1 0.2 0.2 1 ug/L 127-18-4 Tetrachloroethene 1 0.2 0.2 1 ug/L 108-90-7 Chlorobenzene 1 0.2 0.2 1 ug/L 100-41-4Ethvl Benzene 1 U 0.2 0.2 1 ug/L m/p-Xylenes 2 179601-23-1 0.4 0.4 2 ug/L 95-47-6 o-Xvlene 1 U 0.2 0.2 1 ug/L 100-42-5 Stvrene U 0.2 0.2 1 ug/L 75-25-2 Bromoform U 0.2 0.2 1 1 ug/L 98-82-8 Isopropylbenzene TI 1 0.2 0.2 1 ug/L 79-34-5 1,1,2,2-Tetrachloroethane 1 0.2 0.2 1 ug/L 541-73-1 1.3-Dichlorobenzene 0.2 1 ÚJ 0.2 1 ug/L 106-46-7 1,4-Dichlorobenzene II. 0.2 0.2 1 I ug/L 95-50-1 1,2-Dichlorobenzene 0.2 0.2 1 ug/L 1,2-Dibromo-3-Chloropropane 96-12-8 0.2 0.2 1 1 ug/L 1,2,4-Trichlorobenzene 120-82-1 0.2 0.2 1 1 ug/L 1,2,3-Trichlorobenzene 87-61-6 1 0.2 0.2 1 ug/L **SURROGATES** 17060-07-0 1,2-Dichloroethane-d4 36.2 61 - 141 72% SPK: 50 1868-53-7 Dibromofluoromethane 39 69 - 133 78% SPK: 50 2037-26-5 Toluene-d8 39.2 65 - 126 78% SPK: 50 460-00-4 4-Bromofluorobenzene 32.6 58 - 135 65% SPK: 50 INTERNAL STANDARDS Pentafluorobenzene 7.67 363-72-4 428406 540-36-3 1,4-Difluorobenzene 667968 8.59 3114-55-4 Chlorobenzene-d5 572808 11.41 3855-82-1 1,4-Dichlorobenzene-d4 189022 13.35

		Report of	^r Analysi	S			4
Client:	Lockwood, Kessler, & Ba	rtlett		Date	Collected:	03/27/18	
Project:	Syosset Landfill			Date	Received:	03/28/18	
Client Sample ID:	SY-3-20180327			SDG		J2116	
-							
Lab Sample ID:	J2116-04			Matr	IX:	Water	
Analytical Method	SW8260			% o M	oisture:	100	
Sample Wt/Vol:	5 Units: mL			Final	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	oupl
GC Column:	RXI-624 ID: 0	.25		Leve	1:	LOW	t
File ID/Qe Batch:	Dilution:	Prep Date		Date Analyz	zed	Prep Batch ID	
VN047447.D	1			04/07/18 19	:09	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
4-87-3	Chloromethane	1 0.36 U	-	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
4-83-9	Bromomethane	1 47	L	0.2	0.2	1	ug/L
5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
5-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
7-64-1	Acetone	5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
634-04-4	Methyl tert-butyl Ether	Ι	U	0.35	0.5	1	ug/L
9-20-9	Methyl Acetate	1	U	0.2	0,5	1	ug/L
5-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
56-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	Ι	ug/L
10-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
8-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
5-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
4-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
08-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
-43-2	Benzene	1	U	0.2	0.2	1	ug/L
)7-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
9-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
3-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
5-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
08-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
08-88-3	Toluene	1	U	0.2	0.2	1	ug/L
0061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
0061-01-5	cis-1,3-Dichloropropene		U	0.2	0.2		

		Report of	f Analysi	S			4
Client:	Lockwood, Kessler, & Ba	artlett		Date (Collected	03/27/18	
Project:	Syosset Landfill			Date F	Received:	03/28/18	
Client Sample ID:	SY-3-20180327			SDG 1		J2116	
Lab Sample ID:	J2116-04						
-				Matrix		Water	
Analytical Method	SW8260			% Mo	isture:	100	
Sample Wt/Vol:	5 Units: mL			Final '	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	oupl
GC Column:	RXI-624 ID : (0.25		Level	•	LOW	*
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyze	:d	Prep Batch ID)
VN047447.D	1			04/07/18 19:0)9	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
'9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xvlenes	2	U	0,4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0,2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
41-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	Ι	U	0.2	0_2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0.2	1	ug/L
URROGATES 7060-07-0	1,2-Dichloroethane-d4	52.0		61 141		1090/	ODIZ CO
868-53-7	Dibromofluoromethane	53.9 52.3		61 - 141		108%	SPK: 50
037-26-5	Toluene-d8	52.3 52.6		69 - 133 65 - 126		105%	SPK: 50
60-00-4	4-Bromofluorobenzene	52.6 52.7		65 - 126 58 - 135		105%	SPK: 50
NTERNAL STANDA		34.1		50 - 155		105%	SPK: 50
	Pentafluorobenzene	1107920	7.67				
863-72-4	1,4-Difluorobenzene	1833850	8.59				
363-72-4 540-36-3 3114-55-4	1,4-Difluorobenzene Chlorobenzene-d5	1833850 1749710	8,59 11.41				

		F	Report of	Analysi	S			5
Client:	Lockwood, Kessler, & Ba	rtlett			Ľ	Date Collected:	03/27/18	
Project:	Syosset Landfill				Ľ	Date Received:	03/28/18	
Client Sample ID:	SY-2R-20180327				S	DG No.:	J2116	
Lab Sample ID:	•				Ν	Aatrix:	Water	
Analytical Method	SW8260				0	• Moisture:	100	
Sample Wt/Vol:	5 Units: mL				F	inal Vol:	5000	uL
Soil Aliquot Vol:	uL				Т	est:	VOCMS G	oupl
GC Column:	RXI-624 ID : 0	.25			L	evel :	LOW	
File ID/Qc Batch:	Dilution:	P	rep Date		Date An	alyzed	Prep Batch II)
VN047448.D	1				04/07/1	8 19:34	VN040718	
AS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS								
5-71-8	Dichlorodifluoromethane		1	U	0.2	0.2	1	ug/L
4-87-3	Chloromethane	U	0.68 U	X	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride		1	U	0.2	0.2	1	ug/L
4-83-9	Bromomethane		1 UJ	JJ-	0.2	0.2	1	ug/L
5-00-3	Chloroethane		1	U	0.2	0.5	1	ug/L
5-69-4	Trichlorofluoromethane		1	U	0.2	0.2	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane		1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene		1	U	0.2	0.2	1	ug/L
7-64-1	Acetone		5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide		1	U	0.2	0.2	1	ug/L
634-04-4	Methyl tert-butyl Ether		1	U	0.35	0.5	1	ug/L
9-20-9	Methyl Acetate		1	U	0.2	0.5	1	ug/L
5-09-2	Methylene Chloride		1	U	0.2	0.2	1	ug/L
56-60-5	trans-1,2-Dichloroethene		1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane		1	U	0.2	0.2	1	ug/L
10-82-7	Cyclohexane		1	U	0.2	0.2	1	ug/L
8-93-3	2-Butanone		5	U	1:3	2.5	5	ug/L
6-23-5	Carbon Tetrachloride		1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene		1	U	0.2	0.2	1	ug/L
4-97-5	Bromochloromethane		1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform		1	U	0.2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane		1	U	0.2	0.2	1	ug/L
08-87-2	Methylcyclohexane		1	U	0.2	0.2	1	ug/L
1-43-2	Benzene		1	Ū	0.2	0.2	1	ug/L
)7-06-2	1,2-Dichloroethane		1	U	0.2	0.2	1	ug/L
9-01-6	Trichloroethene		1	Ū	0.2	0.2	1	ug/L
8-87-5	1,2-Dichloropropane		1	Ū	0.2	0.2	1	ug/L
5-27-4	Bromodichloromethane		1	Ŭ	0.2	0.2	1	ug/L
08-10-1	4-Methyl-2-Pentanone		5	Ŭ	1	1	5	ug/L
	Toluene		1	U	0.2	0.2	1	ug/L
)8-88-3								~~ m (L/
08-88-3 0061-02-6	t-1,3-Dichloropropene		1	Ŭ	0.2	0.2	1	ug/L

Report of Analysis									
Client:	Lockwood, Kessler, & Bart	tlett		Date C	Collected	03/27/18			
Project:	Syosset Landfill			Date R	Received	03/28/18			
Client Sample ID:	SY-2R-20180327			SDG 1		J2116			
Lab Sample ID:	J2116-05								
				Matrix		Water			
Analytical Method	SW8260			% Moi	isture:	100			
Sample Wt/Vol:	5 Units: mL			Final V	Vol:	5000	uL		
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	oupl		
GC Column:	RXI-624 ID : 0	25		Level	:	LOW			
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyze	d	Prep Batch ID	,		
VN047448.D	1			04/07/18 19:3	34	VN040718			
CAS Number	AS Number Parameter		Qualifier	MDL	LOD	LOQ / CRQL	Units		
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L		
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L		
124-48-1	Dibromochloromethane	1	U	0.2	0.2	Ĩ	ug/L		
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	Ĩ	ug/L		
127-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L		
108-90-7	Chlorobenzene	1	U	0.2	0.2	ĩ	ug/L		
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L		
179601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L		
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L		
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L		
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L		
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L		
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	ĩ	ug/L		
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L		
106-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	Î	ug/L		
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	Î	ug/L		
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	i.	ug/L		
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	Î	ug/L		
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	i	ug/L		
SURROGATES							~ <u>D</u> , <u></u>		
17060-07-0	1,2-Dichloroethane-d4	53.1		61 - 141		106%	SPK: 50		
1868-53-7	Dibromofluoromethane	51.7		69 - 133		103%	SPK: 50		
2037-26-5	Toluene-d8	52.9		65 - 126		106%	SPK: 50		
460-00-4	4-Bromofluorobenzene	50.9		58 - 135		102%	SPK: 50		
INTERNAL STAND									
363-72-4	Pentafluorobenzene	1105660	7.66						
540-36-3	1,4-Difluorobenzene	1797660	8.59						
3114-55-4	Chlorobenzene-d5	1693700	11.41						
3855-82-1	1,4-Dichlorobenzene-d4	675010	13.35						

		Report of	Analysi	S			6
Client:	Lockwood, Kessler, & Ba	tlett		Date (Collected:	03/27/18	P
Project:	Syosset Landfill			Date F	Received:	03/28/18	
Client Sample ID:	SY-5-20180327			SDG 1		J2116	
Lab Sample ID:	Lab Sample ID: J2116-06			Matrix	č:	Water	
Analytical Method	SW8260			% Mo	isture:	100	
Sample Wt/Vol:	5 Units: mL			Final '	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	
		0.5					oupi
GC Column:	RXI-624 ID: 0	25		Level	•	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyze	ed	Prep Batch ID)
VN047449.D	1			04/07/18 19:	59	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
4-87-3	Chloromethane	1 0.55 V	r	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
1-83-9	Bromomethane	1 17	X	0.2	0.2	1	ug/L
5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
5-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene	1	U	0.2	0.2	I	ug/L
7-64-1	Acetone	5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
534-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
9-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
5-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
56-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
10-82-7	Cyclohexane	1 -	U	0.2	0.2	1	ug/L
3-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
5-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
4-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	l	U	0.2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane	L 1	U	0.2	0.2	1	ug/L
)8-87-2 [-43-2	Methylcyclohexane Benzene	1	U U	0.2	0.2	1	ug/L
-43-2	1,2-Dichloroethane	1	U U	0,2 0,2	0.2 0.2	1	ug/L
17-06-2		1	U	0.2	0.2	1	ug/L ug/L
	Trichloroethene				0.2	1	ug/L ug/L
9-01-6		1	11	11 /	11/	1	ug/L
9-01-6 8-87-5	1,2-Dichloropropane	1 1	U U	0.2		1	цαЛ
9-01-6 8-87-5 5-27-4	1,2-Dichloropropane Bromodichloromethane	1 1 5	U	0.2	0.2	1	ug/L
9-01-6 8-87-5 5-27-4 08-10-1	1,2-Dichloropropane Bromodichloromethane 4-Methy1-2-Pentanone	l 1 5 1	U U	0.2 1	0.2 1	1 5 1	ug/L
07-06-2 9-01-6 8-87-5 5-27-4 08-10-1 08-88-3 0061-02-6	1,2-Dichloropropane Bromodichloromethane		U	0.2	0.2	1 5 1 1	

CHEMITECH

		Report of	f Analysi	S			6
Client:	Lockwood, Kessler, & Bar	tlett		Date	e Collected:	03/27/18	l.
Project:	Syosset Landfill			Date	e Received;	03/28/18	
Client Sample ID:	SY-5-20180327			SDC	3 No.:	J2116	
Lab Sample ID:	J2116-06			Mat	rix:	Water	
Analytical Method	SW8260			% N	foisture:	100	
Sample Wt/Vol:	5 Units: mL			Fina	l Vol:	5000	uL
Soil Aliquot Vol:	uL			Test	:	VOCMS Gr	lauc
GC Column:		25					Jupi
Ge Column.	RXI-624 ID: 0,	25		Leve		LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analy	zed	Prep Batch ID	
VN047449.D	1			04/07/18 1	9:59	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
/9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
41-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	Ι	U	0.2	0.2	1	ug/L
URROGATES							•
7060-07-0	1,2-Dichloroethane-d4	54.3		61 - 141		109%	SPK: 50
868-53-7	Dibromofluoromethane	52.5		69 - 133		105%	SPK: 50
037-26-5	Toluene-d8	53.3		65 - 126		107%	SPK: 50
60-00-4	4-Bromofluorobenzene	52		58 - 135		104%	SPK: 50
NTERNAL STAND							
63-72-4	Pentafluorobenzene	1123110	7.67				
540-36-3	1,4-Difluorobenzene	1857580	8.59				
	01.1 1 10	1770000	11 41				
3114-55-4 3855-82-1	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	1779900	11.41				

Report of Analysis

Client: Project: Client Sample ID: Lab Sample ID: Analytical Method Sample Wt/Vol: Soil Aliquot Vol: GC Column:	J2116-07			Date SDG Matri	x: pisture: Vol:	03/27/18 03/28/18 J2116 Water 100 5000 VOCMS Gr	uL roup1
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyz	rad	Prep Batch II	
VN047450.D	1	Flep Date		04/07/18 20		VN040718)
	1.02						
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS 75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
74-83-9	Bromomethane	1 UJ	V	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
67-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
110-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
74-9 7-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67 - 66-3	Chloroform	1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0,2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

CHEMTECH 284 Sheffield Street, Mountainside, NJ 07092 Phone: 908 789 8900 Fax: 908 789 8922

		Report of	Analysi	8			7
Client:	Lockwood, Kessler, & Bar	tlett		Date C	ollected	03/27/18	
Project:	Syosset Landfill			Date R	eceived:	03/28/18	
Client Sample ID:	SY-2D-20180327			SDG N		J2116	
Lab Sample ID:	J2116-07			Matrix		Water	
Analytical Method:	: SW8260			% Moi	sture:	100	
Sample Wt/Vol:	5 Units: mL			Final V	7ol:	5000	uĽ
Soil Aliquot Vol:	uL			Test:		VOCMS Gr	oupl
GC Column:		25		Level :		LOW	1
oc commi	KAI-024 ID. 0.	23		Level		LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyze	d	Prep Batch ID)
VN047450.D	1			04/07/18 20:2	3	VN040718	
CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0,2	I	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	I	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							
17060-07-0	1,2-Dichloroethane-d4	54		61 - 141		108%	SPK: 50
868-53-7	Dibromofluoromethane	52		69 - 133		104%	SPK: 50
2037-26-5	Toluene-d8	52.9		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.3		58 - 135		107%	SPK: 50
NTERNAL STAND							
363-72-4	Pentafluorobenzene	1107430	7.67				
	1,4-Difluorobenzene	1818140	8.59				
540-36-3 3114-55-4 3855-82-1	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	1751710 731459	11.41 13.35				

	FORM 1 INORGANIC ANALY			- IN		SY-3D-201803	27
				SIS DATA SH	EET		
Lab Name:	Chemtech C	onsulting Grou	ıp	Contract:	EPW140	030	[1]
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2116
Matrix:	WATER			Lab Sample	ID:	J2116-01	
🖇 Solids:				Date Recei	ved:	03/28/2018	
Analytical	Method: IC	CP-AES					

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	7.2	J	03/29/2018	1709
7440-36-0	Antimony	60.0	U	03/29/2018	1709
7440-38-2	Arsenic	18.7		03/29/2018	1709
7440-39-3	Barium	194	J	03/29/2018	1709
7440-41-7	Beryllium	5.0	U	03/29/2018	1709
7440-43-9	Cadmium	5.0	U	03/29/2018	1709
7440-70-2	Calcium	50000		03/29/2018	1709
7440-47-3	Chromium	10.0	U	03/29/2018	1709
7440-48-4	Cobalt	18.6	J	03/29/2018	1709
7440-50-8	Copper	25.0	U	03/29/2018	1709
7439-89-6	Iron	23200		03/29/2018	1709
7439-92-1	Lead	2.3	J	03/29/2018	1709
7439-95-4	Magnesium	14900		03/29/2018	1709
7439-96-5	Manganese	897		03/29/2018	1709
7440-02-0	Nickel	40.0	U	03/29/2018	1709
7440-09-7	Potassium	24500		03/29/2018	1709
7782-49-2	Selenium	35.0	U	03/29/2018	1709
7440-22-4	Silver	10.0	U	03/29/2018	1709
7440-23-5	Sodium	282000		03/29/2018	1709
7440-28-0	Thallium	25.0	U	03/29/2018	1709
7440-62-2	Vanadium	50.0	U	03/29/2018	1709
7440-66-6	Zinc	3.1	J	03/29/2018	1709
Hardness	Hardness (total)	186		03/29/2018	1709

NOTE: Hardness (total) is reported in ${\rm mg/L}$

Comments:

						EPA	SAMPLE	NO.	
	FORM 1			- IN		SY-3-20180327		7	
			INORGANIC ANALY	SIS DATA SH	EET	L			4-
Lab Name:	Chemtech Cons	sulting Grou	up	Contract:	EPW140	30			11
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		S	DG No.:	J2116	
Matrix:	WATER			Lab Sample	ID: J	2116-0	4		
<pre>% Solids:</pre>	5 4			Date Recei	ved: 0	3/28/2	2018		
Analytical	Method: ICP-	-AES							

ug/L

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) :

CAS No. Analyte Concentration 0 Date Analyzed Time Analyzed 7429-90-5 1725 Aluminum 13.8 J 03/29/2018 7440-36-0 Antimony 60.0 U 03/29/2018 1725 41.3 1725 7440-38-2 03/29/2018 Arsenic 7440-39-3 Barium 155 J 03/29/2018 1725 7440-41-7 5.0 1725 Beryllium U 03/29/2018 7440-43-9 Cadmium 5.0 U 03/29/2018 1725 7440-70-2 Calcium 44900 03/29/2018 1725 7440-47-3 Chromium 10.0 U 03/29/2018 1725 7440-48-4 1725 Cobalt 50.0 U 03/29/2018 7440-50-8 Copper 25.0 U 03/29/2018 1725 7439-89-6 1725 Iron 36200 03/29/2018 7439-92-1 Lead 3.8 J 03/29/2018 1725 7439-95-4 1725 Magnesium 19200 03/29/2018 7439-96-5 1725 Manganese 3790 03/29/2018 7440-02-0 1725 Nickel 40.0 U 03/29/2018 7440-09-7 1725 Potassium 15100 03/29/2018 7782-49-2 Selenium 35.0 U 03/29/2018 1725 7440-22-4 1725 Silver 0.91 J 03/29/2018 7440-23-5 Sodium 1725 224000 03/29/2018 7440-28-0 Thallium 1725 25.0 U 03/29/2018 7440-62-2 Vanadium 1725 50.0 U 03/29/2018 7440-66-6 Zinc 60.0 U 03/29/2018 1725 Hardness 191 03/29/2018 1725 Hardness (total)

NOTE: Hardness (total) is reported in mg/L

Comments:

EPA	SAMPLE	NO.	

51

SY-2R-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group	Contract: EPW14	1030
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2116
Matrix:	WATER	Lab Sample ID:	J2116-05
% Solids:		Date Received:	03/28/2018
Analytical	Method: ICP-AES		

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	267		03/29/2018	1729
7440-36-0	Antimony	60.0	U	03/29/2018	1729
7440-38-2	Arsenic	10.0	U	03/29/2018	1729
7440-39-3	Barium	75.7	J	03/29/2018	1729
7440-41-7	Beryllium	3.5	J	03/29/2018	1729
7440-43-9	Cadmium	5.0	U	03/29/2018	1729
7440-70-2	Calcium	24300		03/29/2018	1729
7440-47-3	Chromium	1.4	J	03/29/2018	1729
7440-48-4	Cobalt	5.1	J	03/29/2018	1729
7440-50-8	Copper	3.9	J	03/29/2018	1729
7439-89-6	Iron	40.9	J	03/29/2018	1729
7439-92-1	Lead	10.0	U	03/29/2018	1729
7439-95-4	Magnesium	4820	J	03/29/2018	1729
7439-96-5	Manganese	32.4		03/29/2018	1729
7440-02-0	Nickel	28.3	J	03/29/2018	1729
7440-09-7	Potassium	1750	J	03/29/2018	1729
7782-49-2	Selenium	35.0	U	03/29/2018	1729
7440-22-4	Silver	10.0	U	03/29/2018	1729
7440-23-5	Sodium	267000	1	03/29/2018	1729
7440-28-0	Thallium	25.0	U	03/29/2018	1729
7440-62-2	Vanadium	50.0	U	03/29/2018	1729
7440-66-6	Zinc	53.5	J	03/29/2018	1729
Hardness	Hardness (total)	80.5		03/29/2018	1729

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.	

