

FINAL WESTERN AREA REMEDIAL INVESTIGATION REPORT

CTS OF ASHEVILLE, INC. SUPERFUND SITE

235 Mills Gap Road Asheville, Buncombe County, North Carolina EPA ID: NCD003149556 CERCLA Docket No. CERCLA-04-2012-3762

Prepared for:

CTS Corporation 2375 Cabot Drive Lisle, Illinois 60532

Prepared by:

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Amec Foster Wheeler Project 6252-12-0006

December 11, 2015

December 11, 2015

Mr. Craig Zeller, P.E. Superfund Remedial and Site Evaluation Branch U.S. Environmental Protection Agency 61 Forsyth Street, S.W. Atlanta, Georgia 30303-8960 zeller.craig@epa.gov

Subject: Final Western Area Remedial Investigation Report CTS of Asheville, Inc. Superfund Site 235 Mills Gap Road, Asheville, Buncombe County, North Carolina Amec Foster Wheeler Project 6252-12-0006 EPA ID: NCD003149556 CERCLA Docket No. CERCLA-04-2012-3762

Dear Mr. Zeller:

Please find attached the Final Western Area Remedial Investigation Report (Report) for the above-referenced Site. Amec Foster Wheeler Environment & Infrastructure, Inc. prepared this Report on behalf of CTS Corporation in accordance with the Administrative Settlement Agreement and Order on Consent for Remedial Investigation/Feasibility Study between the United States Environmental Protection Agency Region 4 and CTS Corporation (effective date of January 26, 2012).

If you have questions regarding this Report, please contact us at (828) 252-8130.

Sincerely,

Amec Foster Wheeler Environment, & Infrastructure, Inc.

ACAR Susan E. Kelly, P.E., L.G. Senior Engineer SEK/MEW:sek

Principal Engineer

lev4.Wa

Matthew E. Wallace, P.E.

cc: Michael Dolan, Jones Day

Correspondence: Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806 Tel 828.252.8130 License Number: NC Corporate Engineering F-0653

TABLE OF CONTENTS

ist of Tables	e i
ist of Figures ist of Appendices	i ii
ist of Acronyms	ii
.0 INTRODUCTION	1
1.1 Objective	1
1.2 Site Description	1
0 WESTERN AREA REMEDIAL INVESTIGATION ACTIVITIES	3
2.1 Property Access	3
2.2 Surface Water and Sediment Sampling	3
2.3 Groundwater Sampling	3
2.4 Ambient Air Sampling	4
2.5 Management of Investigation Derived Waste	4
.0 RESULTS AND DATA USABILITY	6
3.1 Geology and Hydrogeology	6
3.2 Surface Water and Sediment	7
3.2.1 Analytical Results	7
3.2.2 Data Validation	7
3.3 Groundwater	1
3.4 Ambient Air	8 0
3.4.1 Analytical Results	5 8
3.5 Data Usability Summary	9
.0 DISCUSSION AND RECOMMENDATIONS	0
0.0 REFERENCE	1

TABLES

- 1 Western Area Remedial Investigation Sample Summary
- 2 Analytical Results of Surface Water and Sediment Samples
- 3 Analytical Results of Groundwater Samples
- 4 Summary of Historical and June/August 2015 Ambient Air Analytical Results

FIGURES

- 1 Topographic Site Location Map
- 2 Site Map
- 3 Sampling Locations West of Site
- 4 Surface Water and Sediment Analytical Results
- 5 Groundwater Analytical Results
- 6 Ambient Air Analytical Results
- 7 Western Area Shallow Overburden TCE Groundwater Plume
- 8 Western Area Deep Overburden TCE Groundwater Plume
- 9 Proposed Monitoring Well Locations West of Site

APPENDICES

- A Logbook and Field Data Records
- B Access Agreements
- C Boring Logs
- D Laboratory Analytical Report for Surface Water and Sediment Samples
- E Data Validation Report for Surface Water and Sediment Samples
- F Laboratory Analytical Reports for Groundwater Samples
- G Laboratory Analytical Reports for Ambient Air Samples
- H Data Validation Report for Ambient Air Samples (June 2015)
- I Data Validation Report for Ambient Air Samples (August 2015)

ACRONYMS

below ground surface
cis-1,2-dichloroethene
chlorinated volatile organic compound
direct-push technology
Feasibility Study
investigation derived waste
method detection limit
Remedial Investigation
trans-1,2-dichloroethene
trichloroethene (also, trichloroethylene)
United States Environmental Protection Agency
volatile organic compound

1.0 INTRODUCTION

Amec Foster Wheeler Environment & Infrastructure, Inc. (Amec Foster Wheeler), on behalf of CTS Corporation, has prepared this Final Western Area Remedial Investigation Report (Western RI Report) for the CTS of Asheville, Inc. Superfund Site (Site) located at 235 Mills Gap Road in Asheville, Buncombe County, North Carolina (Figure 1). The activities described in this Western RI Report were performed pursuant to the 2012 Administrative Settlement Agreement and Order on Consent for Remedial Investigation/Feasibility Study (RI/FS) between the United States Environmental Protection Agency (USEPA) Region 4 and CTS Corporation.

1.1 OBJECTIVE

The primary objective of the Western RI was to delineate the horizontal extent of the overburden (i.e., above bedrock) volatile organic compound (VOC) groundwater plume west of the former plant property. Surface water, sediment, and ambient air samples were also collected west of the Site to evaluate potential VOC contamination and to compare with historic sampling results.

When the Site-wide RI/FS is implemented, additional data might be gathered in the area west of the former plant property, as necessary to fulfill potential data gaps identified in the Site-wide RI work plan, which has not yet been prepared. For instance, analysis for additional compounds, beyond those compounds included in this Western RI, might be performed if determined necessary. The future Site-wide RI/FS will also include a Site-wide risk assessment, and will include proposed cleanup goals for environmental media. It was not the objective of this Western RI to evaluate additional compounds, perform the Site-wide risk assessment, or propose cleanup goals.

1.2 SITE DESCRIPTION

The approximate center of the Site is located at north latitude 35°29'36" and west longitude 82°30'25". The Site formerly contained an approximate 95,000-square foot, single-story brick and metal structure on the southern portion of the Site. The building was demolished in December 2011 and the concrete building pad remains intact. The northeastern portion of the Site contains an asphalt-paved parking area, and asphalt-

1

paved driveways are located parallel to the north (front) of the building and southeast (rear) of the building. A six-foot high chain-link fence surrounds the Site and a locked gate at the north end of the Site controls access to the Site from Mills Gap Road. The Site is unoccupied. The Site and adjacent property boundaries are illustrated on Figure 2.

2.0 WESTERN AREA REMEDIAL INVESTIGATION ACTIVITIES

The Western RI activities were implemented in accordance with the USEPA-approved Western Area Remedial Investigation Work Plan (Western RI Work Plan), dated May 21, 2015, as described in the following sections. Field activities were conducted from June 24, 2015, through August 12, 2015. A USEPA contractor representative accompanied Amec Foster Wheeler during the June and July 2015 groundwater sampling activities. The USEPA Remedial Project Manager accompanied Amec Foster Wheeler during the August 2015 ambient air sampling activities. Copies of the field log book and field data records are included as Appendix A.

2.1 PROPERTY ACCESS

Access to two properties west of the Site (Buncombe County PINs 9655-53-7351 and 9655-52-6798) was obtained for the Western RI field activities. USEPA obtained the access agreements for CTS and USEPA representatives to access the properties. Copies of the access agreements are included as Appendix B.

2.2 SURFACE WATER AND SEDIMENT SAMPLING

Surface water and sediment samples were collected from five locations, as indicated in Figure 3. The surface water and sediment samples were submitted for analysis of the following Site-specific VOCs according to USEPA Method 8260:

- trichloroethene (TCE)
- cis-1,2-dichloroethene (cis-1,2-DCE)
- trans-1,2-dichloroethene (trans-1,2-DCE)
- vinyl chloride

2.3 GROUNDWATER SAMPLING

Grab groundwater samples were collected from the 12 locations indicated in Figure 3. The locations in the eastern portion of the investigation area (nearest the former plant property) were modified from locations proposed in the Western RI Work Plan as directed by USEPA. Direct-push technology (DPT) equipment was used to first advance a soil boring at each location. Soil was retrieved from the borehole at five-foot increments and

scanned with a photoionization detector at approximate one-foot intervals. The soil borings were advanced to refusal of the DPT equipment. Boring logs are included as Appendix C.

At each location, a "shallow" groundwater sample was collected within 10 feet below the apparent water table in an adjacent boring. If the depth to refusal of the soil boring was greater than approximately 20 feet below the shallow groundwater sample, a "deep" groundwater sample was collected within five feet of the refusal depth.

The groundwater samples were collected using a peristaltic pump and tubing with a check valve. Water quality parameters (pH, temperature, conductivity, dissolved oxygen, and oxidation reduction potential) were measured during purging. The groundwater samples were submitted for analysis of Site-specific VOCs (TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride) according to USEPA Method 8260.

2.4 AMBIENT AIR SAMPLING

Ambient air samples were collected from five locations, as indicated in Figure 3. Two locations (AAS-01 and AAS-16) were proposed in the Western RI Work Plan. Ambient air samples were collected at three additional locations, as directed by USEPA.

The ambient air samples were collected over a 24-hour period and submitted for analysis of Site-specific VOCs (TCE, cis-1,2-DCE, trans-1,2-DCE, and vinyl chloride) according to USEPA Method TO-15 SIM (selective ion monitoring).

2.5 MANAGEMENT OF INVESTIGATION DERIVED WASTE

Investigative derived waste (IDW), including soil cuttings and decontamination/purge water, was containerized in 55-gallon drums and labeled for accumulation at the property from which it was collected. Liquid IDW was accumulated separately from soil IDW and each drum was labeled as to the drum's contents. Excess soil was removed from sampling materials, such as plastic and gloves, and the sampling material was then collected in plastic bags and removed from the Site for disposal in a permitted, municipal

solid waste landfill. The waste disposal manifest for soil and water IDW will be provided to

USEPA when it is received from the waste disposal company.

3.0 RESULTS AND DATA USABILITY

The following sections describe the field activity results, laboratory analytical results of the submitted samples, and the results of the data validation. Table 1 contains a summary of the samples collected during the Western RI activities.

3.1 GEOLOGY AND HYDROGEOLOGY

The overburden west of the former facility property contains fill material, alluvial sediments, and residuum (i.e., weathered bedrock, or saprolite). Based on a 1951 aerial photograph (before construction of the facility), two apparent natural intermittent surface water drainage channels are depicted in the western portion of the former facility property. These surface water drainage channels were presumably backfilled when this area of the former plant property was graded for development. A steep hill is present immediately west of the former plant property boundary, presumably at the western extent of the filled drainage channels.

In borings located in the vicinity of the unnamed tributary/perennial stream, the upper soil layer appears to have been disturbed. A grey and orange clayey, sandy, silt layer is present at depths ranging from three to ten feet below ground surface (bgs). This layer is presumed to be the former surface soil that has been covered. In borings near the unnamed tributary, it appears that former surface water drainage channels have been covered, as alluvial sediments were observed at depths up to approximately 18 feet bgs.

Below the disturbed soil and/or alluvium, the uppermost zone of overburden generally consists of silty sand that coarsens with depth to sand with little/some silt (i.e., 10 to 30 percent silt). The overburden "fabric" ranges from massive (i.e., no apparent structure) to strongly foliated. Refusal of the drilling equipment was encountered at depths ranging from approximately 30 feet to 58 feet bgs.

The water table was encountered at depths ranging from approximately 4 feet to 23 feet bgs. Although water table elevations were not measured as part of this scope of work, based on surface topography and typical hydrogeologic conditions in the region, the inferred groundwater flow direction in the overburden is toward the unnamed tributary.

6

3.2 SURFACE WATER AND SEDIMENT

3.2.1 Analytical Results

Four Site-specific VOCs were detected at concentrations above the method detection limit (MDL) in surface water and sediment samples at the SW/SED-01W to SW/SED-04W locations. Site-specific VOCs were not detected above the MDL in the downstream surface water and sediment samples SW-05W and SED-05W, respectively. The highest concentrations of Site-specific VOCs were detected in the SW/SED-03W location, which is located within approximately 10 feet of the confluence of the unnamed tributaries depicted in Figure 3.

The laboratory analytical results of the surface water and sediment samples are summarized in Table 2 and presented in Figure 4. The laboratory analytical report is included in Appendix D.

3.2.2 Data Validation

Data validation was conducted based on procedures in the USEPA Region 4 Data Validation Standard Operating Procedures for Organic Analysis (USEPA, 2008). Full validation, including raw data verification and calculation checks, was completed on ten percent of the laboratory data. The results of the data validation did not indicate the presence of quality control issues. The data validation report is included in Appendix E.

3.3 GROUNDWATER

Three Site-specific VOCs (TCE, cis-1,2-DCE, and trans-1,2-DCE) were detected at concentrations greater than the MDL in groundwater samples collected from five borings. Concentrations of TCE ranged from an estimated concentration (i.e., above the MDL but below the laboratory reporting limit) of 0.80 micrograms per liter (μ g/L) in groundwater sample GW-76-48 to 14,800 μ g/L in groundwater sample GW-84-18.

The laboratory analytical results are summarized in Table 3 and presented in Figure 5. The laboratory analytical report is included in Appendix F.

3.4 AMBIENT AIR

3.4.1 Analytical Results

Four Site-specific VOCs were detected at concentrations greater than the MDL in the submitted ambient air samples. Concentrations of TCE ranged from 0.61 micrograms per liter (μ g/m³) in AAS-18 to 13 μ g/m³ in AAS-17.

The ambient air concentrations of TCE detected in June 2015 at locations AAS-01 and AAS-16, north of Silk Tree Lane in Southside Village (SSV), are higher than those detected in these areas in 2008 and 2012. There is not an action level for TCE in outside air. However, USEPA's recommended removal management level for TCE in indoor residential air is $2 \mu g/m^3$ for homes with sensitive populations (i.e., women of child-bearing age) present and 6.3 $\mu g/m^3$ for less sensitive populations. The TCE outdoor air concentrations detected at AAS-01 and AAS-16 in June 2015 were high enough for USEPA to recommend indoor and crawlspace air sampling at the four residential units located north of Silk Tree Lane.

On July 28, 2015, USEPA sent letters to the residents of the four units asking for permission to sample their indoor and crawlspace air. The residents of the four units denied USEPA access to conduct the recommended sampling. In addition, the SSV Homeowners' Association denied USEPA's request to resample ambient air at the AAS-01 and AAS-16 locations. As a result, USEPA added three ambient air sampling locations (AAS-17, AAS-18, and AAS-19) on adjacent private property north of the SSV property, where USEPA does have permission to gather data. Ambient air samples were collected from those three locations in August 2015.

The laboratory analytical results are summarized in Table 4 and presented in Figure 6. The laboratory analytical report is included as Appendix G.

3.4.2 Data Validation

Data validation was conducted based on procedures in the USEPA Region 4 Data Validation Standard Operating Procedures for Organic Analysis (USEPA, 2008). Full validation, including raw data verification and calculation checks, was completed on ten percent of the laboratory data. The results of the June 2015 data validation did not

indicate the presence of quality control issues. The results of the August 2015 data validation indicated the presence of one quality control issue that resulted in designating concentrations of vinyl chloride as estimated concentrations; however the data are useable (i.e., not rejected). The data validation report for the June 2015 ambient air sampling included in Appendix H and the data validation report for the August 2015 ambient air ambient air sampling is included in Appendix I.

3.5 DATA USABILITY SUMMARY

The field investigation was conducted as proposed in the Western RI Work Plan, with the exception of the modified groundwater and additional ambient air sampling locations. Additionally, with USEPA's approval, the installation of permanent monitoring wells was not completed in this phase of work. However, data gaps were not identified in relation to the data collected during the activities described herein. The data set is considered to be 100 percent complete with respect to the collected data. Therefore, the data are usable for completing the objectives set forth in the Western RI Work Plan.

4.0 DISCUSSION AND RECOMMENDATIONS

Based on the analytical results of the groundwater samples, the shallow TCE plume extends to between borings SB-76 and SB-73/SB-78 as depicted in Figure 7. The deep overburden TCE plume extends to just east of boring SB-76 as depicted in Figure 8. The zone of highest TCE concentrations (i.e., greater than 10,000 μ g/L) is relatively narrow, resulting from groundwater flow from the north limiting the horizontal extent of the groundwater plume to the north. Based on the limited area of comparably high TCE concentration in the shallow overburden in the vicinity of SB-84 (TCE concentration of 14,800 μ g/L), the deep overburden groundwater plume from the vicinity of GW-01-50 (TCE concentration of 19,800 μ g/L) and MW-7A (TCE concentration of 52,800 μ g/L) appears to discharge to the shallow overburden in the vicinity of SB-84 and does not extend as far west as the shallow overburden TCE plume.

Based on the analytical results of the surface water and sediment samples, the groundwater plume discharges to the unnamed tributary and concentrations of Site-specific VOCs do not extend to the SW/SED-05W location.

The installation of four groundwater monitoring well pairs is recommended, as shown in Figure 9.

Another ambient air sample was collected in October 2015 at the AAS-17 location for seasonal trend monitoring. Quarterly ambient air sampling at AAS-17 in the western area will be conducted along with the other two ambient air sampling locations in the eastern area until no longer warranted.

5.0 REFERENCE

USEPA, 2008. Data Validation Standard Operating Procedures for Organic Analyses; USEPA Region 4, Science and Ecosystem Support Division Quality Assurance Section, MTSB; Athens, Georgia; August 2008.

TABLES

TABLE 1 Western Area Remedial Investigation Sample Summary CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Sample Type	Sample ID	Date	
Surface Water	SW-01W	6/25/2015	
Surface Water	SW-02W	6/25/2015	
Surface Water	SW-03W	6/25/2015	
Surface Water	SW-04W	6/25/2015	
Surface Water	SW-05W	6/25/2015	
Duplicate (SW-01W)	FD-01	6/25/2015	
Trip Blank	TB-01	6/25/15 shipment	
Sediment	SED-01W	6/25/2015	
Sediment	SED-02W	6/25/2015	
Sediment	SED-03W	6/25/2015	
Sediment	SED-04W	6/25/2015	
Sediment	SED-05W	6/25/2015	
Duplicate (SED-01W)	FD-02	6/25/2015	
Groundwater	GW-73-20	6/29/2015	
Groundwater	GW-73-58	6/29/2015	
Groundwater	GW-74-33	6/30/2015	
Groundwater	GW-74-58	6/30/2015	
Groundwater	GW-75-20	6/30/2015	
Groundwater	GW-75-43	6/30/2015	
Groundwater	GW-76-14	6/30/2015	
Groundwater	GW-76-48	6/30/2015	
Groundwater	GW-77-17	7/1/2015	
Groundwater	GW-77-36	7/1/2015	
Groundwater	GW-78-15	7/1/2015	
Groundwater	GW-79-20	7/2/2015	
Groundwater	GW-80-25	7/2/2015	
Groundwater	GW-81-17	7/2/2015	
Groundwater	GW-81-49	7/2/2015	
Groundwater	GW-82-19	8/11/2015	
Groundwater	GW-82-49	8/12/2015	
Groundwater	GW-83-23	8/12/2015	
Groundwater	GW-83-49	8/12/2015	
Groundwater	GW-84-18	8/12/2015	
Groundwater	GW-84-38	8/12/2015	
Duplicate (GW-76-14)	FD-03	6/30/2015	
Duplicate (GW-78-15)	FD-04	7/1/2015	
Duplicate (GW-84-38)	FD-05	8/12/2015	
Equipment Blank	EB-01	7/1/2015	
Trip Blank	TB-02	7/1/15 shipment	
Trip Blank	TB-03	7/2/15 shipment	
Trip Blank	TB-04	8/12/15 shipment	

TABLE 1 Western Area Remedial Investigation Sample Summary CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Sample Type	Sample ID	Date
Ambient Air	AAS-01	6/25/2015
Ambient Air	AAS-16	6/25/2015
Ambient Air	AAS-17	8/5/2015
Ambient Air	AAS-18	8/5/2015
Ambient Air	AAS-19	8/5/2015
Duplicate (AAS-01)	FD-25	6/25/2015
Duplicate (AAS-19)	FD-27	8/5/2015
Trip Blank	TB-10	6/25/15 shipment
Trip Blank	TB-13	8/5/15 shipment

Note:

All samples analyzed for site-specific VOCs, as follows: Water: USEPA Method 8260 Sediment: USEPA Method 8260 (Method 5035A preparation) Air: Method TO-15 SIM (selective ion monitoring)

Prepared By: SEK 9/15/15 Checked By: AAS 9/15/15

TABLE 2 Analytical Results of Surface Water and Sediment Samples CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Location	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride
	Surfa	ice Water (μg/L	.)	
SW-01W	27.8	2.1		
FD-01 (SW-01W)	28.7	1.8		
SW-02W	81.2	13.5		3.5
SW-03W	129	81.7	0.51 J	9.8
SW-04W	21.6	0.44 J		
SW-05W				
	Sed	liment (µg/kg)		
SED-01W	36.3	2.7 J		
FD-02 (SED-01W)	42.7	4.3 J		
SED-02W	14.9	2.6 J		
SED-03W	702	162		6.4 J
SED-04W	8.1			
SED-05W				

Notes:

1. µg/L = micrograms per liter; µg/kg = micrograms per kilogram

2. Blank cells indicate analyte not detected above method detection limit (MDL); refer to laboratory report for associated MDLs.

Prepared By: SEK 7/24/15 Checked By: EPM 7/24/15

TABLE 3 Analytical Results of Groundwater Samples CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Location	Date	Trichloroethene	cis-1,2-Dichloroethene	trans-1,2-Dichloroethene	Vinyl Chloride
GW-73-20	6/29/2015				
GW-73-58	6/29/2015				
GW-74-33	6/30/2015				
GW-74-58	6/30/2015				
GW-75-20	6/30/2015				
GW-75-43	6/30/2015	4.1			
GW-76-14	6/30/2015	168			
FD-03 (GW-76-14)	6/30/2015	160			
GW-76-48	6/30/2015	0.80 J			
GW-77-17	7/1/2015				
GW-77-36	7/1/2015				
GW-78-15	7/1/2015				
FD-04 (GW-78-15)	7/1/2015				
GW-79-20	7/2/2015				
GW-80-25	7/2/2015				
GW-81-17	7/2/2015				
GW-81-49	7/2/2015				
GW-82-19	8/11/2015				
GW-82-49	8/12/2015	54.5	1.5		
GW-83-23	8/12/2015	14.3	0.59 J		
GW-83-49	8/12/2015				
GW-84-18	8/12/2015	14,800	135	0.89 J	
GW-84-38	8/12/2015	793			
FD-05 (GW-84-38)	8/12/2015	992	0.80 J		

Notes:

1. Concentrations are in micrograms per liter (µg/L).

 Blank cells indicate analyte not detected above method detection limit (MDL); refer to laboratory report for associated MDLs.

3. J - estimated concentration.

Prepared By: SEK 9/15/15 Checked By: AAS 9/15/15

TABLE 4 Summary of Historical and June/August 2015 Ambient Air Analytical Results CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Address	Date	Sample ID	TCE	cis-1,2-DCE	trans-1,2-DCE	VC
	8/7/2008	MG01-AMB	0.989	<0.264	<0.264	<0.171
	10/18/2012	AAS-01	0.62	0.15	<0.035	<0.0068
North of 108 Silk Tree Lane	10/18/2012	FD-02 (AAS-01)	0.65	0.15	<0.033	<0.0065
	6/25/2015	AAS-01	9.8	1.6	0.016 J	0.11
	6/25/2015	FD-25 (AAS-01)	9.7	1.5	0.015 J	0.11
North of 102 Silk Troo Lano	8/7/2008	MG04-AMB	3.19	0.408	<0.264	<0.171
	6/25/2015	AAS-16	3.7	0.59	<0.010	0.038
Powell property center (adjacent to tributary)	8/5/2015	AAS-17	13	2.7	0.034 J	0.13 J
Powell property east	8/5/2015	AAS-18	0.61	0.33	<0.011	<0.011
Powell property west (adjacent to tributary)	8/5/2015	AAS-19	8.0	0.94	0.023 J	0.058 J
	8/5/2015	FD-27 (AAS-19)	6.6	0.70	0.011 J	0.045 J

Notes:

1. Concentrations are in micrograms per cubic meter (µg/m³).

2. TCE = trichloroethene; cis-1,2-DCE = cis-1,2-dichloroethene; trans-1,2-DCE = trans-1,2-dichloroethene; VC = vinyl chloride

3. J - Concentration is estimated.

4. '<' - Constituent not detected at or above indicated laboratory reporting limit.

Prepared By: SEK 9/15/15 Checked By: AAS 9/15/15

FIGURES

APPENDIX A

LOGBOOK AND FIELD DATA RECORDS

	CONTENTS		L L
AGE	REFERENCE	DATE	
			-
			f
			-
			1

Location Asheville, NC Date 6/25/15 Project / Client CTS of Asheville, Inc. 6252120006 S.Felly Amei FW P.1/2 10:40-S.Kelly AmecFN and A.Stevrer/ AmecFW arrive at Southside Village (entrance drive) -verieve ambient air sample canisters AAS-01, FD-25, and AAS-16 11:15-travel to office and prepare chain-of- ustody and canisters for shipment to labor story (ALS Envir inmental) 1210-travel from office to FedEx and +Varen drop off box of canisters 1220 - travel from Fed Ex to Wills Gap Pd 1245-avvive at City of Asheville property driveway located on wills Grap Rd - collect surface water cample (SW-05Wat 12:55) and sediment Sumple (SED-05W) from week upstream of colvert that is located beland driveway 1300-travel to Southside Village (entrance driveway) - collect SW-04W (13:10) and SED-Oqui (13:15) from creek at

Location Asheville, NC Date 6/25/15 Project / Client CTS of Asheville, Inc. P.42 6252120006 S.Kelly Amertin a location approximately 10 feet upstream of colvert located below driveway 1 road - collect 5W-03W (13:45) and SED-03W (13:50) from creek north of 108 Silk Tree Lane residence - collect SW-02w (14:00) and SED-02W (14:05) from tributary (branch of creek west of 108 Silk Tree Lane (Note: Surface water appeared staanant and between former contingency basin and sampling location, branch was dry) - collect SW-01W (1+35) and FD-01 and SED-01w (1440) with FD-02 at the spring head that forms the week 1500-leave Southside Village and travel to office 525 · at office, complete chain of custody and pack coolers 16:30-A. Steurer delivers wovers samueles to Pace Pace will corrier samples to charlotte lab for analysis manule

6 Location Asheville, NC Date (1/29/15
Project / Client (IS of Asheville NC
6252120006 S. Kelly Amer FW P.1/2
940 - S. Kelly American arriver at UTS
site - Zehra wew (Day and Jake)
are at site intrance road
-travel to Southside Village to
determine where to park trailer.
stage drums etc.
900-unload trailer with drillrin:
stage droms for soil and water
905- A. Stevrer Amer Fr avrives
940. conduct safety meeting
950-mob drillrig to boring location
SB-73 and advance soil boring
NSIng dual-type sampler
-probe refusal at 56ft bgs
1040 offset boring for grandwater
Sampling ; collect (11-73-20 (11:30)
and GW-73-58 (15:30)
1210- Zebra off-site to purchase nitrogen
to charge drive head on rig
1220-1300-S. Kelly and A. Steurer Off site
for lunch
1315- Elbra veturns and charges hammer
13:00- P. Shibbs OTIE (EPA contractor arrives)
1900- WAWALLACE, arrives

The second s

and the submerse proceeding the

skinder hav

1

Project / Client _CTS of Asheville		
6252120006 S.Kelly Ame	cFW	P. 2/2
1500-M. Wallace leaves		
1530 - finished collecting	grand	Nater
Samples, deconscruci	nicasin	1,
1600-mob vig to 513-74	tanda	dvance
1730 - Draha ve fusci et t	841-	
-pull rods : le a le	a d cod	and
Packup	anton	
755- Ristubbs leaves		
1800 - S. Kelly, A. Steurer,	, and ze	bra
personnel leave		1
· · · · · · · · · · · · · · · · · · ·		
	e	
	\mathbb{P}_{\perp}	
	· · · ·	

•

1

î

4

7

ŝ

•

.

1

.....

ું

8 Location ASheville, HC	Date 🖌	30/15
Project / Client_UTS of Asheville		•
(0252120006 S.Kelly Ame	CFW_	P.12
730-Skelly AmecEn, A.Ste	uver A	nectiv,
and Lebra view arrive	: at 50	Mside
- Village entrance are	en	-
- unduct satety meeting	19	
750-advance around water	borin	6
adjacent to SB-74)
- collect groundwater sa	mplex	
GW-74-33 (8:25) and	GW-	74-58
(9.15); also collect ms	IMSD	samples
with GW-74-33		
915-pull rods, decon, and	mob	to 58-75
955- at 5B-75		
1000-1030- break due to rain	<u> </u>	
1830 - advance soil boring	SB-75	
1125-probe refusal at 43A	bas ;	DUL
rods', A Steurer re-calil	brates T	PID
1140-advance offset boring	for a	round-
water samples	}	
-collect groundwater sam	voles (7	W-75-20
(1205) and 4W-75-43	(1315))
1215-1300-1unch		
1345- grownd water sampling	(chup!	etci
pull rods, decon	· · · ·	
1400-mob to 5B-76		

10 Location Asheville, NG Date 7/1/15 Project / Client UTS of Asheville 6252120006 S.Kelly AmecFW P.1/2 730 - S. Kelly Amertin and Zebra crew arrive at southfide Village entrance area (A Steuver is delivering samples collected on 6/29/15 and 6/30/15 to Pace laboratory) Pace will courier samples to the pace charlotte lab for analysis -S. Felly calibrates PID and water guality meter (see calibration FDR) 815- 2, Stubbs OTIE -set up rig at \$8.77 830-A steurer Amectiv arrives -advance soil boring; probe refusal 9:15-S. Eclly discusses so scope of work with a southside village Home owners Association Board member 930-advance grandwater boring collect ground water samples (71 - 77-17 (10:00) and GW-77-36(11:30) 1050 -coffect equipment blank (EB-01) trom depinized water porrect Mrargh Sureer

Location Asheville NL Date 7/1/15 11
Project / Client UTS of Asheville
10252120006 Sikelly AmerFW P.2/2
1140-1245 Juna
1245 - backfill SB-77 borings
Baunote. Febra backfilled
previous borings with bentonite chips
soon after arrival at site)
1310-mob to 58-78
1340 - at SB-78; advanced Soil boring
probe refused at 30ft bas, pull
roas and advance grandwater
baring
-collect grandwater sample
6W-78-15(15:15) also collect
auplicate (FD-04) with GW-78-15
-Dullroas and decon
- conduct reconnaisance of bornas
to be conducted in Sille Tree Lane.
in South Cide Villa Contract II
Nilla caspent to materic many
wight as (as (as a set to a set
Upitites (and average vare server)
that any personnel leave site
Ball-Noic Fistobs left Site
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
M MMAANT
!

12 Location Asheville, NC Date 2/2/15	Location Asheville, NC Date 7/2/15 13
Project/Client LTS of Asheville	Project/Client (JS of Asheville
1257120000 Sitelle Mare Fly D. 1/2	(1757 12 0006 (hall, have 510) D2/
the devent start Avecs in 17	COCIEDED STEPHY AWARTON F. 12
735-S. Kelly Amerty, A. Steurer Amertw,	1035- advancing groundwater boring
and Felore event avrive at Suppoide	- callent according ter cannot
Ville control of the	Glas-Religit (11:10)
- VIIIAGE ENTRANCE	
-mobrig into southside Vilage SB-17	130-mos rig back to southside Village
(end of Siktree lane)	entrance area
- hand awaar 2 feet Capproximately	135-1215-off-cite for lunch i R. stub bs
6 feet from gas line as located	leaves for Atlanta
indicated by PSNC	1215-mobrig to SB-81 and advance
-A. Steurer calibrates PID and	soilboring
water anality meter (see a procetion	320- probe retused at 50ft hes: mil
FDP)	rads
Stor - advancing a call bacing (B-19	
Div - aavaviaria sui bovivia so 1	- aquance grandwater boring
- 0 to vecovery for 10ff due to a	Collect groundwater samples
rock in the shoe; offset and	(2N-81-17 (14-00) and
re-dvill	GW-81-49 (15:00)
835-R. Stubbs/OTIF arrives	510-Dull rods and mobris to
845-probe reficed at 3/044, will rods	trailer Dade of
and advance around ter bacing	1400 1040 8340 212115
- collection la factor all	
Lewisza 200 (0.25) Subjection	
CITY 19- LU (9-55) PUIL VOCIS	
470- Move to boring SB-30, advance	
soil barings	
1025- probe refusa at 29.5 Ai pAl	
roas	

Selfan e

.

Location Asheville, NL Date 81415 Project / Client UTS of Asheville 10252120006 S.Kelly AmerFW P.Y. 815 - Skelly Amer Fin and Minallace) Amer FW arrive at the Powell property west of the UTS site -sikelly calibrates PID (see calibration FDR) 830-C. Heller EPA arrives -deploy ambient air canister AAS-17 north of mnamed tributary north of 108 SIIL Tree Lane (at 3:58) - deploy AAS-18 in southeastern portion of powell property (at 9:15) -deploy AAS-19 and deplicate FD-27 north of unnamed tributary, north of 102 Silk Tree Lane (at 9:57) 1015 - all personnel leave property man will orally



Location Asheville, NC Date 9/11/15 16Project/Client UTS of Asheville 6252120006 SPEILY (Amerin P.1/2 300-Sikelly Amer FW arrives at Powell property; Eulora personnel - have just arrived - Zelova unloads (2RO probe 815. Febra leaves to go to vental company and pick up stid steer -S. kelly calibrates PID and water quality meter user calibratim FDR 900 - Zebra returns and unloads Shid-steer 915-begin cleaning for Geoprobe to access boring locations 1145-1230 which 1230-vesume cleaning 1300 - cannot advance dear to southern most proposed boringsteep terrain to the last and Soft soil near surface water features (a) most sank skid-steer) -Silcelly notifies movallace, Amertw of situation 1315- Zebra loads skid-steer and 

Location Asheville, HC Date 8/11/15 Project / Client CTS of Ashaville, 6252120006 Stelly Amer Fri P.2/2 deans mud Gram skid-steer estrades) off of SSV Road and to returns skid-steer to ventel Company 1400- Zebra returns ; mob rig to 5B-82 and begin advancine soil boring 1500-proberetusal at 49 fr pull rods 1545- advance ground water sampler and collect grandwater sampler GW-75-2015 6W-18 9/115 GW-82-19 (1615) 1630-finished sampling; pack up 1645-all personnel leave property AND

Location Asheville, NL Date 8/12/15 Project / Client LTS of Asheville 6252120006 S.Kelly AmerFW P.1/2 810-S. Felly Amertin and Zebra personnel arrive at Ponteil _property -S.Kelly calibrates PJD and water quality meter (see calibration FDR groundwater sampler to -advance deeper interval, collect (7w-82-99 (900); puil rods and backfill bovings with granular bentonite 925-more to SB-83 940-advance soil boring 1015- probe refusal at 99'fect; pull rods and advance grandwater Sampler and collect GW-83-23 (1100) and GW-83-49(1150) 1155-1255-off-site for lunch 1255- pull rods and backfill borings with by drated bentonite o 1315-mob to SB-89 and advance soil boring - 1415-probe retusal at 38Ff. j pull " rods and advance grand water Sampler

Location Aspeville, HC Date 8/12/15 Project / Client GTS of Asheville UN52/20006 S.Kelly Amertin P.2/2 - collect grandwater samples GW-84-18(1450) and GW-84-38 (15:15); collect FD-05 and ms/ MSD samples with GW-84-18 - 1530-mobrig back to trailer and load up -1635-S. Kelly Leaves property to take drill belper to air port; driller will Finish loading rig ctc. and leave -skelly delivers samples 2/2/ to lab (PaceAsheville)

FIE		ENT CAL	IBRATI	ON RE	CORD		
Project Name: CTS of Asheville, Inc	. Superfund Site			D	ate: 🚺	124/	15
Project Number: 6252-12-0006				Ν	lame: S	kell	
Water Quality Meter Calibration	Standard	Value		Mete	er Value		Acceptance Criteria
Manufacturer:	pH:	SU		pH:	SL	J	+/- 10% of standard
Model No.:	_Conductivity:	mS/cm	Condu	ctivity:	ms	S/cm	+/- 10% of standard
Unit ID:	Redox:	+/- mV	F	Redox:	+/-	• mV	see note 1
	DO:	mg/L *		DO:	mg	g/L	+/- 10% of standard
Thermometer	Temperature:	C°	Temper	rature:	C°		+/- 2.0 C°
Turbidity Meter Calibration		Standard Va	ilue	<u>M</u>	<u>eter Value</u>		Acceptance Criteria
Manufacturer:		11	NTU (low)		NT	Ū	+/- 10% of standard
Model No.:		۱۱	NTU (med)		NT	ſU	+/- 10% of standard
Unit ID:		t	NTU (high)	<u> </u>	NT	ſU	+/- 10% of standard
Photoionization Detector				· · · · · · · · · · · · · · · · · · ·			Acceptance Criteria
Manufacturer: RAE Systems	Background:	0	ppmv	Meter:	010	ppmv	within 5 ppmv of Zero
Model No.: mini-RAE 2000	Span Gas:	100	ppmv	Meter:	101	ppmv	+/- 10% of standard
Unit ID: Pine 5625						_ • •	
Calibration Sources							
Source	Value		Lot Nur	<u>mber</u>	<u>Expirat</u>	tion Date	2
рН		su		·			
Conductivity	<u></u>	mS/cm					
Redox:		_mV _					
Turbidity (low)	·	NTU					
Turbidity (med):		NTU					
Turbidity (high):		NTU					
PID gas: PortaCyl (isobuty	<u>ene) 100</u>	ppmv	0127F	F14	1/2	2018	
Other:	<u> </u>						
NOTES:							

* = Indicate in notes section what was used as the DO standard (i.e., based on saturation at room temperature)

** = If the meter reading is not within acceptance criteria, clean or replace probe and re-calibrate, or use a different meter if available. If project requirements necessitate use of the instrument, clearly document on all data sheets and log book entries that the parameter was not calibrated to the acceptance criteria.
 1 = meter must read within specified range of the Zobell solution (usually 231 +/- 10 mv).

