

993 Old Eagle School Road, Suite 408 Wayne, Pennsylvania 19087 tel: 610 293-0450 fax: 610 293-1920

February 25, 2011

Ms. Kristine Matzko Remedial Project Manager (3HS21) U.S. Environmental Protection Agency 1650 Arch Street Philadelphia, PA 19103-2029

CONTRACT NO.:

EP-S3-07-06

WORK ASSIGNMENT:

029-RICO-A3EN

DOCUMENT NO.:

3330-029-EO-CORR-01478

SUBJECT:

Preliminary Phase 2 Groundwater Report

Borit Asbestos Superfund Site, Operable Unit 1, Ambler, PA

(DCN: 3330-029-RT-OTHR-01479)

Dear Ms. Matzko:

CDM Federal Programs Corporation (CDM) is pleased to submit this brief Preliminary Phase 2 Groundwater Report that presents data tables and figures summarizing only the results of the Operable Unit 1 (OU-1) Phase 2 field investigation for groundwater and dioxins in soil at the Borit Asbestos Site (the Site) in Ambler, PA. EPA authorized CDM to prepare this Preliminary Groundwater Report to support EPA's scoping process for additional groundwater field investigation at the Site. EPA has not yet authorized CDM's preparation of the remedial investigation (RI) report, the feasibility study (FS) report, the human health risk assessment (HHRA), or the screening level ecological risk assessment (SLERA) for this Site. CDM understands that these detailed reports will be prepared after all of the results from the Phase 2 field investigation are available. This Preliminary Phase 2 Groundwater Report was prepared under work assignment 029-RICO-A3EN of CDM's contract number EP-S3-07-06 with EPA Region 3.

If you have any questions or comments regarding this submittal, please feel free to call me at (717) 437-3701. We look forward to meeting with you at your earliest convenience to discuss the Phase 2 groundwater results and determine the approach for additional groundwater field investigation.

Very truly yours,

Lucinda J. Pype Project Manager

CDM

J. Tralie, EPA Project Officer (letter only)
J. Knapp, CDM Program Manager
V. Aririguzo, CDM
CDM Document Control cc:

Project File

U.S. Environmental Protection Agency Region III

Borit Asbestos Superfund Site Operable Unit 1 Ambler, Pennsylvania

February 25, 2011

Preliminary Phase 2 Groundwater Report

Response Action Contract for Remedial Planning and Oversight Activities at Sites in EPA Region III

U.S. EPA Contract No. EP-S3-07-06

Preliminary Phase 2 Groundwater Report for Borit Asbestos Superfund Site Operable Unit 1 Ambler, Pennsylvania

Work Assignment No.: 029-RICO-A3EN
Document Control No.: 3330-029-RT-OTHR-01479

February 25, 2011

Prepared for: U.S. Environmental Protection Agency Region III 1650 Arch Street Philadelphia, Pennsylvania 19103

Prepared by: **CDM**

993 Old Eagle School Road Suite 408 Wayne, Pennsylvania 19087

Contents

Section 1	Scope of the Phase 2 Field Investigation and Analysis	
Section 2	Phase 2 Field Investigation Summary	
2.1	Dioxins Sampling	2-1
2.2	Bedrock Well Installation	2-1
2.3	Bedrock Well Groundwater Sampling	2-2
2.4	January 2011 Water Level Elevation Survey	
Section 3	Phase 2 Analytical and Hydrological Study Results	
3.1	Dioxins in Soil Summary	3-1
3.2	Groundwater Summary	
	3.2.1 Analytical Results	
	3.2.2 Groundwater Occurrence and Potentiometric Surface	
3.3	Quality Control Summary	3-2
3.4	Deviations from the SMP	
Section 4	Recommendations for Additional Field Investigation	
ables	ry of Manitorina Well and Diezometer Installations	

Ta

- 2-1 Summary of Monitoring Well and Piezometer Installations
- 2-2 Water Quality Parameters
- 3-1 Dioxins in Soil
- 3-2 Dioxins in Quality Control Samples
- 3-3 Volatile Organics in Groundwater
- 3-4 Semivolatile Organics in Groundwater
- 3-5 Pesticides/PCBs in Groundwater
- 3-6 Dissolved Inorganics in Groundwater
- 3-7 Total Inorganics in Groundwater
- 3-8 Asbestos in Groundwater

Figures

- 1-1 Site Map
- 2-1 Bedrock Monitoring Wells and Dioxin Soil Sample Location Map
- 2-2 Potentiometric Surface Map January 2011
- 3-1 Compounds Exceeding Dioxin Screening Levels at Former Fire Training Area and Slag Area
- 3-2 Compounds Exceeding Groundwater Screening Levels in the Bedrock Aquifer

Appendices

Appendix A - Phase 2 Hand Auger Table, Boring Logs and Monitoring Well Completion Reports

Section 1 Scope of the Phase 2 Field Investigation and Analysis

CDM Federal Programs Corporation (CDM) is performing a Remedial Investigation (RI) of the Borit Asbestos Superfund Site Operable Unit 1 (OU-1) in Ambler Pennsylvania under work assignment 029-RICO-A3EN of CDM's RAC 2 contract with EPA Region III (contract EP-S3-07-06). Phase 1 of the RI included an investigation of the nature and extent of soil, sediment, and surface water contamination and air monitoring at all three parcels. Phase 2 includes additional soil samples, activity-based sampling (ABS) (to be completed in 2011), a groundwater investigation, and ambient air monitoring at offsite locations. A Phase 1 data evaluation report submitted in 2010 summarizes Phase 1 field investigations and analytical data collected in late 2009 and early 2010. A Phase 2 data evaluation report will be submitted upon completion of Phase 2 field activities, including activity-based sampling (ABS) which is expected to be conducted in late spring or early summer 2011. EPA authorized CDM to prepare this preliminary Phase 2 groundwater report to support EPA's scoping process for any additional groundwater field investigations. Once remedial investigations have been completed, a RI Report summarizing all field phases will be prepared.

The scope of the Phase 2 field investigation activities was defined in the *Revised Final Borit Asbestos Superfund Site Phase* 2 *Field Investigation Planning Guide,* dated August 4, 2010 by CDM. Sampling activities were performed in accordance with the Final Site Management Plan (SMP) (*Final Site Management Plan for Remedial Investigation, Phase 2 Borit Asbestos Superfund Site, Operable Unit 1 Ambler, Pennsylvania, September 24, 2010 by CDM).* Health and safety procedures were followed according to CDM's Health and Safety Plan in Appendix B of the SMP.

Phase 2 field investigation activities were conducted from October 4 through December 3. In addition on the 14 and 15 of each month starting in November ambient air sampling is conducted. This air sampling is ongoing. This report specifically describes the Phase 2 groundwater sampling and results; however, for clarity a complete list of the Phase 2 field components are provided:

- Surface soil samples (on August 17, 2010) collected from four locations (APSS-01, PKSS-01, PKSS-02, RVSS-01) along three parcels where surface runoff is believed to exit the Site between the fence line and the roadway were submitted for asbestos analysis;
- Surface soil samples were collected (on August 17, 2010) at the Park from six previously-sampled composite soil sample locations (PKSB-06, PKSB-08, PKSB-10, PKSB-12, PKSB-29 and PKSB-40) were submitted for asbestos analysis. These locations were sampled because asbestos levels greater than 12% were found in the cover waste interface layer;
- Surface soil samples were collected (on August 17, 2010) at the Park at five locations (CKSS-01 through CKSS-05) along the stream bank cap along Wissahickon Creek and Rose Valley Creek and were submitted for asbestos analysis;

- Surface soil samples collected (on October 4, 2010) at the nearby Kid's Park (KPSS-01A and KPSS-02A) and were submitted for asbestos analysis;
- A visual investigation (on October 5 and 6, 2010) along the banks of the Wissahickon near walking trails was performed to evaluate the extent of asbestos-containing material (ACM) washed downstream;
- Surface and subsurface soil samples collected (on October 7, 2010) at five locations at three distinct depth intervals (five from 0-3 inches, five from 0-6 inches, and five from 6-24 inches and one duplicate sample) at the former fire training area at the Asbestos Pile (APFT-SS01-A, APFT-SS01-B, APFT-SS01-C, APFT-SS02-A, APFT-SS02-B, APFT-SS02-C, APFT-SS03-A, APFT-SS03-B, APFT-SS03-C, APFT-SS04-A, APFT-SS04-B, APFT-SS04-C, APFT-SS05-A, APFT-SS05-B, and APFT-SS05-C) were submitted for EPA Contract Laboratory Program (CLP) target compound list (TCL) semi-volatile organic compounds (SVOCs) and dioxin analyses;
- Surface and subsurface soil samples collected (on October 7, 2010) at two locations at three distinct depth intervals (two from 0 to 3 inches, two from 0 to 6 inches, and two from 6 to 24 inches) at the slag area at the Asbestos Pile (APSL-SS01-A, APSL-SS01-B, APSL-SS01-C, APSL-SS02-A, APSL-SS02-B, and APSL-SS02-C) were submitted for EPA CLP TCL SVOCs, and dioxins, CLP target analyte list (TAL) metals, and asbestos analyses;
- Seep water samples collected (on October 12, 2010) at one location on the Reservoir parcel (RV-SPSW-01 and a duplicate sample RV-SPSWD-01) were submitted for EPA CLP TCL volatile organic compounds (VOCs), SVOCs, polychlorinated biphenyls (PCBs), and pesticides, CLP TAL metals, and asbestos analyses;
- Surface soil samples collected (on October 12 and 13, 2010) from eight residential yards (RS01-ABSS-A, RS02-ABSS-A, RS03-ABSS-A, RS04-ABSS-A, RS05-ABSS-A, RS06-ABSS-A, RS07-ABSS-A, RS08-ABSS-A) were submitted for asbestos analysis. RS01 through RS05 were collected at properties along Maple Street, RS06 and RS07 were collected at properties along Mercer Hill Drive, and RS08 was collected from a property along Betsy Lane;
- ABS on the Park, Reservoir, Asbestos Pile, walking trails, and at select residential properties was not completed during the initial Phase 2 investigation in 2010 and is rescheduled for late spring or early summer 2011. One raking scenario was completed (on October 18, 2010) at the Park at Phase 1 location PKSB-10 and 1 adult sample (worn at the shoulder and labeled PK05-ABRK01-H), 1 child sample (worn at the hip and labeled PK05-ABRK02-H), and three perimeter air samples (PK05-PA01-H, PK05-PA02-H, and PK05-PA03-H) were submitted for asbestos analysis by TEM method ISO 10312;
- Surface soil samples collected (on October 18 and 19, 2010) from seven locations (PK-ABSS01-A (i.e. CKSB-07), PK-ABSS02-A (i.e. PKSS-01), PK-ABSS03-A (i.e. PKSB-06), PK-ABSS04-A (i.e. PKSB-08), PK-ABSS05-A (i.e. PKSB-10), PK-ABSS06-A (i.e. PKSB-40), and PK-ABSS07-A (i.e. CKSS-01)) at the Park parcel were submitted for asbestos analysis. Sample numbers shown in brackets are Phase 1 or early Phase 2 sample locations that were chosen for ABS due to elevated asbestos concentrations in surface soil;

- Site wide utility clearing (on October 19, 2010) of all proposed boring locations in the Park, Asbestos Pile and Reservoir berm (along roadway between Asbestos Pile and Reservoir) and floodplain areas;
- Subsurface soil sampling (on October 20 through November 1, 2010) was performed at each monitoring well location approximately 3 inches below the waste and native layer interface (PKMW01-SB12-12.25, PKMW02-SB22-22.25, RVMW03-SB2.25-2.5, APMW04-SB16-16.25, APMW05-SB18.5-18.75, APMW06-SB9.75-10) and samples were submitted for asbestos analysis;
- Monitoring wells were installed on all three parcels (on October 26 through November 11, 2010). Two monitoring wells (PKMW-01 and PKMW-02) were installed at the Park with PKMW-01 drilled deeper and renamed PKMW-01A, two monitoring wells (RVMW-03 and RVMW-04) were installed at the Reservoir, and two monitoring wells (APMW-05 and APMW-06) were installed at the Asbestos Pile.
- Groundwater samples were collected from all monitoring wells (November 8 through 15, 2010): 7 environmental and 1 duplicate groundwater sample were submitted for EPA CLP TCL VOCs, SVOCs, PCBs, and pesticides, CLP TAL metals, and asbestos analyses;
- A geotechnical investigation was performed to evaluate slope stability and settlement for use in the Feasibility Study (FS). Three geotechnical boreholes were drilled at the Park (on November 4 through 5, 2010) and six geotechnical boreholes were drilled at the Asbestos Pile (on November 8 through 10, 2010). Soil samples were submitted for the following analysis (quantity of samples submitted in parentheses): grain size (20), atterberg limits (20), percent moisture (20), specific gravity (9), shear strength (5), and consolidation (5);
- Piezometers were installed in three of the geotechnical boreholes (GT-6, GT-7, and GT-8) at the Asbestos Pile; and
- Hydrologic studies (comprehensive round of measurements at monitoring wells, piezometers and staff gauges) were conducted at the Site parcels, reservoir, and creeks. A partial round of measurements were collected in November during groundwater sampling prior to installing staff gauges and Phase 2 piezometers, and a full round was collected in January 2011).

The three Borit parcels and the nearby former Ambler Asbestos Superfund Site are shown on **Figure 1-1**.

Section 2 Phase 2 Field Investigation Summary

In this preliminary Phase 2 Report, only the soil sampling for dioxin analysis and the groundwater investigation are described. Although primarily a groundwater data report, the soil dioxin data from areas where burning has been documented or was potentially conducted, is reported as well. These dioxin data were not presented in the Phase 1 report, and dioxin may be determined by EPA to be a contaminant of concern at the Site. Presenting the data in this report provides EPA an opportunity to evaluate the need to collect additional groundwater samples near the former fire training and slag areas for dioxin analysis. A full description of other Phase 2 activities will be provided in the full Phase 2 Report to be prepared following ABS.

2.1 Dioxin Sampling

Following the Phase 1 Data Evaluation Report, EPA decided to analyze soil from the former fire training and slag areas at the Asbestos Pile for dioxins due to the burning which took place as part of the fire training activities and the unknown origin of the slag material. Both of these areas are located in the northeastern corner of the Asbestos Pile near the Maple Street gate.

Surface and subsurface soil samples were collected at five locations at three distinct depth intervals (five from 0 to 3 inches, five from 0 to 6 inches, and five from 6 to 24 inches and one duplicate sample) at the former fire training area at the Asbestos Pile. Samples from each depth interval were submitted for dioxin analysis as well as other analysis noted in Section 1.

Surface and subsurface soil samples were collected at two locations at three distinct depth intervals (two from 0 to 3 inches, two from 0 to 6 inches, and two from 6 to 24 inches) at the slag area at the Asbestos Pile. Samples from each depth interval were submitted for dioxin analysis as well as other analysis noted in Section 1.

The 0 to 3 inch samples, designated as "A", were collected for use in the human health risk assessment and the 0 to 6 inch samples, designated as "B" and 6 to 24 inch samples, designated as "C" were collected for use in the ecological risk assessment. A figure depicting where these samples were collected is shown on **Figure 2-1**. A table showing sampling depths, environmental samples collected, and observations is included in **Appendix A**.

In accordance with the Final SMP, a duplicate soil sample and an aqueous rinsate blank were collected during dioxin sampling.

2.2 Bedrock Well Installation

CDM oversaw bedrock drilling at the Site. Two bedrock wells were drilled and installed at each of the three Site parcels.

• MW-01 was installed in the northern side of the Park, along the access road. This well was initially drilled to 53 feet; however, during development elevated conductivity and

pH indicated that the well was likely impacted by the bentonite/cement grout used as a seal above the bentonite plug. It is believed that the fractured rock allowed the grout to travel through the fractures and back into the well screen. The conductivity and the pH at the well were elevated enforcing this theory. CDM had several telephone calls with EPA discussing the situation and a conclusion was made to overdrill MW-01 and try to remove the bentonite grout and install a water producing well. MW-01 was re-drilled to a depth of 73 feet and is referred to as MW-01A. Prior to redrilling MW-01 a groundwater sample was collected and analyzed.

- MW-02 was installed along the access road adjacent to the Wissahickon Creek on the southern side of the Site to a depth of 63 feet.
- MW-03 was installed in the floodplain between the Reservoir berm and Rose Valley Creek to a depth of 53 feet.
- MW-04 was installed along the access road between the Asbestos Pile and Reservoir to a depth of 100 feet.
- MW-05 was installed in the southwestern corner of the Asbestos Pile near APPZ-02 and APPZ-03 to a depth of 64 feet.
- MW-06 was installed in the northeastern corner of the Asbestos Pile site near the intersection of Maple Street and Tannery Run. MW-6 was installed to a depth of 53 feet.

