APPENDIX D

Revisions to VF and PEF Equations (EQ, 1994b)

ENVIRONMENTAL QUALITY MANAGEMENT, INC.

MEMORANDUM

TO:	Ms. Janine Dinan	DATE:	July 11, 1994
SUBJECT:	Revisions to VF and PEF Equations	FROM:	Craig Mann
FILE:	5099-3	cc:	

Subsequent to the evaluation of the dispersion equations in the RAGS - Part B performed by Environmental Quality Management, Inc. (EQ,1993), questions have arisen as to the accuracy of the modeling protocol used to derive the dispersion coefficient (Q/C) used in the volatilization factor (VF) and the particulate emission factor (PEF) presently employed to calculate the air pathway Soil Screening Levels (SSLs).

EQ, 1993 used the Industrial Source Complex model (ISC2-ST) to derive a normalized concentration (kg/m³ per g/m²-s) for a series of square and rectangular area sources of differing size. This modeling protocol employed a source subdivision scheme similar to that recommended in the ISC2-ST Model User's Manual (EPA, 1992) whereby the source was subdivided into smaller sources closest to the center of the area. The center of the area was found to represent the point of maximum annual average concentration for all source shapes analyzed. Consecutive model runs were performed whereby source subdivision was increased between runs. Final source subdivision was reached when the model results converged within a factor of three percent or less.

From these data, a simple linear regression was used to evaluate the nature of the relationship between the normalized concentration and the size of the area. Preliminary plots of the data indicated that the relationship was exponential. Therefore, the relationship was linearized by taking the natural logarithms (ln) of each variable. The resulting linear regression for a square area of 0.5 acres resulted in a normalized concentration (C/Q) of 0.0098 kg/m³ per g/m²-s; the inverse of the normalized concentration resulted in a dispersion coefficient (Q/C) of 101.8 g/m²-s per kg/m³.

On May 5, 1994 a teleconference was held between representatives of the Toxics Integration Branch of the Office of Emergency and Remedial Response (OERR) and the Source Receptor Analysis Branch of the Office of Air Quality Planning Standards (OAQPS) to discuss the relative merits of the available area source algorithms as applied to nearfield and on-site receptors exposed to ground-level nonbuoyant emissions. The conclusions drawn from this teleconference were that a new algorithm recently developed by OAQPS would yield more accurate results for the exposure scenario in question.

The new algorithm is incorporated into the ISC2 model platform in both short-term mode (AREA-ST) and long-term mode (AREA-LT). Both models employ a double numerical integration over the area source in the upwind and crosswind directions as follows:

$$\chi = \frac{Q_A K}{2 \pi u_s} \int_x \frac{V D}{\sigma_y \sigma_z} \left(\int_y exp \left[-0.5 \left(\frac{Y}{\sigma_y} \right)^2 \right] dy \right) dx$$
(1)

where Q_A = Area source emission rate (g/m²-s)

K = Units scaling coefficient

V = Vertical term

D = Decay term.

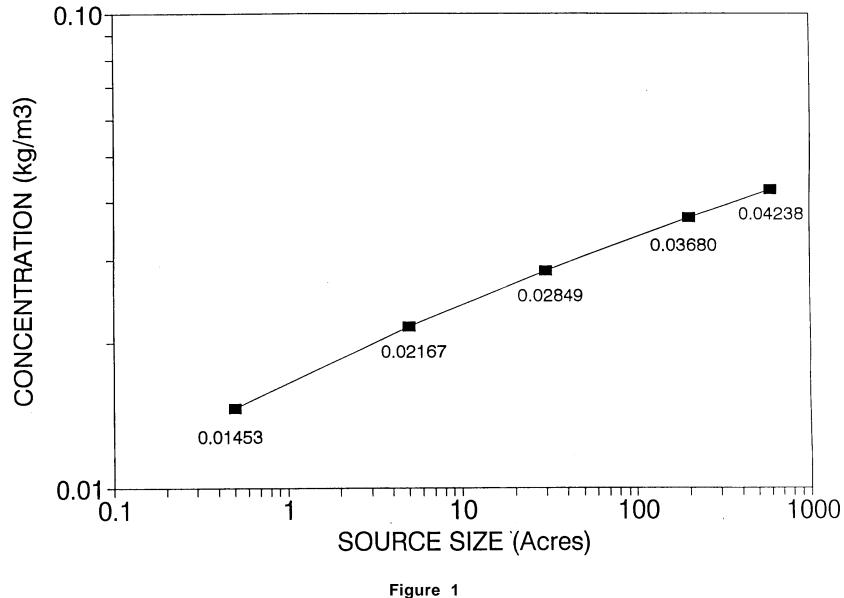
The integral in the lateral (i.e., crosswind or y) direction is solved analytically as:

$$\int_{y} \exp\left[-0.5\left(\frac{Y}{\sigma_{y}}\right)^{2}\right] dy = \operatorname{erfc}\left(\frac{Y}{\sigma_{y}}\right)$$
(2)

where erfc is the complementary error function.

The integral in the longitudinal (i.e., upwind or x) direction is solved by using a weighted average of successive estimates of the integral using a trapezoidal approximation. The model uses three separate criteria to determine convergence of the upwind integral. The result of these numerical methods is an estimate of the full integral that is essentially equivalent to, but much more efficient than, the method of estimating the integral as a series of line sources, such as the method used by the Point, Area, Line (PAL 2.0) model. Wind tunnel tests have also shown that the new algorithm performs well with on-site and near-field receptors.

Because the new algorithm provides better concentration estimates and does not require source subdivision, a revised dispersion analysis was performed for both volatile and particulate matter contaminants using the new algorithm.


The first part of the analysis involved a determination of the relationship between concentration and source size. In addition, this part of the analysis included a determination of the point of maximum annual average concentration for a square area source. This assessment employed the AREA-ST model as acquired from the OAQPS Technology Transfer Network, Support Center for Regulatory Air Models (SCRAM) Bulletin Board.

Meteorological data used for this analysis were 1989 hourly data for the Los Angeles National Weather Service (NWS) surface station, upper air data were from the Oakland NWS station for the same year. Rural dispersion coefficients were employed and all regulatory default options used. Modeling assumed flat terrain with no flagpole receptors; source rotation angle was set equal to zero.

Five source sizes were included in the assessment: 0.5, 5, 30, 200, and 600 acres. A coarse Cartesian receptor grid was employed within and extending beyond the source perimeter; a discrete receptor was also placed at the center of each source (x,y = 0,0). Emissions from each source were set equal to 1.0 g/m²-s; concentrations were calculated in units of kg/m³.

Figure 1 shows the relationship between source size (acres) and annual average concentration (kg/m3) for the five source sizes modeled. In each case, the point of maximum concentration was located at the center of the source. As an example, Attachment A is the model run sheets for the 0.5 acre source. As can be seen from Figure 1, the relationship between concentration and source size is exponential. Results also show that the maximum concentration representing the 600 acre source is 2.9 times higher than that of the 0.5 acre source.

Having established that when using the AREA-ST model the point of maximum concentration for a square area source is the center receptor, the second part of the analysis was to determine which of the 29 meteorological sites from EQ, 1993 best represents the average exposure and the high end exposure to volatile and particulate matter emissions. It was determined that the average exposure case should be represented by the 50th percentile site concentration, while the high end exposure is best represented by the 90th percentile site concentration.

Normalized Annual Average Concentration Versus Source Size

Each of the 29 sites from EQ, 1993 were subsequently modeled at an emission rate of 1.0 g/m²-s with a single discrete receptor at the center of the square area source. Source sizes modeled were 0.5 acres and 30 acres. Hourly meteorological data for each site were from EQ, 1993. From the set of SS normalized annual average concentrations, the 50th percentile site was determined to be Salt Lake City, Utah; Los Angeles, California (89th percentile site) was determined to be the closest approximation of the 90th percentile site. Table 1 shows the resulting dispersion coefficients for the two source sizes and the percentile ranking of each site.

In order to determine the average and high end sites for particulate matter exposures resulting from wind erosion, a normalized concentration could not be used because meteorological conditions other than simple dispersion (i.e., wind velocity and frequency) influence emissions and therefore actual concentrations. For this reason, actual concentrations were calculated for each site using the existing PEF equation as follows:

$$C = (C/Q) \left[\frac{0.036 (1 - V) x (U_m/U_{t.7})^3 x F(x)}{3600 \text{ s/h}} \right]$$
(3)

where

С

= Annual average PM_{10} concentration, kg/m³

(C/Q)= Normalized annual average concentration (kg/m³ per g/m² -s)V= Fraction of continuous vegetative cover U_m = Mean annual windspeed, m/s U_{t-7} = Equivalent threshold value of windspeed at 7 m, m/sF(x)= Windspeed distribution function from Cowherd, 1985.

