

Stan A. Huber Consultants, Inc.

Health Physics and Radiation Safety Services

200 North Cedar Road - New Lenox, Illinois 60451-1751 - (800) 383-0468 or (815) 485-6161 - FAX (815) 485-4433 - Email sahci@sahci.com - Home Page www.sahci.com

December 22, 2016

Michael Madura King Sykes, LLC 1300 Bull Valley Drive Woodstock, IL 60098

RE: Radiation Monitoring Interim Report – King Sykes Medical Building at 2535 South Dr. Martin Luther King Jr. Drive, Chicago, IL.

Dear Mr. Madura:

Stan A. Huber Consultants, Inc. (SAHCI) was hired by your firm to provide radiation monitoring during excavation activities performed during the construction of the King Sykes Medical Building at 2535 South Dr. Martin Luther King Jr. Drive in Chicago, Illinois. The potential radiological contaminants at the site include both uranium (U-234+U235+U238) and radium (Ra-226+Ra-228). Radiation monitoring is required at this location by the City of Chicago Department of Fleet and Facility Management (2FM) due to its proximity to the Former Carnotite Reduction Company site located at 434 E. 26th Street.

The monitoring was performed by Glenn Huber, Steven Kowalczyk, and James Hatten, SAHCI Health Physicists, from September 7, 2016 – December 22, 2016, as needed. Additional surveys are anticipated at the site in the future since work has not yet been completed.

The Illinois Emergency Management Agency (IEMA) and United States Environmental Protection Agency (USEPA), in coordination with 2FM, have determined that the threshold level for contamination for total radium is 7.1 picocuries per gram (pCi/g), which is based on 5 pCi/g over background levels. A threshold for total uranium has not yet been determined for the site. Therefore, the Field Action Level has conservatively been determined as twice the background count rate to account for the potential of both radium and uranium being present. Any count rate exceeding twice the background count rate would then require both collection of a soil sample to be analyzed by gamma spectroscopy and additional field surveys with an instrument capable of measuring uranium in soil.

The following construction activities were monitored for thorium during the project:

- Initial Surface Gamma Scan of Site
- Site Grading and Preparation
- Potholing for Foundation Piles
- Trenching Grade Beams and Utilities

Instrumentation

Surface gamma scans were performed using Ludlum Model 2221 Scaled / Ratemeters (serial no. 134542 and serial no. 127242) with attached Ludlum Model 44-10 2"x2" NaI detectors (w/ 6" collimated lead shield). The instruments were calibrated on August 8, 2016. The average background count rate for each instrument was determined by performing measurements at five different locations along the southern property line.

A Ludlum Model 2241 Scaler / Ratemeter (serial no. 148069) with attached Ludlum Model 44-40 shielded "pancake" G-M detector was also available in the event that potential uranium was encountered.

Using twice the average background count rate in counts per minute (cpm) as the threshold for further testing results in the following Field Action Levels.

	Ludlum 2221 #134542	Ludlum 2221 #127242	Ludlum 2241 #148069
Background Location #1	2716	3318	68
Background Location #2	2378	2766	59
Background Location #3	2732	1634	71
Background Location #4	2329	1817	63
Background Location #5	2031	2431	73
Average Background (cpm) =	2437	2393	67
2x BKG FAL (cpm)=	4874	4786	134

Initial Surface Gamma Scan

Glenn Huber performed an initial surface gamma scan of the future building footprint on September 7, 2016. The area of the building footprint was paved at the time of the survey. The building footprint was delineated into sections based on the locations of future foundation piles (1-7 West-East and A-E North-South). Each section was then divided into four quadrants. A 100% surface gamma scan was performed by scanning the surface of each grid with the detector at a height of two to six inches above ground surface at a rate of 0.5 meters per second, and the maximum count rate for each quadrant was recorded on a Radiation Survey Form. Each grid section was approximately 30 feet x 30 feet, but varied depending on location.

Glenn Huber performed an initial surface gamma scan on the remainder of the property outside of the future building footprint on September 13, 2016. Although this area falls outside of the building footprint, it was also surveyed because the top soil was going to be removed and limited grading was planned. Since the areas outside of the building footprint do not have any piles or delineated grid lines, the lines used for the building grids were extended to the property lines. Surface gamma scans were performed using the same method as detailed above and the count rate data for each grid guadrant was recorded on a Radiation Survey Form

Attachment A - Initial Gamma Surface Scan details the results of the survey. The area colored purple shows the building footprint and the area colored green shows the remainder of the property.

No count rates were found at any time that exceeded the twice the background count rate threshold limit.

Site Grading and Preparation

The initial grading of the site started in September 2016. Throughout September, existing light poles, curbs, trees, pavement and topsoil were removed from the site. Surface gamma scans were performed as the different features were removed. In addition to the surface gamma

scans, spot checks were performed using the Ludlum 2241 survey meter with attached Ludlum Model 44-40 shielded G-M detector, since this was the first time the material below the existing pavement was exposed.

Grading was performed on the North end of site for planned sewer pipe installation and East side of site for a drainage catch basin (October 28, 2016- November 2, 2016). The Northern area of the site was divided into seven sections, which were thirty feet each. The Eastern area was divided into five sections, which were twenty-one feet each.

Grading was performed in three sections inside the building footprint (November 28, 2016 and December 1, 2016). This grading was minimal (several inches to one foot) and done to make the site level.

Grading was performed on the West side of site behind the construction trailer down to grade for the future parking lot (November 28, 2016 and December 2, 2016). This area has not been completed as future grading will be needed.

Surface Gamma scans were performed during site grading using the survey instruments identified above, and measurements were taken on the surface in lifts not to exceed 18 inches. The maximum count rates and excavation sketches are detailed in Attachment B – Site Grading. No count rates were found at any time that exceeded the twice the background count rate threshold limit.

Potholing of Foundation Piles

Potholing pile locations began in September 2016 and finished in October 2016. Pile locations along the north side of the building were dug as a single trench since there are many located all in a row. All other pile locations were excavated and surveyed individually.

Surface Gamma scans were performed using the survey instruments identified above, and measurements were taken as the soil was removed in 18" lifts. The material was stockpiled and surveyed and then the hole was back filled. The maximum count rates of each pile location are detailed in Attachment C - Potholing of Foundation Piles. No count rates were found at any time that exceeded the twice the background count rate threshold limit.

Trenching of Grade Beams and Utilities

Trenching started in September 2016 and ended in December 2016. Surface gamma scans were performed using the survey instruments identified above, and measurements were taken as material was excavated in 18-inch lifts and stockpiled. The following trenching items were surveyed:

- A test trench was dug on September 15th from C4 to D4.
- Grade beam trenching started on October 28th and finished on November 18th. The
 trenching started on the Northwest corner of the building. The North grade beam trench
 was divided into nine sections that were twenty-seven feet each. The East grade beam
 trench was divided into four sections and was twenty-two feet each. The South grade
 beam trench was divided into eight sections, which were twenty-seven feet per section.
 The West grade beam was divided into six sections, which were thirty feet each. See
 Attachment D.1 Grade Beam Trenching

- Sewer and Water trenching started on November 21st and finished on December 1st. This trench started in the Northeast corner of the site. The trench was divided into a total of thirty-six sections. Pipe 108-112 was divided into fourteen sections, which were 26.4 feet per section. Pipe 113 was divided into seven sections, which were 18.8 feet per section. Pipe 101-104 was divided into eleven sections, which were 26.7 feet per section. Pipe 106 was divided into four sections, which were 15.7 feet per section. See Attachment D.2 Sewer and Water Trenching
- Plumbing trenching was done on December 6th. The trench was divided in five sections, which were twenty-eight feet per section. See Attachment D.3 Building Plumbing

No count rates were found at any time that exceeded the twice the background count rate threshold limit.