	FIEL	D INSTRUM	ENT CAL	BRATION	RECOR	D	
Project Name:	TS of Asheville, Inc.	Superfund Site			Date:	6/25/1	5
Project Number:	6252-12-0006				Name:	Silell	1
Water Quality M Manufacturer: Model No.:	Meter Calibration	<u>Standard</u> pH:	<u>Value</u> SU S/cm	pH Conductivity:	<u>Meter Value</u>	_SU mS/cm	/ <u>Acceptance Criteria</u> +/- 10% of standard +/- 10% of standard
Unit ID:	Thermometer	Redox: DO: Temperature:	+/- mV mg/L *	Redox: DO: Temperature:		_ +/- mV _ mg/L _ C°	see note 1 +/- 10% of standard +/- 2.0 C°
Turbidity Meter Manufacturer: Model No.: Unit ID:	Calibration		<u>Standard Va</u> N N	iue ITU (low) ITU (med) ITU (high)	Meter Valu	<u>ue</u> NTU NTU NTU	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard
Photoionization Manufacturer: <u>RA</u> Model No.: <u>mini-R</u> Unit ID: <u>Pine</u>	n Detector E Systems AE 2000 5 625	Background: Span Gas:	0100	ppmv Me ppmv Me	eter: <u>0.</u>	ppmv ppmv	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard
Calibration Sou	irces Source	Value		Lot Number	<u>Ex</u>	piration Date	
pH Conductivity Redox: Turbidity (low) Turbidity (med):			SU mS/cm mV NTU NTU				
PID gas: Other:	PortaCyl (isobutyle	ene) 100	ppmv	0127FF14		1/2018	
* = Indicate in notes se	action what was used as the	ne DO standard (i.e., based	on saturation at ro	om temperature)		If project	omotis

÷

If the meter reading is not whill acceptance criteria, clearly declined in replace probe and re-calibrate, or use a different meter in available. If project requirements necessitate use of the instrument, clearly document on all data sheets and log book entries that the parameter was not calibrated to the acceptance criteria.
 1 = meter must read within specified range of the Zobell solution (usually 231 +/- 10 mv).

	FIEL			BRATION F	RECORD	······
Project Name: C	TS of Asheville, Inc. S	uperfund Site			Date: 8/4/1	5
Project Number:	6252-12-0006		· · · · · · · · · · · · · · · · · · ·		Name: 5. kel	<u>~</u>
Water Quality M	leter Calibration	<u>Standard</u> pH:	<u>Value</u> SU	pH:	<u>Meter Value</u> SU	Acceptance Criteria +/- 10% of standard
Model No.: Unit ID:	C	Conductivity:	mS/cm +/- mV	Conductivity:	mS/cm +/- mV	+/- 10% of standard see note 1
	Thermometer To	emperature:	C°	 Temperature:	mg/L	+/- 2.0 C°
Turbidity Meter Manufacturer: Model No.: Unit ID:	Calibration		<u>Standard Va</u> N N	<u>ue</u> ITU (Iow) ITU (med) ITU (high)	<u>Meter Value</u> NTU NTU NTU	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard
Photoionization Manufacturer: <u>RA</u> Model No.: <u>mini-R</u> Unit ID: <u>Ashe-C</u>	n Detector E Systems AE 2000	Background: Span Gas:	0100	ppmv Mete ppmv Mete	er: <u>0.0</u> ppmv er: <u>101</u> ppmv	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard
Calibration Sou	irces					
pH Conductivity Redox: Turbidity (low) Turbidity (med): Turbidity (bich):	<u>Source</u>	<u>Value</u>	SU mS/cm mV NTU NTU	Lot Number	<u>Expiration Dat</u>	
PID gas: Other:	PortaCyl (isobutylen	e) 100	ppmv	LAO-248-100-9	12/2018	
NOTES:		, <u>, , , , , , , , , , , , , , , , </u>				
* = Indicate in notes se ** = If the meter readin necessitate use of 1 = meter must read w	ection what was used as the g is not within acceptance c the instrument, clearly docu ithin specified range of the 2	DO standard (i.e., based riteria, clean or replace pr iment on all data sheets a cobell solution (usually 23	on saturation at ro obe and re-calibra ınd log book entrie 1 +/- 10 mv).	om temperature) ie, or use a different me s that the parameter wa	ter if available. If project requi s not callbrated to the accepta	rements nce criteria.

	FIEL	D INSTRUME		IBRATION I	RECORD	
Project Name: <u>C</u> Project Number:	TS of Asheville, Inc. 5 6252-12-0006	Superfund Site			Date: 8/5() Name: S.K.Ly	15
Water Quality M Manufacturer: Model No.: Unit ID:	Jeter Calibration	<u>Standard</u> pH: Conductivity: Redox: DO: Femperature:	<u>Value</u> SU mS/cm +/- mV mg/L * C°	pH: Conductivity: _ Redox: _ DO: _ Temperature: _	Meter Value         SU	Acceptance Criteria +/- 10% of standard +/- 10% of standard see note 1 +/- 10% of standard +/- 2.0 C°
Turbidity Meter Manufacturer: Model No.: Unit ID:	[·] Calibration		Standard Va	<u>alue</u> NTU (low) NTU (med) NTU (high)	<u>Meter Value</u> NTU NTU NTU	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard
Photoionization Manufacturer: <u>RA</u> Model No.: <u>mini-R</u> Unit ID: <u>Ashe-(</u>	n Detector <u>E Systems</u> <u>AE 2000</u> 01	Background: Span Gas:	0 100	ppmv Met∉ ppmv Met∉	er: 0.0 ppmv er: 1 <i>00</i> ppmv	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard
Calibration Sou pH Conductivity Redox: Turbidity (low)	Jrces <u>Source</u>	<u>Value</u>	SU mS/cm mV NTU NTU	Lot Number	<u>Expiration Date</u>	
Turbidity (high): PID gas: Other:	PortaCyl (isobutyle	ne) 100	NTU ppmv	LAO-248-100-9	12/2018	
* = Indicate in notes se ** = If the meter readir necessitate use o	ection what was used as the ng Is not within acceptance f the instrument, clearly doc	e DO standard (i.e., based criteria, clean or replace pr cument on all data sheets a	on saturation at I obe and re-calibr ind log book entr	°oom temperature) rate, or use a different me ies that the parameter wa	eter if available. If project requir as not calibrated to the acceptan	ements ice criteria.

Project Name: CTS of Asheville	, Inc.	Project Numer: <u>6252-12-0006</u>	
Sampling Personnel: S. Kelly	1 (A:steurer	Sample ID: AAS-01	
Sample Address: [08 5.]].	Tree Lane	Sample Location: <u>ambient</u>	
Cause D = AUGOLOG		$\frac{1}{2} + \frac{1}{2} + \frac{1}$	
		Intake Height (ft):/* /	
	Start	<u>Stop</u>	
Sample Date:	6/24/15	6/25/15	
Sample Time:	1052	1052	
Canister Vacuum ("Hg):	-27.5		
Outdoor Temperature (°F):	<u> </u>	35	
Interior Temperature (°F):	_NIA	NIA	
PID Reading (ppm):	0.0	<u> </u>	
Wind Direction:	west	calm	
Antecedent weather conditions: $V_{un} = u \left( \frac{1}{2} \right) \left( \frac{1}{2} \right)$	Jear 4/23/15	mid-405 of to upper 805 "	=
Weather conditions during sam	ple period:		
clear, sper 60x	"F to upper 8	<u>30s°F</u>	
Sketch of sampling area:	- It ibu	LTARY	
	AAS-01	NA	
	11.5		
dede	tu T	deut 108 Silk Tree La	inc
	11	1 NOTTOSCA	<u>ال</u>

Project Name: CTS of Asheville, Inc.
Sampling Personnel: S.Kelly (A. Stevrer
Sample Address: 108511k TVor 1 4408
Gauge ID: AV604072

Sample ID: FD-25
Sample Location: <u>ambient (AAS-01)</u>
Flow Controller ID: FCA00927
Intake Height (ft):

Project Numer: 6252-12-0006

,

	<u>Start</u>	<u>Stop</u>
Sample Date:	10/24/15	6/25/15
Sample Time:	1052	1052
Canister Vacuum ("Hg):	- 29	<u>ں</u>
Outdoor Temperature (°F):	86	85
Interior Temperature (°F):	NIA	NA
PID Reading (ppm):	0.0	0.0
Wind Direction:	west	calm

Antecedent weather conditions:

See AAS-01

Weather conditions during sample period:

see AAS-01

Sketch of sampling area:

see AAS-01

Project Name: CTS of Asheville,	Inc.	Project Numer: 6252-12-0006	
Sampling Personnel: S./celly(	A.Steurer	Sample ID: <u>AASIV</u>	
Sample Address: 102 Silk T	vec lane	Sample Location: <u>AWD1</u>	ent
Canister ID: AS00862		Flow Controller ID: <u>FLA 00</u>	268
Gauge ID: <u>AVG 04404</u>		Intake Height (ft): 4.9	
	<u>Start</u>	<u>Stop</u>	
Sample Date:	6/24/15	e125/15	
Sample Time:	104	1104	
Canister Vacuum ("Hg):	27.5	0	
Outdoor Temperature (°F):	86	85	
Interior Temperature (°F):	1/A	NIA	
PID Reading (ppm):	0,0	1	
Wind Direction:	fromt	calm	
Antecedent weather conditions:	lear 6/23 n	id-605°F to upper	805°F
Weather conditions during samp	le period:	,	
upper GOS "F to vi	sper 095°F	iclear	
Sketch of sampling area:	lope A Wood		
BAAS-16	22.1'	grass 2	NA .
1.7	de	ck	dert
11	1 ( )	Fundoz ))	
-Newly constructed d	cite No.	T TO SLALE	

Project Name: CTS of Asheville, Inc.
Sampling Personnel: Skely M. Wallace
Sample Address: Powell property
Canister ID: AS 00786
Gauge ID: <u>AVG04341</u>
Start

-	Project Numer: 6252-12-0006
_	Sample ID: <u>AAS-17</u>
-	Sample Location: <u>amplent</u> Flow Controller ID: <u>FCA 00787</u> Intake Height (ft): <u>4.</u>
	<u>Stop</u> <u>0/5/15</u> <u>8'.58</u> 3

Sample Date:	8/4/15	
Sample Time:	8:58	8:58
Canister Vacuum ("Hg):	27.5	3
Outdoor Temperature (°F):	65	68
Interior Temperature (°F):	NA	NIA
PID Reading (ppm):	0.1	0.0.0.1
Wind Direction:	calm	calm

Antecedent weather conditions:

clear, law 605°F to upper 80's F

Weather conditions during sample period:

clear, low 603F to upper 80°sF Sketch of sampling area: Fributary 151 AAS-17 Not to scale Slope A tributary dech 108 SilkTree Lang

Project Name: CTS of Asheville, Inc.
Sampling Personnel: <u>S.Kelly M.Wallace</u>
Sample Address: Powell property
Canister ID: <u>A \$ 00696</u>
Gauge ID: <u>AV(704017</u>

Project Numer:	6252-12-0006						
Sample ID:	AAS-19						
Sample Location: ambient							
Flow Controller ID: FCA 00347							
Intake Height (ft	):3,8						

t fence TS site

	<u>Start</u>	<u>Stop</u>
Sample Date:	814/15	8/5/15
Sample Time:	9:15	9'.15
Canister Vacuum ("Hg):	28	4
Outdoor Temperature (°F):	69	70
Interior Temperature (°F):	NA	-NA
PID Reading (ppm):	0.0 -0.1	0.0-0.2
Wind Direction:	calm	calm

Antecedent weather conditions:

SLE AAS-17

Weather conditions during sample period:

see AAS-17

Sketch of sampling area:

108 (06 SilkTreelane NOTTOSCALE 1

Project Name: <u>CTS of Asheville, Ind</u> Sampling Personnel: <u>S.Celly</u>	s. (m.Wallace	Project Numer:6252-12-0006Sample ID:AAS -19
Sample Address: <u>Powell pro</u> Canister ID: <u>AS00798</u> Gauge ID: <u>AVG 04265</u>	perty	Sample Location: <u>Ambient</u> Flow Controller ID: <u>FCS 00085</u> Intake Height (ft): <u>3.9</u>
	<u>Start</u>	Stop
Sample Date:	8/4/15	3/5/15
Sample Time:	9:57	9:57
Canister Vacuum ("Hg):	23.5	<u> </u>
Outdoor Temperature (°F):	69	7[
Interior Temperature ( [°] F):	NIA	NA_
PID Reading (ppm):	0.0	0.0
Wind Direction:	calm	<u>calm</u>
Antecedent weather conditions:		

SECAAS-17

Weather conditions during sample period:

See AAS-17

Sketch of sampling area: poplar 55 0 AAS-19 R Southside Hvibutaries Village Lane white pine NOT TO SCALE 104STL NZSTLI

Project Name: <u>CTS of Asheville, In</u> Sampling Personnel: <u>S, Kelly</u>	c. [m.wallace	Project Numer: <u>625</u> Sample ID:	52-12-0006 FD-27
Sample Address: Parell pro Canister ID: <u>ACO0722</u> Gauge ID: <u>AV(704051</u>	operty	Sample Location: <i>(</i> Flow Controller ID: Intake Height (ft):	impient(AAS-19) FCS 00253 3.9
	<u>Start</u>	<u>Stop</u>	
Sample Date:	8/4/15	8/5/15	
Sample Time:	9:57	9:57	
Canister Vacuum ("Hg):	_30	2	
Outdoor Temperature (°F):	49	71	
Interior Temperature (°F):	NIA	NIA_	
PID Reading (ppm):	0.0	0.0	
Wind Direction:	calm	<u>(alm</u>	

Antecedent weather conditions:

See AAS-17

Weather conditions during sample period:

See AAS-17

Sketch of sampling area:

See AAS-19

	FIEL	.D II	NSTR	UME		LIBRAT	ION RE	ECOR	D	
Project Name: <u>C</u>	CTS of Asheville, Inc.	Super	rfund Site					Date: _(	0/29/1	5
Project Number: 6252-12-0006 Name: Sitell										
Water Quality IManufacturer: YSModel No.:55Unit ID:16	Meter Calibration 6 MPS 731	Conda	<u>Sta</u> pH: pH: pH: uctivity: ORP:	ndard 4 7 10 1.41: 240	<u>Value</u> SU (lo [.] SU (m SU (hi 3SU (hi 3mS/cm	w) ed) gh) o Conda	Me pH: 3 pH: 1 pH: 1 uctivity: 1 ORP: 2	ter Value .99 2.00 2.00 2.00 418 40.3	: _ SU _ SU _ SU _ mS/cm _ mV	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard
Turbidity Meter Manufacturer: Model No.: Unit ID:	r Calibration				Standard V	<u>/alue</u> _NTU (low) _NTU (med) _NTU (high) _NTU (high)	<u>N</u>	<u>leter Valı</u>	<u>ue</u> NTU NTU NTU NTU	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard
Photoionization Detector         Manufacturer:       RAE Systems         Model No.:       mini-RAE 2000         Unit ID:       5625			Backgrour Span Gas	nd:	0.0 100	ppmv ppmv	Meter: _ Meter: _	0.0	ppmv ppmv	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard
Calibration Sou	urces									
pH (low) pH (med) pH (high) Conductivity ORP: Turbidity (low) Turbidity (med): Turbidity (high): Turbidity (high): PID gas:	Source Pine (Aqua Pheor Pine (Aqua Pheor Pine (Aqua Pheor Pine (Aqua Pheor Pine (Hanna)	nix) nix) nix)	1. 2 1	Value 4 7 10 413 40 00	SU SU SU mS/cm mV NTU NTU NTU NTU NTU Ppmv	Lot Nu 5AD 5AD 5AD 613 613	<u>Imber</u> 247 425 453 151 38 38 3-100-9		piration Date 4/2017 4/2017 3/2016 5/2018 12/2018	<u>9</u>
NOTES:			·							

. . . . . . . . .

_

FIEI	D INSTRUM	ENT CAL	IBRATI	ON REC	CORD	
Project Name: CTS of Asheville, Inc.	Superfund Site			Da	ate: <u>638</u>	0/15
Project Number: <u>6252-12-0006</u>				Na	ame: S.k	illy
Water Quality Meter Calibration	<u>Standar</u>	<u>d Value</u>		Mete	<u>r Value</u>	Acceptance Criteria
Manufacturer: <u>YSI</u>	pH:4	SU (low	')	рН:_ <b>3</b> .	<u>99</u> su	+/- 10% of standard
Model No.: 556 MPS	pH:7	ZSU (me	d)	рН: <b>7_</b>	OD_SU	+/- 10% of standard
Unit ID: <u>16731</u>	pH:1	0SU (hig	h)	рН: <b>10</b> .	02_SU	+/- 10% of standard
	Conductivity: 1.4	<u>13</u> mS/cm	Condu	ctivity:	mS/cm	+/- 10% of standard
	ORP:24	10mV		ORP: 2	[ <u>(), ∖</u> m∨	+/- 10% of standard
Turbidity Meter Calibration		Standard V	alue	Mei	ter Value	Acceptance Criteria
Manufacturer:			NTU (low)		NTU	+/- 10% of standard
Model No.:			NTU (med)	<u> </u>	NTU	+/- 10% of standard
Unit ID:	<b>.</b> .		NTU (high)	<u> </u>	NTU	+/- 10% of standard
			NTU (high)		NTU	+/- 10% of standard
Photoionization Detector					······	Acceptance Criteria
Manufacturer: <u>RAE Systems</u>	Background:	0	ppmv	Meter:	0.0 ppm	w within 5 ppmv of Zero
Model No.: mini-RAE 2000	Span Gas:	(00	ppmv	Meter:(	00 ppm	v +/- 10% of standard
Unit ID: 5625						
Calibration Sources		<u></u>			<u></u>	
Source	Value	2	Lot Nur	nber	Expiration D	ate
pH (low) Pine (Aqua Pheo	nix)4	SU	5AD2	.47	4/2017	
pH (med) Pine (Aqua Pheo	nix)7	SU	5AD4	25	4/2017	
pH (high) Pine (Aqua Pheo	nix) 10	SU	5AD4	-53	4/2017	
Conductivity Pine (Aqua Pheo	nix) 1.413	mS/cm	5AC1	51	3/2016	
ORP: Pine (Hanna)	240	mV	613	8	5/2018	
Turbidity (nod)			<u> </u>			
Turbidity (mea).						
Turbidity (high):		NTU				
PID gas: Isobutylene	100	ppmv	LAO-248-	-100-9	12/2018	
NOTES:						

	FIEL	D	INSTR	UM	ENT C	ALIBRA	TION R	ECOR	RD		
Project Name: CTS of Asheville, Inc. Superfund Site Date: 7/1/15											
– Project Number	: 6252-12-0006							Name:	S.kelb	1	
Water Quality	Meter Calibration		SI	andar	l Value	<u></u>		otor Value		Accentance Criteria	
Manufacturer: Y	'SI		nH:	4	su(	(JWV)	nH· <b>4</b>		≤ SU	+/- 10% of standard	
Model No.: 5	56 MPS	-	рН:	7	SU(	med)	pH:	7.01	_ = = = 	+/- 10% of standard	
Unit ID: _1	6731	-	 рН:	10	)	high)	pH:	0.00	SU	+/- 10% of standard	
		Cond	ductivity:	1.4	13mS/c	rn Con	ductivity:	.413	mS/cm	+/- 10% of standard	
			ORP:	24	0mV		ORP: 2	40.2	<u> </u>	+/- 10% of standard	
Turbidity Met	er Calibration				<u>Standarc</u>	l Value		Meter Val	ue	Acceptance Criteria	
Manufacturer:	······································	-		-		NTU (low)	<u></u>		NTU	+/- 10% of standard	
Model No.:		-		-		NTU (med)	)		NTU	+/- 10% of standard	
Unit ID:		-		-		NTU (high)	)		NTU	+/- 10% of standard	
						NTU (high)	)		NTU	+/- 10% of standard	
Photoionizati	on Detector									Acceptance Criteria	
Manufacturer: <u>F</u>	RAE Systems	_	Backgro	und:	0.0	ppmv	Meter:	0.0	ppmv	within 5 ppmv of Zero	
. Model No.: <u>mini-</u>	RAE 2000	_	Span Ga	s: _	100	ppmv	Meter:	101	ppmv	+/- 10% of standard	
Unit ID: <u>5625</u>	, ) 	-									
Calibration So	ources										
	Source			Value		Lot N	lumber	Ex	piration Dat	<u>e</u>	
pH (low)	Pine (Aqua Pheo	nix)	<u> </u>	4	SU	5A	D247	. <u>.                                   </u>	4/2017		
pH (med)	Pine (Aqua Pheo	nix)		7	_SU	5A	D425		4/2017		
pH (high)	Pine (Aqua Pheo	nix)		10	SU	5A	D453	. <u></u>	4/2017		
Conductivity	Pine (Aqua Pheo	nix)	1	.413	mS/cm	5A	C151		3/2016		
ORP:	Pine (Hanna)			240	mV	6	138	. <u> </u>	5/2018		
Turbidity (low)	·····	<u>+</u> ~	<u> </u>	·	NTU	<u> </u>	·	·			
Turbidity (med):	······································				NTU			·			
Turbidity (high):	<u> </u>				NTU						
lurbidity (high):			. <u></u>	400	NIU		40.400.0		40/0040		
PID gas:	Isobutylene		• <u> </u>	100	ppmv	LAO-24	48-100-9	·	12/2018		
NOTES:											
If a meter reading is	not within acceptance criter	ia. cle:	an or replace	probe a	ind re-calibrate	a, or use a differe	ent meter if ava	ilable. If pro	niect requiremen	its	

	FIEL	D IN	STR	UME		LIBRAT	ION	RECO	RD	
Proiect Name:	CTS of Asheville, Inc.	Superfur	nd Site					Date:	7/2/15	
Project Number	: 6252-12-0006		· · ·			Name:	A. Stenr	<u>در</u>		
Water Quality Manufacturer: <u>Y</u> Model No.: <u>5</u> Unit ID: <u>1</u>	Meter Calibration /SI 556 MPS 6731	Conducti O	<u>Sta</u> pH: pH: pH: vity: RP:	andard 4 7 10 1.413 240	<u>Value</u> SU (lo SU (m SU (hi mS/cn mV	w) ed) gh) a Condi	pH:_ pH:_ pH:_ uctivity:_ ORP:_	Meter Valu <i>Y.03</i> 7.01 10.01 1.414 240.1	e SU SU SU mS/cm MV	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard
Turbidity Mete Manufacturer: Model No.: Unit ID:	er Calibration				Standard '	<u>Value</u> _NTU (low) _NTU (med) _NTU (high) _NTU (high)	- - -	<u>Meter Va</u>	I <u>lue</u> NTU NTU NTU NTU	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard
Photoionization Detector Manufacturer: RAE Systems Model No.: mini-RAE 2000 Unit ID: 5625		. Ba . Spi	ckgrou an Gas	ind: s:	0.0	ppmv ppmv	Met Met	er: <b>0.(</b> er: <b>99.</b>	2ppm∨ 7ppm∨	<u>Acceptance Criteria</u> within 5 ppmv of Zero +/- 10% of standard
Calibration Sc	ources									
	Source			<u>Value</u>		<u>Lot Nu</u>	mber	E	xpiration Dat	<u>e</u>
pH (low)	Pine (Aqua Pheor	nix)		4	_SU	5AD	247		4/2017	
pH (med)	Pine (Aqua Pheor	nix)		7	_SU	5AD	425		4/2017	
pH (high)	Pine (Aqua Pheor	nix)		10	_sυ	5AD	453		4/2017	
Conductivity	Pine (Aqua Pheor	nix)	1	.413	_mS/cm	5AC	151		3/2016	
ORP:	Pine (Hanna)			240	mV	61:	38		5/2018	
Turbidity (low)					NTU	<b></b>		·······		
Turbidity (med):	·				NTU					
Turbidity (high):	<u> </u>				NTU					
Turbidity (high):					NTU	·				
PID gas:	Isobutylene			100	_ppmv	LAO-248	3-100-9	, <u>-</u>	12/2018	
NOTES:					****					

FIELD INSTRUMENT CALIBRATION RECORD									
Project Name: CTS	5								
Project Number: 6	252-12-0006					Name:	Sikelh	1	
Water Quality Me         Manufacturer:       YSI         Model No.:       556 M         Unit ID:       Pine	MPS (024680)	<u>Sta</u> pH: pH: PH: Conductivity: ORP:	ndard V 4 7 10 1.413 240	<u>′alue</u> SU (low) SU (med) SU (high) mS/cm mV	p⊢ p⊢ P⊢ Conductivity ORF	$\frac{Meter Value}{4: 9.00}$ $4: 7.00$ $4: 9.98$ $7: 1.413$ $2: 240.2$	_SU - _SU - _SU - _mS/cm - _mV -	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard	
Turbidity Meter C Manufacturer: Model No.: Unit ID:	Calibration			Standard Value           NTI           NTI           NTI           NTI           NTI           NTI	<u>}</u> J (low) J (med) J (high) J (high)	Meter Valu	e / / _NTU - _NTU - _NTU - _NTU -	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard	
Photoionization I Manufacturer: <u>RAE</u> Model No.: <u>mini-RAE</u> Unit ID: <u>AS</u>	Backgrou Span Gas	nd: :	0 10U	ppmv M ppmv M	leter: <u>6.0</u> leter: <u>(97)</u>	ppmv +	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard		
Calibration Source	Ces			· · · · · · · · · · · · · · · · · · ·					
pH (low) pH (med) pH (high) Conductivity	Source Pine (Aqua Pheor Pine (Aqua Pheor Pine Pine (Aqua Pheor Pine (Hanna)	nix) nix) 	Value 4 7 10 413	_SU SU SU mS/cm	Lot Number 4AA619 4AD415 11375 4AK179 6138	<u> </u>	biration Date 1/2016 4/2016 11/2015 11/2015 5/2018		
Turbidity (low) Turbidity (med): Turbidity (high): Turbidity (high): PID gas:	Isobutylene		00	NTU _NTU _NTU _NTU _ppmv	LAO-248-100	-9	12/2018		
NOTES:	( 0.10)								

	FIEL	D INS	STRU	JME	NT CAL	BRAT		ECOR	D	
Project Name: C	TS of Asheville, Inc.	Superf <u>un</u>	d Site					Date:	8/12/	15
Project Number:	6252-12-0006							Name:	Sike	elly
Water Quality M Manufacturer: YS Model No.: <u>556</u> Unit ID: <u>Pin</u>	leter Calibration	Conductiv	<u>Star</u> pH: pH: pH: /ity: RP:	ndard \ 4 7 10 1.413 240	<u>/alue</u> SU (low) SU (med SU (high) mS/cm mV	Condu	Me pH: pH: pH: nctivity: ORP:	eter Value (DD 1.00 1.99 (413) (40,1	2 SU SU SU mS/cm mV	Acceptance Criteria +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard +/- 10% of standard
Turbidity Meter Manufacturer: Model No.: Unit ID:	Calibration	<u>Standard Value</u> NTU (k NTU (m NTU (h NTU (h					e <u>Meter Value</u> <u>Accepta</u> U (low)NTU +/- 10% U (med)NTU +/- 10% U (high)NTU +/- 10% U (high)NTU +/- 10%			
Photoionization Manufacturer: <u>RA</u> Model No.: <u>mini-R</u> / Unit ID:	E Systems AE 2000	Background: Span Gas:OO			_ ppmv _ ppmv	Meter: Meter:	0.\ 100	ppmv ppmv	Acceptance Criteria within 5 ppmv of Zero +/- 10% of standard	
Calibration Sou	Irces						· · · ·	·		
pH (low) pH (med) pH (high) Conductivity ORP: Turbidity (low) Turbidity (ned): Turbidity (high): Turbidity (high): PID gas:	Source Pine (Aqua Pheor Pine (Aqua Pheor Pine Pine (Aqua Pheor Pine (Hanna)	nix)	<u>)</u> 1 1.2 24	<u>Value</u> 4 7 0 4113 40 00	_SU	Lot Nu 4AA6 4AD4 113 4AK7 613 LAO-248	mber 319 415 75 779 8 8 		piration Date 1/2016 4/2016 11/2015 11/2015 5/2018 ` 12/2018	<u>e</u>
NOTES:										

FIELD DATA RECORD - GROUNDWATER SAMPLING													
PROJECT	CTS of	Asheville, li	nc. Superfund Si	te		UMBER 62	52-12-0006		DATE 6/29/15				
WELL / SAM	PLE NUMB	ER 4	1-73-2		ΙΤΥ ΤΙΜΕ	START	<u> </u>	ID -	тіме 1130				
QC SAMPLE	ac samples collected TB-02 associated trip blank TB-02												
VATER LEVEL / PUMP DATA INITIAL DTW DNM ft (TOC) FINAL DTW DNM ft (TOC) SCREENED INTERVAL DUDOE DATA BLADDER PUMP FINAL DRAWDOWN VOL INITIAL - FINAL N A ft DISCHARGE REFILL DTW Ft (TOC) DTW DNM ft (TOC) DTW D													
	PURGE DATA												
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS				
1119	DNM	DNM (	17.20	0.139	4.13	7.36	DNM	277.0					
1123			14.94	0.117	3.48	8.38	5	285.2					
1127	\$	<u> </u>	14.83	0.117	9.15	7.83	4	277.7					
		·											
				•									
							-						
ANALYSES	8260 (site	e-specific list)		· · · · · · · · · · · · · · · · · · ·	<u></u>								
NOTES: 💪	pprox	.l gal	llon proz	ved i slig	willy t	vrbid	SIGNATURE	/mja	infally				
				<u></u>				<u> </u>	0				

			FIELD D	OATA RECO	RD - GF	ROUNDW	ATER SAN	IPLING	
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te	] JOB NI	JMBER 62	52-12-0006		DATE 6/29/15
WELL / SAM	PLE NUMB		1-73-5	8 ACTIVI	ΤΥ ΤΙΜΕ	START	EN	D	TIME 1530
C SAMPLE	S COLLEC	TED	NIA	ASSOC	CIATED TRI	BLANK	TB-0	2	
WATER LE' INITIAL DTW SCREENED INTERVAL		р DATA JM ft (TC 5°	DC) FINAL DTW 4-58 P4	DNV bas	<b>∽ f</b> t (TOC)	DRAWDO\ INITIAL - F X 0.16 GAI		A ti	BLADDER PUMP
<u></u>				l	PURGE	DATA			I
TIME	DTW (ft)	PURGE RATE (L/min)	темр (С°) 20.94	SPECIFIC CONDUCTIVITY (mS/cm) O.(OB	_{рн}	DO (mg/L) 5.20	TUIBIDITY (NTU) DNM	ORP (mV)	COMMENTS
1530	<u> </u>	<u> </u>	19.60	0.105	4.30	5.90	<u>    (                                </u>	198.1	
1535			19.39	0.102	9.56	4.36 7 BC	- (	200.0	
1551	•	V	18.19	0.101	5.00	[,05	<u>v</u>	10510	
					·			·	
			-						
NOTES:	: 8260 (sili		mately l	gallm',h:	ghlyt	urbid	SIGNATURE:	Amo	inly

	FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT	CTS of	Asheville, Ir	nc. Superfund S	ite			52-12-0006		DATE 6/30/15			
WELL / SAM	IPLE NUMB		1-74-3	3 ACTIV	ΤΥ ΤΙΜΕ	START	- EN	D -	тіме 825			
QC SAMPLE	associated TRIP BLANK TB-02											
WATER LE INITIAL DTW SCREENE INTERVAL	VATER LEVEL / PUMP DATA INITIAL DTW DNM _{ft (TOC)} FINAL DTW SCREENED INTERVAL DC											
	۶				PURGE	DATA						
TIME	PURGE DTWPURGE RATESPECIFIC CONDUCTIVITYDOTUIBIDITYORPTIME (ft)(L/min)(C°)(mS/cm)pH(mg/L)(NTU)(mV)COMMENTS											
804	DAM	DHW	17.34	0.101	5.85	5.78	DXM	160.6				
09		- <b>(</b>	16.27	0.091	7.03	1,04	\	199,1				
015 818			15.11	0.091	274	6.60		2317				
			13.00			<b>V</b> , <i>j L</i>	¥	2,10				
L ANALYSES NOTES: <b>4</b>	ANALYSES: 8260 (site-specific list) NOTES: Slightly tw bid ; purged approx. Igallon signature: MMANN											

			FIELD D		RECO	RD - GF	ROUNDW	ATER SAN	IPLING				
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te				252-12-0006		DATE 6/30/15			
WELL / SAM	IPLE NUMB	er GV	N-74-5	8	ACTIV	ΙΤΥ ΤΙΜΕ	START	- EN	D -	тіме 115			
QC SAMPLE	S COLLEC		LIA		ASSO			TB-02	- · -				
WATER LE INITIAL DTW SCREENEI INTERVAL	VATER LEVEL / PUMP DATA INITIAL DTW DUM ft (TOC) FINAL DTW FINAL DTW FINAL DTW FINAL SCREENED SCREENENED SCRE												
						PURGE	DATA			<b>.</b>			
	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPI COND (m	ECIFIC UCTIVITY IS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS			
05 9 85-8	DNM	DNM	12:23	0,	092	9.05 5.80	5.95 7.84	DNM	192.5 177.B				
901	5		18.10	0,0	68	5.50	7.85		148.6				
905	4	4	17.63	0.0	69	5.41	7.96	4	154.6				
					·								
ANALYSES	:: 8260 (siti	e-specific list) 1 tvv l	oid') pu	rgeo	l apr	erox l	gallon	, SIGNATURE:	M	antely			
										0			

			FIELD D	ATA RECO	RD - GR	OUNDW	ATER SAN	IPLING				
PROJECT	CTS of	Asheville, lı	nc. Superfund Si	le	JOB NI	JMBER 62	52 <b>-</b> 12-0006		DATE 630/15			
WELL / SAN	IPLE NUMB	er GV	V-75-2		TY TIME	START 🛶	EN	D —	TIME			
QC SAMPLE	S COLLEC		1A	ASSOC	CIATED TRIF	BLANK	TB-02	· · · · · · · · · · · · · · · · · · ·				
WATER LE INITIAL DTW SCREENEI INTERVAL	NATER LEVEL / PUMP DATA INITIAL DTW DHM ft (TOC) FINAL DTW DIM ft (TOC) DIM ft (											
	PURGE DATA											
TIME 1154 1158 1059 1203		PURGE RATE (L/min)	TEMP (C°) 15.44 15.08 14.45 14.22	SPECIFIC CONDUCTIVITY (mS/cm) D. (DD 0.098 0.096 0.093	рн 1656 5.44 4.55 4.51	DO (mg/L) 12.81 .6.07 6.56 4.53		ORP (mV) 172.7 138.0 174.2 178.6				
ANALYSES	: 8260 (site	-specific list)	d'; purge	d approvo	1.5 Ga	llans	SIGNATURE:	m	antul			

	FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT	CTS of	Asheville, Ir	nc. Superfund Sit	te	JOB NU	JMBER 625	52-12-0006		DATE 430/15			
WELL / SAM		ER (11)	1-75-4	3ACTIVI	TY TIME	START	- EN	D -	тіме 1345			
QC SAMPLE	ac samples collected 3924B-NA Associated trip blank TB-02											
WATER LE INITIAL DTW SCREENEI INTERVAL	VATER LEVEL / PUMP DATA INITIAL DTW DTW FINAL TINITIAL - FINAL X 0.16 GAL/FT DISCHARGE REFILL F											
				<b>.</b>	PURGE	DATA						
TIME	PURGE     SPECIFIC       DTW     RATE     TEMP       CONDUCTIVITY     DO     TUIBIDITY       ORP     (ft)     (L/min)       (C°)     (mS/cm)     pH       (mg/L)     (NTU)     (mV)											
1320	DNM	DAM	19.54	0.105	6.16	4.34	PNM	99.9				
1329	· · · ·	_(	19.19	0.089	4.45	6.56		187.7				
1322			$\frac{1}{1}, \frac{1}{9}$	0.000	7.16	6.80		205.0				
1355			14 - 11	0.00 1	1.0 1	<u>V. N</u>		0.6.1				
						· · · · · · · · · · · · · · · · · · ·						
NOTES: SIGNATURE:												
									0			