The value of (C/Q) for each site was the normalized concentration previously estimated for volatile emissions (i.e., the inverse of each dispersion coefficient in Table 1). The value of V was set equal to 0.5. The mean annual windspeed (U_m) for each site was taken from Weather of U.S. Cities, Second Edition, Volume 2 by J. A. Ruffner and F. E. Bair, Gale Research Co., Detroit, Michigan. The value of F(x) was estimated for each site from Figure 4-3 or calculated from Appendix B of Cowherd 1985, as appropriate.

The value of U₁₋₇ was calculated as follows:

$$U_{t-7} = \frac{U_t}{0.4} \ln\left(\frac{700}{z_0}\right)$$
(4)

where

 U_{t-7} = Equivalent threshold value of windspeed at 7 m, m/s

 Z_{o} = Surface roughness height, cm (z_{o} = 0.5 cm for open terrain)

 U_t = Threshold friction velocity, m/s (U_t = 0.625 m/s).

Table 2 gives the results of this analysis and shows the relative PM_{10} concentrations for each site by source size and the percentile rankings. As can be seen from Table 2, the 50th percentile site was Salt Lake City, Utah, while the 89th percentile site was Minneapolis, Minnesota.

TABLE 1.								
VOLATILE	DISPERSION	SITE	RANKINGS					

City	NWS Surface Station Number	0.5 Acre (Q/C) (g/m ² -s per kg/m ³)	30 Acre (Q/C) (g/m²-s per kg/m³)	Site Ranking Percentile (%)
Huntington	13860	52.77	27.08	100
Fresno	93193	62.00	31.85	96
Phoenix	23183	64.06	32.63	93
Los Angeles	24174	68.82	35.10	89
Winnemucca	24128	69.25	35.49	86
Boise	24131	69.40	35.69	82
Hartford	14740	71.33	36.64	79
Little Rock	13963	73.37	37.68	75
Portland	14764	74.24	37.86	71
Salem	24232	73.42	37.88	68
Charleston	13880	74.91	38.42	64
Denver	23062	75.59	38.80	61
Atlanta	13874	77.16	39.68	57
Raleigh-Durham	13722	77.46	39.87	54
Salt Lake City	24127	78.06	40.14	50
Houston	12960	79.24	40.70	46
Lincoln	14939	81.63	41.56	43
Harrisburg	14751	81.90	42.34	39
Bismarck	24011	83.40	42.72	36
Seattle	24233	82.71	42.81	32
Cleveland	14820	83.19	43.03	29
Albuquerque	23050	84.18	43.31	25
Miami	12839	85.40	43.57	21
San Francisco	23234	89.53	46.06	18
Philadelphia	13739	90.09	46.38	14
Minneapolis	14922	90.74	46.84	11
Las Vegas	23169	95.51	49.48	7
Chicago	94846	97.75	50.45	4
Casper	24089	100.00	51.68	0