All bedrock monitoring wells were subsequently developed. CDM acquired approval from EPA's hydrogeologist for the Site to perform sampling 72 hours following the completion of monitoring well development. Bedrock monitoring well locations are presented on **Figure 2-1**. **Table 2-1** provides a list of monitoring wells and piezometers installed during Phase 2 and their well construction information. Piezometers were not sampled during Phase 2 and were installed to obtain more thorough water level elevations across the Asbestos Pile for the geotechnical investigation. This investigation as well as other investigations noted in Section 1 will be discussed during the Phase 2 Data Evaluation Report. Boring and well construction logs for the bedrock wells are included in **Appendix A**.

Personal air samplers, which were worn at all times by all CDM and subcontractor personnel within the exclusion zone during intrusive activities, were collected and submitted for laboratory analysis daily. Perimeter air samples were collected daily during intrusive activities and submitted for analysis the first two days of intrusive work at each parcel. These results will be included in the Phase 2 Data Evaluation Report.

2.3 Bedrock Well Groundwater Sampling

Between November 8 and November 15, 2010 all six bedrock groundwater wells were sampled (MW-01 through MW-06), with MW-01 being sampled twice once at its original shallower depth and once at the final depth, relabeled MW-01A. All bedrock monitoring wells and Phase 1 piezometers were gauged for water levels prior to groundwater sampling. Phase 2 piezometers and staff gauges were not completely installed during the groundwater sampling event in November and therefore were not gauged at that time. Groundwater sampling was conducted according to CDM's Final SMP. A clean grundfos pump and dedicated tubing were lowered to midway along the well screen and samples were collected after three well volumes were purged and groundwater quality parameters were stabilized. The exception was at MW-01 where the well continued to purge dry and a sample was collected prior to three well

volumes purged. MW-01 was later redrilled and labeled MW-01A. Water quality parameters were collected at each location and final water quality parameters at each well are presented on Table 2-1. Samples were submitted, and analyzed for EPA CLP TCL VOCs, SVOCs, PCBs, and pesticides, CLP TAL metals, and asbestos analyses. Aqueous investigative-derived waste (IDW) was placed in a water tank located at the Site. Disposable materials used to sample each well were double bagged and placed into a roll-off for disposal at an asbestos landfill.

In accordance with the Final SMP, a duplicate water sample was collected for all parameters, except asbestos (discussed in Section 3.4), four aqueous field blanks and 1 aqueous rinsate blank were collected for all parameters. In addition four trip blanks were submitted with VOC shipments and analyzed for VOCs.

2.4 January 2011 Water Level Elevation Survey

In January 2011, CDM staff performed a water level elevation survey across the Site measuring water levels in bedrock wells, overburden piezometers, and staff gauges. Figure 2-2 presents the groundwater and surface water elevations and potentiometric lines. Down hole equipment was decontaminated between holes in accordance with CDM's Final SMP. Overburden piezometer well construction logs GT-06, GT-07, and GT-08 are included in Appendix A. Geotechnical boring logs and a description of the geotechnical investigation will be included in the Phase 2 Data Evaluation Report.

Section 3 Phase 2 Analytical and Hydrological Study Results

3.1 Dioxins in Soil Summary

As part of the Phase 2 field investigation, soil samples were collected at three different depths at seven locations total at the Asbestos Pile. Five locations were collected in the former fire training area and three locations were collected in the slag area. Dioxin total toxic equivalent (TEQ) values exceeding the RSL for 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)(4.5 nanograms per kilogram (ng/kg)) are reported on **Figure 3-1**. All results are reported on **Table 3-1 and 3-2**. Dioxin total TEQ values ranged from 2.73 to 46.15 ng/kg also known as parts per trillion (ppt). Twenty samples out of 22 sample results (91%) exceeded the RSL for 2,3,7,8 TCDD. The rinsate blank for dioxins is reported on **Table 3-2**. Data quality will be discussed in the RI Report.

3.2 Groundwater Summary

The groundwater analytical results are presented in this section along with a description for the groundwater potentiometric surface and groundwater flow.

3.2.1 Analytical Results

As part of the Phase 2 field investigation, groundwater samples were collected from all six bedrock wells, with MW-01 being sampled twice, once at its shallower depth of 53 feet and once at its final depth of 73 feet. All groundwater analytical data were compared to RSLs and, in the case of asbestos the MCL. RSLs are provided by Oak Ridge National Laboratory (ORNL) and last updated in November 2010. Groundwater non-carcinogen RSLs were adjusted to a hazard quotient of 0.1 to account for any additive effects.

Groundwater compounds exceeding RSLs are summarized below and reported on **Figure 3-2**. Summary tables showing whether groundwater sampled at each monitoring well during Phase 2 exceeds RSLs for organics and inorganics and MCL for asbestos are presented on **Tables 3-3 through 3-8**.

Both filtered and unfiltered samples were collected for analysis of inorganic constituents (metals). Analysis of filtered samples provide the concentration of dissolved constituents and analysis of unfiltered samples provide the total (dissolved and undissolved) concentration of the constituent. Only dissolved inorganics (metals) concentrations are reported on the figure; however, for completeness total inorganics concentrations exceeding RSLs are included in the list below. No samples had asbestos results exceeding the MCL, and only one well (MW-04, unfiltered) had a detected level of asbestos, 0.51 million fibers per liter (MFL) versus the MCL which is 7 MFL.

- Carbon tetrachloride was detected above the RSL in one well (MW-02);
- Tetrachloroethene was detected above the RSL in one well (MW-02);

- Bis (2-ethylhexyl)phthalate was detected above the RSL in three wells (MW-02, 05 and 06);
- Vanadium was detected above the RSL in one well (MW-02);
- Arsenic was detected above the RSL in three wells (MW-03, 05 and 06);
- Manganese was detected above the RSL in four wells (MW-03, 04, 05 and 06).

It should be noted that bis(2-ethylhexyl)phthalate was detected above the RSL in the field blank, therefore the presence of this compound in groundwater samples may not be due to Site contaminants. This will be further evaluated in the RI Report. Mercury was also detected slightly above the RSL in three samples; however because it was detected in the rinsate blank all values are flagged "B" indicating that the analyte was not detected substantially above the level reported in laboratory or field blanks. Methylene chloride was detected in all samples including field blanks, trip blanks, and a rinsate blank; therefore, all results are flagged "B", same definition as described previously. All quality assurance (QA) samples are reported on **Tables 3-3 through 3-8**. Data quality will be discussed in the RI Report.

3.2.2 Groundwater Occurrence and Potentiometric Surface

The shallow groundwater potentiometric surface mapped from water levels collected in January 2011 is shown in **Figure 2-2**. Generally, the shallow groundwater is found in the fractured upper bedrock, and discontinuous occurrences of groundwater are found in the overburden material near the Wissahickon Creek. Based on the horizontal gradient, shallow groundwater flows from north to south across the Park Parcel, discharging to Wissahickon Creek. Locally, gradients indicate a component of site groundwater may be discharging to Rose Valley Creek as well. However, groundwater and surface water levels at Tannery Run suggest groundwater does not discharge to this creek.

As indicated by the elevations of the potentiometric surface in PKPZ-02 (overburden piezometer) and MW-02 (bedrock well), the vertical hydraulic gradient is downward and therefore, flow would be expected to be from the overburden into the fractured upper bedrock. Similarly, groundwater found within the unconsolidated material of the Asbestos Pile is discontinuous and may be described as perched water. If a pathway exists, this water would be expected to flow downward into the fractured upper bedrock.

3.3 Quality Control Summary

Soil and groundwater samples were collected in accordance with procedures specified in the SMP. Quality control samples were collected and tracked as part of the Phase 2 field investigation and will be discussed in detail in the Remedial Investigation Report for OU-1. All data quality objective (DQO)-definitive data collected during Phase 2 was validated by EPA Region III Environmental Services Assistance Team (ESAT) using EPA Contract Laboratory Program (CLP) data validation procedures. The inorganic analytical data validation was performed according to Region III Modifications to the National Functional Guidelines for Inorganic Data Review, Level IM2. The organic analytical data validation was performed according to Region III Modifications to the National Functional Guidelines for Low Concentration Organic Data Review, Level M3. Definitions for the qualifier flags used by ESAT to qualify the data are provided as footnotes on Tables. A full discussion of validation results will be included in the RI Report for OU-1.

3.4 Deviations from the SMP

Per the EPA Work Assignment Manager (WAM), on October 7, no further duplicates for asbestos for any media were collected.

All other deviations from the SMP, related to other Phase 2 field activities will be discussed in the Phase 2 Data Evaluation Report.

Section 4 Recommendations for Additional Field Investigation

At the request of the EPA WAM, CDM is not including any recommendations for additional field investigations at this time.

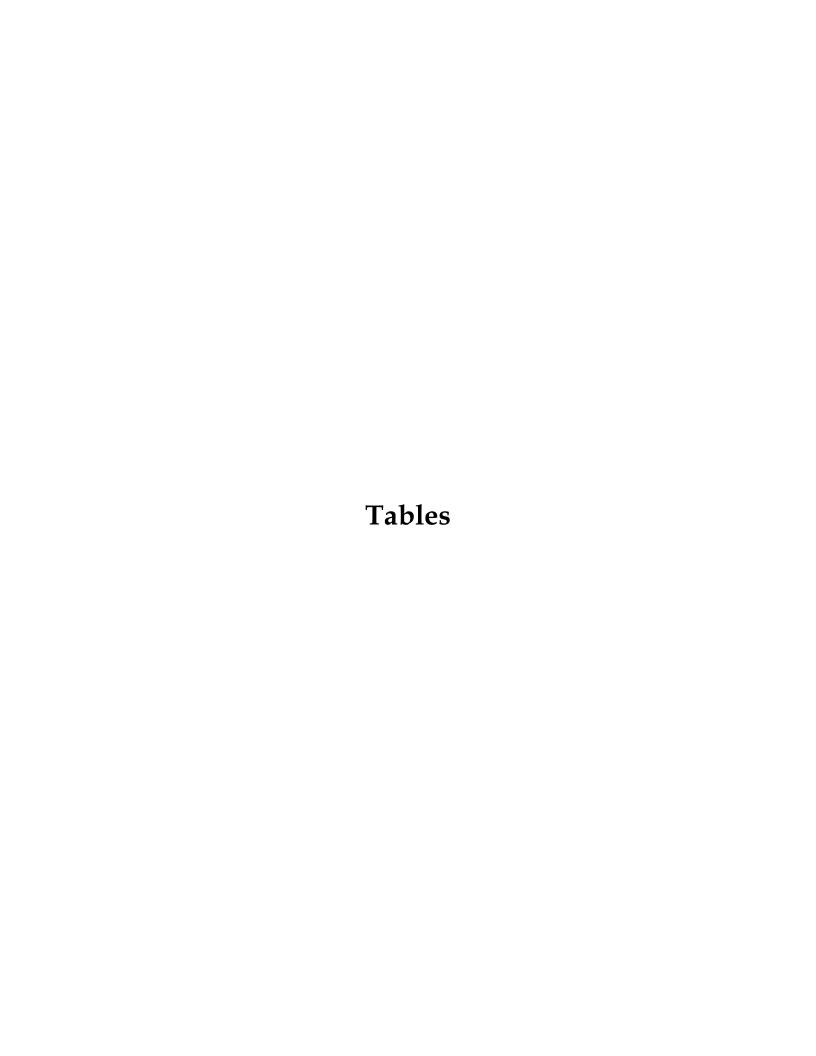


Table 2-1
Summary of Monitoring Well and Piezometer Installations
Borit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

		Depth	Total Depth
Location	Well ID	(feet bgs)	(feet bgs)
		Cement/Bentonite Grout: 0 - 55	
	MW-01A	Bentonite Seal: 55 - 60	73
		Sand Pack: 60 - 73	
Park		Screen Interval: 63 - 73	
		Cement/Bentonite Grout: 0 - 49	
	MW-02	Bentonite Seal: 49 - 51	63
		Sand Pack: 51 - 63	
		Screen Interval: 53 - 63	
		Cement/Bentonite Grout: 0 - 39	
	MW-03	Bentonite Seal: 39 - 41	53
	WW 00	Sand Pack: 41 - 53	
Reservoir —		Screen Interval: 43 - 53	
Reservoir		Cement/Bentonite Grout: 0 - 76	
	MW04	Bentonite Seal: 76 - 78	100
	1010004	Sand Pack: 78 - 100	100
		Screen Interval: 80 - 100	
		Cement/Bentonite Grout: 0 - 50	
	MW-05	Bentonite Seal: 50 - 52	64
	IVIVV-UO	Sand Pack: 52 - 64	64
		Screen Interval: 54 - 64	
		Cement/Bentonite Grout: 0 - 39	
	MM 00	Bentonite Seal: 39 - 41	50
	MW-06	Sand Pack: 41 - 53	53
		Screen Interval: 43 - 53	
		Cement/Bentonite Grout: 0 - 26	
Anhantan Dila	OT 00	No 00 Sand Seal: 26 - 28	40
Asbestos Pile	GT-06	Sand Pack: 28 - 40	40
		Screen Interval: 30 - 40	
		Cement/Bentonite Grout: 0 - 10	
	OT 07	No 00 Sand Seal: 10 - 12	0.4
	GT-07	Sand Pack: 12 - 24	24
		Screen Interval: 14 - 24	
		Cement/Bentonite Grout: 0 - 18	
	07.00	No 00 Sand Seal: 18 - 20	
	GT-08	Sand Pack: 20 - 30	30
		Screen Interval: 20 - 30	

Notes and Abbreviations:

bgs: below ground surface

MW-01 was drilled deeper at the same location and MW-01A was installed

GT = Geotechnical

MW = Monitoring Well

Table 2-2
Water Quality Parameters
BoRit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

Point ID	Date	Purge Method	Final pH SU	Final Temperature °C	Final Specific Conductivity mS/cm	Final Turbidity NTU	Initial Static WL ft	STATIC WL DATE	Comments
Developme	ent Final Readi	ng							
MW-01	11/4/2010	Surge and pump	13.6	12.51	6.98	332	14.94	11/8/10	Well over-drilled and replaced by MW-01A.
MW-01A	11/11/2010	Surge and pump	7.5	12.79	0.424	838	NM	NA	
MW-02	11/3/2010	Surge and pump	7.23	12.85	0.73	0.5	22.44	11/8/10	
MW-03	11/3/2010	Surge and pump	8.02	13.17	0.729	7.6	5.44	11/8/10	
MW-04	11/4/2010	Surge and pump	10.89	13.73	0.574	235	20.42	11/8/10	
MW-05	11/4/2010	Surge and pump	9.55	12.74	0.786	57.2	14.06	11/8/10	
MW-06	11/5/2010	Surge and pump	7.47	14.07	0.818	5.7	11.06	11/8/10	
Groundwat	ter Sampling F	inal Reading							
MW-01	11/10/2010	Grundfos pump	12.33	14.97	OOR	412	12.97	11/9/2010	
MW-01A	11/15/2010	Grundfos pump	6.89	14.9	0.465	25.9	13.84	11/15/2010	
MW-02	11/9/2010	Grundfos pump	7.27	14.3	0.744	24.2	22.66	11/9/2010	
MW-03	11/8/2010	Grundfos pump	6.97	13.9	0.94	0	5.64	11/8/2010	
MW-04	11/9/2010	Grundfos pump	7.78	14.67	0.531	130	14.61	11/9/2010	PVC not yet cut, sticking up ~ 1.5 feet.
MW-05	11/9/2010	Grundfos pump	7.57	15.35	0.81	4.1	20.51	11/9/2010	
MW-06	11/10/2010	Grundfos pump	7.46	15.18	0.776	5.5	12.38	11/10/2010	

