

Overview of U.S. EPA's ORD Technical Outreach and Support Activities on Sustainable Mining Applications

Douglas W. Grosse and Diana Bless

Office of Research and Development National Risk Management Research Laboratory 2008 U.S. EPA/ NGWA Remediation Mine Land Conference, October 2-3, 2008 Denver, CO The Westin Tabor Center

Can we <u>efficiently</u>?

- Extract and utilize resources (including by-products)
- Manage wastes
- Reclamation/restoration
- Produce socio-economic advantages

Magnitude of Ore Mine Waste Problem Number Indicates Number of Mines

2

ORD's Mining Efforts

- Mine Waste Technology Program (MWTP)
- Engineering Technical Support Center
- Technology Transfer Program

Collaboration

- -EPA Region 8
- -EPA Region 10
- Technology
 Transfer Program
- -EPA Region 7
- -Industry Partners
- -Academia
- -Western Governors Association
- -BLM
- -Forest Service
- -DOE

MWTP Overview

- EPA-NRMRL
 - Technical Direction/Oversight
 - Quality Assurance Oversight
- DOE
 - Administrative Oversight
- MSE
 - Applied Research
 - Field Demonstrations
 - Technology Implementation
- Montana Tech
 - Basic Research

MWTP Project Map

MWTP Projects

- Post-Mining Development Using Resources from Flooded Underground Mine Workings
- Cyanide Heap Biological Detoxification Phase II
- Design and Installation of a Modular SRB Bioreactor for Acid Rock Drainage Treatment
- Pulsed Limestone Bed Treatment of Metal Mine Drainage at the Argo Tunnel in Idaho Springs

Engineering Technical Support Center Innovative Bioreactor Studies

- Constructed Wetlands with Bioreactors
- Sulfate Reducing Bioreactors
- Biochemical Reactors

ORD Technology Transfer and Outreach

1998 Heavy Metals Contamination Workshop - 150 attendees - Carol Browner gave keynote, Sen. Baucus and Sen. Burns spoke interactively 1998 Mining Workshop - 300 attendees 1999 Heavy Metals Contamination Workshop -180 Attendees 1999 Pit Lakes Workshop -240 attendees 2000 Mercury Workshop – 275 attendees 2001 Arsenic Workshop – 70 attendees 2002 Hard Rock Mining Conference – 375 attendees 2003 Workshop on Mining Impacted Native American Lands – 275 attendees 2004 Pit Lakes – 250 attendees 2005 Abandoned Mine Lands Workshop – 100 attendees 2006 Hard Rock Mining Conference – 350 attendees 2007 Abandoned Mine Lands Workshop – Coeur d'Alene, Idaho; 1993-2006 Mine Operations, Design, and Closure Conferences; Sponsors include: USFS, BLM, MT DEQ, MWTP

ORD Websites

U.S. EPA/U.S. DOE Mine Waste Technology Program web site: http://www.epa.gov/minewastetechnology

EPA's Abandoned Mine Lands Program web site: http://www.epa.gov/superfund/programs/aml

Case Study on the Belmont Mine Resource Recovery Butte, MT

Suzzann Nordwick – MSE Keri Petritz – MSE/Montana Tech Norma Lewis – EPA Diana Bless – EPA

Butte, Montana

Project Purpose

- Explore feasibility of recovering additional resources for beneficial use from underground mine workings
- Characterize underground mine waters at the Belmont Mine (long-term pumping test)
- Determine feasibility of upgrading water for use as irrigation water (treatability tests)
- Determine feasibility of using naturally elevated temperature water as a heat source for nearby buildings

Belmont Mine Site

Pumping Tests

- 1. Step-Drawdown Test
- 2. Long-Term Pumping Test
- 3. Recovery Test
- 4. Test Data Analysis

Pumping Tests

Analyses for primary sampling events:

- Field parameters: pH, specific conductivity (SC), temperature, dissolved oxygen (DO), and oxidation-reduction potential (ORP)
- Major cations and anions (Ca, Mg, Na, K, SO₄⁻², NO₃⁻, HCO₃⁻, and Cl⁻)
- Total recoverable metals (Al, Sb, As, Ba, Be, Cd, Cr, Co, Cu, Fe, Pb, Mn, Hg, Ni, Se, Ag, Tl, V, U, and Zn);
- Dissolved metals (same list as above)
- Alkalinity and hardness
- Total suspended solids (TSS)
- Speciation of Fe
- Speciation of As
- Stable isotopic analysis (dD of water, d18O of water, d18O of sulfate, d32S of sulfate, d13C of dissolved inorganic carbon)
- Radionuclide analysis (dissolved radon, radium, uranium)