Additional Monitoring

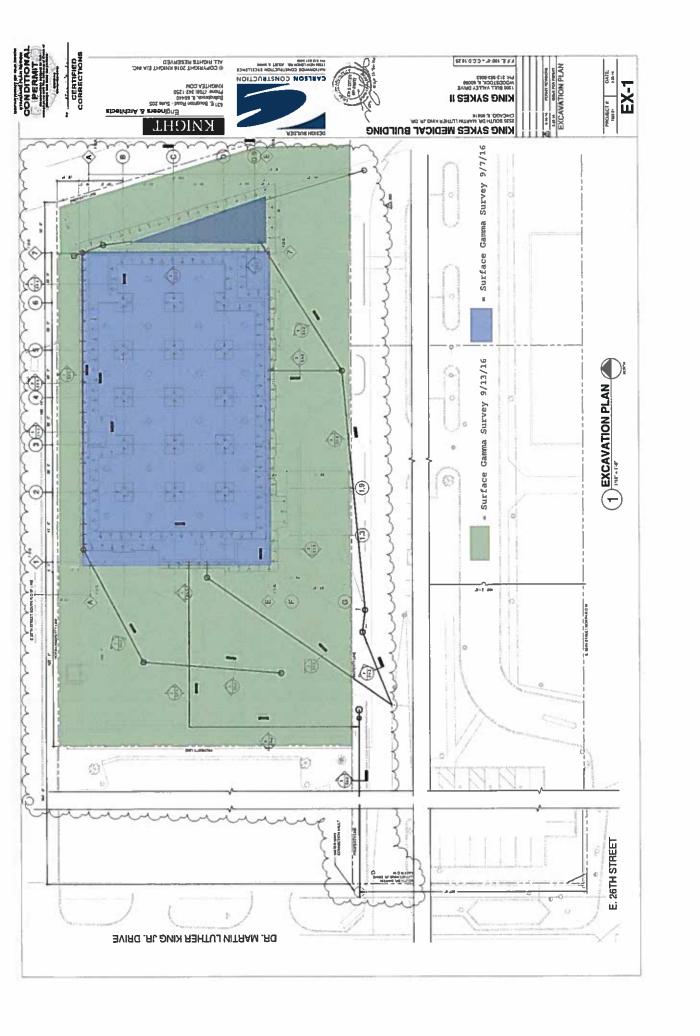
Since no count rates were identified above the 7.1 pCi/gram threshold limit, no additional soil sampling, air monitoring, or personnel monitoring were performed.

Thank you for your assistance with this project. If you have any questions or need additional information, please call me at (815) 485-6161.

Sincerely,

Stan A. Huber Consultants, Inc.

12He


Glenn Huber, CHP

President

Attachment A Initial Surface Gamma Scan

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

> Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

Locat	tion/ Proje	ect ID:	King	Sy kes.	Medical	1 Build	-9				
Date:	9,	17/16		-	Fechnici a	an:<	Slenn	Huser			
Inst N	/lodel: _	Ludle	_ 222	<u>) / </u>	Serial No	.:	1345	742			
Probe	e Type:	1"x1" Nal hielded /	/ (2"x2" N Not Shie		Lift Eleva	ition:	5vifa	<u>ce</u>			
Backg	round	937	cpm		Action Lev	el: <u> </u>	874 c	pm			
Write g at grid	grid designations intersections	ons in circle (if required)). Shade ar	highest coun	ts for grid in ed counts an	cpm. Record ma	rd 30 secon x cpm.	d counts	Î N		
(1) (2) (3) (4) scale (5)											
		20-1				lightpole			-(A)		
	2.8	2.7	3.0	2.9	3.1	2.7	2.8	2.4	1		
	grass Pave-c-	 +	m. v m =		<u>. Ø</u>						
	1.8	1.6	1.6	1.8	2.2	2.6	2.1	1.8	—(B)		
	2.0	2.0	ə. a	2.6	1.7	/. >	1.9	/ >			
	1.9	1.8	1.7	2.0	2.1	2.2	1.9	1-6	— (2)		
	1.7	2.0	1.9	1.8	1.9	1.7	1.7	2.0			
							9 8				
	2.1	1.8	1.7	2./	2.0	1.8	1.6	7.7	(0)		
h	1.7	2./	2.3	1.9	2./	2.4	2.3	1.8			
			r C								
	1.8	2.3	1.9	2.2	1.9	2./	2.3	0.0	(E		
				200			C	TO 100 100 100 100 100 100 100 100 100 10			

Location/ Project ID: King Sykes Medical Building Technician: Slen 14.50 Date: 9/7/16 Serial No.: /34542 Inst Model: 2001 Lift Elevation: Surface Probe Type: 1"x1" Nal / 2"x2" Nal Shielded / Not Shielded Action Level: <u>4874</u> cpm Background 2437 cpm 2x Bkg Write grid designations in circles. Record highest counts for grid in cpm. Record 30 second counts at grid intersections (if required). Shade areas of elevated counts and record max cpm. N scale 22 2.4 2.4 1.8 1.7 2-6 \subset 17 1.6 2.2 2.1 2. 3