Depths are measured in feet

OOR = out of range of instrument

WL = water level

MW = monitoring well

mS/cm = millisemens per centimeter

pH SU = phelometric standard unit

^oC = degrees celcius

ft = feet below top of PVC

NM = not measured

NA = not applicable

NTU = Nephelometric Turbidity Unit

Table 3-1
Dioxins in Soil
BoRit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Location	APFT-	SS01-A	APFT-S	SS01D-A	APFT-S	SS01-B	APFT-S	SS01-C	APFT-	SS02-A	APFT-	SS02-B	APFT-S	SS02-C	APFT-	SS03-A	APFT-	SS03-B	APFT-S	SS03-C	APFT-	SS04-A
Sample Date	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010
Sample Time	11	:34	11	:34	11	:49	11	:52	12	:12	12	2:24	12	:40	14	:33	14	:41	14	:53	15	:16
Analyte/TEF	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ
2378-TCDD (1.0)	1.84	1.84	0.56 J	0.56		0	0.32 J	0.32	1.05 J	1.05	0.67 J	0.67	2.05 J	2.05	0.27 J	0.27	0.22 J	0.22	0.72 J	0.72	0.28 J	0.28
2378-TCDF (0.1)	3.23 J	0.323	2.54	0.254	1.7 J	0.17	0.82 J	0.082	3.84 J	0.384	1.56 J	0.156	3.04 J	0.304	1.01	0.101	0.99 J	0.099	1.26 J	0.126	1.05	0.105
12378-PeCDF (0.03)	1.72 J	0.0516	1.67 J	0.0501	1.55 J	0.0465	0.5 B	0	2.22 J	0.0666	1.24 J	0.0372	1.05 B	0	1.23 J	0.0369	0.78 J	0.0234	0.94 B	0	0.68 J	0.0204
2378-PeCDD (1.0)	12.5	12.5	13.3	13.3	3.97 J	3.97	1.07 J	1.07	2.82 J	2.82	1.53 J	1.53	1.7 J	1.7	1.71 J	1.71	1.18 J	1.18	2.02 J	2.02	1.45 J	1.45
23478-PeCDF (0.30)	3.21 J	0.963	2.8 J	0.84	1.93 J	0.579	0.8 J	0.24	3.22 J	0.966	1.52 J	0.456	2.36 J	0.708	1.08 J	0.324	0.93 J	0.279	1.24 J	0.372	0.98 J	0.294
123478-HxCDF (0.10)	9.94	0.994	10.6	1.06	4.76 J	0.476		0	7.55	0.755	4.01 J	0.401	4.13 J	0.413	4.44 J	0.444	3.44 J	0.344	6.32 J	0.632	3.44 J	0.344
23678-HxCDF (0.10)	11.3	1.13	11.4	1.14	3.85 J	0.385	1.45 J	0.145	4.06 J	0.406	1.93 J	0.193	2.45 J	0.245	3.53 J	0.353	2.56 J	0.256	5.9	0.59	2.65 J	0.265
123478-HxCDD (0.10)	20.9	2.09	23	2.3	5.73 J	0.573	1.59 J	0.159	3.51 J	0.351	2.16 J	0.216	1.92 J	0.192	3.98 J	0.398	2.55 J	0.255	4.55 J	0.455	3.2 J	0.32
123678-HxCDD (0.10)	36.9	3.69	40.1	4.01	11.4	1.14	2.86 J	0.286	9.34	0.934	4.51 J	0.451	3.69 J	0.369	14.8	1.48	11.1	1.11	18.3	1.83	9.92	0.992
123789-HxCDD (0.10)	45.3	4.53	66.5	6.65	21.1 J	2.11	4.22 J	0.422	9.97	0.997	6.05 J	0.605	4.56 J	0.456	11.4	1.14	7.57	0.757	9.27 J	0.927	8.39	0.839
234678-HxCDF (0.10)	7.75	0.775	13.6	1.36	5.8	0.58	1.13 J	0.113	4.84 J	0.484	2.78 J	0.278	4.19 J	0.419	5.08	0.508	4.03 J	0.403	3.75 J	0.375	4.11 J	0.411
123789-HxCDF (0.10)	0.27 J	0.027	0.24 J	0.024		0		0	0.29 J	0.029		0	0.46 J	0.046	0.15 J	0.015	0.17 J	0.017		0		0
1234678-HpCDF (0.01)	147	1.47	156	1.56	65.4	0.654	16	0.16	52.3	0.523	26.2	0.262	26	0.26	127	1.27	105	1.05	208	2.08	83	0.83
1234678-HpCDD (0.01)	904	9.04	973	9.73	333	3.33	77.5	0.775	261	2.61	143	1.43	110	1.1	504	5.04	412	4.12	637	6.37	372	3.72
1234789-HpCDF (0.01)	7.59	0.0759	8.23	0.0823	3.29 J	0.0329	0.76 J	0.0076	3.42 J	0.0342		0	2.2 J	0.022	8.13	0.0813	6.65	0.0665	13.4	0.134	5.65	0.0565
12346789-OCDD (0.0003)	9910	2.973	10500	3.15	7940	2.382	3020	0.906	4340	1.302	2470	0.741	2100	0.63	7710	2.313	7130	2.139	8410	2.523	6840	2.052
12346789-OCDF (0.0003)	245	0.0735	273	0.0819	116	0.0348	20.4	0.00612	100	0.03	58.2	0.01746	54.5	0.01635	561	0.1683	528	0.1584	987	0.2961	335	0.1005
Total TEQ		42.546		46.1523		16.4632		4.69172		13.7418		7.44366		8.9305		15.653		12.4773		19.4501		12.0794

All results in nanograms per kilogram (ng/kg)

Toxicity equivalents are based on 2005 World Health Organization scheme

J - Analyte was positively identified, concentration is an estimated value

B - Blank contamination

TEQ - Toxicity equivalent quotient

TEF - Toxic equivalency factor

Bolded - Total TEQ exceeded the Regional Screening Level of 4.5 ng/kg

Blank result cell indicates that the result was not detected

Table 3-1
Dioxins in Soil
BoRit Asbestos Superfund Site, OU-1
Phase 2 Remedial Investigation

Sample Location	APFT-S	SS04-B	APFT-S	SS04-C	APFT-	SS05-A	APFT-S	SS05-B	APFT-S	SS05-C	APSL-	SS01-A	APSL-	SS01-B	APSL-S	SS01-C	APSL-	SS02-A	APSL-	SS02-B	APSL-	SS02-C
Sample Date	10/07	7/2010	10/07	//2010	10/07	7/2010	10/07	7/2010	10/07	//2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010	10/07	7/2010
Sample Time	15	:25	15	:33	15	:47	15	:56	16	:02	09	:35	09):45	10):24	10):35	10	:59	11	1:05
Analyte/TEF	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ	Result	TEQ
2378-TCDD (1.0)	0.86 J	0.86	0.57 J	0.57	0.56 J	0.56	1.5 J	1.5		0		0	0.41 J	0.41		0		0	0.37 J	0.37		0
2378-TCDF (0.1)	1.46 J	0.146	0.93 J	0.093	0.85 J	0.085	0.55 J	0.055	0.75 J	0.075	0.62 J	0.062	0.73 J	0.073	0.57 J	0.057	0.51 J	0.051	0.75 J	0.075	0.55 J	0.055
12378-PeCDF (0.03)	0.94 B	0	0.86 B	0	0.48 J	0.0144		0	0.72 B	0	0.25 J	0.0075		0	0.25 B	0	0.36 J	0.0108	0.42 J	0.0126		0
2378-PeCDD (1.0)	2.14 J	2.14	1.16 J	1.16	1.16 J	1.16	1.47 J	1.47	1.06 J	1.06	0.42 J	0.42	1.6 J	1.6	0.51 J	0.51	0.38 J	0.38	0.45 J	0.45	0.96 J	0.96
23478-PeCDF (0.30)	1.44 J	0.432	0.89 J	0.267	0.66 J	0.198		0	0.96 J	0.288	0.43 J	0.129		0		0	0.49 J	0.147	0.8 J	0.24	0.93 J	0.279
123478-HxCDF (0.10)	4.79 J	0.479	2.54 J	0.254	3.23 J	0.323	7.98	0.798	2.5 J	0.25	0.89 J	0.089	1.03 J	0.103	1.1 J	0.11	1.46 J	0.146	2.61 J	0.261	3.27 J	0.327
23678-HxCDF (0.10)	3.78 J	0.378	1.92 J	0.192	2.59 J	0.259	4.98 J	0.498	1.99 J	0.199	0.61 J	0.061		0	0.68 J	0.068	1.07 J	0.107	1.97 J	0.197		0
123478-HxCDD (0.10)	3.45 J	0.345	2.18 J	0.218	2.56 J	0.256	4.39 J	0.439	2 J	0.2	0.74 J	0.074	2.97 J	0.297		0	0.64 J	0.064	0.69 J	0.069		0
123678-HxCDD (0.10)	12.4	1.24	6.09	0.609	11.8	1.18	26	2.6	5.87	0.587	1.49 J	0.149	3.93 J	0.393		0	1.89 J	0.189	3.12 J	0.312	6.54	0.654
123789-HxCDD (0.10)	10.8 J	1.08	4.19 J	0.419	8.06	0.806	8.86 J	0.886	6.02 J	0.602	2.25 J	0.225	8.7 J	0.87	2.24 J	0.224	2.33 J	0.233	3.09 J	0.309	15.5 J	1.55
234678-HxCDF (0.10)	4.92 J	0.492	1.6 J	0.16	4.23 J	0.423	3.05 J	0.305	3.17 J	0.317	0.92 J	0.092	0.59 J	0.059	1.01 J	0.101	1.57 J	0.157	2.7 J	0.27	2.79 J	0.279
123789-HxCDF (0.10)		0		0		0		0		0		0		0		0	0.057 J	0.0057		0		0
1234678-HpCDF (0.01)	86.5	0.865	40.6	0.406	131	1.31	311	3.11	51.9	0.519	9.59	0.0959	6.66	0.0666	6.7	0.067	44.3	0.443	100	1	67.4	0.674
1234678-HpCDD (0.01)	415	4.15	214	2.14	430	4.3	941	9.41	198	1.98	53.3	0.533	240	2.4	52.8	0.528	116	1.16	97	0.97	346	3.46
1234789-HpCDF (0.01)	6.32	0.0632	2.71 J	0.0271	7.89	0.0789	20.1	0.201	3.16 J	0.0316	0.62 J	0.0062		0		0	0.61 J	0.0061	0.96 J	0.0096		0
12346789-OCDD (0.0003)	7360	2.208	8190	2.457	7220	2.166	13000	3.9	4040	1.212	2590	0.777	14000	4.2	4110	1.233	23800	7.14	14500	4.35	12900	3.87
12346789-OCDF (0.0003)	446	0.1338	181	0.0543	605	0.1815	2010	0.603	237	0.0711	19	0.0057	19.5	0.00585	15.4	0.00462	13.3	0.00399	33.5	0.01005	24.1 J	0.00723
Total TEQ		15.012		9.0264		13.3008		25.775		7.3917		2.7263		10.4775		2.90262		10.244		8.90525		12.1152

All results in nanograms per kilogram (ng/kg)

Toxicity equivalents are based on 2005 World Health Organization scheme

J - Analyte was positively identified, concentration is an estimated value

B - Blank contamination

TEQ - Toxicity equivalent quotient

TEF - Toxic equivalency factor

Bolded - Total TEQ exceeded the Regional Screening Level of 4.5 ng/kg

Blank result cell indicates that the result was not detected

Table 3-2
Dioxins in Quality Control Samples
BoRit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Location	RB-1	01007
Sample Date	10/07	7/2010
Sample Time	16	:33
Analyte/TEF	Result	TEQ
2378-TCDD (1.0)		0
2378-TCDF (0.1)	0.61 B	0
2378-PeCDF (0.03)		0
12378-PeCDD (1.0)		0
23478-PeCDF (0.30)	0.66 B	0
123478-HxCDF (0.10)		0
123678-HxCDF (0.10)		0
123478-HxCDD (0.10)		0
123678-HxCDD (0.10)		0
123789-HxCDD (0.10)		0
234678-HxCDF (0.10)		0
123789-HxCDF (0.10)		0
1234678-HpCDF (0.01)		0
1234678-HpCDD (0.01)	6.07 B	0
1234789-HpCDF (0.01)		0
12346789-OCDD (0.0003)	33.9 B	0
12346789-OCDF (0.0003)	3.8 B	0
Total TEQ		0

All results in picograms per liter (pg/L)

Toxicity equivalents are based on 2005 World Health Organization scheme

RB-101007 is an aqueous quality control rinsate blank of the sampling tools used to sample Dioxins in soil

B - Blank contamination

TEQ - Toxicity equivalent quotient

TEF - Toxic equivalency factor

Blank result cell indicates that the result was not detected

Table 3-3 Volatile Organics in Groundwater BoRit Asbestos Superfund Site, OU-1 Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Number :		C0051		C0056		C0039		C0042		C0044		C0045		C0046		C0053		C0041		C0049		C0052		C0055		C0050		C0043		C0047		C0054		C0057	
Sampling Location :			V01-1011		/01A-1011		/02-1011		/03-1011		04-1011		05-1011		05D-1011		/06-1011	FB-10°	1108	FB-10		FB-10		FB-101	115	RB-10	1109	TB-10	1108	TB-101	1109	TB-101	1110	TB-10	1115
Field QC:											00		C0046		C0045	/	.00 .011	Field B		Field B		Field B		Field Bla		Rinsate		Trip BI		Trip Bla		Trip Bla		Trip Bla	
Matrix :		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water	
	ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled :		11/10/2	2010	11/15/2	2010	11/9/20	010	11/8/20	10	11/9/20	10	11/9/20	10	11/9/20	10	11/10/2	2010	11/8/20	10	11/9/20	010	11/10/2	2010	11/15/2	010	11/9/20	10	11/8/20	010	11/9/20		11/10/2	010	11/15/2	2010
Time Sampled :		09:05		12:30		16:00		16:15		11:00		14:30		14:45		15:30		16:00		15:00		09:30		11:00		16:30		16:00		00:00		16:40		10:00	
pH:		<2		< 2		<2		<2		<2		<2		<2		<2		<2		<2		<2		< 2		<2		<2		<2		<2		< 2	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	
Volatile Compound	RSL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1,1-Trichloroethane	910																																		
1,1,2,2-Tetrachloroethane	0.067																																		
1,1,2-Trichloro-1,2,2-trifluoroethane	5900																																		
1,1,2-Trichloroethane 1,1-Dichloroethane	0.24 2.4																																		
1,1-Dichloroethane 1.1-Dichloroethene	34																																		
1,2,3-Trichlorobenzene	2.9																																		
1,2,4-Trichlorobenzene	2.3																																		\vdash
1.2-Dibromo-3-chloropropane	3E-04																																		
1.2-Dibromoethane	0.007																																		
1,2-Dichlorobenzene	37																																		
1,2-Dichloroethane	0.15																																		
1,2-Dichloropropane	0.39																		UL																UL
1,3-Dichlorobenzene																																			
1,4-Dichlorobenzene	0.43																																		
1,4-Dioxane	6.1						UL		UL		UL		UL		UL						UL								UL		UL				
2-Butanone	710																																		
2-Hexanone	4.7																																		
4-Methyl-2-pentanone	200	13		9.4																				7.9										13	
Acetone Benzene	0.41	13		9.4	В																			7.9	J									13	_
Bromochloromethane	0.41																																		
Bromodichloromethane	0.12																		Ш																Ш
Bromoform	8.5																		Ü.																
Bromomethane	0.87																																		
Carbon disulfide	100																																		
Carbon tetrachloride	0.44					5.8																													
Chlorobenzene	9.1																																		
Chloroethane	2100																																		
Chloroform	0.19																																		
Chloromethane	19																																		
cis-1,2-Dichloroethene	37																																		
cis-1,3-Dichloropropene	1000																																		111
Cyclohexane	1300 0.15			\vdash	-	1													UL																UL
Dibromochloromethane Dichlorodifluoromethane	39					1		1														1													
Ethylbenzene	1.5			H		 				\vdash										-						\vdash	-								\vdash
Isopropylbenzene	68																																		\vdash
m.p-Xvlene	- 00																																		
Methyl acetate	3700																																		
Methyl tert-butyl ether	12																																		
Methylcyclohexane																			UL																UL
Methylene chloride	4.8	9.0	В	13	В	6.6	В	6.3	В	6.7	В	6.8	В	6.6	В	9.6	В	4.8	В	7.2	В	9.8	В	15	В	11	В	5.8	В	7.1	В	9.4	В	13	В
o-Xylene	120																																		
Styrene	160																																		
Tetrachloroethene	0.11					22																													
Toluene	230																																		
trans-1,2-Dichloroethene	11					<u> </u>				\vdash				Ь Н												\vdash									
trans-1,3-Dichloropropene	-							-														-													
Trichloroethene Trichlorofluoromethane	130		—	 	-	30								 				-					 					-				\vdash			\vdash
Vinyl chloride	0.016					30		1														1													
vary, callolide	5.010																																		
Nata a.																																			

Notes:
Case #: 40399
SDG: C0041 and C0055
ug/L = microgram per liter
UL = Not detected, quantitation limit is probably higher.
B = Analyte not detected substantially above the level reported in laboratory or field blanks.
J = Analyte present. Reported value may not be accurate or precise.
Bolided results exceed Regional Screening Level (RSL).
Noncarcinogen RSLs are divided by 0.1 at the direction of EPA.
PKMW01 replaced by PKMW01A.
Blank result cell indicates that the result was not detected above the method detection limit.