			FIELD D	ATA RECO	RD - GR	OUNDWA	ATER SAM	1PLING					
PROJECT	CTS of	Asheville, Ir	nc. Superfund Sil	le	JOB NU	IMBER 625	2-12-0006		DATE 6(30/15				
WELL / SAM	PLE NUMB		N-76-1	4 ACTIVI	TY TIME	START	– EN	D -	тіме 1550				
QC SAMPLE	S COLLEC	TED F	D-03	ASSOC		BLANK	TB-02		·····				
WATER LE ^V INITIAL DTW SCREENEI INTERVAL		IP DATA	OC) FINAL DTW	DNW 295	tt (TOC)	DRAWDOV INITIAL - F X 0.16 GAL	VN VOL INAL JFT	A ft	BLADDER PUMP				
	PURGE DATA												
ТІМЕ	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS				
1539	DNM	DNM	15,90	0.(00	6.16	15.26	DNM	144.6					
1592		<u>    (                                </u>	15.35	0.096	4.96	8.74	- (	200.9					
1548	$\rightarrow$	4	14.99	0.094	4.66	<u> </u>		7242					
						<u> </u>	<b>V</b>						
						<u> </u>							
						<u></u> ,,		· · · · · · · · · · · · · · · · · · ·					
							, P						
					1997 - 1992 								
						<u> </u>							
				······································	10 H	r.							
analyses notes:√,	: 8260 (sit	e-specific list)	(bid'is)		->( \ a	china	SIGNATURE:	M	ankex				
	[]v			my when	<u>vy 19</u>		·····						

			FIELD D	ATA RECO	RD - GR		ATER SAM	IPLING					
PROJECT	CTS of	Asheville, lı	nc. Superfund Sit	e	JOB NU	JMBER 62	52-12-0006		DATE 43045				
WELL / SAN	IPLE NUMB	er G	W-76-4		TY TIME	START	EN	D	TIME 1635				
QC SAMPLE	ES COLLEC	TED	NIA	ASSOC			TB-0	2	- · ···· · · · · · ·				
WATER LE INITIAL DTW SCREENE INTERVAL	VATER LEVEL / PUMP DATA INITIAL DTW DIMM ft (TOC) FINAL DTW DIMM ft (TOC) DTW DIMM ft (TOC) DTM												
PURGE DATA													
TIME 1639 1643 1646 1649		PURGE RATE (L/min)	TEMP (C°) 18.20 17.69 16.97 16.81	SPECIFIC CONDUCTIVITY (mS/cm) 0.107 0.106 0.101 0.097	pH 4.16 5.49 5.90 5.90	DO (mg/L) 4.58 3.68 5.05 4.78		ORP (mV) 77.4 100.4 78.8 90.2					
ANALYSES	5: 8260 (site light	e-specific list)	rbid j	Durge up	prox	.5 qall	SIGNATURE:	- Maria	antelly				

			FIELD D	OATA RECO	RD - GR	OUNDW	ATER SAN	/IPLING	
ROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te	JOB NU	MBER 62	52-12-0006		DATE 711/15
/ELL / SAMF	LE NUMB	er <b>(7</b> V	N-77-1		TY TIME	START	- EN	ID -	
C SAMPLES	COLLEC	гер	AIA	ASSOC		BLANK	TB-03		
ATER LEV	EL / PUM	P DATA	FINAL DC) DTW	DNN	∧ ft (TOC)	DRAWDO\ INITIAL - F X 0.16 GAI	WN VOL INAL L/FT	VIA ti	BLADDER PUMP
SCREENED INTERVAL		13	-17846	ns l					
					PURGE	DATA		. <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS
6014	DNM	DNM	20.08	0.051	6.56	5.94	DNM	210.1	
IALYSES: DTES:5	8260 (site いらい	9-specific list)	ate', san	mple is high	ly tur 1	oid	SIGNATURE:	Am	awfor

			FIELD E	DATA RECO	RD - GR		ATER SAM	IPLING				
PROJECT	CTS of	Asheville, li	nc. Superfund Si	te	JOB NU	JMBER 625	52-12-0006		DATE 7/1/15			
WELL / SAM	IPLE NUMB		N-77-30	ACTIVI	ТҮ ТІМЕ	START	- EN	D -	TIME 1130			
QC SAMPLE	S COLLEC	TED 1	4(A	ASSOC		BLANK	TB-03	3	······			
WATER LE INITIAL DTW SCREENEI INTERVAL	WATER LEVEL / PUMP DATA INITIAL DTW DTW FINAL SCREENED INTERVAL BLADDER PUMP PERISTALTIC PUMP SCREENED INITIAL - FINAL DTW DNM ft (TOC) THE TOCH FINAL SCREENED											
	PURGE DATA											
тіме 1(14	dtw (ft) DNM	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm) O.(14	_{рн} 4.24	DO (mg/L) 6.21		ORP (mV) 53.6	COMMENTS			
1117			17.50 16.79	0.101	5.89 3.73	8.14		104,6 VIZ.(0	check pit - okay			
1120		*	16.55	0.106	1252 16,51	8.16		5.5T 77.0	-			
							· · · · · · · · · · · · · · · · · · ·					
ANALYSES	ANALYSES: 8260 (site-specific list) NOTES: Slightly to bid											
									0			

			FIELD D	OATA RECO	RD - GR	OUNDW	ATER SAN	<b>IPLING</b>	
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te	] JOB NU	JMBER 62	52-12-0006		DATE 7/1/15
WELL / SAM	IPLE NUMB	er G	N-78-15	ACTIV		START	EN	ID -	TIME 15:15
QC SAMPLE	S COLLEC.		FD-04	ASSOC		BLANK	TB-03	3	
WATER LE INITIAL DTW SCREENEI INTERVAL		P DATA	DC) FINAL DTW	DNW	<b>へ</b> ft (TOC)	DRAWDO' INITIAL - F X 0.16 GA	WN VOL FINAL L/FT	IA ft	BLADDER PUMP
					PURGE	DATA			d
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	pH	DO (mg/L)		ORP (mV)	COMMENTS
1458	DNVV	DNM (	19.97	0.136	6.10 5.40	3.51	DNWC	288.4	
1502			14.38	0.(35	3.12	3.21	$\sum$	318.8	
1505	*	*	17.35	0.134	3.52	3.45		296.5	
						. <u> </u>		 	
		·		· · · · · · · · · · · · · · · · · · ·					
ANALYSES NOTES:	: 8260 (site	9-specific list) tcly tv	rbid, pu	vged appr	6×1 2g	allous	SIGNATURE	Ama	inty

			FIELD D	ATA RECO	RD - GF	ROUNDW	ATER SAN	IPLING	
PROJECT	CTS of	Asheville, Ir	nc. Superfund Sit	e	] Job Ni	JMBER 62	52-12-0006		DATE 7/2/15
WELL / SAN	IPLE NUMB	er (A	N-79-2		ΤΥ ΤΙΜΕ	START	- EN		тіме 935
QC SAMPLE	ES COLLEC	TED	NIA	ASSOC		BLANK	TB-03	3	
WATER LE INITIAL DTW SCREENE INTERVAL		IP DATA	OC) FINAL DTW	DNn bas	<b>∧</b> ft (TOC)	DRAWDO) INITIAL - F X 0.16 GA	WN VOL INAL L/FT	A ft	BLADDER PUMP
					PURGE	DATA		· · · · · · · · · · · · · · · · · · ·	<u>I</u>
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS
917	DHM	DHM	16.10	0.100	622	4.72	D.HM	127,6	
917	$\left  \left( - \right) \right $		15.47	0.094	5.20	5,14		131.0	
926		4	15.01	0.091	5.25	5.48		19367	
				<b>, ,</b>					
								·····	
analyses	5: 8260 (siti	e-specific list) Acty W	nbid; b	urged ap	prox	lgathen	SIGNATURE:	M	antely
			······································						0

			FIELD D	OATA RECO	RD - GF	ROUNDWA	ATER SAN	<b>IPLING</b>	
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te	JOB N	JMBER 625	52-12-0006		DATE 7/415
WELL / SAM	IPLE NUMB		1-80-25	ACTIV	TY TIME	START	- EN		TIME 1115
QC SAMPLE	ES COLLECT	гер	NA	ASSO		P BLANK	TB-03		
WATER LE INITIAL DTW SCREENEI INTERVAL	D		OC) FINAL DTW	DNW	🔪 ft (TOC)	DRAWDOV INITIAL - F X 0.16 GAL	VN VOL INAL JFT	<b>A</b> ft	BLADDER PUMP
					PURGE	DATA			
	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рн' 6.24	DO (mg/L) <b>7.89</b>		ORP (mV)	COMMENTS
1057	(		16.79	0.131	5.28	5.29	(	181.6	
1100			16.41	0.130	4.79	5.69		195.0	
1103	2	۷	16.16	0.130	4.76	5.71	*	190.3	
ANALYSES NOTES:	s: 8260 (site	e-specific list)	twbid'	purged a	pprox.	1 g allor	SIGNATURE	_/bsy)	anly

ROJECT	CTS of Asheville, Inc. Superfund Site JOB NUMBER 6252-12-0006								DATE 7(2/15
ELL'/ SAM	PLE NUMB	er 🥑	7W-81-1		TY TIME	START	- EN	D -	TIME 1400
C SAMPLE	S COLLEC		1A	ASSOC		BLANK	TB-03		
ATER LE		IP DATA	OC) FINAL	DHW	t (TOC)	DRAWDO\ INITIAL - F X 0.16 GAI		A ft	BLADDER PUMP
SCREENEI INTERVAL		13	- 17						
			<u> </u>		PURGE	DATA			· · · · · · · · · · · · · · · · · · ·
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	pH	DO (mg/L)		ORP (mV)	COMMENTS
1359	BNM	DHM	15.82	0.144	6.13	3.14	DNM	96.5	
1005	-(	- {	15.27	0.127	5.89	2.87		103.1	
1409		$\checkmark$	15.86	0.121	5,55	4.40	F	12.0	
	·								
									· · · · ·
	้ส์								
- <u>-</u>									
									<u></u>
				· ·					
								·	
NALYSES	: 8260 (sit	e-specific list)	id jeur	ged appr	-0× 0.5	gallan	SIGNATURE:	Am	mbez

.

•

£
r					<u></u>		<u></u>	<u> </u>		
			FIELD [	DATA RECO	RD - GR		ATER SAN	IPLING		
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te	JOB NI	JMBER 62	52-12-0006	· · · · · · · · · · · · · · · · · · ·	DATE 7/2/15	
WELL / SAM	IPLE NUMB		N-81-6	ACTIVI	TY TIME	START	- EN	D -	TIME ISO	
QC SAMPLE	S COLLEC	TED	NIA	ASSOC	CIATED TRIF	BLANK	TB-0-	3	· · · · · · · ·	
WATER LE	VEL / PUM	P DATA	<u>_</u>	<u>,</u>					BLADDER PUMP	
INITIAL DTW	DN	<b>f</b> t (T	OC) FINAL	DNM	<b>1</b> ft (TOC)	DRAWDO\ INITIAL - F X 0.16 GA	WN VOL FINAL L/FT	A ft	PERISTALTIC PUMP	
SCREENEI INTERVAL	EENED 45-49									
PURGE DATA										
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS	
1451	DNM	DNM	18.29	0.130	6.17	2.19	DHM	73.8		
1457			17.32	0.105	6.35	3.40	(	87.2		
1503	$\square$		16.87	0.090	6.20	5.61		105,5		
1505	4	4	16.64	0.087	5.74	5.66	· <b>V</b>	127.4		
							I			
	<u>-</u>									
		·								
							· .			
				·						
		·								
								<u> </u>	<u> </u>	
ANALYSES	: 8260 (site	e-specific list)		X			SIGNATURE:	$\int M$	Sandel	
<u></u>				al a - La California de L	)				0	

`...

•

4

			FIELD [	DATA RECO	RD - GF	ROUNDW	ATER SAM	/IPLING			
PROJECT	CTS of	f Asheville, Ir	nc. Superfund Si	ite	] JOB N	UMBER 62	252-12-0006		DATE 8/11/15		
WELL / SAN	IPLE NUME	er GV	N-82-1	9 ACTIV	ΤΥ ΤΙΜΕ	START	- EN	D	TIME 1615		
QC SAMPLE	ES COLLEC	TED	NIA	ASSO			TB-04	ł			
WATER LE	VEL / PUM	IP DATA	, 2 <u>003</u>								
INITIAL DTW	D	JM ft (T	A ft	DISCHARGE REFILL							
SCREENE INTERVAL	D	15-19 Pt-bgs									
· · · · · · · · · · · · · · · · · · ·				<b>.</b>	PURGE	DATA					
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS		
1604	DHM	DHM	20.35	0.252	4.28	9.46	DAM	17.7			
1413	5	\$	18.41	0.241	5.43	3.57	2	9.4			
							- <u> </u>				
	· · · · · · · · · · · · · · · · · ·										
									-		
ANALYSES	: 8260 (sit)	e-specific list)	ente.				SIGNATURE:	Am	and		
	<u> </u>	ye .	<u>v. 1 ~</u>					<u> </u>			

ł

and the second s

-----

FIELD DATA RECORD - GROUNDWATER SAMPLING											
PROJECT	CTS of	f Asheville, Ir	nc. Superfund Sit	е	] JOB NU	MBER 625	52-12-0006		DATE STUIS		
WELL / SAN	IPLE NUMB	er (AV	V.82-4			START	- EN	D -	тіме 900		
QC SAMPLE	S COLLEC	TED	A	ASSOC	CIATED TRIP	BLANK	TB-04	,			
WATER LEVEL / PUMP DATA INITIAL DTW DNM ft (TOC) FINAL SCREENED INTERVAL DSCREENED INTERVAL BLADDER PUMP PERISTALTIC PUMP X DISCHARGE REFILL FINAL X 0.16 GAL/FT NAA											
PURGE DATA											
TIME 843	DTW (ft)	PURGE RATE (L/min)	темр (С°)	SPECIFIC CONDUCTIVITY (mS/cm) 0, \97	_{рн}	DO (mg/L) 3-54		ORP (mV) 87.4	COMMENTS		
847			17.35	0.137	5.02	3.24		40.7			
854			16.58	0.136	4.81	3.02		50.1			
901	V	V	16.34	0.133	4.80	3.09	<i>V</i>	48.1			
							1 				
						·					
	· · · · · · ·		• • • • • • • • • • • • • • • • • • • •								
				·							
								· · · ·			
	8260 /01	e-specific list)			1				<u> </u>		
	VY GL		sallon s	sl.turbi	Л		SIGNATURE:	Ampi	mel		
<u>_</u>	0								U		

			FIELD	DATA RECO	RD - GF		ATER SAN	IPLING	
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te		JMBER 62	52-12-0006	, <b>.</b>	DATE 8/17/
WELL / SAN	IPLE NUMB	er Gv	1-83 - L	3 ACTIV	ITY TIME	START 03	EN	D	тіме (1.02)
QC SAMPLI	ES COLLEC		NIA	ASSO	CIATED TRI	BLANK	TB-04	1	
WATER LE INITIAL DTW SCREENE INTERVAL	BLADDER PUMP								
		· <u></u>	. <u></u>		PURGE	DATA	, <u>,,,,,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,		
TIME	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS
1051	BNM	DNM	15.68	0.100	5.19	6.66	DNM	39.4	
1055	- (		(4.83	0.094	4.25	4.24	<u> </u>	40.1	
1059	<u> </u>	V	19.62	0.993	4.05	9.01	<b>V</b>	38.2	
				<u>.</u>					
					-	) 			
						<u>_</u>			
						· · · · · · · · · · · · · · · · · · ·			
ANALYSES	5: 8260 (site	e-spectfic list)	λ	<u>.</u>	<u> </u>		SIGNATURE:	Ma	with

		<u> </u>	FIELD D	ATA RECO	RD - GR	OUNDW	ATER SAN	IPLING			
PROJECT	CTS of	Asheville, In	c. Superfund Sit	e	] JOB NU	JOB NUMBER 6252-12-0006 DATE 9/12/1					
WELL / SAN	IPLE NUMB	er (	1W-83-	49 ACTIV	ΤΥ ΤΙΜΕ	START	- EN	D -	TIME USO		
QC SAMPLE	ES COLLEC		NIA	ASSO		BLANK	TB-0.	4			
WATER LE INITIAL DTW SCREENE INTERVAL		P DATA	DC) FINAL DTW 5-49 F4	DHV	▲ ft (TOC)	DRAWDO' INITIAL - F X 0.16 GA	WN VOL TINAL L/FT	<b>J</b> A ft	BLADDER PUMP		
· · · · · · · · · · · · ·					PURGE	DATA					
TIME 1138 1141 1145		PURGE RATE (L/min)	TEMP (C°) 19.97 18.18 18.03	SPECIFIC CONDUCTIVITY (mS/cm) 0.121 0.125 0.123	_{рн} 5.02 5.54 5.61	DO (mg/L) 3.22 4.69 3.51		ORP (mV) 36,3 34,4 35,1	COMMENTS		
ANALYSES	8260 (site		x.lgalla	mislig	the first	wbid	SIGNATURE:		Jan Y		

			FIELD [	DATA RECO	RD - GR	OUNDW	ATER SAN	IPLING			
PROJECT	CTS of	Asheville, In	c. Superfund Si	te	JOB NU	JMBER 62	52-12-0006		DATE 8/ 13/15		
WELL / SAM	IPLE NUMBI	er (A	N-84-	β Αςτινι	TY TIME	START	EN	D -	тіме 1450		
QC SAMPLE			NA	ASSOC		BLANK	TB-04				
WATER LE INITIAL DTW SCREENEI INTERVAL	BLADDER PUMP										
PURGE DATA											
	DTW (ft)	PURGE RATE (L/min)	TEMP (C°)	SPECIFIC CONDUCTIVITY (mS/cm)	рН	DO (mg/L)	TUIBIDITY (NTU)	ORP (mV)	COMMENTS		
1491	DNM	DXM	21.90	0.049	6.41	<u>5,20</u>	DNM	49.3	) 		
ANALYSES	: 8260 (site	specific list)									
NOTES:	slow p	vrze I	rate				SIGNATURE:	<u> /                                   </u>			

FIELD DATA RECORD - GROUNDWATER SAMPLING												
PROJECT	CTS of	Asheville, Ir	nc. Superfund Si	te		UMBER 62	52-12-0006					
WELL / SAM	IPLE NUMBE	er <b>(1</b>	W-84-	38 ACTIV	ΙΤΥ ΊΜΕ	START	- EN	D -	TIME LSIS			
QC SAMPLE	S COLLECT	ED	FD-05	ASSO			TB-0	4				
WATER LE INITIAL DTW SCREENEI INTERVAL	R LEVEL / PUMP DATA AL DHM ft (TOC) FINAL DTW DNM ft (TOC) INITIAL - FINAL X 0.16 GAL/FT NIA ft EENED 34-38 ft bgs											
PURGE DATA												
TIME 1505	DTW (ft) DHM	PURGE RATE (L/min)	temp (C°) 12.54	SPECIFIC CONDUCTIVITY (mS/cm)	рн 5.55	DO (mg/L) <b>3.42</b>		ORP (mV) 31,9	COMMENTS			
1514		<u>}</u>	19.78	0.090	6.09	346	5	31.5				
1517	Ţ	$\checkmark$	19.13	0.083	5.64	3,48	4	32.2				
				1								
ANALYSES	ANALYSES: 8260 (site-specific list)											
	יין פיוען	miy_1	-1 61A/	program and	FLIN	- mar	yıs	<u></u>	U			

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

### **APPENDIX B**

### ACCESS AGREEMENTS

### ACCESS AUTHORIZATION

1. 1, <u>TERRY 5. Rowall</u>, am the current owner, or authorized representative of the owner of Buncombe County land records parcel #9655-53-7351-00000 and as such I have the authority to sign this authorization.

2. I grant authorization to the U.S. Environmental Protection Agency (EPA) and its authorized representatives including, but not limited to, North Carolina Department of Environment and Natural Resources, (NCDENR), and CTS Corporation to enter the property located off of Mills Gap Road and conduct sampling activities. Authorized representatives also include officers, employees, contractors or other authorized representatives acting on the behalf of EPA, NCDENR and CTS for the purposes of these activities. This property is currently owned by Duckett, Powell & Thompson Real Estate. Sampling activities on this property may include, but not be limited to, the following:

a. the taking of soil, sediment, surface water, ground water and air samples as may be determined to be necessary:

b. the sampling of any solids or liquids stored or disposed of on-site;

- c. the drilling of holes and installation of monitoring wells for subsurface investigation;
- d. transport of investigation equipment and short term securing and storage of investigative materials, as needed.

3. The consent for access and use granted herein will commence on the date of signature and will continue until EPA completes the investigative work and evaluation at the CTS of Asheville, Inc. Superfund Site.

4. I have been notified that these actions by EPA are undertaken pursuant to its response authority under Section 104(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA or Superfund), 42 U.S.C. Section 9604(a).

5. Please return this signed and dated Access Authorization to:

Samantha Urquhart-Foster Remedial Project Manager EPA, Region 4 Atlanta Federal Center 61 Forsyth Street, S.W. Atlanta, GA 30303

 $\frac{1}{(\text{Signature})} \xrightarrow{\text{Der} H}_{\text{Hom}} \frac{\text{for Deckff-fused al}}{(\text{Date})} \qquad \frac{\text{g-24-12}}{(\text{Date})}$   $\frac{1}{(\text{Date})} \xrightarrow{\text{TEARY} J. \text{Pownll}}_{(\text{Printed Name})} \qquad \frac{\text{g28-231-1344}}{(\text{Daytime Phone Number})}$   $\frac{1}{(\text{Date})} \xrightarrow{\text{Pownll}}_{(\text{Title, if signing as authorized representative of owner})}$ 

<u>755</u> Biltmone AVE. Ashewille w.c. 28803 (Mailing address including City, State, and Zip Code)



### ACCESS AUTHORIZATION

1. I, Ronald J. Karpola, am the President of the Southside Village Association, Inc., which owns the common area of Southside Village, located off of Mills Gap Road in Asheville, Buncombe County, North Carolina (also known as Parcel #9655-52-6798-00000), and as such, I have the authority to sign this authorization.

2. I authorize the U.S. Environmental Protection Agency and its representatives, including, but not limited to, the North Carolina Department of Environment and Natural Resources, (NCDENR) and CTS Corporation, to enter the common area of Southside Village to conduct sampling activities. Authorized representatives include officers, employees, or contractors acting on the behalf of EPA, NCDENR and CTS for the purposes of these sampling activities. Sampling activities on the common area may include, but not be limited to, the following:

- a. Taking groundwater, surface water, sediment, and air samples;
- b. Drilling temporary holes for subsurface investigation;
- c. Transporting investigation equipment and securing short-term storage of investigative materials;
- d. Placing temporary stakes and caution tape around work zones for safety purposes; and
- e. Restoring the property to its pre-existing condition, including filling any bore holes, repairing any ruts, and re-seeding any grassy areas that may be damaged during the activities.

3. My grant of access will take effect on the date of my signature and will continue until EPA completes the investigative work and evaluation at the CTS of Asheville, Inc. Superfund Site, unless terminated earlier in writing by the authorized representative of Southside Village Associates, Inc.

4. I have been notified that these actions by EPA are undertaken pursuant to its response authority under Section 104(a) of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA or Superfund), 42 U.S.C. Section 9604(a).

5. I understand that I should return this signed and dated Access Authorization to:

> Craig Zeller, Remedial Project Manager Superfund Division U.S. EPA, Region 4 61 Forsyth Street, S.W. Atlanta, GA 30303

-7. Kar

SSVHOF

PRESIDENT-

117 TRUMPET LN (Mailing address including City, State, and Zip Code)

ASHEVILLE, NC 28803

<u>ZG MA</u> (Date)

823-684-8359 (Davtime Phone Number)

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

### **APPENDIX C**

**BORING LOGS** 

#### Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

# **BORING LOG**

Project:	CTS of Ashevi	lle, Inc.	Superf	und Sit	te	Drilling Company: Zebra Environmental			
Location	n: Asheville	e, North	Carolir	าล		Driller: Dan Ferrell (NC 3221)			
Project	Number: 62	521200	06			Boring Method: Direct Push Technology			
Logged	By:	S.Kelly		Checl	ked By: A.Steurer	Equipment: Geoprobe 7822DT			
Approxi	mate Ground S	urface	Elevatio	on (fee	it): approx. 2.377 ft.	Boring Date: 6/29/2015			
Depth (feet) Sample	Sample	Recovery (%)	(mqq)	Lithology		Lithologic Description			
_		0-5 80%	0.1		Dark reddish brown, r	micaceous, silty fine sand, slightly moist			
5 	GW-73-20	5-10         95%         10-15         100%         15-20         85%         20-25         90%         25-30         80%         30-35         75%         35-40         75%         40-45         60%         45-50         30%         50-55         60%	0.3 0.5 0.5 0.5 0.0 0.0 0.0 0.0 0.0		(3.4': clean quartz vei RESIDUUM. Greyish (5.5': clean quartz vei Reddish brown to bro highly foliated, dark n (9.5': apparent water Orangish brown, sligh mineral weathering Reddish brown to bro highly foliated, dark n Orangish brown to bro highly foliated, dark mir (22' - 22.5': saturated Dark brown, highly m massive appearance ( 54.5': wet zone with	n) tan, silty fine sand, moist (possible old surface soil) n) wn, micaceous, silty fine to medium sand, slightly moist, foliated to ineral weathering tuly micaceous, silty fine to medium sand, slightly moist, foliated to nineral weathering itly micaceous, silty fine to medium sand, wet, massive with dark wn, micaceous, silty fine to medium sand, slightly moist, foliated to nineral weathering own, slightly micaceous, fine to medium sand, some silt, very wet reral weathering, massive appearance zone) icaceous, fine to medium sand, some silt, moist, foliated to rock)			
55 - -	GW-73-58								
REMAI PID (pp	Refusal with Geoprobe at 58 feet REMARKS: PID (ppm) = Photoionization Detector (parts per million)								

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Project: CTS of Ashe	ville, Inc.	Superf	und Site	e	Drilling Company: Zebra Environmental		
Location: Ashevi	lle, North	Carolir	па		Driller: Dan Ferrell (NC 3221)		
Project Number: 6	2521200	06			Boring Method: Direct Push Technology		
Logged By:	S.Kelly		Check	ed By: A.Steurer	Equipment: Geoprobe 7822DT		
Approximate Ground	Surface	Elevatio	on (feet	): approx. 2,392 ft.	Boring Date: 6/29/2015		
Depth (feet) Sample Sample Name	Recovery (%)	(mqq) OIq	Lithology		Lithologic Description		
	0-5 95%	0.1 0.1 0.2 0.4		Reddish brown, slight	ly micaceous, sandy silt, slightly moist, some roots		
5	5-10 100%	0.4 0.0 0.0 0.0		RESIDUUM. Orangisi (possible oil surface s	h brown, slightly micaceous, clayey sandy silt, slightly moist ;oil)		
	10-15 95%	0.0 0.0 0.0		Reddish brown, slight	ly micaceous, silty fine to medium sand, slightly moist		
15- - - -	15-20 85%	0.0 0.0 0.0 0.0 0.0 0.0		foliated to foliated, da	rk mineral weathering		
20	20-25 90%	0.0 0.0 0.0 0.0 0.0		Orangish brown sligh	atly micaceous, fine sand, some silt, moist, massive appearance		
25	25-30 90%	0.0 0.0 0.0 0.0 0.0		Dark brown to orangis little to some silt, mois	sh brown, micaceous to highly micaceous, fine to medium sand, st, slightly foliated to bedded, dark mineral weathering		
30— — GW-74-33 —	30-35 60%	0.0					
35	35-40 80%	0.0 0.0 0.0 0.0 0.0 0.0					
40	40-45 80%	0.0 0.0 0.0 0.0 0.0					
45	45-50 90%	0.0 0.0 0.0 0.0 0.0 0.0					
50	50-55 90%	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0					
55-58     0.0       100%     0.0       Refusal with Geoprobe at 58 feet       REMARKS:       PID (ppn) = Photoionization Detector (parts per million)							

#### Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

## **BORING LOG**

Project: CT	S of Ashevil	le, Inc.	Superf	iund Sit	.e	Drilling Company: Zebra Environmental			
Location:	Asheville	, North	Caroli	na		Driller: Dan Ferrell (NC 3221)			
Project Nu	mber:62!	521200	06			Boring Method: Direct Push Technology			
Logged By	:	S.Kelly		Check	ed By: A.Steurer	Equipment: Geoprobe 7822DT			
Approxima	te Ground S	urface [	Elevati	on (feet	ι): approx. 2,395 ft.	Boring Date: 6/30/2015			
Depth (feet) Sample	Sample Name	Recovery (%)	(mqq)	Lithology		Lithologic Description			
		0-5 95%	0.8		Reddish brown, sligh	tly micaceous, silty fine to medium sand, slightly moist, trace roots			
- - - 5		5-10	0.0 0.0 0.0 0.0		POSSIBLE ALLUVIL	JM. Orange and grey, mottled, sandy clayey silt to sandy silty clay,			
		75%	0.0 0.0 0.0 0.0		Quartz sand and grav	vel			
10		10-15 90%	0.0 0.0 0.0 0.0		(10': apparent water t RESIDUUM. Grey, m appearance	table) [] nicaceous, silty fine to medium sand, moist, gneissic to massive			
15	014 75 20	15-20 95%			Reddish orange, sligh moist, bedded appea	htly micaceous, fine to medium sand, little to some silt, slightly irance			
20	GW-75-20	20-25 95%	0.0 0.0 0.0 0.0		Reddish brown, slightly micaceous, fine to medium sand, little to some silt, massive apperance, trace coarse sand (27.5' - 28': saturated zone)				
25-		25-30	0.0 0.0 0.0 0.0						
30		80%	0.0 0.0 0.0 0.0						
		30-35 75%	0.0 0.0 0.0 0.0		Orangish brown, mica appearance	aceous, fine to medium sand, little to some silt, massive			
35		35 <b>-4</b> 0 60%	0.0 0.0 0.0 0.0 0.0		Grey, slightly micaced Dark reddish brown, i trace gravel Dark brown, slightly r	uos, fine to medium sand, little silt micaceous, fine to medium sand, little to some silt, moist, foliated, micaceous, fine to medium sand, little to some silt, moist, bedded			
40 - -	GW-75-43	40-43 100%	0.0 0.0 0.0 0.0		appearance Orangish brown to tai trace coarse sand, gr	n, slightly micaceous, fine to medium sand, little silt, slightly moist, neissic to bedded appearance			
REMARKS PID (ppm)	S: } = Photoioniz;	ation De	tector (r	parts per	Refusal with Geoprot	be at 43 feet			

#### Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

## **BORING LOG**

Projec	^{ct:} CTS	of Ashevil	lle, Inc.	Superf	und Sit	e	Drilling Company: Zebra Environmental			
Locati	on:	Asheville	e, North	Caroli	па		Driller: Dan Ferrell (NC 3221)			
Projec	ct Nurr	iber: 62	521200	06			Boring Method: Direct Push Technology			
Logge	ed By:		S.Kelly		Check	ked By: A.Steurer	Equipment: Geoprobe 7822DT			
Appro	ximate	e Ground S	iurface	Elevati	on (fee	t): approx. 2.375 ft.	Boring Date: 6/30/2015			
Depth (feet)	Sample	Sample Name	Recovery (%)	(mqq) OId	Lithology		Lithologic Description			
_			0-5			Dark brown, fine to m	edium sand, little to some silt, roots, slightly moist			
-			-00		Seda da da da da	Surface soil)	to medium sand, little silt, trace fine roots, moist (possible old			
_				0.0 0.0		ALLUVIUM: Grey to a	olive grey, sandy clayey silt, plastic, very moist			
5-			5-10	0.2		Dark grey, clayey silt	y sand, plastic, very moist, organic rich			
-			- 50-%			Dark brown, clayey si	ilty sand, angular gravel			
_				0.0 0.1		RESIDUUM. Dark bro	own, highly micaceous, silty fine to medium sand, moist, foliated			
10-			10-15	0.1		(17.5': quartz vein wit	h iron staining)			
_		GW-76-14	60%	0.1 0.1		(16' -17': saturated)				
-				0.1		(04 Fly and and and				
15-			45.00	0.5 1.4		(24.5: sand and grav	ei quarz seam)			
-			15-20 75%	2.6						
				1.7 3.9		}				
				2.8						
20-			20-25	5.7 0.12						
-				7.8						
				13.1						
25—			25-30	3.1						
			30%							
-				2.6						
30-				2.1 0.5						
-			30-35 70%	0.4						
				0.2 0.4		Dark brown, highly m	icaceous, silty fine to medium sand, moist, bedded appearance,			
-				0.0			ing			
35-			35-40	0.0		Brown to greyish brow	wn, highly micaceous, fine to medium sand, little to some silt, moist,			
-			00 %	0.1		strongly follated.				
				0.1						
40-			40-45	0.3						
			70%							
-				0.3						
45				0.0						
-		GW-76-48	45-48 90%	0.2 0.3						
-				0.3						
						Refusal with Geoprot	be at 48 feet			
	REMARKS: PID (ppm) = Photoionization Detector (parts per million)									

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Proje	^{ct:} CT	S of Ashevi	lle, Inc.	Super	fund Site	e	Drilling Company: Zebra Environmental						
Locat	tion:	Asheville	e, North	Caroli	па		Driller: Dan Ferrell (NC 3221)						
Proje	ct Nu	mber: 62	521200	06			Boring Method: Direct Push Technology						
Logge	ed By	:	S.Kelly	,	Check	ed By: A.Steurer	Equipment: Geoprobe 7822DT						
Appro	oxima	te Ground S	iurface	Elevati	ion (feet	:): approx. 2,370 ft.	Boring Date: 7/1/2015						
Depth (feet)	Sample	Sample Name	Recovery (%)	(mqq)	Lithology		Lithologic Description						
-			0-5 85%	0.3 0.3 0.3 0.2		FILL. Reddish brown,	, silty sand to sandy silt, slightly moist, trace gravel						
			5-10 75%	0.1 0.1 0.1	Tan, slightly micaceo Grey, sandy silt, mois	us, sandy silt, moist st, organic rich							
10			10-15 80%	0.0 0.0 0.0 0.0 0.0		Crangish brown, clayey sandy silt, moist, some organics							
15		OM 27 17		0.0 0.0		Orange, silty fine to n	nedium sand, moist						
		GVY- <i>( (</i> -1 <i>(</i>	15-20 75%	0.1 0.0 0.0 0.0		RESIDUUM. Orange	, slightly micaceous, fine to medium sand, some silt, moist,						
20			20-25 80%	0.0 0.0 0.0 0.0 0.0 0.0		(22' - 22.5': coarse q	iedium sano, iittie to some siit, moist, bedded appearance , daiк uartz sand zone) am)						
25-			25-30 95%	0.0 0.0 0.0		Dark brown, fine to m	nedium sand, little to some silt, moist, foliated						
30-			95%       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0.0       0										
35-		GW-77-36		0.0 0.0 0.0		(35.5' - 36': quartz, coarse sand and gravel)							
			35-36 100%	0.0		Refusal with Geoprot	pe at 36 feet						

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Project: CTS of Asheville, I	Inc. Superfi	und Site		Drilling Company: Zebra Environmental		
Location: Asheville, No	lorth Carolir	าอ		Driller: Dan Ferrell (NC 3221)		
Project Number: 62521	120006			Boring Method: Direct Push Technology		
Logged By: S.K	Kelly	Checked	d By: A.Steurer	Equipment: Geoprobe 7822DT		
Approximate Ground Surfa	ace Elevatio	on (feet): a	pprox. 2,370 ft.	Boring Date: 7/1/2015		
Depth (feet) Sample Name Recovery	(mdd)	Lithology		Lithologic Description		
B     B     B     B     B     B     B       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       10     -     -     -     -     -       10     -     -     -     -     -       -     -     -     -     -     -       10     -     -     -     -     -       -     -     -     -     -     -       10     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -     -     -     -     -     -       -	30         0         1           0%         NR         0.3           0.4         0.1         0.1           5%         0.0         0.1           5%         0.0         0.1           5%         0.1         0.0           0.1         0.0         0.0           5%         0.1         0.1           5%         0.1         0.1           5%         0.1         0.1           5%         0.1         0.1           5.20         0.1         0.1           0.5%         0.0         0.1           0.5%         0.0         0.1           0.5%         0.0         0.1           0.5%         0.0         0.1           0.5%         0.0         0.1           0.5%         0.0         0.1           0.00         0.1         0.0           0.5%         0.1         0.0           0.00         0.1         0.1           0.00         0.1         0.1           0.00         0.1         0.1           0.01         0.1         0.2		3rown, sandy silt, orga Grey with orange mott 5': apparent water tab ALLUVIUM. Greyish b RESIDUUM. Grey to b Dark brown, slightly m appearance Dark brown, micaceou	anics, slightly moist tling, slightly micaceous, silty sand, moist, gravel, trace roots ble) rrown, fine to coarse sand, gravel prown, micaceous, silty sand, foliated ticaceous, fine to medium sand, little to some silt, massive us, fine to medium sand, little to some silt, foliated		
30	0.3	F	Refusal with Geoprobe	e at 30 feet		
REMARKS: PID (ppm) = Photoionizatior	n Detector (p	arts per m	nillion)			