Date: 9/7/16 Technician: S/con Hobse	Loca	tion/ Proje	ct ID:	King	Sytes	Mede	1/ Buile	19		
Probe Type: 1"x1" Nal 2"x2" Nal 2"x2" Nal Shielded Not Shielded Not Shielded Not Shielded	Date:	9/	17/16			Technic	cian:	Slen	, Huser	
Shielded / Not Shielded Background	inst l	Model: _	Ludlo	- 22	2/_	Serial N	No.:	1345	T42	
Write grid designations in circles. Record highest counts for grid in cpm. Record 30 second counts at grid intersections (if required). Shade areas of elevated counts and record max cpm. All results in kepm N 2.8 2.7 3.0 2.9 3.1 2.7 2.8 2.4 3 2-9 3.1 2.7 2.8 2.4 1.8 1.6 1.6 1.8 3.2 2.6 2.1 1.8 2.0 2.0 2.2 2.6 1.7 1.7 1.9 1.7 2.0 1.9 1.8 1.7 2.0 2.1 2.2 1.9 1.6 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 2.1 2.2 2.4 2.3 1.8	Prob	e Type:	1"x1" Nal hielded	/ (2"x2" Not Shie	lal> elded	Lift Ele	vation:	SUFF	*C&	4.5
Write grid designations in circles. Record highest counts for grid in cpm. Record 30 second counts at grid intersections (if required). Shade areas of clevated counts and record max cpm. Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All counts and record max cpm. All counts in kepm Image: All	Backg	ground $\underline{\hspace{0.1cm}}^{2}$	437	cpm		Action L	evel: <u> </u>	874	pm	
1,9 1,8 1,7 2,0 1,8 1,6 1,7 2,0 1,7 2,1 2,4 2,3 1,8 3,0 1,7 2,4 2,3 1,8 3,0 1,7 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,0 1,7 2,1 2,0 1,8 1,6 1,7 2,0 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,1 2,4 2,3 1,8 1,7 2,4 2,5 2,5). Shade a	reas of elevat	its for grid ted counts	in cpm. Reco		nd counts	Î N
2.8 2.7 3.0 2.9 3.1 / 2.7 2.8 2.4 9 - 9 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -				3)	Ç	3)	(√ so	cale S)
1.9 1.8 1.7 2.0 2.1 2.2 1.9 1.6 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 2.1 2.0 1.8 1.6 1.7 2.1 2.1 2.4 2.3 1.8			<u> </u>							-(A)
1.8		ŀ			2.9		<u>/</u> !	28	2.4	<u></u>
1.9 1.8 1.7 2.0 2.1 2.2 1.9 1.6 () 1.7 2.0 1.9 1.8 1.9 1.7 1.7 2.0 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 () 1.7 2.1 2.3 1.9 2.1 2.4 2.3 1.8	!	10916-6-1	L.			E. 518164				ļ
1.9 1.8 1.7 2.0 2.1 2.2 1.9 1.6 () 1.7 2.0 1.9 1.8 1.9 1.7 1.7 2.0 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 () 1.7 2.1 2.3 1.9 2.1 2.4 2.3 1.8		1.8	1.6	1.6	1.8	2.7	2.6	2.1	1.8	<u>(B)</u>
1.7 2.0 1.9 1.8 1.9 1.7 1.7 2.0 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 D	l	2.0	2.0	2.2	2.6	1.7	/, >	1.9	/. >	
1.7 2.0 1.9 1.8 1.9 1.7 1.7 2.0 2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 D										
2.1 1.8 1.7 2.1 2.0 1.8 1.6 1.7 D		1.9			2.0	2.1	2.2	1.9	1.6	-(
1.7 2.1 2.3 1.9 2.1 2.4 2.3 1.8		1.7	2.0	19	1.8	1.9	1.7	1.7	2.0	
1.7 2.1 2.3 1.9 2.1 2.4 2.3 1.8								30		
		2.1	1.8	197	2. /	2.0	1.8	1.6	7.7	0
1.8 2.3 1.9 2.2 1.9 2.1 2.3 0.0 E		1.7	2.1	2.3	1.9	2./	2.4	<i>a.</i> 3	1.8	
1.8 2.3 1.9 2.2 1.9 2.1 2.3 0.0 E						İ				
		1.8	2.3	1.9	2.2	1.9	2./	2.3	0.0	E

Location/ Project ID: King Sykes Medical Building Technician: 6/60 Huben Date: 9/7/16 Serial No.: /34542 Lift Elevation: Surface Probe Type: 1"x1" Nai / 2"x2" Nai Shielded / Not Shielded Background 2437 cpm Action Level: 4874 cpm 2x Bkg Write grid designations in circles. Record highest counts for grid in cpm. Record 30 second counts at grid intersections (if required). Shade areas of elevated counts and record max cpm. N scale 2.4 2.6 2.2 1.7 26 0 17 1.6 2.2 2. 3 2.1

_	1	_	1	
Page	/	of	6	

Loca	tion/ Pro	ject ID:	King	Sytes	MEG	liest Buil	detay			
Date:	<u> 9</u> /	113/16			Techn	ician:	Glenn Hub	5/		
Inst I	Model: _	Ludh	_ 222	2/_	Serial	No.:	134542			
Prob	е Туре:	1"x1" Nal Shielded			Lift Ele	evation:	Surface	···		
Backg	round				ನ್ನಿ ರಿ. Action I	/ ₅ .evel: <u>48</u>	°>4cpm			
			l). Shade a		ted counts	s and record ma	ord 30 second counts ax cpm.	1	j	
((-)		9	΄ ς	scale (2)		
	ргори	ty line						- (\bigcirc	
	3,0	2.6	2.8	2-4	2.4	2.6	24 2.0	Ì	1	
	2.9	2.4	2.1	2. 3	2.2	2.8	2.1 2.3		\downarrow	
	2.4	2.2	2.4	2.5	2.6	2.8	//	`		
	2.8				1	Ct.		-	2662	-urtice y 9/7/16
	2.6	2.3	10.7	1.8	1.4	1.2			3)	
	3.0	1.8	2.0	1.6	1-3	1.5		,		
	2.1	2.2	1.8	1.5	1.9	1.6				
	2.4	2.0	1.9	1.2	1.8	1.5				
_							///	 	(2)	

Loca	tion/ Project ID:	~ /29 ~ / (2	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	كرّ "	
Date:	9/13/16		Technician:	Glenn Hube	
Inst N	Model: Ludio	_ 222/	Serial No. :	134542	
Prob	e Type: 1"x1" Nal	2"x2" NaL Not Shielded	Lift Elevation:	Surface	
Backg	round 243		2× 0/5, Action Level:	2> <u>%</u> cpm	
		l). Shade areas of eleva	nts for grid in cpm. Reco ted counts and record ma) N
6) (9	→ scale	9
			p _i	operty line	
	2.6 2.8	2.9 2.2	2.4 2.5	2.2 2.4	1
	2.5 0.4	2.6 2.3	2.4 2.5 2.4 2.6	2.1 2.6	
				/	SEE SETTERE SETTLY 9/7/16

Page	3	of	6	
3-				

Radiation Survey Form King Sykes Mechal Brilding

	Loca	tion/ Pr	oject ID:	King	Sytes	Meckey	Bui	Iding		
	Date:		9/13/16			Technician	:	G/En/	Yuser	
	Inst I	Model:	Zedh-	2221	_	Serial No. :		124243		
	Prob	e Type:	1"x1" Nal Shielded			Lift Elevation	on:	Surface		
	Backg	round <u>~</u>	43>	cpm		Action Level:	48	<u>> /</u> cpm		
						nts for grid in cpt ted counts and re			ints	† N
	Q			9	(8		→ scale	→ ○	
		<u> </u>							\perp	-
		2.2	2.3	1.8	1,6					1
		2.4	2.4	47	<i>l</i> 9					4
iff sorting	ŕ			1.8	2-0	1 1				
-ry 9/2	1/6>			2.2		1.6 Prop	بال الم			
					/87	116		-		
					1.5	1.7				_
			/ ,		1.8	/	9			
						1.4	1.6			
								•		

Lo	cation/ Pr	oject ID:	KIZ	3 Sylve.	5 17=1	decil Bu	lding			
Da	te:	9/13/16	:		Technic	cian:	61	nn Huse	-	
Ins	t Model:	Ludha	2221	<u>, </u>	Serial N	lo. :	134.	172		
Pro	obe Type:	1"x1" Nal			Lift Ele	vation:	5-17	SCE		
Bac	kground	Shielded A			2. Bt	evel: <u> </u>	F74 c	:pm		
		ations in circle ns (if required		reas of elevat	ted counts			nd counts	† N	
	Q	(9	√ so	rale -	3	
roperty	.⇒	2.1	1.8	1.6	1.5	1.4				5665-1067 9/7/16
	2.9	2.4	20	1.7	1.3	1.3				17 1116
	3.0	2.6	1.7	13		1,4	1.3	1.2		
_	3./	2. 2	1,5				1.8	1,5	—(F)	
	2.7	2.9	1.6	2.0	1.9	2.3	1.7	1.8	0	
	3.8	3.4	1.8	2.4	2.3	2. ٦	2.0	2.8	- 6)	property
									,	link