Table 3-4 Semivolatile Organics in Groundwater BoRit Asbestos Superfund Site, OU-1 Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Number : Sampling Location :		C0051 PKMW	01-1011	C0056 PKMW	01A-1011	C0039 PKMW	02-1011	C0042 RVMW	03-1011	C0044 RVMW	/04-1011	C0045 APMW	05-1011	C0046 APMW	05D-1011	C0053 APMW	/06-1011	C0041 FB-101	108	C0049 FB-10	1109	C0052 FB-101	1110	C0055 FB-101	1115	C0050 RB-10	1109
Field QC:									-5 .0.1			Dup of	C0046	Dup of	C0045		-5 .0.1	Field B	lank	Field E		Field B		Field BI	ank	Rinsat	
Matrix:	_	Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water	
Units : Date Sampled :	ug/L	ug/L 11/10/2	010	ug/L 11/15/2	010	ug/L 11/9/20	10	ug/L 11/8/20	10	ug/L 11/9/20	110	ug/L 11/9/20	10	ug/L 11/9/20	10	ug/L 11/10/2	1010	ug/L 11/8/20	10	ug/L 11/9/20	110	ug/L 11/10/2	010	ug/L 11/15/2	010	ug/L 11/9/20	110
Time Sampled :		09:05	010	12:30	010	16:00	10	16:15	10	11:00	110	14:30	10	14:45	10	15:30	010	16:00	10	15:00	110	09:30	010	11:00	010	16:30	110
Dilution Factor :		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	
Semivolatile Compound	RSL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
1,1'-Biphenyl	180																										
1,2,4,5-Tetrachlorobenzene	1.1																										
2,2'-Oxybis(1-chloropropane)	0.32																										
2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	110 370	1																									
2,4,6-Trichlorophenol	6.1																										
2,4-Dichlorophenol	11																										
2,4-Dimethylphenol	73																										
2,4-Dinitrophenol	7.3				R																				R		
2,4-Dinitrotoluene	0.22																										
2,6-Dinitrotoluene	3.7																										
2-Chloronaphthalene 2-Chlorophenol	290 18	\vdash								—	l						l	\vdash		 	l		l	\vdash			
2-Methylnaphthalene	15																										
2-Methylphenol	180																										
2-Nitroaniline	37																										
2-Nitrophenol		oxdot																									
3,3'-Dichlorobenzidine	0.15																	—		!				—			
3-Nitroaniline 4,6-Dinitro-2-methylphenol	0.37	\vdash					-	-			1					-	1				1		1		-	-	1
4-Bromophenyl-phenylether	0.37																			1							
4-Chloro-3-methylphenol	370																										
4-Chloroaniline	0.34																										
4-Chlorophenyl-phenylether																											
4-Methylphenol	18																										
4-Nitroaniline	3.4																										
4-Nitrophenol Acenaphthene	220																										
Acenaphthylene	220																										
Acetophenone	370																										
Anthracene	1100																										
Atrazine	0.29																										
Benzaldehyde	370																										
Benzo(a)anthracene	0.029																										
Benzo(a)pyrene Benzo(b)fluoranthene	0.003																										
Benzo(g,h,i)perylene	0.023																										
Benzo(k)fluoranthene	0.29																										
Bis(2-chloroethoxy)methane	11																										
Bis(2-chloroethyl)ether	0.012																										
Bis(2-ethylhexyl)phthalate Butylbenzylphthalate	4.8 35	3.1	J			55				3.0	J	42		26		14		—		2.9	J	9.2		—		2.6	J
Caprolactam	1800	\vdash									-						-			1			-				
Carbazole	1000																			1							
Chrysene	2.9																										
Dibenzo(a,h)anthracene	0.003																										
Dibenzofuran	3.7																										
Diethylphthalate Dimethylphthalate	2900	\vdash						-				1				!		—				1		—		!	
Dimethylphthalate Di-n-butylphthalate	370	\vdash									-						-			1			-				
Di-n-octylphthalate	310																			1							
Fluoranthene	150																			1							
Fluorene	150																										
Hexachlorobenzene	0.042																										
Hexachlorobutadiene	0.86	\Box																									
Hexachlorocyclopentadiene	22	\vdash																									
Hexachloroethane Indeno(1,2,3-cd)pyrene	4.8 0.029	\vdash		\vdash			-			—	-					-	-	\vdash		 	-		-	\vdash	-	-	-
Isophorone	71																			1							
Naphthalene	0.14																			1							
Nitrobenzene	0.12																										
N-Nitroso-di-n-propylamine	0.01																										
N-Nitrosodiphenylamine	14																										
Pentachlorophenol	0.17	\vdash			R					-	-						-			├	-		-		R	-	-
Phenanthrene Phenol	1100	\vdash									-						-			 	-		-				
Pyrene	110																			1							
																				•		•					

Notes:
Case #: 40399
SDG: C0041 and C0055
ug/L = microgram per liter
J = Analyte present. Reported value may not be accurate or precise.
R = Rejected
Bolded results exceed Regional Screening Level (RSL).
Noncarcinogen RSLs are divided by 0.1 at the direction of EPA.
PKMW01 replaced by PKMW01A.
Blank result cell indicates that the result was not detected above the method detection limit.

Table 3-5 Pesticides/PCBs in Groundwater BoRit Asbestos Superfund Site, OU-1 Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Number : Sampling Location : Field QC:		C0051 PKMW	01-1011	C0056 PKMW	01A-101	C0039 PKMW	/02-1011	C0042 RVMW	03-1011	C0044 RVMW	04-1011	C0045 APMW	05-1011 C0046	C0046 APMW Dup of	05D-101	C0053 APMW	/06-1011	C0041 FB-101 Field B		C0049 FB-101 Field B		C0052 FB-10 ^o Field B		C0055 FB-10° Field B		C0050 RB-10 Rinsate	
Matrix:		Water		Water		Water		Water		Water		Water	00040	Water	00043	Water		Water	Idilik	Water	iaiik	Water	iaiik	Water	iaiik	Water	DIATIK
	ug/L			ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
	ug/L	ug/L 11/10/2	040	11/15/2	040	11/9/20	140	11/8/20	40	11/9/20	40	11/9/20	40	11/9/20	40	11/10/2	2040	11/8/20	40	11/9/20	40	11/10/2	040	11/15/2	040	11/9/20	40
Date Sampled :			010		010		110		10		10		10		10		2010		10		10		.010		2010		10
Time Sampled : Dilution Factor :		09:05		12:30		16:00 1.0		16:15		11:00		14:30		14:45 1.0		15:30		16:00		15:00		09:30		11:00		16:30	
	DOI	1.0	E1	1.0				1.0	FI	1.0	E1.	1.0	FI			1.0	T =1	1.0	E1.	1.0	FI	1.0		1.0	F	1.0	El
Aroclor Compound		Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
*Aroclor-1016	0.96																										
*Aroclor-1221	0.0068																										
*Aroclor-1232	0.0068																										
*Aroclor-1242	0.034																										
*Aroclor-1248	0.034																										
*Aroclor-1254	0.034																										
*Aroclor-1260	0.034																										
*Aroclor-1262																											
*Aroclor-1268																											
Pesticide Compound																											
4,4'-DDD	0.28																										
4,4'-DDE	0.2																										
4,4'-DDT	0.2																										
Aldrin	0.004																										
alpha-BHC	0.011																										
alpha-Chlordane																											
beta-BHC	0.037																										
delta-BHC																											
Dieldrin	0.0042																										
Endosulfan I																											
Endosulfan II												1					1					1					
Endosulfan sulfate																											
Endrin	1.1																										
Endrin aldehyde																											
Endrin ketone																											
gamma-BHC (Lindane)	0.061																										
gamma-Chlordane	0.001															1	1					l					
Heptachlor	0.015																										
Heptachlor epoxide	0.0074															1	1					l					
Methoxychlor	18															 	 					1		1			
Toxaphene	0.061															1	1					1					
Тохарноне	0.001	Щ.																							<u> </u>		

Notes: Case #: 40399 SDG : C0041 and C0055

SDG: C0041 and C0055
ug/l L = microgram per liter
Noncarcinogen RSLs are divided by 0.1 at the direction of EPA.
PKMW01 replaced by PKMW01A.
Blank result cell indicates that the result was not detected above the method detection limit.

Table 3-6
Dissolved Inorganics in Groundwater
BoRit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Number:		MC1JE	7	MC1JE9	1	MC1JE	2	MC1JE	3	MC1JE	4	MC1JE	5	MC1JE	6	MC1JE	:8
Sampling Location:		PKMW	01-1011	PKMW01	A-1011	PKMW	02-1011	RVMW	03-1011	RVMW	04-1011	APMW	05-1011	APMW	05D-1011	APMW	06-1011
Field QC:												Dup. of	MC1JE6	Dup. of	MC1JE5		
Matrix:		Water		Water		Water		Water		Water		Water		Water		Water	
Units:	ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled:		11/10/2	010	11/15/20	10	11/09/2	010	11/08/2	010	11/09/2	2010	11/09/2	2010	11/09/2	2010	11/10/2	2010
Time Sampled:		09:05		12:30		16:00		16:15		11:00		14:30		14:45		15:30	
Dilution Factor:		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	
ANALYTE	RSL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	3700	1510															
ANTIMONY	1.5		UL		UL		UL		UL		UL		UL		UL		UL
*ARSENIC	0.045							7.6	J					5	J		
BARIUM	730	669		175	J	112	J	561		20.4	J	27.4	J	20.8	J	101	J
BERYLLIUM	7.3																
*CADMIUM	1.8											0.71	J	1.1	J		
CALCIUM		281000	J	58300	J	105000	J	104000	J	92500	J	268000	J	264000	J	113000	J
*CHROMIUM		19.4	В	8.3	В	2.7	В	3.8	В	1.7	В		UL		UL	5.4	В
COBALT	1.1																
COPPER	150	25.9		1.1	J	0.98	J	3	J			1.1	J	0.98	J	1.8	J
IRON	2600	78.2	J							147		135		125			
*LEAD		13.3	В					3	В								
MAGNESIUM				15200		19000		15300		4860	J	10800		10500		16200	
MANGANESE	88			4.4	J			9620		86.7		156		121		426	
*NICKEL	73																
POTASSIUM		73200		1490	J	2150	J	2140	J			3120	J	2670	J	4260	J
SELENIUM	18											14.3	J	13.1	J		
SILVER	18	2.8	В	1.8	В	1.2	В	1.6	В			2.1	В	1.2	В	2.7	В
SODIUM		94200		13500		22900		34400		13400		38500		37200		40600	
THALLIUM		3.6	В			6.7	В	9.1	В			3.7	В	3.7	В	3.9	В
VANADIUM	0.26																
ZINC	1100	18.3	J	9.1	J	4.6	J	9.5	J							10	J
MERCURY	0.057			0.08	В							0.05	В			0.1	В

Case #: 40399 SDG: MC1JE2

ug/L = microgram per liter

UL = Not detected, quantitation limit is probably higher.

B = Analyte not detected substantially above the level reported in laboratory or field blanks.

J = Analyte present. Reported value may not be accurate or precise.

Bolded results exceed Regional Screening Level (RSL).

Noncarcinogen RSLs are divided by 0.1 at the direction of EPA.

PKMW01 replaced by PKMW01A.

Blank result cell indicates that the result was not detected above the method detection limit.

Table 3-7
Total Inorganics in Groundwater
BoRit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

Sample Number:		MC0051		MC0056		MC0039		MC0042		MC0044		MC0045		MC0046		MC0053		MC0041		MC0049		MC0050		MC0052		MC0055	
Sampling Location:		PKMW0	1-1011	PKMW0	1A-1011	PKMW0	2-1011	RVMW0	3-1011	RVMW0	4-1011	APMWC		APMW0		APMW0	6-1011	FB-1011		FB-1011		RB-1011		FB-101		FB-1011	
Field QC:												Dup of N	MC0046	Dup of N	/IC0045			Field Bla	nk	Field Bla	ank	Rinsate	Blank	Field Bla	ank	Field Bla	ank
Matrix:		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water		Water	
Units:	ug/L	ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L		ug/L	
Date Sampled:		11/10/20	010	11/15/20	10	11/09/20	010	11/08/20	10	11/09/20)10	11/09/20	010	11/09/20	10	11/10/20	010	11/08/20	10	11/09/20	010	11/09/20	010	11/10/20	010	11/15/20	010
Time Sampled:		09:05		12:30		16:00		16:15		11:00		14:30		14:45		15:30		16:00		15:00		16:30		09:30		11:00	
Dilution Factor:		1.0		1.0		1.0		1.0		1.0 / 3.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0		1.0	
ANALYTE	RSL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	3700	1530		441						307																	
ANTIMONY	1.5																										
*ARSENIC	0.045															5.2	J										
BARIUM	730	670		175	J	99.0	J	525		20.9	J	8.1	J	7.1	J	94.0	J		UL		UL		UL		UL		UL
BERYLLIUM	7.3																										
*CADMIUM	1.8																										
CALCIUM		310000		60800		105000		101000		115000		164000		162000		116000											
*CHROMIUM		19.0	В													2.0	В	5.6	В			1.5	В	6.0	В		
COBALT	1.1																										
COPPER	150	26.5		3.6	J	1.4	J	3.5	J	0.80	J	0.81	J	0.67	J	2.5	J										
IRON	2600	269		446		55.4	J	52.5	J	360		178		175													
*LEAD		6.9	В		UL		UL		UL		UL		UL		UL		UL		UL		UL		UL		UL		UL
MAGNESIUM				15600		20200		15400		6030		8870		8480		16700											
MANGANESE	88	5.3	J	24.3		14.8	J	9190		95.9		157		149		450											
*NICKEL	73	27.3	J					8.2	J																		
POTASSIUM		60400				2040	J	1660	J	1770	J	1520	J	1490	J	3460	J										
SELENIUM	18																										
SILVER	18						UL		UL		UL					1.7	В		UL								
SODIUM		97800	J	14400	J	24100	J	34100	J	120000	J	20100	J	19900	J	42300	J										
THALLIUM		7.6	В	7.4	В	7.8	В	11.7	В	7.9	В	8.5	В	7.3	В	7.9	В	6.7	В	5.5	В	7.3	В	6.5	В	5.3	В
VANADIUM	0.26					10.6	J																				
ZINC	1100	32.7	J	4.7	J			5.8	J	4.5	J					14.1	J										
MERCURY	0.057	0.076	В																			0.057	J				
*CYANIDE	73			3.8	J			8.2	J																		

Case #: 40399

SDG: MC0041

ug/L = microgram per liter

UL = Not detected, quantitation limit is probably higher.

B = Analyte not detected substantially above the level reported in laboratory or field blanks.

J = Analyte present. Reported value may not be accurate or precise.

Bolded results exceed Regional Screening Level (RSL).

Noncarcinogen RSLs are divided by 0.1 at the direction of EPA.

PKMW01 replaced by PKMW01A.

Blank result cell indicates that the result was not detected above the method detection limit.

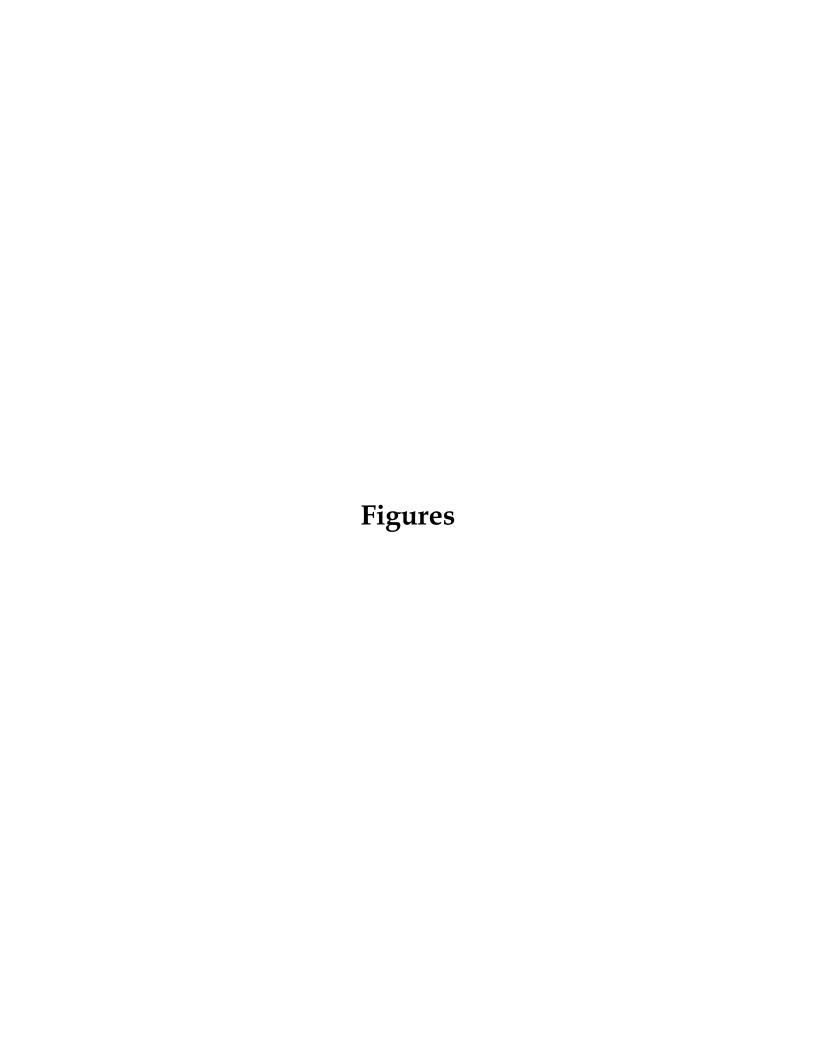
Table 3-8 Asbestos in Groundwater BoRit Asbestos Superfund Site, OU-1 Preliminary Groundwater Report - Phase 2 Remedial Investigation