11

SY-5-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cor	nsulting Grou	ıp	Contract:	EPW14	030	Ø
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :		SDG No.: J2116	
Matrix:	WATER			Lab Sample	ID:	J2116-06	
🧏 Solids:	· · · · · · · · · · · · · · · · · · ·			Date Recei	ved:	03/28/2018	
Analytical	Method: ICP	P-AES					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	13.1	J	03/29/2018	1733
7440-36-0	Antimony	60.0	U	03/29/2018	1733
7440-38-2	Arsenic	42.5		03/29/2018	1733
7440-39-3	Barium	152	J		1733
			-	03/29/2018	
7440-41-7	Beryllium	5.0	U	03/29/2018	1733
7440-43-9	Cadmium	5.0	U	03/29/2018	1733
7440-70-2	Calcium	44000		03/29/2018	1733
7440-47-3	Chromium	10.0	U	03/29/2018	1733
7440-48-4	Cobalt	50.0	U	03/29/2018	1733
7440-50-8	Copper	25.0	U	03/29/2018	1733
7439-89-6	Iron	35700	1	03/29/2018	1733
7439-92-1	Lead	3.9	J	03/29/2018	1733
7439-95-4	Magnesium	18900		03/29/2018	1733
7439-96-5	Manganese	3720		03/29/2018	1733
7440-02-0	Nickel	40.0	U	03/29/2018	1733
7440-09-7	Potassium	14900		03/29/2018	1733
7782-49-2	Selenium	35.0	U	03/29/2018	1733
7440-22-4	Silver	0.94	J	03/29/2018	1733
7440-23-5	Sodium	218000	(— — — — — — — — — — — — — — — — — — —	03/29/2018	1733
7440-28-0	Thallium	4.3	J	03/29/2018	1733
7440-62-2	Vanadium	50.0	U	03/29/2018	1733
7440-66-6	Zinc	6.5	J	03/29/2018	1733
Hardness	Hardness (total)	188		03/29/2018	1733

NOTE: Hardness (total) is reported in mg/L

SY-2D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

			INORGANIC ANALY	SIS DATA SHE	ET			21
Lab Name:	Chemtech Cons	ulting Grou	ıp	Contract:	EPW1403	0		
Lab Code:	CHM	Case No.:	Syosset Landf:	MA No. :		SDG No.:	J2116	
Matrix:	WATER			Lab Sample	ID: J2	2116-07		
<pre>% Solids:</pre>				Date Receiv	red: 03	3/28/2018		
Analytical	Method: ICP-	AES						

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	325	-	03/29/2018	1737
7440-36-0	Antimony	60.0	U	03/29/2018	1737
7440-38-2	Arsenic	10.0	U	03/29/2018	1737
7440-39-3	Barium	82.4	J	03/29/2018	1737
7440-41-7	Beryllium	5.0	U	03/29/2018	1737
7440-43-9	Cadmium	5.0	U	03/29/2018	1737
7440-70-2	Calcium	32100		03/29/2018	1737
7440-47-3	Chromium	10.0	U	03/29/2018	1737
7440-48-4	Cobalt	50.0	U	03/29/2018	1737
7440-50-8	Copper	25.0	U	03/29/2018	1737
7439-89-6	Iron	158		03/29/2018	1737
7439-92-1	Lead	2.6	J	03/29/2018	1737
7439-95-4	Magnesium	5960		03/29/2018	1737
7439-96-5	Manganese	453		03/29/2018	1737
7440-02-0	Nickel	40.0	U	03/29/2018	1737
7440-09-7	Potassium	4590	J	03/29/2018	1737
7782-49-2	Selenium	35.0	U	03/29/2018	1737
7440-22-4	Silver	10.0	U	03/29/2018	1737
7440-23-5	Sodium	233000		03/29/2018	1737
7440-28-0	Thallium	25.0	U	03/29/2018	1737
7440-62-2	Vanadium	50.0	U	03/29/2018	1737
7440-66-6	Zinc	11.9	J	03/29/2018	1737
Hardness	Hardness (total)	105		03/29/2018	1737

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.	

SY-3D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

	INORGANIC ANALY	SIS DATA SHEET		9D
Lab Name:	Chemtech Consulting Group	Contract: EPW1	4030	00
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2116	
Matrix: _	WATER	Lab Sample ID:	J2116-08	
% Solids:		Date Received:	03/28/2018	
Analytical	Method: ICP-AES			

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	03/29/2018	1750
7440-36-0		60.0			1750
	Antimony		U	03/29/2018	
7440-38-2	Arsenic	16.0		03/29/2018	1750
7440-39-3	Barium	192	J	03/29/2018	1750
7440-41-7	Beryllium	5.0	U	03/29/2018	1750
7440-43-9	Cadmium	5.0	U	03/29/2018	1750
7440-70-2	Calcium	49000		03/29/2018	1750
7440-47-3	Chromium	10.0	U	03/29/2018	1750
7440-48-4	Cobalt	18.6	J	03/29/2018	1750
7440-50-8	Copper	25.0	U	03/29/2018	1750
7439-89-6	Iron	23000	-	03/29/2018	1750
7439-92-1	Lead	2.5	J	03/29/2018	1750
7439-95-4	Magnesium	14600		03/29/2018	1750
7439-96-5	Manganese	874		03/29/2018	1750
7440-02-0	Nickel	40.0	U	03/29/2018	1750
7440-09-7	Potassium	24300		03/29/2018	1750
7782-49-2	Selenium	35.0	U	03/29/2018	1750
7440-22-4	Silver	10.0	U	03/29/2018	1750
7440-23-5	Sodium	278000		03/29/2018	1750
7440-28-0	Thallium	25.0	U	03/29/2018	1750
7440-62-2	Vanadium	50.0	U	03/29/2018	1750
7440-66-6	Zinc	7.8	J	03/29/2018	1750

NOTE: Hardness (total) is reported in mg/L

SY-3-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

			INORGANIC ANAL	1919 DAIA SH	661				ID
Lab Name:	Chemtech Con	sulting Grou	up	Contract:	EPW1	4030			-4 P
Lab Code:	СНМ	Case No.:	Syosset Landf	i MA No. :			SDG No.:	J2116	
Matrix:	WATER			Lab Sample	ID:	J2116	-11		
<pre>% Solids:</pre>				Date Recei	ved:	03/28	3/2018		
Analytical	Method: ICP	-AES							

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	20.9	J	04/05/2018	1259
7440-36-0	Antimony	60.0	U	04/05/2018	1259
7440-38-2	Arsenic	53.5		04/05/2018	1259
7440-39-3	Barium	153	J	04/05/2018	1259
7440-41-7	Beryllium	5.0	U	04/05/2018	1259
7440-43-9	Cadmium	5.0	U	04/05/2018	1259
7440-70-2	Calcium	43800	1.1	04/05/2018	1259
7440-47-3	Chromium	10.0	U	04/05/2018	1259
7440-48-4	Cobalt	50.0	U	04/05/2018	1259
7440-50-8	Copper	25.0	U	04/05/2018	1259
7439-89-6	Iron	34900	1	04/05/2018	1259
7439-92-1	Lead	2.7	J	04/05/2018	1259
7439-95-4	Magnesium	17600		04/05/2018	1259
7439-96-5	Manganese	3740		04/05/2018	1259
7440-02-0	Nickel	40.0	U	04/05/2018	1259
7440-09-7	Potassium	14400	4	04/05/2018	1259
7782-49-2	Selenium	35.0	U	04/05/2018	1259
7440-22-4	Silver	10.0	U	04/05/2018	1259
7440-23-5	Sodium	208000		04/05/2018	1259
7440-28-0	Thallium	25.0	U	04/05/2018	1259
7440-62-2	Vanadium	50.0	U	04/05/2018	1259
7440-66-6	Zinc	60.0	U	04/05/2018	1259

NOTE: Hardness (total) is reported in mg/L

Ε	PA	SA	ME	PLE	NO.	

SY-2R-20180327

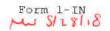
FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract: E	EPW14030		12D
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2116
Matrix:	WATER			Lab Sample I	ID: J211	6-12	
[%] Solids:				Date Receive	ed: 03/2	28/2018	
Analytical	Method: ICP-	AES					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

			21		
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	230		04/05/2018	1303
7440-36-0	Antimony	60.0	U	04/05/2018	1303
7440-38-2	Arsenic	3.5	J	04/05/2018	1303
7440-39-3	Barium	72.8	J	04/05/2018	1303
7440-41-7	Beryllium	3.4	J	04/05/2018	1303
7440-43-9	Cadmium	5.0	U	04/05/2018	1303
7440-70-2	Calcium	23400		04/05/2018	1303
7440-47-3	Chromium	1.6	J	04/05/2018	1303
7440-48-4	Cobalt	4.7	J	04/05/2018	1303
7440-50-8	Copper	25.0	U	04/05/2018	1303
7439-89-6	Iron	16.3	J	04/05/2018	1303
7439-92-1	Lead	2.6	J	04/05/2018	1303
7439-95-4	Magnesium	4270	J	04/05/2018	1303
7439-96-5	Manganese	30.2		04/05/2018	1303
7440-02-0	Nickel	26.0	J	04/05/2018	1303
7440-09-7	Potassium 5000	1230. u	Y	04/05/2018	1303
7782-49-2	Selenium	35.0	U	04/05/2018	1303
7440-22-4	Silver	10.0	U	04/05/2018	1303
7440-23-5	Sodium	247000		04/05/2018	1303
7440-28-0	Thallium	25.0	U	04/05/2018	1303
7440-62-2	Vanadium	50.0	U	04/05/2018	1303
7440-66-6	Zinc	51.7	J	04/05/2018	1303

NOTE: Hardness (total) is reported in mg/L


	FORM 1 - IN						SY-5-20180327		
			INORGANIC ANALY	SIS DATA SH	EET				13D
Lab Name:	Chemtech Consulting Group			Contract:	EPW14	4030			
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :			SDG No.:	J2116	
Matrix:	WATER			Lab Sample	ID:	J2116	5-13		
<pre>% Solids:</pre>				Date Recei	ved:	03/2	8/2018		

Analytical Method: ICP-AES

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) 📑 ug/L

CAS No. Analyte Concentration Q Date Analyzed Time Analyzed 7429-90-5 Aluminum 21.0 1307 04/05/2018 J 7440-36-0 60.0 Antimony IJ 1307 04/05/2018 7440-38-2 Arsenic 56.1 04/05/2018 1307 7440-39-3 Barium 154 J 04/05/2018 1307 7440-41-7 Beryllium 5.0 U 04/05/2018 1307 7440-43-9 Cadmium 5.0 U 04/05/2018 1307 7440-70-2 Calcium 43900 04/05/2018 1307 7440-47-3 Chromium 10.0 U 04/05/2018 1307 7440-48-4 Cobalt 50.0 U 04/05/2018 1307 7440-50-8 Copper 25.0 U 04/05/2018 1307 7439-89-6 Iron 35500 04/05/2018 1307 7439-92-1 Lead 3.2 J 04/05/2018 1307 7439-95-4 Magnesium 17600 04/05/2018 1307 7439-96-5 3750 Manganese 04/05/2018 1307 7440-02-0 Nickel 40.0 04/05/2018 U 1307 7440-09-7 Potassium 14600 04/05/2018 1307 7782-49-2 Selenium 35.0 U 04/05/2018 1307 7440-22-4 Silver 0.79 J 04/05/2018 1307 7440-23-5 Sodium 206000 04/05/2018 1307 7440-28-0 Thallium 25.0 Ħ 04/05/2018 1307 7440-62-2 Vanadium 50.0 04/05/2018 1307 U 7440-66-6 5.0 Zinc J 04/05/2018 1307

NOTE: Hardness (total) is reported in mg/L

	FORM 1 - IN					SY-2D-20180327			
		:	INORGANIC ANALY	SIS DATA SHI	EET			14D	
Lab Name:	Chemtech Consulting Group			Contract: EPW1		14030		· · · · ·	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2116		
Matrix:	WATER			Lab Sample	ID: J	2116-14			
% Solids:				Date Recei	ved: 0	3/28/2018			

٦

ſ

Analytical Method: ICP-AES

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	19.3	J	04/05/2018	1311
7440-36-0	Antimony	60.0	U	04/05/2018	1311
7440-38-2	Arsenic	3.3	J	04/05/2018	1311
7440-39-3	Barium	79.2	J	04/05/2018	1311
7440-41-7	Beryllium	5.0	U	04/05/2018	1311
7440-43-9	Cadmium	5.0	U	04/05/2018	1311
7440-70-2	Calcium	30500		04/05/2018	1311
7440-47-3	Chromium	10.0	U	04/05/2018	1311
7440-48-4	Cobalt	50.0	U	04/05/2018	1311
7440-50-8	Copper	25.0	U	04/05/2018	1311
7439-89-6	Iron	100	U	04/05/2018	1311
7439-92-1	Lead	3.9	J	04/05/2018	1311
7439-95-4	Magnesium	5470		04/05/2018	1311
7439-96-5	Manganese	361		04/05/2018	1311
7440-02-0	Nickel	40.0	U	04/05/2018	1311
7440-09-7	Potassium	4070	J	04/05/2018	1311
7782-49-2	Selenium	35.0	U	04/05/2018	1311
7440-22-4	Silver	10.0	U	04/05/2018	1311
7440-23-5	Sodium	211000		04/05/2018	1311
7440-28-0	Thallium	25.0	U	04/05/2018	1311
7440-62-2	Vanadium	50.0	U	04/05/2018	1311
7440-66-6	Zinc	17.4	J	04/05/2018	1311

NOTE: Hardness (total) is reported in mg/L

Comments:

Form 1-IN JW 51281.8

				INO	FORM 1 RGANIC ANALY:			CET	EPA SJ SY-3D-2		
Lab Name:	Chemte	ech Cons	ulting Gro	up		Cont	ract:	EPW14	030		
Lab Code:	CHM		Case No.:	Sy	osset Landfi	MA N	o. : _		SDG	No.:	J2116
Matrix:	WATER					Lab	Sample	ID:	J2116-01		
<pre>% Solids:</pre>						Date	Receiv	ved:	03/28/201	.8	
Analytical	Method	: CVAA		_							
Concentrat	lon Uni	ts (µg/L	, mg/L, mg	g/kg	dry weight c	or µg)	1	ug/L			
CAS I	No.	Analyte	9		Concentrat	ion	Q	Date	Analyzed	Time	Analyzed

J

04/04/2018

0.16

Comments:

7439-97-6

Mercury

NOTE: Hardness (total) is reported in mg/L

1717

						EPA	SAMPLE NO.	
			FORM 1	- IN		SY-3-	-20180327	17
			INORGANIC ANALY:	SIS DATA SH	EET			
Lab Name:	Chemtech Con	sulting Grou	ıp	Contract:	EPW140	30		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		S	DG No.: J2	116
Matrix:	WATER			Lab Sample	ID:	J2116-0	4	
% Solids:				Date Recei	ved: (03/28/2	2018	
Analytical	Method: CVA	A						
Concentrati	lon Units (µg/	'L, mg/L, mg/	/kg dry weight o	»r μg) :	ug/L			

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.062	J	04/04/2018	1729

NOTE: Hardness (total) is reported in ${\rm mg}/{\rm L}$

					EPA SAMPLE NO.
			FORM 1	- IN	SY-2R-20180327
			INORGANIC ANALY	SIS DATA SHEET	
Lab Name:	Chemtech Cons	ulting Grou	p	Contract: EPW14	030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2116
Matrix:	WATER			Lab Sample ID:	J2116-05
% Solids:				Date Received:	03/28/2018
Analytical	Method: CVAA	L			
Concentrati	on Units (µg/I	L, mg/L, mg/	kg dry weight d	orug) 👔 ug/I	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1731

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.

b

SY-5-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group			Contract: E	PW14030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.:	J2116
Matrix:	WATER			Lab Sample I	D: J2116-	-06	
<pre>% Solids:</pre>				Date Receive	d: 03/28	/2018	
Analytical	Method: CVAA	7					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.059	J	04/04/2018	1733

NOTE: Hardness (total) is reported in ${\tt mg/L}$

7

SY-2D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consu	lting Grou	ıp	Contract: EPW14	1030
Lab Code:	СНМ		Case No.:	Syosset Landfi	MA No. :	SDG No.: J2116
Matrix:	WATER				Lab Sample ID:	J2116-07
% Solids:					Date Received:	03/28/2018
Analytical	Method:	CVAA				
Concentrati	ion Units	(µg/L,	mg/L, mg	/kg dry weight o	or µg) : ug/l	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1735

NOTE: Hardness (total) is reported in ${\rm mg/L}$

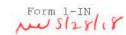
								EPA S	AMPLE NO. 4	
				FORM 1	- IN			SY-3D-2	0180327	
			INO	RGANIC ANALYS	SIS DA	ATA SHE	ET			
Lab 1	Name:	Chemt	ech Consulting Group		Cont	ract:	EPW140	30		
Lab (Code:	СНМ	Case No.: Sy	osset Landfi	MA No	o. :		SDG	No.: J2116	_
Matri	ix:	WATER			Lab S	Sample	ID: J	2116-08		_
% Sol	lids:				Date	Receiv	ved: 0	3/28/201	.8	
Analy	ytical	Method	: CVAA							
Conce	entrati	on Uni	ts (µg/L, mg/L, mg/kg	dry weight o	r μg)	1	ug/L			
	CAS N	10.	Analyte	Concentrati	Lon	Q	Date A	nalyzed	Time Analyzed	
	7439-	97-6	Mercury	0.039		J	04/04	/2018	1738	

NOTE: Hardness (total) is reported in mg/L

										EPA SA	AMPLE	NO.	
					INO	FORM RGANIC ANAL	1 - IN YSIS DA	ATA SHI	SET	SY-3-20	18032	27	11
Lab N	lame:	Chemte	ech Consu	ulting	Group		Cont	ract:	EPW14	030			
Lab (Code:	CHM		Case 1	No.: Sy	osset Landf	i ma No	o. :		SDG	No.:	J2116	-
Matri	x:	WATER					Lab :	Sample	ID:	J2116-11			
8 Sol	ids:						Date	Receiv	ved:	03/28/201	.8		
Analy	vtical	Method	CVAA										
Conce	entrati	on Uni	ts (µg/L	, mg/L	, mg/kg	dry weight	or µg)	÷.	ug/L				
[CAS N	о.	Analyte	1		Concentra	tion	Q	Date	Analyzed	Time	Analyze	ed

7439-97-6 Mercury 0.20 U 04/04/2018

NOTE: Hardness (total) is reported in ${\rm mg}/{\rm L}$


Comments:

1744

					EPA SAMPLE NO.
			FORM 1	- IN	SY-2R-20180327
		I	NORGANIC ANALYS	SIS DATA SHEET	۱
Lab Name:	Chemtech	Consulting Grou	p	Contract: EPW2	14030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.:
Matrix:	WATER			Lab Sample ID:	J2116-12
% Solids:				Date Received:	03/28/2018
Analytical	Method:	CVAA			
Concentrati	lon Units ((µg/L, mg/L, mg/	kg dry weight c	or μg) : ug,	/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1747

NOTE: Hardness (total) is reported in ${\rm mg/L}$

					EPA SAMPLE NO.	
			FORM 1	- IN	SY-5-20180327	3
		:	INORGANIC ANALY	SIS DATA SHEET		
Lab Name:	Chemtech	Consulting Grou	p	Contract: EPW1	4030	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2116	
Matrix:	WATER			Lab Sample ID:	J2116-13	
% Solids:				Date Received:	03/28/2018	
Analytical	Method:	CVAA				
Concentrati	ion Units	(µg/L, mg/L, mg/	'kg dry weight o	orμg): ug/	L	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.039	J	04/04/2018	1749

NOTE: Hardness (total) is reported in ${\rm mg/L}$

14

SY-2D-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	ulting Grou	ıp	Contract:	EPW14	030		
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :			SDG No.:	J2116
Matrix:	WATER			Lab Sample	ID:	J2116-	-14	
% Solids:				Date Recei	ved:	03/28	/2018	
Analytical	Method: CVAA	L						

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) 👔 ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1751

NOTE: Hardness (total) is reported in mg/L

						EPA SAMPLE NO.
			FORM 1	- IN		SY-3D-20180327
			INORGANIC ANALY	SIS DATA SH	EET	
Lab Name:	Chemtech	Consulting Grou	qt	Contract:	EPW14	030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.: J2116
Matrix:	WATER			Lab Sample	ID:	J2116-01
% Solids:				Date Recei	ved:	03/28/2018
Analytical	Method:	Spectrophotome	etry			
Concentrati	on Units	(µg/L, mg/L, mg	/kg dry weight o	or µg) :	ug/L	

CAS No. Analyte Concentration Date Analyzed Time Analyzed Q 57-12-5 Cyanide 10.0 U 04/02/2018 1549

NOTE: Hardness (total) is reported in mg/L

Comments:

1

4

SY-3-20180327

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group					Contract:	EPW14030			
Lab Code:	СНМ		Case No.:	Syosset	Landfi	MA No. :			SDG No.:	J2116
Matrix:	WATER					Lab Sample	ID:	J2116-	-04	
<pre>% Solids:</pre>						Date Recei	ved:	03/28	/2018	
Analytical	Method:	Spec	trophotome	try						

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/02/2018	1550

NOTE: Hardness (total) is reported in mg/L

										EPA	SAMPLE	NO.	5
					TNO	FORM : RGANIC ANAL	l - IN	מידא קאז	ምግና	SY-2R	-201803	327	
					INO	NGANIC ANAL	1919 0	AIA Shi	561				
Lab N	Name:	Chemte	ch Cons	ulting (Group		Cont	ract:	EPW14	030			
Lab (Code:	CHM		Case No	ь.: <u>Sy</u>	osset Landf	i ma n	o. :		S	DG No.:	J2116	
Matri	ix: _	WATER					Lab	Sample	ID:	J2116-05	5		
% Sol	lids:	_					Date	Receiv	ved:	03/28/2	018		
Analy	ytical	Method	Spec	trophot	ometry	Υ							
Conce	entrati	on Unit	∶s (µg/L	, mg/L,	mg/kg	dry weight	or µg)	:	ug/L				
	CAS N	Jo.	Analyte	e		Concentra	tion	Q	Date	Analyzed	d Time	Analyz	ed