Location/ Project ID: King Sykes Medical Building											
Date:		9/13/16	<u>, </u>		Technic	cian:	6/6	n Huke			
Inst N	/lodel:	Ludha	2221		Serial N	lo.:	1345	L 43	<u> </u>		
Probe Type: 1"x1" Nal / 2"x2" Nal Shielded / Not Shielded											
Backg	round _	2437			کام کار Action Le	evel: <u> </u>	<i>> 4</i> _ c	pm			
		ations in circle ns (if required						d counts	† N		
(2			24450 J. J. C.	rfsce Y 3/7/16	9	Q	▼ sc.	ale •			
				N /							
	1.6	l				1.4		13			
	1.8	1.9	1-6	1.7	1.3	1.9	1.6	1,2			
	2.0	1.9	1.8	19	2:0	1.8	2.2	1.7			
	2.4	2.6				2.2	2. 2	2./	<u>(6</u> ")		
				property	1.ne	eri					
					-						

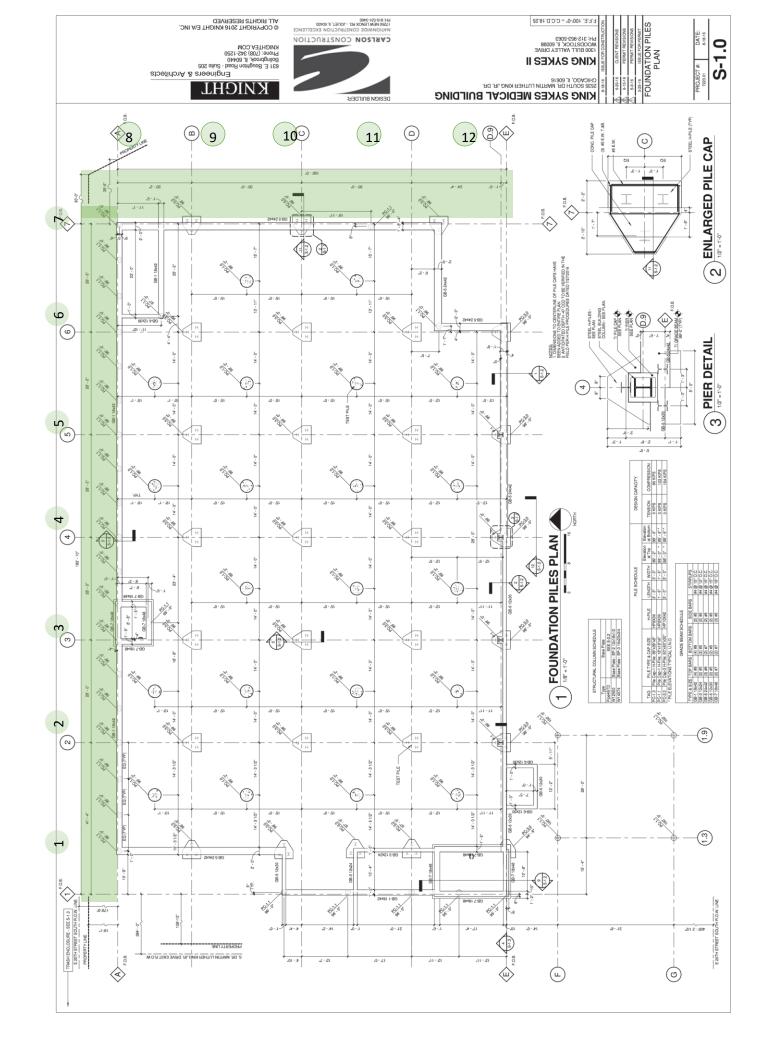
	Locat	tion/ Pro	ject ID:							
	Date:		1/3/16			Technician:	<	= /Em	Huser	·
	Inst N	flodel:	Lidk	_ 222	<u>'/_</u>	Serial No. :		1245	4 2	
	Probe		1"x1" Nal			Lift Elevatio	on:	Surfice	<u> </u>	
	Backg	round	2437	cpm		Action Level:	487	cpm		
					as of elevat	ts for grid in cpr ted counts and re	cord max o		ounts	↑ N
	6			9	Ĭ.	3)	9	★ scale	$\rightarrow \bigcirc$	
566 Surf. Survey 9/7/16							i i			
Jan San San San San San San San San San S		1.>	1.6	1.5	1.5				. !	— <u>(</u>
21		1.3	1.4	1,6	1.4	v v		01d		—(°F")
		1.6	1.8	1.9	2.1			Carsi	lac	
14		2.0	<i>ə</i> . }	2.3	2.4	į.				—(°)

Attachment B Site Grading

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

P	age	of	
4	430	 	



Location/ Project ID: King Sykes Medical Building	
Date: <u>9/15/16</u> Technician: <u>5</u>	even Konalczyk
Inst Model: Ludlim 2221 Serial No.: /272	42 Probe SN: 168/44
Probe Type: 1"x1" Nal / (2"x2" Nal) Shielded / Not Shielded Lift Elevation: 50	votau - 60"
Background 1956 cpm Action Level: 6,738	срт
Write grid designations in circles. Record highest counts for grid in cpm. Record at grid intersections (if required). Shade areas of elevated counts and record max	30 second counts cpm.
) scale
- 15 light poles taken out. All counts < 8000 c - Took out curbs + island in parking lot. All counts	рт.
- Took out curbs + island in parking lot. All counts	23000 cm
- Stringed topsoil. All counts < 3000 cm	
- Removed two structures. From the middle of parking	y /o+
· Structure 1 . Structure 2	
Surface - 2500 18" - 2300 com 184 - 2500	
36"-2500 cm 36"-2400	
60" - 2300 cm 60"- 2400	
60"-230069m 60"-2400	
- Dug test trench between C4 + D4	
Surface - 2500 36". 2400	
18" - 2500 48". 2400	