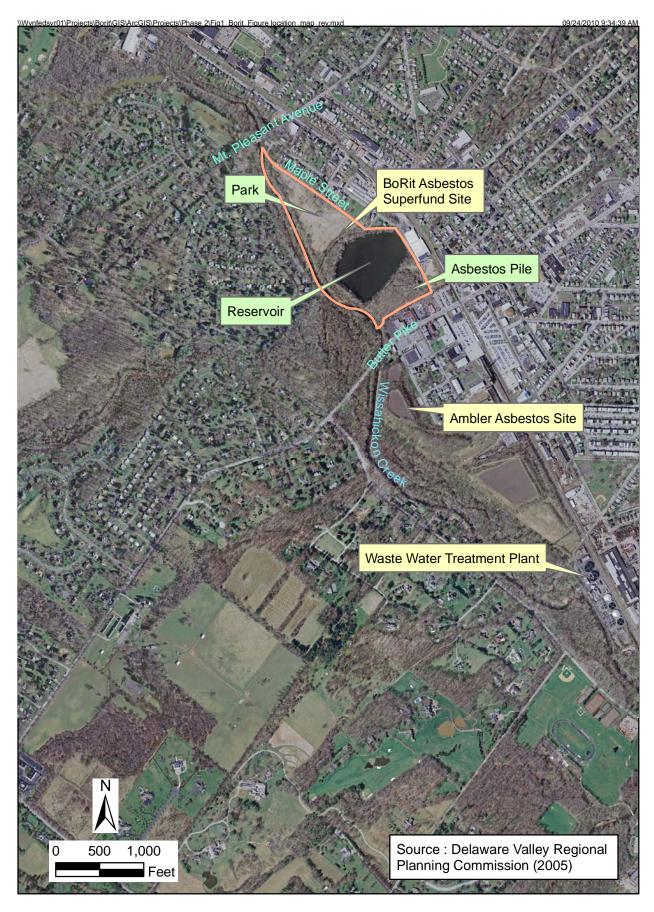
Lab Sample No:		041026062-0002	041026062-0001	041026470-0002	041026470-0001	041025972-0005	041025972-0006	041025852-0001	041025972-0001
Sample No:		PKMW01-1011	PKMW01-1011(FILTERED)	PKMW01A-1011	PKMW01A-1011 (FILTERED)	PKMW02-1011	PKMW02-1011 (FILTERED)	RVMW03-1011	RVMW04-1011
Field QC:									
Matrix:		Water	Water	Water	Water	Water	Water	Water	Water
Units:	MFL	MFL	MFL	MFL	MFL	MFL	MFL	MFL	MFL
Date Sampled:		11/10/2010	11/10/2010	11/15/2010	11/15/2010	11/9/2010	11/9/2010	11/8/2010	11/9/2010
Time Sampled:		9:05	9:05	12:30	12:30	16:00	16:00	16:15	11:00
	MCL								
Asbestos	7	<0.20	<0.20	<0.20	<0.17	<0.20	<0.20	<0.20	0.51

Lab Sample No:		041025972-0002	041025972-0003	041026062-0004	041025852-0002	041025972-0004	041026062-0003	041026470-0003	041025972-0007
Sample No:		RVMW04-1011 (FILTERED)	APMW05-1011	APMW06-1011	FB-101108	FB-101109	FB-101110	FB-101115	RB-101109
Field QC:					Field Blank	Field Blank	Field Blank	Field Blank	Rinsate Blank
Matrix:		Water	Water	Water	Water	Water	Water	Water	Water
Units:	MFL	MFL	MFL	MFL	MFL	MFL	MFL	MFL	MFL
Date Sampled:		11/9/2010	11/9/2010	11/10/2010	11/8/2010	11/9/2010	11/10/2010	11/15/2010	11/9/2010
Time Sampled:		11:00	14:30	15:30	16:00	15:00	9:30	11:00	16:30
	MCL								
Asbestos	7	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.17	<0.20

MFL = million fibers per liter.

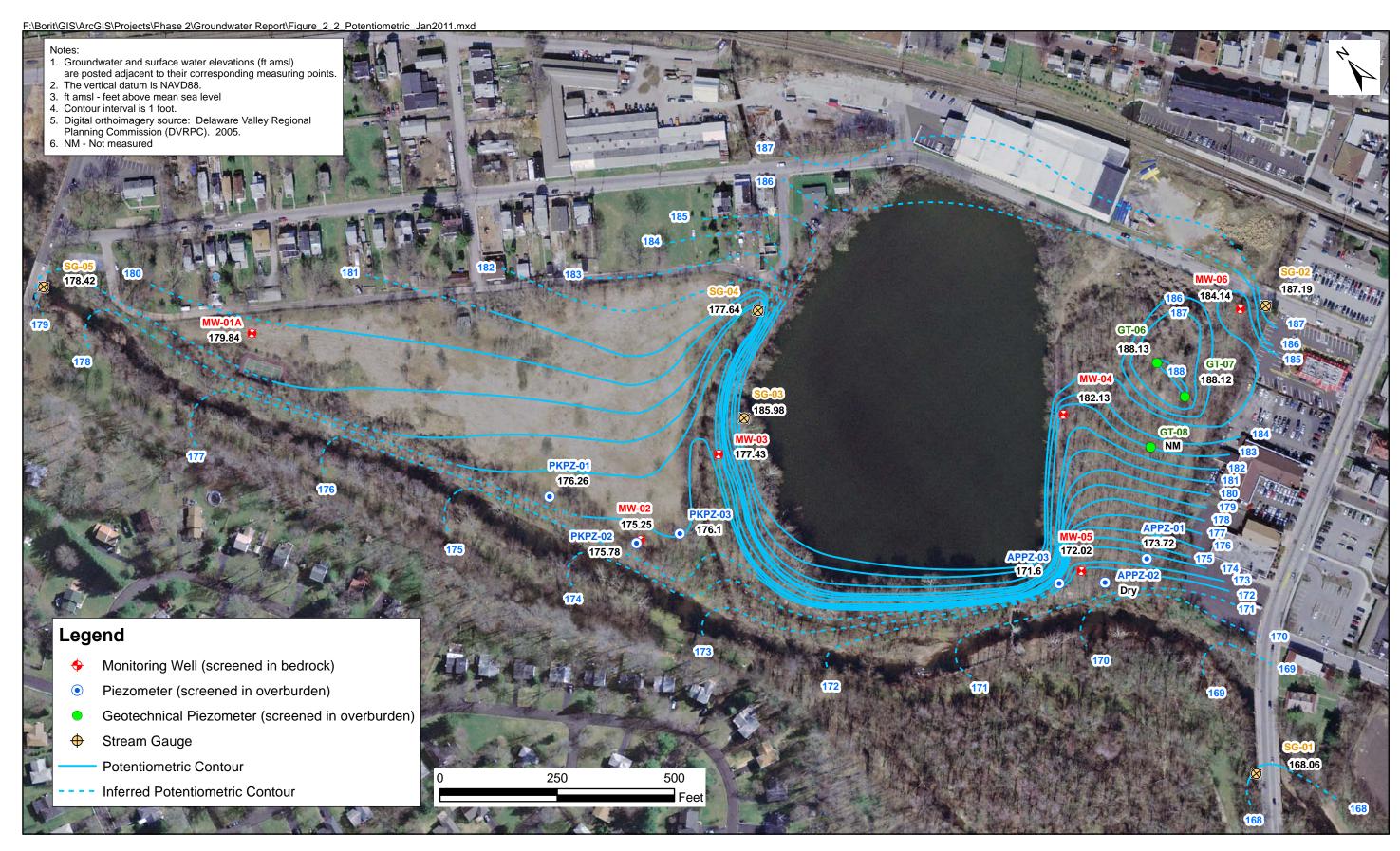
MCL = Maximum Contaminant Level.

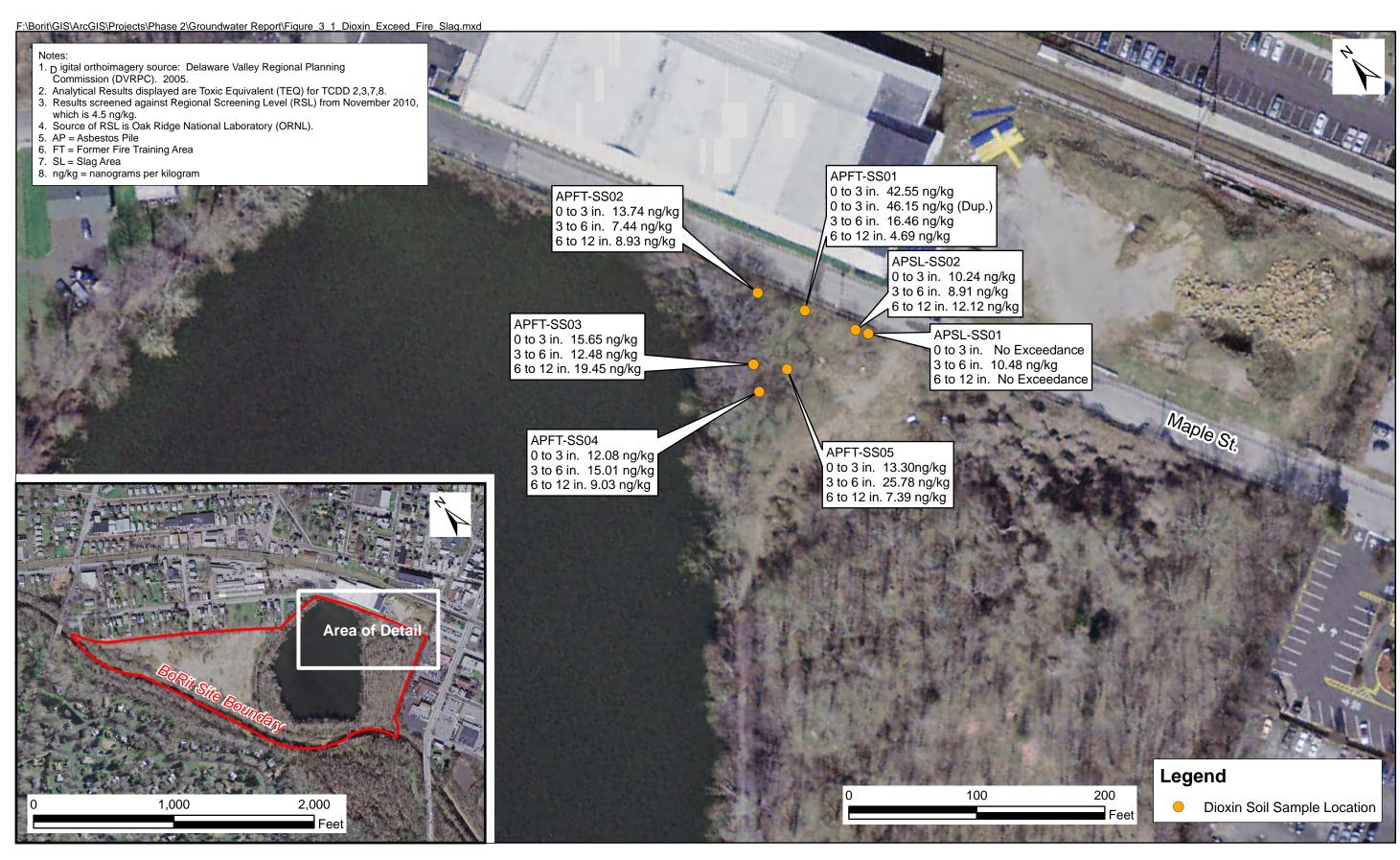

Samples were field filtered using an inline 0.45 micron filter.
Samples were only field filtered if turbidity readings stabilized greater than 10 NTU.

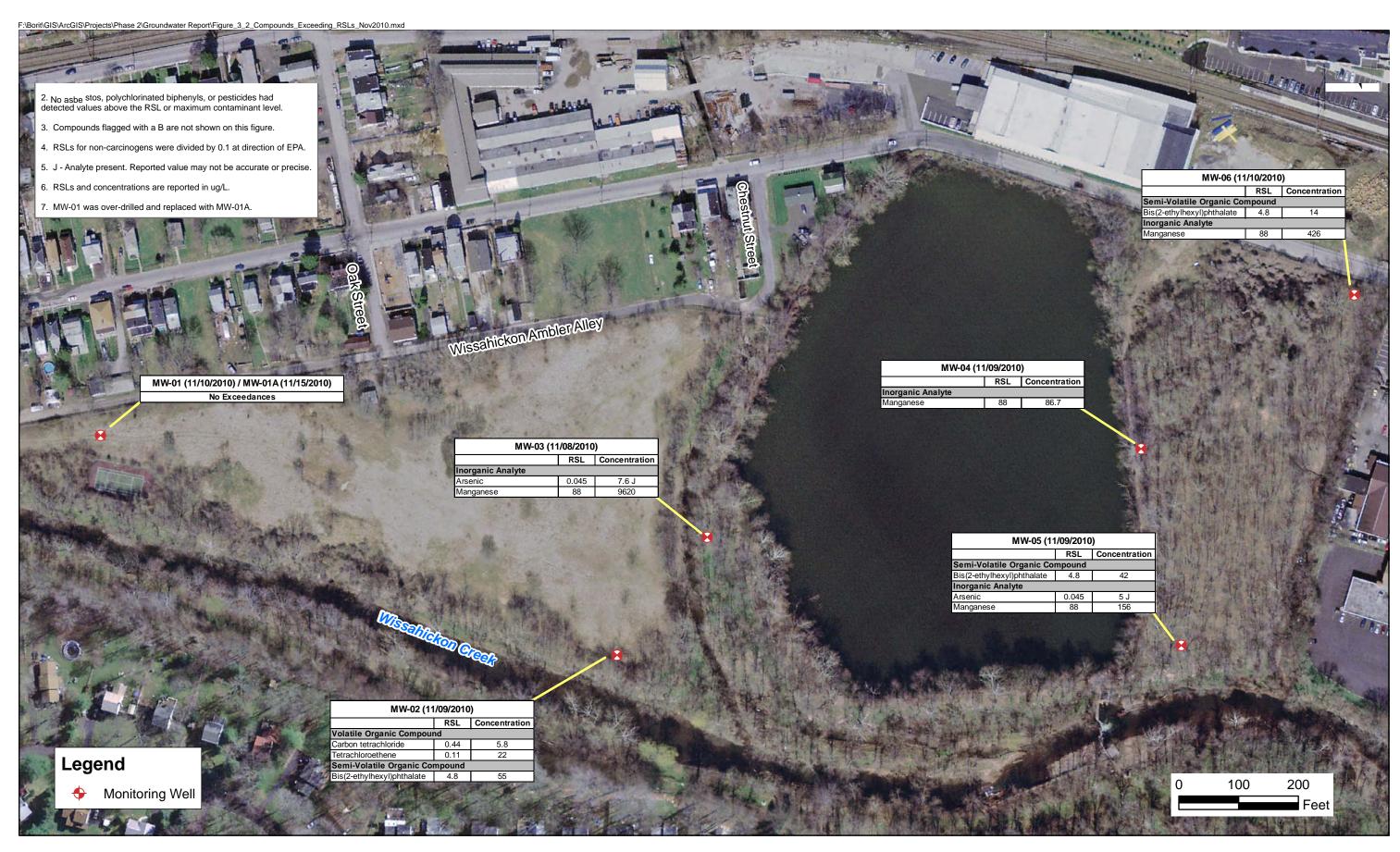

Samples were analyzed using TEM Method EPA 100.2 (>10µm).

Detected fiber for RVMW04-1011 was a chrysotile fiber.

PKMW01 replaced by PKMW01A.






BoRit Asbestos Superfund Site, OU1 Ambler, Pennsylvania

Appendix A Phase 2 Hand Auger Table, Boring Logs and Monitoring Completion Reports

Appendix A - Table 1
Summary of Hand Augered Soil Samples
Borit Asbestos Superfund Site, OU-1
Preliminary Groundwater Report - Phase 2 Remedial Investigation

		Hand Auger Boring Location				Depth Range			
Site Location	Location Identifier	Easting	Northing	Sample Date	Grab Sample ID	(ft bgs)	Analyses	QC Sample	Notes
Former Fire Training Area	ADET 0004	2673755.225	309316.291	10/8/2010	APFT-SS01-A	0 - 0.25	Dioxins SVOCs PCBs/Pest	Duplicate; MS/MSD	Sample area contains large quantity of garbage and broken debris.
	APFT-SS01				APFT-SS01-B	0 - 0.5			Visible slag.
					APFT-SS01-C	0.5 - 2			Visible ACM within 6" - 24" layer.
		2673735.82	309350.7116	10/8/2010	APFT-SS02-A	0 - 0.25			Visible ACM within 0" - 3" layer.
	APFT-SS02				APFT-SS02-B	0 - 0.5			Visible ACM within 0" - 6" layer.
					APFT-SS02-C	0.5 - 2			Visible stacked ACM within 6" - 24" layer.
	APFT-SS03	2673697.416	309309.983	10/8/2010	APFT-SS03-A	0 - 0.25			
					APFT-SS03-B	0 - 0.5			Visible ACM within 0" - 6" layer.
					APFT-SS03-C	0.5 - 2			
	APFT-SS04	2673687.213	309290.8577	10/8/2010	APFT-SS04-A	0 - 0.25			
					APFT-SS04-B	0 - 0.5			
					APFT-SS04-C	0.5 - 2			
		2673715.035	309290.1627	10/8/2010	APFT-SS05-A	0 - 0.25			
	APFT-SS05				APFT-SS05-B	0 - 0.5			
					APFT-SS05-C	0.5 - 2			
		2673781.651	309270.723	10/8/2010	APSL-SS01-A	0 - 0.25		Duplicate; MS/MSD	
Visible Slag Area	APSL-SS01				APSL-SS01-B	0 - 0.5	Asbestos Dioxins Metals SVOCs		
					APSL-SS01-C	0.5 - 2			Visible ACM at approximately 18" bgs. Visible slag.
	APSL-SS02	2673775.715	309279.215	10/8/2010 -	APSL-SS02-A	0 - 0.25			Visible ACM and slag within 0" - 3" layer.
	AF 3L-3302				APSL-SS02-B	0 - 0.5	PCBs/Pest		Visible ACM and slag within 0" - 6" layer.
					APSL-SS02-C	0.5 - 2			Visible slag.