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Project: CTS of Asheville, Inc. Superfund Site					Drilling Company: Zebra Environmental			
Location: Asheville	, North	Carolin	а		Driller: Dan Ferrell (NC 3221)			
Project Number: 62	521200	06			Boring Method: Direct Push Technology			
Logged By:	S.Kelly		Check	ed By: A.Steurer	Equipment: Geoprobe 7822DT			
Approximate Ground S	urface	Elevatio	n (feet	t): approx. 2.493 ft.	Boring Date: 7/2/2015			
Depth (feet) Sample Name	Recovery (%)	(mqq) OId	Lithology		Lithologic Description			
5	0-5 50% 5-10 75% 10-15 75% 15-20 80% 20-25 75%	0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.0 0.0 0.0		FILL. Reddish brown f RESIDUUM. Brown to to bedded appearance (9.5': apparent water t (17.5': quartz seam) (26.5' - 27': saturated (32' - 33': saturated zo	to brown, slightly micaceous, silty sand to sandy silt, moist			
25	25-30 70% 30-35 75%	0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.2						
35	35-36 90%	0.0 0.0 0.0 0.0		Refusal with Geoprob	e at 36 feet			
REMARKS: PID (ppm) = Photoioniza	ation De	tector (pa	arts per	million)				

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Projec	Project: CTS of Asheville, Inc. Superfund Site				e	Drilling Company: Zebra Environmental			
Locati	on: Ash	eville, North	ı Caroli	па		Driller: Dan Ferrell (NC 3221)			
Projec	xt Number:	6252120(	006			Boring Method: Direct Push Technology			
Logge	⊧d By:	S.Kelly	/	Check	ked By: A.Steurer	Equipment: Geoprobe 7822DT			
Approximate Ground Surface Elevation (feet): approx. 2,495 ft.						Boring Date: 7/2/2015			
Depth (feet)	Sample Sample	Recovery (%)	(mqq)	Lithology		Lithologic Description			
		0-5		$\mathbf{H}$	FILL. Brown, silty san	id, trace gravel			
			NR 0.1		Brown to greyish brow	wn, sandy silt, moist			
			0.1 0.0		Reddish brown, slight	tly micaceous, sandy silt, moist			
5		5-10 95%	0.0 0.0		POSSIBLE FILL. Ora	ingish brown, slightly micaceous, sandy silt, moist			
			0.0 0.0		Reddish brown, slight	tly micaceous, silty sand, moist, trace coarse gravel			
- 10 - - -		10-15 80%	0.0 0.0 0.0 0.0 0.0		RESIDUUM. Dark brown, micaceous, silty sand, moist, foliated				
- 15— - -		15-20 85%	0.0 0.0 0.0 0.0		Greyish brown, slightl bedded appearance Dark brown, micaceor (15': apparent water t	ly micaceous, fine to medium sand, little to some silt, slightly moist, us, silty sand, moist, foliated able, difficult to discern)			
- 20- - -	GW-8(	20-25 60%	0.0 0.0 0.0 0.0 0.0 0.0		Greyish brown, slightl bedded appearance Brown to dark brown, mostly bedded appea	ly micaceous, fine to medium sand, little to some silt, slightly moist, highly micaceous, fine to medium sand, little to some silt, moist, arance, dark mineral weathering			
25- - - - -		25-29.5 95%	0.0 0.0 0.0 0.0 0.1						
		I			⊥ Refusal with Geoprob	be at 29.5 feet			

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Projec	roject: CTS of Asheville, Inc. Superfund Site					Drilling Company: Zebra Environmental			
Locatio	on: Ashevill	e, North	Carolir	าล		Driller: Dan Ferrell (NC 3221)			
Projec	t Number: 62	2521200	06			Boring Method: Direct Push Technology			
Logge	d By:	S. Kelly		Check	ed By: A. Steurer	Equipment: Geoprobe 7822DT			
Approv	ximate Ground S	Surface	Elevati	on (feet	.): approx. 2,377 ft.	Boring Date: 7/2/2015			
Depth (feet)	Sample Sample Name	Recovery (%)	(mqq) Olq	Lithology		Lithologic Description			
5		0-5 95% 5-10 100%	1.5 3.3 0.4 1.7 2.3 0.1 0.0 0.1 0.0 0.0		Brown, slightly micace Brown and orange mo	eous, silty sand to sandy silt, moist, trace roots ottled, slightly micaceous, clayey sandy silt, moist, trace organics ble)			
10— - -		10-15 75%	0.0 0.0 0.0 0.0		Greyish brown and so moist, coarsening with	ome orange mottled, clayey silty fine to medium sand, moist to very n depth			
- 15— - -	GW-81-17	15-20 40%	0.0 0.0 NR NR		Organic-rich silt ALLUVIUM. Grey, cla Grey to orangish brow	yey silty fine to coarse sand with gravel			
20		20-25 75%	0.0 0.0 0.0 0.0 0.0 0.0		RESIDUUM. Grey an appearance	d brown, fine to medium sand, little silt, moist, bedded to massive			
25		25-30 55%	0.0 0.0 0.1 0.1 0.0		Brown, highly micaced Dark brownish red, m Brown, slightly micace	ous, silty sand, moist icaceous, fine to medium sand, little to some silt eous, fine to medium sand, little to some silt, moist, bedded			
30		30-35 80%	0.1 0.0 0.0 0.0 0.0		appearance, dark min	ieral weathering			
35		35 <b>-4</b> 0 75%	0.0 0.1 0.2 0.1 0.0						
40		40-45 90%	0.0 0.1 0.0 0.0		Brown to dark brown, massive appearance,	micaceous, fine to medium sand, little to some silt, very moist, dark mineral weathering			
45	GW-81-49	45-50 75%	0.0 0.0 0.1 0.0 0.0		Brown, micaceous, fir appearance Brown to dark brown, massive appearance, Brown, micaceous, fir appearance	me to medium sand, little to some silt, trace coarse sand, bedded micaceous, fine to medium sand, little to some silt, very moist, dark mineral weathering me to medium sand, little to some silt, trace coarse sand, bedded			
REM/ PID (j	ARKS: ppm) = Photoioni;	ation De	tector (p	oarts per	Refusal with Geoprob	e at 50 feet			

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Project: CTS of Asheville, Inc. Superfund Site					Drilling Company: Zebra Environmental		
Location: Ash	eville, North	Carolin	а		Driller: Dan Ferrell (NC 3221)		
Project Number:	62521200	06			Boring Method: Direct Push Technology		
Logged By:	S. Kelly		Check	ed By: A. Steurer	Equipment: Geoprobe 7822DT		
Approximate Grou	und Surface	Elevatio	n (feet	t): approx. 2,402 ft.	Boring Date: 8/11/2015		
Depth (feet) Sample Sample	Recovery (%)	(mqq) OId	Lithology		Lithologic Description		
-	0-5 50%			FILL. Reddish brown t trace gravel	to brown micaceous silty sand to sandy silt, very slightly moist,		
5	5-10 50%	2.0 0.4					
	10-15 50%	0.0 0.0 0.0 0.0 0.0		RESIDUUM. Grey to reddish brown slightly micaceous, sandy clayey silt, very moist, 1" organic layer at top of zone (possible oil surface soil) (9': apparent water table)			
15 - - - - - - - - - - - - - - - - - - -	15-20 75% 2-19	0.0 0.0 0.0 0.0		Orange and grey moto	tled, sandy clayey silt, moist		
20	20-25 80**6	0.0 0.0 0.0 0.0 0.0 0.0		Grey to brown to dark bedded appearance	brown, micaceous, silty fine to medium sand, moist, massive to		
25	25-30 80%	0.0 0.0 0.0 0.0 0.0					
30	30-35 100%	0.0 0.0 0.0 0.0 0.0 0.0					
35	35-40 75%	0.0 0.0 0.0 0.0 0.0					
40	40-45 75%	0.0 0.0 0.0 0.0 0.0					
45 	45-49 50% 2-49	0.0 0.0 0.0 0.0 0.0		Dark brown, slightly m appearance	nicaceous, fine to medium sand, little to some silt, moist, bedded		
				Refusal with Geoprob	e at 49 feet		
REMARKS: PID (ppn1) = Photo	oionization De	tector (pa	arts per	million)			

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Project: CTS of Asheville, Inc. Superfund Site					e	Drilling Company: Zebra Environmental			
Locatior	^{1:} Asheville	e, North	Carolir	าอ		Driller: Dan Ferrell (NC 3221)			
Project	Number: 62:	521200	06			Boring Method: Direct Push Technology			
Logged	By:	S. Kelly	,	Check	ed By: A. Steurer	Equipment: Geoprobe 7822DT			
Approxi	mate Ground S	urface I	Elevatio	on (feet	t): approx. 2,402 ft.	Boring Date: 8/12/2015			
Depth (feet) Sample	Sample Name	Recovery (%)	(mqq) OIq	Lithology		Lithologic Description			
- - - 5 -		0-5 20% 5-10 75%	1.7 0.0 0.0		FILL. Brown to reddis	h brown, micaceous, silty sand to sandy silt, very slightly moist			
-			0.0		Brownish red sandy s	ilt, moist			
10		10-15 80%	0.0 0.0 0.0		RESIDUUM. Orange old surface soil)	and red mottled, sandy clayey silt, moist, trace organics (possible			
- 15-			0.0		(13': apparent water ta Grev. clavev silty san	able) d. moist, trace gravel			
		15-20 70%	0.0 0.0 0.0 0.0		Oranish brown, slightl Brown to dark brown, massive to bedded ap	ly micaceous, silty fine to medium sand, moist micaceous to highly micaceous, silty fine to medium sand, moist, opearance			
20	GW-83-23	20-25 60%	0.0 0.0 0.0 0.0						
25— - - -		25-30 60%	0.0 0.0 0.0 0.0 0.0						
30		30-35 60%	0.0 0.0 0.0 0.0 0.0						
35— - - -		35-40 70%	0.0 0.0 0.0 0.0 0.0		Brown to dark brown, to bedded appearance	micaceous, fine to medium sand, little to some silt, moist, massive e			
40		40-45 70%	0.0 0.0 0.0 0.0 0.0						
45	GW-83-49	45-49 35%	0.0 0.0 0.0 0.0 0.0						
		. <u> </u>			Refusal with Geoprob	e at 49 feet			
REMA	SK S.								
PID (pp	om) = Photoioniza	ation Del	tector (p	arts per	million)				

Amec Foster Wheeler Environment & Infrastructure, Inc. 1308 Patton Avenue Asheville, North Carolina 28806

Projec	^{roject:} CTS of Asheville, Inc. Superfund Site					te	Drilling Company: Zebra Environmental				
Locati	ion:	Asheville	e, North	Caroli	na		Driller: Dan Ferrell (NC 3221)				
Projec	ct Nu	mber: 62	521200	06			Boring Method: Direct Push Technology				
Logge	ed By	:	S. Kelly	,	Checl	ked By: A. Steurer	Equipment: Geoprobe 7822DT				
Appro	Approximate Ground Surface Elevation (feet): approx. 2.397 ft.						Boring Date: 8/12/2015				
Depth (feet)	Sample	Sample Name	Recovery (%)	(mqq)	Lithology		Lithologic Description				
-			0-5 70%	0.0 0.0		FILL. Reddish brown, gravel and organics	, slightly micaceous, silty sand to sandy silt, slightly moist, trace				
5			5-10 70%	0.4 20.3 0.0 0.0 0.0		Brown, slightly micac (8': apparent water ta	eous, silty fine to medium sand, slightly moist ible)				
- 10 - -			10-15 70%	0.0 7.8 37.6 5.2		Greyish brown, slight Tan to orangish brow	ly micaceous, fine to medium sand, little to some silt, very moist /n, silty clay, little to some sand, moist, trace decomposed organics				
 15—	15					ALLUVIUM. Dark grey, clayey sandy silt, wet, trace organics					
_				16.9 33.8		RESIDUUM. Grey, m	icaceous, fine to medium sand, little to some silt, massive				
20— - -			20-25 60%	58.2 32.7 53.8		арреатапсе					
25-			25-30 70%	34.3 17.4 4.0 29.2		Brownish red, slightly appearance	⁷ micaceous, fine to medium sand, little to some silt, slightly bedded				
- - 30			30-35 75%	46.7 22.9 15.8 16.3 18.2		Brown to dark brown, some silt, slightly bec	, micaceous to highly micaceous, fine to medium sand, little to Ided appearance				
35— - -		GW-84-14	35-38 100%	14.5 12.2 1.4 0.0 0.0							
						Refusal with Geoprot	be at 38 feet				

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

### **APPENDIX D**

### LABORATORY ANALYTICAL REPORT FOR SURFACE WATER AND SEDIMENT SAMPLES



July 07, 2015

Ms. Susan Kelly Amec Foster Wheeler 1308 Patton Avenue Asheville, NC 28806

RE: Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92256138

Dear Ms. Kelly:

Enclosed are the analytical results for sample(s) received by the laboratory on June 25, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A - Dod-

Kevin Godwin kevin.godwin@pacelabs.com Project Manager

Enclosures





#### CERTIFICATIONS

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

#### **Charlotte Certification IDs**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221



### SAMPLE SUMMARY

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No .:

92256138

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92256138001		Water	06/25/15 00:00	06/25/15 16:31
92256138002	FD-01	Water	06/25/15 00:00	06/25/15 16:31
92256138003	SW-01W	Water	06/25/15 14:35	06/25/15 16:31
92256138004	SW-02W	Water	06/25/15 14:00	06/25/15 16:31
92256138005	SW-03W	Water	06/25/15 13:45	06/25/15 16:31
92256138006	SW-04W	Water	06/25/15 13:10	06/25/15 16:31
92256138007	SW-05W	Water	06/25/15 12:50	06/25/15 16:31
92256138008	FD-02	Solid	06/25/15 00:00	06/25/15 16:31
92256138009	SED-01W	Solid	06/25/15 14:40	06/25/15 16:31
92256138010	SED-02W	Solid	06/25/15 14:05	06/25/15 16:31
92256138011	SED-03W	Solid	06/25/15 13:50	06/25/15 16:31
92256138012	SED-04W	Solid	06/25/15 13:15	06/25/15 16:31
92256138013	SED-05W	Solid	06/25/15 12:55	06/25/15 16:31



### SAMPLE ANALYTE COUNT

Project: CTS OF ASHEVILLE 6252120006

Pace Project No .:

92256138

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92256138001		EPA 8260	SNP	7	PASI-C
92256138002	FD-01	EPA 8260	SNP	7	PASI-C
92256138003	SW-01W	EPA 8260	SNP	7	PASI-C
92256138004	SW-02W	EPA 8260	SNP	7	PASI-C
92256138005	SW-03W	EPA 8260	SNP	7	PASI-C
92256138006	SW-04W	EPA 8260	SNP	7	PASI-C
92256138007	SW-05W	EPA 8260	SNP	7	PASI-C
92256138008	FD-02	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C
92256138009	SED-01W	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C
92256138010	SED-02W	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C
92256138011	SED-03W	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C
92256138012	SED-04W	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C
92256138013	SED-05W	EPA 8260	DLK	7	PASI-C
		ASTM D2974-87	SLJ	1	PASI-C



#### SUMMARY OF DETECTION

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 9225

92256138

Lab Sample ID	Client Sample ID					
Method	Parameters	Result	Units	Report Limit	Analyzed	Qualifiers
92256138002	FD-01					
EPA 8260	cis-1,2-Dichloroethene	1.8	ug/L	1.0	06/30/15 01:24	
EPA 8260	Trichloroethene	28.7	ug/L	1.0	06/30/15 01:24	
92256138003	SW-01W					
EPA 8260	cis-1,2-Dichloroethene	2.1	ug/L	1.0	06/30/15 01:41	
EPA 8260	Trichloroethene	27.8	ug/L	1.0	06/30/15 01:41	
92256138004	SW-02W					
EPA 8260	cis-1,2-Dichloroethene	13.5	ug/L	1.0	06/30/15 01:58	
EPA 8260	Trichloroethene	81.2	ug/L	1.0	06/30/15 01:58	
EPA 8260	Vinyl chloride	3.5	ug/L	1.0	06/30/15 01:58	
92256138005	SW-03W					
EPA 8260	cis-1,2-Dichloroethene	81.7	ug/L	1.0	06/30/15 02:15	
EPA 8260	trans-1,2-Dichloroethene	0.51J	ug/L	1.0	06/30/15 02:15	
EPA 8260	Trichloroethene	129	ug/L	1.0	06/30/15 02:15	
EPA 8260	Vinyl chloride	9.8	ug/L	1.0	06/30/15 02:15	
92256138006	SW-04W					
EPA 8260	cis-1,2-Dichloroethene	0.44J	ug/L	1.0	06/30/15 02:32	
EPA 8260	Trichloroethene	21.6	ug/L	1.0	06/30/15 02:32	
92256138008	FD-02					
EPA 8260	cis-1,2-Dichloroethene	4.3J	ug/kg	7.5	07/03/15 23:04	
EPA 8260	Trichloroethene	42.7	ug/kg	7.5	07/03/15 23:04	
ASTM D2974-87	Percent Moisture	29.4	%	0.10	07/02/15 10:12	
92256138009	SED-01W					
EPA 8260	cis-1,2-Dichloroethene	2.7J	ug/kg	5.8	07/03/15 23:23	
EPA 8260	Trichloroethene	36.3	ug/kg	5.8	07/03/15 23:23	
ASTM D2974-87	Percent Moisture	29.1	%	0.10	07/02/15 10:12	
92256138010	SED-02W					
EPA 8260	cis-1,2-Dichloroethene	2.6J	ug/kg	4.6	07/03/15 23:43	
EPA 8260	Trichloroethene	14.9	ug/kg	4.6	07/03/15 23:43	
ASTM D2974-87	Percent Moisture	24.2	%	0.10	07/02/15 10:13	
92256138011	SED-03W					
EPA 8260	cis-1,2-Dichloroethene	162	ug/kg	4.9	07/04/15 00:03	
EPA 8260	Trichloroethene	702	ug/kg	123	07/04/15 13:42	
EPA 8260	Vinyl chloride	6.4J	ug/kg	9.8	07/04/15 00:03	
ASTM D2974-87	Percent Moisture	24.3	%	0.10	07/02/15 10:13	
92256138012	SED-04W					
EPA 8260	Trichloroethene	8.1	ug/kg	5.2	07/04/15 16:41	
ASTM D2974-87	Percent Moisture	24.2	%	0.10	07/02/15 10:13	
92256138013	SED-05W					
ASTM D2974-87	Percent Moisture	26.8	%	0.10	07/02/15 10:13	



#### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

#### Method: EPA 8260

Description:8260 MSV Low LevelClient:Amec Foster Wheeler, AshevilleDate:July 07, 2015

#### **General Information:**

7 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards: All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

Additional Comments:



#### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Method:EPA 8260Description:8260/5035A Volatile OrganicsClient:Amec Foster Wheeler, AshevilleDate:July 07, 2015

#### General Information:

6 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards: All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: TB-01	Lab ID:	Collected	06/25/15	6 00:00	Received: 06	i/25/15 16:31 Ma	atrix: Water		
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		06/30/15 01:07	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 01:07	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		06/30/15 01:07	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		06/30/15 01:07	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	111	%	70-130		1		06/30/15 01:07	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1		06/30/15 01:07	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		06/30/15 01:07	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: FD-01	Lab ID:	Collected	06/25/15 00:00		Received: 06	/25/15 16:31 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	1.8	ug/L	1.0	0.19	1		06/30/15 01:24	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 01:24	156-60-5	
Trichloroethene	28.7	ug/L	1.0	0.47	1		06/30/15 01:24	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		06/30/15 01:24	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	109	%	70-130		1		06/30/15 01:24	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1		06/30/15 01:24	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		06/30/15 01:24	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SW-01W	Lab ID: 92256138003		Collected:	06/25/15 14:35		Received: 06	i/25/15 16:31 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	2.1	ug/L	1.0	0.19	1		06/30/15 01:41	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 01:41	156-60-5	
Trichloroethene	27.8	ug/L	1.0	0.47	1		06/30/15 01:41	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		06/30/15 01:41	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	110	%	70-130		1		06/30/15 01:41	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130		1		06/30/15 01:41	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/30/15 01:41	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SW-02W	Lab ID: 92256138004		Collected	06/25/15 14:00		Received: 06	/25/15 16:31 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	13.5	ug/L	1.0	0.19	1		06/30/15 01:58	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 01:58	156-60-5	
Trichloroethene	81.2	ug/L	1.0	0.47	1		06/30/15 01:58	79-01-6	
Vinyl chloride	3.5	ug/L	1.0	0.62	1		06/30/15 01:58	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	110	%	70-130		1		06/30/15 01:58	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130		1		06/30/15 01:58	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/30/15 01:58	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 9225

6138		

Sample: SW-03W	Lab ID:	Collected: 06/25/15 13:45			Received: 06	/25/15 16:31 Ma	atrix: Water		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical I	260							
cis-1,2-Dichloroethene	81.7	ug/L	1.0	0.19	1		06/30/15 02:15	156-59-2	
trans-1,2-Dichloroethene	0.51J	ug/L	1.0	0.49	1		06/30/15 02:15	156-60-5	
Trichloroethene	129	ug/L	1.0	0.47	1		06/30/15 02:15	79-01-6	
Vinyl chloride	9.8	ug/L	1.0	0.62	1		06/30/15 02:15	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	108	%	70-130		1		06/30/15 02:15	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	70-130		1		06/30/15 02:15	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/30/15 02:15	2037-26-5	


### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SW-04W	Lab ID:	92256138006	Collected	06/25/15	6 13:10	Received: 06	6/25/15 16:31 N	latrix: Water	
B		1 Barringe	Report			Basara		0.4.0. N	0
Parameters		Units		MDL -		Prepared	Analyzed	CAS NO.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	0.44J	ug/L	1.0	0.19	1		06/30/15 02:32	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 02:32	156-60-5	
Trichloroethene	21.6	ug/L	1.0	0.47	1		06/30/15 02:32	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		06/30/15 02:32	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	109	%	70-130		1		06/30/15 02:32	460-00-4	
1,2-Dichloroethane-d4 (S)	113	%	70-130		1		06/30/15 02:32	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		06/30/15 02:32	2037-26-5	



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SW-05W	Lab ID:	92256138007	Collected	: 06/25/15	5 12:50	Received: 06	/25/15 16:31 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		06/30/15 02:49	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		06/30/15 02:49	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		06/30/15 02:49	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		06/30/15 02:49	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	109	%	70-130		1		06/30/15 02:49	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130		1		06/30/15 02:49	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		06/30/15 02:49	2037-26-5	



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

 Sample:
 FD-02
 Lab ID:
 92256138008
 Collected:
 06/25/15
 00:00
 Received:
 06/25/15
 16:31
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260			-	no-		
cis-1,2-Dichloroethene	4.3J	ug/kg	7.5	2.1	1		07/03/15 23:04	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	7.5	2.9	1		07/03/15 23:04	156-60-5	
Trichloroethene	42.7	ug/kg	7.5	3.2	1		07/03/15 23:04	79-01-6	
Vinyl chloride	ND	ug/kg	15.0	2.7	1		07/03/15 23:04	75-01-4	
Surrogates									
Toluene-d8 (S)	104	%	70-130		1		07/03/15 23:04	2037-26-5	
4-Bromofluorobenzene (S)	94	%	70-130		1		07/03/15 23:04	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-132		1		07/03/15 23:04	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	29.4	%	0.10	0.10	1		07/02/15 10:12		



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SED-01W	Lab ID: 92256138009	Collected: 06/25/15 14:40	Received: 06/25/15 16:31	Matrix: Solid
Results reported on a "dry weight" bas	sis and are adjusted for p	ercent moisture, sample siz	e and any dilutions.	

			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
cis-1,2-Dichloroethene	2.7J	ug/kg	5.8	1.6	1		07/03/15 23:23	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.8	2.2	1		07/03/15 23:23	156-60-5	
Trichloroethene	36.3	ug/kg	5.8	2.4	1		07/03/15 23:23	79-01-6	
Vinyl chloride	ND	ug/kg	11.5	2.1	1		07/03/15 23:23	75-01-4	
Surrogates									
Toluene-d8 (S)	99	%	70-130		1		07/03/15 23:23	2037-26-5	
4-Bromofluorobenzene (S)	93	%	70-130		1		07/03/15 23:23	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-132		1		07/03/15 23:23	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	29.1	%	0.10	0.10	1		07/02/15 10:12		



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SED-02W	Lab ID: 92256138010	Collected: 06/25/15 14:05	Received: 06/25/15 16:31	Matrix: Solid
Results reported on a "dry weight" bas	sis and are adjusted for p	ercent moisture, sample siz	e and any dilutions.	

Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
cis-1,2-Dichloroethene	2.6J	ug/kg	4.6	1.3	1		07/03/15 23:43	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	4.6	1.8	1		07/03/15 23:43	156-60-5	
Trichloroethene	14.9	ug/kg	4.6	2.0	1		07/03/15 23:43	79-01-6	
Vinyl chloride	ND	ug/kg	9.3	1.7	1		07/03/15 23:43	75-01-4	
Surrogates									
Toluene-d8 (S)	103	%	70-130		1		07/03/15 23:43	2037-26-5	
4-Bromofluorobenzene (S)	97	%	70-130		1		07/03/15 23:43	460-00-4	
1,2-Dichloroethane-d4 (S)	101	%	70-132		1		07/03/15 23:43	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	24.2	%	0.10	0.10	1		07/02/15 10:13		



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Sample: SED-03W	Lab ID: 92256138011	Collected: 06/25/15 13:50	Received: 06/25/15 16:31	Matrix: Solid
Results reported on a "dry weight" bas	sis and are adjusted for p	ercent moisture, sample siz	e and any dilutions.	

			Report						
Parameters	Results	Units		MDL	DF	Prepared	_ Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
cis-1,2-Dichloroethene	162	ug/kg	4.9	1.4	1		07/04/15 00:03	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	4.9	1.9	1		07/04/15 00:03	156-60-5	
Trichloroethene	702	ug/kg	123	51.7	25		07/04/15 13:42	79-01-6	
Vinyl chloride	6.4J	ug/kg	9.8	1.8	1		07/04/15 00:03	75-01-4	
Surrogates									
Toluene-d8 (S)	103	%	70-130		1		07/04/15 00:03	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-130		1		07/04/15 00:03	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-132		1		07/04/15 00:03	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	24.3	%	0.10	0.10	1		07/02/15 10:13		



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

 Sample:
 SED-04W
 Lab ID:
 92256138012
 Collected:
 06/25/15
 13:15
 Received:
 06/25/15
 16:31
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Matrix:
 Solid

			Report						
Parameters	Results	Units		MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
cis-1,2-Dichloroethene	ND	ug/kg	5.2	1.5	1		07/04/15 16:41	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	5.2	2.0	1		07/04/15 16:41	156-60-5	
Trichloroethene	8.1	ug/kg	5.2	2.2	1		07/04/15 16:41	79-01-6	
Vinyl chloride	ND	ug/kg	10.4	1.9	1		07/04/15 16:41	75-01-4	
Surrogates									
Toluene-d8 (S)	102	%	70-130		1		07/04/15 16:41	2037-26-5	
4-Bromofluorobenzene (S)	100	%	70-130		1		07/04/15 16:41	460-00-4	
1,2-Dichloroethane-d4 (S)	98	%	70-132		1		07/04/15 16:41	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	24.2	%	0.10	0.10	1		07/02/15 10:13		



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

 Sample:
 SED-05W
 Lab ID:
 92256138013
 Collected:
 06/25/15
 12:55
 Received:
 06/25/15
 16:31
 Matrix:
 Solid

 Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.
 Image: Second Sec

Darameters	Recults	l Inite	Report	MDI	DE	Drenared	Analyzed	CAS No	Qual
		Onits							
8260/5035A Volatile Organics	Analytical	Method: EP	A 8260						
cis-1,2-Dichloroethene	ND	ug/kg	4.8	1.4	1		07/04/15 17:01	156-59-2	
trans-1,2-Dichloroethene	ND	ug/kg	4.8	1.8	1		07/04/15 17:01	156-60-5	
Trichloroethene	ND	ug/kg	4.8	2.0	1		07/04/15 17:01	79-01-6	
Vinyl chloride	ND	ug/kg	9.6	1.7	1		07/04/15 17:01	75-01-4	
Surrogates									
Toluene-d8 (S)	106	%	70-130		1		07/04/15 17:01	2037-26-5	
4-Bromofluorobenzene (S)	97	%	70-130		1		07/04/15 17:01	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-132		1		07/04/15 17:01	17060-07-0	
Percent Moisture	Analytical	Method: AS	TM D2974-87						
Percent Moisture	26.8	%	0.10	0.10	1		07/02/15 10:13		



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

QC Batch:	MSV/	32361		Analysis M	ethod:	EPA 8260		
QC Batch Method:	EPA 8	3260		Analysis D	escription:	8260 MSV Lov	w Level	
Associated Lab Sam	ples:	92256138001,	92256138002.	92256138003.	92256138004.	92256138005	, 92256138006,	92256138007

 METHOD BLANK:
 1497172
 Matrix:
 Water

 Associated Lab Samples:
 92256138001, 92256138002, 92256138003, 92256138004, 92256138005, 92256138006, 92256138007

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	06/29/15 23:09	- 7
trans-1,2-Dichloroethene	ug/L	ND	1.0	06/29/15 23:09	
Trichloroethene	ug/L	ND	1.0	06/29/15 23:09	
Vinyl chloride	ug/L	ND	1.0	06/29/15 23:09	
1,2-Dichloroethane-d4 (S)	%	105	70-130	06/29/15 23:09	
4-Bromofluorobenzene (S)	%	109	70-130	06/29/15 23:09	
Toluene-d8 (S)	%	100	70-130	06/29/15 23:09	

### LABORATORY CONTROL SAMPLE: 1497173

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	55.2	110	70-131	
trans-1,2-Dichloroethene	ug/L	50	59.6	119	70-130	
Trichloroethene	ug/L	50	52.3	105	70-130	
Vinyl chloride	ug/L	50	60.8	122	50-150	
1,2-Dichloroethane-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			102	70-130	

MATRIX SPIKE SAMPLE:

1497174

		92256138003	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	2.1	20	25.1	115	70-130	
trans-1,2-Dichloroethene	ug/L	ND	20	24.1	120	70-130	
Trichloroethene	ug/L	27.8	20	49.9	110	69-151	
Vinyl chloride	ug/L	ND	20	24.7	124	70-130	
1,2-Dichloroethane-d4 (S)	%				93	70-130	
4-Bromofluorobenzene (S)	%				112	70-130	
Toluene-d8 (S)	%				101	70-130	

### SAMPLE DUPLICATE: 1497175

		92256138004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
cis-1,2-Dichloroethene	ug/L	13.5	12.6	7	30	
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
Trichloroethene	ug/L	81.2	80.3	1	30	
Vinyl chloride	ug/L	3.5	3.2	10	30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

SAMPLE DUPLICATE: 1497175						
		92256138004	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane-d4 (S)	%	111	95	16		
4-Bromofluorobenzene (S)	%	110	111	1		
Toluene-d8 (S)	%	100	101	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



EPA 8260

8260 MSV 5035A Volatile Organics

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

022001

QC Batch: MSV/32425 QC Batch Method: EPA 8260 Associated Lab Samples: 92256

 260
 Analysis Description:

 92256138008, 92256138009, 92256138010, 92256138011

Analysis Method:

 METHOD BLANK:
 1501732
 Matrix:
 Solid

 Associated Lab Samples:
 92256138008, 92256138009, 92256138010, 92256138011

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/kg	ND	4.7	07/03/15 15:45	2 70
trans-1,2-Dichloroethene	ug/kg	ND	4.7	07/03/15 15:45	
Trichloroethene	ug/kg	ND	4.7	07/03/15 15:45	
Vinyl chloride	ug/kg	ND	9.4	07/03/15 15:45	
1,2-Dichloroethane-d4 (S)	%	96	70-132	07/03/15 15:45	
4-Bromofluorobenzene (S)	%	104	70-130	07/03/15 15:45	
Toluene-d8 (S)	%	105	70-130	07/03/15 15:45	

### LABORATORY CONTROL SAMPLE: 1501733

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/kg	43.9	44.7	102	70-133	
trans-1,2-Dichloroethene	ug/kg	43.9	44.6	102	67-135	
Trichloroethene	ug/kg	43.9	46.3	106	67-135	
Vinyl chloride	ug/kg	43.9	48.0	109	56-141	
1,2-Dichloroethane-d4 (S)	%			98	70-132	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			98	70-130	

MATRIX SPIKE SAMPLE:

1501785

		92255964001	Spike	MS	MS	% Rec	0.115
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/kg	ND	24.3	27.4	113	70-130	
trans-1,2-Dichloroethene	ug/kg	ND	24.3	29.1	120	70-130	
Trichloroethene	ug/kg	ND	24.3	25.0	103	49-167	
Vinyl chloride	ug/kg	ND	24.3	25.0	103	70-130	
1,2-Dichloroethane-d4 (S)	%				105	70-132	
4-Bromofluorobenzene (S)	%				104	70-130	
Toluene-d8 (S)	%				99	70-130	

### SAMPLE DUPLICATE: 1501784

		92255896001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
cis-1,2-Dichloroethene	ug/kg	ND	ND		30	
trans-1,2-Dichloroethene	ug/kg	ND	ND		30	
Trichloroethene	ug/kg	ND	ND		30	
Vinyl chloride	ug/kg	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

# **REPORT OF LABORATORY ANALYSIS**



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

SAMPLE DUPLICATE: 1501784						
		92255896001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane-d4 (S)	%	103	100	32		
4-Bromofluorobenzene (S)	%	101	100	30		
Toluene-d8 (S)	%	101	106	25		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



Project: CTS OF ASHEVILLE 6252120006

ug/kg

%

%

%

Units

ug/kg

ug/kg

ug/kg

ug/kg

%

%

%

Pace Project No .:	92256138
--------------------	----------

Vinyl chloride

Toluene-d8 (S)

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

cis-1,2-Dichloroethene

Trichloroethene

Vinyl chloride

Toluene-d8 (S)

trans-1,2-Dichloroethene

1,2-Dichloroethane-d4 (S)

4-Bromofluorobenzene (S)

LABORATORY CONTROL SAMPLE: 1501804

Parameter

QC Batch:	MSV/32430		Analysis Meth	nod: E	PA 8260			
QC Batch Method:	EPA 82	260		Analysis Des	cription: 8	260 MSV 5035A Vo	atile Organics	
Associated Lab Samp	oles:	92256138012, 92	256138013					
METHOD BLANK: 1501803				Matrix:	Solid			
Associated Lab Samp	oles:	92256138012, 92	256138013					
				Blank	Reporting			
Parame	eter	ι	Jnits	Result	Limit	Analyzed	Qualifiers	
cis-1,2-Dichloroethene ug/kg		ND	4.2	07/04/15 12:02	2 <u>7</u>			
trans-1,2-Dichloroethe	ene	ι	ıg/kg	ND	4.2	07/04/15 12:02		
Trichloroethene		ι	ig/kg	ND	4.2	07/04/15 12:02		

8.5 07/04/15 12:02

07/04/15 12:02

106

108

107

116

101

100

101

% Rec

Limits

70-133

67-135

67-135

56-141

70-132

70-130

70-130

Qualifiers

70-132 07/04/15 12:02

70-130 07/04/15 12:02

LCS

% Rec

70-130

ND

93

104

102

LCS

Result

49.3

50.1

49.7

53.9

Spike

Conc.