J

04/02/2018

1556

3.7

Comments:

57-12-5

Cyanide

NOTE: Hardness (total) is reported in mg/L

			EPA SAMPLE NO.
	FORM 1	- IN	SY-5-20180327
	INORGANIC ANALY	SIS DATA SHEET	
Lab Name:	Chemtech Consulting Group	Contract: EPW14	030
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.:
Matrix:	WATER	Lab Sample ID:	J2116-06
% Solids:		Date Received:	03/28/2018
Analytical	Method: Spectrophotometry		
Concentrati	on Units (µg/L, mg/L, mg/kg dry weight c	or μg) : ug/L	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/02/2018	1556

NOTE: Hardness (total) is reported in ${\rm mg/L}$

						EPA SAMPLE NO. 7
				FORM 1 INORGANIC ANALY		SY-2D-20180327
Lab Name:	Chemtech	Consulting	g Grou	īρ	Contract: EPW14	1030
Lab Code:	СНМ	Case	No.:	Syosset Landfi	MA No. :	SDG No.: J2116
Matrix:	WATER				Lab Sample ID:	J2116-07
% Solids:					Date Received:	03/28/2018
Analytical	Method:	Spectroph	otome	try		
Concentrat	ion Units	(µg/L, mg/)	L, mg,	/kg dry weight o	or μg) : <u>ug/1</u>	

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/02/2018	1556

NOTE: Hardness (total) is reported in ${\rm mg/L}$

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 11:00	
chem.	Lockwood, Ressel, & Banten	Date Collected.	05/27/18 11:00	
Project:	Syosset Landfill	Date Received:	03/28/18	
Client Sample ID:	SY-3D-20180327	SDG No.:	J2116	
Lab Sample ID:	J2116-01	Matrix:	WATER	
		% Solid:	0	

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		220		1	0.4	1	2	mg/L		04/04/18 14:41	SM2320 B
Ammonia as N	SeeDL	18.3	OR	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:04	SM 4500-NH3 B
											plus G
Bromide	Seed	0.42	J	1	0.066	0.25	0.5	mg/L		03/28/18 13:37	300.0
Chloride	Star	309	OR	1	0.075	0.075	0.15	mg/L-		03/28/18 13:37	300.0
Nitrate		0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 13:37	300.0
Sulfate	See DL	68.5	OR	1	0.13	0.375	0.75	mg/L		03/28/18 13:37	300.0
BOD5		2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD		14.5	1.135	1	2.43	5	10	mg/L		04/02/18 12:04	SM5220 D
Color		400	Ø	10	50	50	50	cu		03/29/18 09:15	SM2120 B
Phenolics		0.05 🚺	N	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS		1034		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN		8.1 J		1	0,096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:20	SM4500-N Org
											B or C plus NH3
											G
TOC		4.5		1	0.08	0.25	0.5	mg/L		03/28/18 16:16	SM5310B

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range N = Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 10116 OENOUEM 40 .4 077

Chloride

Sulfate

See DLZ 528

40.5

D

5

Report of Analysis

IDLI

plus G

300.0

03/28/18 18:47

03/28/18 18:47 300.0

Client:	Lockwood	l, Kessler, & B	artlett		Date Collected:	03/27/18 1	1:00	
Project:	Syosset La	andfill			Date Received:	03/28/18		
Client Sample ID:	SY-3D-20	180327DL				SDG No.:	J2116	
Lab Sample ID:	J2116-01E	J2116-01DL				Matrix:	WATER	
L	_					% Solid:	0	
Parameter	Conc. Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	18.7 1	20 0.68	1	2	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B

mg/L

mg/L

0.75

3.8

0.38

0.66

0.375

1.9

0	indicator	TCC	aanteal	aritaria	dia		
Ų≈	indicates	LUS	control	criteria	aia	not	meet

requirements

Just28/18

H = Sample Analysis Out Of Hold Time

19146 OENOUEM

D = Dilution

Comments:

U = Not Detected

LOQ = Limit of Quantitation

LOD = Limit of Detection

MDL = Method Detection Limit

- J = Estimated Value
- $\mathbf{B} = \mathbf{A}$ nalyte Found in Associated Method Blank

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

N =Spiked sample recovery not within control limits

47 -4 977

^{* =} indicates the duplicate analysis is not within control limits.

Report of Analysis

 lba
100

2

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 11:00
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	SY-3D-20180327DL2	SDG No.:	J2116
Lab Sample ID:	J2116-01DL2	Matrix:	WATER
		% Solid:	0
Parameter	Conc. Qua. DF MDL LOD LOQ/	CRQL Units Prep Date	Date Ana. Ana Met.
Chloride	508 100 7.5 7.5 15	mg/L	03/28/18 19:18 300.0

Comments:

U = Not DetectedJ = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits mu sizelie 10116 OENOUEM 40 .4 977

CHEIMTECH

	Report of Analysis		4
Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 12:00
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	SY-3-20180327	SDG No.:	J2116
Lab Sample ID:	J2116-04	Matrix:	WATER
		% Solid:	0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	14	232		1	0.4	1	2	mg/L		04/04/18 14:48	SM2320 B
Ammonia as N	See DL	11.7	OR	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	-SM 4500-NH3 B
											plus G
Bromide	C	0.28	J	1	0.066	0.25	0.5	mg/L		03/28/18 14:08	300.0
Chloride	SeeDL	255	OR	1	0.075	0.075	0.15	mg/L		03/28/18 14:08	300.0
Nitrate		0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 14:08	300.0
Sulfate		36.2		1	0.13	0.375	0.75	mg/L		03/28/18 14:08	300.0
BOD5		2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD		15.5		1	2.43	5	10	mg/L		04/02/18 12:07	SM5220 D
Color		300	V	10	50	50	50	cu		03/29/18 09:21	SM2120 B
Phenolics		0.05 U	11	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:13	9065
TDS	Care	859		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN	SeeDL	10.1	OR	-1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18-10:31	SM4500-N Org
											B or C plus NH3
											G
TOC		5,3		1	0.08	0.25	0.5	mg/L		03/28/18 16:35	SM5310B

Comments

U = Not DetectedJ = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time 10116 OENOLEM 40 -4 077

					R	eport of An	alysis	_		402
Client:	Loc	kwood.	, Kess	ler, & B	artlett			Date Collected:	03/27/18 1	2:00
Project:	Syo	sset La	ndfill					Date Received:	03/28/18	
Client Sample ID:	SY-	3-2018	03271	DL				SDG No.:	J2116	
Lab Sample ID:	J211	16-04D	L					Matrix:	WATER	
				_	_			% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	11.3	P	10	0.34	0.5	1	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B
Chloride TKN	372 10.5 J	P	50 2	3.8 0.19	3.75 0.5	7.5	mg/L mg/L	03/29/18 09:15	03/28/18 19:49 03/30/18 11:04	plus G 300.0

G

B or C plus NH3 $\,$

Comments:

U = Not DetectedJ = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilution of interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range رادی اری N =Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 10116 OENOUEM 20 -1 27

Chemiech

5

Donort	ot Ana	VCIC
Report		14212

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 13:45	
Project:	Syosset Landfill	Date Received:	03/28/18	
Client Sample ID:	SY-2R-20180327	SDG No.:	J2116	
Lab Sample ID:	J2116-05	Matrix:	WATER	
		% Solid:	0	

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		114		1	0.4	1	2	mg/L		04/04/18 14:53	SM2320 B
Ammonia as N	I	0.078	J	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
											plus G
Bromide	00000	0.5	U	1	0.066	0.25	0.5	mg/L		03/28/18 15:10	300.0
Chloride	Seep-2	265	OR	1-	0.075	0.075	0.15	mg/L		03/28/18 15:10	- 300.0
Nitrate	Con St. I	2.5		1	0.027	0.065	0.13	mg/L		03/28/18 15:10	300.0
Sulfate	Secoul	45.5	OR	1	0.13	0.375	0.75	mg/L		03/28/18 15:10	300.0
BOD5		2	U	1	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD		6.59	J	1	2.43	5	10	mg/L		04/02/18 12:07	SM5220 D
Color		5	U	1	5	5	5	cu		03/29/18 09:26	SM2120 B
Phenolics		0.05 U	10	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS		808		1	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN		0.24 ブ	X	1	0.096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
											B or C plus NH3
											G
TOC		2.2		1	0.08	0.25	0.5	mg/L		03/28/18 16:54	SM5310B

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range V = S / 2 B / V = S piked sample recovery not within control limitsH = Sample Analysis Out Of Hold Time 10116 OENIQUEM 94 -1 977

		50

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 13:45
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	SY-2R-20180327DL	SDG No.:	J2116
Lab Sample ID:	J2116-05DL	Matrix:	WATER
		% Solid:	0
Parameter	Conc. Qua. DF MDL LOD LOO/CROL	Units Prep Date	Date Ana. Ana Met.

Paramete	er	Conc.	Qua.	DF	MDL	LOD	LOQ/CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Chloride	Sec DL2	357	OR	2	0.15	0.15	0.3	mg/L		03/28/18 21:22	300.0	
Sulfate		36.6	ď	2	0.26	0.75	1.5	mg/L		03/28/18 21:22	300.0	1

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time 10146 OENIQUEM 00 AF 077

5012

Client:	Loe	kwood,	Kessl	er, & Ba	artlett	Date Collected:	03/27/18 1	3:45		
Project:	Syo	sset Lai	ndfill		Date Received:	03/28/18				
Client Sample ID:	SY-2	2R-201	80327	SDG No.:	J2116					
Lab Sample ID:	J211	16-05DI	L2					Matrix:	WATER	
		_						% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	461	ø	100	7.5	7.5	15	mg/L		03/29/18 10:36	300.0

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits wsliply 10116 OENOUEM

CHEIMIECH

6

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 12:15	
Project:	Syosset Landfill	Date Received:	03/28/18	
Client Sample ID:	SY-5-20180327	SDG No.:	J2116	
Lab Sample ID:	J2116-06	Matrix:	WATER	
		% Solid:	0	

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	221		1	0.4	1	2	mg/L		04/04/18 14:56	SM2320 B
Ammonia as N See DL	11.2	OR	1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B
										plus G
Bromide	0.28	J	1	0.066	0.25	0.5	mg/L		03/28/18 14:39	300.0
Chloride See DL2	256	OR	-1	0.075	0.075	0.15	mg/L		03/28/18 14:39	300.0
Nitrate	0.13	U	1	0.027	0.065	0.13	mg/L		03/28/18 14:39	300.0
Sulfate See Ocl	37.6	OR	1	0.13	0.375	0.75	mg/L		03/28/18 14:39	300.0
BOD5	2	U	I	2	2	2	mg/L		03/29/18 10:40	SM5210 B
COD	12.5		1	2.43	5	10	mg/L		04/02/18 12:08	SM5220 D
Color	300	Ø	10	50	50	50	cu		03/29/18 09:32	SM2120 B
Phenolics	0.05 🔰	JB	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	815		I	0.031	5	10	mg/L		03/28/18 16:45	SM2540C
TKN See DUI	10.7	OR	1	0:096	0.25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org
										B or C plus NH3 G
TOC	4.8		1	0.08	0.25	0.5	mg/L		03/28/18 17:13	SM5310B

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time New 5/28/18 N =Spiked sample recovery not within control limits 19446 OENOUEM

60LI

G

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/27/18 12:15
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	SY-5-20180327DL	SDG No.:	J2116
Lab Sample ID:	J2116-06DL	Matrix:	WATER
		% Solid:	0
Davamatar	Cong Que DE MDI LOD LOO/CROI	Units Duan Data	Data Ana Ana Mat

Parameter	Conc.	Qua.	Dr	MIDL	LOD	LUU/CKUL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	11.1	Þ	10	0.34	0.5	1	mg/L	03/29/18 14:23	03/30/18 15:46	SM 4500-NH3 B
Carnes		100								plus G
Chloride Secour	308	OR	2	0.15	0.15	0.3	mg/L		03/28/18 20:20	300.0
Sulfate	35.1	Ø	2	0.26	0.75	1.5	mg/L		03/28/18 20:20	300.0
TKN	10.8 🟅	B	2	0.19	0.5	1	mg/L	03/29/18 09:15	03/30/18 11:04	SM4500-N Org
										B or C plus NH3

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilution of interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range SI 28/18 N = Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 75 -5 777

Client:	Lockwood, Kessler, & Bartlett		Date Collected:	03/27/18 12:15
Project:	Syosset Landfill		Date Received:	03/28/18
Client Sample ID:	SY-5-20180327DL2		SDG No.:	J2116
Lab Sample ID:	J2116-06DL2		Matrix:	WATER
			% Solid:	0
Parameter	Conc. Qua. DF MDL LOD	LOQ / CRQL Units	Prep Date I	Date Ana. Ana Met.
Chloride	365 🔰 50 3.8 3.75	7.5 mg/L	0	3/28/18 20:51 300.0

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range SI28/18 N =Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 10146 OENIQUEM 96 -£ 977

CHEIMITECH

					R	eport of Ana	alysis			7
Client:	Loc	kwood,	Kess	ler, & Ba	artlett			Date Collected:	03/27/18 1	5:10
Project:	Syo	sset Lai	ndfill					Date Received:	03/28/18	
Client Sample ID:	SY-2	2D-201	80327	7				SDG No.:	J2116	
Lab Sample ID:	J211	6-07						Matrix:	WATER	
								% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	47.8		1	0.4	1	2	mg/L		04/04/18 15:01	SM2320 B
Ammonia as N	0.11		1	0.034	0.05	0.1	mg/L	03/29/18 14:23	03/30/18 15:12	SM 4500-NH3 B plus G
Bromide See Du	0.5	U	1	0.066	0.25	0.5	mg/L		03/28/18 15:41	300.0
	242	OR	+	0.075	0.075	0.15	mg/L		03/28/18 15:41	-300.0
Nitrate Sulfate	1.4 15.7		1	0.027	0.065	0.13	mg/L		03/28/18 15:41	300.0
BOD5	2	U	1	0.13 2	0.375 2	0.75 2	mg/L		03/28/18 15:41	300.0
COD	15.5	0	1	2.43	2 5	10	mg/L		03/29/18 10:40 04/02/18 12:08	SM5210 B SM5220 D
Color	20		1	5	5	5	mg/L cu		03/29/18 09:38	SM3220 D SM2120 B
Phenolics	0.05 W	1 ¥	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	779		1	0.031	5	10	mg/L	-2.00.10 10.00	03/28/18 16:45	SM2540C
TKN	0.26 J	X	1	0.096	0,25	0.5	mg/L	03/29/18 09:15	03/30/18 10:31	SM4500-N Org

B or C plus NH3

G

03/28/18 17:31 SM5310B

Comments

TOC

2.2

l

0.08

0.25

0.5

mg/L

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilution of interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range λu 5/ 28 (γ N = Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 19146 CENICHEM 77 -5 777

Client:	Lockwood, K	lessler, & Ba	rtlett			Date Collected	03/27/18	15:10
Project:	Syosset Land	fill				Date Received:	03/28/18	
Client Sample ID:	SY-2D-20180)327DL				SDG No.:	J2116	
Lab Sample ID:	J2116-07DL	J2116-07DL			Matrix:	WATER		
						% Solid:	0	
Parameter	Conc. Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	461 10 10	00 7.5	7.5	15	mg/L		03/29/18 11:07	300.0

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range N=Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 19446 OENIQUEM 10 -1 177

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:	Lockwood, Kessler, & Bartlett, Syosset, New York
SDG:	J2136
Laboratory:	ChemTech, Mountainside, New Jersey
Site:	Syosset Landfill, Syosset, New York
Date:	May 28, 2018

	VOCs/SV	OCs/Cyanide/Wet Chemistry	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	PK-10D-20180328	J2136-01	Water
1MSβ	PK-10D-20180328MS	J2136-01MS	Water
1MSDß	PK-10D-20180328MSD	J2136-01MSD	Water
2	PK-10S-20180328	J2136-02	Water
3	PK-10I-20180328	J2136-03	Water
3MS†	PK-10I-20180328MS	J2136-03MS	Water
3MSD†	PK-10I-20180328MSD	J2136-03MSD	Water
6*	SY-6-20180328	J2136-06	Water
7*	TB-20180328	J2136-07	Water

* - VOC only β - Ammonia, COD and TKN only \dagger - Anions and Nitrate only

Total & Dissolved Metals/Mercury						
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix			
1T	PK-10D-20180328	J2136-01	Water			
2T	PK-10S-20180328	J2136-02	Water			
3T	PK-10I-20180328	J2136-03	Water			
3TMS*	PK-10I-20180328MS	J2136-03MS	Water			
3TDUP*	PK-10I-20180328DUP	J2136-03DUP	Water			
8D	PK-10D-20180328	J2136-08	Water			
9D	PK-10S-20180328	J2136-09	Water			
10D	PK-10I-20180328	J2136-10	Water			

T - Total Metals & Mercury & Cyanide D - D

D - Dissolved Metals & Mercury only

* - Mercury only

A Data Usability Summary Review was performed on the analytical data for seven water samples and one aqueous trip blank sample collected on March 28, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater". Specific method references are as follows:

<u>Analysis</u>	Method References
VOČs	USEPA SW846 8260C
SVOCs	USEPA SW846 8270D SIM
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
 recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

• Holding times and sample preservation

- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for

compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Samples

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	1, 3
TB-20180328	None - ND		(B)	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		157	5

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		ug/L		_
PBW001 (Total)	Copper	2.0	U	1T, 3T
	Potassium	80.4	None	All ND or >10X
	Zinc	3.3	U	1T-3T
PBW001 (Dissolved)	Potassium	186	None	All ND or >10X
PBW003	Mercury	0.045	U	1T-3T, 9D-10D

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND		÷	2

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
REFERENCE	Selenium	24%/OK	J/UJ	All Samples

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	_

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
3	3 Sulfate		J/UJ	All Samples
	Chloride	-2,767%/OK	None	4X Rule Applies

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, and/or sulfate and ٠ were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 5/29/18

Senior Chemist

Data Qualifier	Definition						
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.						
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.						
J+	The result is an estimated quantity, but the result may be biased high.						
J-	The result is an estimated quantity, but the result may be biased low.						
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.						
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.						
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.						

		Report of	f Analysi	\$			1
Client:	Lockwood, Kessler, & Ba	artlett			Date Collected	03/28/18	
Project:	Syosset Landfill				Date Received:	03/28/18	
Client Sample ID:	PK-10D-20180328			:	SDG No.:	J2136	
Lab Sample ID:	J2136-01				Matrix:	Water	
Analytical Method	SW8260				% Moisture:	100	
Sample Wt/Vol:	5 Units: mL				Final Vol:	5000	uL
Soil Aliquot Vol:	uL				Test:	VOCMS Gro	
		2.05					Տաթլ
GC Column:	RXI-624 ID : (0.25			Level :	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch ID	
VN047440.D	1			04/07/1	18 16:15	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0,2	1	ug/L
4-87-3	Chloromethane	1 0.68 U	X	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
4-83-9	Bromomethane	1 47	N	0.2	0.2	1	ug/L
5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
5-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
6-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	l,l-Dichloroethene	1	U	0.2	0.2	1	ug/L
7-64-1	Acetone	5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
634 - 04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
9-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
5-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
56-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	Ι	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
10-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
8-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
6-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
4-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	3.2	~ ~	0,2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
08-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
1-43-2	Benzene	1	U	0.2	0.2	ł	ug/L
07-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
9-01-6	Trichloroethene	0.23	J	0.2	0.2	1	ug/L
0 07 5	1,2-Dichloropropane Bromodichloromethane	l.	U	0.2	0.2	l	ug/L
	HIVE A COMPANY AND A COMPANY A	1	U	0.2	0.2	I	ug/L
5-27-4		3 20	тт	1	1	~	~
5-27-4 08-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
8-87-5 5-27-4 08-10-1 08-88-3 0061-02-6		5	U U U	1 0.2 0.2	1 0.2 0.2	5 1 1	ug/L ug/L ug/L

		Report of	f Analysi	S			1
Client:	Lockwood, Kessler, & Bar	tlett		Date	Collected:	03/28/18	
Project:	Syosset Landfill			Date	Received:	03/28/18	
Client Sample ID:	PK-10D-20180328			SDG		J2136	
-							
Lab Sample ID:	J2136-01			Matri	1X:	Water	
Analytical Method:	SW8260			% M	oisture:	100	
Sample Wt/Vol:	5 Units: mL			Final	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gro	oup1
GC Column:	RXI-624 ID: 0.	25		Leve		LOW	·
	INI 024 ID . 0.	_ J		Leve	1.	LOW	
File ID/Qc Batch;	Dilution:	Prep Date		Date Analyz	zed	Prep Batch ID	
VN047440.D	3			04/07/18 16	:15	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	0,59	J	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	Ι	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	I	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							
7060-07-0	1,2-Dichloroethane-d4	53.2		61 - 141		106%	SPK: 50
868-53-7	Dibromofluoromethane	50.8		69 - 133		102%	SPK: 50
037-26-5	Toluene-d8	52.4		65 - 126		105%	SPK: 50
60-00-4	4-Bromofluorobenzene	51.4		58 - 135		103%	SPK: 50
NTERNAL STAND							
363-72-4	Pentafluorobenzene	1148510	7.67				
540-36-3	1,4-Difluorobenzene	1882150	8.59				
3114-55-4 3855-82-1	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	1765970 734247	11.41 13.35				