Pump Test Water Quality Data

Parameter	Proposed Irrigation Standard (ug/L)	Irrigation Well July 6, 2007	Irrigation Well July 24, 2007	Irrigation Well July 31, 2007	Irrigation Well August, 14 2007
Gallons Pumped	N/A	5000	1,800,000	2,700,000	4,960,000
pH (SU)	N/A	6.1	5.8	5.7	5.6
Temp (°C)	N/A	16.5	19.5	19.5	19.0
As (ug/L)	100	1190	1320	1340	1390
Cd (ug/L)	10	ND	0.3	0.3	0.8
Fe (ug/L)	20,000	28,600	182,000	188,000	160,000
Mn (ug/L)	10,000	4420	21,800	21,900	17,500
Pb (ug/L)	5000	0.8	1.7	Not analyzed	1.6
Zn (ug/L)	10,000	1990	20,900	19,300	10,100

Belmont Mine Water

• Technical Challenges:

- Large batch flows, limited space, changing chemistry, etc.
- -Arsenic (As), iron (Fe), manganese (Mn), and zinc (Zn) concentrations exceed the guidelines for water reuse
- Oxidation/pH adjustment with solid/liquid separation is a straightforward option
- Innovative technologies were also evaluated during the treatability study

Belmont Treatability Studies

- 100 gallons of Belmont Water collected during pumping test for treatability testing stored under continuous nitrogen
- Two Phases of Testing
 - Phase 1 treatment tests were designed to incorporate oxidation and pH adjustment
 - Oxidation was accomplished using 30% H₂O₂ or air
 - 50% solution of NaOH was used for pH adjustment
 - Phase 2 tests optimized the most favorable treatment path identified in Phase 1
 - Hydrated lime (Ca(OH)₂) instead of NaOH was used for the pH adjustment
 - H_2O_2 was used to oxidize the water

Treatability Test Results

- Comparing the results of test runs—H₂O₂ has better contaminant removal with Fe, As, and Mn
- Oxidation first requires less pH-adjustment reagent to achieve the target pH
- Lime addition to pH 9.5 followed by H₂O₂ oxidation is the most effective treatment for removing all of the contaminants
- Settling tests were performed and flocculent was needed to settle sludge in a reasonable time

Belmont Water Quality Data

Water Needs	Cost to irrigate with	Cost to irrigate	Cost difference that can
	groundwater from	with municipal	be used for treatment of
	Belmont well	water	mine water for Irrigation
	(\$/1000 gals)	(\$/1000 gals)	(\$/1000 gals)
1-inch/month per 10 acres for 5 months/year	\$0.17	\$1.72	\$1.55

Treatment Technology	Cost (\$/1000 gallons)
Estimated Dollar Available for Treatment of Mine Water	< \$1.55
AMD Treat (DOI's Office of Surface Mining) http://amd.osmre.gov/amdtreat.asp	\$0.92—1.69

Conclusions/ Recommendations

- Belmont water is moderately contaminated
- Water can be upgraded to meet irrigation standards and be utilized in a beneficial way, reducing stress on municipal water supply
- Additional feasibility/treatability testing on a larger scale is warranted
- Site owner is pursuing funding for eventual implementation of a treatment system
- MSE is finalizing conceptual design for a treatment system
- High temperature water should be investigated as potential heat source for nearby buildings

Acknowledgements

- Montana Economic Redevelopment Development Institute (MERDI)
- Butte Silver Bow Government/Planning Department
- Montana Resources
- BP-ARCO
- Montana Bureau of Mines and Geology
- EPA (Local and Regional)
- DOE
- Dr. Chris Gammons, Montana Tech
- Dr. Paul Miranda, Center for Advanced Mineral Processing
- Mine Waste Technology Program EPA, ORD, NRMRL
- MSE Applications Inc.
- Conducted under Interagency Agreement DW89-93989701-0 between the U.S. EPA and the U.S. DOE. Work was conducted through the DOE's Consolidated Business Center in Cincinnati, Ohio.