P	age	of	
*	-3-	 	

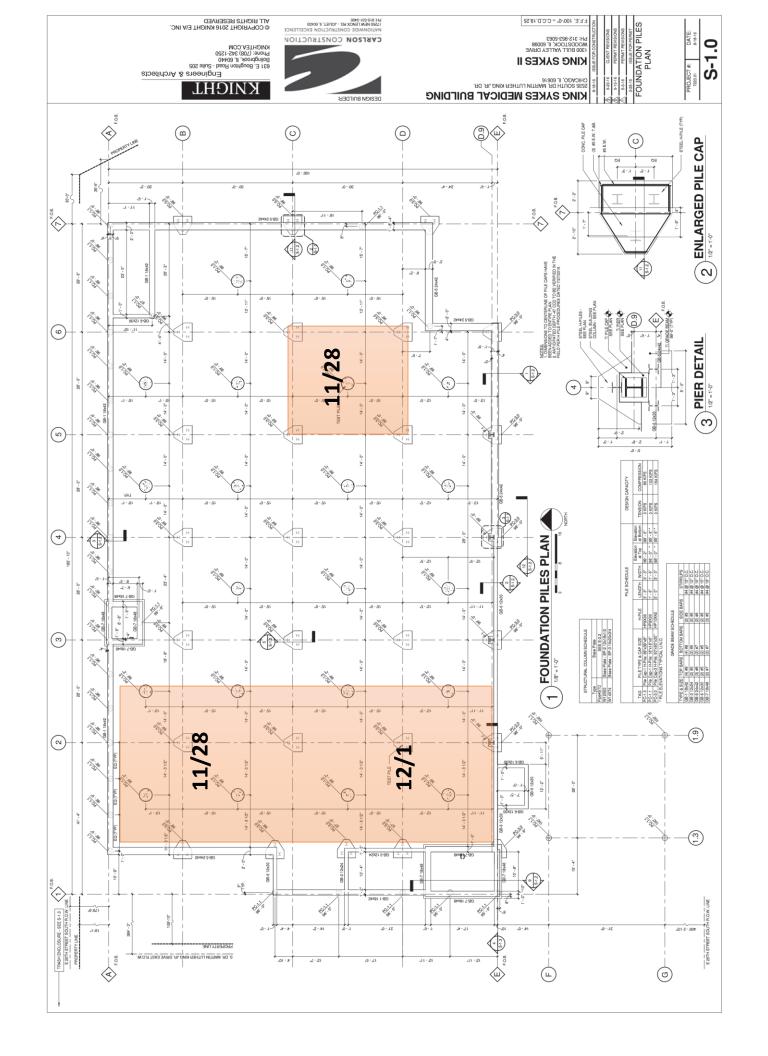
Location/ Project ID: King Sykes Medical Building	
Date: 9/16/18 Technician: Steven Konglezyk	
Inst Model: Serial No.:/27242 Probe SN: 16814	44
Probe Type: 1"x1" Nal / (2"x2" Na) Shielded / Not Shielded Lift Elevation:	
Background /895 cpm Action Level: 6,738 cpm	
Write grid designations in circles. Record highest counts for grid in cpm. Record 30 second counts at grid intersections (if required). Shade areas of elevated counts and record max cpm.	N
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	
- Removing a structure in Southeast corner of lot.	$\overline{}$
Surface - 1900 72". 2400	1
18" - 1900 96" - 2400 36" - 2700 /08" - 2400	
54"-2700 120"- 2200	*
- Removing more curbs. All counts & 3000 cpm	\bigcup
- Removing more curbs. All counts < 3000 cpm - Stripping more topsoil. All counts < 3000 cpm	
- Removing a structure in Southwest corner of lot.	$\overline{}$
Surface - 1900 18" - 1800	
36"- 1800	
- Removing another structure in Southwest corner of lot.	
Surface - 2200	
18"- 2100	
- Removed one light yok. All counts <3000 cpm	

Location/Project ID: King Sykes Medical Building - Sewer and Water Grading

HP Technician: Steven Kowalczyk

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272

Background = 2393 cpm


2X Background FAL = 4786 cpm

Sections 1-7 (N	lorth) **30 f	feet per s	section**
-----------------	---------------	------------	-----------

Sections I / (North)	So rect per section			
	Surface CPM	18"	36"	
1	2600	3400	3300	
	Surface CPM	18"	36"	
2	2700			
2	2700	3300	3300	
	Surface CPM	18"	36"	48"
3	3400	3300	3300	3100
	Surface CPM	18"	36"	48"
4	3100	2900	2800	2900
	Surface CPM	18"	36"	48"
5	2900	2200	2100	3300
3	2900	2200	2100	3300
	Surface CPM	18"	36"	48"
6	2000	2700	3000	3000
	Surface CPM	18"	36"	54"
7				
7	2900	2800	3200	3400
Sections 8-12 (East) **	*21 feet each**			
	Surface CPM	18"	36"	54"
8	2500	2800	3400	3100
		4.011		"
	Surface CPM	18"	36"	54"
9	2500	2300	3400	3300
	Surface CPM	18"	36"	54"
10	2200	3000	2900	3500
10		5550	_500	2300

	Surface CPM	18"	36"	54"
11	2100	3600	3100	4100
	Surface CPM	18"	36"	54"
12	2400	2600	2700	3500

N= 213 feet= 7 sections at 30 feet each E=105 feet= 5 sections at 21 feet each

Location/Project ID: King Sykes Medical Building - Grading Inside Building

HP Technician: Steven Kowalczyk

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272

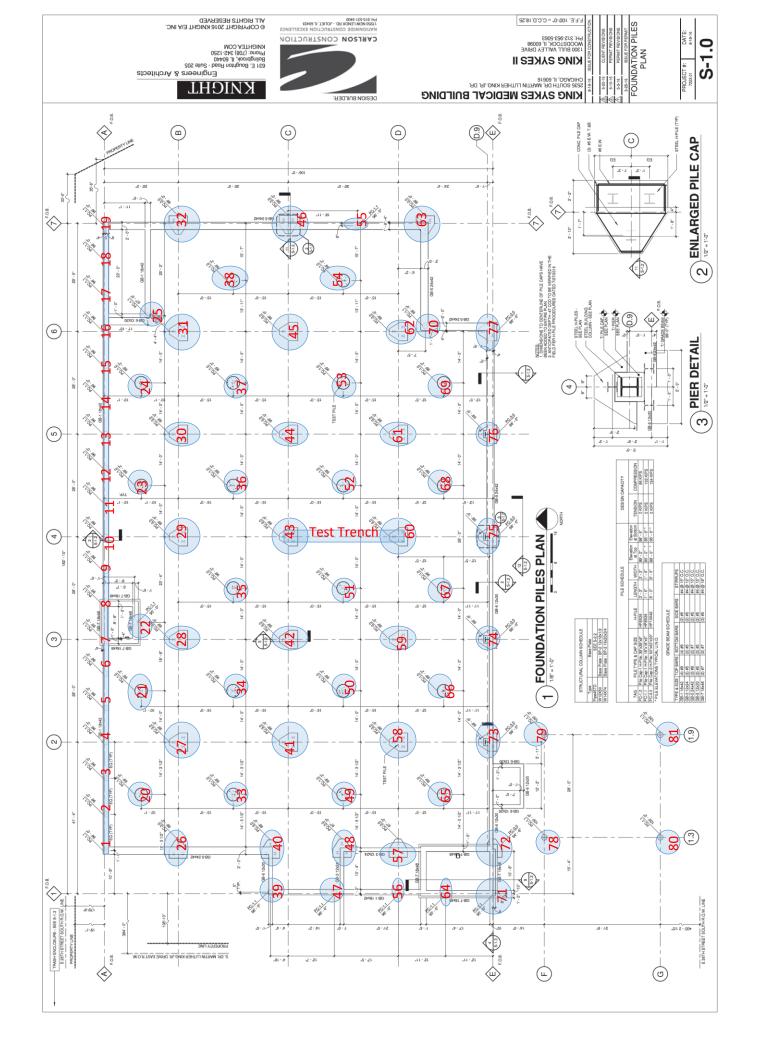
Background = 2393 cpm

2X Background FAL = 4786 cpm

Northwest Corner (11/28)	CPM
	2600
	2600
	2800
	2400
	2800
	2400
Southeast Corner (11/28)	CPM
	2500
	2400
	2400
Southwest Corner (12/1)	CPM
	2000
	2100
	2100
	2300
	2400
	2300