Client:	Lockwood, Kessler, & Ba	rtlett		Da	ite Collected:	03/28/18	
Project:	Syosset Landfill			Da	ite Received:	03/28/18	
Client Sample ID:	PK-10S-20180328			SE	OG No.:	J2136	
Lab Sample ID:	J2136-02				atrix:	Water	
-							
Analytical Method	SW8260			0,0	Moisture:	100	
Sample Wt/Vol:	5 Units: mL			Fit	nal Vol:	5000	uL
Soil Aliquot Vol:	uL			Te	st:	VOCMS G	roupl
GC Column:	RXI-624 ID : 0).25		Le	vel :	LOW	·
File ID/Qc Batch	Dilution:	Prep Date		Date Ana	lvzed	Prep Batch II)
		riep Date				-	,
VN047441.D	1			04/07/18 16:40		VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
4-87-3	Chloromethane	1	Ŭ	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
4-83-9	Bromomethane	1 47	L/	0.2	0.2	1	ug/L
5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L ug/L
5-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
6-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L ug/L
5-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L ug/L
7-64-1	Acetone	5	U	0.5	1	5	ug/L ug/L
5-15-0	Carbon Disulfide	1	U	0.3	0.2	1	
634-04-4	Methyl tert-butyl Ether	1	U	0.2	0.2	1	ug/L
9-20-9	Methyl Acetate	1	U	0.33	0.5	1	ug/L
5-09-2	Methylene Chloride	1	U				ug/L
56-60-5		1		0.2	0.2	1	ug/L
	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
10-82-7 8-93-3	Cyclohexane	1	U	0.2	0.2	l c	ug/L
	2-Butanone	5	U	1.3	2.5	5	ug/L
6-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
4-97-5	Bromochloromethane	l	U	0.2	0.5	l	ug/L
7-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	l	ug/L
08-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
1-43-2	Benzene	1	U	0.2	0.2	1	ug/L
07-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
9-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
8-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
	Bromodichloromethane	Ι	U	0.2	0.2	1	ug/L
5-27-4					1	5	ug/L
5-27-4 08-10-1	4-Methyl-2-Pentanone	5	U	1	I	5	
5-27-4 08-10-1 08-88-3	4-Methyl-2-Pentanone Toluene	5 1	U	0.2	1 0,2	1	ug/L ug/L
5-27-4 08-10-1 08-88-3 0061-02-6 0061-01-5	4-Methyl-2-Pentanone	5 1 1		-	1 0.2 0.2	1 1	

03/28/18 03/28/18	
J2136	
Water	
100	
5000	uL
VOCMS Gro	1 חווכ
	Jupi
LOW	
Prep Batch ID	
VN040718	
D LOQ / CRQL	Units
1	ug/L
5	ug/L
1	ug/L
2	ug/L
1	ug/L
1	ug/L
-	ug/L
	ug/L
l	ug/L
1	ug/L
	ug/L
1	ug/L
109%	SPK: 50
	SPK: 50
	SPK: 50
107%	SPK: 50
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

		Report of	Analysi	S			3
Client:	Lockwood, Kessler, & Ba	rtlett			Date Collected:	03/28/18	
Project:	Syosset Landfill				Date Received:	03/28/18	
Client Sample ID:	PK-10I-20180328				SDG No.:	J2136	
-							
Lab Sample ID:	J2136-03				Matrix:	Water	
Analytical Method:	SW8260				% Moisture:	100	
Sample Wt/Vol:	5 Units: mL				Final Vol:	5000	uL
Soil Aliquot Vol:	uL				Test:	VOCMS Gro	lunt
		25					Jupi
GC Column:	RXI-624 ID: 0	25			Level :	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch ID	
VN047442.D	1			04/07/	18 17:05	VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
ARGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
-87-3	Chloromethane	1 0.64 U	X	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
-83-9	Bromomethane	1 u7	X	0.2	0.2	1	ug/L
-00-3 -69-4	Chloroethane Trichlorofluoromethane	1	U	0.2	0.5	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene	1	U U	0.2 0.2	0.2 0.2	1	ug/L
/-64-1	Acetone	5	U	0.2	0.2	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L ug/L
534-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L ug/L
9-20-9	Methyl Acetate	1	U	0.33	0.5	1	ug/L ug/L
5-09-2	Methylene Chloride	1	Ŭ	0.2	0.2	1	ug/L
6-60-5	trans-1,2-Dichloroethene	1	Ū	0.2	0.2	1	ug/L
-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
0-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
6-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
I-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
8-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
-43-2	Benzene	1	U	0.2	0.2	1	ug/L
07-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
8-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
8-88-3	Toluene	I	U	0.2	0.2	1	ug/L
0061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

		Report of	f Analysi	S			3
Client:	Lockwood, Kessler, & Bar	tlett		Dat	e Collected:	03/28/18	
Project:	Syosset Landfill			Date	e Received:	03/28/18	
Client Sample ID:	PK-10I-20180328				3 No.:	J2136	
-							
Lab Sample ID:	J2136-03			Mat		Water	
Analytical Method:	SW8260			% N	loisture:	100	
Sample Wt/Vol:	5 Units: mL			Fina	al Vol:	5000	uL
Soil Aliquot Vol:	uL			Test		VOCMS Gr	oupl
GC Column:	RXI-624 ID: 0.	25		Lev	el :	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analy	zed	Prep Batch II)
VN047442.D	1			04/07/18 1	7:05	VN040718	
AS Number	Parameter	Сопс.	Qualifier	MDL	LOD	LOQ / CRQL	Units
9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
91-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	2.1		0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
41-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
5-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
7-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0.2	1	ug/L
URROGATES							
7060-07-0	1,2-Dichloroethane-d4	54.7		61 - 141		109%	SPK: 50
868-53-7	Dibromofluoromethane	52.4		69 - 133		105%	SPK: 50
037-26-5	Toluene-d8	52.1		65 - 126		104%	SPK: 50
60-00-4	4-Bromofluorobenzene	52.5		58 - 135		105%	SPK: 50
NTERNAL STANDA		11/0000	7				
63-72-4	Pentafluorobenzene 1,4-Difluorobenzene	1160090	7.66				
A() 26 2	1 4-1 JULIOTODEDZEDE	1922180	8.59				
40-36-3 114-55-4	Chlorobenzene-d5	1824650	11.41				

		Report o	f Analysis	5			6
Client:	Lockwood, Kessler, & Bar	tlett			Date Collected	03/28/18	
Project:	Syosset Landfill				Date Received:	03/28/18	
Client Sample ID:	SY-6-20180328						
					SDG No.:	J2136	
Lab Sample ID:	J2136-06]	Matrix:	Water	
Analytical Method	SW8260			1	% Moisture:	100	
Sample Wt/Vol:	5 Units: mL]	Final Vol:	5000	uL
Soil Aliquot Vol:	uL				Test:	VOCMS Gr	oupl
				oupi			
GC Column:	RXI-624 ID: 0.	25]	Level :	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch ID)
VN047500.D	1			04/10/1	8 18:03	VN041018	
S Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
RGETS							CHIG
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	I	ug/L
1-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
-83-9	Bromomethane	1 47	V	0.2	0.2	1	ug/L
5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
5-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene	1	U	0.2	0.2	I	ug/L
7-64-1	Acetone	4.4	J	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
534-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
9-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
5-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
6-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
0-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
3-93-3	2-Butanone	5	U	1,3	2.5	5	ug/L
5-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
1-97 - 5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
)8-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
-43-2	Benzene	1	U	0.2	0.2	1	ug/L
)7-06-2	1,2-Dichloroethane	1	U	0.2	0.2	I	ug/L
0-01-6	Trichloroethene	1	U	0.2	0.2	l	ug/L
3-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
5-27-4	Bromodichloromethane	1 ~	U	0.2	0.2	1	ug/L
08-10-1	4-Methyl-2-Pentanone Toluene	5 1	U U	1 0.2	1 0.2	5	ug/L
10 00 2		1	U	- U Z	U /	1	ug/L
)8-88-3)061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

		Report o	f Analysi	S			þ
Client:	Lockwood, Kessler, & Bar	tlett		Date	Collected	03/28/18	
Project:	Syosset Landfill			Date	Received:	03/28/18	
Client Sample ID:	-						
					No.:	J2136	
Lab Sample ID:	J2136-06			Matı	ix:	Water	
Analytical Method	SW8260			% M	loisture:	100	
Sample Wt/Vol:	5 Units: mL			Fina	I Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gro	lauc
GC Column:	RXI-624 ID: 0.	25			LOW		
File ID/Qc Batch:	Dilution:	Dran Data		Data A sala		Deve Detel ID	
-		Prep Date		Date Analy		Prep Batch ID	
VN047500.D	1			04/10/18 18:03		VN041018	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
91-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	I	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	1	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	I	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
5-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
41-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
5-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							-
7060-07-0	1,2-Dichloroethane-d4	35.5		61 - 141		71%	SPK: 50
868-53-7	Dibromofluoromethane	38.9		69 - 133		78%	SPK: 50
037-26-5	Toluene-d8	38.6		65 - 126		77%	SPK: 50
60-00-4	4-Bromofluorobenzene	30.3		58 - 135		61%	SPK: 50
NTERNAL STAND							
63-72-4	Pentafluorobenzene	495673	7,67				
40-36-3	1,4-Difluorobenzene	770230	8.59				
114-55-4	Chlorobenzene-d5 1,4-Dichlorobenzene-d4	628445 199351	11.41 13.35				
3855-82-1							

Client: Project: Client Sample ID:	Lockwood, Kessler, & Ba Syosset Landfill	rtlett		Date Coll		03/28/18	
Client Sample ID:	Syosset Landfill						
Client Sample ID:	811 - E			Date Rece	eived:	03/28/18	
•	TB-20180328			SDG No.:		J2136	
Lab Sample ID: J2136-07							
Lab Sample ID:	J2136-07			Matrix:		Water	
Analytical Method:	: SW8260			% Moistu	re:	100	
Sample Wt/Vol:	5 Units: mL			Final Vol:		5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gro	1 חווי
GC Column:	RXI-624 ID : 0	25					, ap 1
Ge column.	KAI-024 ID. (1.2.5		Level :		LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyzed		Prep Batch ID	
VN047437.D	1			04/07/18 15:01		VN040718	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
	Tarameter	Conc.	Quanner		LOD	LOQ/CRQL	Units
ARGETS /5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	110/Г
4-87-3	Chloromethane	1	U	0.2	0.2	1	ug/L ug/L
/5- 01-4	Vinyl Chloride	l	U	0.2	0.2	1	ug/L ug/L
4-83-9	Bromomethane	1 47	J.	0.2	0.2	1	ug/L ug/L
/5-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
/5-69-4	Trichlorofluoromethane	1	Ŭ	0.2	0.2	1	ug/L
6-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
/5-35-4	1,1-Dichloroethene	1	Ū	0.2	0.2	1	ug/L
57-64-1	Acetone	5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
/9-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
5-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
56-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2	1	ug/L
10-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
/8-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
6-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
56-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
4-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
57-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
1-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
08-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
1-43-2	Benzene	1	U	0.2	0.2	1	ug/L
07-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
9-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
8-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
25-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
08-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
	Toluene	1	U	0.2	0.2	1	ug/L
08-88-3 0061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

		Report o	f Analysi	S			7
Client:	Lockwood, Kessler, & Bar	tlett		Date (Collected:	03/28/18	
Project:	Syosset Landfill			Date I	Received:	03/28/18	
Client Sample ID:	TB-20180328			SDG 1		J2136	
Lab Sample ID:	J2136-07						
-				Matrix		Water	
Analytical Method	: SW8260			% Mo	isture:	100	
Sample Wt/Vol:	5 Units: mL			Final	Vol:	5000	uL
Soil Aliquot Vol:	uL			Test:		VOCMS Gro	oup1
GC Column:	RXI-624 ID: 0.	25		Level		LOW	1
Ge commi	1011 024 ID . 0.	2.7		Level		LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analyze	ed	Prep Batch ID	
VN047437.D			04/07/18 15:01		VN040718		
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
91-78-6	2-Hexanone	5	Ŭ	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	ĩ	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
5-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
5-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
6-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	Ĩ	U	0.2	0,2	1	ug/L
57-61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							
7060-07-0	1,2-Dichloroethane-d4	53.4		61 - 141		107%	SPK: 50
868-53-7	Dibromofluoromethane	51,8		69 - 133		104%	SPK: 50
037-26-5	Toluene-d8	52.6		65 - 126		105%	SPK: 50
60-00-4	4-Bromofluorobenzene	53		58 - 135		106%	SPK: 50
NTERNAL STAND 63-72-4	ARDS Pentafluorobenzene	1174650	7 67				
	1,4-Difluorobenzene	1174650 1911260	7.67 8.59				
40-36-3		1911/00	A 19				
40-36-3 114-55-4	Chlorobenzene-d5	1821450	11.41				

PK-10D-20180328

IT

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	sulting Grou	ıp	Contract: EPW1	4030	
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2	136
Matrix:	WATER			Lab Sample ID:	J2136-01	
😤 Solids:				Date Received:	03/28/2018	
Analytical	Method: ICP-	AES				

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/11/2018	1344
7440-36-0	Antimony	60.0	U	04/11/2018	1344
7440-38-2	Arsenic	3.0	J	04/11/2018	1344
7440-39-3	Barium	34.2	J	04/11/2018	1344
7440-41-7	Beryllium	5.0	U	04/11/2018	1344
7440-43-9	Cadmium	5.0	U	04/11/2018	1344
7440-70-2	Calcium	24000		04/11/2018	1344
7440-47-3	Chromium	1.2	J	04/11/2018	1344
7440-48-4	Cobalt	3.1	J	04/11/2018	1344
7440-50-8	Copper 25.0	3.0 L	J.	04/11/2018	1344
7439-89-6	Iron	100	U	04/11/2018	1344
7439-92-1	Lead	10.0	U	04/11/2018	1344
7439-95-4	Magnesium	7990		04/11/2018	1344
7439-96-5	Manganese	24.9		04/11/2018	1344
7440-02-0	Nickel	12.3	J	04/11/2018	1344
7440-09-7	Potassium	5000	U	04/11/2018	1344
7782-49-2	Selenium	35.0 hJ	Ø	04/11/2018	1344
7440-22-4	Silver	10.0	U	04/11/2018	1344
7440-23-5	Sodium	55900		04/11/2018	1344
7440-28-0	Thallium	25.0	U	04/11/2018	1344
7440-62-2	Vanadium	50.0	U	04/11/2018	1344
7440-66-6	Zinc 60.0	12.5 L	1	04/11/2018	1344
Hardness	Hardness (total)	92.8		04/11/2018	1344

NOTE: Hardness (total) is reported in ${\rm mg/L}$

PK-10S-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	ulting Grou	ıp	Contract:	EPW14	030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDO	G No.:	J2136
Matrix:	WATER			Lab Sample	ID:	J2136-02		
<pre>% Solids:</pre>				Date Receiv	ved:	03/28/20	18	
Analytical	Method: ICP-	AES						

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : <u>ug/L</u>

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	10.7	J	04/11/2018	1348
7440-36-0	Antimony	60.0	U	04/11/2018	1348
7440-38-2	Arsenic	10.0	U	04/11/2018	1348
7440-39-3	Barium	14.9	J	04/11/2018	1348
7440-41-7	Beryllium	5.0	U	04/11/2018	1348
7440-43-9	Cadmium	5.0	U	04/11/2018	1348
7440-70-2	Calcium	12000		04/11/2018	1348
7440-47-3	Chromium	1.4	J	04/11/2018	1348
7440 - 48 - 4	Cobalt	50.0	U	04/11/2018	1348
7440-50-8	Copper	25.0	U	04/11/2018	1348
7439-89-6	Iron	17.9	J	04/11/2018	1348
7439-92-1	Lead	2.2	J	04/11/2018	1348
7439-95-4	Magnesium	2660	J	04/11/2018	1348
7439-96-5	Manganese	15.0	U	04/11/2018	1348
7440-02-0	Nickel	3.7	J	04/11/2018	1348
7440-09-7	Potassium	5000	U	04/11/2018	1348
7782-49-2	Selenium	35.0 kj	J	04/11/2018	1348
7440-22-4	Silver	10.0	U	04/11/2018	1348
7440-23-5	Sodium	6250		04/11/2018	1348
7440-28-0	Thallium	25.0	U	04/11/2018	1348
7440-62-2	Vanadium	50.0	U	04/11/2018	1348
7440-66-6	Zinc 60.0	15.5 U	A	04/11/2018	1348
Hardness	Hardness (total)	40.9		04/11/2018	1348

NOTE: Hardness (total) is reported in ${\rm mg/L}$

PK-10I-20180328

37

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cor	sulting Grou	ıp	Contract:	EPW14	1030		
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :			SDG No.:	J2136
Matrix:	WATER			Lab Sample	e ID:	J2136-	03	
3 Solids:				Date Recei	ved:	03/28	/2018	
Analvtical	Method: ICP	-AES						

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

	1	·	1	1	
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	17.6	J	04/11/2018	1352
7440-36-0	Antimony	60.0	U	04/11/2018	1352
7440-38-2	Arsenic	10.0	U	04/11/2018	1352
7440-39-3	Barium	60.1	J	04/11/2018	1352
7440-41-7	Beryllium	5.0	U	04/11/2018	1352
7440-43-9	Cadmium	5.0	U	04/11/2018	1352
7440-70-2	Calcium	50000	7	04/11/2018	1352
7440-47-3	Chromium	10.0	U	04/11/2018	1352
7440-48-4	Cobalt	98.0		04/11/2018	1352
7440-50-8	Copper	2.5 25.0 U	J	04/11/2018	1352
7439-89-6	Iron	100	U	04/11/2018	1352
7439-92-1	Lead	10.0	U	04/11/2018	1352
7439-95-4	Magnesium	14900		04/11/2018	1352
7439-96-5	Manganese	1530		04/11/2018	1352
7440-02-0	Nickel	3.6	J	04/11/2018	1352
7440-09-7	Potassium	16400		04/11/2018	1352
7782-49-2	Selenium	35.0 WJ	V	04/11/2018	1352
7440-22-4	Silver	10.0	U	04/11/2018	1352
7440-23-5	Sodium	316000		04/11/2018	1352
7440-28-0	Thallium	3.7	J	04/11/2018	1352
7440-62-2	Vanadium	50.0	U	04/11/2018	1352
7440-66-6	Zinc 60.0	9.6 U	7	04/11/2018	1352
Hardness	Hardness (total)	186		04/11/2018	1352

NOTE: Hardness (total) is reported in mg/L

PK-10D-20180328

80

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Con	sulting Grou	ıp	Contract: EPW1	4030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER			Lab Sample ID:	J2136-08
🕏 Solids:				Date Received:	03/28/2018
Apalytical	Mothod, ICP	- AFS			

Analytical Method: ICP-AES

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	9.7	J	04/11/2018	1441
7440-36-0	Antimony	60.0	U	04/11/2018	1441
7440-38-2	Arsenic	10.0	U	04/11/2018	1441
7440-39-3	Barium	32.5	J	04/11/2018	1441
7440-41-7	Beryllium	5.0	U	04/11/2018	1441
7440-43-9	Cadmium	5.0	U	04/11/2018	1441
7440-70-2	Calcium	23200		04/11/2018	1441
7440-47-3	Chromium	10.0	U	04/11/2018	1441
7440-48-4	Cobalt	2.7	J	04/11/2018	1441
7440-50-8	Copper	2.8	J	04/11/2018	1441
7439-89-6	Iron	100	U	04/11/2018	1441
7439-92-1	Lead	1.9	J	04/11/2018	1441
7439-95-4	Magnesium	7750		04/11/2018	1441
7439-96-5	Manganese	24.6		04/11/2018	1441
7440-02-0	Nickel	10.9	J	04/11/2018	1441
7440-09-7	Potassium	5000	U	04/11/2018	1441
7782-49-2	Selenium	35.0 NJ	U	04/11/2018	1441
7440-22-4	Silver	10.0	U	04/11/2018	1441
7440-23-5	Sodium	53600		04/11/2018	1441
7440-28-0	Thallium	25.0	U	04/11/2018	1441
7440-62-2	Vanadium	50.0	U	04/11/2018	1441
7440-66-6	Zinc	13.5	J	04/11/2018	1441

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

٩D

PK-10S-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group			Contract:	EPW14030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.: _	12136
Matrix:	WATER			Lab Sample	ID:	J2136-09	
🕏 Solids:				Date Receiv	ved:	03/28/2018	
Analytical	Method: ICP-	AES					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration_	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/11/2018	1542
7440-36-0	Antimony	60.0	U	04/11/2018	1542
7440-38-2	Arsenic	10.0	U	04/11/2018	1542
7440-39-3	Barium	13.7	J	04/11/2018	1542
7440-41-7	Beryllium	5.0	U	04/11/2018	1542
7440-43-9	Cadmium	5.0	U	04/11/2018	1542
7440-70-2	Calcium	11700		04/11/2018	1542
7440-47-3	Chromium	10.0	U	04/11/2018	1542
7440-48-4	Cobalt	50.0	U	04/11/2018	1542
7440-50-8	Copper	2.5	J	04/11/2018	1542
7439-89-6	Iron	100	U	04/11/2018	1542
7439-92-1	Lead	10.0	U	04/11/2018	1542
7439-95-4	Magnesium	2700	J	04/11/2018	1542
7439-96-5	Manganese	15.0	U	04/11/2018	1542
7440-02-0	Nickel	2.7	J	04/11/2018	1542
7440-09-7	Potassium	5000	U	04/11/2018	1542
7782-49-2	Selenium	35.0 UJ	J.J.	04/11/2018	1542
7440-22-4	Silver	10.0	U	04/11/2018	1542
7440-23-5	Sodium	5920	·	04/11/2018	1542
7440-28-0	Thallium	25.0	U	04/11/2018	1542
7440-62-2	Vanadium	50.0	U	04/11/2018	1542
7440-66-6	Zinc	12.7	J	04/11/2018	1542

NOTE: Hardness (total) is reported in ${\rm mg/L}$

Comments:

\$

EPA SAMPLE NO.