46.5

46.5

46.5

46.5

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project:	CTS OF ASHEVILL	E 6252120006							
Pace Project No.:	92256138								
QC Batch:	PMST/8054		Analysis Meth	iod:	ASTM D2974-87				
QC Batch Method:	ASTM D2974-87		Analysis Desc	ription:	Dry Weight/Perce	ent Moisture			
Associated Lab Sar	nples: 922561380	08, 92256138009	9, 92256138010, 92	256138011,	92256138012, 92	2256138013			
SAMPLE DUPLICA	TE: 1499501								
			92254961005	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	14.9	15	1		25	1	
SAMPLE DUPLICA	TE: 1499502								
			92256138013	Dup		Max			
Parar	neter	Units	Result	Result	RPD	RPD		Qualifiers	
Percent Moisture		%	26.8	26	8 (	)	25		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

### **REPORT OF LABORATORY ANALYSIS**



### QUALIFIERS

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

### LABORATORIES

PASI-C Pace Analytical Services - Charlotte



### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256138

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92256138001	 TB-01	EPA 8260	MSV/32361		
92256138002	FD-01	EPA 8260	MSV/32361		
92256138003	SW-01W	EPA 8260	MSV/32361		
92256138004	SW-02W	EPA 8260	MSV/32361		
92256138005	SW-03W	EPA 8260	MSV/32361		
92256138006	SW-04W	EPA 8260	MSV/32361		
92256138007	SW-05W	EPA 8260	MSV/32361		
92256138008	FD-02	EPA 8260	MSV/32425		
92256138009	SED-01W	EPA 8260	MSV/32425		
92256138010	SED-02W	EPA 8260	MSV/32425		
92256138011	SED-03W	EPA 8260	MSV/32425		
92256138012	SED-04W	EPA 8260	MSV/32430		
92256138013	SED-05W	EPA 8260	MSV/32430		
92256138008	FD-02	ASTM D2974-87	PMST/8054		
92256138009	SED-01W	ASTM D2974-87	PMST/8054		
92256138010	SED-02W	ASTM D2974-87	PMST/8054		
92256138011	SED-03W	ASTM D2974-87	PMST/8054		
92256138012	SED-04W	ASTM D2974-87	PMST/8054		
92256138013	SED-05W	ASTM D2974-87	PMST/8054		

Pace Analytical"	Document Name: Sample Condition Upon Receipt (SCUR)	Document Revised: May 15, 2015 Page 1 of 2*
www.pacalabs.com	Document No.:	Issuing Authorities:
Ollevet Manage A	F-ASV-CS-003-rev.14	Pace Asheville Quality Office
Client Name: <u>An</u>	nec Posta Wheeler	* Page 2 of 2 is for Internal Use Only
	~	
Courier (Circle): Fed Ex UP	S USPS Client Commercial Page	e Other
Custody Seal on Cooler/Box Presen	it: ves no Seals intact: yes	no
Packing Material: Bubble Wrap	Bubble Bags None Other	1
Thermometer Used: IR Gun#3 -13026	5963 Type of Ice: Wet Blue None	Samples on ice, cooling process has begun
IR Gun #4 SN:140290365 Other		H
Temp Correction Factor: Add / Sub	tract <u>0.0</u> C	Date and initials of person examining
Temp should be above freezing to 6°C	C Diological Lissue is Frozen: Yes N	contents: 2013 G125/15
Chain of Custody Present:	Dres Pino Dinia 1	
Chain of Custody Filled Out:		
Chain of Custody Relinguished:	EYes DNO DN/A 3.	
Sampler Name & Signature on COC:	TYes DNO DN/A 4.	
Samples Arrived within Hold Time:	BYes DNO DN/A 5.	
Short Hold Time Analysis (<72hr):	DYes DNO DINIA 6.	
Rush Turn Around Time Requested:	DYes RINO DN/A 7.	
Sufficient Volume:	BYES DNO DN/A 8.	
Correct Containers Used:	DYes DNO DNA 9.	
-Pace Containers Used:	DYes DNO DNA	
Containers Intact:	Eres DNO DN/A 10.	and the second
Filtered volume received for Dissolved	tests DYes DNo DN/A 11.	And the state of the
Sample Labels match COC:	AYes DNO DN/A 12.	
-Includes date/time/ID/Analysis	Matrix: SL	
an containers needing preservation have been	THES DNO DNIA 13.	
All containers needing preservation are foun compliance with EPA recommendation.	d to be In Pres INO IN/A	
exceptions: VOA, coliform, TOC, O&G, WI-DRO (	water) 🛛 Yes 🗖 Ko	
Samples checked for dechlorination:	DYes DNo DNIA 14.	
leadspace in VOA Vials ( >6mm):	DYes DNO DATA 15.	
Trip Blank Present:	DYes DNO DN/A 16.	
rip Blank Custody Seals Present	TYES DNO DNIA	

# Client Notification/ Resolution: Person Contacted:

Date/Time:

Comments/ Resolution:

**SCURF Review:** Date: 0 Date: 6/26 SRF Review: 5

SRF Review: Date: @/26/15 Note: Whenever there is a discrepancy affecting North Carolina compliance samples, a copy of this form will be sent to the North Carolina DEHNR Certification Office (i.e out of hold, incorrect preservative, out of temp, incorrect containers)



-.-1

WO#:92256138

92256138

Y/N

1



# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

Section A	Section E	B						Section	c							Page	<b>::</b>	1	of	
Company: Fostar William	Report To:	Co	( 1	n V	11.	-	-	Attention	ormation	n:	Ve	11.	-	-			18	399	911	
13 de Pattan Arrante	Copy To:	JVC	200		T	1		Company Name: Socre a lingale REGULATORY						AGENCY	AGENCY					
Asheville Nr 7880/0			-					Adpress:	niA.	Fell	ADA	Anne	tw. c	m	NPDES [	GROUN	ND WATE	RF	DRINKING	G WATER
Sail Tacan Kall Damage for	Purchase	Order	No.:	200	Inde	d		Pace Quote	av 1-	por a	160	NU VE	011110	5	UST f	RCRA		×	OTHER .	
101-27.57 9180 Fax	Project Na	77	04	ACL	evill	10 100		Pace Project	×V.	-	50	diar	in a	s	ite Location	1	T	4	67 23	
lequested Due Date/TAT:	Project Nu	mber:	57	17.00	010			Pace Profile	1#:	alot	CEVE	Avi		15	STATE:	-N	6	10.2		
0101		00	10	1000	00	-		-		-	-	T	Reque	ested An	alysis Filtere	d (Y/N)	1	1990		
Section D Matrix	Codes	2	6									z	4					1100-0-	and the	
Required Client Information - MATRIX Drinking W	ater DW	s to le	COMI	-	COLL	ECTED	- 2		Pre	serval	tives	1					-	1		
Water Waste Wat	wT er WW	d code	Ü	COMPO	SITE	COMPOS	TE OLO													
Product Soil/Solid	P	io valk	GRAE	STAR	т	END/GR	DLLE										NZ.			
SAMPLE ID OII Wipe	OL WP	(50	=9)		-	1	MI C	ERS				to					line			0
(A-Z, 0-9 / ,-) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	ODE	Je ,	10-11			MP	TAIN				F	*				양	~ ~ /	GG	138
Other	от	XC	E J	- 4			E H	Serv	-		o lo	No.	19				nal	911	1-24	
2		ATR	AMPI				AMPI	OF O	2SO NO3	CI	a ₂ S ₂	ther	2				esid			
	_	2	S	DATE	TIME	DATE	TIME 0	# 0	TT	TZ	ZZ	0-	*				2	Pace	Project N	o./ Lab I.
BOI		NI NI	14		-	600	rep	2		2	++-	H	3						00	
ED-07		Ki I	4	-		10000	00:00	2		5	21	10	5					-	000	0
A SIN-OLINI		PL.	16	-	1	10015	1435	2	-	3	141	F	K I				++		00	2
5 SLI-DRW		1	G	1		600	400	3		3	++		X					- 17	ha	Í
15W-03W		W	+ 5			10/25/15	1345	3		2	11	1	MIT						06*	-
7 SW-DAW		w	16			40545	1310	3	T	3			X						100	0
\$ 5W-05W		WI	G			10/25/5	1250	3		3		1	V						00	7
· SED-OW	-	SL	4			chasis	1990	161			21	2	X						000	ř
10 SED-02W		SL	9			6/25/15	1905	101			21	2	4						DI	Ò
INSED-03W		152	9		1	1425/15	1350	161			21	14	X						DI	1
12 SED-OAW		SL	61			612515	1315	61			121	27	X					- 1.	Đ	2
ADDITIONAL COMMENTS	10 10 M	RE	LINQU	SHED BY	AFFILIAT	ION	DATE	TIME		143	ACCE	PTED E	BY / AFFILIA	TION	DATE	TIME		SAM	PLE CONDIT	IONS
ksite-specific	al	when	1 4	te	-		10/25/15	16:3	,4	VI	n	1	_	-	6/25/15	16:31	2.7	Y	N	Y
comported list							1			/ 0					1 / 1				11.	
(TCE, CIS-12-DCE.	1	-																		
trans-1,2-DLE.							1.00												1.50	
VINVI Chipride)	OBIGINU	41			SAMPLE	ER NAME A	ND SIGNATU	RE									U	5	, olor	lact
		-				PRINT Nan	ne of SAMPLE	R: 51	JSA	N	KE	しい	Y				ni di	eived (YIN	rid Cot	los In
						SIGNATUR	E of SAMPLE	R: A	00	a	1		DATE	Signed	1 12-11	5	Tem	Rece	Seale	dure
"Important Note: By signing this form you are per	cepting Pace's N	VET 30	day par	ment terms	and agreeing	to late charge	s of 1.5% per ma	nth for any in	40	UN caid wi	the do do	urs.	(MIM/D		april	<u>ــــــــــــــــــــــــــــــــــــ</u>	E-ALL-	-0-020rev	.07. 15-May	-2007

Pace Analytical Do	ocument Name: Sample Condition Receipt (SCUR)	Upon Document Revised: May 15, 2015 Page 1 of 2*
www.pecele5s.com	Document No.: F-ASV-CS-003-rev.14	Issuing Authorities: Pace Asheville Quality Office
Client Name: Am	ec Foster	* Page 2 of 2 is for Internal Use Only
Courier (Circle): Fed Ex UPS Custody Seal on Cooler/Box Present: যি	USPS Client Commercial yes provo 62 Seals intact:	Pace Other
Packing Material: Bubble Wrap E Thermometer Used: IR Gun#3 - <u>130265963</u> IR Gun #4 SN:140290365 Other: Temp Correction Factor: Add / Subtract	Bubble Bags I None Other Type of Ice: Web Blue No	one Samples on Ice, cooling process has begun
Corrected Cooler Temp.: 2.7 Femp should be above freezing to 6°C	_ C Biological Tissue is Frozen: Comments	Yes No N/A Date and initials of person examining contents $20R$ ( $a/25/15$
Chain of Custody Present:	BYES DNO DNA 1.	· · · · · · · · · · · · · · · · · · ·
Chain of Custody Filled Out:	Dires DNO DN/A 2.	
Chain of Custody Relinquished:	Elyes DNO EINIA 3.	
Sampler Name & Signature on COC:	Elyes DING DINIA 4.	
Samples Arrived within Hold Time:	EYes DNo DNA 5.	
Short Hold Time Analysis (<72hr):	DYes BNO DNA 6.	
Rush Turn Around Time Requested:	DYes DNO DN/A 7.	
Sufficient Volume:	DAYES DNO DN/A 8.	
Correct Containers Used:	Dres DNO DNIA 9.	
-Pace Containers Used:	Dres DNO DNIA	
Containers Intact:	EYes DNO DN/A 10.	
iltered volume received for Dissolved tests	DYes DNO DNIA 11.	
Sample Labels match COC:	DYes DNO DN/A 12.	
-Includes date/time/ID/Analysis Matrix	· Wr/su	
Il containers needing preservation have been checke	ed. Pres INO IN/A 13.	
Il containers needing preservation are found to be ompliance with EPA recommendation.		
ceptions: VOA, coliform, TOC, O&G, WI-DRO (water)	CIYes CINO	·
amples checked for dechlorination:	DYES DNO DINIA 14.	
eadspace in VOA Vials ( >6mm):	TYes DNO WWA 15/2013 4	125/1
rip Blank Present:	EYES DNO ENVA 16.	1.4-4
rip Blank Custody Seals Present	Yes DNO DINA	
ace Trip Blank Lot # (if purchased):		
		Eield Date Benutrad
Dereen Contected:	Date/Times	
Person Contacted:	Date/Time	
Comments/ Resolution:		
CURF Review:	Date: 4/25/15	Place label bars
O'I'M	el chelis	
SRF Review: Note: Whenever there is a discrepancy af compliance samples, a copy of this form w	The sent to the North P 23	2 5613 OR Handwrite project number
Carolina DEHNR Certification Office ( I.e preservative, out of temp, incorrect	ct containers)	(if no label available)



# CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

	WATER
	WATER
	WATER
X OTHER	
	-
201	
92250 Pace Project No	2(38
DI?	3
	-
SAMPLE CONDITIO	ONS
YN	Y
y voler	ntact
e (Y/h ustod ustod (Y/N)	ples li
00 0 0	Samp
	Received on Ico (Y/N) South Custody South Cooler (Y/N) South Cooler (Y/N)

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

# **APPENDIX E**

# DATA VALIDATION REPORT FOR SURFACE WATER AND SEDIMENT SAMPLES

CTS of Asheville, Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix E Amec Foster Wheeler Project 6252-12-0006 Decebmer 11, 2015

# DATA VALIDATION REPORT June 2015 Surface Water and Sediment Sampling CTS of Asheville, Inc. Superfund Site Asheville, North Carolina

# Introduction

Surface water and sediment samples were collected at the CTS of Asheville, Inc., Superfund Site in Asheville, North Carolina, in June 2015 and submitted for off-site laboratory analysis. Samples were analyzed by Pace Analytical Services, Inc., located in Huntersville, North Carolina. Results were reported in the following Sample Delivery Group (SDG): 92256138.

A listing of samples included in this Data Validation Report is presented in Table E.1. Data were evaluated using project quality control limits summarized in Table E.2. A summary of the final validated analytical results is presented in Table E.3. Samples were analyzed by the following method:

- Volatile organic compounds (VOCs) by USEPA Method 8260 (project list only)
- Percent Moisture by ASTM D2974-87 (sediment samples)

Data validation was completed based on procedures in the USEPA Region 4 Data Validation Standard Operating Procedures (SOP) for Organic Analysis (USEPA, 2008), Method 8260, and the CTS of Asheville Quality Assurance Project Plan (QAPP) [AMEC, 2012]. Data validation included the following evaluations:

- Lab report narrative
- Sample collection and chain of custody
- Data package completeness
- Holding times
- Instrument tuning
- Initial and continuing calibrations
- QC blanks
- System monitoring compound recovery
- Laboratory control samples
- Matrix spike/matrix spike duplicates
- Field duplicates
- Internal standard response and retention time
- Data transcription
- Raw data and calculation checks
- Electronic data reporting
- Data qualification

The following laboratory or data validation qualifiers are used in the final data presentation:

U = target analyte is not detected at the reported detection limit

J = estimated value

CTS of Asheville, Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix E Amec Foster Wheeler Project 6252-12-0006 Decebmer 11, 2015

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

# Data Package Completeness

Summary forms and raw data for the instrument tune and continuing calibration standard analyzed on 7/3/15 (14:25) were not included in the data package. The forms and raw data were requested on 8/11/15 and the laboratory submitted the information on 8/25/15.

# Instrument Tuning

The tuning criteria provided by the laboratory do not match the tuning criteria listed in Method 8260 or the Region 4 validation guideline. The laboratory criteria reported are based on the USEPA Contract Laboratory Program Method OLM03. Method 8260 allows for the use of alternative tuning criteria, and instrument tuning was reviewed based on criteria provided in the lab report.

Tuning results were also compared to USEPA Region 4 control limits during data validation. Instrument tune results for all mass/charge (m/z) ratios were within control limits for percent relative abundance as stated in the USEPA Region 4 SOP for all instrument tunes, and sample results were accepted as reported without qualification.

# References

- Amec, 2012. "NAPL Investigation Work Plan: Quality Assurance Project Plan (Revision 2);" December 21, 2012.
- USEPA Region 4, 2008. "Data Validation Standard Operating Procedures for Organic Analysis" Science and Ecosystem Support Division, Quality Assurance Section, MTSB, Revision 3.1, August 2008.

Data Validator: Julie Ricardi

Julie Ricardi

Date: 9/3/2015

Reviewed by Chris Ricardi, NRCC-EAC

ris Kin

Date: 9/8/2015

# TABLE E.1 Data Validation Report: Sample Summary CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

						VOCs
SDG	Sample ID	Sample Date	Media	Lab Sample ID	QC Code	EPA 8260
92256138	TB-01	06/25/15	BW	92256138001	TB	4
92256138	SED-01W	06/25/15	SED	92256138009	FS	4
92256138	FD-02	06/25/15	SED	92256138008	FD	4
92256138	SED-02W	06/25/15	SED	92256138010	FS	4
92256138	SED-03W	06/25/15	SED	92256138011	FS	4
92256138	SED-04W	06/25/15	SED	92256138012	FS	4
92256138	SED-05W	06/25/15	SED	92256138013	FS	4
92256138	FD-01	06/25/15	SW	92256138002	FD	4
92256138	SW-01W	06/25/15	SW	92256138003	FS	4
92256138	SW-02W	06/25/15	SW	92256138004	FS	4
92256138	SW-03W	06/25/15	SW	92256138005	FS	4
92256138	SW-04W	06/25/15	SW	92256138006	FS	4
92256138	SW-05W	06/25/15	SW	92256138007	FS	4

Notes:

BW = blank water SW = surface water SED = sediment FS = field sample FD = field duplicate TB = trip blank Number listed under method indicates the number of target analytes reported.

Prepared By: WCG 9/4/15 Checked By: JAR 9/8/15

# TABLE E.2 Data Validation Report: Quality Control Limits CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Parameter	QC Test	Water %R	Water RPD	Soil %R	Soil RPD
	Surrogate	70-130		70-130	
NOC	LCS/LCSD	70-130	30	70-130	30
VUC	MS/MSD	70-130	30	70-130	30
	Field Duplicate		30		30

### Notes:

LCS = laboratory control sample LCSD = laboratory control sample duplicate MS = matrix spike MSD = matrix spike duplicate %R = percent recovery RPD = relative percent difference

Prepared By: JAR 9/2/15 Checked By: CSR 9/7/15

# TABLE E.3 Data Validation Report: Summary of Results CTS of Asheville, Inc. Superfund Sites Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

	Sample	Location	SED	-01W	SED	-02W	SED	-02W	SED-	03W	SED	-04W	SED	-05W
	Sar	nple Date	06/2	5/15	06/2	5/15	06/2	25/15	06/2	5/15	06/2	5/15	06/2	5/15
	Field S	Sample ID	SED	-01W	FD	-02	SED	-02W	SED-	03W	SED-	-04W	SED	-05W
Method	Parameter Name	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
ASTM D2974	Percent Moisture	percent	29.1		29.4		24.2		24.3		24.2		26.8	
EPA 8260	cis-1,2-Dichloroethene	ug/kg	2.7	J	4.3	J	2.6	J	162		5.2	U	4.8	U
EPA 8260	trans-1,2-Dichloroethene	ug/kg	5.8	U	7.5	U	4.6	U	4.9	U	5.2	U	4.8	U
EPA 8260	Trichloroethene	ug/kg	36.3		42.7		14.9		702		8.1		4.8	U
EPA 8260	Vinyl chloride	ug/kg	11.5	U	15	U	9.3	U	6.4	J	10.4	U	9.6	U

	Sample	Location	Q	С	SW-	01W	SW-0	01W	SW-	02W	SW-	03W	SW-0	D4W	SW-0	D5₩
Sample Date		nple Date	06/25/15		06/25/15		06/25/15 06/25/15		5/15	06/2	5/15	06/2	5/15	06/25/15		
Field Sample II		Sample ID	TB-01 F		FD	-01	SW-0	01W	SW-	02W	SW-	03W	SW-0	04W	SW-05W	
Method	Parameter Name	Units	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual
EPA 8260	cis-1,2-Dichloroethene	ug/l	1	U	1.8		2.1		13.5		81.7		0.44	ſ	1	U
EPA 8260	trans-1,2-Dichloroethene	ug/l	1	U	1	U	1	U	1	U	0.51	J	1	U	1	U
EPA 8260	Trichloroethene	ug/l	1	U	28.7		27.8		81.2		129		21.6		1	U
EPA 8260	Vinyl chloride	ug/l	1	U	1	U	1	U	3.5		9.8		1	U	1	U

Notes:

ug/l = micrograms per liter ug/kg = micrograms per kilogram **Qualifier --**U = not detected at the detection limit J = estimated value

Prepared By: WCG 9/4/15 Checked By: JAR 9/8/15 CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

# **APPENDIX F**

# LABORATORY ANALYTICAL REPORT FOR GROUNDWATER SAMPLES



Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

July 09, 2015

Ms. Susan Kelly Amec Foster Wheeler 1308 Patton Avenue Asheville, NC 28806

RE: Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92256729

Dear Ms. Kelly:

Enclosed are the analytical results for sample(s) received by the laboratory on July 01, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A - Dod-

Kevin Godwin kevin.godwin@pacelabs.com Project Manager

Enclosures





Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

### CERTIFICATIONS

### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

### **Charlotte Certification IDs**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221



Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

# SAMPLE SUMMARY

### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92

92256729	
----------	--

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92256729001		Water	06/29/15 00:00	07/01/15 08:12
92256729002	FD-03	Water	06/30/15 00:00	07/01/15 08:12
92256729003	GW-73-20	Water	06/29/15 11:30	07/01/15 08:12
92256729004	GW-73-58	Water	06/29/15 15:30	07/01/15 08:12
92256729005	GW-74-33	Water	06/30/15 08:25	07/01/15 08:12
92256729006	GW-74-58	Water	06/30/15 09:15	07/01/15 08:12
92256729007	GW-75-20	Water	06/30/15 12:05	07/01/15 08:12
92256729008	GW-75-43	Water	06/30/15 13:45	07/01/15 08:12
92256729009	GW-76-14	Water	06/30/15 15:50	07/01/15 08:12
92256729010	GW-76-48	Water	06/30/15 16:35	07/01/15 08:12



# SAMPLE ANALYTE COUNT

Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92256729

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92256729001		EPA 8260	SNP	7	PASI-C
92256729002	FD-03	EPA 8260	SNP	7	PASI-C
92256729003	GW-73-20	EPA 8260	GAW	7	PASI-C
92256729004	GW-73-58	EPA 8260	GAW	7	PASI-C
92256729005	GW-74-33	EPA 8260	SNP	7	PASI-C
92256729006	GW-74-58	EPA 8260	GAW	7	PASI-C
92256729007	GW-75-20	EPA 8260	GAW	7	PASI-C
92256729008	GW-75-43	EPA 8260	GAW	7	PASI-C
92256729009	GW-76-14	EPA 8260	GAW	7	PASI-C
92256729010	GW-76-48	EPA 8260	SNP	7	PASI-C



### SUMMARY OF DETECTION

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Lab Sample ID	Client Sample ID	D		Description	Arrelesed	0
	Parameters		Units	Report Limit	Analyzed	Quaimers
92256729002	FD-03					
EPA 8260	Trichloroethene	160	ug/L	1.0	07/02/15 14:45	
92256729008	GW-75-43					
EPA 8260	Trichloroethene	4.1	ug/L	1.0	07/07/15 03:24	
92256729009	GW-76-14					
EPA 8260	Trichloroethene	168	ug/L	1.0	07/07/15 03:41	
92256729010	GW-76-48					
EPA 8260	Trichloroethene	0.80J	ug/L	1.0	07/06/15 19:20	



### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

### Method: EPA 8260

Description:8260 MSV Low LevelClient:Amec Foster Wheeler, AshevilleDate:July 09, 2015

### General Information:

10 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

### Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: TB-02	Lab ID: 92256729001		Collected: 06/29/15 00:00		Received: 07/01/15 08:12		Matrix: Water		
			Report						~
Parameters	Results	Units	Limit	MDL		Prepared	Analyzed	CAS NO.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	3260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/02/15 14:28	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/02/15 14:28	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/02/15 14:28	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/02/15 14:28	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	112	%	70-130		1		07/02/15 14:28	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		07/02/15 14:28	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/02/15 14:28	2037-26-5	



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256

CC700		
56729		

Sample: FD-03	Lab ID: 92256729002		Collected: 06/30/15 00:00 F			Received: 07	/01/15 08:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL .	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical I	Vethod: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/02/15 14:45	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/02/15 14:45	156-60-5	
Trichloroethene	160	ug/L	1.0	0.47	1		07/02/15 14:45	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/02/15 14:45	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	114	%	70-130		1		07/02/15 14:45	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130		1		07/02/15 14:45	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/02/15 14:45	2037-26-5	



### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-73-20	Lab ID:	92256729003	Collected	06/29/15	6 11:30	Received: 07	/01/15 08:12 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDI	DF	Prepared	Analyzed	CAS No	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 02:16	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 02:16	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/07/15 02:16	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 02:16	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	113	%	70-130		1		07/07/15 02:16	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		07/07/15 02:16	17060-07-0	
Toluene-d8 (S)	93	%	70-130		1		07/07/15 02:16	2037-26-5	


#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-73-58	Lab ID: 92256729004		4 Collected: 06/29/15 15:30 Red			Received: 07	Received: 07/01/15 08:12 Matrix: Wa		
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 02:33	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 02:33	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/07/15 02:33	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 02:33	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	115	%	70-130		1		07/07/15 02:33	460-00-4	
1,2-Dichloroethane-d4 (S)	90	%	70-130		1		07/07/15 02:33	17060-07-0	
Toluene-d8 (S)	95	%	70-130		1		07/07/15 02:33	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-74-33	Lab ID:	92256729005	Collected	06/30/15	08:25	Received: 07	/01/15 08:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/06/15 19:03	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/06/15 19:03	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/06/15 19:03	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/06/15 19:03	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	114	%	70-130		1		07/06/15 19:03	460-00-4	
1,2-Dichloroethane-d4 (S)	111	%	70-130		1		07/06/15 19:03	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		07/06/15 19:03	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-74-58	Lab ID: 92256729006		Collected: 06/30/15 09:15 R		Received: 07	Received: 07/01/15 08:12 Ma		trix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical I	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 02:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 02:50	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/07/15 02:50	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 02:50	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	107	%	70-130		1		07/07/15 02:50	460-00-4	
1,2-Dichloroethane-d4 (S)	100	%	70-130		1		07/07/15 02:50	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		07/07/15 02:50	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-75-20	Lab ID:	92256729007	Collected:	06/30/15	12:05	Received: 07	/01/15 08:12 M	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 03:07	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 03:07	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/07/15 03:07	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 03:07	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	122	%	70-130		1		07/07/15 03:07	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130		1		07/07/15 03:07	17060-07-0	
Toluene-d8 (S)	95	%	70-130		1		07/07/15 03:07	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-75-43	Lab ID: 92256729008		B Collected: 06/30/15 13:45 Re			Received: 07/01/15 08:12 Matrix: Water			
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 03:24	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 03:24	156-60-5	
Trichloroethene	4.1	ug/L	1.0	0.47	1		07/07/15 03:24	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 03:24	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	113	%	70-130		1		07/07/15 03:24	460-00-4	
1,2-Dichloroethane-d4 (S)	92	%	70-130		1		07/07/15 03:24	17060-07-0	
Toluene-d8 (S)	97	%	70-130		1		07/07/15 03:24	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-76-14	Lab ID: 92256729009		9 Collected: 06/30/15 15:50 Rec		Received: 07/01/15 08:12 Matrix: Water				
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/07/15 03:41	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/07/15 03:41	156-60-5	
Trichloroethene	168	ug/L	1.0	0.47	1		07/07/15 03:41	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/07/15 03:41	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	112	%	70-130		1		07/07/15 03:41	460-00-4	
1,2-Dichloroethane-d4 (S)	95	%	70-130		1		07/07/15 03:41	17060-07-0	
Toluene-d8 (S)	103	%	70-130		1		07/07/15 03:41	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

Sample: GW-76-48	Lab ID: 92256729010		0 Collected: 06/30/15 16:35 Rec		Received: 07/01/15 08:12 Matrix: Water				
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/06/15 19:20	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/06/15 19:20	156-60-5	
Trichloroethene	0.80J	ug/L	1.0	0.47	1		07/06/15 19:20	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/06/15 19:20	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	112	%	70-130		1		07/06/15 19:20	460-00-4	
1,2-Dichloroethane-d4 (S)	103	%	70-130		1		07/06/15 19:20	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/06/15 19:20	2037-26-5	



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

QC	Batch:	
QC	Batch Method:	

Analysis Method:

Analysis Description: 8260 MSV Low Level

EPA 8260

QC Batch Method: EPA 8260 Associated Lab Samples: 92256729001, 92256729002

MSV/32413

METHOD BLANK: 1500681

Matrix: Water

Associated I	Lab Samples:	92256729001,	92256729002	

	Blank	Reporting		
Units	Result	Limit	Analyzed	Qualifiers
ug/L	ND	1.0	07/02/15 12:30	
ug/L	ND	1.0	07/02/15 12:30	
ug/L	ND	1.0	07/02/15 12:30	
ug/L	ND	1.0	07/02/15 12:30	
%	94	70-130	07/02/15 12:30	
%	96	70-130	07/02/15 12:30	
%	102	70-130	07/02/15 12:30	
	Units ug/L ug/L ug/L % % %	UnitsResultug/LNDug/LNDug/LNDug/LND%94%96%102	Blank         Reporting           Units         Result         Limit           ug/L         ND         1.0           %         94         70-130           %         96         70-130           %         102         70-130	Blank         Reporting           Units         Result         Limit         Analyzed           ug/L         ND         1.0         07/02/15 12:30           %         94         70-130         07/02/15 12:30           %         96         70-130         07/02/15 12:30           %         102         70-130         07/02/15 12:30

#### LABORATORY CONTROL SAMPLE: 1500682

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	50.7	101	70-131	
trans-1,2-Dichloroethene	ug/L	50	52.4	105	70-130	
Trichloroethene	ug/L	50	50.7	101	70-130	
Vinyl chloride	ug/L	50	51.7	103	50-150	
1,2-Dichloroethane-d4 (S)	%			86	70-130	
4-Bromofluorobenzene (S)	%			101	70-130	
Toluene-d8 (S)	%			100	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

QC Batch: QC Batch Method: Analysis Method:

Analysis Description: 8260 MSV Low Level

EPA 8260

QC Batch Method: EPA 8260 Associated Lab Samples: 92256729005, 92256729010

MSV/32433

METHOD BLANK: 1502030

Associated Lab Samples:

0	Matrix:	Water
92256729005, 92256729010		

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/06/15 15:07	a di
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/06/15 15:07	
Trichloroethene	ug/L	ND	1.0	07/06/15 15:07	
Vinyl chloride	ug/L	ND	1.0	07/06/15 15:07	
1,2-Dichloroethane-d4 (S)	%	99	70-130	07/06/15 15:07	
4-Bromofluorobenzene (S)	%	115	70-130	07/06/15 15:07	
Toluene-d8 (S)	%	100	70-130	07/06/15 15:07	

#### LABORATORY CONTROL SAMPLE: 1502031

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L		47.2	94	70-131	
trans-1,2-Dichloroethene	ug/L	50	49.7	99	70-130	
Trichloroethene	ug/L	50	47.4	95	70-130	
Vinyl chloride	ug/L	50	49.9	100	50-150	
1,2-Dichloroethane-d4 (S)	%			93	70-130	
4-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SPI		1502033										
			MS	MSD								
	9	2256729005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
cis-1,2-Dichloroethene	ug/L	ND	20	20	21.5	21.3	108	106	70-130	1	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	22.6	18.9	113	94	70-130	18	30	
Trichloroethene	ug/L	ND	20	20	20.4	20.5	101	102	69-151	0	30	
Vinyl chloride	ug/L	ND	20	20	22.3	21.8	112	109	70-130	2	30	
1,2-Dichloroethane-d4 (S)	%						103	101	70-130			
4-Bromofluorobenzene (S)	%						108	107	70-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

QC Batch:	MSV	/32451
QC Batch Method:	EPA	8260
Associated Lab Sam	ples:	92256729003, 92256729004,

 Analysis Method:
 EPA 8260

 8260
 Analysis Description:
 8260 MSV Low Level

 92256729003, 92256729004, 92256729006, 92256729007, 92256729008, 92256729009
 92256729008, 92256729009

 METHOD BLANK:
 1502589
 Matrix:
 Water

 Associated Lab Samples:
 92256729003, 92256729004, 92256729006, 92256729007, 92256729008, 92256729009

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/07/15 01:42	a di
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/07/15 01:42	
Trichloroethene	ug/L	ND	1.0	07/07/15 01:42	
Vinyl chloride	ug/L	ND	1.0	07/07/15 01:42	
1,2-Dichloroethane-d4 (S)	%	93	70-130	07/07/15 01:42	
4-Bromofluorobenzene (S)	%	107	70-130	07/07/15 01:42	
Toluene-d8 (S)	%	98	70-130	07/07/15 01:42	

#### LABORATORY CONTROL SAMPLE: 1502590

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	49.1	98	70-131	7.
trans-1,2-Dichloroethene	ug/L	50	53.4	107	70-130	
Trichloroethene	ug/L	50	52.0	104	70-130	
Vinyl chloride	ug/L	50	43.1	86	50-150	
1,2-Dichloroethane-d4 (S)	%			103	70-130	
4-Bromofluorobenzene (S)	%			100	70-130	
Toluene-d8 (S)	%			103	70-130	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.



#### QUALIFIERS

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92256729

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-C Pace Analytical Services - Charlotte



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92256729

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92256729001	 TB-02	EPA 8260	MSV/32413		
92256729002	FD-03	EPA 8260	MSV/32413		
92256729003	GW-73-20	EPA 8260	MSV/32451		
92256729004	GW-73-58	EPA 8260	MSV/32451		
92256729005	GW-74-33	EPA 8260	MSV/32433		
92256729006	GW-74-58	EPA 8260	MSV/32451		
92256729007	GW-75-20	EPA 8260	MSV/32451		
92256729008	GW-75-43	EPA 8260	MSV/32451		
92256729009	GW-76-14	EPA 8260	MSV/32451		
92256729010	GW-76-48	EPA 8260	MSV/32433		

Pace Analytical"	Document Name: Sample Condit Receipt (SCUR)	ion Upon	Document Revised Page 1	l: May 15, 2015 of 2*
www.pecelabs.com	Document No.:	a Statistics of a late	Issuing Aut	horities:
	F-ASV-CS-003-rev.14	an ngan man Transferra	Pace Asneville C	Quality Office
Client Name: <u>Ama</u>		*	Page 2 of 2 is for li	nternal Use Only
Courier (Circle): Fed Ex UPS ustody Seal on Cooler/Box Present: acking Material: Bubble Wrap Thermometer Used: Cun#3 - <u>130285983</u> Cun #4 SN:140290365 Other:	USPS Client Commercial yes no Seals Intact: Bubble Bags None Other Type of Ice: Wet Blue	Pace Of yes	her no Samples on Ice, cooling	process has begur
orrected Cooler Temp.: <u>5.9</u> emp should be above freezing to 6°C	C Biological Tissue is Froze	en: Yes No (WA) ents:	Date and Initials of contents:かく	person examining
hain of Custody Present:	TYES DNO DNA 1.	· ·	And the second	<del>na ang pan</del> a ang pang pang pang pang pang pang pang
hain of Custody Filled Out:	Veg DNO DN/A 2.	× .	in the second	
hain of Custody Relinquished:	DYES DNO DINIA 3.			
ampler Name & Signature on COC:	DYES DNO DN/A 4.			
amples Arrived within Hold Time:	ZYes DNg DN/A 5.			
hort Hold Time Analysis (<72hr):	Tyes DNg DN/A 6.	·		
ush Turn Around Time Requested:	DYes DNO DN/A 7.			
Ifficient Volume:	Yes DNO DN/A 8.			
orrect Containers Used:	ElYes DNo DN/A 9.			
-Pace Containers Used:	TYes DNO DN/A			
ontainers Intact:	Elyes DNO DN/A 10.			
Itered volume received for Dissolved tests	5 DYes DNo DN/A 11.			
ample Labels match COC:	ETYes DNO DN/A 12.			
-Includes date/time/ID/Analysis Mate	ix: UT ^{ked.} Øyes Ono On/A 13.			-
containers needing preservation are found to mpliance with EPA recommendation.	be In _EIYes DNo DN/A		4	12
eptions: VOA, coliform, TOC, O&G, WI-DRO (water	Yes Divo			
mples checked for dechlorination:	DYes DNO DN/A 14.			
adspace in VOA Vials ( >6mm):	TYES DNO DN/A 15.		-	
p Blank Present:	DYes DNO DN/A 16.			
p Blank Custody Seals Present	PYes DNO DNA			
ce Trip Blank Lot # (if purchased):				
ient Notification/ Resolution:	D-4-Times		-leid Data Required?	Y/N
Person Contacted:	Date/Time:			
comments/ Resolution:				
SRF Review:	Date: 7/1/3 Date: 7/2/15 Affecting North Carolina	#:92	256729	
compliance samples, a copy of this form Carolina DEHNR Certification Office ( Le	will be sent to the North	6729		

Carolina DEHNR Certification Office ( I.e out of hold, incorrect preservative, out of temp, incorrect containers)

Pace Analytical' www.nacelabs.com

-10

#### CHAIN-OF-CUSTODY / Analytical Request Document

The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

of age: Section A Section B Section C Required Client Information: Required Project Information: Invoice Information 1897208 Report To: Attention: Amer Foster wheeler Susa Kelly Susan Kelly Address: 305 Petton Copy To: Company Name: Ave Foster wheeler REGULATORY AGENCY Amec Address: Aseville NC 28806 Kelly@anecturco NPDES GROUND WATER DRINKING WATER susan. 5 Purchase Order No .: Pace Quote Susan Kelly & ane of w. Com provided Г UST RCRA A OTHER 5 Reference: Project Name Pace Project Phone: 252 \$130 of Asteville Kevin Gordwin Site Location Project Number: 2 Managor Requested Due Date/TAT: NC Pace Profile # STATE: 5212 0006 Requested Analysis Filtered (Y/N) N IN Section D Matrix Codes C=COMP) (see valid codes to left) COLLECTED Preservatives Required Client Information MATRIX / CODE Drinking Water DW COLLECTION Water WT COMPOSITE COMPOSITE Waste Water ww (G=GRAB Residual Chlorine (Y/N) START END/GRAB Product P SL OL WP AR TS Soil/Solid # OF CONTAINERS SAMPLE ID Oil Analysis Test Wipe SAMPLE TEMP AT (A-Z. 0-9/ -) MATRIX CODE Air Unpreserved H₂SO₄ HNO₃ SAMPLE TYPE Sample IDs MUST BE UNIQUE 8260 × Tissue an OT Other HCI NaOH Na₂S₂O₃ Methanol Other ITEM # Pace Project No./ Lab I.D. DATE TIME DATE TIME 1 TB-02 lao 5 X X WT DOA 6 rep. x 2 FD -03 3 × WT 6 6/30/19 0:00 ON 3 3 Gw - 73-20 wit 6 129/15 1130 X X CC 4 - 58 3 X DOC (w -73 WT/ x 6/29/15 1530 9 WIG 5 - 33 X MALSD 6w-74 6/30/15 825 005 x X 58 WT G 3 206 6 6w-74 6/30/15 915 -X WTG 7 6w -75 - 100 20 430/15 12:05 3 × DA X 2 8 - 43 WT G 430/15 1345 3 GW -75 X 06 8 Y WIG 9 6/3-/15 1550 3 X m 1.W -77 4 X -10 43015 1635 3 x X 010 -48 64 -76 456 11 12 ACCEPTED BY / AFFILIATION ADDITIONAL COMMENTS RELINQUISHED BY / AFFILIATION DATE DATE TIME SAMPLE CONDITIONS TIME 7/1/15 8:R NA YAS * TCE C'S-12-10CE alle 7/115 8:12 59 AL 2 - DCE frans chloride Vinc iples Inlact (Y/N) SAMPLER NAME AND SIGNATURE Temp in °C ORIGINAL Received or Ice (Y/N) Custody Sealed Cool (YiN) steurer PRINT Name of SAMPLER: Adam DATE Signed 07 101/15 SIGNATURE of SAMPLER: Alla Sar (MM/DD/YY):

1

"Important Note: By signing this form you are accepting Pace's NET 30 day payment terms and agreeing to late charges of 1.5% per month for any invoices not paid within 30 days.