TABLE 2. PEF.CALCULATIONS AND SITE RANKINGS

	NWS surface station	Mean annual wind- speed	Mean annual wind- speed	Roughness height, Zo t	Threshold friction velocity at surface	Threshold friction velocity at 7 m		F(x),	F(x),	Vegetative cover	PM10 emission flux	0.5 Acre (Q/C) (g/m2-s per	0.5 Acre annual average conc.	30 Acre (Q/C) (g/m2-s per	30 Acre annual average conc.	Site ranking percentile
City	number	(mph)	(m/s)	(cm)	(m/s)	(m/s)	х	x <= 2	x > 2	(fraction)	(g/m2-s)	kg/m3)	(ug/m3)	kg/ m3)	(ug/ m3)	(%)
Casper	24089	12.9	5.77	0.5	0.625	11.32	1.74	0.57	NA	0.50	3.77E-07	100.00	3.77	51.68	7.29	100
Cleveland	14820	10.8	4.83	0.5	0.625	11.32	2.08	NA	2.32E-01	0.50	9.01E-08	83.19	1.08	43.03	2.09	96
Lincoln	14939	10.4	4.65	0.5.	0.625	11.32	2.16	NA	1.82E-01	0.50	6.30E-08	81.63	077	41.56	1.52	93
Minneapolis	14922	10.5	4.69	0.5	0.625	11.32	2.14	NA	1.94E-01	0.50	6.92E-08	90.74	0.76	46.84	1.48	89
Bismarck	24011	10.3	4.60	0.5	0.625	11.3Z	2.18	NA	1.70E-01	0.50	5.73E-08	83.40	0.69	42.72	1.34	86
Chicago	94846	10.4	4.65	0.5	0.625	11.32	2.16	NA	1.82E-01	0.50	6.30E-08	97.75	0.64	50.45	1.25	82
Philadelphia	13739	9.6	4.29	0.5	0.625	11.32	2.34	NA	9.93E-02	0.50	2.71E-08	90.09	0.30	46.38	0.58	79
Miami	12835	9.2	4.11	0.5	0.625	11.32	2.44	NA	6.82E-02	0.50	1.64E-08	85.40	0.19	43.57	0.38	75
Altanta	13874	9.1	4.07	0.5	0.625	11.32	2.47	NA	6.16E-02	0.50	1.43E-08	77.16	0.19	39.68	0.36	71
Seattle	24233	9.1	4.07	0.5	0.625	11.32	2.47	NA	6.16E-02	0.50	1.43E-08	82.71	0.17	42.81	0.33	68
Boise	24131	8.9	3.98	0.5	0.625	11.32	2.52	NA	4.95E-02	0.50	1.07E-08	69.40	0.15	35.69	0.30	64
Las Vegas	23165	9.1	4.07	0.5	0.625	11.32	2.47	NA	6.16E-02	0.50	1.43E-08	95.51	0.15	49.48	0.29	61
Albuquerque	23050	9.0	4.02	0.5	0.625	11.32	2.49	NA	5.53E-02	0.50	1.24E-08	84.18	0.15	43.31	0.29	57
Denver	23062	8.8	3.93	0.5	0.625	11.32	2.55	NA	4.41E-02	0.50	9.25E-09	75.59	0.12	38.80	0.24	54
Salt Lake City	24127	8.8	3.93	0.5	0.625	11.32	2.55	NA	4.41E-02	0.50	9.25E-09	78.06	0.12	40.14	0.23	50
Portland	14762	8.7	3.89	0.5	0.625	11.32	2.58	NA	3.91E-02	0.50	7.93E-09	74.24	0.11	37.86	0.21	46
Charleston	13880	8.7	3.89	0.5	0.625	11.32	2.58	NA	3.91E-02	0.50	7.93E-09	74.91	0.11	38.42	0.21	43
Hartford	14764	8.6	3.84	0.5	0.625	11.32	2.61	NA	3.45E-02	0.50	6.76E-09	71.33	0.095	36.64	0.18	39
San Francisco	23234	8.7	3.89	0.5	0.625	11.32	2.58	NA	3.91E-02	0.50	7.93E-09	89.53	0.089	46.06	0.17	36
Little Rock	13963	8.0	3.58	0.5	0.625	11.32	2.80	NA	1.45E-02	0.50	2.29E-09	73.37	0.031	37.68	0.061	32
Winnemucca	24128	7.9	3.53	0.5	0.625	11.32	2.84	NA	1.23E-02	0.50	1.86E-09	69.25	0.027	35.49	0.052	29
Houston	12960	7.8	3.49	0.5	0.625	11.32	2.88	NA	1.03E-02	0.50	1.51E-09	79.24	0.019	40.70	0.037	25
Raleigh- Durham	13722	7.7	3.44	0.5	0.625	11.32	2.91	NA	8.60E-03	0.50	1.21E-09	77.461	0.016	39.87	0.030	21
Harrisburg	14751	7.7	3.44	0.5	0.625	11.32	2.91	NA	8.60E-03	0.50	1.21E-09	81.90	0.015	42.34	0.029	18
LosAngeles	24174	7.4	3.31	0.5	0.625	11.32	3.03	NA	4.74E-03	0.50	5.92E-10	68.82	8.60E-03	35.10	0.017	14
Salem	2423 2	7.0	3.13	0.5	0.625	11.32	3.21	NA	1.87E-03	0.50	1.98E-10	73.42	2.69E-03	37.88	5.22E-03	11
Huntington	13860	6.5	2.91	0.5	0.625	11.32	3.45	NA	4.45E-04	0.50	3.76E-11	52.77	7.13E-04	27.08	1.39E-03	7
Fresno	93193	6.4	2.86	0.5	0.625	11.32	3.51	NA	3.19E-04	0.50	2.58E-11	62.00	4.16E-04	31.85	8.09E-04	4
Phoenix	23183	6.3	2.82	0.5	0.625	11.32	3.56	NA	2.25E-04	0.50	1.73E-11	64.06	2.71E-04	32.63	5.31E-04	0