PK-10I-20180328

OD

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group		Contract: EPW14030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER			Lab Sample ID:	J2136-10
Solids:				Date Received:	03/28/2018
Analytical	Method:	ICP-AES			

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	20.4	J	04/11/2018	1445
7440-36-0	Antimony	60.0	U	04/11/2018	1445
7440-38-2	Arsenic	10.0	U	04/11/2018	1445
7440-39-3	Barium	59.7	J	04/11/2018	1445
7440-41-7	Beryllium	5.0	U	04/11/2018	1445
7440-43-9	Cadmium	5.0	U	04/11/2018	1445
7440-70-2	Calcium	50000		04/11/2018	1445
7440-47-3	Chromium	10.0	U	04/11/2018	1445
7440-48-4	Cobalt	92.1		04/11/2018	1445
7440-50-8	Copper	25.0	U	04/11/2018	1445
7439-89-6	Iron	100	U	04/11/2018	1445
7439-92-1	Lead	10.0	U	04/11/2018	1445
7439-95-4	Magnesium	15000		04/11/2018	1445
7439-96-5	Manganese	1550		04/11/2018	1445
7440-02-0	Nickel	2.8	J	04/11/2018	1445
7440-09-7	Potassium	16200		04/11/2018	1445
7782-49-2	Selenium	35.0 WJ	I	04/11/2018	1445
7440-22-4	Silver	10.0	U	04/11/2018	1445
7440-23-5	Sodium	313000		04/11/2018	1445
7440-28-0	Thallium	25.0	U	04/11/2018	1445
7440-62-2	Vanadium	50.0	U	04/11/2018	1445
7440-66-6	Zinc	13.5	J	04/11/2018	1445

NOTE: Hardness (total) is reported in mg/L

			EPA SAMPLE NO.
	FORM 1	- IN	PK-10D-20180328
	INORGANIC ANALY	SIS DATA SHEET	
Lab Name:	Chemtech Consulting Group	Contract: EPW14	1030
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER	Lab Sample ID:	J2136-01
% Solids:		Date Received:	03/28/2018
Analytical	Method: CVAA		
Concentrati	on Units (μ g/L, mg/L, mg/kg dry weight of	or μg) : ug/1	L
CAS	Io Analyte Concentrat	ion O Date	Analyzed Time Analyzed

0.047 LL

04/04/2018

1

1800

Comments:

7439-97-6

Mercury

NOTE: Hardness (total) is reported in ${\rm mg/L}$

EPA	SAMPLE	NO.	21
PK-10	s-20180)328	

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group			p	Contract: EPW1	4030
Lab Code:	СНМ	Case	No.:	Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER				Lab Sample ID:	J2136-02
% Solids:					Date Received:	03/28/2018
Analytical	Method:	CVAA				
Concentrati	on Units	(µg/L, mg/)	L, mg/	kg dry weight d	or μg) : ug/	L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.040 0.2 U	Ħ	04/04/2018	1803

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE NO.	31
PK-10	I-20180328	

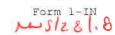
FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group			Contract: EPW	14030
Lab Code:	СНМ	Case No	o.: Syosset Land	lfi MA No. :	SDG No.: J2136
Matrix:	WATER			Lab Sample ID:	J2136-03
% Solids:				Date Received:	03/28/2018
Analytical	Method:	CVAA			
Concentrati	on Units	(µg/L, mg/L,	mg/kg dry weigh	torµg): ug	/L
C.					1

CAS No.AnalyteConcentrationQDate AnalyzedTime Analyzed7439-97-6Mercury0.44 k04/04/20181805

NOTE: Hardness (total) is reported in mg/L

			4	ה
EPA	SAMPLE	NO	0	V


PK-10D-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	n Consulting Group		Contract: EPW14	4030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER			Lab Sample ID:	J2136-08
% Solids:				Date Received:	03/28/2018
Analytical	Method:	CVAA			
Concentrati	on Units	(µg/L, mg/L, mg/	/kg dry weight o	or μg): ug/1	L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/04/2018	1812

NOTE: Hardness (total) is reported in mg/L

										EPA S	AMPLE	NO. 70
						FORM	1 - IN			PK-10S-	2018	0328
					INO	RGANIC ANALY	YSIS D	ATA SHE	ZET			
Lab N	lame:	Chemte	ech Consi	lting	Group		Cont	ract:	EPW14	030		
Lab C	Code:	СНМ		Case N	o.: Sy	osset Landf	i ma n	o. :		SDG	No.:	J2136
Matri		WATER					Lab	Sample	ID:	J2136-09		
% Sol	lids:						Date	Receiv	ved:	03/28/201	.8	
Analy	ytical	Method	: CVAA									
Conce	entrati	on Uni	ts (µg/L	, mg/L,	mg/kg	dry weight	or µg)	•	ug/L			
[CAS N	ю.	Analyte			Concentra	tion	Q	Date	Analyzed	Time	Analyzed

7439-97-6 Mercury 7 0.034 0.2 V 04/04/2018

NOTE: Hardness (total) is reported in mg/L

Comments:

9D

1814

EPA SAMPLE NO.

100

PK-10I-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consu	lting G	roup			Contract:	EPW14	1030	
Lab Code:	CHM		Case No	.: Sy	osset]	Landfi	MA No. :		SDG No.: J213	6
Matrix:	WATER						Lab Sample	ID:	J2136-10	
<pre>% Solids:</pre>	-						Date Recei	ved:	03/28/2018	
Analytical	Method:	CVAA								
Concentrati	on Units	(µg∕L,	mg/L,	mg/kg	dry we	ight o	r µg) :	ug/L		

CAS No.AnalyteConcentrationQDate AnalyzedTime Analyzed7439-97-6Mercury0.37 k04/04/20181816

NOTE: Hardness (total) is reported in mg/L

					INO	FORM 1 RGANIC ANALY			CET		AMPLE NO. -20180328
Lab 1	Name:	Chemt	ech Cons	ulting Gro	up		Cont	ract:	EPW140	30	
Lab (Code:	CHM		Case No.:	sy	osset Landfi	MA N	o. : _		SDG	No.: J2136
Matri	ix:	WATER					Lab	Sample	ID:	02136-01	
% Sol	lids:						Date	Receiv	ved: (03/28/201	8
Analy	ytical	Method	: Spec	trophotom	etry	!					
Conce	entrati	on Uni	ts (µg/I	, mg/L, mg	g/kg	dry weight	or µg)	:	ug/L		
	CAS N	10.	Analyte	e		Concentrat	ion	Q	Date A	Analyzed	Time Analyzed
	57-12-	-5	Cyanid	e		10.0		U	04/02	2/2018	1556

U

04/02/2018

10.0

Cyanide

NOTE: Hardness (total) is reported in mg/L

									EPA S	AMPLE	NO. 7
				INOR	FORM GANIC ANAL	1 - IN YSIS DA	ATA SHI	EET	PK-10S-	-2018	0328
Lab Name:	Chemt	ech Cons	ulting Gr	oup		Cont	ract:	EPW14	1030		
Lab Code:	CHM		Case No.	: Syc	sset Landf	i MA No	o. :		SDG	No.:	J2136
Matrix:	WATER					Lab S	Sample	ID:	J2136-02		
% Solids:						Date	Receiv	ved:	03/28/201	8	
Analytical	Method	: Spec	trophotor	netry							
Concentrat	ion Uni	ts (µg/L	, mg/L, m	g/kg	dry weight	or µg)	š	ug/I	L		
CAS	No.	Analyte	2		Concentra	tion	Q	Date	Analyzed	Time	Analyzed

CAS No.AnalyteConcentrationQDate AnalyzedTime Anal57-12-5Cyanide10.0U04/02/20181556

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO. 3 PK-10I-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consulting Grou	p	Contract: EF	PW14030
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :	SDG No.: J2136
Matrix:	WATER			Lab Sample II	D: J2136-03
% Solids:				Date Received	d: 03/28/2018
Analytical	Method:	Spectrophotome	try		
Concentrati	on Units	(µg/L, mg/L, mg/	'kg dry weight o	or μg) : <u>ι</u>	ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/02/2018	1556

NOTE: Hardness (total) is reported in mg/L

CHEIMTECH

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 10:00	
Project:	Syosset Landfill	Date Received:	03/28/18	
Client Sample ID:	PK-10D-20180328	SDG No.:	J2136	
Lab Sample ID:	J2136-01	Matrix:	WATER	
		% Solid:	0	

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	24.8		1	0.4	1	2	mg/L		04/04/18 15:05	SM2320 B
Ammonia as N	0.067	J	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
										plus G
Bromide	0.7		1	0.066	0.25	0.5	mg/L		03/29/18 13:03	300,0
Chloride Use IDL	155	OR	1	0.075	0.075	0.15	mg/L		03/29/18 13:03	300.0
Nitrate	4.2		1	0.027	0.065	0.13	mg/L		03/29/18 13:03	300.0
Sulfate	22.4 J		1	0.13	0.375	0.75	mg/L		03/29/18 13:03	300.0
BOD5	2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:02	SM5220 D
Color	5	U	1	5	5	5	cu		03/30/18 08:56	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	261		1	0.031	5	10	mg/L		04/02/18 16:00	SM2540C
TKN	0.26	J	1	0.096	0.25	0.5	mg/L	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
										B or C plus NH3
										G
TOC	1:3		1	0.08	0.25	0.5	mg/L		04/05/18 11:51	SM5310B

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

10126 OENICHEM

 $\mathbf{J}=\mathbf{E} stimated$ Value

 $\mathbf{B} = \mathbf{A}$ nalyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

NV 5128/18

IDL

Client:	Loc	kwood,	Kessl	er, & Ba	artlett			Date Collected:	03/28/18 1	0:00	
Project:	Syo	sset La	ndfill					Date Received:	03/28/18	03/28/18	
Client Sample ID:	PK-	10D-20	18032	28DL				SDG No.:	J2136		
Lab Sample ID:	J21.	36-01D	L				Matrix:		WATER		
								% Solid:	0		
Parameter Conc. Qua. DF MDL LOD LOQ/CRQL							Units	Prep Date	Date Ana.	Ana Met.	
Chloride	112	D	20	1.5	1.5	3	mg/L		03/29/18 15:38	300.0	

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection Limit

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

J = Estimated Value

 \mathbf{B} = Analyte Found in Associated Method Blank

* = indicates the duplicate analysis is not within control limits.

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

No 5128/18

N =Spiked sample recovery not within control limits

46 -4 940

2

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 10:30
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	PK-10S-20180328	SDG No.:	J2136
Lab Sample ID:	J2136-02	Matrix:	WATER
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	7.8		1	0.4	1	2	mg/L		04/04/18 15:58	SM2320 B
Ammonia as N	0.059	J	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
										plus G
Bromide	0.5	U	1	0.066	0.25	0.5	mg/L		03/29/18 13:34	300.0
Chloride Use 20L	12.1	OR	-1-	0.075	0.075	0.15	mg/L		03/29/18 13:34	-300.0
Nitrate	3.2		1	0.027	0.065	0.13	mg/L		03/29/18 13:34	300.0
Sulfate	17.6 プ	•	1	0.13	0.375	0.75	mg/L		03/29/18 13:34	300.0
BOD5	2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:04	SM5220 D
Color	5	U	1	5	5	5	cu		03/30/18 09:05	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS	87		L.	0.031	5	10	mg/L		04/02/18 16:00	SM2540C
TKN	0.17	J	E.	0.096	0.25	0.5	mg/L	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
										B or C plus NH3
										G
TOC	0.62		1	0.08	0.25	0.5	mg/L		04/05/18 11:15	SM5310B

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- $\mathbf{D} = \mathbf{Dilution}$
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- $\mathbf{B} = \mathbf{A}\mathbf{n}\mathbf{a}\mathbf{l}\mathbf{y}\mathbf{t}\mathbf{e}$ Found in Associated Method Blank
- * = indicates the duplicate analysis is not within control limits.
- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

nw 5128/18

2DL

Client:	Lockwoo	d, Kessler, & I	Bartlett			Date Collected:	03/28/18	3 10:30
Project:	Syosset L	andfill			Date Received:	03/28/18	5	
Client Sample ID:	PK-10S-2	PK-10S-20180328DL					J2136	
Lab Sample ID:	J2136-02	DL				Matrix:	WATER	
						% Solid:	0	
Parameter	Conc. Qua	. DF MDI	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Chloride	12.3 🌵	2 0.15	0.15	0.3	mg/L		03/29/18 18:1	2 300.0

Comments:

TI	_	Not	Detected
0		1101	Ducoucu

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- J = Estimated Value
- \mathbf{B} = Analyte Found in Associated Method Blank

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

NW 5128/18

^{* =} indicates the duplicate analysis is not within control limits.

CHEIMIECH

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 12:40
Project:	Syosset Landfill	Date Received:	03/28/18
Client Sample ID:	PK-10I-20180328	SDG No.:	J2136
Lab Sample ID:	J2136-03	Matrix:	WATER
		% Solid:	0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	use DL	130		1	0.4	1	2	mg/L		04/04/18 15:11	SM2320 B
Ammonia as N	were	3.6	OR	1	0.034	0.05	0.1	mg/L	04/02/18 14:42	04/03/18 10:50	SM 4500-NH3 B
											plus G
Bromide	Here DI 2	0.85		1	0.066	0.25	0.5	mg/L		03/29/18 14:05	300.0
Chloride	Use DL2	862	OR	1	0.075	0.075	0.15	mg/L		03/29/18 14:05	300.0
Nitrate	Lora av	0.13	U	1	0,027	0.065	0,13	mg/L		03/29/18 14:05	300.0
Sulfate	used	39.1	OR	1	0.13	0.375	0.75	mg/L		03/29/18 14:05	-300.0
BOD5		2	U	1	2	2	2	mg/L		03/30/18 09:45	SM5210 B
COD		10	U	1	2.43	5	10	mg/L		04/04/18 14:04	SM5220 D
Color		5	U	1	5	5	5	cu		03/30/18 09:12	SM2120 B
Phenolies		0.05	U	1	0.01	0.025	0.05	mg/L	03/30/18 15:05	04/02/18 13:23	9065
TDS		1147		1	0.031	5	10	mg/L		04/02/18 16:00	SM2540C
TKN		5.6		1	0.096	0.25	0.5	mg/L	04/02/18 10:33	04/03/18 08:52	SM4500-N Org
											B or C plus NH3
											G
TOC		2.6		1	0.08	0.25	0.5	mg/L		04/05/18 11:34	SM5310B

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

- $\mathbf{J}=\mathbf{E}stimated$ Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range

New SIZ8/18

^{* =} indicates the duplicate analysis is not within control limits.

3011

Client:	Loc	ekwood.	Kess	ler, & B	artlett			Date Collected:	03/28/18 1	2:40
Project:	Syc	osset La	ndfill					Date Received:	03/28/18	
Client Sample ID:	PK	-101-20	18032	8DL				SDG No.:	J2136	
Lab Sample ID:	J21	36-03D	L					Matrix:	WATER	
			_					% Solid:	0	
Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N	3.6	ø	2	0,068	0.1	0.2	mg/L	04/02/18 14:42	04/03/18 11:11	SM 4500-NH3 B
Chloride Lae 300 Sulfate	-2 ₈₅₅ 36 7	OR Ø	2	0.15	0.15 0.75	0.3	mg/L		03/29/18 16:39	plus G 300.0
Julian	<i>30 -</i>	ð	<u> </u>	0.20	0.75	1.5	mg/L		03/29/18 16:39	300.0

Comments:

- U = Not Detected
- LOQ = Limit of Quantitation
- MDL = Method Detection Limit
- LOD = Limit of Detection
- D = Dilution
- Q = indicates LCS control criteria did not meet requirements
- H = Sample Analysis Out Of Hold Time

10126 OENOUEM

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
 - OR = Over Range

NUSI28/18

^{* =} indicates the duplicate analysis is not within control limits.

Client:	Lockwood, Kessler, & Bartlett	Date	e Collected: 03/28/18 12:40
Project:	Syosset Landfill	Date	te Received: 03/28/18
Client Sample ID:	PK-10I-20180328DL2	SDO	G No.: J2136
Lab Sample ID:	J2136-03DL2	Mat	trix: WATER
		% S	Solid: 0
Parameter	Conc. Qua. DF MDL LOD LO	Q / CRQL Units	Prep Date Date Ana. Ana Met.
Chloride	583 100 7.5 7.5	15 mg/L	03/29/18 18:43 300.0

Comments:

U = Not Detected

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

- $\mathbf{J} = \mathbf{Estimated} \ \mathbf{Value}$
- $\mathbf{B}=\mathbf{A}\text{nalyte}\ \mathbf{F}\text{ound}\ in\ \mathbf{A}\text{ssociated}\ \mathbf{M}\text{e}\text{thod}\ \mathbf{B}\text{lank}$

E = Indicates the reported value is estimated because of the presence of interference.

OR = Over Range

NW 5/28/18

^{* =} indicates the duplicate analysis is not within control limits.

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:	Lockwood, Kessler, & Bartlett, Syosset, New York
SDG:	J2215
Laboratory:	ChemTech, Mountainside, New Jersey
Site:	Syosset Landfill, Syosset, New York
Date:	May 28, 2018

	VOCs	s/SVOCs/Wet Chemistry	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	RW-12D-20180328	J2215-01	Water
1DL1^	RW-12D-20180328DL1	J2215-01DL1	Water
1DL2a	RW-12D-20180328DL2	J2215-01DL2	Water
1MS*	RW-12D-20180328MS	J2215-01MS	Water
1MSD*	RW-12D-20180328MSD	J2215-01MSD	Water
2	RW-12I-20180328	J2215-02	Water
2DL1^	RW-12I-20180328DL1	J2215-02DL1	Water
2DL2a	RW-12I-20180328DL2	J2215-02DL2	Water
2MSβ	RW-12I-20180328MS	J2215-02MS	Water
2MSDβ	RW-12I-20180328MSD	J2215-02MSD	Water

* - Ammonia and Phenolics only β - Anions and Sulfate only \dagger - Anions and Nitrate only ^ - SVOC and Wet Chemistry only α - Wet Chemistry only

	Total & Diss	olved Metals/Mercury/Cyanide	
EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1T	RW-12D-20180328	J2215-01	Water
1TMS	RW-12D-20180328MS	J2215-01MS	Water
1TMSD	RW-12D-20180328MSD	J2215-01MSD	Water
2T	RW-12I-20180328	J2215-02	Water
3D	RW12D-20180328]2215-03	Water
3DMS*	RW12D-20180328MS	J2215-03MS	Water
3DMSD*	RW12D-20180328MSD	J2215-03MSD	Water
4D	RW-12I-20180328	J2215-04	Water

T - Total Metals, Mercury & Cyanide D - Dissolved Metals & Mercury only * - Metals only

A Data Usability Summary Review was performed on the analytical data for four water samples collected on March 28, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

Analysis	Method References
VOČs	USEPA SW846 8260C
SVOCs	USEPA SW846 8270D SIM
Metals/Mercury/Cn	USEPA CLP Method ISM02.3
Alkalinity	Standard Method SM2320 B
Ammonia (as N)	Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD)
 recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

• Holding times and sample preservation

- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The following table presents compounds that exceeded various percent difference (%D) and/or RRF values <0.05 (0.01 for poor performers) in the continuing calibration (CCAL). A low RRF indicates poor instrument sensitivity for these compounds. Positive results for

these compounds in the affected samples are considered estimated and qualified (J). Non-detect results for these compounds in the affected samples are rejected (R) and are unusable for project objectives. A high %D may indicate a potential high or low bias. All results for these compounds in affected samples are considered estimated and qualified (J/UJ).

CCAL Date	Compound	%D	Qualifier	Affected Samples
4/7/18	Bromomethane	30.84%	J/UJ	All Samples

Method Blank

• The method blanks were free of contamination.

Field Blank

• The following table lists field QC samples with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL of acetone, 2-butanone and methylene chloride (common laboratory contaminants) less than ten times (10x) the highest associated blank (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U). For all other compounds >RL, an action level of five times (5x) the highest associated blank concentration is used.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	U	1-2

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values,

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days except for the following.

EDS Sample	Date Sampled	Date Extracted	# of Days	Qualifier
1/1DL	03/28/18	04/06/18	9	J
2/2DL	03/28/18	04/06/18	9	Ĵ

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	1.24		

Surrogate Spike Recoveries

• The following table presents surrogate percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects

are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J). For severely low surrogate recoveries (<10%), non-detected results in the affected samples are rejected (R) and are unusable for project objectives.

EDS Sample	Surrogate	%R	Qualifier
1DL	Nitrobenzene-d5	145%	None - See HT
	2-Fluorobiphenyl	198%	
2	2-Fluorobiphenyl	193%	None for 1 out per fraction
2DL	Nitrobenzene-d5	140%	None - See HT
	2-Fluorobiphenyl	217%	

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not analyzed.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• EDS Sample IDs 1 and 2 exhibited a high concentration of 1,4-dioxane which exceeded the calibration range and was flagged (E) by the laboratory. The samples were diluted and reanalyzed and the dilution results should be used for reporting purposes.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

• All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
PBW001 (Total)	Copper	2.0	U	1T-2T
	Potassium	80.4	None	All>10X
	Zinc	3.3	U	1T-2T
PBW001 (Dissolved)	Potassium	186	None	All ND or >10X

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	120		÷.

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike (MS) Recoveries

• The following table presents MS samples that exhibited percent recoveries (%R) outside the QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS/DUP Sample ID	Compound	MS %R	Qualifier	Affected Samples All Dissolved Samples	
3D	Selenium	24%	J/UJ		

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• Several samples exceeded holding time criteria and were flagged (H) by the laboratory. The reviewer further qualified these results as estimated (J/UJ).

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L	_	*
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN	0.24	None	parameters
	TOC	0.40	None	

Matrix Spike/Matrix Spike Duplicate (MS/DUP) Recoveries

• The following table presents MS/DUP samples that exhibited percent recoveries (%R) outside the QC limits and/or relative percent differences (RPD) above QC limits. A low %R may indicate a potential low bias while a high %R may indicate a potential high bias. For a low %R, positive results are considered estimated and qualified (J) while non-detects are estimated and qualified (UJ). For a high %R, positive results are considered estimated and qualified (J).