F-ALL-Q-020rev.07, 15-May-2007

Page 23 of 23



July 11, 2015

Ms. Susan Kelly Amec Foster Wheeler 1308 Patton Avenue Asheville, NC 28806

RE: Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92257177

Dear Ms. Kelly:

Enclosed are the analytical results for sample(s) received by the laboratory on July 02, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A - Dod-

Kevin Godwin kevin.godwin@pacelabs.com Project Manager

Enclosures





#### CERTIFICATIONS

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

#### **Charlotte Certification IDs**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221



## SAMPLE SUMMARY

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No .:

92257177

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92257177004	GW-77-17	Water	07/01/15 10:00	07/02/15 16:12
92257177005	GW-77-36	Water	07/01/15 11:30	07/02/15 16:12
92257177006	GW-78-15	Water	07/01/15 15:15	07/02/15 16:12
92257177007	GW-79-20	Water	07/02/15 09:35	07/02/15 16:12
92257177008	GW-80-25	Water	07/02/15 11:15	07/02/15 16:12
92257177009	GW-81-17	Water	07/02/15 14:00	07/02/15 16:12
92257177010	GW-81-49	Water	07/02/15 15:00	07/02/15 16:12
92257177001	TB-03	Water	07/01/15 00:00	07/02/15 16:12
92257177002	EB-01	Water	07/01/15 10:50	07/02/15 16:12
92257177003	FD-04	Water	07/01/15 00:00	07/02/15 16:12



## SAMPLE ANALYTE COUNT

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92257177004	GW-77-17	EPA 8260	SNP	7	PASI-C
92257177005	GW-77-36	EPA 8260	SNP	7	PASI-C
92257177006	GW-78-15	EPA 8260	SNP	7	PASI-C
92257177007	GW-79-20	EPA 8260	SNP	7	PASI-C
92257177008	GW-80-25	EPA 8260	SNP	7	PASI-C
92257177009	GW-81-17	EPA 8260	SNP	7	PASI-C
92257177010	GW-81-49	EPA 8260	SNP	7	PASI-C
92257177001	TB-03	EPA 8260	SNP	7	PASI-C
92257177002	EB-01	EPA 8260	SNP	7	PASI-C
92257177003	FD-04	EPA 8260	SNP	7	PASI-C



#### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

## Method: EPA 8260

 Description:
 8260 MSV Low Level

 Client:
 Amec Foster Wheeler, Asheville

 Date:
 July 11, 2015

#### General Information:

10 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

#### Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### Duplicate Sample:

All duplicate sample results were within method acceptance criteria with any exceptions noted below.

#### Additional Comments:

This data package has been reviewed for quality and completeness and is approved for release.



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-77-17	Lab ID:	Lab ID: 92257177004		4 Collected: 07/01/15 10:00 Rece		Received: 07	/02/15 16:12 Ma	Matrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 00:59	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 00:59	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 00:59	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 00:59	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	105	%	70-130		1		07/09/15 00:59	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130		1		07/09/15 00:59	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/09/15 00:59	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-77-36	Lab ID:	92257177005	Collected	: 07/01/15	6 11:30	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 01:16	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 01:16	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 01:16	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 01:16	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	106	%	70-130		1		07/09/15 01:16	460-00-4	
1,2-Dichloroethane-d4 (S)	105	%	70-130		1		07/09/15 01:16	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/09/15 01:16	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-78-15	Lab ID:	92257177006	Collected	07/01/15	5 15:15	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 01:33	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 01:33	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 01:33	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 01:33	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	105	%	70-130		1		07/09/15 01:33	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1		07/09/15 01:33	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		07/09/15 01:33	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-79-20	Lab ID:	92257177007	Collected	: 07/02/15	6 09:35	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 01:50	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 01:50	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 01:50	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 01:50	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	109	%	70-130		1		07/09/15 01:50	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1		07/09/15 01:50	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/09/15 01:50	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-80-25	Lab ID:	92257177008	Collected	: 07/02/15	6 11:15	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report			_			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 02:07	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 02:07	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 02:07	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 02:07	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	107	%	70-130		1		07/09/15 02:07	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	70-130		1		07/09/15 02:07	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/09/15 02:07	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-81-17	Lab ID:	92257177009	Collected	: 07/02/15	5 14:00	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 02:24	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 02:24	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 02:24	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 02:24	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	107	%	70-130		1		07/09/15 02:24	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1		07/09/15 02:24	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/09/15 02:24	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: GW-81-49	Lab ID:	92257177010	Collected	: 07/02/15	5 15:00	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/09/15 02:40	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/09/15 02:40	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/09/15 02:40	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/09/15 02:40	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	107	%	70-130		1		07/09/15 02:40	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	70-130		1		07/09/15 02:40	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/09/15 02:40	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: TB-03	Lab ID:	92257177001	Collected	07/01/15	5 00:00	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	3260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/06/15 19:37	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/06/15 19:37	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/06/15 19:37	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/06/15 19:37	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	111	%	70-130		1		07/06/15 19:37	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	70-130		1		07/06/15 19:37	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		07/06/15 19:37	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Sample: EB-01	Lab ID:	92257177002	Collected	07/01/15	10:50	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/06/15 19:54	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/06/15 19:54	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/06/15 19:54	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/06/15 19:54	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	111	%	70-130		1		07/06/15 19:54	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	70-130		1		07/06/15 19:54	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		07/06/15 19:54	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No .:

92257177			
	Lab ID:	92257177003	С

Sample: FD-04	Lab ID:	92257177003	Collected	I: 07/01/15	5 00:00	Received: 07	/02/15 16:12 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		07/06/15 20:11	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		07/06/15 20:11	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		07/06/15 20:11	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		07/06/15 20:11	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	109	%	70-130		1		07/06/15 20:11	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	70-130		1		07/06/15 20:11	17060-07-0	
Toluene-d8 (S)	99	%	70-130		1		07/06/15 20:11	2037-26-5	



Analysis Method:

Matrix: Water

Project: CTS OF ASHEVILLE 6252120006

Pace Project No .: 92257177

QC Batch:	MSV/32433
QC Batch Method:	EPA 8260

EPA 8260 92257177001, 92257177002, 92257177003 Associated Lab Samples:

Analysis Description: 8260 MSV Low Level

EPA 8260

METHOD BLANK: 1502030 Associated Lab Samples

Associated Lab Samples:	92257177001, 92257177002, 92	2257177003			
		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/06/15 15:07	2 70
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/06/15 15:07	
Trichloroethene	ug/L	ND	1.0	07/06/15 15:07	
Vinyl chloride	ug/L	ND	1.0	07/06/15 15:07	
1,2-Dichloroethane-d4 (S)	%	99	70-130	07/06/15 15:07	
4-Bromofluorobenzene (S)	%	115	70-130	07/06/15 15:07	
Toluene-d8 (S)	%	100	70-130	07/06/15 15:07	

#### LABORATORY CONTROL SAMPLE: 1502031

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	47.2	94	70-131	
trans-1,2-Dichloroethene	ug/L	50	49.7	99	70-130	
Trichloroethene	ug/L	50	47.4	95	70-130	
Vinyl chloride	ug/L	50	49.9	100	50-150	
1,2-Dichloroethane-d4 (S)	%			93	70-130	
4-Bromofluorobenzene (S)	%			98	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SPI	KE DUPLICA	TE: 150203	32		1502033							
			MS	MSD								
	92	2256729005	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
cis-1,2-Dichloroethene	ug/L	ND	20	20	21.5	21.3	108	106	70-130	1	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	22.6	18.9	113	94	70-130	18	30	
Trichloroethene	ug/L	ND	20	20	20.4	20.5	101	102	69-151	0	30	
Vinyl chloride	ug/L	ND	20	20	22.3	21.8	112	109	70-130	2	30	
1,2-Dichloroethane-d4 (S)	%						103	101	70-130			
4-Bromofluorobenzene (S)	%						108	107	70-130			
Toluene-d8 (S)	%						98	99	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



Project: CTS OF ASHEVILLE 6252120006

Pace Project No .: 92257177

QC Batch:	MSV/	32473		Analysis M	ethod:	EPA 8260		
QC Batch Method:	EPA 8	3260		Analysis D	escription:	8260 MSV Lov	v Level	
Associated Lab Samp	oles:	92257177004,	92257177005,	92257177006,	92257177007,	92257177008	92257177009,	92257177010

METHOD BLANK: 1504114 Matrix: Water Associated Lab Samples: 92257177004, 92257177005, 92257177006, 92257177007, 92257177008, 92257177009, 92257177010

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	07/08/15 23:17	2 10
trans-1,2-Dichloroethene	ug/L	ND	1.0	07/08/15 23:17	
Trichloroethene	ug/L	ND	1.0	07/08/15 23:17	
Vinyl chloride	ug/L	ND	1.0	07/08/15 23:17	
1,2-Dichloroethane-d4 (S)	%	98	70-130	07/08/15 23:17	
4-Bromofluorobenzene (S)	%	105	70-130	07/08/15 23:17	
Toluene-d8 (S)	%	100	70-130	07/08/15 23:17	

#### LABORATORY CONTROL SAMPLE: 1504115

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	46.1	92	70-131	÷.
trans-1,2-Dichloroethene	ug/L	50	42.7	85	70-130	
Trichloroethene	ug/L	50	43.6	87	70-130	
Vinyl chloride	ug/L	50	45.8	92	50-150	
1,2-Dichloroethane-d4 (S)	%			99	70-130	
4-Bromofluorobenzene (S)	%			110	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX	SDIKE	SAMPI	E:

MATRIX SPIKE SAMPLE:	1504116						
		92257291001	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	20	20.5	102	70-130	
trans-1,2-Dichloroethene	ug/L	ND	20	21.3	107	70-130	
Trichloroethene	ug/L	ND	20	19.9	100	69-151	
Vinyl chloride	ug/L	ND	20	19.5	98	70-130	
1,2-Dichloroethane-d4 (S)	%				100	70-130	
4-Bromofluorobenzene (S)	%				103	70-130	
Toluene-d8 (S)	%				101	70-130	

#### SAMPLE DUPLICATE: 1504117

		92257243001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	ND		30	
trans-1,2-Dichloroethene	ug/L	ND	ND		30	
Trichloroethene	ug/L	ND	ND		30	
Vinyl chloride	ug/L	ND	ND		30	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

SAMPLE DUPLICATE: 1504117						
		92257243001	Dup		Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
1,2-Dichloroethane-d4 (S)	%	111	113	2		
4-Bromofluorobenzene (S)	%	109	111	2		
Toluene-d8 (S)	%	100	101	1		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

#### **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



#### QUALIFIERS

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-C Pace Analytical Services - Charlotte



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92257177

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92257177001	 ТВ-03	EPA 8260	MSV/32433		
92257177002	EB-01	EPA 8260	MSV/32433		
92257177003	FD-04	EPA 8260	MSV/32433		
92257177004	GW-77-17	EPA 8260	MSV/32473		
92257177005	GW-77-36	EPA 8260	MSV/32473		
92257177006	GW-78-15	EPA 8260	MSV/32473		
92257177007	GW-79-20	EPA 8260	MSV/32473		
92257177008	GW-80-25	EPA 8260	MSV/32473		
92257177009	GW-81-17	EPA 8260	MSV/32473		
92257177010	GW-81-49	EPA 8260	MSV/32473		

Pace Analytical"	Document Name: Sample Con Receipt (SCUR)	ndition Upon Document Revised: May 15, 201 Page 1 of 2*	15
, www.pacolabs.com	Document No.: F-ASV-CS-003-rev.1	Issuing Authorities: 14 Pace Asheville Quality Office	
Client Name: <u>Ame</u>	<u>×c</u>	* Page 2 of 2 is for Internal Use O	nly
Courier (Circle): Fed Ex UPS Custody Seal on Cooler/Box Present	USPS Client Commer	rclal Pace Other	
Thermometer Used:         IR Gun#3 -130265           IR Gun #4 SN:140290365         Other:	Type of Ice Wet B	Blue None Samples on Ice, cooling process has beg	gun
Temp Correction Factor: Add / Subtr	actC	Party and a second s	-
Corrected Cooler Temp.: <u>2</u> .4	C Biological Tissue is F	mments:	ing
Chain of Custody Present:	Dites DNO DN/A 1.		
Chain of Custody Filled Out:	DYES DNO DN/A 2.		
Chain of Custody Relinquished:	DYES DNO DNIA 3.		
Sampler Name & Signature on COC:	Pres DNO DN/A 4.		
Samples Arrived within Hold Time:	Eres DNO DN/A 5.		12.1
Short Hold Time Analysis (<72hr):	Yes DNO DN/A 6.		
Rush Turn Around Time Requested:	DYes DNG DNA 7.		
Sufficient Volume:	DYES DNO DNIA 8.		
Correct Containers Used:	Dires DNO DN/A 9.		
-Pace Containers Used:	Dres DNO DNIA		
Containers Intact:	Elyes DNO DN/A 10.		
filtered volume received for Dissolved to	sts Dyes DNo DN/A 11.		
Sample Labels match COC			
-Includes date/lime/ID/Analysis	latrix: WT		
Il containers needing preservation have been o	hecked. DYes DNo DN/A 13.		
Il containers needing preservation are found ompliance with EPA recommendation.	to be in BYes DNo DN/A		
ceptions: VOA, coliform, TOC, O&G, WI-DRO (w	ater) - DYes DNo		-
amples checked for dechlorination:	DYes DNo -DN/A 14.	<del>5</del> 7	
leadspace in VOA Vials ( >6mm):	DYes DHO DINA 15.		
rip Blank Present:	DYes DINO DINIA 16.		
rip Blank Custody Seals Present			
ace Trip Blank Lot# (if purchased):			
lient Notification/ Resolution: Person Contacted: Comments/ Resolution:	Date/Time:	Field Data Required? Y / N	
CURF Review: SRF Review: Note: Whenever there is a discrepan compliance samples, a copy of this fo Carolina DEHNR Certification Office preservative, out of temp, inc	Date: $7/2/13$ Date: $7/6/15$ Cy affecting North Carolina rm will be sent to the North (i.e out of hold, incorrect orrect containers)	JO#:92257177	

ť



# CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

ection A	Section B								Section C							Pag	e:	1	of .	
equired Client Information:	Required Pr	roject	Inform	ation:		-	-	- 1	Invoice Informa Attention:	ation:	1	-	-	-			1	890	910	
Limes soster whether	Copy To:	ISU	an	FEIM				-	SUS Company Nam	an	cely	1.			ATOP		-			
SUB Fation Avenue		-	-		-			-	Anne	Fost	erw	nee	er	REG	SULATOR	AGENC	(1) = (1)	an de fan de la	No.	28
Asheville, NC 20006	Purchase Or	rdor N	No ·		-1-	-		_	SUSAN	. Kel	ywa	mec	Frilo	~	NPDES	GROU	IND WATE	R	DRINKING	WATER
susan. Kelly le amertmun	A TO L	2e	Dr	bivo	ed	_		_	Roference:	_				Г	UST	RCRA		X	OTHER _	-
182578 30	CT	5	ot	Ashe	11 N	4			Manager:	evin	God	with	n	Site	e Location	N	1		25-06-5	: * ? ?
equested Due Date/IAI: Sta	Project Num	25	21	2000	6	_			Pace Profile #:			1	1	12	STATE:	N	6	AN AN A		90
			_			100	_	-	_	_	-	Sec. 18	Reques	sted Anal	ysis Filter	ed (Y/N)	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19			
Section D Matrix C Required Client Information MATRIX /	Codes	(ila)	(d)		COLL	ECTED				Dresens	tivos	NI	1				and the	an an an	6. A.	
Drinking Wate	er DW	os to	CON		OULL		-	z	H	1030170							11 1111	AAD IN THE REAL OF	141	
Water Waste Water	WW	N CO	BO	COMPOSIT	TE	COMPO	DSITE	CTIC									9			
Product Soil/Solid	SL	00 V3	GRA	31011				OLLE	0			-					Ē			120
SAMPLE ID Oil Wipe	OL WP	9	-9			1		ATC	4ER			est	4	111			rine			
(A-Z, 0-97,-) Air Sample IDs MUST BE UNIQUE Tissue	AR TS	BO	PE	1		a sa d		MP	rAIN			Ls	0				욹		11	125
Other	ОТ	×	E H			1		E TE	Ser		e lo	lysi	9				lal	917	5+	1.1
and the second	- 17	ATR	MPL			2	10.44	MPL	OF O	500	a2S2	Ina	60	111			bise	100		
		Z	St	DATE	TIME	DATE	TIME	St.	* 5 I	エエニ	žŽΣ	ō 🚔					Ĕ	Pace	Project No	o./ Lab I
TB-03		wj	67		_	las	prep		4	X		1	X					- 0	01	_
EB-6	-	N	6			7/1	1050	-	3	X			X					E	EL_	_
FD-04		WT	3		-	7/1/15	00:00		3	X			×					e	8.5	-
GN-71-11	-	m	G			7/1/5	51000		3	X			2					(	204	_
GW-77-36	-	wi	G	-	-	7/1/15	1130		3	X			×					1	005	
GW-78-15		WT	9	-	_	7/1/15	1515		3	X					1			1	206	
GW-79-20	-	N	G			7/2/15	1935	1	3	X			X					_	007	
GW-80-25	-	15	4			A2/15	1115		3	X		1	X						008	
GW-81-17		wt	G			7/21	5 14/00		3	X			X.						907	
GW-81-49		15	G			712/15	11500		3	X			X						610	
																		-		
						1														
ADDITIONAL COMMENTS	and the second	REL	INQUI	SHED BY / A	FFILIAT	ION	DAT	E	TIME	1.1	ACCE	PTED BY	/ AFFILIATI	ON	DATE	TIME		SAMP	LE CONDITI	ONS
KT(E. US-1.2-DUES	all	in	Je	- 14	me.		7/21	15	18:12	m	up :	85	AUL	-	TAK	16.12	2.4	4	ht	¥
hencels-NE à			-		-										vt w/	i te	1-4	4	/	1
A LING		-				-	-	-	-			-							-	-
VINYI CALOVI DE	-	-	-					-		-	-	-	-			-				
	_	_	-			e 1990 - 1995 - 19	1				-	-			-			in the second		-
0	RIGINA	L		1	SAMPLE	RNAME	AND SIGN	ATUR	E	1		11	-			-	0.	uo p	dy ooter	Inlac
						PRINT Na	ame of SAM	PLER	SU	sar	2.6	ell			-		mp Ir	e (YI	ed C	ples
						SIGNATU	URE of SAM	PLER	mm	Gal	Vor	1	DATE SI	gned	7171	5	Ter	Red	Seal	Sam
*Important Note; By signing this form you are access	pting Page's NE	ET 30	day pay	ment terms an	d acreeind	to late char	ocs of 1.5% o	er mon	th for any invoice	s not paids	U SOA	we	1 (1.141.00)		44	<u> </u>	F-ALL-	Q-020rev	07. 15-May	-2007


Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

August 17, 2015

Ms. Susan Kelly Amec Foster Wheeler 1308 Patton Avenue Asheville, NC 28806

RE: Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92263154

Dear Ms. Kelly:

Enclosed are the analytical results for sample(s) received by the laboratory on August 12, 2015. The results relate only to the samples included in this report. Results reported herein conform to the most current TNI standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

Analyses were performed at the Pace Analytical Services location indicated on the sample analyte page for analysis unless otherwise footnoted.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

A - Dod-

Kevin Godwin kevin.godwin@pacelabs.com Project Manager

Enclosures





Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

#### CERTIFICATIONS

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

#### **Charlotte Certification IDs**

9800 Kincey Ave. Ste 100, Huntersville, NC 28078 North Carolina Drinking Water Certification #: 37706 North Carolina Field Services Certification #: 5342 North Carolina Wastewater Certification #: 12 South Carolina Certification #: 99006001

Florida/NELAP Certification #: E87627 Kentucky UST Certification #: 84 West Virginia Certification #: 357 Virginia/VELAP Certification #: 460221



Pace Analytical Services, Inc. 9800 Kincey Ave. Suite 100 Huntersville, NC 28078 (704)875-9092

## SAMPLE SUMMARY

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92

•	92263154
	32203134

Lab ID	Sample ID	Matrix	Date Collected	Date Received
92263154001	TB-04	Water	08/11/15 00:00	08/12/15 17:00
92263154002	FD-05	Water	08/12/15 00:00	08/12/15 17:00
92263154003	GW-82-19	Water	08/11/15 16:15	08/12/15 17:00
92263154004	GW-82-49	Water	08/12/15 09:00	08/12/15 17:00
92263154005	GW-83-23	Water	08/12/15 11:00	08/12/15 17:00
92263154006	GW-83-49	Water	08/12/15 11:50	08/12/15 17:00
92263154007	GW-84-18	Water	08/12/15 14:50	08/12/15 17:00
92263154008	GW-84-38	Water	08/12/15 15:15	08/12/15 17:00



## SAMPLE ANALYTE COUNT

Project: CTS OF ASHEVILLE 6252120006 Pace Project No.: 92263154

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
92263154001	ТВ-04	EPA 8260	CAH	7	PASI-C
92263154002	FD-05	EPA 8260	CAH	7	PASI-C
92263154003	GW-82-19	EPA 8260	CAH	7	PASI-C
92263154004	GW-82-49	EPA 8260	CAH	7	PASI-C
92263154005	GW-83-23	EPA 8260	CAH	7	PASI-C
92263154006	GW-83-49	EPA 8260	CAH	7	PASI-C
92263154007	GW-84-18	EPA 8260	CAH	7	PASI-C
92263154008	GW-84-38	EPA 8260	CAH	7	PASI-C



#### SUMMARY OF DETECTION

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Lab Sample ID Client Sample ID Method Parameters Qualifiers Result Units **Report Limit** Analyzed 92263154002 FD-05 EPA 8260 cis-1,2-Dichloroethene 0.80J 1.0 08/14/15 16:21 ug/L EPA 8260 Trichloroethene 992 ug/L 10.0 08/17/15 02:27 GW-82-49 92263154004 EPA 8260 cis-1,2-Dichloroethene 1.5 ug/L 1.0 08/14/15 19:44 EPA 8260 Trichloroethene 54.5 ug/L 1.0 08/14/15 19:44 92263154005 GW-83-23 EPA 8260 cis-1,2-Dichloroethene 0.59J 1.0 08/14/15 20:01 ug/L EPA 8260 Trichloroethene 14.3 ug/L 1.0 08/14/15 20:01 92263154007 GW-84-18 EPA 8260 cis-1,2-Dichloroethene 135 08/14/15 20:35 ug/L 1.0 EPA 8260 trans-1,2-Dichloroethene 0.89J ug/L 1.0 08/14/15 20:35 EPA 8260 Trichloroethene 14800 ug/L 200 08/17/15 03:01 GW-84-38 92263154008 EPA 8260 Trichloroethene 793 ug/L 10.0 08/17/15 03:18 M1



#### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

# Method: EPA 8260 Description: 8260 MSV Low Level Client: Amec Foster Wheeler, Asheville Date: August 17, 2015

#### General Information:

8 samples were analyzed for EPA 8260. All samples were received in acceptable condition with any exceptions noted below or on the chain-of custody and/or the sample condition upon receipt form (SCUR) attached at the end of this report.

#### Hold Time:

The samples were analyzed within the method required hold times with any exceptions noted below.

#### Initial Calibrations (including MS Tune as applicable):

All criteria were within method requirements with any exceptions noted below.

#### Continuing Calibration:

All criteria were within method requirements with any exceptions noted below.

Internal Standards:

All internal standards were within QC limits with any exceptions noted below.

Surrogates:

All surrogates were within QC limits with any exceptions noted below.

Method Blank:

All analytes were below the report limit in the method blank, where applicable, with any exceptions noted below.

#### Laboratory Control Spike:

All laboratory control spike compounds were within QC limits with any exceptions noted below.

#### Matrix Spikes:

All percent recoveries and relative percent differences (RPDs) were within acceptance criteria with any exceptions noted below.

#### QC Batch: MSV/32985

A matrix spike and/or matrix spike duplicate (MS/MSD) were performed on the following sample(s): 92263154008

- M1: Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
  - MS (Lab ID: 1534097)
  - Trichloroethene
  - MSD (Lab ID: 1534098)
    - Trichloroethene

#### Additional Comments:

Analyte Comments:

QC Batch: MSV/32985

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

- MS (Lab ID: 1534097)
  - Trichloroethene



#### **PROJECT NARRATIVE**

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Method:EPA 8260Description:8260 MSV Low LevelClient:Amec Foster Wheeler, AshevilleDate:August 17, 2015

Analyte Comments:

QC Batch: MSV/32985

E: Analyte concentration exceeded the calibration range. The reported result is estimated.

• MSD (Lab ID: 1534098)

Trichloroethene

This data package has been reviewed for quality and completeness and is approved for release.



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: TB-04	Lab ID:	92263154001	Collecte	d: 08/11/15	00:00	Received: 08/	/12/15 17:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		08/14/15 16:04	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 16:04	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		08/14/15 16:04	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 16:04	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/14/15 16:04	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/14/15 16:04	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/14/15 16:04	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: FD-05	Lab ID:	92263154002	Collecte	d: 08/12/1	5 00:00	Received: 08/	/12/15 17:00 Ma	atrix: Water	
			Report						
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	0.80J	ug/L	1.0	0.19	1		08/14/15 16:21	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 16:21	156-60-5	
Trichloroethene	992	ug/L	10.0	4.7	10		08/17/15 02:27	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 16:21	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/14/15 16:21	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/14/15 16:21	17060-07-0	
Toluene-d8 (S)	97	%	70-130		1		08/14/15 16:21	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-82-19	Lab ID:	92263154003	Collected	08/11/15	16:15	Received: 08	/12/15 17:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analvzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		08/14/15 19:27	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 19:27	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		08/14/15 19:27	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 19:27	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/14/15 19:27	460-00-4	
1,2-Dichloroethane-d4 (S)	94	%	70-130		1		08/14/15 19:27	17060-07-0	
Toluene-d8 (S)	101	%	70-130		1		08/14/15 19:27	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-82-49	Lab ID:	92263154004	Collected	08/12/15	09:00	Received: 08	/12/15 17:00 Ma	atrix: Water	
Baramatara	Populto	Lipite	Report	MDI	DE	Bronarad	Applyzod		Qual
Falameters						Fiepaleu			Quai
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	1.5	ug/L	1.0	0.19	1		08/14/15 19:44	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 19:44	156-60-5	
Trichloroethene	54.5	ug/L	1.0	0.47	1		08/14/15 19:44	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 19:44	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/14/15 19:44	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130		1		08/14/15 19:44	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/14/15 19:44	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-83-23	Lab ID:	92263154005	Collected	: 08/12/15	5 11:00	Received: 08	B/12/15 17:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analvzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	0.59J	ug/L	1.0	0.19	1		08/14/15 20:01	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 20:01	156-60-5	
Trichloroethene	14.3	ug/L	1.0	0.47	1		08/14/15 20:01	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 20:01	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	102	%	70-130		1		08/14/15 20:01	460-00-4	
1,2-Dichloroethane-d4 (S)	97	%	70-130		1		08/14/15 20:01	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/14/15 20:01	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-83-49	Lab ID:	92263154006	Collected	08/12/15	11:50	Received: 08	/12/15 17:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260			2			
cis-1,2-Dichloroethene	ND	ug/L	1.0	0.19	1		08/14/15 20:18	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	1.0	0.49	1		08/14/15 20:18	156-60-5	
Trichloroethene	ND	ug/L	1.0	0.47	1		08/14/15 20:18	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 20:18	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	101	%	70-130		1		08/14/15 20:18	460-00-4	
1,2-Dichloroethane-d4 (S)	96	%	70-130		1		08/14/15 20:18	17060-07-0	
Toluene-d8 (S)	102	%	70-130		1		08/14/15 20:18	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-84-18	Lab ID:	92263154007	Collected	: 08/12/15	5 14:50	Received: 08	/12/15 17:00 Ma	atrix: Water	
_	-		Report			_			
Parameters	Results	Units	Limit	MDL	DF	Prepared	Analyzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	135	ug/L	1.0	0.19	1		08/14/15 20:35	156-59-2	
trans-1,2-Dichloroethene	0.89J	ug/L	1.0	0.49	1		08/14/15 20:35	156-60-5	
Trichloroethene	14800	ug/L	200	94.0	200		08/17/15 03:01	79-01-6	
Vinyl chloride	ND	ug/L	1.0	0.62	1		08/14/15 20:35	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	102	%	70-130		1		08/14/15 20:35	460-00-4	
1,2-Dichloroethane-d4 (S)	99	%	70-130		1		08/14/15 20:35	17060-07-0	
Toluene-d8 (S)	100	%	70-130		1		08/14/15 20:35	2037-26-5	



#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Sample: GW-84-38	Lab ID:	92263154008	Collected	08/12/15	5 15:15	Received: 08	3/12/15 17:00 Ma	atrix: Water	
Parameters	Results	Units	Report Limit	MDL	DF	Prepared	Analvzed	CAS No.	Qual
8260 MSV Low Level	Analytical	Method: EPA 8	260						
cis-1,2-Dichloroethene	ND	ug/L	10.0	1.9	10		08/17/15 03:18	156-59-2	
trans-1,2-Dichloroethene	ND	ug/L	10.0	4.9	10		08/17/15 03:18	156-60-5	
Trichloroethene	793	ug/L	10.0	4.7	10		08/17/15 03:18	79-01-6	M1
Vinyl chloride	ND	ug/L	10.0	6.2	10		08/17/15 03:18	75-01-4	
Surrogates									
4-Bromofluorobenzene (S)	102	%	70-130		10		08/17/15 03:18	460-00-4	
1,2-Dichloroethane-d4 (S)	102	%	70-130		10		08/17/15 03:18	17060-07-0	
Toluene-d8 (S)	100	%	70-130		10		08/17/15 03:18	2037-26-5	



#### QUALITY CONTROL DATA

EPA 8260

8260 MSV Low Level

Project: CTS OF ASHEVILLE 6252120006

Pace Project No .:	92263154
--------------------	----------

QC Batch: MSV/32985 QC Batch Method: EPA 8260 Associated Lab Samples: 92263 Analysis Method:

Analysis Description:

Samples: 92263154001, 92263154002, 92263154003, 92263154004, 92263154005, 92263154006, 92263154007, 92263154008

METHOD BLANK: 1534095

## Matrix: Water

Associated Lab Samples: 92263154001, 92263154002, 92263154003, 92263154004, 92263154005, 92263154006, 92263154007, 92263154008

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
cis-1,2-Dichloroethene	ug/L	ND	1.0	08/14/15 12:42	-
trans-1,2-Dichloroethene	ug/L	ND	1.0	08/14/15 12:42	
Trichloroethene	ug/L	ND	1.0	08/14/15 12:42	
Vinyl chloride	ug/L	ND	1.0	08/14/15 12:42	
1,2-Dichloroethane-d4 (S)	%	94	70-130	08/14/15 12:42	
4-Bromofluorobenzene (S)	%	104	70-130	08/14/15 12:42	
Toluene-d8 (S)	%	100	70-130	08/14/15 12:42	

LABORATORY CONTROL SAMPLE:	1534096					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
cis-1,2-Dichloroethene	ug/L	50	48.3	97	70-131	
trans-1,2-Dichloroethene	ug/L	50	51.6	103	70-130	
Trichloroethene	ug/L	50	45.7	91	70-130	
Vinyl chloride	ug/L	50	48.6	97	50-150	
1,2-Dichloroethane-d4 (S)	%			92	70-130	
4-Bromofluorobenzene (S)	%			107	70-130	
Toluene-d8 (S)	%			100	70-130	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 1534097 1534098												
			MS	MSD								
		92263154008	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
cis-1,2-Dichloroethene	ug/L	ND	20	20	23.0	23.0	115	115	70-130	0	30	
trans-1,2-Dichloroethene	ug/L	ND	20	20	23.4	23.9	117	119	70-130	2	30	
Trichloroethene	ug/L	793	20	20	1070	1090	1370	1460	69-151	2	30	E,M1
Vinyl chloride	ug/L	ND	20	20	22.5	22.7	113	114	70-130	1	30	
1,2-Dichloroethane-d4 (S)	%						97	95	70-130			
4-Bromofluorobenzene (S)	%						103	104	70-130			
Toluene-d8 (S)	%						96	95	70-130			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

## **REPORT OF LABORATORY ANALYSIS**

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, Inc..



#### QUALIFIERS

#### Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

#### DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

**DUP - Sample Duplicate** 

**RPD** - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

Acid preservation may not be appropriate for 2 Chloroethylvinyl ether, Styrene, and Vinyl chloride.

A separate vial preserved to a pH of 4-5 is recommended in SW846 Chapter 4 for the analysis of Acrolein and Acrylonitrile by EPA Method 8260.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The NELAC Institute.

#### LABORATORIES

PASI-C Pace Analytical Services - Charlotte

#### ANALYTE QUALIFIERS

- E Analyte concentration exceeded the calibration range. The reported result is estimated.
- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.



#### QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: CTS OF ASHEVILLE 6252120006

Pace Project No.: 92263154

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
92263154001	TB-04	EPA 8260	MSV/32985	_	
92263154002	FD-05	EPA 8260	MSV/32985		
92263154003	GW-82-19	EPA 8260	MSV/32985		
92263154004	GW-82-49	EPA 8260	MSV/32985		
92263154005	GW-83-23	EPA 8260	MSV/32985		
92263154006	GW-83-49	EPA 8260	MSV/32985		
92263154007	GW-84-18	EPA 8260	MSV/32985		
92263154008	GW-84-38	EPA 8260	MSV/32985		

Pace Analytical"	Document Name: Sample Condition Upo Receipt (SCUR)	n Document Revised: May 15, 2015 Page 1 of 2*
	F-ASV-CS-003-rev.14	Pace Asheville Quality Office
Client Name: Am	ec	* Page 2 of 2 is for Internal Use Only
Courier (Circle): Fed Ex UP: Custody Seal on Cooler/Box Presen Packing Material: Bubble-Wrap- Thermometer Used: IR Gun#3 - <u>130265</u> IR Gun #4 SN:140290365 Other: Temp Correction Factor: Add/ Subt Corrected Cooler Temp.: <u>4</u> , 7	S USPS Client Commercial Pa t: yes no Seals intact: ye Bubble Bags None Other Type of Ice: Wet Blue None ract 0/0 C C Biological Tissue is Frozen: Yes	vo N/A Date and Initials of person examining
Chain of Custody Present:	Comments:	
Chain of Custody Filled Out		
Chain of Custody Filled Out.		
Sampler Name & Signature on COC:		and the second
Samples Arrived within Hold Time:		
Short Hold Time Analysis (<72hr):	UYes DINO UNA 6.	
Rush Turn Around Time Requested:	Dyes DNo DN/A 7.	
Sufficient Volume:	DYes DNO DN/A 8.	
Correct Containers Used:	Dres DNO DN/A 9.	
-Pace Containers Used:	BYes DNO DN/A	
Containers Intact:	EVes ENO EN/A 10.	
Filtered volume received for Dissolved t	ests Dyes DNo BN/A 11.	
Sample Labels match COC: -Includes date/time/ID/Analvsis	ØYes □No □N/A 12. Matrix: WT	
All containers needing preservation have been	checked. Pres DNo DN/A 13.	
All containers needing preservation are found compliance with EPA recommendation.	to be in Dres DNo DN/A	
exceptions: VOA, coliferm, TOC, O&G, WI-DRO (w	vater) Dres DNo	
Samples checked for dechlorination:	DYes DNO DAVA 14.	
leadspace in VOA Vials ( >6mm):	DYes DNO DNA 15.	
Trip Blank Present:	DYes DNG DN/A 16.	
rip Blank Custody Seals Present	DYes DNO DN/A	
ace Trip Blank Lot # (if purchased):		
Client Notification/ Resolution:		Field Data Required? Y / N
Person Contacted:	Date/Time:	
Comments/ Resolution:		· · · · · · · · · · · · · · · · · · ·
CURF Review	Date: 8/13/15 WO# :	92263161
SRF Review:	Date: 0/19/15 ncy affecting North Carolina	

	~
,	
1	Pace Analytical
	www.pacelabs.com

## CHAIN-OF-CUSTODY / Analytical Request Document The Chain-of-Custody is a LEGAL DOCUMENT. All relevant fields must be completed accurately.

www.pacelabs.com				Pa		of 1
action A Section Section Required Client Information: Required	B Project Information:		Section C Invoice Information:	r i i i i i i i i i i i i i i i i i i i	100	
Impany Amer Foster Wheeler Report To	Susan Kelly		Attention: Susan Kelle		185	99915
308 Paten Avenue Copy To:			Amer Foster Wheeler	REGULATORY AGENC	Y	
308 Asheville, NC 28806	Arrest arrest		Brean Kell Dame fullon	T NPDES T GRO	UND WATER	
"San kelly Came to um Purchage	provide	a	Pace Quote Reference:	L UST L RCR/	4	OTHER
SUB25 28130 Fax: Project N	TS of Ashevil	ile	Manager: Verin (200 Win	Site Location	,	
equested Due Date/TAT: Sta	10152120006		Pace Profile #:	STATE: N		
			Requested	Analysis Filtered (Y/N)	14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Section D Matrix Codes	(1) (d. )	LECTED	Presentatives 25		diana.	a salah sa di sa di
Drinking Water DW		Z	Freservauves > A		and comprised in	and an and the second
Water WT Weste Water WW	2 0 COMPOSITE	COMPOSITE LO ENDIGRAB			Î	
SAMPLE ID Sil/Solid SL	=GR		g		N.C.	
(A-Z, 0-9/,-) Air AP	- U U U U U U U U U U U U U U U U U U U	ATC			orine	1.1.5/1
Sample IDs MUST BE UNIQUE TISSUE TS	COD	I I I I I I I I I I I I I I I I I I I	NTA NITA		E C	1263154
*	RIX PLE				Idual	( 640.0 1
=	TAN NO DATE TIM		Mathur Na20		Res	Pace Project No./ Lab I.D
1 TB-64	WIG	labores	2 4 8		TIT	100
2 FD-OF	ws a	3A215 00:00	3 8 1			057
3 62-19	WIG	9/11/154125	3 8 4			003
4 GW-82-49	MIG	81215 900	3 X X			204
5 \$ GN-83-23	wtG	SIGISTION	3 10 10			005
6 GW-83-49	WIG	8/12/151150	3 x x			006
1 GW-89-18	WT G	8/12/05 1450	3 X X			700
s UW-89-38	WG	8/14/5/515	9 X X		1	ms/msd a
9						
0				+ + + + + + + + + + + + + + + + + + + +		
1			╉╼┼╞┥┿╎┿╎┿┨┝┾┥┾			
2]						
ADDITIONAL COMMENTS	RELINQUISHED BY / AFFIL	DATE	TIME ACCEPTED BY / AFFILIATION	DATE TIME	401	SAMPLE CONDITIONS
NUE, US-1, 2-DCE, 8	isan kelly	Amecta 8/12/	51700 1000	8/12/15 1700	2.4	Y MY
trans-1,2-DCE 5						
vinyl chloride						
	SAM	PLER NAME AND SIGNATL	RE		0 5	act for
	AL	the second se				
OHIGIN	AL SAM	PRINT Name of SAMPLE	R: SISSAN KRIV		vi o bav	(VIN) I Coody (N) (N)
ORIGIN	AL .	PRINT Name of SAMPLE	R: SUSan Kelly BAD DATE Signed	AUDUC	Temp in *	Custody Custody ealed Coo (Y/N) (Y/N)

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

## **APPENDIX G**

## LABORATORY ANALYTICAL REPORTS FOR AMBIENT AIR SAMPLES



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 www.alsglobal.com

## LABORATORY REPORT

July 20, 2015

Susan Kelly AMEC Foster Wheeler Environment & Infrastructure Inc. 1308 Patton Ave Asheville, NC 28806-2604

## RE: CTS of Asheville, Inc / 6252120006

Dear Susan:

Tier III

Enclosed are the results of the samples submitted to our laboratory on June 26, 2015. For your reference, these analyses have been assigned our service request number P1502595.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

alla

By Kate Aguilera at 9:43 am, Jul 20, 2015

Kate Aguilera Project Manager



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

Client: AMEC Foster Wheeler Environment & Infrastructure Inc. Service Request No: P1502595 Project: CTS of Asheville, Inc / 6252120006

## CASE NARRATIVE

The samples were received intact under chain of custody on June 26, 2015 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

#### Volatile Organic Compound Analysis

The samples were analyzed in SIM mode for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation, however it is not part of the AIHA-LAP accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution shall be deemed denied. ALS may, in its discretion, reasonably charge Client for its time in reviewing Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

## ALS Environmental - Simi Valley

## CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L14-2
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	876241
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 4-4
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

### DETAIL SUMMARY REPORT

Client: Project ID:	AMEC Foster V CTS of Ashevil	Vheeler Ei le, Inc / 62	nvironment a 252120006	Service Request: P1502595				
Date Received: Time Received:	6/26/2015 09:45							VOC SIM
Client Sample ID	Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)	T0-15 - 1
TB-10	P1502595-001	Air	6/25/2015	00:00	AS00543	-14.26	3.80	X
FD-25	P1502595-002	Air	6/25/2015	00:00	AS00503	-1.08	3.85	X
AAS-01	P1502595-003	Air	6/25/2015	10:52	AC02084	-1.50	3.69	Х
AAS-16	P1502595-004	Air	6/25/2015	11:04	AS00862	-1.43	3.76	Х

## Air - Chain of Custody Record & Analytical Service Request

Page of



5 of 19

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

Requested Turnaround Time in Business Days (Surcharges) please circle

(ALS)	Phone (805) Fax (805) 526	526-7161 6-7270		Requested Turnarou 1 Day (100%) 2 Day (7	equested Turnaround Time in Business Days (Surcharges) please circle Day (100%) 2 Day (75%) 3 Day (50%) 4 Day (35%) 5 Day (25%) 10-Day-Standard						
Company Name & Address (Reporting Infor Amec Foster whee 1308 Patton Avenu Asheville, NC 28		Project Name CTS of Project Number 62521	Project Name CTS of Asheville, Inc. Project Number 6252120006								
Project Manager Susan kell	Fax			P.O. # / Billing Informa	PO: to be provided						
8282528130	-			Bill to: Si	Bill to: Susan. Kelly@amectw.com					. 1	Comments e.g. Actual
Email Address for Result Reporting	nectw	· com		Sampler (Print & Sign)					7-1		Preservative or
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC, etc.)	Flow Controller ID (Bar code # [*] - FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	T si sis		instructions
TB-10		Julos	VID	AS00543	MA	MA	MA		X		
FD-25		1925/15	00.00	AS00503	FCA00927	29	0		×		
AAS -01		1125/15	1052	Ac02084	FCA08705	27.5	0		X		
AAS-16		625/1S	1104	A500862	FCA00268	27.5	0		X		
· · · · · · · · · · · · · · · · · · ·											
										л.	
Repo Tier I - Results (Default in not specified) Tier II (Results + QC Summaries	nt Tier Levels Tier III (Results Tier IV (Date V	- please selec + QC & Calibratic alidation Package	t on Summaries) ) 10% Surcharge	<b>X</b>	EDD required Type:	/ No Units:	$\mathcal{C}$	Chain of C	ustody Seal: (C BROKEN A	ircle) BSENT	Project Requirements (MRLs, QAPP)
Relinquisted by stenatore			Usk	Time 200	Received by: (Signature		10		Date:	Time:	MALL
Relinquished by: (Signature)	)		Date:	Time:	Received by: (Signature	PALA	2	4	Date 26/R	TINGIAN	Cooler / Blank Temperature°C

#### **ALS Environmental** Sample Acceptance Check Form

Client	: AMEC Foster	Wheeler Environment	t & Infrastruct	ure Inc.		Work order:	P1502595					
Project	CTS of Ashevi	ille, Inc / 6252120006	li in the second se									
Sample	(s) received on:	6/26/15	N. N. 1920 10	]	Date opened:	6/26/15	by:	ADAV	ID			
Note: This	<u>ote:</u> This form is used for <u>all</u> samples received by ALS. The use of this form for custody seals is strictly meant to indicate presence/absence and not as an indication of											
compliance	e or nonconformity.	Thermal preservation and	pH will only be e	valuated either at t	he request of the	e client and/or as rec	uired by the metho	id/SOP. Yes	No	N/A		
1	Were sample of	containers properly m	narked with cli	ent sample ID	?							
2	Container(s) s	upplied by ALS?						X				
3	Did sample co	ntainers arrive in goo	od condition?					X				
4	Were chain-of	f- <b>custody</b> papers used	and filled out	?				$\mathbf{X}$				
5	Did sample co	ntainer labels and/or	tags agree wi	th custody pap	ers?			X				
6	Was sample v	olume received adequ	ate for analys	is?				X				
7	Are samples w	ithin specified holding	g times?					X				
8	Was proper te	mperature (thermal p	reservation) o	f cooler at rece	eipt adhered t	o?				X		
9	Was a <b>trip bla</b>	nk received?						$\mathbf{X}$				
10	Were custody	seals on outside of co	oler/Box?					$\mathbf{X}$				
		Location of seal(s)?					_Sealing Lid?	$\mathbf{X}$				
	Were signature	e and date included?						X				
	Were seals inta	act?						X				
	Were custody	seals on outside of sar	nple container	·?					$\mathbf{X}$			
		Location of seal(s)?					_Sealing Lid?			$\mathbf{X}$		
	Were signature	e and date included?								X		
	Were seals inta	act?								$\mathbf{X}$		
11	Do container	rs have appropriate <b>pr</b>	eservation, a	ccording to me	thod/SOP or	Client specified	information?			$\mathbf{X}$		
	Is there a clier	nt indication that the s	ubmitted samp	oles are <b>pH</b> pre	eserved?					$\mathbf{X}$		
	Were <b>VOA v</b> i	als checked for present	nce/absence of	f air bubbles?						X		
	Does the client	t/method/SOP require	that the analy	st check the sa	mple pH and	if necessary alte	r it?			X		
12	Tubes:	Are the tubes capp	ed and intact?	)						X		
		Do they contain m	oisture?							$\mathbf{X}$		
13	13Badges:Are the badges properly capped and intact?									$\mathbf{X}$		
1		Are dual bed badg	es separated a	nd individuall	y capped and	intact?				X		
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Recei	pt / Pres	ervation			
		Description	pH *	рН	pH	(Presence/Absence		Commer	nts			

200 200 000	Description	pH *	рН	рН	(Presence/Absence)	Comments
P1502595-001.01	6.0 L Silonite Can					
P1502595-002.01	6.0 L Silonite Can					
P1502595-003.01	6.0 L Ambient Can			-		
P1502595-004.01	6.0 L Silonite Can					
Explain any discrepar	icies: (include lab sample	e ID numbers):				

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

## RESULTS OF ANALYSIS

## Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc.		
Client Sample ID:	TB-10	ALS Project ID: P15	502595
Client Project ID:	CTS of Asheville, Inc / 6252120006	ALS Sample ID: P15	502595-001
Test Code:	EPA TO-15 SIM	Date Collected: 6.2	5.15
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Date Received: 62	6 15
Analyst:	Wida Ang	Date Analyzed: 76	15
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)
Test Notes:			
Container ID:	A\$00543		

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m³	μg m³	μg m³	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.025	0.0076	ND	0,0098	0.0030
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.0073	ND	0.0063	0.0018
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0092	ND	0.0063	0.0023
79-01-6	Trichloroethene	ND	0.025	0.0085	ND	0.0047	0.0016

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

## RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Enviro	nment & Inf	rastructure	Inc.				
Client Sample ID:	FD-25			ALS Project ID: P1502595				
Client Project ID:	CTS of Asheville, Inc / 6252120006	i i			ALS Sample IE	): P150259	5-002	
Test Code:	EPA TO-15 SIM				Date Collecter	ŀ 6 25 15		
Instrument ID [.]	Tekmar AUTOCAN Agilent 5973N	HP6890A MS	319		Date Received	1: 6 26 15		
Analyst	Wida Ang	111 000/01 1110			Date Analyzed	1.7615		
Sample Type:	6.0 L Silonite Canister			Vol	ume(s) Analyzec	1: 1.00	Liter(s	)
Test Notes:							• •	
Container ID:	A\$00503							
	Initial Pressure (psig):	-1.08	Final Pressure	e (psig):	3.85			
					Canist	er Dilution	Factor:	1.36
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
	-	μg/m³	μg m³	µg m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	0.11	0.034	0.010	0.042	0.013	0.0040	
156-60-5	trans-1,2-Dichloroethene	0.015	0.034	0.0099	0.0037	0.0086	0.0025	J
156-59-2	cis-1,2-Dichloroethene	1.5	0.034	0.013	0.38	0.0086	0.0032	
79-01-6	Trichloroethene	9.7	0.034	0.012	1.8	0.0063	0.0022	В

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

B = Analyte detected in both the sample and associated method blank.

## RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environ	iment & Inf	frastructure	Inc.				
Client Sample ID:	AAS-01			ALS Project ID: P1502595				
Client Project ID:	CTS of Asheville, Inc / 6252120006				ALS Sample ID:	P150259	5-003	
Test Code:	EPA TO-15 SIM				Date Collected:	6 25 15		
Instrument ID:	Tekmar AUTOCAN Agilent 5973N I	HP6890A MS	519		Date Received:	6 26 15		
Analyst:	Wida Ang				Date Analyzed:	7615		
Sample Type: Text Notes:	6.0 L Summa Canister			Vo	lume(s) Analyzed:	1.00	) Liter(s]	)
Container ID:	AC02084							
	Initial Pressure (psig):	-1.50	Final Pressure	e (psig):	3.69			
					Caniste	r Dilution	Factor:	1.39
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg m³	µg m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	0.11	0.035	0.011	0.044	0.014	0.0041	
156-60-5	trans-1,2-Dichloroethene	0.016	0.035	0.010	0.0041	0.0088	0.0026	J
156-59-2	cis-1,2-Dichloroethene	1.6	0.035	0.013	0.39	0.0088	0.0032	
79-01-6	Trichloroethene	9.8	0.035	0.012	1.8	0.0065	0.0022	В

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

B = Analyte detected in both the sample and associated method blank.

## RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Enviro	nment & Infr	astructure	Inc.				
Client Sample ID:	AAS-16			ALS Project ID: P1502595				
Client Project ID:	CTS of Asheville, Inc / 625212000	6			ALS Sample ID: 1	P150259	5-004	
Test Code:	EPA TO-15 SIM				Date Collected: (	5 25 15		
Instrument ID:	Tekmar AUTOCAN Agilent 5973N	HP6890A MS1	19		Date Received: (	5 26 15		
Analyst:	Wida Ang				Date Analyzed: 7	7615		
Sample Type:	6.0 L Silonite Canister			Vo	lume(s) Analyzed:	1.00	Liter(s)	)
Test Notes:								
Container ID:	AS00862							
	Initial Pressure (psig):	-1.43	Final Pressure	e (psig):	3.76			
					Canister	Dilution	Factor:	1.39
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg m³	μg m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	0.038	0.035	0.011	0.015	0.014	0.0041	
156-60-5	trans-1,2-Dichloroethene	NI	0.035	0.010	ND	0.0088	0.0026	
156-59-2	cis-1,2-Dichloroethene	0.59	0.035	0.013	0.15	0.0088	0.0032	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

Trichloroethene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method. B = Analyte detected in both the sample and associated method blank.

3.7

0.012

0.69

0.0065 0.0022

В

0.035

79-01-6

## RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure	Inc.			
Client Sample ID:	ID: Method Blank ALS Project ID: P1502595				
Client Project ID:	CTS of Asheville, Inc / 6252120006	ALS Sample ID: P1	50 <b>7</b> 06-MB		
Test Code:	EPA TO-15 SIM	Date Collected: N	4		
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Date Received: N.	4		
Analyst:	Wida Ang	Date Analyzed: 7 (	5 1 5		
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)		
Test Notes:					

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	μg m³	µg m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.025	0.0076	ND	0.0098	0.0030	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.0073	ND	0.0063	0.0018	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0092	ND	0.0063	0.0023	
79-01-6	Trichloroethene	0.021	0.025	0.0085	0.0039	0.0047	0.0016	J

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

## SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

## Client:AMEC Foster Wheeler Environment & Infrastructure Inc.Client Project ID:CTS of Asheville, Inc / 6252120006

ALS Project ID: P1502595

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Date(s) Collected: 6 25 15
Analyst:	Wida Ang	Date(s) Received: 6 26 15
Sample Type:	6.0 L Summa Canister(s)	Date(s) Analyzed: 7.6.15
Test Notes:		

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	%	%	%	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P150706-MB	103	107	95	70-130	
Lab Control Sample	P150706-LCS	104	103	97	70-130	
TB-10	P1502595-001	103	107	96	70-130	
FD-25	P1502595-002	96	104	112	70-130	
AAS-01	P1502595-003	97	105	111	70-130	
AAS-16	P1502595-004	98	107	109	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client: Client Sample ID: Client Project ID:	AMEC Foster Wheeler Environment & Infrastructure Inc Lab Control Sample CTS of Asheville, Inc / 6252120006	ALS Project ID: P1502595 ALS Sample ID: P150706-LCS
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA TO-15 SIM Tekmar AUTOCAN Agilent 5973N HP6890A MS19 Wida Ang 6.0 L Silonite Canister Ve	Date Collected: NA Date Received: NA Date Analyzed: 7.6.15 olume(s) Analyzed: 0.125 Liter(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg m³	μg/m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.04	4.55	113	64-118	
156-60-5	trans-1,2-Dichloroethene	4.24	4.51	106	70-115	
156-59-2	cis-1,2-Dichloroethene	4.28	4.67	109	72-115	
79-01-6	Trichloroethene	4.16	4.13	99	70-112	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infra	structure Inc.
Client Project ID:	CTS of Asheville, Inc / 6252120006	ALS Project ID: P1502595

## Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Lab File ID: 07061503.D
Analyst:	Wida Ang	Date Analyzed: 7.6.15
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 12:49
Test Notes:		

Client Sample ID	ALS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P150706-LCS	0 <b>7</b> 061504.D	13:20
TB-10	P1502595-001	07061510.D	17:34
FD-25	P1502595-002	07061515.D	20:11
AAS-01	P1502595-003	07061516.D	20:42
AAS-16	P1502595-004	07061517.D	21:14

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc.			
Client Project ID:	CTS of Asheville, Inc / 6252120006	ALS Project ID: P1502595		

#### Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5975Cinert 7890A MS19	Lab File ID: 07061502.D
Analyst:	Wida Ang	Date Analyzed: 7.6.15
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 12:05
Test Notes:		

		IS1 (BCM)		IS2 (DFB)		IS3 (CBZ)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	24 Hour Standard	17730	9.75	92943	11.71	14847	16.06
	Upper Limit	24822	10.08	130120	12.04	20786	16.39
	Lower Limit	10638	9.42	55766	11.38	8908	15.73
	Client Sample ID						
01	Method Blank	17467	9.76	86767	11.71	14370	16.06
02	Lab Control Sample	16904	9.75	89002	11.71	14357	16.06
03	TB-10	18211	9.76	92117	11.71	15462	16.06
04	FD-25	22536	9.75	118493	11.71	19349	16.06
05	AAS-01	21829	9.75	114233	11.71	18776	16.06
06	AAS-16	21285	9.75	109500	11.71	18986	16.06
07							
<u>08</u>							
09							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT =  $140^{\circ}$  of internal standard area AREA LOWER LIMIT =  $60^{\circ}$  of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

# Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.
Method Path : I:\MS19\METHODS\ Method File : S19060515.M : EPA TO-15 per SOP VOA-TO15 (CASS TO-15/GC-MS) Title Last Update : Sat Jun 06 08:46:20 2015 Response Via : Initial Calibration Calibration Files 10 =06051503.D 20 =06051504.D 50 =06051505.D 100 =06051506.D 500 =06051507.D 2000=06051508.D 5000=06051509.D 10K = 06051510.D 20K = 06051511.D 50K = 06051512.D 100 500 2000 5000 10K 20K 50K Avg %RSD Compound 10 20 50 _____ Bromochloromethane... 1) I 2) T Dichlorodifluo... 3.046 3.190 2.936 2.729 2.834 2.562 2.387 2.358 2.518 2.456 2.702 10.76 3) T Chloromethane 0.837 1.042 0.810 0.732 0.715 0.558 0.545 0.462 0.561 0.534 0.680 26.54 1,2-Dichloro,1... 3.021 3.196 2.965 2.705 2.832 2.596 2.419 2.343 2.487 2.474 2.704 4) T 10.68 5) T Vinyl Chloride 2.984 2.960 2.765 2.543 2.653 2.441 2.287 2.217 2.376 2.312 2.554 10.86 1,3-Butadiene1.0791.1691.0771.0191.6151.5161.5711.5641.5151.8031.393Bromomethane1.2901.2991.1181.0151.0590.9050.8910.8800.9870.9661.041Chloroethane0.7770.8420.7730.7140.7510.7100.6650.6560.6970.6690.726 6) T 19.98 7) T 14.718) T 8.24 9) T Acrolein 0.604 0.527 0.470 0.436 0.426 0.428 0.436 0.416 0.46814.0210) T Acetone 0.850 0.638 0.591 0.606 0.611 0.745 0.758 0.686 14.43 11) T Trichlorofluor... 2.022 2.205 1.979 1.825 1.909 1.740 1.674 1.674 1.791 1.760 1.858 9.18 1,1-Dichloroet... 1.159 1.130 1.089 0.990 1.045 0.976 0.974 0.984 1.064 1.050 1.046 12) T 6.31 13) T Methylene Chlo... 1.331 1.196 1.138 1.025 1.005 0.989 1.050 1.008 1.093 11.02 14) T Trichlorotrifl... 1.166 1.194 1.062 0.985 1.011 0.931 0.933 0.931 1.066 1.141 1.042 9.61 15) T trans-1,2-Dich... 1.122 1.166 1.206 1.099 1.139 1.074 1.055 1.075 1.160 1.154 1.125 4.33 16) T 1,1-Dichloroet... 2.013 2.182 2.039 1.921 2.008 1.851 1.784 1.752 1.862 1.833 1.924 6.96 17) T Methyl tert-Bu... 2.998 3.133 2.908 2.746 3.139 3.120 3.206 3.193 3.442 3.433 3.132 6.84 18) T cis-1,2-Dichlo... 1.149 1.356 1.229 1.137 1.184 1.125 1.132 1.119 1.212 1.201 1.184 6.08 19) T Chloroform 2.520 2.123 2.090 1.919 1.854 1.797 1.931 1.898 2.016 11.4820) S 1,2-Dichloroet... 1.789 1.827 1.868 1.879 1.903 1.876 1.778 1.716 1.663 1.585 1.788 5.88 21) T 1,2-Dichloroet... 1.586 1.716 1.601 1.504 1.608 1.495 1.434 1.380 1.473 1.439 1.524 6.69 22) T 1,1,1-Trichlor... 2.023 2.153 1.972 1.843 1.960 1.840 1.808 1.780 1.928 1.931 1.924 5.84 **107** 6/6/15 5.563 4.687 4.262 4.361 4.126 4.012 3.962 4.296 4.332 4.400 23) T Benzene 11.0424) T Carbon Tetrach... 1.814 1.662 1.514 1.404 1.534 1.479 1.489 1.471 1.611 1.641 1.562 7.72 25) I 1,4-Difluorobenzen... -----ISTD-----ISTD------1,2-Dichloropr... 0.226 0.232 0.217 0.201 0.208 0.193 0.189 0.186 0.203 0.207 0.206 7.38 26) T 27) T Bromodichlorom... 0.319 0.336 0.313 0.290 0.301 0.287 0.286 0.286 0.321 0.348 0.309 7.20 28) T Trichloroethene 0.303 0.320 0.284 0.253 0.254 0.229 0.229 0.226 0.258 0.277 0.263 12.23 29) T 1,4-Dioxane 0.179 0.168 0.158 0.165 0.163 0.185 0.185 0.196 0.212 0.179 9.85 30) T cis-1,3-Dichlo... 0.285 0.295 0.281 0.266 0.293 0.297 0.308 0.315 0.356 0.387 0.308 11.91 31) T trans-1,3-Dich... 0.242 0.256 0.237 0.220 0.255 0.267 0.283 0.290 0.323 0.337 0.271 13.81 32) T 1,1,2-Trichlor... 0.199 0.206 0.187 0.173 0.180 0.168 0.168 0.166 0.182 0.188 0.182 7.4033) S Toluene-d8 (SS2) 0.895 0.908 0.907 0.903 0.889 0.894 0.891 0.895 0.894 0.891 0.897 0.77 1.046 1.014 0.912 0.831 0.845 0.815 0.825 0.839 0.934 0.994 0.905 34) T Toluene 9.65 35) T Dibromochlorom... 0.220 0.228 0.210 0.196 0.213 0.212 0.223 0.228 0.261 0.275 0.226 10.62 36) T 1,2-Dibromoethane 0.232 0.236 0.221 0.207 0.221 0.215 0.223 0.223 0.248 0.255 0.228 6.54 37) T Tetrachloroethene 0.280 0.294 0.255 0.232 0.239 0.223 0.230 0.235 0.276 0.312 0.258 12.01 38) I Chlorobenzene-d5 (... -----ISTD-----ISTD-----39) T Chlorobenzene 3.966 4.117 3.646 3.308 3.419 3.231 3.456 3.466 3.746 3.595 8.33 5.657 4.501 40) T Ethylbenzene 5.721 5.574 5.082 4.726 5.365 5.562 6.053 6.197 6.632 10.27 41) T m,p-Xylene 4.249 4.176 3.742 3.591 4.427 4.611 4.987 5.109 5.619 14.58

Response Factor Report MS19

Method	Path : I:\MS19\METHODS\				
Method	File : S19060515.M				
Title	: EPA TO-15 per SOP '	JOA-TO15 (CASS TO-:	15/GC-MS)		
42) T	Styrene 2.541	2.390 2.282 2.285	3.016 3.310 3.795 3.918	4.171 3.079 24.3	36
43) T	o-Xylene 2.108	2.043 1.905 1.859	2.259 2.319 2.539 2.590	2.792 2.268 14.3	19
44) T	1,1,2,2-Tetrac 1.837	1.912 1.837 1.774	2.042 2.113 2.319 2.369	2.552 2.084 13.2	21
45) S	Bromofluoroben 1.966	1.929 1.904 1.917	2.040 2.134 2.266 2.272	2.228 2.073 7.4	45
46) T	1,3,5-Trimethy 3.864	3.780 3.662 3.610	4.884 5.074 5.657 5.903	6.209 4.738 21.5	90
47) T	1,2,4-Trimethy 3.741	3.606 3.476 3.481	4.753 5.185 5.931 6.348	7.146 4.852 28.	55
48) T	1,3-Dichlorobe 2.764	2.683 2.478 2.309	2.715 2.789 3.146 3.321	3.629 2.870 14.	58
49) T	1,4-Dichlorobe 2.802	2.740 2.524 2.380	2.773 2.863 3.265 3.440	3.702 2.943 14.	79
50) T	1,2-Dichlorobe 2.658	2.621 2.434 2.236	2.618 2.751 3.136 3.338	3.739 2.837 16.	77
51) T	1,2-Dibromo-3	0.401 0.404 0.422	0.620 0.771	0.524 31.	70
52) T	1,2,4-Trichlor 1.479	1.123 1.075 1.022	1.329 1.472 1.974 2.092	1.446 27.3	84
53) T	Naphthalene 5.506	2.831 2.875 2.814	4.893 5.686	4.101 34.2	29
54) T	Hexachlorobuta 1.049	0.956 0.884 0.791	0.893 0.922 1.105	0.943 11.2	20

(#) = Out of Range

**1074** 6/6/15

Evaluate Continuing Calibration Report

Data FileJMS19DATA 2015_0706 07061502DAcq On6Jul 201512 05Sample007819070615_500pgMiscS29-06281506S29-06171506(7 11)ALS Vial14Sample Multiplier1 Operator WA Quant Time Jul 08 12 51 55 2015 Quant Method I - MS19 METHODS S19060515 M Quant Title - EFA TO-15 per SOF VOA-TO15 (CASS TO-15 GC-MS) QLast Update - Sat Jun 06 08 46 20 2015 Hesponse via - Initial Calibration DataAcq Meth TO15SIM M Man ERF - 0.000 Man Eel Area - 50% Max E I Dev 0.88man - **274 7/6/15** Max ERF Dev - 80% - Max Eel Area - 200% AvgRF CCRF "Dev Area" Devimina Component -----10 11 12 T 13 T 14 T 15 T  $\frac{16}{17}$ 1819 20 E 21 T 22 T 23 T 24 T 1.4-Duffluorobenzene (ISC)1.0001.0-Duffluorobenzene (ISC)0.000Bromoduffloropropane (0.809)Bromoduffloroethene (0.268)1.4-Duoxane (0.179)cus - 1.3-Duffloropropene (0.808)trans - 1.3-Duffloropropene (0.271)1.1.2-Fruchloroethane (0.182)Ioluene - d8 (ISC) (0.897)Ioluene (0.206)Dubromothloromethane (0.206)1.2-Dubromoethane (0.208)Ietrachloroethene (0.258) Chlorobenzene-d5(IS3)1<000</th>1<000</th>0<0</th>135Chlorobenzene3<595</td>3<653</td>-16144Ethylbenzene5<657</td>5<913</td>-45149m.p-Xylene4<501</td>4<784</td>-63146Styrene3<079</td>3119-13140o-Wylene2<068</td>2431-721461<1<Cl-Tetrachloroethane</td>206842366-135Bromofluorobenzene(SS3)20732076-011<3</td>5-1ins5135-841421<1<Cl-Trumethylbenzene</td>48525228-771491<3</td>110011431421<1</td>111111381421<1</td>11111111<1</td>1111111<3</td>11111111<3</td>11111111<3</td>11111111<3</td>11111111<3</td>11111111<3</td>11111111<3</td>11111111<3</td>1 38 I 39 I 0.00 0.00 40 T 0.00 41 Τ ni nin Τ 42 -0.00 43 Τ -0-00 44 T E T 0.00 45 -0-00 46 47 0.00 T -Q-QQ 48 T 0.00 49 T i iii 50 T 0.00 51 T 0.00 50 Î 53 I 0.00 in nh

Data FileJMS19DATA 2015_070607061502DAcq On6Jul 20151205Sample00VS19070615_500pgMiscS29-06281506S29-06171506(7ALS Visl14Sample Multiplier1 Operator WA Quant Time (Jul 06/12/51/55/2015) Quant Method (I) ME19 METHODE 519060515 M Quant Title (EFA TO-15 per SOF VOA-TO15 (CASE TO-15/60-ME)) QLast Update (Sat Jun 06/08/46/20/2015) Response via (Initial Calibration) DataAcq Meth T0155IM M Mun EEF – 0.000 Mun Eel Area – 50% Max E I Dev 0.88mun Max EEF Dev – 80% – Max Eel Area – 200% AvgRF CORF "Dev Area" Devimina Composition ------ - - - - -54 I Hexachlorobutadiene - 0.948 0.949 -0.6 144 0.000 _ _ _ _ _ _ SPOU's out = 0 OOU's out = 0

(#) = Out of Hange



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 <u>www.alsglobal.com</u>

# LABORATORY REPORT

August 25, 2015

Susan Kelly AMEC Foster Wheeler Environment & Infrastructure Inc. 1308 Patton Ave Asheville, NC 28806-2604

#### RE: CTS of Asheville / 6252-12-0006

Dear Susan:

Enclosed are the results of the samples submitted to our laboratory on August 6, 2015. For your reference, these analyses have been assigned our service request number P1503213.

All analyses were performed according to our laboratory's NELAP and DoD-ELAP-approved quality assurance program. The test results meet requirements of the current NELAP and DoD-ELAP standards, where applicable, and except as noted in the laboratory case narrative provided. For a specific list of NELAP and DoD-ELAP-accredited analytes, refer to the certifications section at <u>www.alsglobal.com</u>. Results are intended to be considered in their entirety and apply only to the samples analyzed and reported herein.

If you have any questions, please call me at (805) 526-7161.

Respectfully submitted,

ALS | Environmental

ul By Sue Anderson at 4:30 pm, Aug 25, 2015

For Kate Aguilera Project Manager



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 www.alsglobal.com

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc.	Service Request No:	P1503213
Project:	CTS of Asheville / 6252-12-0006		

#### CASE NARRATIVE

The samples were received intact under chain of custody on August 6, 2015 and were stored in accordance with the analytical method requirements. Please refer to the sample acceptance check form for additional information. The results reported herein are applicable only to the condition of the samples at the time of sample receipt.

#### Volatile Organic Compound Analysis

The samples were analyzed in SIM mode for selected volatile organic compounds in accordance with EPA Method TO-15 from the Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air, Second Edition (EPA/625/R-96/010b), January, 1999. This procedure is described in laboratory SOP VOA-TO15. The analytical system was comprised of a gas chromatograph / mass spectrometer (GC/MS) interfaced to a whole-air preconcentrator. This method is included on the laboratory's NELAP and DoD-ELAP scope of accreditation, however it is not part of the AIHA-LAP accreditation. Any analytes flagged with an X are not included on the NELAP or DoD-ELAP accreditation.

The canisters were cleaned, prior to sampling, down to the method reporting limit (MRL) reported for this project. Please note, projects which require reporting below the MRL could have results between the MRL and method detection limit (MDL) that are biased high.

The results of analyses are given in the attached laboratory report. All results are intended to be considered in their entirety, and ALS Environmental (ALS) is not responsible for utilization of less than the complete report.

Use of ALS Environmental (ALS)'s Name. Client shall not use ALS's name or trademark in any marketing or reporting materials, press releases or in any other manner ("Materials") whatsoever and shall not attribute to ALS any test result, tolerance or specification derived from ALS's data ("Attribution") without ALS's prior written consent, which may be withheld by ALS for any reason in its sole discretion. To request ALS's consent, Client shall provide copies of the proposed Materials or Attribution and describe in writing Client's proposed use of such Materials or Attribution. If ALS has not provided written approval of the Materials or Attribution within ten (10) days of receipt from Client, Client's request to use ALS's name or trademark in any Materials or Attribution requests. Client acknowledges and agrees that the unauthorized use of ALS's name or trademark may cause ALS to incur irreparable harm for which the recovery of money damages will be inadequate. Accordingly, Client acknowledges and agrees that a violation shall justify preliminary injunctive relief. For questions contact the laboratory.



2655 Park Center Dr., Suite A Simi Valley, CA 93065 **T:** +1 805 526 7161 **F:** +1 805 526 7270 www.alsglobal.com

#### ALS Environmental - Simi Valley

#### CERTIFICATIONS, ACCREDITATIONS, AND REGISTRATIONS

Agency	Web Site	Number
AIHA	http://www.aihaaccreditedlabs.org	101661
Arizona DHS	http://www.azdhs.gov/lab/license/env.htm	AZ0694
DoD ELAP	http://www.pjlabs.com/search-accredited-labs	L14-2
Florida DOH (NELAP)	http://www.doh.state.fl.us/lab/EnvLabCert/WaterCert.htm	E871020
Maine DHHS	http://www.maine.gov/dhhs/mecdc/environmental-health/water/dwp- services/labcert/labcert.htm	2014025
Minnesota DOH (NELAP)	http://www.health.state.mn.us/accreditation	876241
New Jersey DEP (NELAP)	http://www.nj.gov/dep/oqa/	CA009
New York DOH (NELAP)	http://www.wadsworth.org/labcert/elap/elap.html	11221
Oregon PHD (NELAP)	http://public.health.oregon.gov/LaboratoryServices/EnvironmentalLaborat oryAccreditation/Pages/index.aspx	4068-001
Pennsylvania DEP	http://www.depweb.state.pa.us/labs	68-03307 (Registration)
Texas CEQ (NELAP)	http://www.tceq.texas.gov/field/qa/env_lab_accreditation.html	T104704413- 15-6
Utah DOH (NELAP)	http://www.health.utah.gov/lab/labimp/certification/index.html	CA01627201 5-5
Washington DOE	http://www.ecy.wa.gov/programs/eap/labs/lab-accreditation.html	C946

Analyses were performed according to our laboratory's NELAP and DoD-ELAP approved quality assurance program. A complete listing of specific NELAP and DoD-ELAP certified analytes can be found in the certifications section at <u>www.alsglobal.com</u>, or at the accreditation body's website.

Each of the certifications listed above have an explicit Scope of Accreditation that applies to specific matrices/methods/analytes; therefore, please contact the laboratory for information corresponding to a particular certification.