^{***}Each graded section had a few inches to one foot taken off***

Page	of
------	----



Location/ Project ID: King Sykes	Medical Building
Date: 11/29/16 + 12/2/16	Technician: Steven Komlezpk
Inst Model: Cudhm 2221	Serial No.: 127242 Pole SV: 168144
Probe Type: 1"x1" Nal / 2"x2" Nal Shielded / Not Shielded	Lift Elevation: Suhu - 20"
Background /, 676cpm	Action Level: 6,788 cpm
Write grid designations in circles. Record highest at grid intersections (if required). Shade areas of each except area.	counts for grid in cpm. Record 30 second counts elevated counts and record max cpm.
\bigcirc \bigcirc	scale
- Trench to the West of traile	
1) Surface - 2600 (3) Si	11-3200
18"- 2700 [8" 20"- 2600 20	"- 3/00
	Thue - 2500
	"- 3400 "- 3200 160'
(E) Surface - 2700	Trailer
l l	
	ام ما

Attachment C Potholing of Foundation Piles

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

> Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

Location/Project ID: King Sykes Medical Building - Foundation Pile Potholes

HP Technician: See Below

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272 and 134542

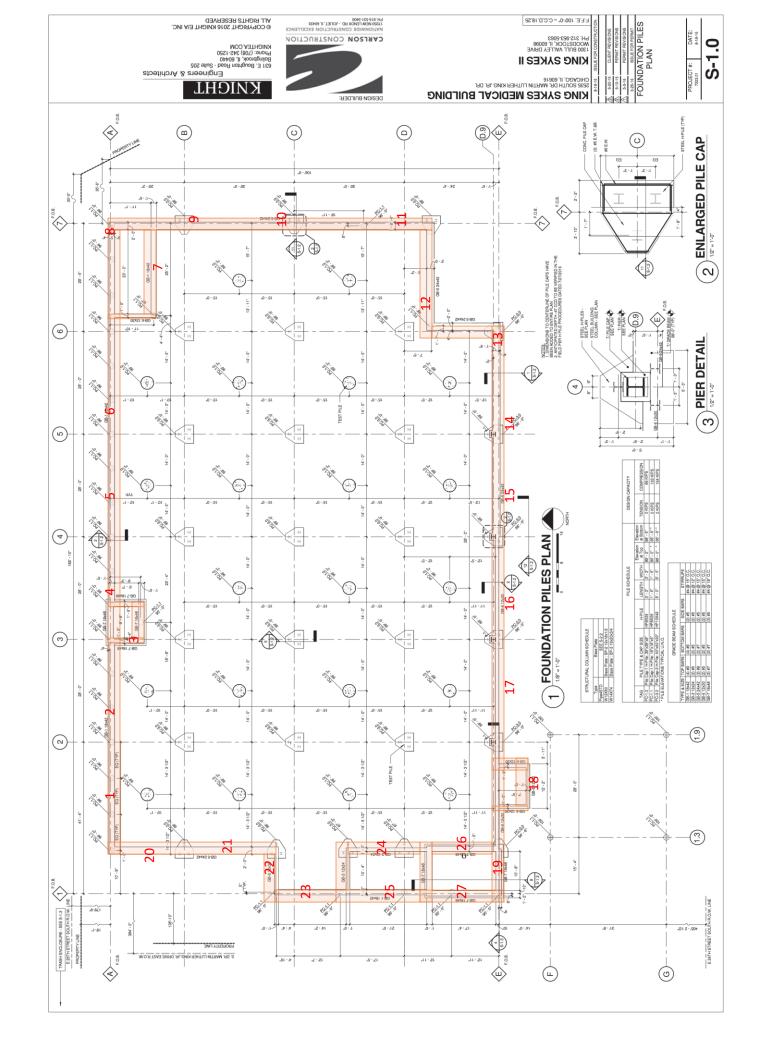
Background = 2393 & 2437 cpm

2X Background FAL = 4786 & 4874 cpm

Pile Number	Max Count	Date	Technician
1	1900	9/30/2016	James Hatten
2	1800	9/30/2016	James Hatten
3	1900	9/30/2016	James Hatten
4	2000	9/30/2016	James Hatten
5	2100	9/30/2016	James Hatten
6	1900	9/30/2016	James Hatten
7	1800	9/30/2016	James Hatten
8	1800	9/30/2016	James Hatten
9	1900	9/30/2016	James Hatten
10	2000	9/30/2016	James Hatten
11	2000	10/3/2016	James Hatten
12	2000	10/3/2016	James Hatten
13	2100	10/3/2016	James Hatten
14	1800	10/3/2016	James Hatten
15	1800	10/3/2016	James Hatten
16	1900	10/3/2016	James Hatten
17	1900	10/3/2016	James Hatten
18	2000	10/3/2016	James Hatten
19	2000	10/3/2016	James Hatten
20	2300	10/5/2016	Glenn Huber
21	2400	10/5/2016	Glenn Huber
22	2400	10/5/2016	Glenn Huber
23	2300	10/5/2016	Glenn Huber
24	2100	10/3/2016	James Hatten
25	2000	10/3/2016	James Hatten
26	2500	10/5/2016	Glenn Huber
27	2500	10/5/2016	Glenn Huber
28	2700	10/5/2016	Glenn Huber
29	2700	10/5/2016	Glenn Huber
30	2800	10/11/2016	Steven Kowalczyk
31	2700	10/11/2016	Steven Kowalczyk

32	1900	10/3/2016 James Hatten
33	2200	10/5/2016 Glenn Huber
34	2000	10/5/2016 Glenn Huber
35	2000	10/5/2016 Glenn Huber
36	2900	10/5/2016 Glenn Huber
37	4100	10/11/2016 Steven Kowalczyk
38	2300	10/5/2016 Glenn Huber
39	2000	10/6/2016 Glenn Huber
40	2200	10/6/2016 Glenn Huber
41	2200	10/6/2016 Glenn Huber
42	2400	10/6/2016 Glenn Huber
43	2500	9/15/2016 Steven Kowalczyk
44	2600	10/11/2016 Steven Kowalczyk
45	2100	10/11/2016 Steven Kowalczyk
46	2300	10/5/2016 Glenn Huber
47	2200	10/6/2016 Glenn Huber
48	2200	10/6/2016 Glenn Huber
49	2400	10/6/2016 Glenn Huber
50	2500	10/6/2016 Glenn Huber
51	2500	10/6/2016 Glenn Huber
52	2600	10/6/2016 Glenn Huber
53	2700	10/6/2016 Glenn Huber
54	2700	10/5/2016 Glenn Huber
55	2100	10/5/2016 Glenn Huber
56	2100	10/6/2016 Glenn Huber
57	2300	10/7/2016 Steven Kowalczyk
58	2000	10/7/2016 Steven Kowalczyk
59	1800	10/7/2016 Steven Kowalczyk
60	2500	9/15/2016 Steven Kowalczyk
61	2000	10/7/2016 Steven Kowalczyk
62	2100	10/7/2016 Steven Kowalczyk
63	2000	10/10/2016 Glenn Huber
64	1900	10/10/2016 Glenn Huber
65	2100	10/10/2016 Glenn Huber
66	2100	10/10/2016 Glenn Huber
67	1600	10/7/2016 Steven Kowalczyk
68	1700	10/7/2016 Steven Kowalczyk
69	2200	10/7/2016 Steven Kowalczyk
70	2300	10/6/2016 Glenn Huber
71	2200	10/10/2016 Steven Kowalczyk
72	2500	10/10/2016 Glenn Huber
		-,,