MS Sample ID	Compound	MS %R/RPD	Qualifier	Affected Samples
11	Ammonia as N	0%/NC	None	4X Rule Applies
2	Chloride	-600%/NC	None	4X Rule Applies
	Sulfate	75%/OK		

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

All samples exhibited high concentrations of ammonia as N, chloride, nitrate, sulfate, and/or • TKN and were flagged (OR) for over the calibration range by the laboratory. The samples were diluted and reanalyzed and the dilution results for these compounds should be used for reporting purposes.

Field Duplicate Sample Precision

Field duplicate samples were not collected. •

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

Mancy Weaver Dated: 5129/18

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

0

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12D-20180328	SDG No.:	J2215
Lab Sample ID:	J2215-01	Matrix:	Water
Analytical Method	SW8260	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level :	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VN047444.D	t		04/07/18 17:55	VN040718	

CAS Number	Parameter	Сопс.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS							
75-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	0.53 U	X	0.2	0.2	1	ug/L
75-01-4	Vinvl Chloride	1.9		0.2	0.2	1	ug/L
74-83-9	Bromomethane	IUJ	K	0.2	0.2	1	ug/L
75-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
75-35-4	l,l-Dichloroethene	1	U	0.2	0.2	1	ug/L
57-64-1	Acetone	5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide	1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate	1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride	1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane	5.4		0.2	0.2	1	ug/L
10-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene	5.2		0.2	0.2	1	ug/L
74-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform	0.99	J	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane	1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
71-43-2	Benzene	1	U	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene	0.62	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane	1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
08-10-1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
108-88-3	Toluene	1	U	0,2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene	1	U	0.2	0.2	1	ug/L

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12D-20180328	SDG No.:	J2215
Lab Sample ID:	J2215-01	Matrix:	Water
Analytical Method;	SW8260	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level :	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VN047444 D	1		04/07/18 17:55	VN040718	

CAS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2.5	5	ug/L
124-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
106-93-4	1,2-Dibromoethane	1	U	0.2	0.2	1	ug/L
127-18-4	Tetrachloroethene	0.67	J	0.2	0.2	1	ug/L
108-90-7	Chlorobenzene	18.3		0.2	0.2	1	ug/L
100-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
179601-23-1	m/p-Xylenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
100-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79 - 34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	I	ug/L
541-73-1	1,3-Dichlorobenzene	1.7		0.2	0.2	1	ug/L
106-46-7	1,4-Dichlorobenzene	6,6		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	4.8		0.2	0.2	1	ug/L
96-1 2- 8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
120-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	I	ug/L
87 - 61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
SURROGATES							
17060-07-0	1,2-Dichloroethane-d4	54.1		61 - 141		108%	SPK: 50
1868-53-7	Dibromofluoromethane	52.3		69 - 133		105%	SPK: 50
2037-26-5	Toluene-d8	53.2		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53		58 - 135		106%	SPK: 50
INTERNAL STAN							
363-72-4	Pentafluorobenzene	1142700	7.66				
540-36-3	1,4-Difluorobenzene	1881050	8.59				
3114-55-4	Chlorobenzene-d5	1815830	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	753409	13.35				

Client:	Lockwood, Kessler, & Bartlett	Date Collected	03/28/18 2
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12I-20180328	SDG No.:	J2215
Lab Sample ID:	J2215-02	Matrix:	Water
Analytical Method:	SW8260	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level :	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date Analyzed	Prep Batch ID	
VN047445.D	3		04/07/18 18:19	VN040718	

CAS Number	Parameter		Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
TARGETS								
75-71-8	Dichlorodifluoromethane		1	U	0.2	0.2	1	ug/L
74-87-3	Chloromethane	l	0.46 L	8	0.2	0.2	1	ug/L
75-01-4	Vinyl Chloride		0.96	J	0.2	0.2	1	ug/L
74-83-9	Bromomethane		1 47	V	0.2	0.2	1	ug/L
75-00-3	Chloroethane		1	U	0.2	0.5	1	ug/L
75-69-4	Trichlorofluoromethane		1	U	0.2	0.2	1	ug/L
76-13-1	1,1,2-Trichlorotrifluoroethane		1	U	0.2	0.2	1	ug/L
75-35-4	1,1-Dichloroethene		0.8	J	0.2	0.2	1	ug/L
67-64-1	Acetone		5	U	0.5	1	5	ug/L
75-15-0	Carbon Disulfide		1	U	0.2	0.2	1	ug/L
1634-04-4	Methyl tert-butyl Ether		1	U	0.35	0.5	1	ug/L
79-20-9	Methyl Acetate		1	U	0.2	0.5	1	ug/L
75-09-2	Methylene Chloride		1	U	0.2	0.2	1	ug/L
156-60-5	trans-1,2-Dichloroethene		1	U	0.2	0.2	1	ug/L
75-34-3	1,1-Dichloroethane		3		0.2	0.2	1	ug/L
110-82-7	Cyclohexane		1	U	0.2	0.2	1	ug/L
78-93-3	2-Butanone		5	U	1.3	2.5	5	ug/L
56-23-5	Carbon Tetrachloride		1	U	0.2	0.2	1	ug/L
156-59-2	cis-1,2-Dichloroethene		2.7		0.2	0.2	1	ug/L
74-97-5	Bromochloromethane		1	U	0.2	0.5	1	ug/L
67-66-3	Chloroform		1	U	0.2	0.2	1	ug/L
71-55-6	1,1,1-Trichloroethane		1	U	0.2	0.2	1	ug/L
108-87-2	Methylcyclohexane		1	U	0.2	0.2	1	ug/L
71-43-2	Benzene		0.51	J	0.2	0.2	1	ug/L
107-06-2	1,2-Dichloroethane		1	U	0.2	0.2	1	ug/L
79-01-6	Trichloroethene		0.84	J	0.2	0.2	1	ug/L
78-87-5	1,2-Dichloropropane		1	U	0.2	0.2	1	ug/L
75-27-4	Bromodichloromethane		1	U	0.2	0.2	1	ug/L
108-10-1	4-Methyl-2-Pentanone		5	U	1	1	5	ug/L
108-88-3	Toluene		1	U	0.2	0.2	1	ug/L
10061-02-6	t-1,3-Dichloropropene		I	U	0.2	0.2	1	ug/L
10061-01-5	cis-1,3-Dichloropropene		1	U	0.2	0.2	1	ug/L

Client:	Lockwood, Kessler, & Bartlett	Date Collected	03/28/18
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12I-20180328	SDG No.:	J2215
Lab Sample ID:	J2215-02	Matrix:	Water
Analytical Method:	SW8260	% Moisture:	100
Sample Wt/Vol:	5 Units: mL	Final Vol:	5000 uL
Soil Aliquot Vol:	uL	Test:	VOCMS Group1
GC Column:	RXI-624 ID: 0.25	Level :	LOW

File ID/Qc Batch:	Dilution:	Prep Date	Date A polyzad	Dran Datah ID	
VN047445.D	Dirución.	Flep Date	Date Analyzed	Prep Batch ID	
V1N047445.D	1		04/07/18 18:19	VN040718	

AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
79-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
591-78-6	2-Hexanone	5	U	1.9	2,5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	1	U	0.2	0.2	I	ug/L
27-18-4	Tetrachloroethene	1.8		0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	9.7		0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene	1	U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
75-25-2	Bromoform	1	U	0.2	0.2	1	ug/L
98-82-8	Isopropylbenzene	1	U	0.2	0.2	1	ug/L
79-34-5	1,1,2,2-Tetrachloroethane	1	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1.2		0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	4.9		0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	3.1		0.2	0.2	1	ug/L
96-12-8	1,2-Dibromo-3-Chloropropane	1	U	0.2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
87 - 61-6	1,2,3-Trichlorobenzene	1	U	0.2	0.2	1	ug/L
URROGATES							
7060-07-0	1,2-Dichloroethane-d4	53.7		61 - 141		107%	SPK: 50
868-53-7	Dibromofluoromethane	52.1		69 - 133		104%	SPK: 50
2037-26-5	Toluene-d8	53		65 - 126		106%	SPK: 50
460-00-4	4-Bromofluorobenzene	53.7		58 - 135		107%	SPK: 50
NTERNAL STANI							
363-72-4	Pentafluorobenzene	1105460	7.67				
540-36-3	1,4-Difluorobenzene	1823640	8.59				
3114-55-4	Chlorobenzene-d5	1759230	11.41				
3855-82-1	1,4-Dichlorobenzene-d4	770917	13:35				

EPA	SAMPLE	NO.

R₩-12**⊉**-20180328

17

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Cons	sulting Grou	p	Contract: EPW1	14030	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :	SDG No.:	J2215
Matrix:	WATER			Lab Sample ID:	J2215-01	
응 Solids:	-			Date Received:	04/04/2018	
Analytical 1	Method: ICP-	AES				

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	0	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	22.0	J	04/11/2018	1356
7440-36-0	Antimony	60.0	U	04/11/2018	1356
7440-38-2	Arsenic	10.0	U	04/11/2018	1356
7440-39-3	Barium	60.0	J	04/11/2018	1356
7440-41-7	Beryllium	5.0	U	04/11/2018	1356
7440-43-9	Cadmium	5.0	U	04/11/2018	1356
7440-70-2	Calcium	70900		04/11/2018	1356
7440-47-3	Chromium	1.4	J	04/11/2018	1356
7440-48-4	Cobalt	50.0	U	04/11/2018	1356
7440-50-8	Copper 25.0	4.6 1	J.F	04/11/2018	1356
7439-89-6	Iron	137		04/11/2018	1356
7439-92-1	Lead	10.0	U	04/11/2018	1356
7439-95-4	Magnesium	39100		04/11/2018	1356
7439-96-5	Manganese	52.0		04/11/2018	1356
7440-02-0	Nickel	7.4	J	04/11/2018	1356
7440-09-7	Potassium	68900		04/11/2018	1356
7782-49-2	Selenium	35.0	U	04/11/2018	1356
7440-22-4	Silver	10.0	U	04/11/2018	1356
7440-23-5	Sodium	140000	-	04/11/2018	1356
7440-28-0	Thallium	25.0	U	04/11/2018	1356
7440-62-2	Vanadium	50.0	U	04/11/2018	1356
7440-66-6	Zinc 60.0	25.0 U	X	04/11/2018	1356
Hardness	Hardness (total)	338		04/11/2018	1356

NOTE: Hardness (total) is reported in mg/L

EPA	SAMPLE	NO.
-----	--------	-----

21

RW-12**D**20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Chemtech Consulting Group		Contract: EPW14030			
Lab Code:	СНМ	Case No.: Syosset	Landfi MA N	o.:	SDG No.: J2215		
Matrix:	WATER		Lab	Sample ID:	J2215-02		
응 Solids:			Date	Received:	04/04/2018		
Analytical	Method:	ICP-AES					

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

			-	7	
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	13.0	J	04/11/2018	1429
7440-36-0	Antimony	60.0	U	04/11/2018	1429
7440-38-2	Arsenic	3.4	J	04/11/2018	1429
7440-39-3	Barium	77.1	J	04/11/2018	1429
7440-41-7	Beryllium	5.0	U	04/11/2018	1429
7440-43-9	Cadmium	5.0	U	04/11/2018	1429
7440-70-2	Calcium	71700		04/11/2018	1429
7440-47-3	Chromium	10.0	U	04/11/2018	1429
7440-48-4	Cobalt	50.0	U	04/11/2018	1429
7440-50-8	Copper 95.0	2.4 V	<i>J</i>	04/11/2018	1429
7439-89-6	Iron	100	U	04/11/2018	1429
7439-92-1	Lead	10.0	U	04/11/2018	1429
7439-95-4	Magnesium	23800		04/11/2018	1429
7439-96-5	Manganese	12.8	J	04/11/2018	1429
7440-02-0	Nickel	3.6	J	04/11/2018	1429
7440-09-7	Potassium	2920	J	04/11/2018	1429
7782-49-2	Selenium	35.0	U	04/11/2018	1429
7440-22-4	Silver	10.0	U	04/11/2018	1429
7440-23-5	Sodium	137000		04/11/2018	1429
7440-28-0	Thallium	25.0	U	04/11/2018	1429
7440-62-2	Vanadium	50.0	U	04/11/2018	1429
7440-66-6	Zinc (00.0	1 8.6 U	1	04/11/2018	1429
Hardness	Hardness (total)	277		04/11/2018	1429

NOTE: Hardness (total) is reported in mg/L

EPA SAMPLE NO.

30

RW-12D-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech	Consulting Gr	oup	Contract:	EPW14	1030	
Lab Code:	CHM	Case No.	: Syosset Landfi	MA No. :		SDG No.:	J2215
Matrix:	WATER			Lab Sample	ID:	J2215-03	
% Solids:				Date Receiv	ved:	04/04/2018	
Analytical	Method:	ICP-AES					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	24.7	J	04/11/2018	1449
7440-36-0	Antimony	60.0	U	04/11/2018	1449
7440-38-2	Arsenic	3.7	J	04/11/2018	1449
7440-39-3	Barium	74.3	J	04/11/2018	1449
7440-41-7	Beryllium	5.0	U	04/11/2018	1449
7440-43-9	Cadmium	5.0	U	04/11/2018	1449
7440-70-2	Calcium	70200		04/11/2018	1449
7440-47-3	Chromium	10.0	U	04/11/2018	1449
7440-48-4	Cobalt	50.0	U	04/11/2018	1449
7440-50-8	Copper	25.0	U	04/11/2018	1449
7439-89-6	Iron	100	U	04/11/2018	1449
7439-92-1	Lead	10.0	U	04/11/2018	1449
7439-95-4	Magnesium	23200		04/11/2018	1449
7439-96-5	Manganese	12.4	J	04/11/2018	1449
7440-02-0	Nickel	3.3	J	04/11/2018	1449
7440-09-7	Potassium	2660	J	04/11/2018	1449
7782-49-2	Selenium	6.4 7	- Aller	04/11/2018	1449
7440-22-4	Silver	10.0	U	04/11/2018	1449
7440-23-5	Sodium	134000		04/11/2018	1449
7440-28-0	Thallium	25.0	U	04/11/2018	1449
7440-62-2	Vanadium	50.0	U	04/11/2018	1449
7440-66-6	Zinc	9.4	J	04/11/2018	1449

NOTE: Hardness (total) is reported in ${\rm mg/L}$

EPA	SAMPLE	NO.
EPA.	SAMPLE	NO.

RW-12I-20180328

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

	INORGANIC ANALY	SIS DATA SHEET		40
Lab Name:	Chemtech Consulting Group	Contract: EPW1	14030	
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2215	
Matrix:	WATER	Lab Sample ID:	J2215-04	
<pre>% Solids:</pre>		Date Received:	04/04/2018	
Analytical	Method: ICP-AES			

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : _____ug/L

	1			1	
CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	26.7	J	04/11/2018	1505
7440-36-0	Antimony	60.0	U	04/11/2018	1505
7440-38-2	Arsenic	10.8		04/11/2018	1505
7440-39-3	Barium	60.3	J	04/11/2018	1505
7440-41-7	Beryllium	5.0	U	04/11/2018	1505
7440-43-9	Cadmium	5.0	U	04/11/2018	1505
7440-70-2	Calcium	70400		04/11/2018	1505
7440-47-3	Chromium	10.0	U	04/11/2018	1505
7440-48-4	Cobalt	50.0	U	04/11/2018	1505
7440-50-8	Copper	2.6	J	04/11/2018	1505
7439-89-6	Iron	106		04/11/2018	1505
7439-92-1	Lead	10.0	U	04/11/2018	1505
7439-95-4	Magnesium	38500		04/11/2018	1505
7439-96-5	Manganese	50.1	-	04/11/2018	1505
7440-02-0	Nickel	6.8	J	04/11/2018	1505
7440-09-7	Potassium	67000		04/11/2018	1505
7782-49-2	Selenium	12.9 7	3	04/11/2018	1505
7440-22-4	Silver	10.0	U	04/11/2018	1505
7440-23-5	Sodium	137000	1	04/11/2018	1505
7440-28-0	Thallium	25.0	U	04/11/2018	1505
7440-62-2	Vanadium	50.0	U	04/11/2018	1505
7440-66-6	Zinc	10.0	J	04/11/2018	1505

NOTE: Hardness (total) is reported in mg/L

					E	PA SAMPLE NO.	-
			FORM 1	- IN	RW-	-12 P- 20180328	
			INORGANIC ANALY	SIS DATA SHEET	L,		_ 1
Lab Name:	Chemtech Cons	sulting Grou	q	Contract: EPW1	4030		
Lab Code:	СНМ	Case No.:	Syosset Landfi	MA No. :		SDG No.: J221	5
Matrix:	WATER			Lab Sample ID:	J2215	-01	
<pre>% Solids:</pre>	2.			Date Received:	04/04	4/2018	
Analytical	Method: CVAA	Ŧ					

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : <u>ug/L</u>

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/06/2018	1559

NOTE: Hardness (total) is reported in ${\rm mg/L}$

					EPA SAMPLE NO.	-
			FORM 1	- IN	RW-12 ₽ 20180328	
			INORGANIC ANALY	SIS DATA SHEET	a	27
Lab Name:	Chemtech Co	onsulting Grou	q	Contract: EPW1	4030	
Lab Code:	CHM	Case No.:	Syosset Landfi	MA No. :	SDG No.:	
Matrix:	WATER			Lab Sample ID:	J2215-02	
% Solids:	·			Date Received:	04/04/2018	
Analytical	Method: CV	VAA				

Concentration Units (μ g/L, mg/L, mg/kg dry weight or μ g) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/06/2018	1607

NOTE: Hardness (total) is reported in mg/L

			EPA SAMPLE NO.
	FORM 1	- IN	RW-12D-20180328
	INORGANIC ANALY	SIS DATA SHEET	30
Lab Name:	Chemtech Consulting Group	Contract: EPW140	130
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.:
Matrix:	WATER	Lab Sample ID:	J2215-03
<pre>% Solids:</pre>		Date Received:	04/04/2018
Analytical	Method: CVAA		

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ______ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/06/2018	1609

NOTE: Hardness (total) is reported in mg/L

			EPA SAMPLE NO.	
	FORM 1 INORGANIC ANALY:		RW-12I-20180328	10
Lab Name:	Chemtech Consulting Group	Contract: EPW140	30	
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2215	
Matrix:	WATER	Lab Sample ID:	J2215-04	
% Solids:		Date Received: (04/04/2018	_
Analytical	Method: CVAA			

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7439-97-6	Mercury	0.20	U	04/06/2018	1611

NOTE: Hardness (total) is reported in ${\rm mg/L}$

								E)	PA SAMPLE 1	NO.	
					FORM 1	- IN	RW-	RW-12D-20180328			
				I	INORGANIC ANALY	SIS DATA SH	EET				1
Lab Name:	Chemtech	Consu	lting G	rou	p	Contract:	EPW14	030			
Lab Code:	CHM		Case No	.:	Syosset Landfi	MA No. :			SDG No.:	J2215	
Matrix:	WATER					Lab Sample	ID:	J2215-	01		
8 Solids:						Date Recei	ved:	04/04	/2018		
Analytical	Method:	Spect	rophot	ome	try						
Concentrati	on Units.	(µg/L,	mg/L,	mg/	kg dry weight o	or µg) :	ug/L				

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed	
57-12-5	Cyanide	10.0	U	04/06/2018	1151	

NOTE: Hardness (total) is reported in ${\rm mg/L}$

			EPA SAMPLE NO.
	FORM 1 INORGANIC ANALY		RW-12I-20180328
			2
Lab Name:	Chemtech Consulting Group	Contract: EPW140)30
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2215
Matrix: _	WATER	Lab Sample ID:	J2215-02
<pre>% Solids:</pre>		Date Received:	04/04/2018
Analytical	Method: Spectrophotometry		

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
57-12-5	Cyanide	10.0	U	04/06/2018	1151

NOTE: Hardness (total) is reported in mg/L

Client:

Project:

Client Sample ID:

Lab Sample ID:

% Solid:

0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity		892		1	0.4	1	2	mg/L		04/04/18 17:05	SM2320 B
Ammonia as N	lise DLI	47.1	OR	-1	0.034	0.05	0.1	mg/L	04/04/18 12:50	-04/05/18 09:03	SM 4500-NH3 B
											plus G
Bromide	Use DLZ	1.1		1	0.066	0.25	0.5	mg/L		04/04/18 13:57	300.0
Chloride	the second s	299	OR	I	0.075	-0.075	0.15	mg/L		04/04/18-13:57-	300.0
Nitrate	useDLI	10,2	HOR	-1	0.027	0.065	0.13	mg/L-		04/04/18-13:57	300.0
Sulfate	usedul	243	OR	Ĩ	0.13 -	0.375		mg/L-		04/04/18-13:57	300.0
BOD5		2 V	j HU	1	2	2	2	mg/L		04/04/18 15:30	SM5210 B
COD		31.4		Ĩ.	2.43	5	10	mg/L		04/04/18 14:07	SM5220 D
Color		5 🛫	I H	1	5	5	5	cu		04/04/18 12:38	SM2120 B
Phenolics		0.05	U	1	0.01	0.025	0.05	mg/L	04/04/18 12:50	04/05/18 12:10	9065
TDS	USCOLI	842 🖸	I H	1	0.031	5	10	mg/L		04/04/18 16:00	SM2540C
TKN	MAC OUT	42	OR	1	0.096	-0.25	-0.5	mg/L	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
											B or C plus NH3
											G
TOC		17.2		1	0.08	0.25	0.5	mg/L		04/05/18 12:11	SM5310B

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits New 5/28/18 10016 OENICHEM 12 -5 240

t	1	10	
l	-		
		1.0	

Report	of An	alysis
--------	-------	--------

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 15:00
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12D-20180328DL	SDG No.:	J2215
Lab Sample ID:	J2215-01DL	Matrix:	WATER
		% Solid:	0

Parameter		Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Ammonia as N		69.6	p	50	1.7	2.5	5	mg/L	04/04/18 12:50	04/05/18 10:13	SM 4500-NH3 B
	2012										plus G
Chloride 💛	A VLF	231	OR	10	0.75	0.75	1.5	= mg/L		04/04/18 16:01	-300.0
Nitrate		9.6 🗂	HD	10	0.27	0.65	1.3	mg/L		04/04/18 16:01	300.0
Sulfate		183	D	10	1.3	3.75	7.5	mg/L		04/04/18 16:01	300.0
TKN		67	D	10	0.96	2.5	5	mg/L	04/06/18 08:30	04/09/18 10:59	SM4500-N Org
											B or C plus NH3
											G

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. OR = Over Range Q = indicates LCS control criteria did not meet requirements H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits Nu 5/28/.8 44 -4 940

Report of Analysis

			\mathbf{a}
- E		1	1
- 1	12		L_
- *	<u> </u>	_	_

Client:	Lockwood	d, Kessler, & B	artlett			Date Collected:	03/28/18	15:00	
Project:	Syosset L	Syosset Landfill I					04/04/18	04/04/18	
Client Sample ID:	RW-12D-	RW-12D-20180328DL2				SDG No.:	J2215		
Lab Sample ID:	J2215-011	DL2				Matrix:	WATER		
						% Solid:	0		
Parameter	Conc. Qua.	DF MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.	
Chloride	206	50 3.8	3.75	7,5	mg/L		04/04/18 16:32	2 300.0	

Comments:

LOQ = Limit of Quantitation

MDL = Method Detection Limit

LOD = Limit of Detection

D = Dilution

Q = indicates LCS control criteria did not meet requirements

H = Sample Analysis Out Of Hold Time

1001E OENIQUEM

- J = Estimated Value
- B = Analyte Found in Associated Method Blank

- E = Indicates the reported value is estimated because of the presence of interference.
- OR = Over Range
- N =Spiked sample recovery not within control limits

^{* =} indicates the duplicate analysis is not within control limits.