 $\begin{array}{l} F(x) <= 2 \mbox{ from Cowherd (1985), Figure 4-3.} \\ F(x) > 2 \mbox{ from Cowherd (1985), Appendix B.} \\ NA = \mbox{ Not Appilcable.} \end{array}$

Table 3 summarizes the results of the dispersion coefficient analysis for both the VF and PEF equations. In addition, Table 3 also gives the default values of the PEF variables for both average and high end exposures.

TABLE 3.VF AND PEF VALUES OF (Q/C) FOR AVERAGE
AND HIGH END EXPOSURES

Site size	Average	High End	5		VF	VF
	annual	annual	Average	High End	Average	High End
	conc.,	conc.,	(Q/C),	(Q/C),	(Q/C),	(Q/C),
	PM10	PM10	(g/m²-s per	(g/m²-s per	(g/m²-s per	(g/m²-s per
	(ug/m³)	(ug/m³)	kg/m³)	kg/m³)	kg/m³)	kg/m³)
0.5 Acres	0.12	0.76	78.06	90.74	78.06	68.82
30 Acres	0.23	1.48	40.14	46.84	40.14	35.10

Average Site for PM10= Salt Lake City Average Site for Volatiles = Salt Lake City High End Site for PM10 = Minneapolis High End Site for Volatiles = Los Angeles

Average Site for PM10: Mean annual windspeed $(U_m) = 3.93 \text{ m/s}$; F(x) = 0.044, at x = 2.55. High End Site for PM10: $U_m = 4.69 \text{ m/s}$; F(x) = 0.194, at x = 2.14. Where: Vegetative cover (V) = 0.5. Surface roughness height $(Z_o) = 0.5 \text{ cm}$.

Threshold friction velocity $(U_t) = 0.625$ m/s at surface.

Threshold windspeed at 7 meters $(U_t-7) = U_t/0.4 \times \ln(700/Z_o) = 11.32 \text{ m/s}.$

ATTACHMENT A

AREA-ST MODEL RUN SHEETS FOR A 0.5 ACRE SQUARE AREA SOURCE

œ	STARTING	
œ	TITLEONE	AREA SOURCES 1/2 acre run
œ	MODELOPT	DFAULT CONC RURAL
œ	AVERTIME	PERIOD
œ	POLLUTID	PM10
œ	RUNORNOT	RUN
œ	ERRORFIL	AREA1.ERR
ω	FINISHED	

SO ST	ARTING							
		SRCID	:	SRCTYP	XS	YS	ZS	
SO LO	CATION	A1/2		AREA	-22.5	-22.5	.0000	
		SRCID	(QS	HS	XINIT	YINIT	
SO SR	CPARAH	A1/2		1.0	0.0	45.	45.	_
SO	EHISUNI	Т	.10000	0E-02	(GRAMS/(SE	C-M**2))	KILOGRAMS/CU	BIC-METER
SO	SRCGROU	D	AREA1	A1/2				
50	DICCEICOI	E .	ALLIAT	AL/Z				
SO	FINISHE	D						
RE	STARTIN	G						
RE	DISCCAR	Г	0.		0.			
RE	DISCCAR	Г	25.		0.			
RE	DISCCAR	Г	-25.		0.			
RE	DISCCAR	Г	25.		25.			
RE	DISCCAR		25.		-25.			
RE	DISCCAR		-25.		-25.			
RE	DISCCAR		-25.		25.			
RE	DISCCAR		50.		0.			
RE	DISCCAR		-50.		0.			
RE	DISCCAR		50.		50.			
RE	DISCCAR		50.		-50.			
RE	DISCCAR		-50.		-50.			
RE	DISCCAR		-50.		50.			
RE	DSSCCAR		75.		0.			
RE	DISCCAR		-75.		0.			
RE	DISCCAR		75.		75.			
RE	DISCCAR		75.		-75.			
RE	DISCCAR		-75.		-75.			
RE	DISCCAR		-75.		75.			
RE	DISCCAR		100.		0.			
RE	DISCCAR		-100.		0.			
RE	DISCCAR		100.		100.			
RE	DISCCAR		100.		-100.			
RE	DISCCAR		-100.		-100.			
RE	DISCCAR		-100.		100.			
	2200010	-			2000			
RE	FINISHE	D						
ME	STARTIN	G						
ME	INPUTFI			TG\2317	4-89.ASC			
ME	ANEHHGH		10.0 №		1 02.1100			
1.11		-	10.0 P			~		