73	2600	10/10/2016 Glenn Huber
74	2000	10/7/2016 Steven Kowalczyk
75	2300	10/7/2016 Steven Kowalczyk
76	2300	10/7/2016 Steven Kowalczyk
77	2500	10/10/2016 Steven Kowalczyk
78	2300	10/10/2016 Steven Kowalczyk
79	2100	10/11/2016 Steven Kowalczyk
80	2700	10/11/2016 Steven Kowalczyk
81	2600	10/10/2016 Steven Kowalczyk


Test Trench

Surface CPM	2500
18"	2500
36"	2400
48"	2400

Attachment D.1 Grade Beam Trenching

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

> Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

Location/Project ID: King Sykes Medical Building - Grade Beam Trenching

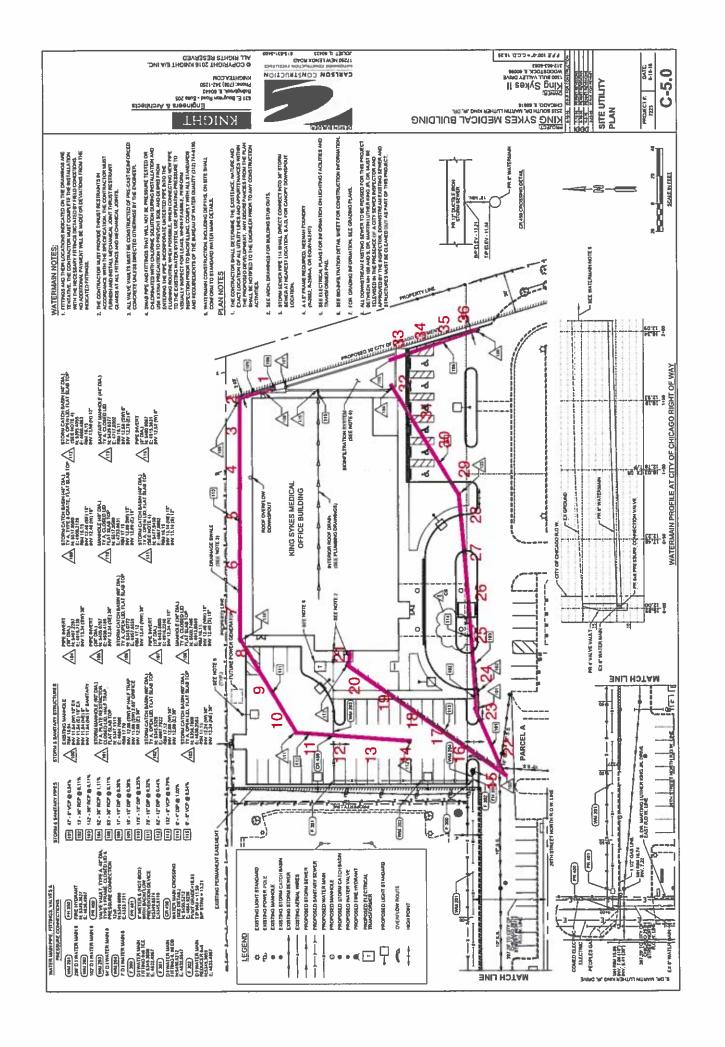
HP Technician: Steven Kowalczyk

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272

Background = 2393 cpm

2X Background FAL = 4786 cpm

Sections 1-9 (North) **27 feet per section**							
	Surface CPM	18"	36"				
1	2600	3400	3300				
	Surface CPM	18"	36"				
2	2700	3300	3300				
	Surface CPM	18"	36"	48"			
3	3400	3300	3300	3100			
			"				
	Surface CPM	18"	36"	48"			
4	3100	2900	2800	2900			
	C (CD) 4	4.011	2611	4011			
_	Surface CPM	18"	36"	48"			
5	2900	2200	2100	3300			
	Surface CPM	18"	36"	48"			
6	2000	2700	3000	3000			
O	2000	2700	3000	3000			
	Surface CPM	18"	36"	54"			
7	2900	2800	3200	3400			
	Surface CPM	18"	36"	54"			
8	2500	2800	3400	3100			
	Surface CPM	18"	36"	54"			
9	2500	2300	3400	3300			
Section 10-13 (East) *							
	Surface CPM	18"	36"	54"			
10	2500	2200	3000	2900			


	Surface CPM	18"	36"	54"
11	2100	3600	3100	4100
	Surface CPM	18"	36"	54"
12	2400	2600	2700	3500
	Surface CPM	18"	36"	54"
13	2300	2000	2100	3100
C1' 44 24 (C 11-)	**27 (
Section 14-21 (South)			2611	E 411
4.4	Surface CPM	18"	36"	54"
14	2300	2700	2400	2300
	Surface CPM	18"	36"	54"
15	2500	1900		3000
15	2300	1900	3200	3000
	Surface CPM	18"	36"	54"
16	2800	2400	3200	2900
10	2000	2400	3200	2300
	Surface CPM	18"	36"	54"
17	2200	2300	2700	2400
	Surface CPM	18"	36"	54"
18	2100	2100	1900	2500
	Surface CPM	18"	36"	54"
19	2200	2400	2500	2500
	Surface CPM	18"	36"	54"
20	2500	2400	2600	3300
	Surface CPM	18"	36"	54"
21	2300	2500	2900	2600
	ate ate a G	ماد ماد		
Sections 22-27 (West)	•		2.511	= 411
22	Surface CPM	18"	36"	54"
22	2800	2400	3200	3000
	Surface CDM	18"	36"	54"
23	Surface CPM			
25	2200	2300	2700	2400

	Surface CPM	18"	36"	54"					
24	2100	2100	1900	2500					
	Surface CPM	18"	36"	54"	69"				
25	2200	2400	2500	2500	2500				
	Surface CPM	18"	36"	54"	69"				
26	2500	2400	2600	3300	2900				
	Surface CPM	18"	36"	54'	72'	90"	96"		
27	2300	2500	2900	2600	2700	2500	2800		
N	Section 1-9= 2	43 feet to	tal= 9 secti	ons at 27 f	eet each				
E	10-13= 88 feet	total=4 s	ections at 2	22 feet eac	h				
S	14-21= 215 fee	et total= 8	sections a	t 27 feet ea	ach				
W	22-27= 178 fee	22-27= 178 feet total= 6 sections at 30 feet each							