CHEIMITECH

2

Report of Analysis

Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 16:15
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12I-20180328	SDG No.:	J2215
Lab Sample ID:	J2215-02	Matrix:	WATER
		% Solid:	0

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	90.8		1	0.4	1	2	mg/L		04/04/18 17:14	SM2320 B
Ammonia as N	5.3	OR	1	0.034	0.05	-0.1	mg/L	04/04/18 12:50	04/05/18 09:09	SM 4500-NH3 B
										plus G
Bromide Use DLZ	1.9		1	0.066	0.25	0.5	mg/L		04/04/18 14:28	300.0
Chloride Chloride	192	OR	-1	0.075	0.075	0.15	mg/L		04/04/18 14:28	_300.0
Nitrate	0.41 🗂	Н	1	0.027	0.065	0.13	mg/L		04/04/18 14:28	300.0
Sulfate Use DLI	74.6	OR	_1	0.13	_0.375_	0.75	mg/L		04/04/18 14:28	300.0
BOD5	2 🚺	JHU	1	2	2	2	mg/L		04/04/18 15:30	SM5210 B
COD	10	U	1	2.43	5	10	mg/L		04/04/18 14:08	SM5220 D
Color	5 iA	J HU	1	5	5	5	cu		04/04/18 12:45	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	04/04/18 12:50	04/05/18 12:10	9065
TDS	733		1	0.031	5	10	mg/L		04/04/18 16:00	SM2540C
TKN	5.3		1	0.096	0.25	0.5	mg/L	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
										B or C plus NH3
										G
TOC	5.2		1	0.08	0.25	0.5	mg/L		04/05/18 12:30	SM5310B

U = Not Detected	J = Estimated Value
LOQ = Limit of Quantitation	B = Analyte Found in Associated Method Blank
MDL = Method Detection Limit	* = indicates the duplicate analysis is not within control limits.
LOD = Limit of Detection	E = Indicates the reported value is estimated because of the presence
D = Dilution	of interference.
Q = indicates LCS control criteria did not meet requirements	OR = Over Range
H = Sample Analysis Out Of Hold Time	N = Spiked sample recovery not within control limits
	0 0

Report of Analysis

20-1

Client:	Client: Lockwood, Kessler, & Bartlett Project: Syosset Landfill						Date Collected:	03/28/18 16:15		
Project:							Date Received:	04/04/18		
Client Sample ID: RW-12I-20180328DL					SDG No.:		J2215			
Lab Sample ID:	Lab Sample ID: J2215-02DL					Matrix:				
								% Solid:	0	
Parameter Conc. Qua. DF MDL LOD		LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.				
Ammonia as N	5	ø	10	0.34	0.5	1	mg/L	04/04/18 12:50	04/05/18 10:13	SM 4500-NH3 B
Chloride Use DL?	-167	OR	5	0.38	-0.375	0.75	.mg/L		04/04/18 17:03-	plus G 300.0.

Comments:

U = Not DetectedJ = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilution of interference. OR = Over Range Q = indicates LCS control criteria did not meet requirements H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits ren 5/28/18 10015 OENOUEM 47 -5 940

Parameter

Chloride

Lab Sample ID:

J2215-02DL2

Qua.

D

DF MDL

3.8

50

LOD

3.75

LOQ / CRQL

7.5

Conc.

144

	Report of A	Analysis	2012
Client:	Lockwood, Kessler, & Bartlett	Date Collected:	03/28/18 16:15
Project:	Syosset Landfill	Date Received:	04/04/18
Client Sample ID:	RW-12I-20180328DL2	SDG No.:	J2215

Units

mg/L

Matrix:

% Solid:

Prep Date

WATER

Ana Met.

300.0

0

Date Ana.

04/04/18 17:34

Comments:

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of DetectionE = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range H = Sample Analysis Out Of Hold Time N =Spiked sample recovery not within control limits Les 5/28/.8 10015 OENOUEM 10 -5 - 140

DATA USABILITY SUMMARY REPORT SYOSSET LANDFILL POST CLOSURE, SYOSSET, NEW YORK

Client:	Lockwood, Kessler, & Bartlett, Syosset, New York
SDG:	J2252
Laboratory:	ChemTech, Mountainside, New Jersey
Site:	Syosset Landfill, Syosset, New York
Date:	May 28, 2018

EDS ID	Client Sample ID	Laboratory Sample ID	Matrix
1	FIELD-BLANK-20180404	J2252-01	Water
1MS*	FIELD-BLANK-20180404MS	J2252-01MS	Water
1DUP*	FIELD-BLANK-20180404DUP	J2252-01DUP	Water

* - Ammonia and Phenolics only

A Data Usability Summary Review was performed on the analytical data for aqueous field blank sample collected on April 4, 2018 by Lockwood, Kessler & Bartlett at the Syosset Landfill in Syosset, New York. The samples were analyzed under Environmental Protection Agency (USEPA) "Contract Laboratory Program (CLP) Multi-Media Multi-Concentration Inorganic Analysis ISM02.3", "Test Methods for the Evaluation of Solid Waste, USEPA SW-846, Third Edition, September 1986, with revisions" the "Methods for Chemical Analysis of Water and Wastes" and the "Standard Methods for the Examination of Water and Wastewater".

Specific method references are as follows:

<u>Analysis</u> VOCs	<u>Method References</u> USEPA SW846 8260C
SVOCs Metals/Mercury/Cn	USEPA SW846 8270D SIM
Alkalinity	USEPA CLP Method ISM02.3 Standard Method SM2320 B
Ammonia (as N)	Standard Method SM2520 B Standard Method SM4500-NH3
Bromide	USEPA Method 300.0
Chloride	USEPA Method 300.0
Nitrate	USEPA Method 300.0
Sulfate	USEPA Method 300.0
BOD5	Standard Method SM5210 B
COD	Standard Method SM5220D
Color	Standard Method SM2120 B
Phenolics	USEPA SW-846 Method 9065
Total Dissolved Solids	Standard Method SM2540C
Total Kjeldahl Nitrogen	Standard Method SM4500-N Org B or C
Total Organic Carbon	Standard Method SM5310B

The data have been validated according to the protocols and quality control (QC) requirements of the analytical methods, the USEPA National Functional Guidelines for Organic and Inorganic Data Review, and the site QAPP as follows:

- The USEPA "Contract Laboratories Program National Functional Guidelines for Organic Superfund Methods Data Review," January 2017;
- The USEPA "Contract Laboratories Program National Functional Guidelines for Inorganic Superfund Methods Data Review," January 2017;
- and the reviewer's professional judgment.

The following data quality indicators were reviewed for this report:

Organics

- Holding times and sample preservation
- Gas Chromatography/Mass Spectrometry (GC/MS) Tuning
- Initial and continuing calibration summaries
- Method blank and field QC blank contamination
- Surrogate Spike recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Laboratory Control Sample/Laboratory Control Sample Duplicate (LCS/LCSD) recoveries
- Internal standard area and retention time summary forms
- Target Compound Identification
- Compound Quantitation
- Field Duplicate sample precision

Inorganics

- Holding times and sample preservation
- Inductively Coupled Plasma/Mass Spectrometry (ICP/MS) Tuning
- Initial and continuing calibration verifications
- Method blank and field QC blank contamination
- ICP Interference Check Sample
- Laboratory Control Sample (LCS) recoveries
- Matrix Spike/Matrix Spike Duplicate (MS/MSD) recoveries
- Duplicate Sample Analysis
- ICP Serial Dilution
- Compound Quantitation
- Field Duplicate sample precision

Overall Usability Issues:

There were no rejections of data.

Overall the data is acceptable for the intended purposes as qualified for the deficiencies detailed in this report.

Please note that any results qualified (U) due to blank contamination may be then qualified (J) due to another action. Therefore, the results may be qualified (UJ) due to the culmination of the blank contaminations and actions from other exceedances of QC criteria.

Volatile Organic Compounds (VOCs)

Holding Times

• All samples were analyzed within 14 days for preserved water samples.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

<u>Field Blank</u>

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	Chloromethane	0.71	None	Applies to Other Packages

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not collected.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Semivolatile Organic Compounds (1,4-Dioxane)

Holding Times

• All samples were extracted within 7 days for water samples and analyzed within 40 days.

GC/MS Tuning

• All criteria were met.

Initial Calibration

• The initial calibrations exhibited acceptable %RSD and/or correlation coefficients and mean RRF values.

Continuing Calibration

• The continuing calibrations exhibited acceptable %D and RRF values.

Method Blank

• The method blanks were free of contamination.

Field Blank

• The field QC samples are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	94 - C	-	

Surrogate Spike Recoveries

• All samples exhibited acceptable surrogate recoveries.

Matrix Spike/Matrix Spike Duplicate (MS/MSD) Recoveries

• MS/MSD samples were not collected.

Laboratory Control Samples

• The LCS samples exhibited acceptable %R values.

Internal Standard (IS) Area Performance

• All internal standards met response and retention time (RT) criteria.

Compound Quantitation

• All criteria were met.

Tentatively Identified Compounds (TICs)

• TICs were not detected.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Total & Dissolved Metals & Hardness & Cyanide

Holding Times

• All samples were prepared and analyzed within 14 days for cyanide, 28 days for mercury and 180 days for all other metals.

ICP/MS Tuning

• ICP/MS tuning not required.

Initial Calibration Verification

• All initial calibration criteria were met.

Continuing Calibration Verification

All continuing calibration criteria were met.

Method Blank

• The following table lists method blanks with contamination and the samples associated with the blanks that had results qualified as a consequence of the blank contamination. For detected compound concentrations <RL, the results are negated and qualified (U). For detected sample concentrations >RL and less than ten times (10x) the highest associated blank concentration (after taking sample dilution levels, percent moisture and sample volume into account) are negated and qualified with a (U).

Blank ID	Compound	Conc.	Qualifier	Affected Samples
ICB	Copper	ug/L 2.2	U	1
CCB2	Sodium	314	U	1
PBW001	Zinc	4.9	U	1

Field Blank

• The field blanks are summarized below.

Blank ID	Compound	Conc. ug/L	Qualifier	Affected Samples
FIELD-BLANK-20180404	None - ND	(±)	iπ	*

ICP Interference Check Sample

• The ICP ICS exhibited acceptable recoveries.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Matrix Spike/Duplicate (MS/DUP) Recoveries

• MS/MSD samples were not analyzed.

ICP Serial Dilution

• An ICP serial dilution was not performed.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

• Field duplicate samples were not collected.

Wet Chemistry Parameters: Alkalinity, Ammonia, Bromide, Chloride, Nitrate, Sulfate, BOD5, COD, Color, Phenolics, TDS, TKN, TOC

Holding Times

• All samples were prepared and analyzed within the recommended time for each analysis.

Initial and Continuing Calibration

• All %R criteria were met.

Method Blank

• The method blanks were free of contamination.

Field Blank

• Field QC results are summarized below.

Blank ID	Compound	Conc.	Qualifier	Affected Samples
		mg/L		-
FIELD-BLANK-20180404	Ammonia as N	0.085	None	None for Wet Chemistry
	TKN		None	parameters
	TOC	0.4	None	~

Matrix Spike/Duplicate (MS/DUP) Recoveries

• The MS/DUP samples exhibited acceptable percent recoveries (%R) and RPD values for ammonia and phenolics.

Laboratory Control Samples

• The LCS sample exhibited acceptable recoveries.

Compound Quantitation

• All criteria were met.

Field Duplicate Sample Precision

Field duplicate samples were not collected. ٠

Please contact the undersigned at (757) 564-0090 if you have any questions or need further information.

Signed:

<u>blancy ble ever</u> Dated: <u>Sl29/18</u> Nancy Weaver

Senior Chemist

Data Qualifier	Definition
U	The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
J	The analyte is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
NJ	The analysis has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the samples.
UJ	The analyte was analyzed for but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
R	The data are unusable. The sample results are rejected due to serious deficiencies in meeting QC criteria. The analyte may or may not be present in the samples.

		Report o	of Analysi	S			
Client:	Lockwood, Kessler, & Ba	rtlett			Date Collected:	04/04/18	
Project:	Syosset Landfill				Date Received:	04/05/18	
Client Sample ID:	FIELD-BLANK-2018040	4			SDG No.:	J2252	
		4					
Lab Sample ID:	J2252-01				Matrix:	Water	
Analytical Method	: SW8260				% Moisture:	100	
Sample Wt/Vol:	5 Units: mL				Final Vol:	5000	uL
Soil Aliquot Vol:	uL				Test:	VOCMS Gro	laur
GC Column:		25					Jupi
Ge column:	RXI-624 ID: 0	1.25			Level :	LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date A	nalyzed	Prep Batch ID	
VN047517.D	1			04/11/	18 16:14	VN041118	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
RGETS							
5-71-8	Dichlorodifluoromethane	1	U	0.2	0.2	1	ug/L
-87-3	Chloromethane	0.71	J	0.2	0.2	1	ug/L
5-01-4	Vinyl Chloride	1	U	0.2	0.2	1	ug/L
-83-9	Bromomethane	1	U	0.2	0.2	1	ug/L
-00-3	Chloroethane	1	U	0.2	0.5	1	ug/L
-69-4	Trichlorofluoromethane	1	U	0.2	0.2	1	ug/L
5-13-1	1,1,2-Trichlorotrifluoroethane	1	U	0.2	0.2	1	ug/L
5-35-4	1,1-Dichloroethene	1	U	0.2	0.2	1	ug/L
7-64-1	Acetone	5	U	0.5	1	5	ug/L
5-15-0	Carbon Disulfide	1	U	0.2	0.2	l	ug/L
534-04-4 9-20-9	Methyl tert-butyl Ether	1	U	0.35	0.5	1	ug/L
5-09-2	Methyl Acetate Methylene Chloride	1	U	0.2	0.5	1	ug/L
i6-60-5	trans-1,2-Dichloroethene	1	U U	0.2 0.2	0.2 0.2	1	ug/L
5-34-3	1,1-Dichloroethane	1	U	0.2	0.2		ug/L
0-82-7	Cyclohexane	1	U	0.2	0.2	1	ug/L ug/L
3-93-3	2-Butanone	5	U	1.3	2.5	5	ug/L ug/L
5-23-5	Carbon Tetrachloride	1	U	0.2	0.2	1	ug/L
6-59-2	cis-1,2-Dichloroethene	1	U	0.2	0.2	1	ug/L ug/L
1-97-5	Bromochloromethane	1	U	0.2	0.5	1	ug/L
7-66-3	Chloroform	1	U	0.2	0.2	1	ug/L
-55-6	1,1,1-Trichloroethane	1	Ŭ	0.2	0.2	1	ug/L
8-87-2	Methylcyclohexane	1	U	0.2	0.2	1	ug/L
-43-2	Benzene	1	U	0.2	0.2	1	ug/L
7-06-2	1,2-Dichloroethane	1	U	0.2	0.2	1	ug/L
-01-6	Trichloroethene	1	U	0.2	0.2	1	ug/L
-87-5	1,2-Dichloropropane	I	U	0.2	0.2	1	ug/L
-27-4	Bromodichloromethane	1	U	0.2	0.2	1	ug/L
0 10 1	4-Methyl-2-Pentanone	5	U	1	1	5	ug/L
10-10-1							
)8-88 - 3	Toluene	1	U	0.2	0.2	1	ug/L
08-10-1 08-88-3 0061-02-6 0061-01-5	Toluene t-1,3-Dichloropropene cis-1,3-Dichloropropene	1 1	U U U	0.2 0.2 0.2	0.2 0.2 0.2	1 1	ug/L ug/L

		Report o	f Analysi	S			
Client:	Lockwood, Kessler, & Bar	rtlett		Date	Collected:	04/04/18	
Project:	Syosset Landfill			Date	Received:	04/05/18	
Client Sample ID:	FIELD-BLANK-2018040	4		SDC	No.:	J2252	
-							
Lab Sample ID:	J2252-01			Mat	TX:	Water	
Analytical Method:	SW8260			% N	loisture:	100	
Sample Wt/Vol:	5 Units: mL			Fina	l Vol:	5000	uL
Soil Aliquot Vol:	uL			Test		VOCMS Gr	oupl
GC Column:	RXI-624 ID: 0	25		Leve	N (LOW	1
Ge column.	IM-024 ID. 0	<i>د</i> غہ: ا		Leve		LOW	
File ID/Qc Batch:	Dilution:	Prep Date		Date Analy	zed	Prep Batch ID)
VN047517.D	1			04/11/18 1	5:14	VN041118	
AS Number	Parameter	Conc.	Qualifier	MDL	LOD	LOQ / CRQL	Units
9-00-5	1,1,2-Trichloroethane	1	U	0.2	0.2	1	ug/L
91-78 - 6	2-Hexanone	5	U	1.9	2.5	5	ug/L
24-48-1	Dibromochloromethane	1	U	0.2	0.2	1	ug/L
06-93-4	1,2-Dibromoethane	I	U	0.2	0.2	1	ug/L
27-18-4	Tetrachloroethene	1	U	0.2	0.2	1	ug/L
08-90-7	Chlorobenzene	L	U	0.2	0.2	1	ug/L
00-41-4	Ethyl Benzene		U	0.2	0.2	1	ug/L
79601-23-1	m/p-Xvlenes	2	U	0.4	0.4	2	ug/L
95-47-6	o-Xylene	1	U	0.2	0.2	1	ug/L
.00-42-5	Styrene	1	U	0.2	0.2	1	ug/L
/5-25-2	Bromoform	I.	U	0.2	0.2	1	ug/L
8-82-8	Isopropylbenzene	I	U	0.2	0.2	1	ug/L
9-34-5	1,1,2,2-Tetrachloroethane	L	U	0.2	0.2	1	ug/L
541-73-1	1,3-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-46-7	1,4-Dichlorobenzene	L	U	0.2	0.2	1	ug/L
95-50-1	1,2-Dichlorobenzene	1	U	0.2	0.2	1	ug/L
06-12-8	1,2-Dibromo-3-Chloropropane	L	U	0,2	0.2	1	ug/L
20-82-1	1,2,4-Trichlorobenzene	l.	U	0.2	0.2	1	ug/L
37-61-6	1,2,3-Trichlorobenzene	I	U	0.2	0,2	1	ug/L
URROGATES 7060-07-0	1,2-Dichloroethane-d4	27.0		(1 141		7(0)	
.868-53-7	Dibromofluoromethane	37.9		61 - 141		76% 78%	SPK: 50
037-26-5	Toluene-d8	39.1		69 - 133 65 - 126		78% 78%	SPK: 50
60-00-4	4-Bromofluorobenzene	39.2 34.3		65 - 126 58 - 135		78% 69%	SPK: 50
NTERNAL STAND		34.3		20 - 122		0770	SPK: 50
	Pentafluorobenzene	369597	7.66				
363-72-4							
	1,4-Difluorobenzene	592014	8.59				
363-72-4 540-36-3 3114-55-4	1,4-Difluorobenzene Chlorobenzene-d5	592014 509462	8.59 11.41				

EPA SAMPLE NO.