23174 1989

23230 1989

ΜE

ΜE

SURFDATA

UAIRDATA

LOS ANGELES

OAKLAND

ME ME	WINDCATS FINISHED	1.54	3.09	5.14	8.23	10.80				
an an an	STARTING RECTABLE FINISHED	ALLAVE	FIRST							

*** 0	*** SETUP Finishes Successfully ***									

*** SETUP Finishes Successfully ***

*** AREAST - VERSION TESTA *** *** AREA SOURCES---1/2 acre run*** TEST OF ST AREA SOURCE ALGORITHM *** ***

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

```
*** MODEL SETUP OPTIONS SUMMARY ***
```

**Model Is Setup For Calculation of Average CONCentration Values.

**Model Uses RURAL Dispersion.

**Model Uses Regulatory DEFAULT Options:

- 1. Final Plume Rise.
- 2. Stack-tip Downwash.
- 3. Buoyancy-induced Dispersion.
- 4. Use Calms Processing Routine.
- 5. Not Use Missing Data Processing Routine.
- 6. Default Wind Profile Exponents.
- 7. Default Vertical Potential Temperature Gradients.
- 8. "Upper Bound" Values for Supersquat Buildings.
- 9. No Exponential Decay for RURAL Mode

**Model Assumes Receptors on FLAT Terrain.

**Model Assumes No FLAGPOLE Receptor Heights.

**Model Calculates PERIOD Averages Only

**This Run Includes: 1 Source(s); 1 Source Group(s); and 25 Receptore(s)

**The Model Assumes A Pollutant Type of: PM10

**Model Set To Continue RUNning After the Setup Testing.ff

**Output Options Selected: Model Outputs Tables of PERIOD Averages by Receptor Model Outputs Tables of Highest Short Term Values by Receptor (RECTABLE Keyword)

**NOTE: The Following Flags May Appear Following CONC Values:

- c for Calm Hours m for Hissing Hours
- b for Both Calm and Missing Hours

Misc. Inputs: Anem. Hgt. (m) = 10.00 ; Decay Coef. =.0000 ; Rot. Angle = .0 Emission Units = (GRAMS/(SEC-M2)); Emission Rate Unit Factor = .10000E-02 Output Units = KILOGRAMS/CUBIC-METER

**input Runstream File: areal.dat, **Output Print File: areal.out
**Detailed Error/Message File: AREA1.ERR

*** AREAST - VERSION TESTA *** *** AREA SOURCES--- 1/2 acre run *** TEST OF ST AREA SOURCE ALGORITHM *** ***

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

*** AREA SOURCE DATA ***

SOURCE ID	NUMBER PART. CATS.	EMISSION RATE (USER UNITS /METERS**2)	COORD X (METERS)	(SW CORNER) Y (METERS)	BASE ELEV. (METERS)	RELEASE HEIGHT (METERS)	X-DIM OF AREA (METERS)	Y-DIM OF AREA (METERS)	ORIENT. OF AREA (DEG.)	EMISSION RATE SCALAR VARY BY	
A1/2	0	.10000E+01	-22.5	-22.5	.0	.00	45.00	45.00	.00		
	*** AREAST - VERSION TESTA *** *** AREA SOURCES 1/2 acre run TEST OF ST AREA SOURCE ALGORITHM ***										
*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT											