Notes and Abbreviations:

bgs: below ground surface
ACM = Asbestos containing material

AP = Asbestos pile

FT = Former fire training area

SL = Visible slag area

SS = Surface soil

SVOC = Semivolatile organic compound

PCB = Polychlorinated biphenyl

Pest = Pesticide

	ROJECT:			bestos Pennsylvania	HSA/A USEP/		MMER	NO:			MW-01		
ST DF DF SA	ARTED: RILLING RILLING RILLING MPLING JRFACE	COMF EQUII METH MET COMI	PANY: PMEN IOD: HOD:	10/20/10 COMPLETED: 10/26/10 Uni-Tech	NORT G.S. E WATE LOGG HORIZ	HING: LEVA R: ED B\ !ONT/	TION: /: AL DATU	191 48 I S. N	/loller	OORE	EASTING: M.P. ELEV: TOTAL DEPTH: D. SYS.: State Pla		outh
DEPTH	GRAPHIC		nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (mdd)	ELEV. (ft) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other Detections
	1			FILL: Topsoil over silty sand with clay to trace clay, trace coarse to gravel, silt, moist, loose.	0 to 2	1.33	8 8 9	0	-				
:	2-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3	にいたいた		BACS: Suspect ACM at 1 foot, dark gray mottled with black, tan, brown, silty material with sand. Clay and gravel-sized ACM. Slag at 2.5 feet.	2 to 4	1.83	9 7 13 11 10	0	190 - -				
	5-1111	スながれ		BACS: Light gray mottled silty, clayey material with bulk ACM chips and wood fibers throughout. 4 feet slag at 8 feet. Wet at bottom of sample.	4 to 6	2	8 10 13 9	0	-	_			
	7-23) (5) (5) (6)			6 to 8	1.33	8 7 8 4	0	185-	_			
	9-125	() (S)			8 to 10	1.5	6 6 7 8	0	-				
1	1		ML	Dark brown silt with clay. Moist, firm, less clay with depth. Native.	10 to 12	1.5	8 9 8 7	0	180-	_			
1:			SM	Mottled silty sand with clay and gravel, medium	12 to 14	1.5	5 5 9 10	0	-				
1:	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			dense, moist, dark brown. Fine medium grained reddish brown bedrock, sandstone. HSA refusal at 14.5 feet	14 to 16	0.5	50/6	0	-				
PROJECT.GDT 02/24/11 REV	7-88-99-00-			Overdrill with 10 inch air hammer to 25 feet, install 6-inch steel casing. Cuttings primarily sandstone.					175 - - -				
STANDARD_ENVIRONMENTAL_PROJECT.GDT 7	2-3-4-								170 — - -	-			
BORIT_ASBESTOS.GPJ STAN	7-8-			Drill below casing with 6-inch air hammer. Cuttings primarily sandstone.					- 165 — - -				
	<u> </u>	<i>71</i>		<u>Abbreviations</u>	1	<u> </u>	1	!	Consist	ency	vs Blowcount/F	<u>oot</u>	
WATEN BA BA BA	M - Asbes CM - Bull	tos co ACM ACM	ntainir I debris debris	os process waste NR - Not recorded WOH - Weight of hammer	Loos	oose: se:		(Sand): Dense: V. Den	30- se: >5		Fine Grain V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	stiff: V. Stiff: Hard:	8-15
LOGS WITI		Camp 1442	o, Dres 0 Albe	sser & McKee Inc HSA/Air Hemarle Point Place Suite 210	-						PROJECT	NO. 33	30.029
CI CI	DM	Telep	hone:	703-968-0900 68-0915								PAGE	1 OF 2

		Borit As Ambler,	bestos Pennsylvania	HSA/A	IR HAI	MMER	NO:			MW-01		
DEPTH (feet)	GRAPHIC LOG	SOSN	DESCRIPTION (Sampler Length: 2 Feet) -	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW COUNTS	PID (mdd)	ELEV. (ft)-	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other
31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 40 - 41 - 42 - 43 - 44 - 44 - 44 - 44 - 44 - 44	10		Drill below casing with 6-inch air hammer Cuttings primarily sandstone. (continued)	/S	a de la companya de l			160 —	AN		As ()	
45 — 46 — 47 — 48 — 49 — 50 — 51 —		Ž	Drill below casing with 6-inch air hammer. Cuttings primarily sandstone. Water-bearing fracture encountered at 48 feet.					- 145 — - - - - 140 —				
53 — 54 — 55 — 56 — 57 — 58 —			End of Boring at 53 feet bgs. Well Screen installed 43 - 53 feet. See well construction diagram.					- - - 135 — -				
59 — 60 — 61 — 62 — 63 — 64 —								- 130 — - -				
65 — 66 —	Ca	ımp, Dre	esser & McKee Inc HSA/Air emarle Point Place Suite 210	Hammer I	OG.			-	-	PROJECT I	NO. 33	30.0

	PROJ LOCA		Borit As Ambler,	bestos Pennsylvania		HSA/A USEPA		MMER	NO:			MW-01 <i>A</i>	\	
	STAR DRILL DRILL DRILL SAMF	RTED: LING CC LING EQ LING ME PLING M FACE CC	MPANY UIPMEN THOD: ETHOD:	11/11/10 C Uni-Tech IT: CME-85/Re Air Rotary, 6	OMPLETED: 11/12/10 ichdrill T-650-W 3 In. Dia. Borehole p	NORTI G.S. E WATE LOGG HORIZ	LEVAT R: ED BY	·:	191 48 I J. C	connor		EASTING: M.P. ELEV: TOTAL DEPTH: 0. SYS.: State Pla		outh
	DEPTH (feet)	GRAPHIC LOG	nscs		DESCRIPTION mpler Length: Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (ppm)	ELEV. (ff)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other Detections
	1- 2- 3- 4- 5-			10/26/2010 due screened interva	inial MW-01 installed on to possible grout infiltration of al, as determined by high pH groundwater and limited oundwater.	_				- 190 – - -				_
	6- 7- 8- 9-									- 185 – - -	_			
	10 — 11 — 12 — 13 —									180-	-			
3DT 02/24/11 REV.	15— 16— 17— 18—									- - 175 – -	-			
BORIT_ASBESTOS.GPJ STANDARD_ENVIRONMENTAL_PROJECT.GDT	19 — 20 — 21 — 22 — 23 — 24 —									- 170 – -	-			
ASBESTOS.GPJ STANDARD	25 — 26 — 27 — 28 — 29 —			<i>\</i> /						- - 165 – -	-			
30RIT										-				
					eviations						ency	vs Blowcount/Fo		
LOGS WITH WATER DATA	BACS	- Appare Asbestos - Bulk A - Bulk A lot measu	ivi debri:	os process waste ng material s s mixed with soil	NR - Not recorded WOH - Weight of hammer WOR - Weight of rod	V. Loos Loos M. D	oose: e:		Sand): Dense: V. Den	30-		Fine Grain V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	ed (Clay Stiff: V. Stiff: Hard:	- 8-15
OGS WITH	INIVI - IN	Ca 14	mp, Dre 420 Albe	sser & McKee Inc emarle Point Place 'A 20151	Suite 210 HSA/Air I							PROJECT		
BORITL	CD	NA Te	lephone:	703-968-0900 968-0915									PAGE	1 OF 3

	Asbestos er, Pennsylvania	HSA/A	IR HAI	MMER	NO:			MW-01A	\	
DEPTH (feet) GRAPHIC LOG	DESCRIPTION (Sampler Length: Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (mdd)	ELEV. (ft)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other Detections
31 – 32 – 33 –	Over-drilled originial MW-01 installed on 10/26/2010 due to possible grout infiltration of screened interval, as determined by high pH (12.3) results in groundwater and limited production of groundwater. (continued)					- 160 — -				
34 — 35 — 36 — 37 —						- - 155 – -				
38 — 39 — 40 — 41 —						- - - 150				
42 — 43 — 44 — 45 —						- - - -				
46 — 47 — 48 — 49 —	₹			7		145 — - -				
50 — 51 — 52 — 53	Water changed from whitish to brown at 64 feet					- 140 -				
54 - 55 - 56 - 57 - 58 - 58 - 58 - 58 - 57 - 58 - 58	Water changed from whitish to brown at 64 feet. Water flow rate consistent but low. pH reading dropped from 10.5 to 8.5.					- - 135 — -				
59 — 60 — 61 — 62 — 62 — 62 — 63 — 64 — 65 — 65 — 65 — 65 — 65 — 65 — 65						- - 130 —				
63 – 64 – 65 – 66 –						- - -				

	JECT: ATION:	Borit As Ambler.	bestos Pennsylvania	HSAV	AIR HA	MMER	NO:			MW-01 <i>A</i>	\	
DEPTH (feet)	GRAPHIC LOG	SOSO	DESCRIPTION (Sampler Length: Feet)	SAMPLE	RECOV.	BLOW	PID (mdd)	ELEV. (ft)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other
67-												
68-			pH reading dropped to 7.5.					-				
69-								-				
70 -								-				
71 - 72 -								120-				
73-								-				
74 -	-		End of Boring at 73 feet bgs. Well Screen installed 63 - 73 feet. See well construction					-				
75-	-		diagram.					-				
76-	-							445				
77-	-					\wedge		115-				
78-								-				
79-								-				
80-	1							✓ -				
81 - 82 -								110-				
83-			/			>		-				
84-						7		-				
85-	-							-				
86-	-							-				
87-	-			2				105-				
88-								-				
89-								-				
90-								-	-			
91 - 92 -								100-				
93-								-				
94-	_							-				
95-	_							-				
96-	-							-				
97-	-							95-				
98-	-											
99-	1											
100-												
101-								90-				
102-]											

	JECT: ATION:	Borit As	sbestos , Pennsylvania	HSA/A USEP/		MMER	NO:			MW-02		
STAF DRIL DRIL DRIL SAM	RTED: LING CC LING EC LING ME PLING M FACE CC	OMPANY QUIPMEN ETHOD: IETHOD	10/21/10 COMPLETED: 10/26/10 ': Uni-Tech NT: CME-85/Reichdrill T-650-W HSA/Air Rotary, 6 In. Dia. Borehole	NORTI G.S. E WATE LOGG	HING: LEVAT R: ED BY	′ :	196 58 F S. N	/loller		EASTING: M.P. ELEV: TOTAL DEPTH: 0. SYS.: State Plan		outh
DEPTH (feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (mdd)	ELEV. (ft)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other Detections
1-			FILL: Dark brown silty clay with gravel, wood pieces, dry, medium dense.	0 to 2	1.17	6 13 13 8	0	195 –				
3-	******		BACM: White silty material with fibers and bulk ACM, moist, fine medium fill. Dry to slightly moist.	2 to 4	0.83	7 6 5 7	0	-				
5-	*****			4 to 6	1	5 9 6 5	0	-				
7-			BACM: White fibrous material and greenish-white bulk ACM, moist, soft.	6 to 8	0.25	6 5 2 2	0	190-				
9-	******			8 to 10	0.25	5 2 2 3	0	<u>-</u>				
10 - 11 - 12 -			BACS: Bulk ACM and silty fibrous material, gray, grayish-green, red, brown, slightly moist. Less bulk ACM, more silty, sandy material with depth. Moist. Wet.	10 to	0.5	4 3 4 3	0	185 –				
13-				12 to 14	0.67	4 3 2 3	0	-				
15-				14 to 16	0.083	2 2 1 2	0	-				
BORIT_ASBESTOS.GPJ STANDARD_ENVIRONMENTAL_PROJECT.GDT				16 to 18	0.17	2 2 2 2	0	180-				
19 – 19 – 20 – 20 – 20 – 20 – 20 – 20 – 20 – 2		<i>(-</i>	BACS: Dark brown silt with trace gravel, wet, over bulk ACM and gravelly fill.	18 to 20	0.5	7 9 10 6	0	-				
21 - 21 - 22 -			3 - 6 inch layers of fine medium silty sand with trace clay and fine silt, wet, dark, grayish brown.	20 to 22	1	4 5 3 2	0	175 —				
488E82TO8.GP.		SM	Native.	22 to 24	1	2 7 3 7	0	-				
ORIT		SM		24 to		10 11		-				
			<u>Abbreviations</u>						ency	vs Blowcount/Fo	<u>oot</u>	
MA BACM BACS	 Asbestos 	s containi CM debri CM debri	tos process waste ng material WOH - Weight of hammer is WOR - Weight of rod s mixed with soil	Loos	oose: e:		(Sand): Dense: V. Dens	30-		Fine Graine V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	ed (Clay) Stiff: V. Stiff: Hard:	8-15
T LOGS WI	14 Cł	420 Albonantilly, \	esser & McKee Inc HSA/Air Harmarle Point Place Suite 210 Di	ammer l raft	.OG					PROJECT I	NO. 33	30.029

Section Processer Amplication Processer Processer Amplication Processer Processer Amplication Processer	PROJEC LOCATIO		Borit As Ambler,	sbestos Pennsylvania	HSA/A	IR HA	MMER I	NO:			MW-02		
SM Eliza medium sand, sithy sand with graveler and trace organize, red-brown to gray-brown, medium dense to dense. (continued) Reddish brown sandstone bedrook. HSA refusal at 20.4 feet Overdrill with 10-4 nch air hammer to 36 feet, install 6 in-his steet casing. Cuttings primerity sandstone. 1865				DESCRIPTION					ELEV. (ff)-	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other
27 Reddish brown sandstone bedrock. HSA refusal 28	26		SM	trace organics, red-brown to gray-brown, medium	26	1.5	18	0	-				
28	27	<u>///</u>		Reddish brown sandstone bedrock. HSA refusal	26 to 28	0.42	30/0	0	170 -				
sandstone. 31	<u>;/:</u>	<u>-/-</u>		Overdrill with 10-inch air hammer to 36 feet,					-				
31- 32- 33- 33- 34- 35- 36- 37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 51- 52- 53-	<u> </u>			sandstone.					-				
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 53 53 53 54 55 55 55	<u>/</u>	<u>/.</u>							-				
34	32-								165 — -				
35	:/	<u>/.</u>					^		-				
36		///				/			-				
37- 38- 39- 40- 41- 42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53- 44- 45- 45- 46- 47- 48- 49- 50- 145- 1	<u> </u>	<u>///</u>							-				
39-2-2-40-41-41-42-42-43-44-44-44-44-44-44-44-44-44-44-44-44-	37-	///		Reddish brown fine grained bedrock.					160-	-			
40 41 41 42 43 44 44 44 44 44 45 46 46 47 48 49 49 50 50 50 50 50 50 50 50 50 50 50 50 50	·			4				//	-				
42— 43— 44— 45— 46— 47— 48— 49— 50— 51— 52— 53— 445— 45— 445— 45— 46— 47— 48— 49— 49— 49— 40— 40— 41— 41— 41— 41— 41— 41— 41— 41— 41— 41	::/	·/·/					<i>?</i>		-				
42- 43- 44- 45- 46- 47- 48- 49- 50- 51- 52- 53- 53- 53- 53- 54- 54- 54- 54- 54- 54- 54- 54	41								155-				
44	42	·/·/			<i>y</i>				-				
46 — — — — — — — — — — — — — — — — — — —	<u> </u>	*/ <u>/</u> /							-				
47————————————————————————————————————	45	-/							-				
48 — — — — — — — — — — — — — — — — — — —	46		6						150 —				
49————————————————————————————————————	; <u>/</u>	///							-				
51 —	<i>:/</i> .			<i>V</i>					-				
52 — ——————————————————————————————————	50-								-				
53	·								145 —				
		<u> </u>							-				
	:/:								-				
Camp, Dresser & McKee Inc HSA/Air Hammer LOG PROJECT NO. 3330	55	<u></u>							_				