1

FIELD-BLANK-2018

FORM 1 - IN INORGANIC ANALYSIS DATA SHEET

Lab Name:	Chemtech Consulting Group	Contract: EPW14	1030
Lab Code:	CHM Case No.: Syosset Landfi	MA No. :	SDG No.: J2252
Matrix: _	WATER	Lab Sample ID:	J2252-01
% Solids:		Date Received:	04/05/2018
Analytical	Method: ICP-AES		

Concentration Units (µg/L, mg/L, mg/kg dry weight or µg) : ug/L

CAS No.	Analyte	Concentration	Q	Date Analyzed	Time Analyzed
7429-90-5	Aluminum	200	U	04/06/2018	1426
7440-36-0	Antimony	60.0	U	04/06/2018	1426
7440-38-2	Arsenic	10.0	U	04/06/2018	1426
7440-39-3	Barium	200	U	04/06/2018	1426
7440-41-7	Beryllium	5.0	U	04/06/2018	1426
7440-43-9	Cadmium	5.0	U	04/06/2018	1426
7440-70-2	Calcium	5000	U	04/06/2018	1426
7440-47-3	Chromium	10.0	U	04/06/2018	1426
7440-48-4	Cobalt	50.0	U	04/06/2018	1426
7440-50-8	Copper	1.725.0 U	P	04/06/2018	1426
7439-89-6	Iron	100	U	04/06/2018	1426
7439-92-1	Lead	10.0	U	04/06/2018	1426
7439-95-4	Magnesium	5000	U	04/06/2018	1426
7439-96-5	Manganese	15.0	U	04/06/2018	1426
7440-02-0	Nickel	40.0	U	04/06/2018	1426
7440-09-7	Potassium	5000	U	04/06/2018	1426
7782-49-2	Selenium	35.0	U	04/06/2018	1426
7440-22-4	Silver	10.0	U	04/06/2018	1426
7440-23-5	Sodium	323 5000 U	8	04/06/2018	1426
7440-28-0	Thallium	25.0	U	04/06/2018	1426
7440-62-2	Vanadium	50.0	U	04/06/2018	1426
7440-66-6	Zinc	H.+60.0U	J	04/06/2018	1426
Hardness	Hardness (total)	33.1	U	04/06/2018	1426

NOTE: Hardness (total) is reported in mg/L

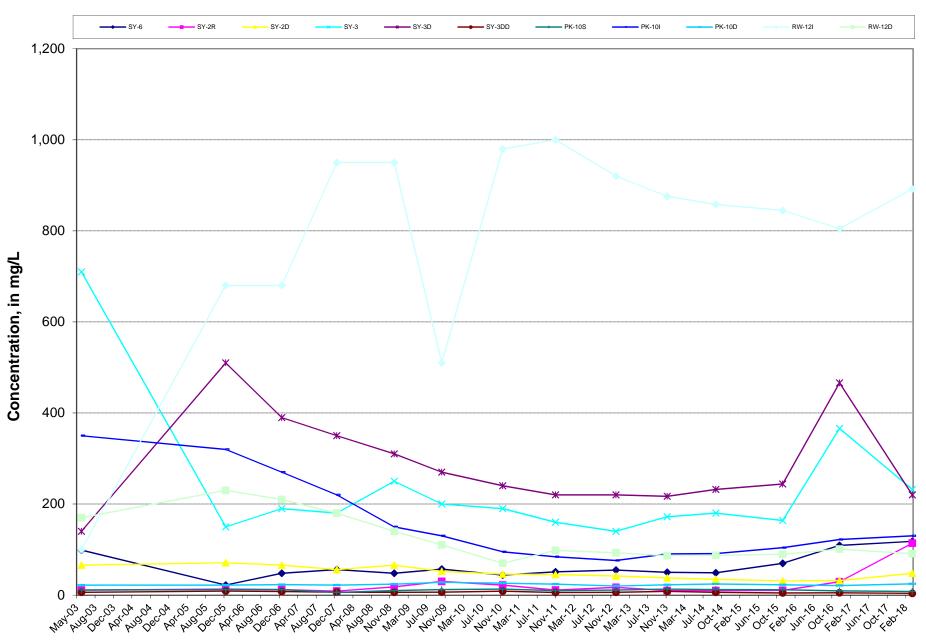
					INO	FORM 1 RGANIC ANALY:		ATA SHE	SET	1	AMPLE NO.
Lab Na	me:	Chemte	ech Cons	sulting Gro	oup		Cont	ract:	EPW140)30	
Lab Co	de:	СНМ		Case No.:	Sy	osset Landfi	MA No	o. : _	_	SDG	No.: J2252
Matrix		WATER					Lab S	Sample	ID:	J2252-01	
% Soli	ds:						Date	Receiv	ved:	04/05/201	.8
Analyt	ical N	Method	: Spec	ctrophotom	etry	/					
Concen	ntratio	on Uni	ts (µg/	L, mg/L, mg	g/kg	dry weight o	or µg)	2	ug/L		
	CAS N	ο.	Analyt	e		Concentrat	ion	Q	Date 2	Analyzed	Time Analyzed
ę	57-12-	5	Cyanic	de		10.0		U	04/0	6/2018	1211

NOTE: Hardness (total) is reported in mg/L

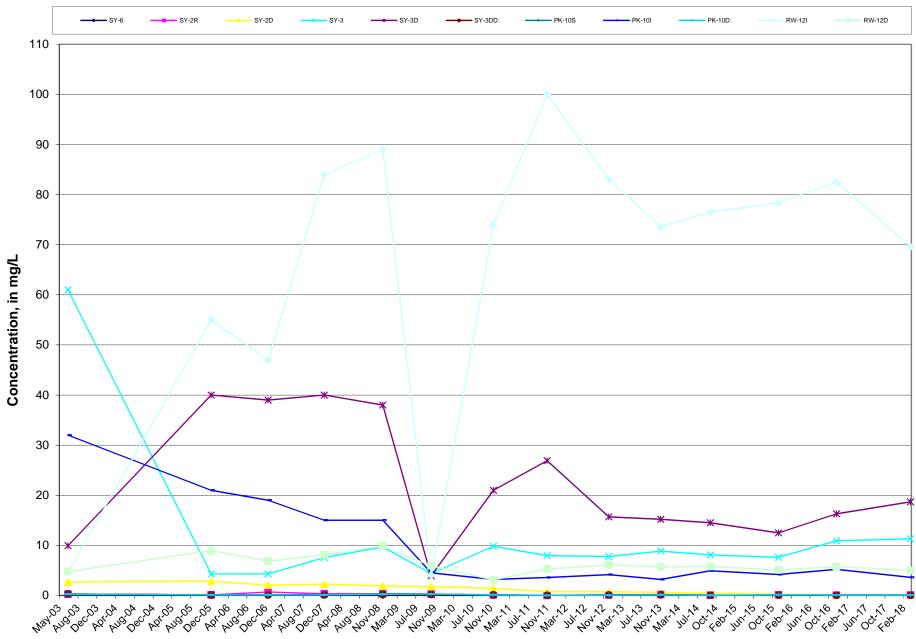
CHEIMITECH

Report of Analysis

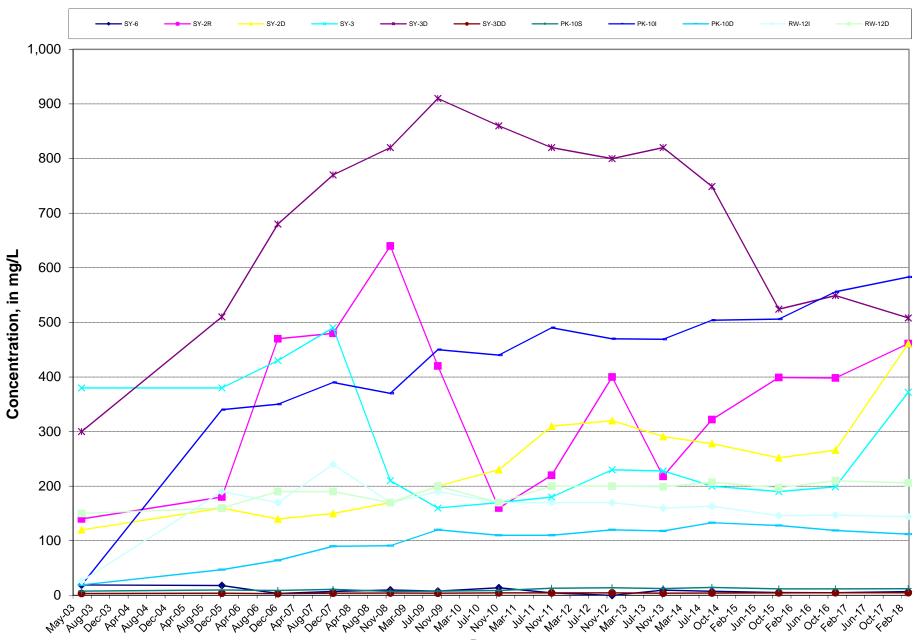
Client:	Lockwood, Kessler, & Bartlett	Date Collected:	04/04/18 14:00
Project:	Syosset Landfill	Date Received:	04/05/18
Client Sample ID:	FIELD-BLANK-20180404	SDG No.:	J2252
Lab Sample ID:	J2252-01	Matrix:	WATER
		% Solid:	0

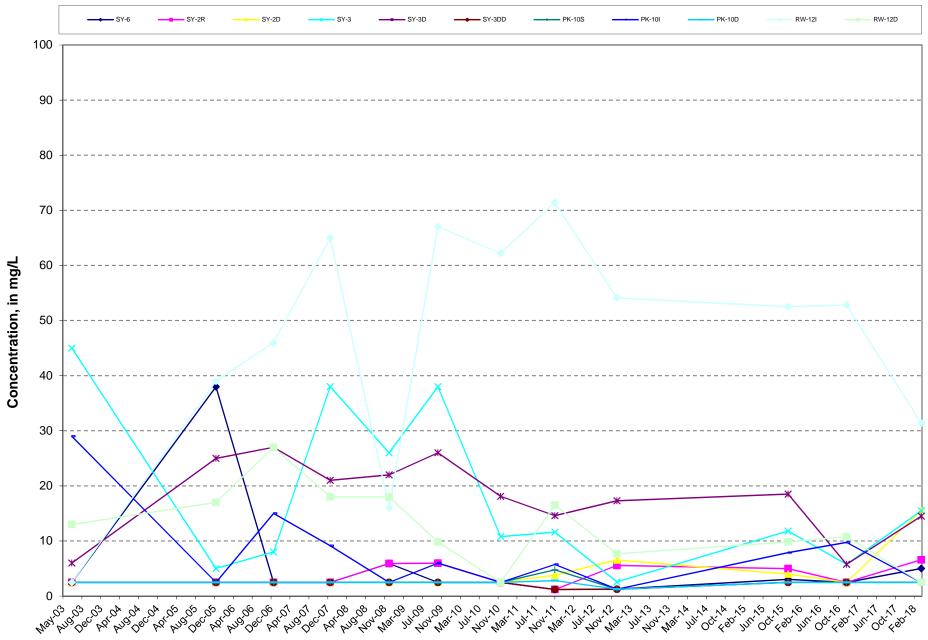

Parameter	Conc.	Qua.	DF	MDL	LOD	LOQ / CRQL	Units	Prep Date	Date Ana.	Ana Met.
Alkalinity	2	U	Î	0.4	1	2	mg/L		04/09/18 16:32	SM2320 B
Ammonia as N	0,085	J	Î	0.034	0.05	0.1	mg/L	04/06/18 12:45	04/09/18 09:09	SM 4500-NH3 B plus G
Bromide	0.5	U	l.	0.066	0.25	0.5	mg/L		04/05/18 13:18	300.0
Chloride	0.15	U	I.	0.075	0.075	0.15	mg/L		04/05/18 13:18	300.0
Nitrate	0.13	U	1	0.027	0.065	0.13	mg/L		04/05/18 13:18	300.0
Sulfate	0.75	U	Î	0.13	0.375	0.75	mg/L		04/05/18 13:18	300.0
BOD5	2	U	I	2	2	2	mg/L		04/05/18 16:50	SM5210 B
Color	5	U	1	5	5	5	cu		04/05/18 13:08	SM2120 B
Phenolics	0.05	U	1	0.01	0.025	0.05	mg/L	04/06/18 12:45	04/09/18 12:04	9065
TDS	10	U	1	0.031	5	10	mg/L		04/09/18 16:30	SM2540C
TKN	0.24	J	1	0.096	0.25	0.5	mg/L	04/06/18 08:30	04/09/18 10:34	SM4500-N Org
							-			B or C plus NH3 G
TOC	0.4	J	1	0.08	0.25	0.5	mg/L		04/12/18 15:10	SM5310B

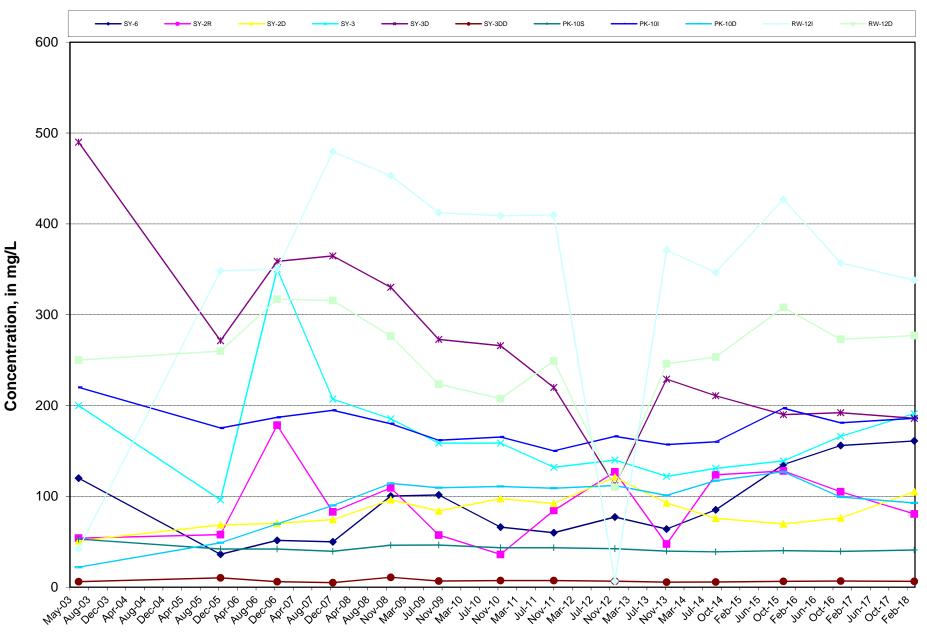
Comments:

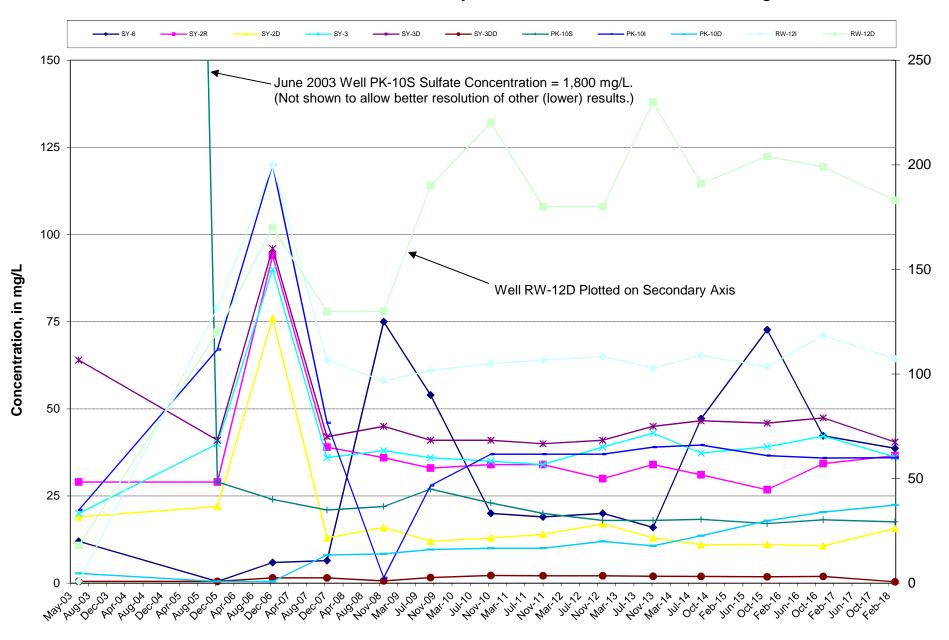

U = Not Detected J = Estimated Value LOQ = Limit of Quantitation B = Analyte Found in Associated Method Blank MDL = Method Detection Limit * = indicates the duplicate analysis is not within control limits. LOD = Limit of Detection E = Indicates the reported value is estimated because of the presence D = Dilutionof interference. Q = indicates LCS control criteria did not meet requirements OR = Over Range N = Spiked sample recovery not within control limits H = Sample Analysis Out Of Hold Time 19959 OENOUEM 40 -6 040

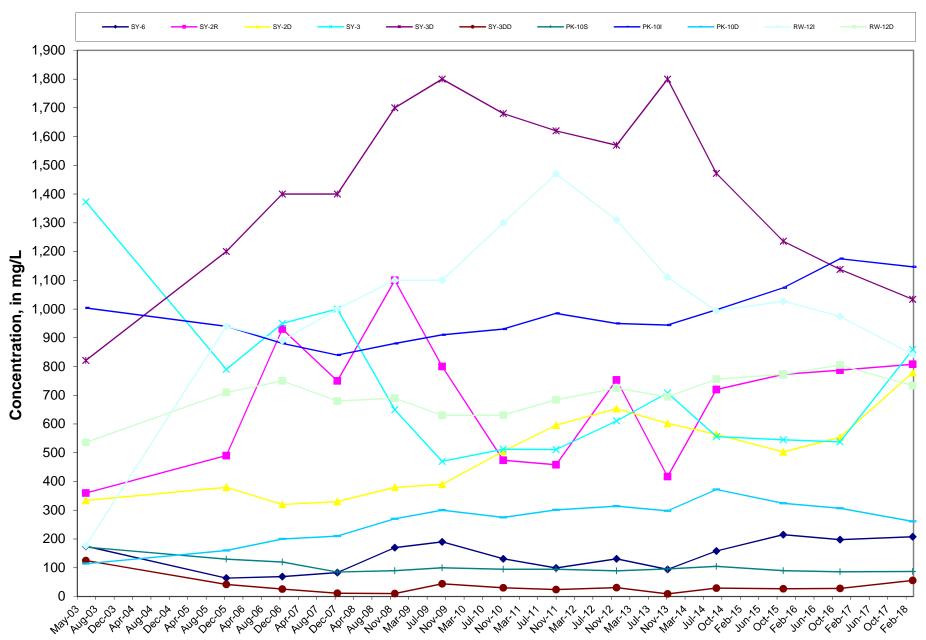
APPENDIX C

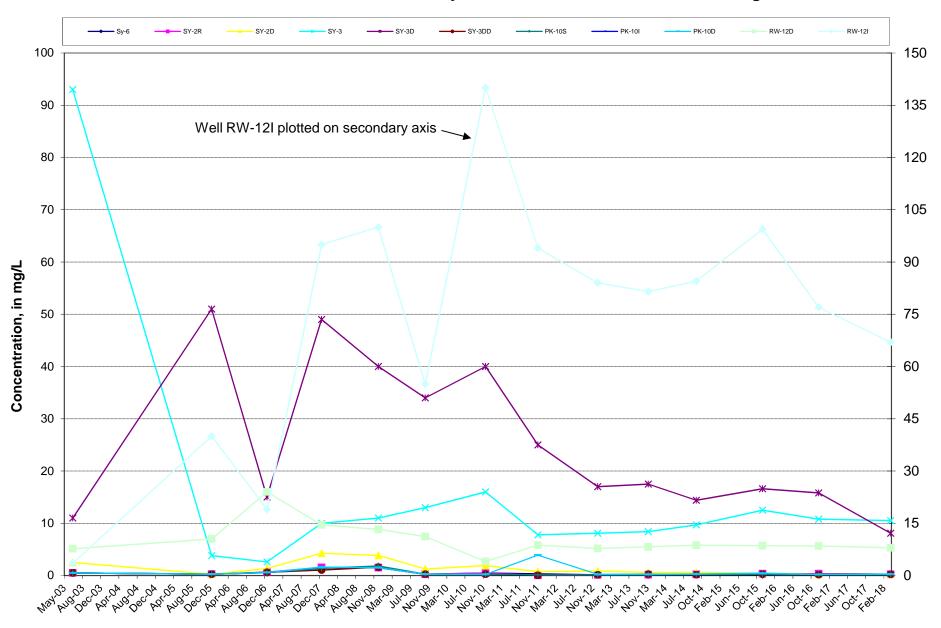

Trend Analysis Charts

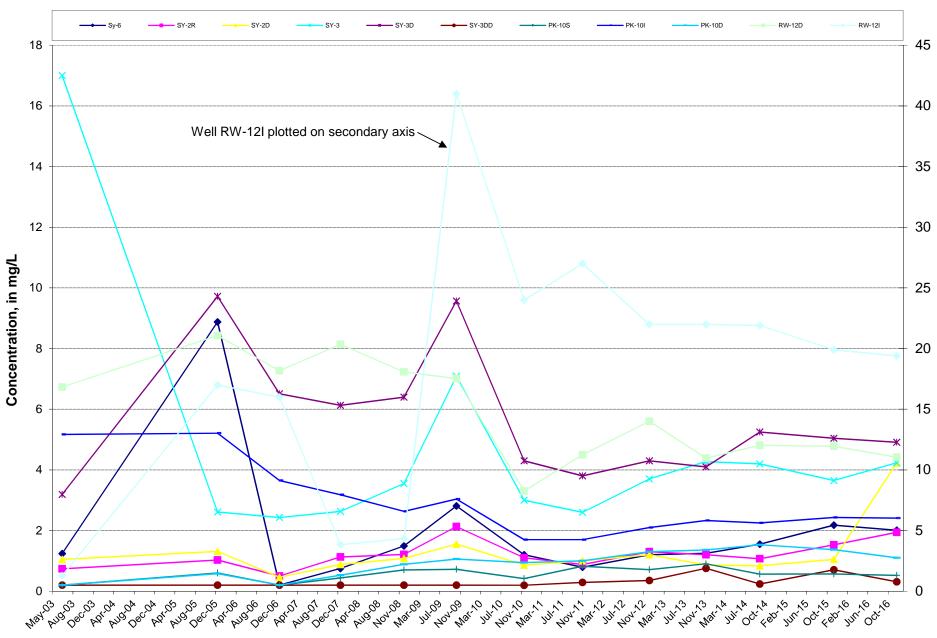

Post-Closure Alkalinity Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Ammonia Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Chloride Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure COD Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Hardness Concentrations in Syosset Landfill Ground Water-Monitoring Wells


Post-Closure Sulfate Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Post-Closure TDS Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Post-Closure TKN Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Post-Closure TOC Concentrations in Syosset Landfill Ground Water-Monitoring Wells

Lockwood, Kessler & Bartlett, Inc.

1 Aerial Way Syosset, NY 11791-5592

> p: (516) 938-0600 f: (516) 931-6344

www.lkbinc.com