*** SOURCE IDs DEFINING SOURCE GROUPS ***

GROUP ID

SOURCE IDs

AREA1 A1/2

*** AREAST - VERSION TESTA *** *** AREA SOURCES--- 1/2 acre run TEST OF ST AREA SOURCE ALGORITHM *** ***

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

*** DISCRETE CARTESIAN RECEPTORS *** (X-COORD, Y-COORD, ZELEV, ZFLAG) (METERS)

		.0, .0, -25.0, 25.0, .0, -50.0, .0, -75.0, .0, 100.0, 100.0,	.0, .0, .0, .0, .0, .0, .0, .0, .0, .0,	.0); .0); .0); .0); .0);		-25.0, 50.0, 50.0, -50.0, 75.0, 75.0, -75.0,	.0, 75.0,	.0, .0, .0, .0, .0, .0, .0, .0, .0, .0,	.0); .0); .0); .0); .0); .0); .0);
--	--	--	--	--------------------------------------	--	--	--------------	--	--

*** AREAST - VERSION TESTA *** *** AREA SOURCES--- 1/2 acre run TEST OF ST AREA SOURCE ALGORITHM *** ***

*** MODELING OPTIONS USED CONC RURAL FLAT DFAULT

*** METEOROLOGICAL DAYS SELECTED FOR PROCESSING *** (1=YES; 0=NO)

111111111	1111111111	1111111111	1111111111	1111111111
111111111	1111111111	1111111111	1111111111	1111111111
111111111	1111111111	1111111111	1111111111	1111111111
11111111	111111	111111	111111	111111
1111111111 1111111111	111111111 111111	111111111	1111111111	1111111111

NOTE: METEOROLOGICAL DATA ACTUALLY PROCESSED WILL ALSO DEPEND ON WHAT IS INCLUDED IN THE DATA FILE

*** UPPER BOUND OF FIRST THROUGH FIFTH WIND SPEED CATEGORIES *** (HETERS/SEC)

1.54, 3.09, 5.14, 8.23, 10.80,

*** WIND PROFILE EXPONENTS ***

STABILITY WIND SPEED CATEGORY 2 .70000E-01 .70000E-01 5 .70000E-01 .70000E-01 1 .70000E-01 .70000E-01 CATEGORY 4 6 6 .70000E-01 .70000E-01 .10000E+00 .15000E+00 .35000E+00 .70000E-01 .70000E-01 А .70000E-01 В .70000E-01 .10000E+00 .15000E+00 .35000E+00 .10000E+00 .15000E+00 .35000E+00 .10000E+00 .15000E+00 .10000E+00 .15000E+00 C D .10000E+00 .15000E+00 .35000E+00 .35000E+00 .55000E+00 Е .35000E+00 F .55000E+00 .55000E+00 .55000E+00 .55000E+00 .55000E+00

*** VERTICAL POTENTIAL TEMPERATURE GRADIENTS *** (DEGREES KELVIN PER METER)

STABILITY		WI	ND SPEED CATEO	JORY		
CATEGORY	1	2	3	4	5	б
A	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
В	.00000E+00	.00000E+00	.00000t+00	.00000E+00	.00000E+00	.00000E+00
С	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
D	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00	.00000E+00
E	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01	.20000E-01
F	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01	.35000E-01

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

*** THE FIRST 24 HOURS OF METEOROLOGICAL DATA ***

FILE: C:\CRAIG\23174-89.ASC SURFACE STATION NO : 23174 NAME: LOS YEAR: 1989 FORMAT: (412,2F9.4,F6.1,I2,2F7.1) UPPER AIR STATION NO.: 23230 NAME: OAKLAND YEAR: 1989

YEAR	MONTH	DAY	HOUR	FLOW	SPEED	TEMP	STAB	MIXING	HEIGHT (M)
				VECTOR	(M/S)	(K)	CLASS	RURAL	URBAN
89	1	1	1	251.0	3.09	282.6	4	533.0	533.0
89	1	1	2	228.0	3.09	282.0	4	568.6	568.6
89	1	1	3	194.0	2.57	282.0	4	604.1	604.1
89	1	1	4	143.0	4.63	282.0	4	639.6	639.6
89	1	1	5	173.0	2.06	282.0	5	675.2	151.0
89	1	1	6	272.0	3.09	280.4	б	710.7	151.0
89	1	1	7	265.0	2.06	280.4	б	746.3	151.0
89	1	1	8	233.0	2.06	282.0	5	134.9	265.4
89	1	1	9	257.0	2.06	283.7	4	278.2	387.0
89	1	1	10	261.0	.00	285.9	3	421.6	508.6
89	1	1	11	44.0	2.06	288.2	3	564.9	630.2
89	1	1	12	56.0	3.60	289.3	3	708.3	751.8
89	1	1	13	83.0	4.12	289.3	3	851.6	873.4
89	1	1	14	59.0	4.12	290.4	3	995.0	995.0
89	1	1	15	82.0	4.12	287.6	3	995.0	995.0
89	1	1	16	74.0	3.60	287.6	4	995.0	995.0
89	1	1	17	81.0	3.60	285.9	5	992.3	979.1
89	1	1	18	87.0	3.09	284.3	б	975.8	880.6
89	1	1	19	154.0	4.12	286.5	5	959.2	782.2
89	1	1	20	167.0	2.06	285.4	б	942.7	683.8
89	1	1	21	280.0	2.57	285.4	б	926.2	585.3
89	1	1	22	252.0	2.06	284.3	б	909.6	486.9
89	1	1	23	220.0	3.09	283.2	6	893.1	388.4
89	1	1	24	260.0	1.54	283.7	7	876.5	290.0