Attachment D.2 Sewer and Water Trenching

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

> Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

Location/Project ID: King Sykes Medical Building - Sewer and Water Trenching

HP Technician: Steven Kowalczyk

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272

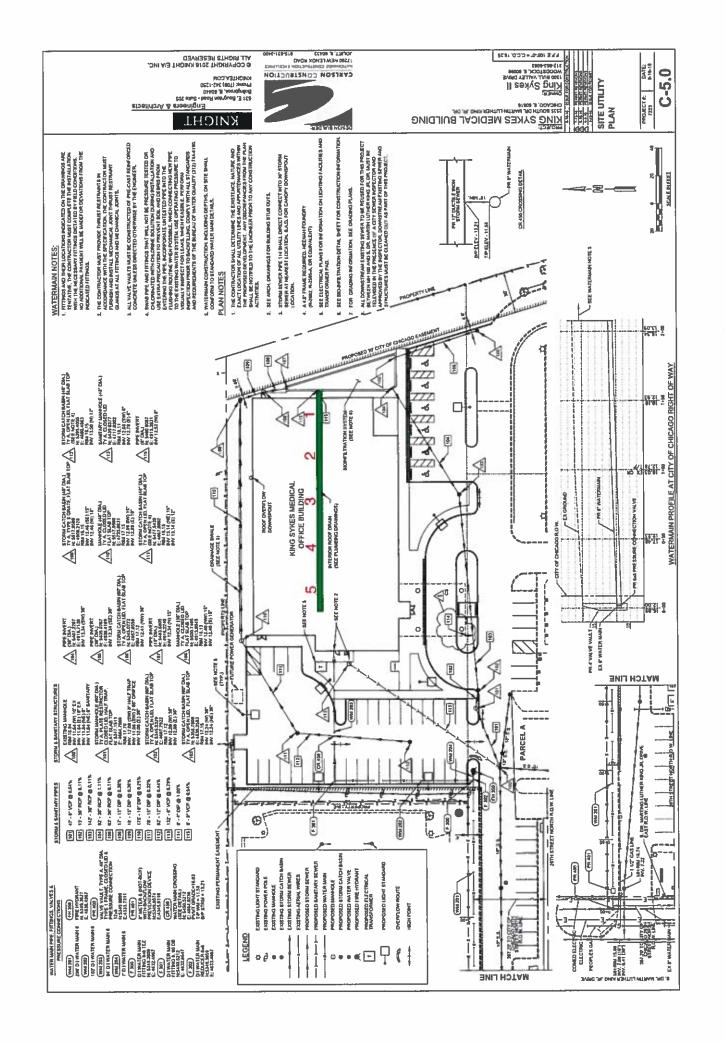
Background = 2393 cpm

2X Background FAL = 4786 cpm

Sections of Pipe 108-112 **26.4 feet per section**

sections of ripe 100		=		= 411	7011	70 "
		18"	36"	54"	72"	78"
1	2300	2400	3700	3500	4200	3800
	Surface CPM	18"	36"	54"	72"	84"
2	3000	2300	2400	3100	3000	4800
_	3000	2300	2100	3100	3000	1000
	Surface CPM	18"	36"	54"	63"	
3	2800	3000	3100	3300	4200	
	Surface CPM	18"	36"	54"	61"	
4	2300	4100	4000	4000	3700	
4	2300	4100	4000	4000	3700	
	Surface CPM	18"	36"	54"	60"	
5	2600	2800	3500	3200	2900	
	Surface CPM	18"	36"	54"	57"	
6	2900	3500	3500	3200	3100	
	Surface CPM	18"	36"	54"		
7	2800	2800	3700	3400		
	Surface CPM	18"	36"	54"	64"	
8	2600	2900	3200	3500	3400	
O	2000	2300	3200	3300	3400	
	Surface CPM	18"	36"	54"	72"	
9	1800	2100	2200	2400	2300	
	Surface CPM	18"	36"	54"	72"	82"
10	2400	2000	2600	2900	2700	2700
	00				_, 00	_, 00

	Surface CPM	18"	36"	48"			
11	1900	2000	2400	2400			
	Curfo co CDM	10"	26"	40"			
12	Surface CPM 2000	18" 2400	36" 3000	48" 2700			
12	2000	2400	3000	2700			
	Surface CPM	18"	36"	48"			
13	2200	2500	3000	2500			
	6 6 6004	4.011	2611	E 411	CCII		
14	Surface CPM 2200	18" 2300	36" 2800	54" 3100	66" 3400		
14	2200	2300	2800	3100	3400		
Pipe 113 **18.8	8 feet per section**						
	Surface CPM	18"	36"	54"	72"	77"	
15	2000	2300	2500	2900	2700	2600	
	Surface CPM	18"	36"	54"	72"	77"	
16	2100	2300	2200	2200	2600	2700	
						_, _,	
	Surface CPM	18"	36"	54"	72"	77"	
17	2100	2500	1900	2300	2700	2600	
	Curfo co CDM	18"	36"	54"	72"	77"	
18	Surface CPM 2100	2700	2600	3600	4300	4200	
10	2100	2,00	2000	3000	.500	.200	
	Surface CPM	18"	36"	54"	72"	77"	
19	2600	3100	3100	3600	2700	2700	
	Curfo o CDN4	18"	36"	54"	72"	77"	
20	Surface CPM 2700	2100	2000	34 3100	3000	77" 2900	
20	2700	2100	2000	3100	3000	2300	
	Surface CPM	18"	36"	54"	72"	77"	
21	1900	2200	2400	2600	2600	2700	
Continue of Div	- 101 104 **26 7 f		L: * *				
sections of Pipe	e 101-104 **26.7 feet Surface CPM	t per sect 18"	tion** 36"	54"	72"	77"	
22	1800	2400	2300	2200	2200	2400	
	Surface CPM	18"	36"	54"	72"	90"	108"
23	2100	3000	2600	2500	2600	2000	2000


	Surface CPM	18"	36"	54"	72"	90"	108"
24	2500	2300	2600	3100	2800	2900	2900
				•			
	Surface CPM	18"	36"	54"	72"	77"	
25	2100	2500	2600	2700	2800	2600	
	Surface CPM	18"	36"	54"	72"	77"	
26	2000	2200	3100	2800	3100	2600	
	Surface CPM	18"	36"	54"	72"	77"	
27	2600	2300	2400	3100	3000	2800	
	6 6 6004	4.011	2611	- 4 II	7011	0.011	40011
20	Surface CPM	18"	36"	54"	72"	90"	108"
28	2200	2400	2300	2400	2200	1900	2300
	Surface CPM	18"	36"	54"	72"	77"	
29	2200	2300	2300	2400	3300	3800	
	Surface CPM	18"	36"	54"	72"	77"	
30	2200	2800	2700	3300	3700	3800	
	Surface CPM	18"	36"	54"	64"		
31	2500	2400	2700	3200	3300		
	Surface CPM	18"	36"	54"	64"		
32	2400	2100	3100	2800	3200		
Pipe 106 **15.7 fe	et per section**						
	Surface CPM	18"	36"	54"	60"		
33	2300	2400	2800	4000	3800		
	Confere CDM	4.011	2611	E 411	COIL		
24	Surface CPM		36"	54"	60"		
34	2300	2300	2700	2600	2900		
	Surface CPM	18"	36"	54"	60"		
35	2400	2600	2700	3000	2900		
	Surface CPM	18"	36"	54"	72"	84"	
36	2100	1900	2100	2300	2200	2300	

108, 109,110,111,112= **370 feet total**
113= **132 feet total**
101,102,103,104= **294 feet total**
106= **63 feet total**

Attachment D.3 Building Plumbing

King Sykes Medical Building 2535 South Dr. Martin Luther King Jr. Drive Chicago, IL 60616

> Stan A. Huber Consultants, Inc. 200 N. Cedar Road New Lenox, IL 60451

Location/Project ID: King Sykes Medical Building - Building Plumbing

HP Technician: Steven Kowalczyk

Instrument ID: Ludlum 2221 w/ 44-10, serial no. 127272

Background = 2393 cpm

2X Background FAL = 4786 cpm

Section of Trench	Surface CPM	18"	36"	54"	60"
1	1700	2500	2900	2400	2500
2	1800	2500	2300	4000	2700
3	1900	2100	2600	2500	2500
4	2000	2500	2900	2700	2600
5	1800	2100	2000	1900	N/A

Pipe 115

^{**28} feet per section**

^{**140} feet total**