#### DETAIL SUMMARY REPORT

 Client:
 AMEC Foster Wheeler Environment & Infrastructure Inc.
 Service Request: P1503213

 Project ID:
 CTS of Asheville / 6252-12-0006
 Image: Service Request: P1503213

 Date Received:
 8/6/2015
 Image: Service Request: P1503213

 Time Received:
 09:45
 Image: Service Request: P1503213

Client Sample ID	Lab Code	Matrix	Date Collected	Time Collected	Container ID	Pi1 (psig)	Pfl (psig)	TO-15
TB-13	P1503213-001	Air	8/5/2015	00:00	AS00788	-14.23	4.07	X
FD-27	P1503213-002	Air	8/5/2015	00:00	AC00722	-0.66	3.65	X
AAS-17	P1503213-003	Air	8/5/2015	08:58	AS00786	-1.69	3.75	Х
AAS-18	P1503213-004	Air	8/5/2015	09:15	AS00696	-2.36	3.97	Х
AAS-19	P1503213-005	Air	8/5/2015	09:57	AS00798	-0.87	3.89	X

# Air - Chain of Custody Record & Analytical Service Request

Page



5 of 121

2655 Park Center Drive, Suite A Simi Valley, California 93065 Phone (805) 526-7161

(ALS)	Phone (805) Fax (805) 526	526-7161 5-7270		Requested Turnarou 1 Day (100%) 2 Day (7	nd Time in Business 5%) 3 Day (50%) 4	Days (Surcharge Day (35%) 5 Day	s) please circle (25%) 10-Day-St	andard	)	ALS Project N	503213
Company Name & Address (Reporting Inform Amer Foster Whe 1308 Patter Ave Ashevilly NC 288	mation) clar 306			Project Name CTS of Project Number 6252-1	Ashevill 2-00010	e			ALS Contact: Analysis	Wethod	
Project Manager Phone <b>B282529130</b> Email Address for Result Reporting SUSAM, Felly Q amo	Fax			P.O. # / Billing Informa invoice to: PO: CO125 Sampler (Print & Sign) SUSAN	D.#/Billing Information Noice to: Susan. Kelly Daniectn.com 0: c012504848 mpler (Print & Sign) SUSan Kelly Amandely						Comments e.g. Actual Preservative or
Client Sample ID	Laboratory ID Number	Date Collected	Time Collected	Canister ID (Bar code # - AC, SC_etc.)	Flow Controller ID (Bar code # - FC #)	Canister Start Pressure "Hg	Canister End Pressure "Hg/psig	Sample Volume	いた		specific instructions
TB-13	O	labe	Nes		NIA	NA	NIA		X		
FD-27	D	8/5/15	00:00	AC 00722	FCA0253	30	2		X		
AAS-17	Ø	85115	0858	AS00786	FLA00787	27.5	3		×		
AAS-18	Ð	815/15	0915	ASOCIAL	FLA00347	28	4		X		
AAS-19	Ø	0/5/15	857	A500798	F(\$ 00085	23.5	1		×		
				<u> </u>							
Repo Tier I - Results (Default in not specified) Tier II (Results + QC Summaries	ort Tier Levels Tier III (Results Tier IV (Date V	- please select + QC & Calibration alidation Package	t on Summaries) _ )) 10% Surcharge	X	EDD required (ES) Type: 51	/ No Units:	(	Chain of C INTACT	uştody Seal: (0 BROKEN A	Circle) BSENT	Project Bequirements (MRLs QAPP)
Relinguished by-(Signature)	-		15/15	-Time: 300	Received by: (Signatur	e) T	enty		Date:	Time:	
Relinquished by: (Signature)	enor	•	Date:	Time:	Received by: (Signatur	el s	>		Date: //C	-Time: 99 AT	Cooler / Blank Temperature°C

#### **ALS Environmental** Sample Acceptance Check Form

Client	: AMEC Foster	Wheeler Environment	t & Infrastruct	ure Inc.		Work order:	P1503213			
Project	: CTS of Ashevi	ille / 6252-12-0006			2 		5.00	Marcan and A		
Sample	(s) received on:	8/6/15	74 50 8840 LH	. ^ј	Date opened:	8/6/15	_ by:	ADAV	ID	
Note: This	form is used for <u>all</u>	samples received by ALS.	The use of this fo	orm for custody se	als is strictly me	ant to indicate prese	nce/absence and no	ot as an in	dication	of
compliance	or nonconformity.	Thermal preservation and p	pH will only be ev	valuated either at t	he request of the	e client and/or as req	uired by the metho	d/SOP. Yes	No	N/A
1	Were sample (	containers properly r	parked with cli	ient sample ID	9					
2	Container(s) st	upplied by ALS?	ance man en	ione sumpto in	÷					
3	Did sample co	<b>ntainers</b> arrive in goo	od condition?					$\mathbf{X}$		
4	Were chain-of	f-custody papers used	and filled out	:?				$\mathbf{X}$		
5	Did sample co	Did sample container labels and/or tags agree with custody papers?								
6	Was sample v	Was sample volume received adequate for analysis?								
7	Are samples w	ithin specified holding	g times?					$\mathbf{X}$		
8	Was proper temperature (thermal preservation) of cooler at receipt adhered to?									$\mathbf{X}$
9	Was a <b>trip bla</b>	nk received?						$\mathbf{X}$		
10	Were custody	seals on outside of co	oler/Box?					$\mathbf{X}$		
		Location of seal(s)?					_Sealing Lid?	$\mathbf{X}$		
	Were signature	e and date included?						X		
	Were seals inte	act?						X		
	Were custody :	seals on outside of sar	nple container	ť?					$\mathbf{X}$	
		Location of seal(s)?					_Sealing Lid?			$\mathbf{X}$
	Were signature	e and date included?								X
	Were seals inta	act?								$\mathbf{X}$
11	Do container	rs have appropriate <b>pr</b>	eservation, ac	ccording to me	thod/SOP or	Client specified	information?			$\mathbf{X}$
	Is there a clier	it indication that the si	ubmitted samp	ples are <b>pH</b> pre	eserved?					X
	Were <u>VOA vi</u>	ials checked for preser	ace/absence of	f air bubbles?						X
	Does the client	t/method/SOP require	that the analys	st check the sa	mple pH and	if necessary alte	r it?			X
12	Tubes:	Are the tubes capp	ed and intact?	?						$\mathbf{X}$
		Do they contain m	ioisture?							X
13	Badges:	Are the badges pr	operly capped	l and intact?						$\mathbf{X}$
		Are dual bed badg	es separated a	and individuall	y capped and	intact?				$\mathbf{X}$
Lab	Sample ID	Container	Required	Received	Adjusted	VOA Headspac	e Recei	ot / Pres	ervation	
		Description	pH *	рН	рН	(Presence/Absence	5	Commer	its	

Lab Sample ID	Description	pH *	pH	Adjusted pH	(Presence/Absence)	Comments
P1503213-001.01	6.0 L Silonite Can					
P1503213-002.01	6.0 L Ambient Can					
P1503213-003.01	6.0 L Silonite Can					
P1503213-004.01	6.0 L Silonite Can					
P1503213-005.01	6.0 L Silonite Can					
Explain any discrepane	cies: (include lab sample	ID numbers):				

RSK - MEEPP, HCL (pH<2); RSK - CO2, (pH 5-8); Sulfur (pH>4)

# RESULTS OF ANALYSIS

### Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc.							
Client Sample ID:	TB-13	ALS Project ID: P1	P1503213					
Client Project ID:	CTS of Asheville / 6252-12-0006	ALS Sample ID: P1	503213-001					
Test Code:	EPA TO-15 SIM	Date Collected: 8.5	5 15					
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Date Received: 8 6 15						
Analyst:	Wida Ang	Date Analyzed: 8-1	3 15					
Sample Type:	6.0 L Silonite Canister	Volume(s) Analyzed:	1.00 Liter(s)					
Test Notes:								
Container ID:	AS00788							

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL Data
		μg/m³	μg m³	μg m³	ppbV	ppbV	ppbV Qualifier
75-01-4	Vinyl Chloride	ND	0.025	0.0076	ND	0.0098	0.0030
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.0073	ND	0.0063	0.0018
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0092	ND	0.0063	0.0023
79-01-6	Trichloroethene	ND	0.025	0.0085	ND	0.0047	0.0016

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environ	ment & Inf	frastructure	Inc.						
Client Sample ID:	FD-27			ALS Project ID: P1503213						
Client Project ID:	CTS of Asheville / 6252-12-0006				ALS Sample ID:	P150321	3-002			
Test Code:	EPA TO-15 SIM				Date Collected:	8 5 15				
Instrument ID:	Tekmar AUTOCAN Agilent 5973N H	HP6890A MS	519	Date Received: 8 6 15						
Analyst:	Wida Ang			Date Analyzed: 8 13 15						
Sample Type:	6.0 L Summa Canister			Ve	olume(s) Analyzed:	1.00	) Liter(s	)		
Test Notes:										
Container ID:	AC00722									
	Initial Pressure (psig):	-0.66	Final Pressure	e (psig):	3.65					
					Caniste	r Dilution	Factor:	1.31		
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data		
	-	μg/m³	μg m³	µg m³	ppbV	ppbV	ppbV	Qualifier		
75-01-4	Vinyl Chloride	0.045	0.033	0.010	0.018	0.013	0.0039			
156-60-5	trans-1,2-Dichloroethene	0.011	0.033	0.0096	0.0027	0.0083	0.0024	J		
156-59-2	cis-1,2-Dichloroethene	0.70	0.033	0.012	0.18	0.0083	0.0030			
79-01-6	Trichloroethene	6.6	0.033	0.011	1.2	0.0061	0.0021			

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environ	ment & Inf	rastructure	Inc.						
Client Sample ID:	AAS-17				ALS Project ID:	P150321.	3			
Client Project ID:	CTS of Asheville / 6252-12-0006				ALS Sample ID:	P150321.	3-003			
Test Code:	EPA TO-15 SIM				Date Collected:	8 5 1 5				
Instrument ID:	Tekmar AUTOCAN Agilent 5973N H	4P6890A MS	519		Date Received:	8 6 1 5				
Analyst:	Wida Ang			Date Analyzed: 81315						
Sample Type: Test Notes:	6.0 L Silonite Canister			Ve	olume(s) Analyzed:	1.00	) Liter(s)	)		
Container ID:	AS00786									
	Initial Pressure (psig):	-1.69	Final Pressure	e (psig):	3.75					
					Canister	Dilution	Factor:	1.42		
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data		
		μg/m³	μg m³	μg m³	ppbV	ppbV	ppbV	Qualifier		
75-01-4	Vinyl Chloride	0.13	0.036	0.011	0.050	0.014	0.0042			
156-60-5	trans-1,2-Dichloroethene	0.034	0.036	0.010	0.0085	0.0090	0.0026	J		
156-59-2	cis-1,2-Dichloroethene	2.7	0.036	0.013	0.69	0,0090	0.0033			
79-01-6	Trichloroethene	13	0.036	0.012	2.4	0.0066	0.0022			

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

# RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environ	IEC Foster Wheeler Environment & Infrastructure Inc.									
Client Sample ID:	AAS-18				ALS Project ID: P1503213						
Client Project ID:	CTS of Asheville / 6252-12-0006	ALS Sample ID: P1503213-004									
Test Code:	EPA TO-15 SIM				Date Collected:	8 5 15					
Instrument ID:	Tekmar AUTOCAN Agilent 5973N H	IP6890A MS1	9		Date Received:	Received: 8.6.15					
Analyst:	Wida Ang	a Ang Date Analyzed: 8 13 15									
Sample Type:	6.0 L Silonite Canister	L Silonite Canister Volume(s) Analyzed:									
Test Notes:											
Container ID:	AS00696										
	Initial Pressure (psig):	-2.36 F	Final Pressure	e (psig):	3.97						
					Canister	Dilution	Factor:	1.51			
CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data			
		μg/m³	µg m³	µg m³	ppbV	ppbV	ppbV	Qualifier			
75-01-4	Vinyl Chloride	ND	0.038	0.011	ND	0.015	0.0045				
156-60-5	trans-1,2-Dichloroethene	ND	0.038	0.011	ND	0.0095	0.0028				

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

cis-1.2-Dichloroethene

Trichloroethene

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

0.038

0.038

0.014

0.013

0.083

0.11

0.0095 0.0035 0.0070 0.0024

0.33

0.61

156-59-2

79-01-6

# RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure Inc.							
Client Sample ID:	AAS-19				ALS Project ID:	P150321	3	
Client Project ID:	CTS of Asheville / 6252-12-0006				ALS Sample ID:	P150321	3-005	
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA TO-15 SIM Tekmar AUTOCAN Agilent 5973N H Wida Ang 6.0 L Silonite Canister	HP6890A MS	19	Vo	Date Collected: Date Received: Date Analyzed: lume(s) Analyzed:	8 5 15 8 6 15 8 13 15 1.00	) Liter(s	ı
Container ID:	AS00798 Initial Pressure (psig):	-0.87	Final Pressure	e (psig):	3.89			
					Canister	Dilution	Factor:	1.34
CAS#	Compound	Result µg/m³	MRL µg m³	MDL µg m³	Result ppbV	MRL ppbV	MDL ppbV	Data Qualifier
75-01-4	Vinyl Chloride	0.058	0.034	0.010	0.023	0.013	0.0040	
156-60-5	trans-1,2-Dichloroethene	0.023	0.034	0.0098	0.0058	0.0085	0.0025	J
156-59-2	cis-1,2-Dichloroethene	0.94	0.034	0.012	0.24	0.0085	0.0031	
79-01-6	Trichloroethene	8.0	0.034	0.011	1.5	0.0062	0.0021	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

#### RESULTS OF ANALYSIS Page 1 of 1

#### AMEC Foster Wheeler Environment & Infrastructure Inc. Client: ALS Project ID: P1503213 Client Sample ID: Method Blank Client Project ID: CTS of Asheville / 6252-12-0006 ALS Sample ID: P150812-MB Test Code: EPA TO-15 SIM Date Collected: NA Instrument ID: Tekmar AUTOCAN Agilent 5973N HP6890A MS19 Date Received: NA Analyst: Wida Ang Date Analyzed: 8 12 15 6.0 L Silonite Canister Sample Type: Volume(s) Analyzed: 1.00 Liter(s) Test Notes:

Canister Dilution Factor: 1.00

CAS#	Compound	Result	MRL	MDL	Result	MRL	MDL	Data
		μg/m³	µg m³	μg m³	ppbV	ppbV	ppbV	Qualifier
75-01-4	Vinyl Chloride	ND	0.025	0.0076	ND	0.0098	0.0030	
156-60-5	trans-1,2-Dichloroethene	ND	0.025	0.0073	ND	0.0063	0.0018	
156-59-2	cis-1,2-Dichloroethene	ND	0.025	0.0092	ND	0.0063	0.0023	
79-01-6	Trichloroethene	ND	0.025	0.0085	ND	0.0047	0.0016	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

MRL = Method Reporting Limit - The minimum quantity of a target analyte that can be confidently determined by the referenced method.

# SURROGATE SPIKE RECOVERY RESULTS

Page 1 of 1

# Client:AMEC Foster Wheeler Environment & Infrastructure Inc.Client Project ID:CTS of Asheville / 6252-12-0006

ALS Project ID: P1503213

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Date(s) Collected: 8 5 15
Analyst:	Wida Ang	Date(s) Received: 8 6 15
Sample Type:	6.0 L Summa Canister(s)	Date(s) Analyzed: 8 12 - 8 13 15
Test Notes:		

		1,2-Dichloroethane-d4	Toluene-d8	Bromofluorobenzene		
Client Sample ID	ALS Sample ID	%	%	%	Acceptance	Data
		Recovered	Recovered	Recovered	Limits	Qualifier
Method Blank	P150812-MB	102	103	107	70-130	
Lab Control Sample	P150812-LCS	101	99	114	70-130	
TB-13	P1503213-001	102	102	106	70-130	
FD-27	P1503213-002	101	103	112	70-130	
FD-27	P1503213-002DUP	101	103	112	70-130	
AAS-17	P1503213-003	101	103	112	70-130	
AAS-18	P1503213-004	102	104	112	70-130	
AAS-19	P1503213-005	100	102	111	70-130	

Surrogate percent recovery is verified and accepted based on the on-column result.

Reported results are shown in concentration units and as a result of the calculation, may vary slightly from the on-column percent recovery.

#### LABORATORY CONTROL SAMPLE SUMMARY

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Infrastructure In	c.
Client Sample ID:	Lab Control Sample	ALS Project ID: P1503213
Client Project ID:	CTS of Asheville / 6252-12-0006	ALS Sample ID: P150812-LCS
Test Code: Instrument ID: Analyst: Sample Type: Test Notes:	EPA TO-15 SIM Tekmar AUTOCAN Agilent 5973N HP6890A MS19 Wida Ang 6.0 L Silonite Canister V	Date Collected: NA Date Received: NA Date Analyzed: 8 12 15 'olume(s) Analyzed: 0.125 Liter(s)

					ALS	
CAS#	Compound	Spike Amount	Result	% Recovery	Acceptance	Data
		μg m³	µg∕m³		Limits	Qualifier
75-01-4	Vinyl Chloride	4.00	3.18	80	64-118	
156-60-5	trans-1.2-Dichloroethene	4.20	3.56	85	70-115	
156-59-2	cis-1,2-Dichloroethene	4.36	3.67	84	72-115	
79-01-6	Trichloroethene	4.32	3.41	79	70-112	

Laboratory Control Sample percent recovery is verified and accepted based on the on-column result. Reported results are shown in concentration units and as a result of the calculation, may vary slightly.

#### LABORATORY DUPLICATE SUMMARY RESULTS

Page 1 of 1

Client: Client Sample ID: Client Project ID:	AMEC Foster Wheeler Enviro FD-27 CTS of Asheville / 6252-12-0006	nment &	t Infrast	tructure In	i <b>c.</b> ALS	5 Project ID: 5 Sample ID:	: P150321 : P150321	3 3-002D)	LΨ
Test Code: Instrument ID: Analyst:	EPA TO-15 SIM Tekmar AUTOCAN Agilent 5973N Wida Ang	HP6890,	AMS19		Da Da Da	te Collected: te Received: te Analyzed:	: 8 5 15 : 8 6 15 : 8 13 15		
Sample Type: Test Notes: Container ID:	6.0 L Summa Canister AC00722				Volume(	s) Analyzed:	: 1.00	Liter(s)	
	Initial Pressure (psig):	-0.66		Final Press	ure (psig):	3.65 Caniste	er Dilution	Factor:	1.31
				Dup	licate				
CAS#	Compound	Sample µg m³	Result ppbV	Sample µg/m³	• <b>Result</b> ppbV	Average µg m³	% RPD	RPD Limit	Data Qualifier

		μg m³	ppbV	µg/m³	ppbV	µg m³		Limit	Qualifier
75-01-4	Vinyl Chloride	0.0447	0.0175	0.0451	0.0177	0.0449	0.9	25	
156-60-5	trans-1,2-Dichloroethene	0.0107	0.00271	0.0103	0.00260	0.0105	4	25	J
156-59-2	cis-1,2-Dichloroethene	0.702	0.177	0, <b>7</b> 00	0.177	0.701	0.3	25	
79-01-6	Trichloroethene	6.58	1.23	6.55	1.22	6.565	0.5	25	

ND = Compound was analyzed for, but not detected above the laboratory detection limit.

J = The result is an estimated concentration that is less than the MRL but greater than or equal to the MDL.

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environment & Inf	rastructure Inc.
Client Project ID:	CTS of Asheville / 6252-12-0006	ALS Project ID: P1503213

# Method Blank Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5973N HP6890A MS19	Lab File ID: 08121533.D
Analyst:	Wida Ang	Date Analyzed: 8 12 15
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 21:31
Test Notes:		

Client Sample ID	ALS Sample ID	Lab File ID	Time Analyzed
Lab Control Sample	P150812-LCS	08121534.D	22:03
TB-13	P1503213-001	08121542.D	02:19
FD-27	P1503213-002	08121543.D	02:51
FD-27 (Lab Duplicate)	P1503213-002DUP	08121544.D	03:22
AAS-17	P1503213-003	08121545.D	03:55
AAS-18	P1503213-004	08121546.D	07:32
AAS-19	P1503213-005	08121547.D	08:04

#### RESULTS OF ANALYSIS

Page 1 of 1

Client:	AMEC Foster Wheeler Environme	ent & Infrastructure Inc.
Client Project ID:	CTS of Asheville / 6252-12-0006	ALS Project ID: P1503213

#### Internal Standard Area and RT Summary

Test Code:	EPA TO-15 SIM	
Instrument ID:	Tekmar AUTOCAN Agilent 5975Cinert 7890A MS19	Lab File ID: 08121532.D
Analyst:	Wida Ang	Date Analyzed: 8 12 15
Sample Type:	6.0 L Summa Canister(s)	Time Analyzed: 20:59
Test Notes:		

		IS1 (BCM)	IS1 (BCM) IS2 (DFB)			IS3 (CBZ)			
		AREA #	RT #	AREA #	RT #	AREA #	RT #		
	24 Hour Standard	23318	9.75	124127	11.71	20492	16.06		
	Upper Limit	32645	10.08	173778	12.04	28689	16.39		
	Lower Limit	13991	9.42	74476	11.38	12295	15.73		
	Client Sample ID								
01	Method Blank	22242	9.76	111894	11.71	19287	16.06		
02	Lab Control Sample	22960	9.75	122442	11.71	20318	16.06		
03	TB-13	21397	9.76	107937	11.71	18537	16.06		
04	FD-27	22281	9.75	116408	11.71	20659	16.06		
05	FD-27 (Lab Duplicate)	22697	9.75	118478	11.71	20903	16.06		
06	AAS-17	22595	9.75	118178	11.71	20368	16.06		
07	AAS-18	22901	9.75	120297	11.71	21336	16.06		
Ó8	AAS-19	23066	9.76	120015	11.71	20589	16.06		
09									
10									
11									
12									
13									
14									
15									
16									
17									
18									
19									

IS1 (BCM) = Bromochloromethane

IS2 (DFB) = 1,4-Difluorobenzene

IS3 (CBZ) = Chlorobenzene-d5

20

AREA UPPER LIMIT =  $140^{\circ}$  of internal standard area AREA LOWER LIMIT =  $60^{\circ}$  of internal standard area RT UPPER LIMIT = 0.33 minutes of internal standard RT RT LOWER LIMIT = 0.33 minutes of internal standard RT

# Column used to flag values outside QC limits with an I.

I = Internal standard not within the specified limits. See case narrative.

Data File I MS19 DATA 2015_08 12 08121542 D Acq On 18 Aug 2015 2 19 Sample P1508218-001 (1000mL) Misc S29-06281506 ALS Vial 2 Sample Multiplier 1 Oberator WA Quant Time Aug 19 11 14 14 2015 Quant Method I - MS19 METHODS S19071415 M Quant Title - EFA TO-15 per SOF VOA-TO15 (CASS TO-15 GC-MS) Quast Update - Wed Jul 15 07 17 15 2015 Response via - Initial Calibration DataAcq Meth TO15SIM M 107 8/19/15 R I (lon Response Conc Units Dev(Min) Internal Standards 
 1)
 Bromoch boromethane
 (IS1)
 9/76
 130
 21397
 1000
 000
 pg
 0/01

 25)
 1.4-Diffuorobenzene
 (IS2)
 11/71
 114
 107987
 1000
 000
 pg
 0/00

 38)
 Chilomobenzene-d5
 (IS3)
 16/06
 54
 18587
 1000
 000
 pg
 0/00
 Svetem Monitoring Compounds: 10-54 - 65 200 1.2-Dishlordethane-d4 38940 - 1016 840 pc ப்பட்ட 

 201 LetDich Lorde thame-d4
 10 04 50
 55240
 1010 540 pg

 Spiked Amount
 1000 000
 Eecovery = 101 68%

 331 Toluene-d8 (SSC)
 14 15 98
 101939
 1000 118 pg

 Spiked Amount
 1000 000
 Eecovery = 100 21%

 451 Bromofluorobenzene (SS3)
 17 56 174
 41119
 1057 168 pg

 Spiked Amount
 1000 000
 Eecovery = 105 72%

 -0-00 

 45) Enconof Loorotemethan
 17 56
 17 4
 41119
 1057
 163 pz

 Tarset Compounds
 0
 0
 55
 129
 10
 10

 37 Dish Encodif Looromethan
 4
 45
 55
 129
 10
 0

 47 L.2-Dish Encodif Looromethan
 0
 00
 55
 0
 10
 0

 57 Turvi Chier ale
 0
 00
 54
 0
 10
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 ývalue. -90) 94 - rara 100- 1919 -

Data FileIMS19DATA C015_081008101540DAcq On13Aux C015019OperatorWASampleF1508013-001(1000mL)MiscS09-06031506ALS Vial0SampleMultiplier1Quant TimeAux 19111414Quant TimeAux 191114Quant TimeEFA T0-15per S0PV0A-F015Quant TimeWed Jul 15071715QLast UpdateWed Jul 15071715QLast UpdateWed Jul 15071715DataAcqMeth T015SIMMInternal StandardsE TInternal StandardsE TQLonResponseContS3Haphthalene0002250II D(#) = qualifier out of range (m) = manualintegration (+) = signals summed

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

# **APPENDIX H**

# DATA VALIDATION REPORT FOR AMBIENT AIR SAMPLES (JUNE 2015)

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix H Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

#### DATA VALIDATION REPORT Ambient Air Sampling (June 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina

#### Introduction

Air samples were collected at the CTS of Asheville, Inc. Superfund Site (Site) in Asheville, North Carolina in June 2015 and submitted for off-site laboratory analysis. Samples were analyzed by ALS Environmental in Simi Valley, California. Results were reported in Sample Delivery Group (SDG): P1502595.

A listing of samples included in this Data Validation Report is presented in Table H.1. A summary of the analytical results is presented in Table H.2. Samples were analyzed by the following method:

• Volatile organic compounds (VOCs) by USEPA Method TO-15 (project list only)

Deliverables for the off-site laboratory analyses included a Level IV data package.

Data validation was completed based on procedures in the USEPA Region 4 Data Validation Standard Operating Procedures (Region 4 SOP) for Organic Analysis (USEPA, 2008), in conjunction with the laboratory's Method TO-15 Selective Ion Monitoring (SIM) SOP (ALS, 2014) and the CTS of Asheville, Inc. Superfund Site Quality Assurance Project Plan (QAPP), Revision 4 (Amec, 2014). Quality control limits listed in the Region 4 SOP and QAPP were used during the data evaluation. The validation included the following evaluations:

- Lab report narrative
- Sample collection and chain of custody
- Data package completeness
- Holding times
- Quality control data (blanks, instrument tune and calibrations, lab control samples, duplicates, and surrogate recovery)
- Internal standard response and retention time
- Data transcription
- Calculations
- Electronic data reporting
- Data qualification

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

All associated quality control measurements were within control limits, and sample data were not qualified as a result of the validation. Results are interpreted to be usable as reported by the laboratory.

CTS of Asheville, Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix H Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

#### Data Validation Results

Several data validation observations are discussed below.

#### Field Duplicates

A summary of field duplicate results is presented in Table H.3. Good agreement was observed for all target analytes in field duplicate pair AAS-01/FD-25. Relative percent differences (RPDs) between results were less than the QAPP specified control limit of 50.

#### Sample Reporting

A subset of project-specific TO-15 compounds (cis-1,2-dichloroethene, trans-1,2-dichloroethene, trichloroethene, and vinyl chloride) was reported in the data set.

#### References

- Amec, 2014. "Vapor Intrusion Assessment Plan: Quality Assurance Project Plan"; Revision 4, March 14, 2014.
- USEPA Region 4, 2008. "Data Validation Standard Operating Procedures for Organic Analysis" Science and Ecosystem Support Division, Quality Assurance Section, MTSB, Revision 3.1.

Data Validator: Julie Ricardi

Julie Rinandi

Date: 7/22/2015

Reviewed by Chris Ricardi, NRCC-EAC

Date: 7/23/2015

# TABLE H.1 Data Validation Report: Sample Summary (June 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Location	Sample ID	SDG	Sample Date	Lab Sample ID
AAS-01	AAS-01	P1502595	06/25/15	P1502595-003
AAS-01	FD-25	P1502595	06/25/15	P1502595-002
AAS-16	AAS-16	P1502595	06/25/15	P1502595-004
QC	TB-10	P1502595	06/25/15	P1502595-001

Prepared By: WCG 7/22/15 Checked By: JAR 7/22/15

# TABLE H.2 Data Validation Report: Summary of Results (June 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Location		AAS-01		AAS-01		AAS-16		QC	
Sample Date		6/25/2015		6/25/2015		6/25/2015		6/25/2015	
Field Sample ID		AAS-01		FD-25		AAS-16		TB-10	
Method	Parameter	Result	Qual	Result	Qual	Result	Qual	Result	Qual
TO-15 SIM	cis-1,2-Dichloroethene	1.6		1.5		0.59		0.025	U
TO-15 SIM	trans-1,2-Dichloroethene	0.016	J	0.015	J	0.035	U	0.025	U
TO-15 SIM	Trichloroethene	9.8		9.7		3.7		0.025	U
TO-15 SIM	Vinyl chloride	0.11		0.11		0.038		0.025	U

#### Notes:

1. Concentrations are in micrograms per cubic meter (µg/m³).

2. U - constituent not detected at the reporting limit.

3. J - concentration is estimated.

Prepared By: WCG 7/22/15 Checked By: JAR 7/22/15

# TABLE H.3 Data Validation Report: Field Duplicate RPD Results (June 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

		Field Sample		Duplicate		
Sample ID	Constituent	Result	Flag	Sample Result	Flag	RPD (%)
AAS-01/FD-25	cis-1,2-Dichloroethene	1.6		1.5		6
AAS-01/FD-25	trans-1,2-Dichloroethene	0.016	J	0.015	J	NC
AAS-01/FD-25	Trichloroethene	9.8		9.7		1
AAS-01/FD-25	Vinyl chloride	0.11		0.11		0

#### Notes:

1. Concentrations are in micrograms per cubic meter (μg/m³).

2. RPD - relative percent difference (between duplicate results).

3. U - constituent not detected at the reported detection limit.

4. J - estimated value

5. NC - not calculated; results non-detect or below RL

Prepared By: JAR 7/22/15 Checked By: CSR 7/23/15 CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

# **APPENDIX I**

# DATA VALIDATION REPORT FOR AMBIENT AIR SAMPLES (AUGUST 2015)

CTS of Asheville. Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix I Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

#### DATA VALIDATION REPORT Ambient Air Sampling (August 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina

#### Introduction

Air samples were collected at the CTS of Asheville, Inc. Superfund Site (Site) in Asheville, North Carolina in August 2015 and submitted for off-site laboratory analysis. Samples were analyzed by ALS Environmental in Simi Valley, California. Results were reported in Sample Delivery Group (SDG): P1503213.

A listing of samples included in this Data Validation Report is presented in Table I.1. A summary of the analytical results is presented in Table I.2. Samples were analyzed by the following method:

• Volatile organic compounds (VOCs) by USEPA Method TO-15 (project list only)

Deliverables for the off-site laboratory analyses included a Level IV data package.

Data validation was completed based on procedures in the USEPA Region 4 Data Validation Standard Operating Procedures (Region 4 SOP) for Organic Analysis (USEPA, 2008), in conjunction with the laboratory's Method TO-15 Selective Ion Monitoring (SIM) SOP (ALS, 2014) and the CTS of Asheville, Inc. Superfund Site Quality Assurance Project Plan (QAPP), Revision 4 (Amec, 2014). Quality control limits listed in the Region 4 SOP and QAPP were used during the data evaluation. The validation included the following evaluations:

- Lab report narrative
- Sample collection and chain of custody
- Data package completeness
- Holding times
- Quality control data (blanks, instrument tune and calibrations, lab control samples, duplicates, and surrogate recovery)
- Internal standard response and retention time
- Data transcription
- Calculations
- Electronic data reporting
- Data qualification

The following laboratory or data validation qualifiers are used in the final data presentation.

U = target analyte is not detected at the reported detection limit

J = concentration is estimated

Results are interpreted to be usable as reported by the laboratory unless discussed in the following sections.

CTS of Asheville, Inc. Superfund Site Final Western Area Remedial Investigation Report: Appendix I Amec Foster Wheeler Project 6252-12-0006 December 11, 2015

#### Data Validation Results

Several data validation observations are discussed below.

#### Continuing Calibration

In the continuing calibration standard associated with all samples, the percent difference between the initial calibration average relative response factor (RRF) and continuing calibration RRF for vinyl chloride (20.4) was above the control limit of 20. Positive and non-detected results for vinyl chloride in all samples were qualified estimated (J/UJ). Qualified results are summarized in Table I.3 and were assigned qualification reason code CCV%D.

#### Field Duplicates

A summary of field duplicate results is presented in Table I.4. Good agreement was observed for all target analytes in field duplicate pair AAS-19/FD-27. Relative percent differences (RPDs) between results were less than the QAPP specified control limit of 50.

#### Sample Reporting

A subset of project-specific TO-15 compounds (cis-1,2-dichloroethene, trans-1,2-dichloroethene, trichloroethene, and vinyl chloride) was reported in the data set.

#### References

- Amec, 2012. "Vapor Intrusion Assessment Plan: Quality Assurance Project Plan"; Revision 2, September 11, 2012.
- USEPA Region 4, 2008. "Data Validation Standard Operating Procedures for Organic Analysis" Science and Ecosystem Support Division, Quality Assurance Section, MTSB, Revision 3.1.

Data Validator: Julie Ricardi

Julie Rinandi

Date: 9/11/2015

Reviewed by Chris Ricardi, NRCC-EAC

Date: 9/23/2015

# TABLE I.1 Data Validation Report: Sample Summary (August 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Location	Sample ID	SDG	Sample Date	Lab Sample ID
AAS-17	AAS-17	P1503213	08/05/15	P1503213-003
AAS-18	AAS-18	P1503213	08/05/15	P1503213-004
AAS-19	AAS-19	P1503213	08/05/15	P1503213-005
AAS-19	FD-27	P1503213	08/05/15	P1503213-002
QC	TB-13	P1503213	08/05/15	P1503213-001

Prepared By: WCG 9/10/15 Checked By: JAR 9/10/15

# TABLE I.2 Data Validation Report: Summary of Results (August 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Sample Location		AAS-17		AAS-18		AAS-19		AAS-19		QC		
Sample Date		08/05/15		08/0	08/05/15		08/05/15		08/05/15		08/05/15	
Field Sample ID		AAS	AS-17 AAS-18		AAS-19		FD-27		TB-13			
Method	Parameter	Result	Qual	Result	Qual	Result	Qual	Result	Qual	Result	Qual	
TO-15 SIM	cis-1,2-Dichloroethene	2.7		0.33		0.94		0.7		0.025	U	
TO-15 SIM	trans-1,2-Dichloroethene	0.034	J	0.038	U	0.023	J	0.011	J	0.025	U	
TO-15 SIM	Trichloroethene	13		0.61		8		6.6		0.025	U	
TO-15 SIM	Vinyl chloride	0.13	J	0.038	UJ	0.058	J	0.045	J	0.025	U	

#### Notes:

1. Concentrations are in micrograms per cubic meter (µg/m³).

2. U - constituent not detected at the reporting limit.

3. J - concentration is estimated.

Prepared By: WCG9/10/15 Checked By: JAR 9/10/15

#### TABLE I.3 Data Validation Report: Data Qualification Actions (August 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

Method	Lab Sample ID	Sample Date	Field Sample ID	Parameter	Laboratory Result	Laboratory Qualifier	Final Result	Final Qualifier	Val Reason Code
TO-15 SIM	P1503213-003	08/05/15	AAS-17	Vinyl chloride	0.13		0.13	J	CCV%D
TO-15 SIM	P1503213-004	08/05/15	AAS-18	Vinyl chloride		U	0.038	UJ	CCV%D
TO-15 SIM	P1503213-005	08/05/15	AAS-19	Vinyl chloride	0.058		0.058	J	CCV%D
TO-15 SIM	P1503213-002	08/05/15	FD-27	Vinyl chloride	0.045		0.045	J	CCV%D

#### Notes:

1. Concentrations are in micrograms per cubic meter (µg/m).

2. * - Refer to laboratory analytical reports for laboratory qualifiers.

#### Validation Reason Code

CCV%D = Continuing calibration %D exceeds control limit

Prepared By: WCG 9/10/15 Checked By: JAR 9/10/15

# TABLE I.4 Data Validation Report: Field Duplicate RPD Results (August 2015) CTS of Asheville, Inc. Superfund Site Asheville, North Carolina Amec Foster Wheeler Project 6252-12-0006

		Field Sample		Duplicate		
Sample ID	Constituent	Result	Flag	Sample Result	Flag	RPD (%)
AAS-19/FD-27	cis-1,2-Dichloroethene	0.94		0.70		29
AAS-19/FD-27	trans-1,2-Dichloroethene	0.023	J	0.011	J	NC
AAS-19/FD-27	Trichloroethene	8.0		6.6		19
AAS-19/FD-27	Vinyl chloride	0.058	J	0.045	J	25

#### Notes:

1. Concentrations are in micrograms per cubic meter ( $\mu$ g/m³).

2. RPD - relative percent difference (between duplicate results).

3. U - constituent not detected at the reported detection limit.

4. J - estimated value

5. NC - not calculated; results non-detect or below RL

Prepared By: JAR 9/9/15 Checked By: CSR 9/23/15