*** NOTES: STABILITY CLASS 1=A, 2=B, 3=C, 4=D, 5=E AND 6=F. FLOW VECTOR IS DIRECTION TOWARD WHICH WIND IS BLOWING. *** ***

*** ***

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

*** THE PERIOD (8760 HRS) AVERAGE CONCENTRATION VALUES FOR SOURCE GROUP: AREA1 *** INCLUDING SOURCE(S): A1/2,

*** DISCRETE CARTESIAN RECEPTOR POINTS ***

** CONC OF PM10

IN KILOGRAMS/CUBIC-METER

**

X-COORD (M)	Y-COORD (M)	CONE	X-COORD (M))	Y-COORD (M	CONC
.00	.00	.01453	25.00	.00	.00679
-25.00	.00	.00594	25.00	25.00	.00414
25.00	-25.00	.00104	-25.00	-25.00	.00220
-25.00	25.00	.00223	50.00	.00	.00175
-50.00	.00	.00158	50.00	50.00	.00060
50.00	-50.00	.00018	-50.00	-50.00	.00034
-50.00	50.00	.00037	75.00	.00	.00076
-75.00	.00	.00078	75.00	75 .00	.00024
75.00	-75.00	.00008	-75.00	-75.00	.00015
-75.00	75.00	.00016	100.00	.00	.00041
-100.00	.00	.00047	100.00	100.00	.00013
100.00	-100.00	.00005	-100.00	-100.00	.00009
-100.00	100.00	.00009			

*** AREAST - VERSION TESTA *** *** AREA SOURCES--- 1/2 acre run TEST OF ST AREA SOURCE ALGORITHM ***

*** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT

*** THE SUMMARY OF MAXIMUM PERIOD (8760 HRS) RESULTS ***

**

** CONC OF PM10IN KILOGRAMS/CUBIC-METER

GROUP ID	AVERAGE CONC	RECEPTOR (XR	, YR, ZELEV,	ZFLAG) OF TYPE	NETWORK GRID-ID
AREA1 1ST HIGHEST 2ND HIGHEST 3RD HIGHEST 4TH HIGHEST 5TH HIGHEST 6TH HIGHEST	VALUE IS .00679 AT (VALUE IS .00594 AT (VALUE IS .00414 AT (VALUE IS .00223 AT (.00, 25.00, -25.00, 25.00, -25.00, -25.00,	.00, .00 .00, .00 .00, .00 25.00, .00 25.00, .00 -25.00, .00	, .00) , .00) , .00) , .00)	8 8 8 8 8 8 8 8 8 8 8

*** RECEPTOR TYPES: GC = GRIDCART GP = GRIDPOLR DC = DISCCART DP = DISCPOLR BD = BOUNDARY

*** AREAST - VERSION TESTA *** *** AREA SOURCES--- 1/2 acre run TEST OF ST AREA SOURCE ALGORITHM *** *** MODELING OPTIONS USED: CONC RURAL FLAT DFAULT *** Message Summary For ISC2 Model Execution *** ------ Summary of Total Messages ------A Total of 0 Fatal Error Message(s) A Total of 0 Warning Message(s) A Totat of 653 Informational Message(s) A Total of 653 Calm Hours Identified

> ******* FATAL ERROR MESSAGES ******* *** NONE ***

******* WARNING MESSAGES ******* *** NONE ***

*** ISCST2 Finishes Successfully ***