PROJECT LOCATION	sbestos r, Pennsylvania	HSA/	AIR HAI	MMER	NO:			MW-02		
(feet)	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL	RECOV. (feet)	BLOW	PID (mdd)	ELEV. (ft)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other
56	Reddish brown fine grained bedrock. (continue					140 —				
58	<u> </u>					-				
59-	Reddish brown fine grained bedrock. Water-bearing fracture encountered at 58 feet					-				
60						-				
61						135 —				
62						-				
63	End of boring at 63 feet bgs. Well Screen insta 53 - 63 feet. See well construction diagram.	illed				-	-			
65						-				
66						-				
67						130-				
68-										
69-				,						
70				7		_				
71			>			125-				
72		, /				-				
73 – 74 –						-				
75—						-				
76-						-				
77						120 —				
78						_				
79-	//					_				
80						-				
81						115-				
82-						-				
83						-				
84 –						-				
	esser & McKee Inc HSA/A					-				30.0

	OJECT:	Borit As	ebestos Pennsylvania	HSA/A USEP/		MMER	NO:			MW-03		
ST/ DR DR DR SAI	ARTED: ILLING CO ILLING EQ ILLING ME MPLING M RFACE CO	OMPANY QUIPMEN ETHOD: IETHOD:	10/22/10 COMPLETED: 10/28/10 : Uni-Tech NT: CME-85/Reichdrill T-650-W HSA/Air Rotary, 6 In. Dia. Borehole	NORT G.S. E WATE LOGG	HING: LEVAT R: ED BY	: L DATU	181 48 F S. N	/loller	OORE	EASTING: M.P. ELEV: TOTAL DEPTH: 0. SYS.: State Pla		outh
DEPTH (feet) -	GRAPHIC LOG -	nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (ppm)	ELEV. (ff) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other Detections
1	-		FILL: Silty clay with trace gravel, dark grayish-brown, slightly moist, medium dense.	0 to 2	0.83	10 10 9 8	0	- 180 —				
3 4		SM	Native. Fine medium silty sand with clay, trace rootlets, dark brown, slightly moist, loose.	2 to 4	1.67	7 4 6 5	0	-				
5	77777	SP	Fine medium, trace clay sand, dark brown to black, slightly moist to wet, loose.	4 to 6	1.5	2 3 1	0	-				
7		SC	Fine clay, sand with gravel, black and silty clay, dark gray, wet, soft/loose.	6 to 8	1.17	1 1 1	0	175-				
9		C.	Reddish clay with fine sand and sub-rounded	8 to 10	2	NR NR NR NR	0	-				
10		CL	gravel, stiff, slightly moist. Mixed reddish sandy clay and fine medium tan	10 to 12	1.33	3 4 15 13	0	170-				
12		sc	sand, slightly moist, very dense, layer of dark reddish brown rock at 12.4 feet.	12 to 14	0.92	23 50/5	0	-				
14 15 2 16	-		Reddish brown fine grained bedrock, HSA refusal at 14.4 feet. Overdrill with 10 inch air hammer to 24 feet, install 6-inch steel casing.	14 to 16	0.42	50/5	0	-				
STANDARD_ENVIRONMENTAL_PROJECT.GDT 02/24/11 R 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5								165 —				
BORIT_ASBESTOS.GPJ STANDARD 50 51 52 53 54 55 56 57 58 58 58 58 58 58 58 58 58			Drilling below casing with 6-inch air hammer.					- 155 — - -				
			<u>Abbreviations</u>					Consist	ency	vs Blowcount/Fo	oot	
MATER BAC BAC	1 - Asbestos M - Bulk A S - Bulk A	s containi CM debri CM debri:	os process waste ng material WOH - Weight of hammer WOR - Weight of rod s mixed with soil	Loos	ose:	4-10	Sand): Dense: V. Dens	30-{ se: >5		Fine Graine V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	ed (Clay) Stiff: V. Stiff: Hard:	8-15
OGS WITH	14	amp, Dre 420 Albe	sser & McKee Inc HSA/Air Ha emarle Point Place Suite 210	1		.5 50				PROJECT		
CI CI	Te	lephone	/A 20151 : 703-968-0900 968-0915								PAGE	1 OF 2

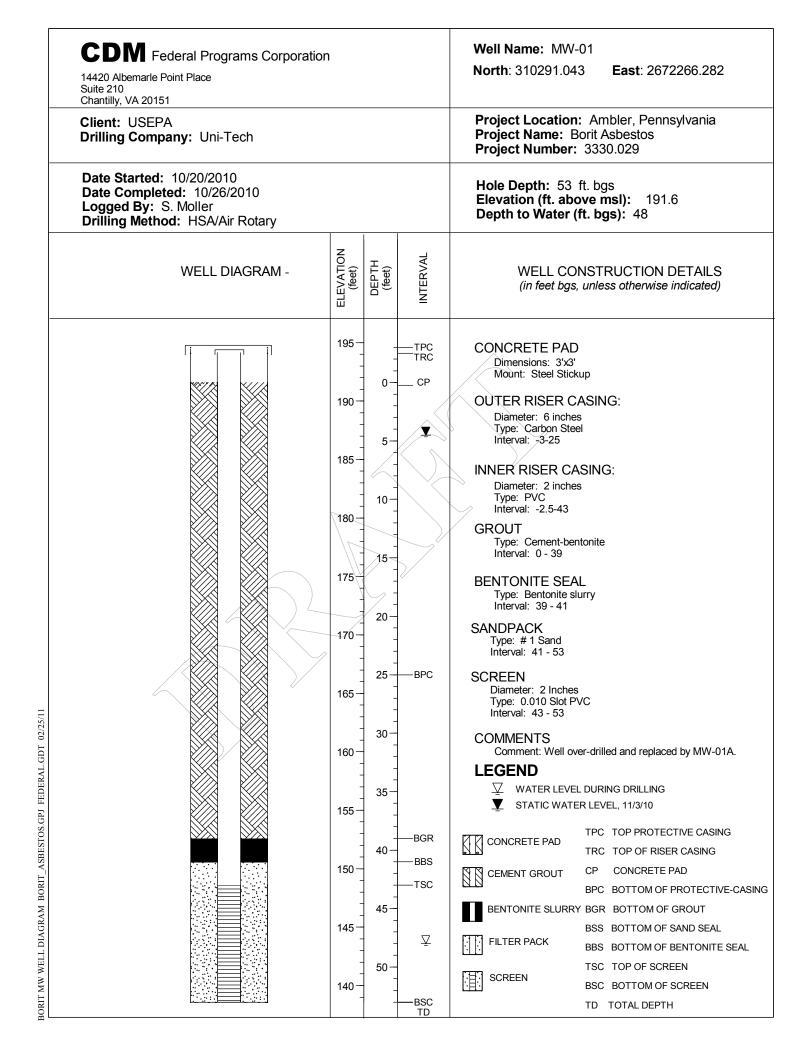
PROJE LOCAT		Borit As Ambler,	bestos Pennsylvania	HSA/A	IR HAI	MMER	NO:			MW-03		
	GRAPHIC LOG	SOSO	DESCRIPTION (Sampler Length: 2 Feet) -	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW COUNTS	PID (mdd)	ELEV. (ff) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other
31 - 32 - 33 - 34 - 35 - 36 - 37 - 38 - 39 - 40 - 41 - 42 - 43 - 44 - 45 - 46 - 47 - 55 - 56 - 57 - 58 - 56 - 57 - 58 - 59 - 60 - 61 - 61 - 61 - 61 - 61 - 61 - 61	GRAPH	NSCN V	(Sampler Length: 2 Feet) - Drilling below casing with 6-inch air hammer (continued)	SAMP INTER\ (feet	RECO RECO (feet	NOOD NOOD	did)	150 - 150 -			Asbest (MFL	Othe
62 – 63 – 64 – 65 –								- -				
66-			esser & McKee Inc HSA/Air					-				

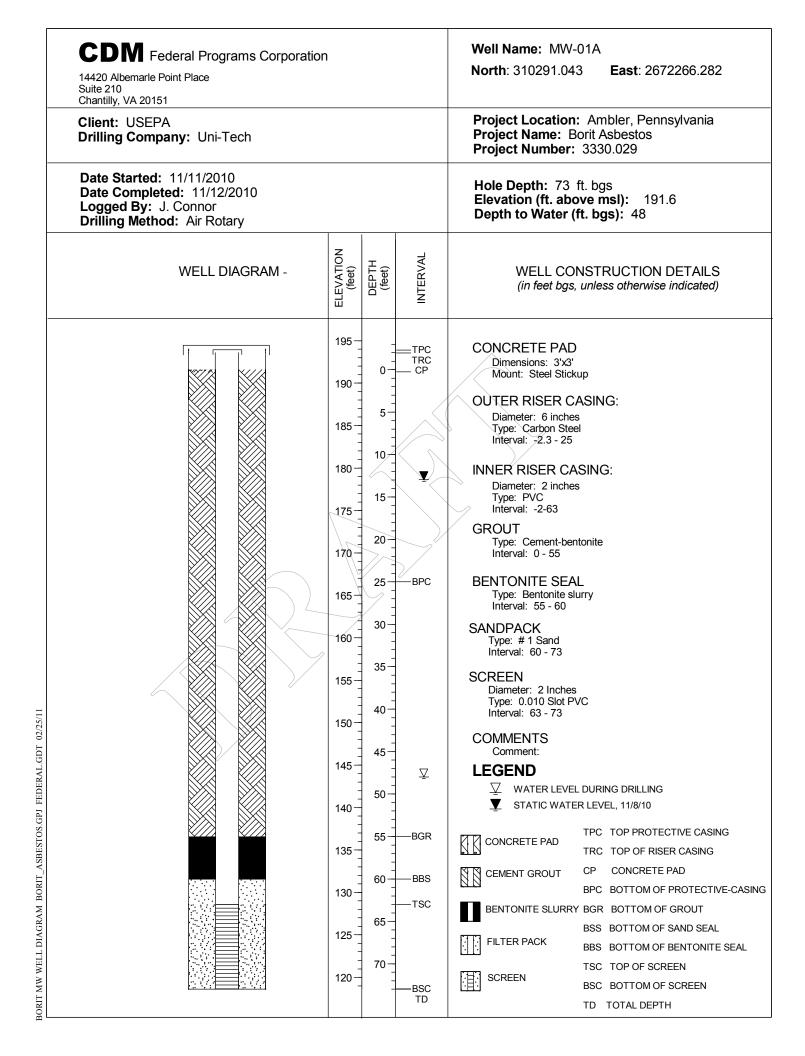
			ebestos Pennsylvania	HSA/A USEPA		MMER	NO:			MW	<i>I</i> -04		
STAF DRIL DRIL DRIL SAM	RTED: LING CO LING EQI LING ME IPLING MI	MPANY JIPMEN THOD: ETHOD	10/27/10 COMPLETED: 11/2/10 ': Uni-Tech NT: CME-85/Reichdrill T-650-W HSA/Air Rotary, 6 In. Dia. Borehole	NORTI G.S. E WATE LOGG	HING: LEVA ⁻ R: ED BY	ΓΙΟΝ: ':	195 95 S. N	Moller	OORE	EASTING M.P. ELE TOTAL D	V: EPTH:		Γ outh
DЕРТН (feet) -	GRAPHIC LOG -	nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW COUNTS	PID (mdd)	ELEV. (ft) -	ANALYTICAL SAMPLE -	SAMF ID		Asbestos (MFL) -	Other
1-			FILL: Road gravel over dark gray wet clay, firm.	0 to 2	0.83	16 18 19 5	0	195 —					
3-			BACS: 4-inch red clay over grayish-white fibrous silty material, slightly moist, soft.	2 to 4	1.17	12 8 8 6	0	<u>-</u>					
4- 5-				4 to 6	1.5	1 2 1 2	0	- 190 <i>-</i>					
6- 7-			BACS: 4-inch red clay over grayish-white fibrous silty material, slightly moist, soft. Layers of green, red gray, brown fill, very soft.	6 to 8	1.5	1 - 1 - 1 - WOH	0	-					
8- 9- 10-			BACS: 4-inch red clay over grayish-white fibrous silty material, slightly moist, soft. Wet in area near shoe.	8 to 10	2	WOH WOH WOH	0	-					
11-			BACS: White, very soft, spongy, vermiculite-like	10 to 12	2	WOH WOH WOH	0	185-					
12-			material with colored laminae. Black mucky material from 12 to 13 feet, then back to white.	12 to 14	2	WOH WOH WOH	0	- -					
14-		SM	Native, dark brown silty sand, moist, very soft.	14 to 16	0.33	2 WOH WOH WOH	0	- 180 <i>-</i>					
16- 17-		ML	Fine silt with sand and clay, very dark brown, very soft, wet.	16 to 18	2	WOH WOH WOH	0	-					
18 - 19 -	/. / /. /. / /.		Reddish brown to green slightly cemented sand apparent weathered sandstone, dense.	18 to 20	1.5	17 22 50/6	0	-					
21-	/. / /. / / / /.	//	Same as above, becomes softer.	20 to 22	1.5	7 10 12 12	0	175 <i>-</i> -					
22-	/. / /. /. / / /.	*	Same as above, becomes denser, greenish. PID malfunctions due to rain.	22 to 24	0.83	22 25 28 40	0	- -					
24 -	//// ////			24 to 26	0.67	21 50/5	NM	- 170 <i>-</i>					
26 – 27 –	//. //.		No Recovery	26 to 28	0	50/6	NM	-					
28 – 29 –	//. //.		Same as above, becomes denser, greenish. PID malfunctions due to rain.	28 to 30	1.5	25 30 50/2	NM	_					
	<u></u>		Abbreviations	1				Consist	ency	vs Blowc	ount/F	oot	
BACM BACS	- Asbestos 1 - Bulk A0	containi CM debri CM debri	tos process waste NR - Not recorded WOH - Weight of hammer	Loos	oose: e:			30-5	50			ed (Clay) Stiff: V. Stiff: Hard:	8-1: 15-3 >30

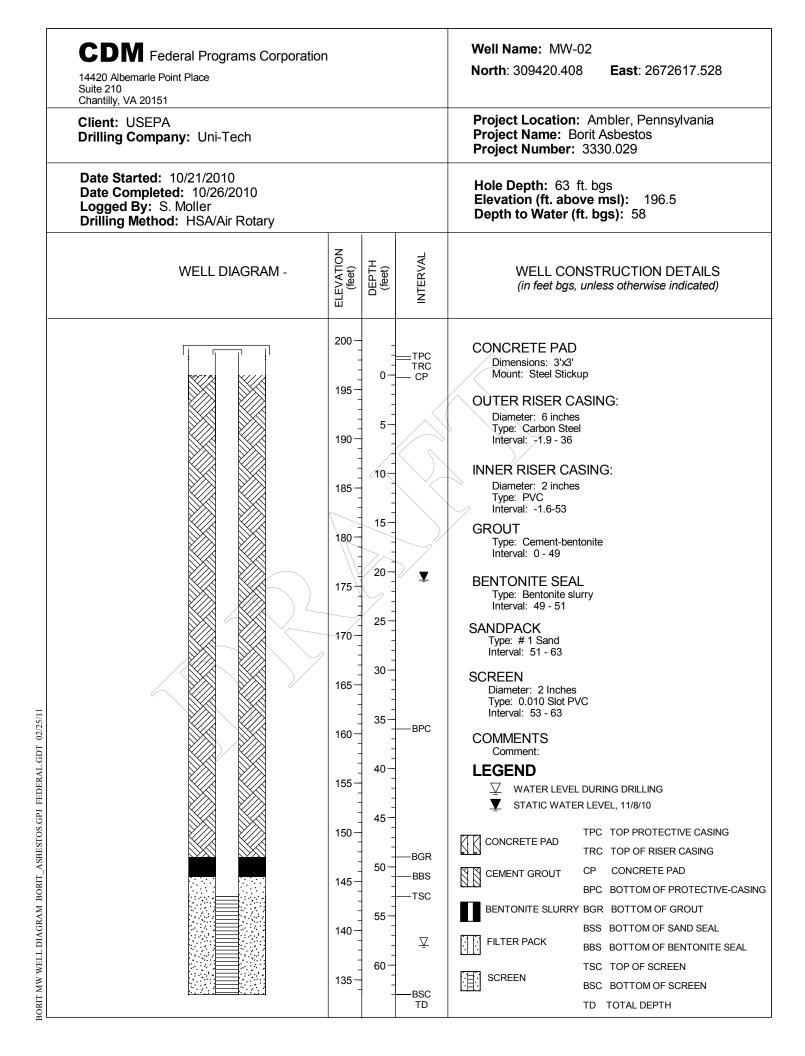
A1	Greeni refusal	DESCRIPTION (Sampler Length: 2 Feet) very fine grained, very dense rock in shoe. sh sandstone bedrock, very dense. HSA at 32.1 feet. ill with 10-inch air hammer to 44 feet, 6-inch steel casings. Sandstone bedrock.	SAMPLE 35 to 35 co 34 co 36 co 34 co 34 co 36 co 34 co 36 co	0.25 0.17	MO78 50/4 50/2	Mdd)	165 -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other
32	Greeni refusal	sh sandstone bedrock, very dense. HSA at 32.1 feet.	32 - 32 to				- - -				
33 - 34 - 35 - 36 - 37 - 38 - 39 - 39 - 39 - 39 - 39 - 39 - 39	refusal	at 32.1 feet. ill with 10-inch air hammer to 44 feet,	32 to 34 -	0.17	50/2	NM	- - - 160 -				
35	Overdr install (ill with 10-inch air hammer to 44 feet, 6-inch steel casings. Sandstone bedrock.					- 160 -				
40							-				
1.7.7.7							- 155 - - -				
45	Darker	reddish brown bedrock cuttings.					- 150 - -				
49							- - 145 - -				
54 - 55 - 56 - 57 - 58 - 58 - 58 - 58 - 57 - 58 - 58							- 140 - -				
59	Return cutting	to gray-brown apparent sandstone s.					- 135 - -				
63 - 64 - 65 - 66 - 66 - 66 - 66 - 66 - 66							- - 130 -				

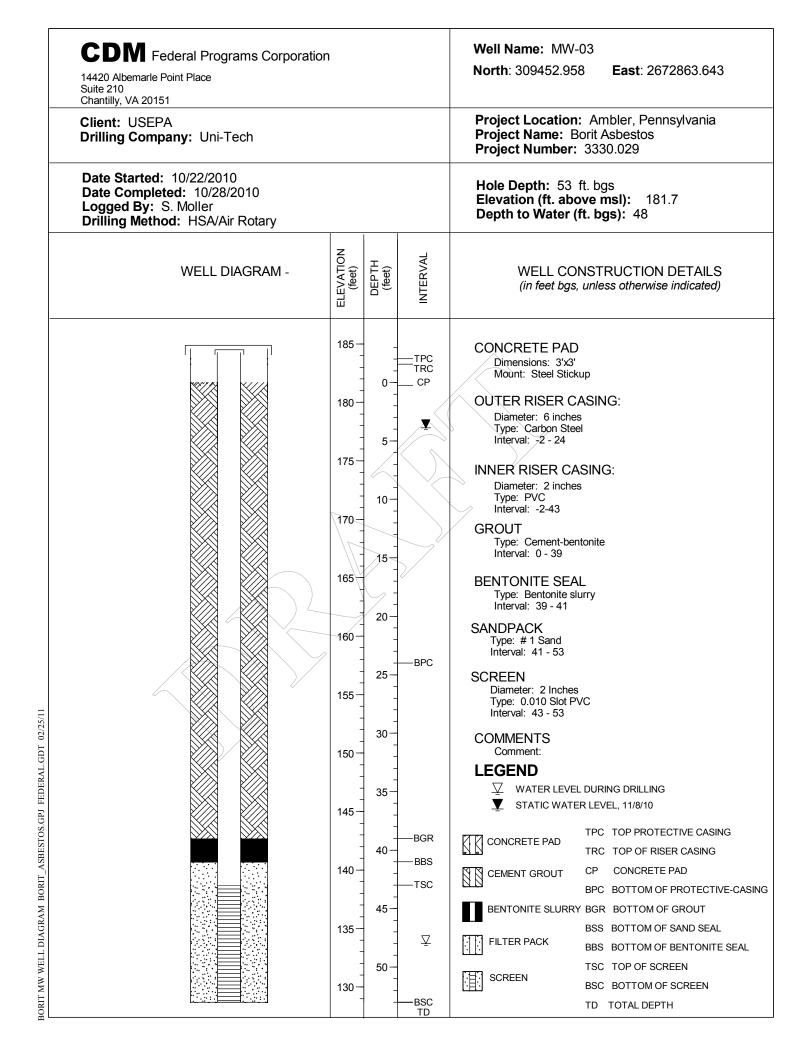
PROJECT: Borit Asbestos LOCATION: Ambler, Pennsylvania				HSA/A	IR HAI	MMER		MW-04				
(feet) -	GRAPHIC CLOG - N	SOSO	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW COUNTS	PID (mdd)	ELEV. (ff) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	10450
67 -	// / // 		Return to gray-brown apparent sandstone cuttings. (continued)					-				
68 -	//./		Cuttings. (Commueu)					-				
69 -	//./							-				
70-	//./							405				
71 -	//./							125 -				
72-	//./											
73-								_				
74-								-				
75 -								120 -				
76 - 77 -								-				
77 - 78 -	//.i							-				
79 -	<u>//.</u>							-				
80 -	<u>///.</u>							-				
81 -								115 -				
82-	//.i							-				
83-	// ./././		Sandstone bedrock cuttings.	\				-				
84 -	<u>/ </u>							-				
85 -	/ <u>····</u> /							-				
86 -	<u> </u>							110 -				
87 -	/ / /			Ĭ				-				
88 -	/ / / /							_				
89 -	////							-				
90 -	////							105 -				
92-								-				
93 -	///							-				
94 -	///							-	-			
95-	/ / /	Z	/	_				-				
96 -	/ · · · / · / · / · /		Sandstone bedrock cuttings. Estimated depth of initial water-bearing fracture at 95 feet.					100 =				
97 -	<u>/ /</u> . /. / . /.							-				
98-	// ./././							-				
99 -	<u>/ /</u>							-				
100 -	<u> </u>		End of boring at 100 feet bgs. Well screen	\dashv								
I01 -			installed 80 - 100 feet. See well construction diagram.					95 -				
102 -			_		1			_	1			

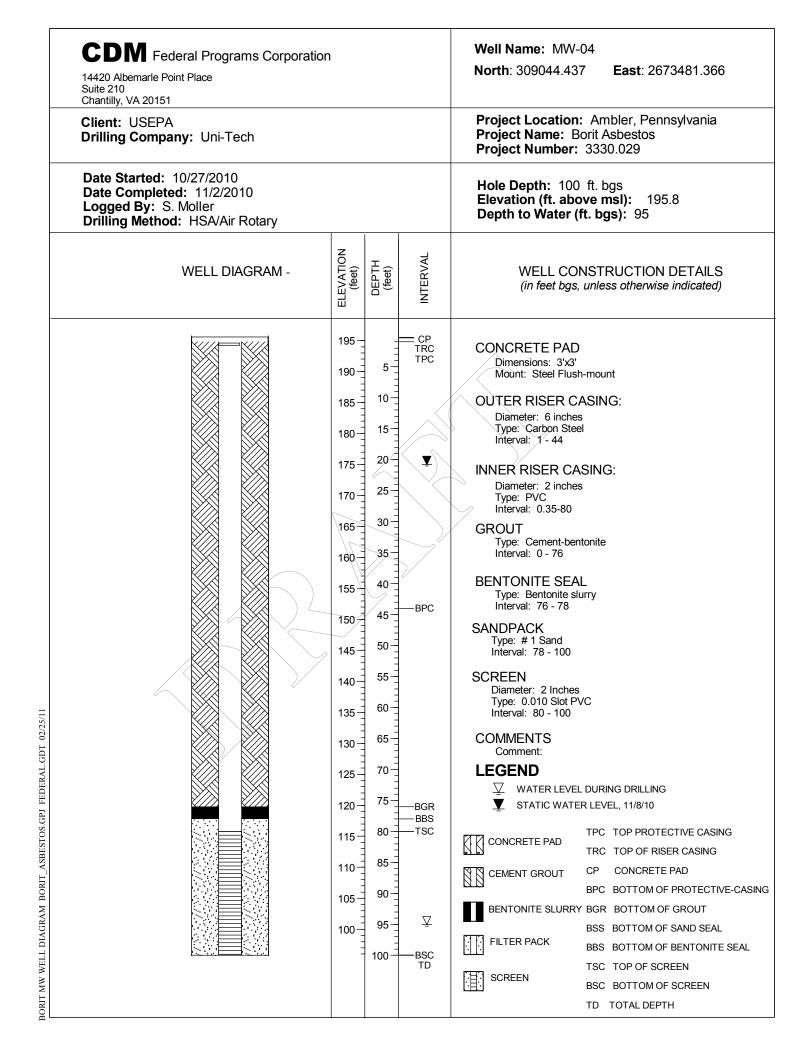
		JECT:	Borit As		HSA/A USEP/		MMER	NO:			MW-05		
5 5	STAR DRILI DRILI DRILI SAMF	RTED: LING CC LING EC LING ME PLING M FACE CC	MPANY UIPMEN THOD: ETHOD:	IT: CME-85/Reichdrill T-650-W HSA/Air Rotary, 6 In. Dia. Borehole	NORTI G.S. E WATE LOGG HORIZ	HING: LEVA ⁻ R: ED BY ONTA	ΓΙΟΝ: ΄: LL DATU	190 58 I S. N	/loller	OORE		ne PA So	outh
DEPTH	(feet)	GRAPHIC LOG	nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (ppm)	ELEV. (ft)	ANALYTICAL SAMPLE	SAMPLE ID	Asbestos (MFL)	Other Detections
	1-		·	FILL: Dark grayish-brown silty sand with clay, wet, medium dense with gravel.	0 to 2	0.67	7 14 14 7	0	190 –				
	3- 4-			BACS: 6-inch gray silty material with bulk ACM over layers of dark gray, red, and white material, fibrous, slightly moist, loose/soft.	2 to 4	0.83	4 7 12 6	0	-	-			
	5— 6—				4 to 6	0.83	5 3 1 2	0	185-				
	7- 8-				6 to 8	0.67	2 4 3 2	0	-				
	9- 10-				8 to 10	0.5	1 1	0	-				
	11- 12-			DAGNA DUIL AGNA Silkasia asia fasia asia Gal	10 to 12	0.5	1 1 1 3	0	180-				
	13- 14-	**************************************		BACM: Bulk ACM with wire reinforcing observed.	12 to 14	0.5	2 2 2	0	-				
	15— 16—				14 to 16	0.33	2 1 1 2 -	0	175-	-			
. 02/24/	17— 18—				16 to 18	0.5	5 4 4	0	-	-			
PROJECT.G	19— 20—		ML	Native, 3-inch silt with red-brown organics, 4-inch sand with silt and gravel over fine silt with clay and trace organics, wet, very soft, dark gray.	18 to 20	2	3 3 WOH 2 3	0	-	-			
ONMENTAL			GWS	6-inch sand and gravel.	22 to	1	MOH 2	0	170 -				
ARD_ENVIRC	23- 24-		GWS GWS SP _	12-inch silt with clay. 6-inch sand and gravel, loose/soft, wet, dark gray to dark grayish brown.	24 to	2	3 8 8	0	-				
GPJ STAND	25— 26— 27—		<u> </u>	8-inch sand and gravel, same as above. 4-inch weathered rock and sand, red, medium	26 26 to	2	7 8 10 16	0	165 -				
SBESTOS	28 – 29 –			dense. Same as above. HSA refusal at 29 feet.	28 28 to	0.5	25 50 21 50/5	0	-	-			
					30				Consist	onev	vs Blowcount/Fo	not.	
MA B	ACM ACS	 Bulk A 	CM debri CM debri:	Abbreviations os process waste ng material s WOH - Weight of hammer WOR - Weight of rod s mixed with soil	Loos	oose: se:	anular (0-4 4-10 10-30	Sand): Dense:	30-	50	Fine Graine V. Soft: <2 Soft: 2-4 M. Stiff: 4-8		8-15
IT LOGS WIT		Ca 14 Ch	amp, Dre 420 Albe	sser & McKee Inc HSA/Air Ha emarle Point Place Suite 210 Di /A 20151 703-968-0900	ammer I raft	_OG					PROJECT I	NO. 33	30.029
BOR	D	M Fa	ax: 703-9	703-968-0900 968-0915								PAGE	1 OF 2




	PROJECT: Borit Asbestos OCATION: Ambler, Pennsylvania					MMER		MW-05				
(feet)	GRAPHIC	SOSU	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (ppm)	ELEV. (ft) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	j
31 = 32 = 33 = 34 = 35 = 36 = 37 = 38 = 38 = 36 = 38 = 38 = 36 = 38 = 38			Overdrill with 10-inch air hammer to 39 feet, install 6-inch steel casing.					160 -				
39 40 41 42 43 44 45 46 47			Drilling below casing with 6-inch air hammer.					- 150 - - - - - 145 -				
48 = 49 = 50 = 51 = 52 = 54 = 55 = 55 = 55 = 55 = 55 = 55								- - 140 - - - -				
56 57 58 59		Ž	Drilling below casing with 6-inch air hammer Water-bearing fracture encountered at 58 to 59 -					135 - - -				
60 - 61 - 62 - 63 -			feet					- 130 - - -				
64 - 65 - 66 -			End of boring at 64 feet bgs. Well screen installed at 54 - 64 feet. See well construction diagram.					- 125 -				


		Borit As				MMER I	NO:			MW-06		
STAI DRIL DRIL DRIL SAM	RTED: LLING COI LLING EQI LLING ME IPLING ME FACE CO	MPANY JIPMEN THOD: ETHOD:	IT: CME-85/Reichdrill T-650-W HSA/Air Rotary, 6 In. Dia. Borehole		HING: LEVAT R: ED BY	: L DATU	195 48 S. N	Moller	OORE		ne PA So	outh
DEPTH (feet) -	GRAPHIC LOG -	nscs	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW	PID (ppm)	ELEV. (ff) -	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other Detections
1-			FILL: Road gravel over silty clay with gravel, possible ACM at 8 - 12 inches.	0 to 2	1	11 25 17 9	0	-				
3-			BACS: Layers of sand, fine medium, and red, gray, black silty material with asbestos fibers. Brick, fragments, possible slag, wet at 4 feet.	2 to 4	0.5	6 2 2 3	0	-				
5-				4 to 6	0.5	5 4 8 4	0	190 –				
7 - 8 -			AAPW: Grayish white silty ACM, wet, very soft, paste texture.	6 to 8	1.5	1 1 2 2 2	0	-				
9- 10-			FILL: Grayish brown silt with sand and clay, wet, soft, over 6 inch gray silty clay, wet, soft.	8 to 10	2	2 2 2	0	-				
11-		SM	Native, dark grayish-brown silt and fine medium sand, wet, loose. Trace organics, reddish-brown mottling below 10 feet.	10 to 12	2	WOH WOH WOH	0	185 -				
13-			Weathered sandstone bedrock, greenish-white to reddish-brown to grayish-brown, dry, sense. Very	12 to 14	2	8 14 9 8	0	- -				
15- 실 16-			dense below 16 feet. HSA refusal at 18 feet.	14 to 16)1	15 14 24 28	0	180-	_			
27/11 Here 17 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -				16 to 18	0.42	50/5	0	-	-			
				18 to 20	0.25	50/3	0	175-				
21 21 22 22 22 22 22 22 22 22 22 22 22 2			Overdrill with 10-inch air hammer to 28 feet, install 6-inch steel casing.						-			
23 - 24 -								-				
BORIT_ASBESTOS.GPJ STANDARD_ENVIRONMENTAL_PROJECT.GDT								170 -				
78 28 29 29 29 29 29 29 29 29 29 29 29 29 29			Sandstone cuttings.	_				-	-			
	VIXIII		<u>Abbreviations</u>		<u> </u>			<u>Consist</u>	ency	vs Blowcount/Fo	<u>oot</u>	
AAPV ACM BACM BACS	- Asbėstos 1 - Bulk AC	containii CM debri CM debris	os process waste NR - Not recorded WOH - Weight of hammer	Loos	ose: e:		Sand): Dense: V. Den	30-		Fine Graine V. Soft: <2 Soft: 2-4 M. Stiff: 4-8	ed (Clay) Stiff: V. Stiff: Hard:	8-15
LOGS WITH WATER DATA WATER DATA BACV BACV BACV NM -	Ca 144	mp, Dre 120 Albe	sser & McKee Inc HSA/Air Hamarle Point Place Suite 210 Di	1						PROJECT I	NO. 33	30.029
	Tel	ephone:	703-968-0900 168-0915								PAGE	1 OF 2




		Borit As Ambler,	sbestos , Pennsylvania	HSA/A	IR HAI	MMER	NO:			MW-06		
DEPTH (feet)	GRAPHIC	SOSO	DESCRIPTION (Sampler Length: 2 Feet)	SAMPLE INTERVAL (feet)	RECOV. (feet)	BLOW COUNTS	PID (mdd)	ELEV. (ft)-	ANALYTICAL SAMPLE -	SAMPLE ID	Asbestos (MFL) -	Other
31 = 32 = 33 = 34 = 35 = 36 = 37 = 38 =	J J		Sandstone cuttings. (continued)	V <u>2</u>				- - - 160 - -	4			
39 - 40 - 41 - 42 - 43 -			Dark brown cuttings at 42 feet. Slightly moist,					- 155 - - -				
44 = 45 = 46 = 47 = 48 =		7	back dry almost immediately. Water bearing fracture encountered at 48 feet.					150 - -				
49 = 50 = 51 = 52 = 53 = 53 = 55 = 55 = 55 = 55 = 55			Dark brown cuttings at 42 feet. Slightly moist, back dry almost immediately.					- 145 - - -				
54 - 55 - 56 - 57 -	-	/	Dark brown cuttings at 42 feet. Slightly moist, back dry almost immediately. Water bearing fracture encountered at 48 feet.					- 140 - -				
58 - 59 -	-							-				
60 - 61 - 62 -	_							135 - - -				
63 - 64 - 65 -	_							- 130 -				
66 -								_				

